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Preface 

MERLIN SMITH 
Conference Chairman 

The Proceedings of the 1979 National Computer Conference represents 
the most comprehensive, in-depth treatment of computing developments 
available today. It stands as a lasting credit to Richard Merwin and his 
program committee, and to the many authors, session chairpersons, re
viewers and other contributors recognized on these pages. 

Data processing has rapidly become one of the more vital factors in 
the economic and personal well being of all. The NCC program was 
directed to these many new interests of participants. Such an objective 
required many panel and discussion sessions beyond the formal papers, 
and the limits of this Proceedings. We owe a special debt to these par
ticipants who helped make our conference a success. Their names are 
recorded herein. 

We appreciate this opportunity to be a part of recorded computer 
history. 
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RICHARD E. MERWIN 
NCC '79 Program Chairman 

The NCC '79 technical program was planned to be 
a learning experience for all attendees. A broad range 
of paper and panel sessions was selected to emphasize 
social implications of computers, management issues, 
technical developments and applications. Each of 
these areas is represented by both paper and panel 
sessions which are designed to bring the attendees of 
this "biggest of all" computer conference to the fore
front of knowledge of each specialty. 

A major attempt has been made to broaden the 
scope of the NCC '79 technical program by including 
three mini-conferences covering the application of 
computers to financial transactions, law and health 
services. Thirty-two sessions dealing with these topics 
will expand the coverage of NCC '79 to an audience 
of specialists in fields which are increasingly becoming 
allied with data processing techniques. 

The urge to participate in the NCC '79 technical 
program was overwhelming. Because of a limitation 
on the size of this Proceedings, the number of papers 
that could be accepted for publication was curtailed. 
A large number of proposals were received for panel 
sessions and a selection of the best of these was made. 
This trend for more and more participation in both the 
technical program and the exhibition of the latest com
pllter products mirrors the tremendous grO\vth of the 
computer industry, especially in the areas of micro
processors. 
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Introduction 

In response to the wide interest in the use of com
puters by the non-professional, a special set of ses
sions and a separate publication devoted to personal 
computing has been organized to augment the tech
nical program and regular exhibits. The interest in this 
aspect of the computer industry has increased rapidly 
and represents a major factor in this industry. 

This Proceedings is organized by specialized areas 
including Applications, Social Implications, Architec
ture, Data Base Management, Computer Technology, 
Networking and Software Techniques, in that order. 
Unfortunately, we had to eliminate overview state
ments by topical area organizers along with descrip
tions of panel sessions to maximize the number of 
technical papers that could be published. I regret these 
omissions but feel that our policy of publishing only 
technical papers best serves the technical goals of the 
conference. 

The planning and organization of the NCC '79 tech
nical program involved a number of area coordinators, 
session organizers and leaders and the panelists and 
presenters of technical papers. I want to extend my 
sincere appreciation to all those who supported the 
organization of this outstanding technical program. 
Special thanks is due to the hundreds of referees who 
helped us select the best papers. Finally, I want to 
thank the program committee staff who tirelessly 
worked with all participants to make this conference 
a success. 
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Computer technology in the movie industry 

by SUZANNE LANDA 
The Rand Corporation 
Santa Monica, California 

INTRODUCTION 

Thelllo"ie .. iIl_d_1.l~try U}lig1.l~!YJ~!:ovid~s the ~pPC?rtlmity. to 
combine the creativity of the artist with the technology of 
science. It was in fact the marriage of art and science that 
gave birth to filmmaking. While many advances and discov
eries have been made in the tools used to make movies, 
support their production and distribution, and enhance their 
exhibition, perhaps none since the camera will have the 
pervasive effect of the computer. Both behind the scenes 
and on the screen the ubiquitous computer is beginning to 
have an impact on the movie industry. 

This paper follows a movie from its initial conception 
through production, distribution, exhibition, preservation 
and redistribution, surveying current and planned applica
tions of computer technology and identifying areas requiring 
further research. It purposely focuses on the problems of 
motion picture production amenable to computer application 
and not on specific technical solutions. The latter will be 
provided in the session by guest speakers from the movie 
industry. With the emphasis on movies for this session, 
computer applications unique to television and other related 
fields have been excluded. 

CONCEPT 

A movie begins with an idea. The source of the idea may 
be an individual's fantasy, an article or book, a newspaper 
story, or even the preferences of thousands of people com
piled and analyzed by computer. Sunn Classics Productions, 
Inc. has successfully applied the latter approach to come up 
with the idea for "The Lincoln Conspiracy," "In Search of 
Noah's Ark," and other box office successes. 1 Their exten
sive computer analysis approach, which involves not only 
idea but also story generation, has only been applied to 
movie making for special audiences (family entertainment). 
Successful application for general audiences has not yet 
been ascertained. 

However, once an idea exists, studios do use market 
research and computer analysis to estimate its potential for 
success. For example, after producing several successful 
disaster films, Twentieth-Century Fox relied on market re
search to indicate when audiences had reached a saturation 
point for that genre. 2 Market research with computer anal-

ysis for this type of general information is expected to in
crease. 

A movie idea is given life by the writer who turns it into 
a screenplay. ScrIpt writing remains primarIly an individual 
art form centered around the typewriter with occasional 
forays to the library or other information sources. While the 
task of typing dialogue lends itself to automated text editing, 
the author is aware of only one screenwriter who has in
vested in such a system. Within several years, as the costs 
of personal computer systems (particularly peripherals) 
drop, repair support increases, and computerized library and 
periodical services become more accessible over commu
nications networks, the personal computer will undoubtedly 
become a valuable aid in screenwriting. 

Starting with the purchase of a script and continuing 
through the distribution and exhibition of a movie, payment 
to employees is accomplished through a payroll system more 
complex than any in other industries. The continually chang
ing rules and regulations of over 65 unions and guilds must 
be handied. Many workers must be paid within 24 hours of 
the time labor was terminated. If a worker's job is upgraded 
during the day, his pay for the entire day may have to be 
adjusted and also the payments to those who worked with 
him. Depending' on when, what, and where he is working, 
he may earn up to eight times his regular pay. Each union's 
definition of a work week also varies. Not only must union 
regulations be tracked, but also the tax structure of every 
state since the studio must provide a W2 form for every 
state in which an employee has worked. Another factor 
contributing to the complexity of the payroll system is that 
the size of the work force is constantly changing. While a 
studio may employ 3500-7000 people permanently, total an
nual employment may easily exceed 50,000 with the total 
number of checks issued ten times greater. Predominateiy 
COBOL written, batch-oriented systems provide payroll 
support for producers. These services are available from the 
major studios, e.g. Universal and Warner Bros., and from 
service bureaus. 

In addition to payroll, contracts are issued and modified 
during all stages of production. This task is handled in Dis
ney's and Fox's legal departments through the use of word 
processing systems. Interconnectivity of these systems with 
other departments and those of external concerns, e.g. law 
firms, has been limited to homogenous systems because of 
problems with nonstandard communication protocols. 
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PRE-PRODUCTION 

Once a shooting script has been prepared, the pre-pro
duction activities of budget and schedule planning com
mence. These tasks are compounded by the problem that 
scripts are not shot chronologically. A shooting schedule 
depends on the availability of actors, sound stages, loca
tions, props, etc. It also depends on economics. For ex
ample, since an actor filmed on Monday and Friday must 
be paid for the entire week, economics dictate that his 
scenes be shot at closer intervals. Outdoor scenes are us
ually filmed before interiors because uncontrollable environ
mental factors reflected in outdoor scenes may impact the 
indoor scenes. In addition to schedule planning, scene re
quirements for sets, props, technical equipment, etc. must 
be estimated before a budget can be set. It is not unusual 
for a feature film budget to consist of many thousands of 
separate items. Both scheduling and budgeting are basically 
manual processes today with some automated support 
through data entry systems using formatted displays. How
ever, at the University of New South Wales, an interactive 
system is being designed for film budgeting, the generation 
of an economic shooting schedule and the breakdown of 
individual scene requirements. During the pre-production 
phase of scheduling and costing, the system will accept as 
data the script breakdown and all relevant costs. Output will 
be an initial draft schedule and a total cost estimate. When 
cast, locations, and budgets have been determined, a de
tailed shooting schedule is then generated through a tree 
search. Such an approach does not produce the optimum 
schedule, but experience with other industrial scheduling 
situations have indicated to the developers that schedules at 
least as good as those generated by experienced people 
could be expected. 3 While production people have shown 
interest in this type of total system approach, computer 
aided budgeting and scheduling will probably expand first 
through subtask application. 

One of the requirements determined for each scene is the 
number and types of extras. The casting of extras presents 
a particularly formidable problem. At Universal. for exam
ple, between 50 and 2000 extras are required daily to appear 
as background and atmosphere people in productions. Re
quests are usually very specific: five men with black beards 
between 20-30 years old, 5' 10"-6'2", who can ride horses and 
duel with swords. It is even better if they own their own 
horses and swords. Universal uses an interactive system 
which accesses a data base containing the names of available 
extras and information about their skills, attributes, cos
tumes, props, etc. When the next day's casting requirements 
are released, potential extras who best fit the part can be 
selected online. A similar system for creative talent, i.e. 
producers, writers, directors, and actors, will be available 
at Universal in 1979. A producer may then ask to see, for 
example, a list of directors who specialize in feature wes
terns and whose credits have grossed over $30,000,000. 

Once the budget and schedule have been determined and 
actors, locations, equipment, and crews selected, the direc
luI', an Jire~lur anJ ~ameraman must design the sets. Sets 
are usually overbuilt because they are designed for all con-

tingencies. For example, only two-thirds of a $3,000,000 set 
may appear in the final print. In this case, $1,000,000 was 
spent on a set that will never be seen by the audience. To 
avoid this waste, those at Robert Abel & Associates in
volved in full-scale spaceship set designs for the movie' 'Star 
Trek" (to be released December, 1979) are using computer 
graphic aids to determine the parts of each set which must 
be built. Line drawn versions of sets and people are entered 
into an Evans & Sutherland Picture System 2 through a 
tablet. For each set, camera angles and moves are executed 
using the System 2 controls. In this way, those portions of 
a set that need not be built because they will never be visible 
can be determined. It is also possible to identify areas of a 
set that may be visible but are amenable to matte effect in 
place of construction. 

For movies which include animation or special effects 
sequences, storyboards outlining the action are developed 
during pre-production. At Universal's new special effects 
facility (Universal Hartland), a computer graphics system 
on a stand-alone microcomputer is being used to create the 
storyboard for "Buck Rogers." Since storyboards only in
clude sketches of key actions, during the actual filming it 
may be discovered that the pacing required to move from 
one sketch to the next varies from that planned. To avoid 
this problem in the making of "Star Trek," Robert Abel's 
is using the Evans & Sutherland to preview action sequences 
in real-time before filming begins. 

PRODUCTION 

The actual shooting of a movie may occur at the studio, 
on location, or a combination of both. Through computer 
support, producers at the major studios get daily reports on 
the previous day's expenditures for a particular feature. 
Overruns are immediately visible so that modifications can 
be made in the remaining stages of production to absorb or 
minimize the extra costs. In some cases, early cost excesses 
result in a project's termination. 

Location shooting presents severe cost control and payroll 
problems. At Paramount, timely and accurate cost infor
mation and local payroll capabilities are provided on location 
by a minicomputer-driven terminal system. Universal is cur
rently implementing a similar minicomputer-based system. 
At Disney, a microcomputer system with dual-diskettes and 
printer will be tested on location in Hawaii in early 1979. 
Disney also expects to use the system on stage at the studio 
for backlot production sequences. These reporting systems 
are used during the day on location to record transactions. 
At night the daily records are transmitted to the central 
processor. Reports, updated master files, and data discrep
ancies are then returned to the location for next-day avail
ability. The decrease in reporting time through use of on
location computer support is as much as ten to one. A 
capability to be added in the future will allow the location 
auditor to explore the costs of various courses of action 
when an unforeseen event occurs. For example, should a 
storm break. wIth an expected duration of two weeks. the 
location auditor would like to determine the costs of keeping 



everyone on location versus sending them home, paying 
required penalties and bringing them back later. 

Computer technology is also used during production to 
assist in the generation of the animated images seen on the 
screen. Animation techniques can be divided into two cat
egories: 2-D animation, involving the use of hand-drawn 
images, and 3-D animation, involving the manipulation of 
models and puppets. Both techniques make use of story
boards which are subject to computer application as de
scribed under Pre-Production. 3-D animation using models 
will be discussed under Post-Production. as it is traditionally 
associated with the post-production area of special effects. 

For 2-D animation, like those of Disney and Hanna Bar
bera, the first production step requires an artist's rendition 
of key frames in each scene. The next step calls for an 
assistant animator or "inbetweener" to fill in the action by 
prov-iciing- transition frames between the key f:t:ames. Each 
of these drawings is then photographed, shot onto celluloid, 
and painted. Finally, each cel or the required combination 
of cels is placed on an animation stand for filming. For 
feature films, the only step involving a computer today is 
the last: Camera settings required to simulate movement are 
computed and provided to the cameraman filming off the 
animation stand. However, by mid-1979, several research 
efforts will have systems commercially available to aid in all 
these steps of animated feature film production. The systems 
allow for input of key frames by an artist using a light pen 
and tablet with the computer performing inbetweening. The 
artist then "paints" the stored frames interactively with light 
pen and color selectors. To obtain consistency in scene and 
character colorization, the systems will allow for the storing 
and retrieving of colors by picture elements. The need for 
celluloids is eliminated since frames will be filmed directly 
off a CRT. 4 A major difficulty in providing computer aids to 
the animator has been to provide him with input tools with 
which he feels as artistically free as with conventional meth
ods. The designers of these systems feel they have overcome 
the problem by providing paintbrush, pencil, and spraygun 
options to the artist through software. The other area still 
open to question for commercial application is whether these 
systems will produce the high-quality, high-resolution ani
mation required for feature films. An answer to this should 
be forthcoming in 1979 when at least one production com
pany plans to make a full-length animated movie using this 
type of computer system. 

The use of computers to aid live-action filming premieres 
this year with the release of "The China Syndrome" (Mi
chael Douglas Productions). For story realism and for legal 
protection, it was necessary in this movie to duplicate pre
cisely the interior of a nuclear power plant during the various 
stages of an alert. This required the operation of 131 circuits 
controlling 2500 instrument panel lights in differing se
quences and in differing states (off, slow-flash, fast-flash, 
solid-on) for each stage of the alert. synchronized with live
action performances. The task was compounded by the need 
to restart the sequences at any point for retakes and for 
daily continuity. A combination of manual and electronic 
methods to handle this type of operation has proved in the 
past to be costly and unpredictable. To avoid these problems 
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for "The China Syndrome," Eyewitness, Ltd. programmed 
a microcomputer in assembly language to allow accurate, 
flexible, and reliable operation of the panel lights in coor
dination with the actors' performances. 

Computers, of course, have been known to appear or even 
star in a movie. Usually, however, what is seen are whirling 
tape drives and a card sorter or maybe a terminal flashing 
Christmas tree lights. Universal has taken steps to remedy 
the situation by creating realistic computer environments 
and systems for production shots. For example, simulated 
interactive hospital and law enforcement systems are avaii
able for use as dictated by a script. 

A print of the original camera footage must be made each 
day for viewing the following day. The automation used to 
print dailies is part of the systems used for post-production 
processing in film laboratories which is discussed in the next 
se_ction. 

POST-PRODUCTION 

The post-production phase of movie making consists of 
creating and adding special visual effects and titles, adding 
music and sound effects, and, finally, processing, editing, 
and printing the finished product in the motion picture lab
oratory. 

Special visual effects using models have become well 
known through such movies as "2001: A Space Odyssey" 
and "Star Wars." Contrary to popular opinion and some 
press reports, special-purpose, hard-wired machines, not 
computers, were used to control cameras and models in 
these and other recent movies. Not until 1979 with the re
lease of "Buck Rogers" (Universal), "The Black Hole" 
(Disney), and "Star Trek" (Paramount) will the public view 
special effects created with the aid of computer-controlled 
cameras and models. 5- 7 Computer-control is a solution to 
the problem of repeatability of camera movements for long, 
intricate shots and movements of the model or objects being 
photographed. In addition, the automated camera is ex
pected to make some effects possible which were not either 
physically possible or economically feasible before. Input to 
the microcomputer-based system may be from a walk
through with the camera or from stored data previously 
entered via keyboard. At Disney, a cameraman will either 
manually or electronically operate the camera through the 
initial shot using a hand-held or small console control unit. 
Subsequent shots will be repeated automatically from the 
stored data. At Universal Hartland, designers are using their 
stand-alone microcomputer system to graphically plan the 
shots within a scene, calling up stored images of the models, 
setting model size, roll, pitch, and yaw and grid location 
together with lens size. At Robert Abers, with the Evans 
& Sutherland system, the process is carried one step further: 
The shots may be played beforehand in real time. For both 
these systems, the stored data is used to control the micro
computer-driven camera system. 

An alternative approach to 3-D animation is computer
generated imagery which eliminates the need to build and 
manipulate models. This approach was used for a 40-second 
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sequence in the movie" Futureworld" in which a mask-like 
image of Peter Fonda's head is seen spinning through space. 8 

While 3-D graphics have been successfully employed in tele
vision commercials, the level of complexity and detail re
quired for high-quality, high-resolution feature films cur
rently limits its cost-effective application. 

In addition to images, a movie almost always has a musical 
score and special sound effects. While computer-generated 
music has not yet been used in a theatrical release, propo
nents feel that the computer will enable the musician to 
create scores not otherwise obtainable and that these, like 
computer synthesized images, will expand the medium of 
filmmaking. For the time being, however, musical scores for 
movies are still totally created by composers and arrangers. 
The use of original music always introduces the possibility 
of copyright infringement. To minimize the problem at Uni
versal, new scores are translated by an operator into codes 
which are matched against a stored database of copyright 
music. Matches exceeding the legally acceptable number of 
bars are flagged. 

Sound editing, like film editing, is a particularly tedious, 
time-consuming and therefore costly task. The sound editor 
views a reel of film, noting the sounds and footage required. 
From a library index, he selects a tentative list of sounds. 
A technician retrieves the sounds and transfers them to tape. 
The editor then begins the cutting and modifying process. 
If the sound he needs is too short he must create a physical 
loop of the tape so the sound repeats without obvious rep
etitious characteristics. Synchronizing the sound to the film 
is literally a cut-and-try process. The assembled edited cuts 
are mixed down onto a final track and then mixed with 
music and dialogue. Sound quality is degraded with each 
transfer from library master to work copy to final mix. The 
Automated Computer Controlled Editing Sound System 
(ACCESS) developed by Mini-Micro Systems, Inc. for Nei
man-Tillar Associates eliminates manual handling of tape 
and allows electronic synchronization. It provides immedi
ate availability of sound effects which have been digitized 
and stored on magnetic disk packs. Sounds may also be 
modified via computer-assisted controls. While cutting ed
iting time by 80 percent, use of ACCESS has also improved 
the quality of sound produced. The microcomputer-based 
system was used for the sound editing of "I Want To Hold 
Your Hand," "Sorcerer," "The Island of Dr. Moreau" and 
other feature films. 9 

Final print production involves cutting the original nega
tive, adding special optical effects, and performing color 
correction. Computers probably first entered the motion 
picture production cycle in the film processing laboratories 
which perform these functions. Academy Awards for con
tributions to movie making that involved the use of com
puters were first earned by these labs. In 1972 DeLuxe 
General, Inc. received a Class III (Technical Achievement) 
Academy Award for a computer system that performs color 
positive process analysis. Using photographic test results 
and considering interlayer effects. the system compares 
sample densities to the laboratory reference densities. In the 
same yertr \nnsoliciated Film Industries received a Class II 
(Science and Engineering) Academy Award for the deveI-

opment of an on-line computerized light valve monitor sys
tem. 10 While these systems used minicomputers, MGM Labs 
has recently implemented a microcomputer system to op
erate the optical printers and control the firing of the light 
valves. 11 

Also at MGM Labs, a system is under development to 
automatically track and retrieve the myriad of film pieces 
with which the negative cutter must work. Many hours are 
spent searching through thousands of feet of film for just the 
right spot to cut and splice together other cut pieces in 
building up scenes. Each piece must be carefully labelled 
and stored for possible later use. A major cost in this op
eration is the time it takes to search and keep track of all 
the heads and tails for possible later trimming. The new 
system will use codes on film to allow automated tracking 
and retrieval of film segments. 

DISTRIBUTION 

Long before prints become available, an analysis of where 
and when to release the film is conducted and advertising 
campaigns are organized. Computer analysis of revenue and 
advertising expenditures for previous, similar films by geo
graphical area is used by several studios to help formulate 
the distribution and advertising plans for new films. Revenue 
reporting on distributed prints is supported at most studios 
by online systems. A more comprehensive approach has 
been taken by Buena Vista Distributors in implementing a 
microcomputer-based system to automate the following 
functions: bidding, print control, booking, grosses, box off
ice reports, cash reporting. advertising. and messages. Near 
the release date of a film, standard letters with specific film 
details will be produced by the central computer and com
municated to the branches for issuance to local exhibitors. 
Bids received will be entered into the system at the branch 
offices, and prints assigned based on availability. Previ
ously, branch offices have been limited to the print inventory 
initially assigned to them. With the automated system, the 
nearest available print may be located. Revenue reports will 
be entered daily, providing timely information needed to 
direct exhibition and advertising. An electronic bulletin 
board and memo system will aid communication among 
branch offices and the studio. 

EXHIBITION 

While theatres make use of data processing for normal 
business applications, computer technology is not yet used 
for the actual control of movie theatre operations and equip
ment. Rather, lights, drapes and projectors operate elec
tronicaJly. Within a year, however, manufacturers like RCA 
expect to incorporate microprocessors into their advanced 
projector systems. Eventually we may see computer tech
nology used to provide operational and environmental con
trol in movie theatres as in other buildings and businesses. 
But even beyond the common applicatiun~, the ue\.:reasing 
cost and increasing capability of computers may enable 



movie theatres to create total visual and audio environments 
similar to those available today at special-purpose theatres 
such as the Space Theatre in San Diego. At this theatre, 
over 60 pieces of equipment are operated and controlled by 
microcomputer to create special effects for up to five dif
ferent shows daily. As a first step towards the expanded 
theatre concept, but not yet using computer control, Uni
versal is installing special equipment to produce lightning, 
thunder, and other natural sounds and effects in theatres 
which will be showing "Weather Wars." 5 

PRESERVATION AND RESTORATION 

Eventually (or sometimes very soon) a movie is removed 
from distribution and stored in a film library. Since film 
degenerates, there is interest in storing movies digitally to 
preserve them until actively destroyed. To store a 90-min
ute, high-quality, color film digitally would require tens of 
trillions of bits of storage. Data compression techniques 
exist that might reduce this amount 20-30%, but the storage 
requirement still remains excessively large for today's tech
nology. At the current rate of advancement, digital storage 
of films may be feasible within five years. 

A film may become damaged during any of the steps 
described, including storage. Methods of restoration are cur
rently being explored and there is interest in using the com
puter to analyze previous and successive good frames in 
order to reconstruct the in-between damaged frames. Simi
larly, the analysis of good areas within a frame may be used 
to reconstruct damaged or missing parts. However, com
puter-aided film restoration must await the availability of 
digital storage of films or other methods for handling the 
high-resolution requirement. 

Computer-aided restoration has been successfully applied 
to films transferred to tape. For example, "Gone With the 
Wind" was reconstructed on videotape from a 1956 Tech
nicolor dye transfer print by Image Transform, Inc. The 
minicomputer-based system resolved outlines, restored 
color intensities, and reduced noise. 12 

REDISTRIBUTION 

A film never dies-it is just recycled to foreign markets 
and television. The recycling process takes the film back to 
the post-production process where the original parts are re
edited to meet television and foreign time, censorship and 
film size requirements. Residuals must be paid to writers, 
actors, etc. whenever a film is recycled and this is handled 
automatically at most studios. Once a film enters the realm 
of television, another story of automation begins which is 
beyond the scope of this paper. 

SUMMARY 

This survey, while not exhaustive, does identify the major 
areas of current computer usage and the key areas for future 
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applications in the movie industry. Until recently, computer 
applications primarily focused on: 

I. Batch-oriented accounting support for payroll, costing, 
residuals, and statistical support for market research; 

2. Minicomputer systems for process control; 
3. Very limited application of computer graphics for spe

cial effects. 

Current and planned applications include, in addition: 

1. Broader computer use for market research and cor
porate information systems; 

2. Word processing support for script preparation and 
contracts; 

3. Interactive system support for budgeting and schedul
ing subtasks, for resource information retrieval, for 
sound editing, and for film processing; 

4. Computer graphic aids for set design, storyboarding, 
and animation with increased use for special effects: 

5. Expanded use of on-location reporting systems; 
6. Functional expansion of automated distribution sys

tems to include print control, bidding and booking, and 
electronic mail; 

7. Computer control of cameras, projectors, and lab pro
cessing equipment; 

8. Computer control of set elements for live action film
ing. 

In fact, in 1979 several movies will be released whose cre
ation will have involved the first uses of computers in cam
era-control, set design, storyboarding, animation, and live 
action filming. 

The one development most responsible for the current 
growth in computer applications in the movie industry is the 
microcomputer. For business data processing, it is appearing 
on stage, on location, and in distribution offices. As part of 
text editing systems, the microcomputer is now in legal 
departments and will soon enter the script preparation stage. 
For equipment control, microcomputers are being used in 
film processing labs, to operate special effects cameras, and 
will be used in the near future in projectors. As an aid in 
scene design, stand-alone microcomputer-based graphics 
systems are now in use. For live-action filming, microcom
puters are controlling parts of sets in synchronization with 
live performances. The high processing power required to 
generate·images by computer may soon be provided through 
arrays of microprocessors. 

Automated techniques for film editing, storage, and res
toration still require further research and development in 
mass storage and image processing. 

In any discussion of computer technology and movie mak
ing, the question arises as to the possibility that someday 
movies will be made without actors or cameras but rather 
totally by computer. The answer is, I think, an undeniable 
"yes," but whether movies produced by computer will be 
competitive in cost and quality to those produced by the 
traditional process with computer aids remains highly ques
tionable. 
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The System Architecture Evaluation Facility-An emulation 
facility at Rome Air Development Center 

by N. BRUCE CLARK and MICHAEL A. TROUTMAN 
Rome Air Development Center 
Griffiss AFB, New York 

INTRODUCTION 

Military requirements for data processing systems with un
usual characteristics to perform specialized jobs have led to 
research into advanced architectures by the Department of 
Defense (000). Some of the requirements for systems have 
no counterpart in the civilian industry. Command, control 
and communications systems are typically complex and 
must be reliable and available with a high degree of cer
tainty. This places great stress on the development of new 
data processing systems. The architecture, as the bedrock 
of all systems, must be continually improved in order to 
accomplish the increasingly complex software functions now 
demanded. Spaceborne automated systems simply cannot 
have an onboard team of vendor maintenance engineers to 
diagnose problems and replace components; a fault tolerant 
architecture is needed. Advanced radar surveillance systems 
provide a tremendous potential for information gathering but 
must be supported by parallel architectures which are still 
in the research phase. The 000 is actively involved in re
search and development of advanced architectures for to
morrow's data processing needs and the System Architec
ture Evaluation Facility (SAEF) is an example of the use of 
microprogrammable (and other special purpose) computers 
to reduce the cost and improve the efficiency of this re
search. 

Direct experimentation with unique hardware architec
tures is extremely expensive and time-consuming. It is also 
wasteful of resources, as the prototypes are rarely usable 
systems and must be discarded. Rather than actually build 
hardware components, they can be emulated by micropro
grammable computers. Emulation is similar to a simulation 
of hardware, but with an important difference. Software 
simulation of hardware has existed for years, but tradition
ally has been limited in its use because of the time versus 
detail tradeoff. If the architecture is modeled at a very high 
(or gross) level then that simulation executes very fast. As 
more and more detail is included down towards the register 
or gate level of machine design, the simulations become 
excruciatingly slow, running tens of thousands of times 
slower than the proposed design will actually execute. The 
development of computers which are microprogrammable 
allows a .. simulation" to be written in a different way. 

7 

Instead of the traditional software programs, the micropro
grams which determine the actual control signals generated 
for machine language instructions are modified (or rewritten) 
to execute a different instruction set, the one for the "sim
ulated" machine. In effect, the microprogrammable com
puter is molded to look and act like the proposed design at 
the instruction set (machine language) level. Thus, machine 
level programs written for the proposed design will execute 
on the microprogram mabie machine. 

It is an arguable position that this is still a software sim
ulation, since microprogramming is just a lower level of 
programming. The difference is that the level of detail being 
used to describe the target machine is lower than the level 
it is describing. This is in contrast to using assembly lan
guage or a higher order language to simulate the instruction 
set of a computer. This gives a tremendous advantage in the 
time versus detail tradeoff, and thus this type of simulation 
is usually referred to by the special designation of emuiation. 
Well written emulations of most architectures can execute 
within one order of magnitude of "real-time" for the pro
posed design. Thus a software function which takes one 
minute of execution time in the target machine might take 
10,000 to 100,000 minutes (one to ten weeks of 24-hour days) 
on a detailed simulation, but only ten minutes on an emu
lation. Obviously these figures vary widely depending on 
the architecture being emulated and the computer being used 
to emulate, but are representative of the speed advantages 
gained with emulation over simulation. 

SAEF ELEMENTS 

To provide the emulation capabilities described, the core 
of SAEF consists of two microprogrammable computers, 
the Nanodata QM-I and the Multiple Microprocessor Sys
tem (MMS) (Figure 1). Also included is a Goodyear Staran 
Associative Processor which will aid in evaluating single
instruction stream-multiple-data stream (SIMD) architec
tures. A larger general purpose computer will be used for 
the hosting of software tools to be used in connection with 
SAEF. Finally, all of these elements will be connected via 
the ARPAnet to facilitate intercommunication. 
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Figure I-Projected facility. 

QM-I 

The QM-I is a high-speed general purpose digital com
puter that operates under two levels of microprogram con
trol. 1 These two levels provide extreme flexibility in machine 
definition and allow the advantages of both vertical and 
horizontal control. Machine instructions resident in Main 
Store are executed and defined by microprograms in Control 
Store. Control Store is a vertical level which is in turn 
implemented by Nanoprograms in Nanostore. The Nano 
level is a true horizontal architecture which has ultimate 
control over the total resources of the machine. 

The QM-I is primarily composed of a hierarchy of stores. 
At the lowest level is Nanostore consisting of I K of 360 bit 
words with an access time of 75 ns. One nanoword is made 
up of a 72-bit K vector and four 72-bit T vectors (only one 
T vector is in control at anyone time). Nanostore is a true 
read/write memory giving the programmer the ability to dy
namically change its contents. Sharing control of the QM-I 
with nanostore is F Store. F store consists of 32 six-bit 
registers which are used for residual control purposes. These 
registers determine the bus connections between the various 
units of the QM-I as well as maintain the state of the ma
chine. Moving away from the low level control of the QM
I, local store consists of 32 18-bit registers. The majority of 
these registers are general purpose but several of them have 
specific functions such as microinstruction registers and 
microprogram counters. External store is a group of32 18-
bit registers which provides specific functions including I/O 
interfacing, special main store addressing and generation of 
addresses for interrupts. Control store is a 16K by 18-bit 
read/write memory having an access time of 75 ns. This 
memory can be used for data storage and target register 

storage in addition to the vertical microinstructions. At the 
next level up is main store consisting of a maximum 256K 
18-bit words. This is a read/write core memory having an 
access time of 750 ns. 

The QM-I contains several other functional units which 
are not considered part of the store hierarchy. These include 
a full 16-function 18-bit ALU, a 36-bit double shifter/shifter 
extension, an Index ALU for fast indexing and logical op
erations on local store, an RMI unit for rotating/masking/ 
indexing the output of main store, and an ALU for operating 
on the six-bit F store. 

The QM-l is operable in both a stand-alone mode and in 
a time share mode connected to a DECsystem-20. In stand
alone, the QM-I supports a full complement of peripherals. 
An operating system is available which maintains control 
over these devices as well as providing editor, assemblers 
and other useful routines. Also included are complete em
ulation debug and support packages which are independent 
of the operating system. These packages provide simple 
interfaces between an emulation and QM-l resources and 
allow highly interactive sessions between an emulation and 
its user/developer. While in a stand alone mode, the QM-I 
is directly usable by a single user thru the system console. 
When several users wish simultaneous access to the QM-I 
it can be operated in a time-share mode. 

In time-sharing the QM-I, it is connected to a DEC system-
20 via a common main store and the DECsystem-20 110 bus. 
This system, which is known as Q-PRIM, provides an in
teractive microprogrammable environment in much the 
same way as when the QM-l is stand-alone. 2 However, in 
this case the QM-l is treated as an I/O devke by the DEC
system-20 operating system, TOPS-20. In this mode the QM-
1 will have no peripherals of its own but will rely on TOPS-



20 to provide all its I/O capabilities. This resource will also 
be available to remote users because of the ARPAnet con
nection to the DECsystem-20. 

The Q-PRIM software consists of four major modules. 
These are the QM-l supervisor or "microvisor," the TOPS-
20 QM-l driver, Q-PRIM Exec and Q-PRIM debugger. The 
QM-l microvisor interacts directly with the user's emulation 
and the TOPS-20 QM-l driver. It is a small module which 
communicates between the QM-l and the DECsystem-20. 
The microvisor provides context switching capabilities and 
handles the virtual memory addressing and paging from the 
QM-l side. Accessing the QM-l-from TOPS-20 processes is 
done through the QM-l driver. The driver communicates 
with the microvisor and TOPS-20 system calls. It is respon
sible for initializing the microvisor, controlling, scheduling, 
and swapping users, accumulating accounting data, and 
passing along I/O requests. The Q-PRIM Exec provides an 
environment on the DECsystem-20 which supports each of 
the emulations executing on the QM-l. The Exec provides 
a variety of commands that allow a user to build and interact 
with his emulated system. The Q-PRIM debugger is a table
driven, interactive, symbolic debugger that permits a user 
to debug target-machine programs in terms of symbols de
fined for the target machine. Data representations are con
trollable, thus allowing the user to tailor the emulation in
terface to more closely match the target machine. 

MMS 

Another key component of SAEF will be the MMS which 
is currently in the design phase. The MMS will consist of 64 
microprogrammable microprocessors each operating auton
omously or connected as part of an SIMD or MIMD archi
tecture. It will contain a highly flexible and versatile inter
connection system under software control which facilitates 
communication between MMS processors. The MMS will 
be able to effectively emulate shared memory, bus oriented, 
and crossbar switch interconnection schemes used in dis
tributed multiprocessor systems. Control over the MMS will 
be accomplished by a Facility Control Processor (FCP) 
which is expected to be a minicomputer. This system will 
be usable in both a stand alone mode with the user com
municating directly with the FCP, and in a remote mode via 
its connection to the ARPAnet. For the purpose of this 
discussion the MMS can be broken down into four sec
tions-(1) FCP, (2) Emulation Engine Support, (3) Pro
cessing Elements and (4) Memory Subsystem. 

The primary function of the FCP is to maintain control 
over the operation of the MMS. The FCP will provide both 
user and ARPAnet interfaces to the MMS. It will contain a 
host of run time tools which will allow the loading, modifi
cation, and control of individual PEs. Other support tools 
will include microassemblers, assemblers, compilers and 
software packages for processing of performance data. In 
its job of control over the MMS, the FCP is aided by the 
emulation engine support. 

Emulation engine support is broken into four areas. The 
Time Align Controller maintains master pseudo time for the 
MMS. The Emulated LocalVO Processor will create an I/O 
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environment for each individual PE. The job of the Shared 
Resource Controller is to manage memory and communi
cation paths. Last, the function of the Performance Monitor 
Processor is to collect all Performance Monitor System 
(PMS) event data from the PEs and emulation support and 
store this data on mass storage for processing by the FCP. 
Each of these four devices communicates with controllers 
which are distributed among the PEs. 

Each of the 64 PEs in the MMS will consist of a micro
programmable microprocessor and control hardware for 
I/O, memory, pseudotime, and messages. The microproces
sors will be composed of microstore and an RALU based 
on bit slice architecture. A 16-bit RALU is the most likely 
size, with hardware aid for more efficient emulation of 
smaller word size architectures. Emulation of larger ma
chines will be done with multiple instruction cycles. The 
I/O and memory controllers work in· unison to provide an 
environment with memory mapped and I/O space I/O, local 
memory and shared memory. The pseudotime controller 
coordinates with the master time align controller for keeping 
PEs in step and the message controller handles communi
cation between the local I/O memory unit and the appropri
ate emulation support processor. 

The memory subsystem is partitioned into 64 each 32K 
word blocks each associated with a particular processing 
element. Individual blocks may be subpartitioned in any 
manner desired between local and global memory. Arbitra
tion for the memory is handled by a portion of the shared 
resource controller and a local arbitration unit. The memory 
was partitioned in this way so as to give each PE fast access 
to 32K local words. Nonlocal accesses will be slower, be
cause they take place through a shared bus. 

The MMS as described allows for very detailed system 
emulations. In addition to emulating the computer architec
ture and peripherals as usual, one also has the capability to 
emulate the exact protocols of interprocessor communica
tion and memory accessing. This is made possible by the 
programmable nature of many of the controllers located 
throughout the MMS. These features also enable the effi
cient emulation of I/O devices and virtual memory because 
the microprogrammable microprocessors are not burdened 
with these tasks, they can actually be done in parallel by 
the programmable controllers. 

STARAN 

Although not an emulation machine, a Goodyear Aero
space Corporation ST ARAN S-1000 associative processor 
interfaced to the HIS 6180 Multics system is included in 
SAEF as an aid in evaluating SIMD architectures. The as
sociative processor can be operated in two modes, a stand
alone mode and an on-line mode to the Multics time-sharing 
system. In the latter mode, a Multics user is able to control 
the STARAN from his terminal as he would if he were using 
the STARAN in stand-alone mode. He can create program 
and data files using the capabilities of Multics and transmit 
them to ST ARAN. Currently the associative processor can
not be time-shared; that is, only one user at a time may 
utilize the ST ARAN. All communications between 
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ST ARAN and Multics are via a 12-bit parallel buffered 110 
channel. 

The ST ARAN basically consists of a conventionally ad
dressed control memory for program store and data buffer
ing, four associative memory arrays, a control logic unit for 
sequencing and decoding instructions from control memory, 
and a control logic unit associated with a special parallel 
I/O (PIO) capability.3 The associative array memories are the 
heart of the ST ARAN system. The array memories provide 
content-addressability and parallel processing capabilities. 
Each array consists of 65,536 bits of multi-dimensional ac
cess (MDA) memory organized as a matrix of 256 words by 
256 bits with parallel access to up to 256 bits at a time in 
either word (horizontal) direction, bit-slice (vertical) mode 
or mixed mode (combination of the two). In addition to the 
MDA memory, each array contains 256 bit-serial processing 
elements. These processing elements provide the parallel 
processing capabilities for each array. Processing in the 
ST ARAN system can be overlapped with some arrays per
forming I/O while others are executing arithmetic and logic 
instructions. 

The sequential control portion of ST ARAN consists of a 
PDP-II!20 minicomputer with 8K of memory and associated 
peripherals. The sequential processor also contains logic to 
interface with other STARAN elements. It runs system soft
ware programs such as the assembler and macro preproces
sor, operating system, file handling programs, diagnostic 
programs and debugging routines. 

Data manipulator 

Another element of SAEF is the Data Manipulator which 
provides a flexible bit manipulation capability. 4 The basic 
approach follows that described by Dr. Tse-Yun Feng of 
Wayne State University. 5 Currently the Data Manipulator 
is attached to ST ARAN and allows the programmer to es
tablish a relationship between input and output words such 
that, for each of the bit positions in the output word, any bit 
location in the input word may be specified as its data 
source. In addition, both input and output data can be 
masked. 

Host computers 

In order to provide many of the support tools required by 
SAEF a larger host computer must be included. At the 
present we will be using the Honeywell 6180 Multics and 
DECsystem-20 time share systems located at RADC. These 
two computers will provide capabilities otherwise unattain
able on the other elements of SAEF. either because of their 
small size or specialized nature. Hosting tools on a common 
computer also has the added benefit of reducing the number 
of operating systems the user has to learn. This is a primary 
concern as ease of use is the most important factor for 
SAEF. Because these hosts provide multiprogramming en
vironments. sc\'cra\ users of SAEF may be \\orking on some 
aspect of a system emulation concurrently. Other obvious 
advantages are access to the ARPAnet and the amount of 

mass storage available on these computers. The host com
puters will communicate with the remainder of SAEF 
through the local ARPAnet connections. 

Progression of SAEF 

SAEF as described above will be developed over the next 
several years. At the present, SAEF consists of the DEC
system-20 and HIS 6180 both connected to the ARPAnet, 
the ST ARAN and Data Manipulator with their connection 
to Multics, and the QM-I in a stand-alone mode (Figure 2). 
Multics is the primary support host with its Meta Assembler, 
compilers, and editors. A I20D-baud serial line exists from 
Multics to the QM-I for downloading purposes. The DEC
system-20 currently supports a preliminary PRIM system 
utilizing a resident simulation environment instead of emu
lation by the QM-I. The Q-PRIM system is expected to be 
operational near the end of 1979. The MMS is currently in 
the design phase and is projected to be built by the end of 
1981. 

SUPPORT TOOLS 

The hardware elements and software directly supple
menting those elements are the core of SAEF. Several ad
ditional software support tools are in being or currently 
under development for use in SAEF, but are not exclusively 
limited to the facility and may, in fact, be most beneficial in 
contexts other than SAEF. Specifically, this section dis
cusses the development of a hardware description language 
called SMITE for writing emulations, and study on the con
cepts of an automatically retargetable compiler which will 
accept machine descriptions written in a hardware descrip
tion language like SMITE and produce an emulation of the 
machine. 

Inherent in the design requirements for any usable item, 
be it a facility such as SAEF or any of its individual support 
tools, is its ease of use. No tool, no matter how vital, will 
be consistently and easily used if it is poorly interfaced with 
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the human link. The necessity to describe machine architec
tures is a valid research requirement, but the reality of 
writing an emulation in microcode, where typical productiv
ity is a fraction that of assembly language programming, 
seriously impairs the utility of the facility. In order to over
come this problem, the development of a "high-order" lan
guage for machine description has been undertaken at TRW 
under-contract from RADC. The result is Advanced SMITE 
(Software Machine Implementation Tool for Emulation), an 
ISPS based language which allows machine descriptions at 
the register transfer level to be compiled into microcode for 
the QM-1.6 To support SMITE, -a software system resident 
on the QM-I is necessary. This system, called SASS 
(SMITE Applications Support Software), uses an augmented 
instruction set which is a superset of MULTI,· the vertical 
level instruction set of the QM-l normally considered to be 
a "native" instruction set, although it is in itself defined by 
the nanostore instruction set. SASS is a modification of the 
vendor supplied run-time package called TASK/PROD. 
SASS is resident on the QM-l, while the SMITE compiler 
is written in Fortran and resides on a CDC-6600 located at 
the Air Force Weapons Laboratory in New Mexico. Com
pilation of source code is accomplished remotely through 
the ARPAnet, after which the object code is transferred to 
the Honeywell 6180 (via file transfer protocol on the AR
PAnet) and then to the QM-I for execution. By the summer 
of 1979, a new version of SMITE with language enhance
ments will be delivered written in PL/I and installed on the 
Honeywell 6180 (Multics) system at RADC. The advanced 
version of SASS will provide interactive debugging and per
formance monitoring capabilities not now possible. 

To illustrate the basic syntax of the SMITE language, the 
following example describes a trivial eight-bit-wide machine 
consisting of three registers, 64 words of memory, and four 
instructions: 

EXAMPLE: PROCESSOR; 
DECLARE MEM(0:63)(0:7) MEMORY, 

ACC(0:7) REGISTER, 
PC(0:7) REGISTER, 
IR(0:7) REGISTER; 

DO FOREVER;. 
BEGIN; 
IR~MEM(PC); 

PC~PC+l; 

CASE IR(O: I); 
ACC~MEM(iR(2: 7); 
MEM(lR(2:7»~ACC; 

ACC~ACC+ MEM(lR(2:7»; 
ACC~ACC+I: 

END CASE: 
END; 

EXAMPLE: END; 

"LOAD ACC" 
"STORE ACC" 
"ADD ACC" 
"INCR ACC" 

Once the description of an architecture has been imple
mented on a microprogrammable computer, there will be a 
need to write software for that emulated machine. In the 
same manner that support tools are necessary for writing 
machine descriptions, tools are necessary for applications 
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software (the word applications is used to distinguish from 
the emulation software, or machine description, even though 
the "application" may be an operating system for the em
ulated machine). Uno support tools are available, the system 
designer is thrown back to the dark ages of writing machine 
code for an emulated machine! Cross assemblers make this 
situation slightly more bearable, but a need exists for a 
compiler which would automatically compile to the object 
code of the machine described to it. It has been feasible to 
rewrite the back end of a compiler for new models of ma
chines as they evolve, but the use of emulation and a high
level language like SMITE means that "new" machines are 
available from perturbations of the emulations due to fine 
tuning a design. The several man-months' worth of effort 
required to modify a compiler is clearly unacceptable. 

Recognizing the need for such a compiler, RADC has 
contracted for the development of a support tool to be called 
the Retargetable Compiler. As an interim, users of SAEF 
are writing applications software in the assembly language 
of the emulated machine and using the Meta-Assembler, 
developed by McDonnell-Douglas, to create the object code. 

RESEARCH AREAS 

SAEF is currently projected for use in two distinct areas 
of research. The most obvious research is into unique ma
chine architectures for special purpose data processing sys
tems and requires no further elaboration. The existence of 
SAEF also provides for a different type of research which 
may best be described as the implementation of the "Soft
ware First" concept. In the development of computer sys
tems, it has traditionally been necessary and expedient to 
separate hardware and software functions eariy in order to 
define the "machine" and begin work building it. Since a 
major portion of the cost of systems involved hardware, the 
software was considered of secondary importance, and was. 
developed to fit the machine. The advent of microprogram
ming and the tremendous decrease in the percentage of cost 
devoted to hardware implies that the software now can (and 
should) be designed to fit the problem being solved and the 
hardware is then molded to fit the software necessary for 
that problem. The concept of "Software First" has now 
been made possible through emulation of hardware and sys
tems development can now be accomplished in a much more 
orderly and logical fashion. Research into systems devel
opment is being conducted at RADC under the name of 
Total Systems Design (TSD) Methodology. 7 

The TSD Methodology represents a departure from the 
traditional concepts of computer systems development. In
stead of initially dividing the system into hardware and soft
ware subsystems and developing each independently until 
the integration phase, TSD encourages design of the system 
independent of the ultimate realization of individual func
tional elements. 

The flow of the TSD Methodology breaks into three major 
divisions. The first portion addresses the general area 
termed requirements definition. Next is an area of detailed 
analysis which takes the requirements definition and results 
in allocated functions implementable in hardware and soft-
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ware. Finally, there is an expression of the design process 
which uses emulation as a substitute for actual hardware 
until the system is validated to an extent justifying hardware 
acquisition. 
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Teaching and research experiences with an emulation 
laboratory 

by STEVEN F. SUTPHEN 
University of Alberta 
Edmonton, Alberta, Canada 

INTRODUCTION 

User-microprogrammable computers have been generally 
available since the early 1970s, although in the past few 
years they have become quite popular. The primary reason 
for the increased popularity is the decrease in price made 
possible by technological advances in high-speed memories. 
Also, the computer manufacturing industry is looking to
wards microprogramming for increasing throughput of large 
operating systems, which cannot be replaced because of the 
large investment for them in software. 

Our experiences with a microprogramming or emulation 
laboratory have come from two points of view-research 
and instruction. The research has explored several areas 
including emulation of computers, microprogramming lan
guages and emulation of language machines. The main em
phasis in instructional aspects is to illustrate the problems 
of microprogramming and the difference between it and con
ventional programming by practical examples programmed 
in our emulation laboratory. 

To provide some insight into our use of the laboratory, a 
short history of its development will be given. This is fol
lowed by our experience with the laboratory in both instruc
tional and research applications. 

DEVELOPMENT OF THE EMULATION 
LABORATORY 

In 1971 the Department of Computing Science laid the 
groundwork for acquiring a minicomputer laboratory for 
undergraduate instruction. 1 This laboratory was specified to 
have many diverse computers including one with micropro
gramming capability. The Microdata 1600 was selected, 
since it was small and cheap and fit in well with the rest of 
the laboratory. The machine was purchased in 1972 with 8K 
bytes of mainstore, 512 16-bit words of writable control 
store (WCS), and an ASR Teletype as an I/O device. Sub
sequently, another 512 words of WCS have been added, and 
an interface to a digital (eight-bit parallel) cassette has been 
built. 

When the department was formulating the mini-lab it was 
envisaged that a medium sized machine microprogrammed 
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to emulate all of the minicomputers would be acquired. A 
special grant was obtained in the spring of 1973, and the 
Q M-I was selected in the fall of that year: the only other 
choice was the Burroughs B 1700 which was rejected for 
reasons of cost, restrictions on usage and the fact that it did 
not support interrupt-driven I/O. The department ordered 
~the QM-I initially with 32K of mainstore, 3K of control 
store, 256 words of nanostore, and support peripherals in
cluding tapes, disks, a CRT console terminal, a line printer 
and a card reader. Over the last five years the system has 
grown to that illustrated in Figure I. 

In late 1973 a Varian V73 was acquired. Although that 
computer was intended mainly for use in the mini-lab it was 
purchased with 512 words of WCS, 8K 16-bit words of 
mainstore and an ASR 33. Since then a dual floppy disk unit 
has been added and software support developed in-house. 
The V73 has been used in the minicomputer class with good 
success and, since the floppies were added, has been utiiized 
in the microprogramming course. 

TEACHING WITH THE EMULATION LABORATORY 

The Computing Science Department offers a graduate
level course (CMPUT 512-Advanced Minicomputer Sys
tems) which deals primarily with microprogramming. Typi
cally, 10 to IS students enroll in the course, which covers 
the structure of emulators and the topics outlined in the 
text,2 along with a brief introduction to the current micro
programming research being done in this department as well 
as at other sites. In the following discussion the method of 
using the machines will be mentioned, as well as the learning 
aspects gained from programming each machine. 

Several assignments to teach the fundamental theories and 
practices of microprogramming have been developed. The 
main criterion for microprogramming assignments is an al
gorithm which references mainstore, employs several con
ditional branches and is familiar, repetitive and computa
tionally simple with easy to check results. Severai examples 
of basic assignments are producing a count of the number 
of one bits from locations 'A' to 'B' in mainstore; generating 
a parity bit for a word; and the assignment referred to in the 
following discussion, sorting into ascending order mainstore 
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from 'A' to 'B: The parameters . A' and 'B' were to be 
entered at run-time, as operands for a 'sort' opcode, or in 
the case of the QM-l, read in from the console terminal. 
The assignment illustrates the following concepts associated 
with microprogramming-mllinst0re accl;'ssing. parameter 
passing, and complex condition testing. 

Microdata 1600 

The Microdata 16()()3 has a vertical micro-instruction word 
of width 16. Internally the busses are eight bits wide, and 
there are 16 internal file registers. To minimize the com
plexity (workload) of the assignment. the students were not 
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required to program the Microdata to print the results, but 
rather a system utility was invoked to verify the correctness 
of the results produced by their sorter. 

The scenario, used by students to accomplish the assign
ment, was to edit and cross-assemble the source on the 
university's service computer, punch the binary (usually 
quite small) onto paper tape and load it into the Microdata 
using the utility program AROS. They would then pmceed 
to debug the program by inserting halts (or using the address
compare stop feature of the 1600 front panel) at critical 
points, single-stepping through sI)lall sections, correcting the 
results and re-editing the source. There are a few important 
points in the previous technique which should be noticed. 
A service computer was used to generate the binaries, even 
though an assembler exists on the Microdata. This is be
cause it utilizes the various components as they were in
tended, the Microdata to microprogram, and the service 
computer for software development. Others 4 have also 
found a service computer helpful in increasing throughput 
on a microprogrammed computer. The second point con
cerns the usage of the front panel for debugging microcode. 
Even though a simulator exists it is not only awkward to 
use, as are most simulators, but also slow to load from paper 
tape-which can be circumvented through new cassette sup
port. With the exceptionally good front panel support given 
to micro-debugging, the students did not find the simulator 
worthwhile. 

Besides the basic microprogramming concepts just dis
cussed, the assignment illustrated the following problems
multi-precision arithmetic as 16-bit words were sorted; the 
largest negative number causes complex condition testing in 
the sort; simple parallelism as mainstore fetches/stores can 
be overlapped with other processing; and simple timing 
problems (the 'U' register is finicky). 

In addition to describing the general architectural features 
of the Microdata, the lectures included a discussion of 110 
and used a teletype echo microprogram as an example. Con
current I/O (a poor man's DMA) was discussed in relation 
to the small amount of hardware required to implement this 

. relatively powerful concept (similar to the IBM 360/50 chan
nel implementation). 

As a machine for teaching elementary microprogramming 
the Microdata 1600 is very good. The format of its instruc
tion set is quite close to that of conventional machines (as 
are most vertical microprogrammable machines), it is a gen
eral purpose machine and yet it illustrates some of the ele
mentary problems in microprogramming. 

Varian V73 

The Varian V73 5 has a horizontal micro-instruction word 
of width 64. The fields which make up this word have up to 
four levels of encoding. The branching capability is very 
general, although ordering control store words to take good 
advantage of the branching is quite complex. The assignment 
was, once again, to sort 16-bit words of memory between 
specified (variable) limits. 

Most students prepared source tapes offline on a service 

computer with an editor, file system, and other useful util
ities such as cross-reference programs. The sources were 
then transferred to the Varian where they were read from 
paper tape with the micro-assembler, MIDAS. A modified 
version of Micro-util was then used to load, execute and 
debug the binaries. As there is very little front panel support 
for microprogram debugging, the debug portion was quite 
trying for the students. The front panel is an I/O device 
which must be supported in microcode before any internal 
registers may be displayed. On the Microdata quite the op
posite is true; the front panel is an intelligent piece of hard
ware requiring no software support. Varian intended micro
programs to be debugged from an attached processor which 
could step, trace, etc. the V73 micro machine. 

Notice that once again the students used service machines 
to develop the source code. Most likely the reason for not 
using the program preparation facilities on the Varian is 
because they are awkward to use (paper-tape-based). This 
could have been rectified by adding several thousand dollars 
worth of main store, disks, tapes and printers to the V73 
and using Varian's operating system (VORTEX or MOS), 
but then the system would be so large that it would not be 
cost-effective to allow individual students hands-on experi
ence. The assembler supplied by Varian is quite primitive 
(the service computer's editor helped the students use mne
monics), and a more powerful one has been developed else
where. 6 

The Varian illustrates the multi-way branch (for opcode 
decoding), horizontal microprogramming, and the difficul
ties of using conventional program design methods for de
signing microprograms. Also the independent I/O control 
store and processor are a unique feature discussed in the 
lectures. 

Nanodata QM-I 

The QM- J1 offers both vertical (control store) and hori
zontal (nanostore) microprogramming. The higher-level con
trol store is a fully readable and writable general-purpose 
memory whose word width is 18 bits. Eighteen bits is also 
the width of mainstore, the internal registers, and the ALU 
and shifter (although there is also a l6-bit mode). The lower 
level nanostore is a fully writable, executable memory 
whose word length is 360 bits. Two 72-bit fields are activated 
(from the five possible) during each 75 nsec machine cycle. 
The architectural organization is very parallel, allowing sev
eral functional units to perform simultaneousiy. The QM- i 
was designed as an emulation tool, and as such has no native 
(or most efficient) instruction set. Support software executes 
on a NOVA emulation, and although reasonable peripherals 
are attached to the QM-I, the operating system is quite 
primitive by today's standards. 

Since NCS (Nanodata Control System) only supports one 
terminal it is not timeicost-effective to allow online entry of 
student programs. Therefore, once again, a service com
puter was used to produce the source statements for the 
assembler, read them onto disk, assemble, load and debug 
them on the QM-I. We have found offline source preparation 
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so useful that a high-speed interface to a time-sharing PDP 
I 1145 is being built. 

In the class assignment on the QM-I, the students were 
to program the sort algorithm in nanocode, and output the 
resulting sorted array onto the console terminal. The I/O 
portion was microcoded in the MULTI8 micro-instruction 
set. The combination of these elements taught the students 
the interfaces between the three major stores in the QM-I, 
and the parallelism and flexibility of the QM-I. 

The QM-I performs very well as a teaching tool. The very 
horizontal architecture (and parallelism) of the nanomachine 
illustrate two major theoretical research areas in micropro
gramming-optimization theory and high-level micropro
gramming languages. Also, the two-level micro-instruction 
structure provides a methodology for generating efficient 
emulators (nanocoding the instruction set for run-time effi
ciency and microcoding the I/O and console functions for 
programmer efficiency). 

EMULATION RESEARCH 

Although three microprogrammable computers are avail
able for emulation research, the QM-I has been used for 
most research projects. Quite likely the preference for the 
Nanodata machine is a reflection of its flexibility as a uni
versal host and the fact that it has a disk file system. The 
emulation research performed at the University of Alberta 
can be subdivided into three major areas-emulation of 
hardware computers (conventional instruction sets)' tools 
for developing emulations (microprogramming languages) 
and language machine emulations. The current status or 
results of these projects are summarized in the following 
sections: the reader is referred to the papers referenced for 
details. 

COIlI'elllional machine emulations 

A PDP 11110 emulator has been constructed and evaluated 
for the QM-1. 9 This emulator would be a class' A' emulator, 
as defined by Flynn, 10 except that it does not check for odd 
PC values, or handle the trace trap bit in the PS. These 
features were not included in the emulation only because 
the implementor did not feel that their usefulness out
weighed the overhead involved in the nanoprograms. The 
PDP-II emulator successfully executes standard instruction 
diagnostics, memory, tape and disk exercisers, and also the 
DOS-II and MINI-UNIX operating systems. No changes 
were made to these programs: the MINI-UNIX operating 
system ran successfully the day it arrived. 

After the PDP-II emulation was thoroughly debugged and 
MINI-UNIX was obtained, a profiling feature was added to 
instrument operating system efficiency studies. This pro
gram counter-sampling allows one to find where a system is 
spending the majority of its time. By nanocoding a few 
identified functions, we have reduced the execution time of 
a benchmark from over 16 minutes to under six minutes. 
Further studies with the profiling mechanism need to be 
done to tune the emulation to an operating system. 

MUltiple concurrent emulations. sharing a common micro
coded I/O section, have been investigated 11 on the QM-1. 
The QM-I has been found suitable as a host for mUltiple 
emulations, but several problems are yet to be resolved. 
Device-sharing is the major problem, especially with devices 
such as magnetic tapes-how does the emulator control 
program determine when an emulator is finished with the 
tape? The micro-operations passed to the emulated control
ler are too small to determine the intentions of the emulated 
system. (Open and close calls would be required to give the 
ECP enough information to know when it may allocate the 
drive to another emulator.) Successful experiments have 
been performed with dual Nova emulators with a manual 
task switch facility, sharing the console terminal, disk and 
clock. 

Microprogramming languages 

Research has been done on the design and implementation 
of high-level microprogramming languages for both the QM
I micro-instruction set (MULTI) and the lower-level nano
programs. A nano-levellanguage presents difficult problems 
to the language designer, as illustrated in the Lizard lan
guage. 12 After examining the problems of building efficient 
nanocode, the researcher concluded that an automatic trans
lator would not be cost-effective compared to human nan
ocoders. Although this result is somewhat discouraging and 
shows that theory and practice are sometimes disjoint, we 
have not terminated our research in this area and have 
achieved better results at the micro-level. 

CQ,13 a high-level microprogramming language based on 
the programming language C (produced at Bell Telephone 
Laboratories), produces code in a slightly extended MULTI 
instruction set. The compiler (including a MULTI assembler 
and linkeditor) for CQ is being developed on a time-sharing 
PDP-II using the UNIX operating system. It is believed that 
when this system is operational it will provide much better 
software development tools than the current QM-I system 
has to offer. 

Language machines 

Language machine research within the department is 
being done at two levels-high-Ievellanguage machines, and 
intermediate-level language machines. APL is the target lan
guage for the high-level language machines. A general plan 
for implementation has been drawn Up,14 and the indexing 
portion has been coded15 on the QM-l. Also, research is 
being performed on the multi-user scheduling portion of the 
system. 

Intermediate-level languages are those languages which 
fall between high-level languages (FORTRAN, Pascal, APL, 
COBOL, ... ) and conventional assembler language. These 
languages are intermediate in both syntax and semantics. 
An example would be the Pascal . P' machine for which a 
microc0ded interpreter has heen written on the QM-I by 
UCSD. Our research group has formulated a methodology 
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for evaluating intermediate language machines (machines 
which interpret/emulate intermediate-level languages). 16 To 
date the methodology has only been shown feasible by mod
eling on a service computer; actual experiments will be 
performed on the QM-l. 

CONCLUSION 

Throughout the previous discussion the notion of using a 
service computer to support an emulation machine fre
quently appears. This is quite reasonable when the com
puters are thought of as tools used to b~ild an emulator. The 
two functions, development and execution, could be com
bined on one computer (as Nanodata has done on the QM-
1), but this leads to inefficient or primitive development 
tools, or to host machines which are not universal (for ex
ample the Varian). 

Having surveyed instructional and research usage of an 
emulation laboratory our experience indicates that a suitably 
supported universal host provides an excellent vehicle for 
exploring many areas. An important area is the relationship 
between high-level languages (or algorithms written in them) 
and the instruction sets (architectural machines) which these 
languages are translated into (or interpreted by). 
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Simulating the delay in logic networks for 
large, high-speed computers 

by E. A. WILSON 
Honeywell Information Systems 
Phoenix, Arizona 

When designing a computer with TTL logic circuits, the 
delays of logic paths have been estimated by considering the 
number of gate delays and adding in load and media factors. 
Such a simplistic approach is not accurate enough for cal
culating delays when designing high-performance large sys
tems using high-speed, non-saturating circuits such as 
HCML (Honeywell's Current Mode Logic). There are sev
eral reasons: 

• The clock (cycle) time is considerably faster for a high 
speed machine, hence the calculations must be very 
accurate in order to meet performance goals. 

• The loading on the driving gate varies with the number 
of driven gates, hence affecting the rise time of the line 
(interconnect) voltage. 

• The geometry of the interconnect (branch points, con
nectors, various media impedances) has an effect on 
signai propagation with high-speed edges. 

• Media delay is a significant percentage of path delay as 
ICs become faster. 

All of the above leads to a need for an ability to simulate 
the delay for proposed interconnects which do not meet 
simple driver-line-load configurations without intermediate 
branch points and/or media changes. 

The large package programs which are available on the 
open market are well suited for circuit design work when 
developing the circuit set, but they are unsuitable for the 
multitude of cases which must be run when simulating the 
full design. They require too much memory, take too long 
to execute, and are too general when the same gate can be 
used for every case simulated. 

This paper presents a simulation program and a design 
methodology which have proven successful in our actual 
large-computer design environment. The simulation program 
has been tailored to the HCML circuit set and optimized for 
small storage, very fast execution and minimal data input. 
Also, the program has been written so that automatic or 
manual modes of operation are available. 

In the automatic mode, the network checking program 
(which checks the logic designer's data base for correct pin 
assignments, wiring rule violations, etc., but is not a part of 
this paper) feeds the data into the delay simulation program 
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and receives back the interconnect portion of the delay for 
each load gate. The delay data are added to the logic de
signer's data file and reported to him when he accesses the 
file for the results of the network checking run. 

In the manual mode, the designer selects an interconnect 
which has a problem (such as an unexpected long delay) or 
inputs a proposed interconnect for which he wants to cal
culate the delay before continuing his design. In this mode, 
he has several options for the output. He may select just the 
individual interconnect delays for the loads; a printout of 
driver and load voltages with time; or a plot of the wave
forms of the driver and load voltages. In addition, the load 
voltages may be printed/plotted as either the input voltage 
to the load gate, or the output voltage from the load gate. 
By using one or more of these options wave reflections, 
effect of input rise on load delay, turn-on/turn-offiturn-on, 
etc. may be observed and frequently the problems corrected 
by interconnect modification before the design is released. 
If interconnect modifications do not correct the problem, 
then either an alternate logic implementation may be used, 
or the problem may be compensated for in the rest of the 
logic chain. In any case, the simulation provides the designer 
with the information before the design is released and built 
as hardware. 

The simulation program uses a two-model approach with 
an interaction between the models similar to substructuring 
in finite element programs, except in this case the interaction 
is a function of time. 

INTERCONNECT (LINE) MODEL 

This model is based on a finite element rather than a mesh 
or loop current formulation which actually only affects the 
terms in the resulting capacitance matrix, as will be seen. A 
basic goal was to minimize the execution time and past 
experience has shown that if this goal is kept in mind from 
the beginning, a more efficient program can be written than 
would be if the theory were deveioped and then the pro
gramming tacked on as an independent activity. Therefore, 
a method (finite elements) was chosen for the theoretical 
model which was known to lead to a straightforward matrix 
model. 
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The basic current voltage relations for a line element are: 

ae=_iR i=_k ae 
ax ' ax 

S [
. d . ae 

e= I t'I=C-
at 

(1) 

(2) 

(3) 

where in equation (3), the voltage, e, is relative to ground 
(or some fixed reference). 

In vector form (although this is only a one dimensional 
problem, it does not hurt to be mathematically correct), the 
divergence of the current at any point along the line element 
yields: 

. ae 
V'I=C

at 

and using the second relations of (I) and (2), 

with the boundary conditions 

;'n=-(kve+m iT Ve dt)·n 

(4) 

(5) 

(6) 

where 11 is an outward vector from each end of the line 
element. 

Equations (5) and (6) may be combined in a variational 
equation as: 

o(lnte gral)= J (k\] 2e+ m LT V 2e) dt-ce¢ dx 

- J (i'n+(k\]e+m L1''?e dt)'n)¢ db (7) 

where ¢ is an approximation function for e and (integral) 
will have to be minimized. The term db is an increment of 
the boundary, which in this case consists of the two ends of 
the line element. 

Using Green's theorem, 

o(Integral)= J (-k\Je'V¢-m IT Ve'V¢ dt-ce¢)dx' 

-J (i·n)¢db (8) 

where e has been assumed to be piecewise continuous in 
time. Since ¢ is a variation of e( ¢= Oe), the integral becomes 

(lnte gral)= -M J (V e )2dx-

im f [f (Ve)'dl ]dX-ic f eedx+ 

J (input current)e db 

Now assume a function for e of the form 

e=a] +a2x=[1 x]{a}=[E]{a} 

(9) 

(10) 

In the terms of the end (nodal values), 

where 

then, 

e=[E][A-1]{V} 

[A]= [~ ~J' /=line element length 

{V}= vector of nodal voltages 

ae 
Ve= ax =[0 1][A-I]{V} 

(1 I) 

(12) 

Placing the above into equation (9) and taking the variation 
with respect to the nodal voltages yields; 

o(lnte gral)=O= 

-k[A-1Y J ({V}[E]Y({V}[E]) dx[A-1]{V} 

-m LT [A-IY J ({\7}[E])T({\7}[E]) dx 

[A-1]{V} dt 

-c[A-1Y J [EY[E] dx[A-I]{V} 

+{input current at nodes=l} 

(13) 

where a subscript T means the transpose of a matrix, which 
is of the form 

iT a 
[K]{V}+ [M]{V}dt+[C] at {V}={I} (14) 

and the matrices are given by 

[K]=kl/ [ / -1l -/ / J (k=mmlohm) (15) 

[ 
/ -/-1 

[M]=ml/ -/ / J (m =mmlnanohenry) (16) 

[
2 /1 [C]=clI6 

. / 2 J (c =nanofaradslmm) (17) 

If a mesh current formulation had been used, the capaci
tance matrix (17) would have had only diagonal terms in
stead of the true distributed line capacitance which is inher
ent in the finite element approach. 

LOAD (GATE) MODEL 

The particular gate used in this paper is a CML circuit; 
however, the load model does not have to be confined to 
any single type of circuit set since the model in the preceding 
section can be used with any load which uses a voltage input 
as a boundary condition. This will be more fully explained 
in the .. Substructure" section. 

The seven-node model which uses an Ebbers-Moll model 
for the transistors is shown in Figure 1. The voltages VI> 
.... "'7 are unknown and vary as l'in varies. The node 
(subscript) numbers are specifically chosen to reduce the 
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Figure I-Model of Honeywell Current Mode Logic gate. 

number of arithmetic operations required for solving the 
simultaneous equations (a seven-by-seven matrix will be 
obtained from Figure 1). 

The basic equations for the transistor model are: 

1 
( 18) Bx =-+1 

BN 

1 
(19) B[ =-+1 

B[ 

I[ =1 es exp( (hVbe) (20) 

IN =1 es exp( ONV beJ (21) 

C be =aINA <Pl- VbeJ+ONTc!IN (22) 

C be =a2N 2/( <P- V bJ + OIT cil (23) 

Ibe =(I,\--leJBx-h+les (24) 

Ibc =(II-leJBI-IN+les (25) 

The values for aI' a 2' <PI' <P2' I es' I es' OJ> ON' T CN' T CI, B N, 
and Blare experimentally determined from actual circuits. 

In relation to Figure I, 

Cbe=C3, C4 (26) 

Cbe=CI, C2 (27) 

Vbe=(V3- Vs), (V4 - V6 ) (28) 

Vbe= (V3- VI), (V4 - V2 ) (29) 

Ibe= Ibe3 , Ibe4 (30) 

Ibe=Ibe3' ibC4 (30 

Writing the nodal equations will lead to an equation of the 
form 

[A]{V}={r} (32) 
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where the right hand side ({r}) will be composed of a current 
vector, a vector containing capacitance terms times nodal 
voltages, and a vector of known voltages (Vim V26• V G' V33). 
The approximation of constant capacitance during each time 
step (which is due to the finite difference approximation 
which will be imposed in the next section on equation (14» 
is consistent with the interconnect model. However, such 
an approximation for the current generation is not made 
since a better approximation is easily achieved. 

For example, in terms of the voltage at the beginning of 
the time step, the current at the end of the time step may be 
written as 

Ibe = - les + les (/I~"b(' + /IV'b('( Vbe - V'be)O/) (33) 

where V'be is the voltage at the beginning of the time step. 
A similar expression exists for Ibe . This expression is ob
tained from the first two terms of a series expansion of the 
exponential factor. 

These expressions for current will contribute terms to the 
matrix [A] in (32), and also destroy its symmetry. However, 
since the matrix is sparse, it can be easily solved by hand 
and the solution can be coded directly into the program. The 
method of solution follows. 

The matrix [A] is of the form 

All AI3 A IS 

A22 A24 A 26 

A31 A33 A35 

~2 A44 A46 

A51 AS3 AS5 

As2 As4 As6 
A7S A76 

The vector {r} is given by 

11 o 

L 

where 

C1 

12 
-11 -/5 

{r}= -/2 -16 
Is 
16 
o 

-CI 

C2 -C2 

o 
VinKB 

+ -.26KB 

o 
o 
-3.3R3 

-Ct C1 +C3 -C3 

-C2 C2 +C -C 
-C3 -C3 

-C4 C4 

II =-1 c,13/+les +IIB/ J - O/V3' - VI')) 

-Ii, J -O..JV3'- Vs')) 

12=-lcJ3!+1 ps+I,B I. J - O,(V 4' - V2')) 

-J.,..{ 1- O.V<V4 ' - V6'» 

A57 

A67 

An 

+ 

0 

15=-1 e,13N+I cs+I .J3 . ../ J - O..JV;/ - V 5')) 

-1/J-OI.V3'-Vt')) 

(34 ) 

V'l 
V2 

V3 
V4 (35) 
V5 
V6 

l V7 ) 

(36) 

(37) 

(38) 
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16=-le/1N+lcs+I,/J"'{ 1- 0".{V4'- V6'» 

-1//-0/V4'-V2')) 

(39) 

and the values of IN and I [ are functions of the voltages in 
each current equation. 

By using the Crout algorithm, the matrix [A] may be easily 
modified into a new matrix [A] which permits a simple so
lution to the seven simultaneous equations. 

j=1 

Aij=Au- L ~kAkj 
k=1 

j-l 

Aij=(Au- L AiI,Aki)/A;i ;<j, ;-~2 
k=1 

Then the vector {r} is modified by 

i-I 
;i=(r- L Aik;k)/Ai/ 

k=1 

;1=r1/A l1 

and the voltage vector is obtained by 

7 

V;=r;- 2: Aik Vk ;-.56 
k=i+l 

(40) 

(41 ) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

The above solution is applied for each time step of the 
interconnect model solution and the capacitance values are 
updated for each time step. 

SUBSTRUCTURE ASSEMBLY 

Equation (14) must be represented in a finite difference 
form for calculation purposes. This will be of an implicit, 
trapezoidal integration form to obtain a better approximation 
than a simpler explicit, rectangular integration form would 
provide. The result is that larger time steps may be used, 
hence faster execution. 

This is easily achieved by writing the discreteized form of 
equation (14) for the voltage at time T - MJ instead of time 
T (the end of the present time step for which the nodal 
voltages are unknown). This means 

{V};-1/2 = H {V}; + {V}i-l) (48) 

in terms of subscripts (i at T and i-I at T-~). Then, for 
the D.C. terms, 

{/};-1/2 = Uk]( {V}; + {V};-1 ) (49) 

for the capacitive terms, 

(50) 

and for the inductive terms. 
0'-2 

Uj"-l'~ - (.~r)[.\1Ja [\"']!!-~ [\'],-1 -f 2: [\'}]) (51 ) 
j=1 

where the factors k and ~ come from using 

{ Vh-3/4 =H V}j +H V}i-l (52) 

for the integration in the half time step from T - ~ to T -!~ . 
The resulting finite difference equation is (let (~)[M] be

come just [M] and [C]I(~) become just [C]): 

(HK]+UM]+[C]){V}j = {/}i-1/2 -HK]{V}i-l 
(53) 

i-2 

+[C]{V}i-l-HM]{V}i-l- L ([M]{V1) 
j=1 

Given the above equation, the two models may now be
come interactive in time. 

For the interconnect model, IIRB from the load model 
may be included in the conduction matrix, [K], with the gate 
voltage V3 as a known boundary condition for the intercon
nect model. At any given time step, the gate voltage is 
known for T - tM, T -2 tM , etc., but not T - ~tM. This is easily 
resolved by the finite difference extrapolation formula 

(54) 

Defining the subscript R as identifying quantities associ
ated with the gate (i.e. -RB and V3 ) model, equation (53) 
may now be written as: 

(![K]+HK1 +HM]+ [C]){ V}i = {I},-112 

-HK]{V}i-l-HK:k({V}i-I-3{VR }i-l + {VR }i-2) 

1-2 

+[C]{V}i-l-HM]{V}i-l- L ([M]{Vl;) (55) 
j=1 

where [K]R is null except for diagonal elements to which 
loads are attached (or terminating resistors if the need 
arises). 

The final boundary condition is the input or driver. This 
is simply an input current to the first node (11 in the vector 
{I}) which matches the wave form for actual experimental 
data. 

Once the interconnect model has been solved for time T, 
the nodal voltage at each load location becomes Yin for the 
load model in Figure I. The same basic model is used for 
each load, but the voltages (VI' V 2 • etc.) are stored in arrays 
so that the loads at different positions in the network can be 
simulated autonomously. 

The substructure interaction scheme follows two simple 
repetitive steps: 

1. Impose boundary conditions for time T - iat from cur
rent source (driver) and extrapolated load voltages 
(Vn's) on interconnect model and solve for nodal volt
ages at time T. 

2. Impose Yin boundary conditions from interconnect 
nodes on load model and solve for gate voltages at time 
T for all load locations. Then repeat Step 1 for next 
time increment. 

This process is repeated until all of the loads have reached 
a stable on (or off) condition. The stable condition is defined 
by a prescribed voltage above the threshold switching volt-



age below which V V2 (Figure 1) does not fall once it has 
been attained. 

IMPACT OF MATRIX STORAGE ON EXECUTION 
TIME 

The line model developed in the earlier section cannot be 
used for unlimited lengths as a single element. For example, 
a 75 ohm transmission line with a propagation delay of 5 
nanoseconds per meter shouid be limited to a 50 or 60 mm 
long element. Therefore, long line segments must be broken 

. into shorter elements. This can result in large matrices (200 
by 200 for example) if the lines are long and there are many 
branch points. Such large matrices not only require much 
storage, but also much computation time. This can be re
duced by considering the nature of th~ interconnect prob
lem. An example is shown in Figure 2. Each line segment 
would have one or usually more elements. The resultant 
matrix would be tridiagonal except at the branch points. 
Since all arithmetic operations outside of the banded portion 
of the matrix will result in zero, there is no need to either 
store or operate on these outside elements. 

Advantage was taken of the matrix type and a one-dimen
sional, variable bandwidth storage scheme was developed 
which stores, hence, operates on, only the affected elements 
in the matrix. This results in a reduction of storage of almost 
one order of magnitude and a similar reduction of execution 
time. This makes the manual version of the program prac
tical since the user gets the results from the terminal within 
seconds after he types in the data. 

SA!<.1PLE PROBLEM 

Figure 2 is typical of those types of logic networks which 
can be simulated with this approach. The four basic media 

6 7 8 LOAD 1 

5 9 10 11 
LOAD 2 

1 2 3 4 12 13 14 15 LOAD 3 

16 17 18 
LOAD 4 

19 

20 21 22 
LOAD 5 

Figure 2-First sample problem interconnect configuration. Numbered line 
segment types are given in Table I. 
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are the muItichip package, the board, the cable between 
boards, and the connectors. The type of each line segment 
is given in Table I. 

For the sake of simplicity, the plot in Figure 3 shows only 
the voltage at the source and the output of the gates at loads 
3 and 5. Notice the reflections, turn off of load 5, etc .. , 
which affect the delay of the network. Such information is 
extremely important in the early stages of design in order to 
assure meeting performance goals. 

As a contrast, a simple hand calculation based on propa
gation time would have predicted turn-ons for load 3 at 13 
ns and load 5 at 13.3 ns. The difference between the simple 
assumption and the full simulation (17 ns for load 3 and 35 
ns for load 5) is obvious from Figure 3. This illustrates the 
importance of a full simulation instead of estimates based 
on run lengths and loading factors which can not take into 
account reflections caused by mismatched impedances. 

STAR CONFIGURATION SAMPLE PROBLEM 

While the preceding example demonstrated the complex 
logic interconnection which can be modeled, a simple prob
lem will help to demonstrate further the need for full simu
lation. 

This problem will be developed from a simple. impractical 
(in the sense that it would not appear in a real design) star 
to a more realistic interconnect which may loosely be de
scribed as a star. 

The simple star is shown in Figure 4 and for the first 
simulation, all of the lines were treated as board lines instead 
of using the connector or micropackage parameters. Then 
the micropackage and connector parameters were used for 
the appropriaie segments and the load output plots are 
shown in Figure 4 along with the driver output voltage for 
the case of all three media in the problem. Because all signal 

TABLE I 

LINE LENGTH (MM) MEDIUM 

I 25 MICROPACKAGE 
2 25 CONNECTOR 
3 250 BOARD 
4 750 RIBBON CABLE 

375 BOARD 
6 250 BOARD 
7 25 CONNECTOR 
8 25 MICROPACKAGE 
9 250 BOARD 

10 25 CONNECTOR 
II 25 MICROPACKAGE 
12 125 BOARD 
13 375 BOARD 
14 25 CONNECTOR 
15 25 MICROPACKAGE 
16 50 BOARD 
17 25 CONNECTOR 
18 25 MICROPACKAGE 
19 625 RIBBON CABLE 
20 625 BOARD 
21 25 CONNECTOR 
22 25 MICROPACKAGE 
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Figure 3-Voltage waveform, plots for the sample problems shown in Figure 2. 

paths are the same length and all load factors equal, only 
one load output plot exists for each case. Of note is the fact 
that when all media are considered, the delay is three na
noseconds longer than for the all board lines case. This is 
important because if the difference in propagation speed 
between board lines and connector or micropackage lines is 
multiplied by the appropriate line lengths, only .48 nanose
conds can be accounted for in the three-nanosecond differ
ence. The bulk of the difference is therefore due to the 
variation of line characteristics in the signal paths. This can 
be noted by the dip in the source (driver) voltage. 

The next case also uses the star except that the top load 
has a load factor of 2.5 (for example, two '"high" current 
gates and a '"low" current gate driven in parallel on the 
same chip or adjacent chips) and the other three loads only 
have a load factor of 0.5. Note that the total load seen by 
the source is still four. the same as the previous case. The 
output plots are in Figure 5 and show a 1.5-nanosecond 

difference in delay time. However, the possibly surprising 
result is that the gates on the more heavily loaded line turn 
on before the half loads. This is due to the capacitance of 
the larger loading making the top line less sensitive to the 
dip in the source voltage which the lightly loaded lines track 
closer. 

A true equal line length star would not likely be found in 
a real design since board routing and micropackage place
ment would preclude such an ideal case. The quasi star in 
Figure 6 is more representative of a real interconnect. The 
board line lengths are chosen to relate to the previous star 
configuration. The average distance to the four loads is the 
same as the previous equal board line lengths. Likewise, the 
total loading (four) is the same. In Figure 6, only the output 
of loads one and two and the source are shown for the sake 
of clarity. Load one turns on 10.5 nanoseconds sooner than 
for the eqmtl line length ca"e yet the difference in di"tance 
only accounts for the signal reaching the load two nanose-
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conds sooner. The reason for the faster turn-on can be seen 
in the source voltage. It reaches a higher initial plateau 
which is due to the first branch point having only two instead 
of four branches. The waveform of load two is also note
worthy. Although it turns on before load one, it turns off at 
23 nanoseconds and on again at 24 nanoseconds. Hence, 24 
nanoseconds must be taken as the true turn-on time since 
the load is itself a driver for the next step in the logic path 
and must be stable before turn-on of its loads can be assured. 

SIMULATION PROGRAM CHARACTERISTICS 

Once the program had been developed, it was checked for 
accuracy by running several sample problems which were 
also modeled on a popular circuit analysis program, 
SCEPTRE. The voltage plots were identical and the only 
variations were in tiie third significant digit when the voltage 
values were printed instead of plotted. An important differ
ence between the two programs is that the version of 
SCEPTRE used required a minimum of 25k words of storage 
and approximately one minute of execution time (plot sur
pressed to reduce 110 time), while the program used for this 
paper took less than 12k of storage and ran the comparison 
problems in less than a second (also, plot surpressed). Both 
programs were run on the same Honeywell Level 66 Com
puter. 

The program can handle up to 100 nodes and line elements 

(each line segment may be one or more line elements which 
are 125 mm. or less) but that may be increased by just a 
dimension statement change. The first sample problem re
quired only about 50 nodes. The program is written in FOR
TRAN and may run on any computer with adequate storage. 

CONCLUSION 

The simulation method presented in this paper is proving 
to be a useful tool in the early design phases of logic net
works for two reasons. First, it provides essentially auto
matic timing analysis of all designs without any extra work 
on the part of the designer when the design data base is used 
for input. The typical execution time of less than one second 
per simulation run allows the computer-aided design auto
mation system to include a full set of timing analyses without 
any adverse effect on turn-around time or competition for 
resources. Second, the designer is free to use more complex 
branch schemes than could be used if the delay predictions 
had to be done according to simplified wiring rules. This 
freedom allows more efficient design and routing while as
suring that the result will be predictable. Again, the fast 
execution and the small storage makes desk-top terminal 
operation practical. The designer may obtain voltage wave
form plots on the terminal as fast as it will type, and then 
check out design modifications as fast as he can type. 
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INTRODUCTION 

The transfer of information about operating systems is se
verely hampered by the lack of suitable means for precise 
communication. If major progress is to be made in reducing 
the high cost of developing and maintaining system software, 
new communication techniques must be fashioned to im
prove both vertical and horizontal transfer of information 
about operating systems. 

.. Vertical information transfer" refers to communication 
between individuals or groups working at the various levels 
on the development or use of some specific operating sys
tem. Designations of these levels might be specification, 
description, design, experimentation, implementation, eval
uation, use and maintenance. However, these classifications 
are not all mutually exclusive, nor is this the only taxonomy 
possible. In contrast, "horizontal information transfer" re
fers to communication between different projects or between 
individuals working on an operating system and outsiders 
(i.e., a new member of the team, another operating system 
development project, students, etc.). The essential factor 
characterizing the horizontal flow of information is that the 
recipient is not already intimately familiar with the total 
environment of the system under study, and does not want 
to be forced to learn more about that environment than 
necessary. 

Although some work has been done in support of infor
mation transfers along both axes, most of the effort has been 
focused on vertical flow, with only a small amount of effort 
devoted to horizontal transfer to a different environment. In 
only a very few instances has the combined problem been 
considered. (Examples of the combined approach are Ref
erences 17, 58 and 59.) Previous work was performed pri
marily within the framework of problem-solving or systems 
development and focused on the development of formalized 
approaches involving a statement of the functional require
ments of the system, specifying these requirements in a 
formal language, similarly defining process interactions, and 
progressing through various other steps such as the use of 
a high-level programming language, assembly language, etc. 
Unfortunately, such work results in the development of dif
ferent languages for specific purposes without regard to their 
position in the hierarchy. 

29 

From a vertical point of view, the concept of structured 
programs suggests the possibility of utilizing the same lan
guage at different levels of abstraction. This possibility may 
prove workable when the requirements of only two levels 
are considered; however, the requirements for efficient hor
izontal transfer of information may well make such a solu
tion a poor one. 

In the vertical direction, the value of a complete operating 
system language(s) system meeting the characteristics to be 
described will be primarily economic. The total time, and 
hence the cost, required to design, implement, test and 
maintain an operating system will be most directly affected. 
In the horizontal direction, the resulting effect will be pri
marily an improved transfer of technology and general 
knowledge about operating systems. This will of course have 
an ultimate effect on the economics of operating system 
development, but the emphasis here is on knowledge trans
fer. The question has olien been raised as to why operating 
system developments from universities are not utilized bet
ter by industry. The availability of a suitable means of ac
curate, succinct and informative communication would cer
tainly aid this transfer process. 

The emphasis of this paper is on the role of the languages 
as effective information transfer mechanisms, but this ori
entation is not meant to deny the value of complete software 
development systems which not only require "good" lan
guages but also the ability to handle the design data bases. 
(Good examples of discussions of this type of system are 
References 3 and 50.) The primary thesis of this paper is 
that the horizontal transfer of information, though certainly 
as important as the vertical one, has been seriously ne
glected in most of the work thus far. 

LEVELS OF USAGE 

The language available at each "level" must provide the 
ability to "describe" the operating system; however, the 
purpose of each of these is quite different: 

Specification-Functional requirements of the system and 
the criteria of performance in providing those functions; 
Design-Proposed solutions to meet the specifications; 
Simulation-A functional model of the proposed system 
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that can be utilized for experimenting with various de
signs; 
Implementation-The detailed solution of the problem in 
a form that can be directly translated to a machine-exe
cutable form; 
Description-A description of the functionality, imple
mentation and performance of the operating system usable 
for instruction and training, maintenance, demonstration 
or study. 

The relationships of these activities one to another and to 
the other activities involved are shown in Figure ]. 

It appears that none of these is driven totally by either 
the vertical or horizontal transfer requirements. For exam
ple, instruction about an operating system is performed hor
izontally for general students; it is also an extremely impor
tant, but expensive and time-consuming, factor in the 
training of new individuals on a specific operating system 
project. Similarly, design and experimentation may be car
ried on horizontally for instructional or research projects on 
a specific aspect of operating systems in general or vertically 
in the analysis of the performance of a specific system. The 
one level that does seem to have almost total vertical ori
entation is check-out and test support; however, even here 
the horizontal influences and features of the system imple
mentation, such as good programming practices, will cer
tainly be felt. 

Specification 

A specification language should be problem-oriented. It 
is a statement of the problems to be solved, the functionality 

Design 

Simulation Experiments 

(2) 

of the system, and the criteria to be met in solving these 
problems. The specification may also include restrictions on 
system behavior. What must not be included in the specifi
cation are any unnecessary restrictions on how the problem 
will be solved. The specification for an operating system 
should be organized on the basis of functions provided (i.e., 
a problem orientation) and should be as non-prescriptive as 
possible. A specification is also a statement of the policies 
to be implemented in the system but not the mechanisms 
that will be implemented. 

Design 

A system design prescribes the general mechanisms that 
will be utilized to implement the policies and functions set 
forth in the specification. The major difference between a 
design and an implementation is in the level of abstraction. 
The design will not include all the details of the mechanisms 
implementations. There is. in fact. a large degree of ma
chine-independence present in a design. 

Simulation 

One well demonstrated requirement of the total design 
methodology is "the need to test proposed modifications to 
a complex system before they are made, regardless of how 
beneficial these changes might appear. The number of times 
that the system ... did not react as expected in response 
to adjustments should serve as a warning. " 45 Although much 
work has been done on the simulation of operating systems 

Study 
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Tests Evaluation 

Figure I-Operation system activities. 
1) Changes in the specification-; as a result of changes in the design based on simulation experiment result and/or evaluation tests of the implemented 

~y~lt!m. 

2) Change" in the design based on the results of evaluation tests of the implemented system. 



and on special languages to facilitate the construction of 
simulation models, the fact is that the cost of simulation 
studies of operating systems remains almost as high as the 
cost of experimenting with the actual system. The reason 
for this is that there is an almost total lack of continuity or 
direct transferability between the design description of the 
system and its simulation description. Although it is shown 
in Figure 1 as an adjunct activity, the language support for 
simulation must be unified with the "main-line" activities. 

Implementation 

A statement of the implementation of the system must be 
a description containing sufficient detail that it can be exe
cuted· after appropriate processing by a language translator. 
The description of mechanisms in the implementation are 
machine-dependent except to the degree that there may exist 
some capability for portability of the programming language 
utilized for the implementation description. 

Description 

Whereas the problems associated with specifying, design
ing and implementing operating systems are well recognized, 
the difficulties encountered in describing such a system are 
not so well recognized-nor, as any student of the subject 
is well aware, have effective techniques been developed to 
accomplish such a task. What is commonly seen is a de
scription of only one portion of the system, such as the 
kernel (e.g., References 53 and 72); a specific feature, such 
as protection (e.g., Reference 7); or the design/implemen
tation policy (e.g., Reference 34). The weakness of our pres
ent capabilities to describe operating systems succinctly and 
completely is evidenced by the few overview papers that 
have been produced (e.g., References 14, 54, 73). Although 
each of these papers is informative, none provides a large 
amount of insight nor the detail necessary for understanding 
the design and implementation of the complete system. At 
the other end of the spectrum of descriptions of a single 
system is the complete coverage of MULTICS. 48 It is inter
esting to note that even in non-system specific discussions 
of a topic such as security, there is no common basis for 
discussion and presentation. The presentation techniques 
encountered in open publication range from totally verbal 
(e.g., References 15 and 44) to theorem-based discussions 
(e.g., Reference 22) and a combination of theorem and code 
(e.g., Reference 52). 

DESIRABLE CHARACTERISTICS AND 
CAPABILITIES 

A single unified system 

It is important that the "language" support provided be 
a single unified system, not a large collection of separate 
design and programming aids each applicable to merely one 

Languages for Operating Systems 31 

lev.el. When the various levels are considered, this unifica
tion may initially be only a philosophical one; however, the 
ultimate goal should be physical unification through capa
bilities to automatically translate the representation at one 
level into that applicable at the next. 

Graphical techniques 

Graphical or pictorial techniques have always been ex
tremely useful and powerful tools for explaining the opera
tion of relatively complex systems. In computer systems, 
such techniques have usually taken the form of tlowcharts. 
Though one experimental study has indicated that tlow
charting has little value in increasing programmer produc
tivity,60 it is nonetheless clear that tlowcharts do have a 
positive value in facilitating information transfer about the 
logic and sequencing in an existing program. On the other 
hand, the extreme complexity of operating systems and the 
inability of tlowcharts to portray concurrency work together 
to greatly diminish the value of this technique for documen
tation and information transfer with respect to operating 
systems. A modification of tlowcharting called tlowgraphs 
has been presented in Reference 32 as a technique for de
tailed analysis to include timing studies of real-time systems. 
However, since the level of detail presented in tlowgraphs 
is quite high, its value for the analysis and description of a 
complete operating syste'.1 is also questionable. 

Language-based 

Formal languages have been studied extensively and have 
a strong theoretical base for their design and the automation 
of checks for internal consistency and completeness as well 
as translation. These characteristics, plus the ability to easily 
manipulate a collection of statements in a formal language 
system, are strong arguments for having the support for 
each level be based on a formal language. 

It is possible to modify a formal language definition tool 
such as the Vienna Definition Language 70 to support "the 
formal description of operating system features, like the 
concepts of parallelism and information sharing. "43 How
ever, based on the example applications of this technique, 
it does not appear that the results are very easy to under
stand. The problems here are primarily the language notation 
and semantics. 

Ability to express the same abstraction or control 
structure at all levels 

The capability of the language system to perform this task 
is central to the entire argument for its development. How
ever, basic research is still needed to provide full "abstrac
tion expression" capabilities at even one level. Work is 
presently being performed on languages that may provide 
the facilities necessary to fully describe (define) the types of 
structures used by Dijkstra in the T.H. E. operating system, 
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but it does not appear that current projects will adequately 
support the two dimensions of information transfer pre
sented here. 

Separation of policies and mechanisms 

It is on this point that there might be divergence of goals 
in considering both horizontal and vertical information 
flows. From a vertical point of view, an objective might be 
that "We would like to develop a language mechanism which 
alJows us to capture an abstraction and its implementation 
in the program text.·· 71 However, from the point of view of 
horizontal flow of information, if the abstraction of the pol
icy and its implementation mechanism are inextricably com
bined, there is probably too much information being passed, 
since the boundary between the levels of design and imple
mentation has been removed. There is nothing sacred about 
these boundaries, nor has it been proved that they are es
sential: however. the desirability of this characteristic 
should be examined. At the descriptive level there is no 
question that one would wish to be able to describe various 
policies without considering their implementations. 

There are several readily-apparent reasons for the sepa
ration recommended above. The study of operating systems 
can be divided into two general classifications; (1) The in
vestigation of the logic and operation of algorithms that 
control specific functions of the operating system; and (2) 
The consideration of the various implementations (mecha
nisms) possible for the logic underlying these policies. In 
addition to clearly identifying just what it is that is being 
examined, this fundamental separation directly supports two 
other objectives of any design and implementation system
a systematic approach to performance analysis (Which is 
the cause and which is the effect, the policy or the mecha
nism?) and the identification and cataloging of reusable pol
icy modules even though their implementations might be 
unique (i.e., target system dependent). 

Separation of policy and mechanism should greatly assist 
in the development of automatic checks of the program 
developed. The methodology employed for such checks will 
be different at each level, but all methodologies will have 
the goals of ensuring consistency and facilitating verifica
tion. A full consideration of this requirement is present' in 
the work of several workers at the implementation level. 63 

However, all of the problems have not been solved at even 
that single level. 

Understandabilit), and intelligibility 

William Wulf has commented that "Whatever it is that 
makes a program understandable must be a property of the 
program text .. , The problem is one of attaining and retaining 
understandability for both vertical and horizontal informa
tion transfer. A descent of one vertical level might be char
acterized as the removal of one level of abstraction whereas 
a horizontal transfer implies a complete understanding of 
the abstraction at that level. Entering into the discussion 

here is the old argument about the use of comments vs. a 
verbose language (e.g., COBOL). It appears at this time that 
the total "understanding" required for either direction of 
transfer should be provided by the program statements 
themselves; and, since the language itself must support hor
izontal transfers, the demands made on the information con
tent of the language exceed those made in the past. There 
is a grave danger that, in attempting to increase the infor
mation content of the basic language statements so as to 
improve understanding, the result will be the development 
of an extremely complex or artificial notation system that 
greatly diminishes intelligibility. 

Promote (enforce) good programming practices 

The promotion-or better, the enforcement-of good pro
gramming practices is one of the most desirable character
istics of the complete system from the point of view of actual 
usage in a vertical manner. Much has been said about the 
desirability of omitting several types of constructs from the 
language; unfortunately, much less has been said about what 
should be included to provide the capability to do "good 
systems design and implementation;" and research on the 
enforcement of procedures that will result in quality work 
is almost non-existent. It appears that the problem is divis
able into two general subjects-the organization of the con
trol structures used in the program and the physical orga
nization of the program. 

SURVEY OF PREVIOUS WORK 

In the past, the primary motivation for language work in 
this area has been the need to develop tools that will facil
itate the evaluation of various features included in an op
erating system, the selection of parameter values, etc. This 
is obvious from the number of citations given below in the 
section on simulation. The area with the next higher level 
of activity has probably been implementation languages, 
although only a small selection of references is cited here. 
There has been some work on design languages, but descrip
tive systems have received very little attention. The work 
on languages or programming systems that addresses more 
than one level of usage has been very small. 

Hardware languages 

It is not advisable to attempt too close an analogy between 
software systems design languages and those developed for 
hardware; however, a few comments on the latter appear to 
be in order. One is inclined to think of the problem of 
"common" notation as being much simpler for hardware, 
but such a situation is not the case. A 1967 review of doc
umentation in use at the lowest (logic gate) design level 
showed nine techniques then in use. ll The problem was 



actually even worse than this diversity of systems would 
seem to indicate. The motivations for the use of higher-level 
languages or machine manipulatable notations for hardware 
are almost the same as they are for software-vertical and 
horizontal information transfer plus automatic translation 
and expansion to take care of the simple repetitive tasks, 
error and consistency checks, and interfaces with automated 
systems that carry the design process through the next iog
ical step. 

An example of a notational system that was originally 
designed to support horizontal inform~tion transfer is ISP.2 
Of particular interest is the later work on ISP that focused 
on expanding its use along the vertical dimension with com
plete, automatic translation support down through simula
tion and implementation. ISP corresponds to a lower-level 
oflanguage hierarchy discussed above; however higher-level 
languages have not been neglected. Some early· work was 
on the development of an Algol-type language,5 and today 
there is much activity within a group known as the Confer
ence on Hardware Design Language (CHDL). Of particular 
note is the sentiment that several members of the CHDL 
group have expressed on the importance of the use of the 
output of this group as a teaching or descriptive language. 

Descriptive languages 

The first language developed specifically for operating 
system description was a notation introduced by Leo Cohen 
in his preliminary text, Theory of the Operating System. 8 

Cohen was one of the first individuals presenting introduc
tory courses on operating systems and his notation reflects 
an appreciation of the importance of understanding the con
current operation of the operating system with the user 
program and concurrency within the operating system itself 
as well as recognition of the fact that it is a "transaction" 
that is being processed. The technique, which involved iden
tifying the "Current Operating Transaction" and the "Avail
able Transaction" as the operating system crossed logical 
boundaries was described fully and used extensively in 
Cohen's book. 9 Although the COT-AT technique was quite 
limited in its capabilities, it did provide the basis for a rather 
concise description of an existing operating system, OS/360 
MVT, in 18 small flowcharts 40 and a conceptual design for 
a proposed operating system. 41 The early work with the 
COT-AT notation system also greatly influenced the design 
of the first operating system simulation language, S3, to be 
discussed. 

Another notational technique applied to the descriptions 
of both software and hardware is the contour model. 27 This 
technique, which can illustrate the nesting of control and 
concurrent execution environments, was used extensively 
in a complete treatise on the Burroughs 5700 and 6700 sys
tems.49 This technique may not have been available for use 
by the same author in an earlier text on the Multics system48 

which also has a block-type structure; however, there also 
appears to be some question of its applicability to this sit
uation. The contour model also formed part of the basis of 
the picture-system. 24-26 
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Experimentation and simulation languages 

Simulation has long been recognized as a very useful tool 
in the study and evaluation of operating systems. As can be 
seen from the references to be cited, there has been much 
work done in this area-far more than that done at any other 
level. 

Almost any general-purpose discrete event simulation lan
guage, e.g. GPSS39,55 and SIMSCRIPT,30 or even a general
purpose language such as FORTRAN could be used to 
model an operating system,35,45 and many such models have 
been constructed. However, most of these models cover 
only a small portion of the complete system such as the 
scheduler/dispatcher subsystem, the memory allocator/man
ager, etc. GPSS has been popular for this purpose. Although 
a model programmed in a general-purpose language can pro
vide an accurate description of the logic of the target system, 
the source code is not easy to read, and the depiction of 
many of the operations found in operating systems requires 
some rather involved coding that obscures the basic logic. 
Some work of note in this area has been the use of SIMULA 
as the simulation language. A specific example is a complete 
model of the CDC 6600/SCOPE.51 SIMULA has several 
features, particularly the CLASS concept, which made it 
extremely attractive for use in this application and its appli
cability has been considered by several individuals at the 
Norwegian Computer Center. 13,47.42 

The earliest known example of a programming system 
developed expressly for simulation studies of computer sys
tems is the Computer System Simulation (CSS)62 which was 
utilized by IBM in three ways: "First, in the development 
of a programming system ... so that proposed changes can 
be evaluated ... second, in establishing a system configu
ration for a given workload ... third, after a system is op
erational ... to predict the effect of expected or proposed 
changes to the actual system." 62 The CSS model consisted 
of (1) a description of the system, (2) description of the 
operating system, and (3) description of the workload. The 
CSS language provided a means to describe the model of 
the operating system so that each block in the flowchart was 
represented by a single statement. What was lacking was a 
clear picture of the concurrency present. (See Reference 39 
for an application of CSS.) 

The earliest known example of a simulation language de
veloped expressly for operating systems is S3, the Systems 
and Software Simulator. 6 This system was developed under 
contract to the U.S. Army which was exploring alternatives 
to benchmarking as a system evaluation procedure for pro
curement purposes. (Although the review of the S3 System 
indicated that it would provide sufficient accuracy for this 
purpose, its use was not adopted because of the high cost 
of maintaining a data base containing up-to-date descriptions 
of all of the various hardware and software systems that 
might be proposed by suppliers. Benchmarking was retained 
as the most cost-effective technique that would satisfy both 
the vendors and the Army.) The S3 simulation language 
provided full capabilities to describe both the hardware and 
the software involved to include both user programs and the 
operating system. The simulator provided a "true discrete 
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event simulation" utilizing a complete future events chain. 
The language provided statements to accurately model the 
logic of the software as well as statements to maintain the 
proper timing with respect to the hardware and the system 
actually being modeled. The power and usefulness of the 
language is best attested to by the fact that a completely 
validated and time-adjusted simuiation of the GE 635 com
puter and the GECOS II operating system required only 211 
S3 statements. (The instructional value of such a language 
as a descriptive tool was first appreciated by this author 
during his review and evaluation of the S3 contract. 12 S3 
was used internally by Cohen Associates for verifying the 
performance of the operating system for an airborne com
puter which had extremely stringent timing requirements, 
e.g., proper recovery and handling of six different interrupts 
that could occur during one microsecond. The work on S3 
obviously influenced Cohen in the development of the com
mercially available simulation system SAM.l 

OSSL was another language developed primarily for gen
eralized simulation studies of computer systems. lO The 
OSSL model had three components: "(a) The hardware 
characteristics and system configuration, (b) the operational 
philosophy of the system ['the manner in which user jobs 
flow through the system'], and (c) the environment in which 
the system is to function ['the services that the system is 
called upon to perform']." 10 Simulation languages and sys
tems developed expressly for operating system study do 
provide models with a rich content of system description. 
Their major weakness in application has been the cost in 
processor time of executing the model. An example is the 
GECOS 11/635 model referred to above which produced 
v~.Iidated results within five percent of actual system runs 
but required 10-15 times as much time even when executing 
on a UNIVAC 1108. The high time requirement for execut
ing the simulator is not totally the result of using a "high
level" simulation language. Even for models written in as
sembly language' 'the simulated-time/real-time ratio is much 
greater than one." 46 

Analytic models can provide the same degree of accuracy 
with execution costs much less than actual runs. Although 
the state-of-the-art in analytic models has progressed to very 
high levels of both completeness and detail (a comprehen
sive survey is presented by Reference 65), the description 
of the model, in whatever language is utilized, provides 
little, if any, intuitive understanding or insight into the nature 
of the system being modelled.64 

A compromise between the two forms of modelling or 
simulation has resulted in the development of hybrid tech
niques in which both discrete event and analytic procedures 
are utilized. 16,31.61 "In computer system models, it is con
venient to partition the resources of the system into two 
mutually exclusive sets, denoted long-term resources and 
short-term resources respectively, creating a two-phase 
model. In a hybrid model. discrete-event simulation is used 
to model the first phase, which is the arrival of tasks and 
the allocation of long-term resources. This second phase
use of short-term resources by active tasks-is then modeled 
by any technique which produces an expected residency 
time (active time) for each active task." 61 The intuitive un-

derstanding obtainable from the "language" statement of a 
hybrid model does exceed that present in pure analytic 
models, but the logic of the system being simulated is still 
often submerged in programming details of the model. 

Instructional laboratory project languages 

It is not clear exactly where to place those languages 
developed expressly to support operating system laboratory 
courses. To support the general teaching objectives, they 
certainly should be highly descriptive in nature, but it ap
pears that this aspect of the language has often been sacri
ficed for the sake of expediency in getting the laboratory 
exercise completed in a limited amount of time. However, 
this latter comment certainly does not apply to all of the 
work in this area. Several of these instruction-oriented sys
tems provide very usable simulation capabilities, e.g., 
OASIS66,68 and ITS,36,37 while others provide a language 
intended for the actual implementation of a complete oper
ating system or portions of a system, e.g., Concurrent PAS
CAL 4 and Concurrent SP/k.23 

Certainly, a primary objective of any instruction language 
is the transfer of information about concepts as well as 
implementation techniques and examples. Also, the influ
ence of an operating system simulation language on system 
descriptions is quite beneficial;67 however, the instructional 
environment must be able to accommodate student time lim
itations, which results in shifts in emphasis on the various 
capabilities of the language as contrasted to what they might 
be in a "production" environment. 

Design languages 

There are two examples of design languages. These are 
definitely multi-level, and either could possibly be made to 
span the entire spectrum of language levels being discussed 
here. Both of these projects date from 1972-one as aca
demic research that was utilized for one small job and the 
other as a totally operational support system. The first phase 
in the academic project was a study of "A Programming 
Language for Concurrent Processing." 26 The underlying 
model of this system is based on the contour model dis
cussed earlier. 27 Of more interest to this paper is the follow
up work which led to the development of the Picture-System 
model and the PS notation which supports model develop
ment. 24,25 Picture-system models "are useful in defining, 
communicating, and simulating computer system designs, 
especially in the early design stages." 24 The PS system gen
erates the models "from a description of a computer system 
as a structure of finite-state components. The PS system 
also does an analysis of the state-transition graph of the 
subject computer system which detects design problems 
such as deadlocks, looping, and races. "24 

The other project, 18-21 known as Higher Order Software 
(HOS), is "a formal methodology for reliable systems spec
ification and development. . 21 A specific goal of the HOS 
system is to tightly control those areas causing most of the 



design errors, such as interface problems, and to automate 
that control. 

It is now possible within the framework of HOE to develop 
automatic tools to aid verification as well as design. For ex
ample, the interfaces of an HaS system can be exhaustively 
tested by an automated analyzer without program execution. 
This is especially significant since interface testing in a large 
system is known to be a very costly procedure. (73 percent of 
all problems found during the APOLLO integration effort were 
interface problems; and verification accounts for 50 percent of 
the total software development effort.)· 
Higher Order Software is software expressed in its own meta
language and conforming to a formalized set of laws. The basic 
components of HaS methodology are: (1) the application of 
the formal set of laws to the design of a given problem; (2) a 
meta-language adhering to these laws; (3) the automatic anal
ysis of design interfaces by the design analyzer and the struc
turing executive analyzer; (4) the architectural virtual layers 
produced from analyzer output in the form of software, firm
ware or hardware, and (5) the hardware that is transparent to 
the user. (Our work, to date, has concentrated on the first three 
areas of HaS methodology.) In addition, support tools based 
on axiomatic consistency can enhance a given development 
process in such areas as: performance analysis, simulation, 
design automation, definition of subsystem requirements, au
tomatic documentation and automatic management tech
niques. 21 

There have been several design approaches involving path 
descriptions. A large amount of it centers around the basic 
concepts of Petri nets. It is well known that the original 
work by Petri in this area remained unnoticed and unused 
for some time after its initial publication. The long-term 
value of the technique appears to be as difficult to predict 
as it was to recognize its immediate applicability. There is 
something inherently attractive about the use of graphical 
representation to depict parallelism, but this author has dif
ficulty in visualizing clearly how such techniques can be 
integrated into a unified "vertical" information-transfer sys
tem. Activity continues in this area, and it appears quite 
reasonable to anticipate more progress along these lines. 

Implementation languages 

Activity in this area has been very high, and work on the 
topic has been identified by the designation .. machine-ori
ented high-level languages:' "systems programming lan
guages" as well as "operating system implementation lan
guages." IFIP has established a technical group on Machine
Oriented Higher-Level Languages and a working conference 
has been held. 69 This working conference led to the estab
lishment of a permanent working group, WG 2.4, under the 
auspices of the IFIP Technical Committee on Programming, 
TC 2. It is not possible to cover all of the work done in this 
area; however, a typical example is Reference 38. Markstein 
developed an operating system programming language, 
PSETL, which is based on SETL, a set-theoretic program
ming language. The extensions required for PSETL are ca
pabilities "to allow the description of algorithms involving 
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int~rrupts, parallelism, and to some extent, machine de
pendent features:'38 Although it is stated that PSETL is 
"intended for operating system description:' it is much 
more of an implementation language. The extensive exam
ples given in the report illustrate that the program is not 
very "descriptive" nor very understandable without the 
liberal use of comments (perhaps as much as 50 percent), 

A general discussion of the desired characteristics of im
plementation languages including specific comments on 
Concurrent PASCAL and MODULA is presented in Ref
erence 28. Another derivative of PASCAL is CCNPAS
CAL. 29 

Multi-level language systems 

As was stated previously, there has been only a limited 
amount of work done in this area. A useful survey of lan
guages for specification and design was presented in Ref
erence 56. Language classifications that were identified and 
briefly discussed in that survey are state-based languages 
such as TOPD and DREAM, event-based languages such as 
path expression and flow expression systems, and relational 
language systems such as ISDOS and REVS. All of these 
systems do provide some formal linkage between. the state
ment of the specification and the design. 

An early example of a development system that extends 
into even the simulation level is DES, A Design and Eval
uation System. .. A system which integrates performance 
evaluation with design and implementation" is described in 
Reference 17. "[T]his system is based on a simple, high 
level language which is used to describe the evolving system 
at all stages of its development. The source language de
scription is used as direct input to performance analysis and 
simulation routines." 

A description of a complete program development meth
odology focused specifically on "the design, implementa
tion, and proof of large systems, based upon a hierarchial 
decomposition of the system" is given in Reference 57. 

SUMMARY 

A major factor contributing to the high cost of the devel
opment and use of an operating system is the lack of effec
tive means for transferring information vertically within one 
operating system project and horizontally between projects. 
Most of the work in the past has addressed only vertical 
information flow. It is important that the importance of the 
description of operating systems and the value of horizontal 
transfers also be recognized and addressed by future work. 
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The simulation language SIML/I 

by M. H. MACDOUGALL 
Amdahl Corporation 
Sunnyvale, California 

INTRODUCTION 

The conceptual advantages of process-oriented simulation 
languages have become generally recognized. SIMULA 1,4 is 
the best known and most widely available language of this 
type; others include ASPOL,3,12 SIMPLlI, 9 and SOL,10,11 
and processes have been retrofitted into SIMSCRIPT. 14 
SOL was the genesis of the process view of system behavior. 
SIMULA is an elegant general-purpose programming lan
guage; its particularization to system simulation is nicely 
described by Franta. 7 

The process view introduced by SOL evolved more rap
idly in the area of operating systems than in system simu
lation, with consequent influence on the development of 
process synchronization constructs. In SOL, processes 
could control their activities in accordance with the values 
of expressions involving global variables. In operating sys
tems, considerations including efficiency and the need for 
hierarchical structures resulted in the development of more 
specialized constructs for process synchronization; these 
included events,2,5 semaphores,6 and monitors.s Recent sim
ulation languages often incorporate similar constructs. 
Among the advantages of this approach is the extent to 
which similitude-the resemblance of the model to the de
sign-can be realized in system-level models. (While it is 
possible that a simulation model can be a valid representa
tion of a system in a behavioral sense and, at the same time, 
bear little resemblance to the system, it usually is difficult 
to extend such a model to represent increased detail or to 
reflect design changes. At the very least, a lack of similitude 
can hinder communication between designer and modeler.) 
This trend ultimately may result in the merger of simumodel 
and design specification, as proposed by Randell. 13 

The improvements such languages bring to system-level 
modeling, and the relative ease with which they permit ex
pansion of the level of detail of models of software elements, 
may not be realized when the modeling objective is oriented 
more toward the hardware elements of the system. For 
example, ASPOL is a simulation language whose process 
synchronization facilities, based on entities called "events," 
derive from operating system constructs. It serves quite well 
for the development of various kinds of system-level models 
(perhaps its main shortcomings at this level are in the area 
of facility preemption and the associated process interrup
tion and queueing). For models requiring a more detailed 
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representation of hardware elements (instruction pipeline 
simulations, bus conflict models, etc.), the operating-:sys
tern-oriented event facilities are much less satisfactory. For 
the sake of both simplicity and similitude in such models, it 
often is desirable to represent important control functions 
essentially at the logic level. Modeling these functions with 
events is awkward at best; less specialized constructs are 
needed at this level of detail. 

SIMLII is designed to provide a simulation capability 
which extends into the current gap between system-level 
and register-transfer-Ievel simulation languages. Its process 
synchronization facilities are logic-oriented; they permit 
straightforward representation of the logical expressions in
volved in modeling hardware structures, as well as meeting 
the generally simpler needs of system models. SIMlJI takes 
the form of an extension of PLlI, so the general programming 
facilities of PLiI are available to the modeler. The basic 
simulation constructs of SIMLlI-models, processes, and 
signals-are described in the following sections. 

MODELS AND SUB MODELS 

The procedural forms of SIMlJI include model, submo
del, and process descriptions, together with the procedure 
descriptions of PLiI. A SIMLII simulation program may 
comprise a single model description, or may comprise a 
model description together with one or more submodel de
scriptions. A model description begins with a MODEL dec
laration, which is analogous to the PLiI declaration PRO
CEDURE OPTIONS(MAIN), and ends with the delimiter 
END MODEL. Model execution is initiated by the system 
as directed upon completion of loading. Submodel descrip
tions are separately compiled components of a simulation 
model and constitute separate load modules. A sub model 
description begins with the declaration SUB MODEL, which 
may be accompanied by a formal parameter list, and ends 
with the delimiter END SUBMODEL. Execution of a sub
model is initiated by a model or submodel via an INITIATE 
statement, which may include an actual parameter list. Once 
initiated, a submodel executes independently of its initiator 
unless their activities are explicitly coordinated. Parameters 
may be transmitted to submodels at the time of their initia
tion. Thereafter, a model and its submodels may commu
nicate with one another only through variables and signals 
declared external in each description. 
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The bodies of model and submodel descriptions essen
tially are identical in form. All process descriptions appear 
directly in a model or submodel description; a process de
scription may not itself contain process descriptions. Model, 
submodel, and process descriptions may contain PLiI pro
cedures, but these may not contain simulation declarations 
or statements. Rules for the scope of names of simulation 
entities are similar to those defining the scope of PLiI names. 
Signals declared in a model or submodel description, as well 
as PLiI variables declared in that description, are global to 
all contained process descriptions. Only a single instance of 
execution of a model description occurs in a simulation, so 
only a single instance of variables and signals declared in a 
model description is created. Multiple instances of submodel 
description execution may be initiated; for each, a unique 
instance of the signals and variables declared in that descrip
tion (except for those declared external) is created. 

Once initiated, a model or submodel executes like and 
exists in the same states as any process. A model or sub
model may initiate submodels and processes, wait for and 
set signals, etc. The current simulation time is maintained 
as the global variable TIME. A model, submodel, or process 
may suspend its execution for an interval T via the statement 
HOLD(T); it will be returned to execution at time TIME+ T. 
Execution of a TERMINATE statement in a model termi
nates the simulation; execution of a TERMINATE state
ment in a submodel terminates only that particular instance 
of submodel description execution. The delimiters END 
MODEL and END SUB MODEL are implicit TERMINATE 
statements. 

Submodels are important in developing large simulation 
models (since model components can be separately com
piled), in multi-level modeling (where submodels of different 
levels of detail can be constructed and combined as needed 
for a particular simulation), and in modeling parallel systems 
(since mUltiple instances of execution of submodel descrip
tions can be initiated). As an example of the last, suppose 
a submodel of a disk subsystem is developed as part of a 
computer system simulation model. This submodel might 
represent a data channel, the controllers connected to that 
channel, and the devices connected to each controller. To 
simulate a configuration containing several similar (but not 
necessarily identical) disk subsystems, several instances of 
execution of this submodel description could be initiated. 

PROCESSES 

A process description begins with the declaration PROC
ESS (which may have a formal parameter list) and ends with 
the delimiter END PROCESS. A process is a particular 
instance of execution of a process description; a number of 
such instances may simultaneously exist at any point in a 
simulation. A process may be initiated by the model or 
submodel in which it is contained, or by some other process 
in that model or submodel, including a process of the same 
description. Upon initiation, a unique set of the variables 
and signals declared in the process description is created. 
After initiation, a process executes independently of its in
itiator and of processes of the same or different descriptions 

unless explicitly synchronized. Process execution is termi
nated via execution of a TERMINATE statement or the 
delimiter END PROCESS; upon termination, variables and 
signals local to the process are destroyed. 

A process (or model or submodel) exists in one of four 
states: execute, ready, hold, or wait (queue). A process in 
execute or ready state is active; a process in hold or wait 
state is suspended. Since the simulation of a system of 
concurrently-executing processes is carried out sequentially, 
only one simulation proce,ss is in execute state at any instant; 
any others able to execute at that instant are in ready state. 
For example, when a process is initiated, it is placed in 
ready state; its initiator continues in execute state. 

A process may suspend its execution until a signal changes 
state via a wait (or queue) statement, in which case it is 
placed in wait state. When the selected signal changes state, 
the process is placed in ready state (activated). A. signal's 
change of state may activate several processes, so that a 
number of processes may be in ready state at any instant; 
these processes are placed on the ready list. When the cur
rently-executing process suspends its execution, the process 
at the head of the ready list is removed and placed into 
execution. The ready list is ordered on the basis of priority; 
equal-priority entries are ordered first-in, first-out. Priority 
is an attribute of a process (or model or sub model) which 
may be changed at any time via an assignment statement of 
the form PRIORITY = expression. Sub models and pro
cesses inherit the priority of their initiators. 

A process may suspend execution until a specified reac
tivation time is reached via a HOLD statement, in which 
case it is placed in hold state and some other process se
lected from the ready list and placed into execution. When 
a process suspends execution and the ready list is found 
empty, the process with the earliest-occurring reactivation 
time is selected from the set of processes in hold state, the 
simulation time TIME is advanced to that time, and the 
process is placed on the ready list. If several processes have 
the same reactivation time, all are placed on the ready list 
in priority order. The process at the head of the ready list 
then is placed in execution. 

Parameters may be transmitted to a process or submodel 
by its initiator. Parameter transmission is uni-directional; 
parameters are passed by value at initiation time, and mod
ification of a variable which is a formal parameter does not 
result in modification of the corresponding actual parameter, 
An actual parameter may be a signal local to (declared and 
created in) the initiator. The corresponding formal parameter 
is identified as a signal name by its appearance in a SIGNAL 
declaration in the process description of the initiated proc
ess. 

SIGNALS 

Processes (and models and submodels) in SIMLII coor
dinate their activities via operations on signal elements, A 
signal element is a two-state variable which may be assigned 
either the value . r ("set") or '0' ("reset") via SET or 
RESET statements. A process may suspend execution until 
a signal element S becomes set or reset via the statements 



WAIT(S) or WAIT(..,S), or QUEUE(S) or QUEUE(-'S). 
Throughout this discussion, signal elements are, for the sake 
of brevity, referred to simply as signals. However, a signal 
actually should be viewed as a dynamic entity-a particular 
occurrence of a signal element's change of state; the medium 
should be distinguished from the message. Signal elements 
and their associated operations provide a general mechanism 
for process coordination; a signal element may represent a 
gate or a latch in a hardware-oriented model, or a table lock 
or semaphore in a software-oriented model. 

Signals are defined, named, and c!"eated via SIGNAL 
declarations. Both simple (single) signals and sets (one-di
mensional arrays) of signals may be defined, and signals 
may be defined in terms of logical combinations of other 
signals. A signal which is defined in terms of other signals 
is called a derived signal; a signal which is not defined in 
terms of other signals is a basic signal. In the declaration 

SIGNAL A, B, C, D(6), E INITIALLY SET, 
F=AIB, G= -'B &.., C; 

A, B, C, D, and E are basic signals; F and G are derived 
signals. Basic signals are placed in the reset state when 
created (unless placed in the set state via an initial clause, 
as in the previous case of signal E). The initial state of 
derived signals is determined from the states of the signals 
on which they are defined. In the preceding declaration, F 
will be initially placed in the reset state and G will be placed 
in the set state. Only basic signals can be operated on by 
SET and RESET statements. 

Signals declared in a model or submodel description are 
global to all process descriptions contained in the model or 

submodel description. Several instances of execution of a 
submodel description may be initiated; a unique set of the 
signals declared in that description is created for each in
stance (except for signals declared external). Only processes 
initiated directly or indirectly by a particular submodel have 
access to the signals created in that submodel. Signals de
clared in a process description are created whenever a proc
ess of that description is initiated. Local signals may be 
passed from one process to another as process initiation 
parameters. A typical application of local signals arises when 
one process initiates another and then suspends execution 
until the initiated process reaches a particular point in its 
execution; the initiator passes a local signal to the process 
being initiated and then waits for that signal to be set (or 
reset). 

Signals are created at execution time, not at compile time. 
Thus, the dimension of a signal set may be determined by 
computations within the model, and signal creation can be 
made dependent on model input parameters. 

SIGNAL OPERATIONS 

A simple basic signal S is set or reset by the statements 
SET(S) or RESET(S); this may cause a change of state of 
a derived signal directly or indirectly defined on the basic 
signal. The ph element of a basic signal set S can be set or 
reset by the statements SET(S(I» or RESET(S(I)). The 
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sta~ement SET(S) or SET(S,I), where S is a basic signal set, 
causes the set to be searched for an element in the reset 
state; if one is found, it is placed in the set state and, in the 
second form, the index of the element is assigned as the 
value of the variable I. (If no element is found in the reset 
state, the statement is ignored.) The RESET statement func
tions similarly. 

A process may suspend execution until a basic or derived 
signal is set or reset via WAIT or QUEUE statements. 
Execution of one of these statements is called signal selec
tion; processes suspended while waiting for a signal to 
change state are called selectors of that signal. Those pro
cesses which selected the signal via wait statements all are 
activated (placed in ready state) when the signal changes 
state. Of those processes which selected the signal via queue 
statements, only one is activated when the signal state 
change occurs. This one is chosen on the basis of priority; 
among equal priority selectors, the first to enter the queue 
is chosen. Signal selections may be a mixture of wait and 
queue selections; when the signal changes to the selected 
state, all waiting selectors and one queued selector are ac
tivated. 

When a process executes a set or reset statement, it is 
placed on the ready list; any wait selectors of the signal are 
placed on the ready list next, followed by the queued selec
tor (if one was activated). The next process to execute is 
then selected from the ready list on the basis of priority, as 
described earlier. If a process executes a wait statement and 
the selected signal already is in the specified state, it con
tinues in execution. If it executes a queue statement and the 
selected signal already is in the specified state, it continues 
in execution only if there are no higher-priority processes 
queued on that state of the signal; otherwise, it is suspended 
and enqueued. 

A process may select the ph element of a basic or derived 
signal set S by selection statements such as WAIT(S(I» or 
QUEUE(.., S(I); such signal set element selections are proc
essed identically to simple signal selections. It is also pos
sible to select the set itself. Associated with each signal set 
is a signal of the same name representing the state of the 
set; by definition, the state of a set is the logical sum of the 
states of its elements. Thus, 

S=S(I)IS(2)1 ... IS(n) 

and 

.., S= -, S( 1)&'" S(2)& ... & -, Sen) 

For a signal set S, the statement W AIT(S) causes a selector 
to be suspended until some element of S becomes set; the 
statement W AIT(I S) causes a selector to be suspended 
until all elements of S are reset. Queue selections function 
similarly. Selection statements of the form W AIT(S,I) can 
be used to obtain the index of the element whose state 
change caused the selector to be returned to execution. 

SIGNAL EXPRESSIONS 

A derived signal definition defines a signal (simple, set, 
or set element) in terms of a signal expression. The signals 
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in this expression may themselves be derived, so signals of 
arbitrary complexity may be constructed. Signal expressions 
take the logical sum-of-products form; parenthetical sub
expressions are not permitted, and operators are restricted 
to '&' ("and") and 'I' ("or"). This choice of signal expres
sion form was based on two considerations; representational 
efficiency and simulation efficiency. The applications of 
SIMLII in hardware-oriented modeling often include control 
mechanisms, but rarely go beyond that. For example, it may 
be desired to model the ingating to an adder, but simulation 
of the adder itself is not likely to be required. A study of 
control logic in various systems of interest indicated that the 
need for parenthetical sub-expressions and other operators 
(even exclusive or) arose infrequently. Restricting signal 
expressions to the sum-of-products form greatly expedited 
SIMLII implementation and permitted a very efficient struc
ture for propogating signal state changes. 

A derived signal is called a sink signal, and the signals on 
which it is defined are called source signals. Both sink and 
source signals may be either simple signals or signal sets: 
the various combinations govern the mapping between 
source and sink. Some examples of source/sink mappings 
are diagrammed in Figure 1; these diagrams show the map
pings resulting from the following signal declarations: 

SIGNAL A,B,C(2),D(3); 
(a) SIGNAL W(3): W(l)=A, W(2)=C(l), W(3)=D(l): 
(b) SIGNAL X=DIB&C; 
(c) SIGNAL Y(3)=C&D; 

When the sink signal is a single element (either a simple 
signal or a signal set element) and a source signal also is a 
single element, sink and source signals are directly mapped, 
as shown in Figure 1 a. When the sink signal is a single 

(a) (b) 

element and a source signal is a set, the source signal (by 
definition) is taken to be the signal representing the set, and 
the mapping illustrated in Figure lb results. When sink and 
source signals both are sets, they are mapped element-by
element up to the dimension of each set, as shown in Figure 
1 c. When the sink signal is a set and the source signal is a 
single element, the latter is mapped to each element of the 
set. 

Sink/source mappings for single elements are determined 
by the axioms of logical arithmetic. Mappings involving sets 
were, to some extent, chosen on consideration of the func
tions needed to simply construct hardware, firmware, and 
software control structures for various systems. One missing 
capability which appears desirable is source signal set con
catentation (currently, this can be effected only by writing 
a term-by-term definition for the sink signal). 

APPLICATIONS 

While the signal facilities of SIMUI were designed to 
extend system simulation capabilities nearer to the hardware 
realm, they provide a general means of process coordina
tion, and support models over a range of levels of abstrac
tion. In current applications, signal representations range 
from logic gates to complete CPU s. The following declara
tions represent the control logic shown in Figure 2. 

SIGNAL TIL-ENABLE 
=ENABLE&RTRIENABLE&WTRIENABLE&HTR; 

SIGNAL TIL-GATE=TIL-ENABLE&CLOCK; 

Figure 3 shows a block diagram of a queueing network 
model of a computer system; a SIMLII simulation program 

(c) 
Figure l-Sink/source signal mapping examples. 
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Figure 2-Control logic modeling with signals. 

for this network is as follows: 

MODEL QNM; 
SIGNAL CPU(2) INITIALLY SET, 10(8) INITIALLY 

SET; 
DO 1=1,32; 

INITIATE JOB; 
END; 

HOLD(SOOO.); 
TERMINATE; 
PROCESS JOB; 

DO WHILE(TIME<SOOO.); 
QUEUE(CPU ,I); RESET(CPU(I)); 
HOLD(l.); 
SET(CPU(I)); 
J=IRANDOM(1.8); 
QUEUE(IO(J)); RESET(IO(J)); 
HO LD(EXPNTL(S.)); 
SET(IO(J)); 

END; 
END PROCESS JOB; 

END MODEL QNM; 

In the foregoing example, there are 32 jobs circulating in the 

Figure 3-Queuing network model. 

• 
• • 
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system. Job CPU times are constant and equal to one time 
unit, while I/O service times are exponentially distributed 
with a mean of 5 time units. When a job completes CPU 
service, it selects an I/O device and queues for it; when it 
completes I/O service, it queues for the set of CPUs. The 
set state of the CPU and I/O signals in this model corre
sponds to the nonbusy state. 

Signal definitions are used to vary the level of detail of 
model components. The declarations below illustrate a sig
nal defined at three different levels of detail. 

(1) SIGNAL INTERRUPT; 
(2) SIGNAL 10, FAULT, CHECK, TIMER; 

SIGNAL 
INTERRUPT=IOIFAULTICHECKITIMER; 

(3) SIGNAL END~D(8), END_ WR(8), 
RD_FAULT, W~FAULT; 

SIGNAL IO=END_RDIEND_WR, 
FAULT=RD_FAULTIW~FAULT; 

SIGNAL CHECK, TIMER; 
SIGNAL 
INTERRUPT=IOIFAULTICHECKITIMER; 

Definition expansions of this form provide part of the mech
anism for the vertical communication between components 
of different levels of detail in a multi-level model. 

As an incidental note, SIMLJI does not use the PLJI multi
tasking and event facilities for process and signal control: 
these functions are performed by the SIMLJI run-time sys
tem. 
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Mix-dependent job scheduling
An application of hybrid simulation 

by STEVE TOLOPKA and HERB SCHWETMAN 
Purdue University 
West Lafayette, Indiana 

JOB SCHEDULING 

In a computer system, scheduling occurs whenever the next
task-to-receive-service is selected from a queue of waiting 
tasks.5 This paper considers the scheduling of jobs which 
will become active; that is, which will begin to compete for 
use of the system processors. Jobs waiting to be activated 
may be scheduled by referring to properties of the job such 
as priority or total resource usage. 4,7 It is also possible to 
examine some feature of the jobs already activated (i.e., the 
jobs in the mUltiprogramming mix) in order to determine a 
suitable candidate for admission to the mix. This is called 
mix-dependent scheduling. Here, we prefer to examine some 
intrinsic property of the jobs rather than an external one. 
The property we have chosen to investigate is the rate of 
processor (CPU or I/O) usage. 

In order to quantify what we mean by rate of processor 
usage, we define a CPU usage index, K, for each job as 

where 

Ct = CPU time used by the job, and 

It = I/O time used by the job. 

Notice that K ranges between 1 and 7, with the lower value 
denoting a totally I/O-bound job, and the upper value de
noting a totally CPU-bound job. The scaling for K is arbi
trary; the range 1 to 7 was chosen because our operating 
system at Purdue uses a similar index. 

Assuming that this usage index is computed for each job 
(active or waiting) in a system, it is then necessary to devise 
scheduling algorithms which utilize this index and to eval
uate the effects. The classical approach is to admit equal 
numbers of CPU- and I/O-bound jobs in the hope that all 
resources in the system will be fully utiiized. However, 
other algorithms can be devised which may show better 
performance. The goal of this paper is to use a system model 
to evaluate job schedulers and to verify the merits of mix
dependent scheduling algorithms. 
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HYBRID MODEL 

An experimental technique is used in this study. A real
istic system model is constructed so that different job sched
uling strategies can be evaluated. Figure 1 is a schematic of 
this model. As can be seen, there is a queue for arriving jobs 
which are waiting to enter the active phase. The active phase 
consists of the processors (CPU and I/O) which are required 
by each job. As is typical in real systems, the number of 
available positions for jobs in the active phase is limited. 
Thus, the job scheduler is responsible for filling empty po
sitions as they occur. For purposes of simplification, the 
number of positions (also called the maximum level of mul
tiprogramming) is eight. Also, memory constraints are omit
ted, since the emphasis of these tests is to evaluate sched
uling techniques for improving processor usage, not memory 
scheduling. In the model, every job arrives with a class 
designator and the amount of processing it will require. As 
previously indicated, an arriving job joins a queue of jobs 
waiting to be scheduled. There can be a separate queue for 
each class. Thejob scheduler, using one of several selectable 
strategies, then activates jobs as positions in the mix of 
active jobs become available. 

A hybrid simulation technique has been developed which 
appears to satisfy the needs of this study. While the tech
nique has been described in detail before,8,6 it is briefly 
presented here. 

In a hybrid model, discrete-event simulation models the 
arrival of jobs and job scheduling. Then an analytic modeling 
technique is used to estimate the processing time for each 
job in the active phase. The current experiment uses the 
central server modeP,3 to model resource consumption by 
jobs in the active phase. This part of the model consists of 
a CPU station and three disk stations, as shown in Figure 
2. There are three classes of jobs in the system: PJr) rep
resents the probability that a class r job leaving the CPU 
will go next to station i. The mean service times, Si' at all 
devices are the same for all job classes, and the queueing 
discipline is FCFS. Table I displays the parameters of the 
model. 

A cycle through this network begins when a job first 
enters the CPU queue and ends after it has passed through 
one of the disk stations and reappeared at the CPU queue. 
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Arrivals) Departures 

Scheduler 

Figure I-Schematic of system model. 

Notice that a job will make one or more trips through the 
CPU station, and one trip through a disk station per cycle. 
The central server model can be solved to obtain the mean 
job waiting times at each device. These waiting times, to
gether with the branching probabilities for each job, can be 
used to calculate the mean cycle times for each job. 

In the system model. as a job joins the mix of active jobs. 
a new configuration of active jobs is created. The mean 
cycle times and the number of cycles remaining are multi
plied to produce estimated completion times for each active 
job. If no other jobs are added to the mix, then simulated 
time can be advanced to the minimum of these times. In this 
case, the job with the shortest remaining time departs, the 
cycles remaining for each job are updated and the process 
is repeated. If another job is added to the mix before the 
shortest departs, then the cycles remaining for each active 
job are updated, the new job is added, and processing con
tinues as just described. 

This hybrid simulation has been shown to produce models 
which are as accurate as equivalent simulation-only models 
while reducing CPU processing time requirements by factors 
of up to 200 in some test cases. 8 A key feature of this model 
is that as more jobs are added to the mix, the time to 
complete each job may increase. Furthermore, the type of 
load imposed by jobs in each class depends on the resource 
usage patterns of the job. For example, a CPU-bound job 
can have a large impact on the active time of another CPU-

Figure 2-Central server model. 

bound job, but perhaps a negligible impact on the active 
time of an I/O-bound job. This type of behavior coincides 
with commonly held views of the behavior of actual systems. 

JOB CLASSES 

As indicated in an earlier section, the CPU usage index, 
K, is a guide to the proportion of CPU time a job uses per 
cycle. The system model was parameterized so as to allow 
for three classes of jobs, with Class 1 representing I/O-bound 
jobs, Class 2 "balanced" jobs, and Class 3 CPU-bound jobs. 
This was done by adjusting the probabilities of returning to 
the CPU (PI (r» for each class to obtain the desired behav
ior. Since the expected number of trips that a class r job will 
make through the CPU before moving to a disk is 1/ 
(1- PI (r», we can easily calculate the mean CPU time per 
cycle, and so can compute a CPU usage index, K, for each 
class of jobs. (See Table II.) The resulting mixture of jobs 
have CPU usage indices corresponding to jobs of the re
quired types. 

To help eliminate bias caused by long and short jobs, the 
number of cycles that a job of each class would have to 
complete was chosen so that the total processing time of 
each job was approximately constant (Table III). Prior to 
using the system model, the central server model was 
solved l for all possible triples (n l ,n2 ,n3 ), where nj represents 
the number of class i jobs in the system and nl + ~ + ~:58 
(since the level of multiprogramming will not exceed 8). 
There are 165 such triples for the current model. These 
solutions yielded the necessary mean job cycle times. 

In order to evaluate the accuracy of the hybrid model, a 
discrete event simulation of the system model was written. 
Both the hybrid model and the discrete event simulation 
were executed using the same set of 100 jobs, equally dis
tributed among the three classes. The mean job interarrival 

TABLE I.-Central Server Parameters 

P,(r) 

S, r=1 r=2 r=3 

CPU .010 sec. .5 .9 .98 
Disk 2 .100 .167 .033 .007 
Disk 3 .100 .167 .033 .007 
Disk 4 .100 .166 .034 .006 

j 



TABLE n.-cPu Usage Indices 

CPU CPU time 110 time 
trips per cycle per cycle K 

1 2 .020 .100 2 
2 10 .100 .100 4 

50 .500 .100 6 

time was 0.0 seconds; i.e., all jobs were in the queue at the 
start of the experiment. The ievei of multiprogramming was 
limited to eight, although no other memory constraints were 
imposed. The results of the two runs are compared in Table 
IV. Utilizations differed by at most seven percent while 
elapsed time and response time (whose corroboration is 
notoriously difficult3) disagree by only 2.5 percent. The hy
brid model reduced the CPU time needed to run the model 
by a factor of 50, with very little (if any) resulting loss in 
accuracy. While these exact figures are certainly dependent 
upon the model parameters, other studies8 have also shown 
that the hybrid technique works well for similar models. 
Thus, for a reasonable range of parameters, the hybrid 
model seems to provide an accurate, inexpensive way to 
evaluate scheduling strategies. 

MIX-DEPENDENT SCHEDULING 

The initial series of tests used a version of the system 
model with the same set of 100 jobs, all of which were 
present at the beginning of each test. The number of pro
cessing cycles for each job was uniformly distributed over 
the ranges for each class, as shown in Table V. As discussed 
in the previous section, these ranges yield processing times 
which are approximately equal for all jobs. The actual set 
of 100 jobs generated for each test has the properties shown 
in Table VI. 

The basic thrust of the tests was to examine different 
techniques for selecting collections of jobs to be simulta
neously active. The schemes that were evaluated were all 
variations of the following general strategies: 

1. Schedule jobs from one class prior to scheduling jobs 
from another class (designated class-first-strategies). 

2. Schedule jobs from all classes subject to class con
straints (class-constrained-strategies). 

3. Schedule jobs without regard for classes (ignore-class
strategies). 

Within each of these general strategies there were many 
possible variations. For example, in the class-first-strate-

T ABLE IlL-Mean Processing Time Per Job 

Cycles Proc. time Proc. time 
per job per cycle per job 

100 .120 12.0 
60 .200 12.0 
20 .600 12.0 
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TABLE IV.-Comparing Simulation and Hybrid Models 

Hybrid D. E. Simulation 

Elapsed Time 673 sec 659 sec 
Proc. time per job 11.865 11.839 
Active time per job 52.466 51.284 
Response time per job 298.735 297.887 

Utilization 
CPU 88.9% 88.4% 
Disk 1 29.1 29.4 
Disk 2 29.1 31.2 
Disk 3 29.1 30.5 

CPU time required 1.6 sec 89.2 sec 
to run the model 

gies, the order in which the job classes were processed could 
be varied. In the class-constrained-strategies, both the order 
of classes and the class constraints were changed. 

In these tests, a strategy was judged primarily on the total 
elapsed time required to process the 100 test jobs-the 
shorter this time, the better the strategy. The elapsed times 
are reported without confidence intervals because the dif
ferent strategies are all being evaluated on the same set of 
jobs. Once the set of jobs and the scheduling strategy have 
been chosen, the simulation is totally deterministic. Hence, 
the elapsed time gives us a fair comparison of the relative 
merits of the various scheduling strategies. 

Class-first-scheduling 

In class-first-scheduling, all jobs from one class are 
siarted; then as positions become available, jobs from an
other class are started; finally jobs from the remaining class 
are started. A major consequence of this strategy is that 
several jobs from the same class tend to be active at the 
same time. As will be seen, this turns out to be the worst 
possible configuration of active jobs. 

Two tests were made with this strategy; in one, the classes 
were processed in the order 1,2,3; in the other, the order 
3,2,1 was used. Table VII summarizes the results of these 
two tests. 

Class-constrained-scheduling 

The unbalanced scheduling should be compared with a 
balanced approach to see if improvements are obtainable. 
In a balanced strategy, the scheduler attempts to keep ap
proximately the same number of VO-bound and CPU-bound 

T ABLE V.-Ranges for Cycles per 
Job 

Class Minimum 

2 
90 
50 
10 

Maximum 

110 
70 
30 
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TABLE VI.-Summary of 100 Simulated Jobs 

Class I Class 2 Class 3 Overall 

No. of jobs 33 31 36 100 
Cycles/job 100 60 19 58 
Processing time/job 12.058 sec 12.123 sec 11.467 sec 11.865 sec 

Class-first 
Cyclic 

Strategy 

Class-first 

Cyclic 

TABLE VI I.-Class-First-Strategies 

Order 1,2,3 
Order 3,2,1 

Elapsed Time 

673.2 seconds 
673.1 

TABLE VIII .-Cyclic Strategies 

Order 1,2,3 
Order 3.2.1 

Elapsed Time 

600.2 seconds 
599.7 

TABLE IX.-Class-Constrained Strategies 

Desired 
Configuration Elapsed Time 

4,2.2 601.1 seconds 
2.4.2 599.9 
2.2,4 600.5 
2,3,3 599.5 
3,2,3 599.2 
3,3,2 600.4 
8,0,0 672.5 
0,8,0 600.0 
0,0.8 6\6.8 

TABLE X.-Mean Job Active Times 

Class I 

34.3 sec 
27.7 

Class 2 

48.3 sec 
48. \ 

Class 3 

72.7 sec 
63.5 

Overall 

52.5 sec 
46.9 

TABLE XI.-Common Job Configurations 

Configuration 

0,0,8 
0,8,0 
8,0,0 
3,3.2 
0,0,8 
0.4,4 

Percent of Time 

42.6% 
22.6 
20.2 
52.3 
18.4 
16.8 

jobs active. The simplest such strategy starts up jobs in a 
cyclic order. The results obtained using cyclic scheduling 
are shown in Table VIII. 

Another approach to balanced scheduling is based on se
lecting a desirable job configuration (n1 , ~, n3 ) and then 
causing the scheduler to attempt to keep the current config
uration (ml'~'~) as "close" to this desired configuration 
as possible. This strategy was implemented by calculating 
the vector distance between the (mll~,m3) obtained by 
tentatively adding one job to each class in succession and 
then selecting as the new configuration the one which was 
the minimum distance from (nl'~'~)' The results of using 
this strategy for several different desired configurations are 
summarized in Table IX. In this test, the order in which 
jobs were considered had almost no effect on the results; 
hence, these cases are not included in Table IX. 

While we know of no efficient technique for obtaining an 
optimal schedule for our model, we can point out that CPU 
utilizations seen in these tests were over 99 percent. This 
observation leads us to believe that 600 seconds is about the 
minimal elapsed time which can be achieved. In Table IX, 
it can be seen that those desired configurations having ap
proximately equal numbers of VO-bound and CPU-bound 
jobs produce near optimal results. 

In trying to understand why these "balanced" configu
rations exhibit good performance, we can look at two ad
ditional kinds of information. One output of the model is the 
mean active time per job in each class. Another output is 
the percent of time the system was in each possible job 
configuration. Tables X and XI summarize these items for 
a 'good' schedule and a 'bad' schedule. 

These data suggest that when a class is 'overloaded,' the 
jobs tend to interfere with each other to the point that the 
entire schedule can be significantly lengthened. 

Ignore classes 

There are scheduling strategies based on job attributes 
other than processor usage which can be used. Four such 
strategies were evaluated as part of this test. In these tests, 
the length of a job is estimated by the processing time re
quirement (the expected cycle time with one job of the 
specified class ~ctive mUltiplied by the number of processing 
cycles required). The results obtained using these ignore
class strategies are summarized in Table XII. 

Notice that the random and first-come, first-served stra
tegies actually perform at a near-optimal level. We speculate 
that this is because of the test configuration in which the 
jobs are all about the same length and are equally distributed 
over the three classes. In this case, any strategy which tends 

TABLE Xn.-Ignore-CIass Strategies 

Strategy 

Shortest job first 
Longest job first 
First-come, first-served 
Random 

Elapsed Time 

608.9 seconds 
608.2 
599.4 
600.5 



TABLE XIII.-Results for 200 Jobs 

Class-first 
Cyclic 
Shortest Job First 
Longest Job First 
First-come, First-served 
Random 

Elapsed Time 

1168.6 seconds 
944.4 

1046.9 
1040.9 
969.4 
973.4 

to schedule jobs from all classes simultaneously should do 
well. A final test used a different set of 200 jobs in the ratio 
of three Class 1 jobs to two Class 2 jobs to one Class 1 job. 
The best (cyclic) and the worst (class first) strategies as well 
as the four ignore-class strategies were used to verify con
clusions reached in earlier tests. Table XIII summarizes 
these results. 

SUMMARY 

Mix-dependent job scheduling has been proposed as a 
technique which can improve system performance. The hy
brid simulation model has been used to evaluate a large 
number of scheduling strategies based on this technique. 
These tests showed that such scheduling can lead to near
optimal as 'well as very bad system performance. The vari
ation between good and bad exceeded 10 percent in the test 
cases. These strategies all used a processor usage index to 
partition the jobs into classes. When the scheduler kept the 
number of 1I0-bound and CPU-bound jobs approximately 
balanced, mix-dependent scheduling produced near-optimal 
schedules. When jobs from one class predominated, they 
seemed to interfere with each other, causing each job to be 
active for an excessively long interval, lengthening the entire 
schedule. 

The results obtained so far are all based on the system 
model. A natural question is whether these results can be 
extended to actual computer systems. In systems, the col
lection of jobs is dynamic, rather than static as in the model. 
In the course of this project, we did use dynamic job arrivals, 
but saw no appreciable differences in the results. A more 
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fundamental question involves the accuracy of the hybrid 
sys'tem model-Does it accurately portray the behavior of 
an actual system? Some preliminary work at Purdue Uni
versity9 has shown that at the level of job completion times, 
the performance predicted by the hybrid model is within 10-
15 percent of the actual system performance. 

Future work for the project includes implementing some 
mix-dependent schedulers on an actual system to verify the 
performance predictions of the hybrid model. Use of the 
hybrid model has been crucial to the work to date, because 
the low operating costs allowed us to evaluate several (in 
excess of 20) strategies. The results for balanced class-con
strained schedules and cyclic schedules suggest that near
optimal performance can be achieved. This type of job 
scheduling should probably be viewed as "icing on the 
cake." In other words, after other scheduling goals are being 
met, then mix-dependent scheduling can be used to improve 
performance a little more. However, care must be used, as 
some mix-dependent strategies can degrade performance 
significantly. 
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Parametric instabilities in 
computer system performance prediction* 

by LAWRENCE W. DOWDY and ASHOK K. AGRAWALA 
University of Maryland 
College Park, Maryland 

PROBLEM OVERVIEW 

A typical computer system undergoes continual "upgrad
ing." Unfortunately, this "upgrading" is not always syn
onymous with system improvement. For example, allowing 
more users to simultaneously access the system (i.e., in
creasing the degree of multiprogramming) increases the uti
lization and throughput of the computer system. However, 
extra system overhead (e.g., swapping) is required to prop
erly manage the extra load. In some cases,4 this overhead 
offsets the potential throughput improvement. Because in
teractions between the components of a modem computer 
system are so complex, there is a critical need for system 
models which accurately predict performance. 

Consider a proposed alteration to a computer system (e.g., 
adding a new disc storage unit). Current predictive models 
of computer systems are typically constructed using the 
following scenario.a First, a model is constructed of the 
current system. Second, this model is subjected to numerous 
tests, and the model results are compared against the ob
served results obtained from the current system. If the two 
results are in good agreement, the model is termed "vali
dated." Third, certain parameters of the validated model are 
altered to represent the proposed alteration to the real sys
tem. All unaltered parameters are typically assumed to re
main constant. Fourthly, this altered (predictive) model is 
then subjected to tests. The test results predict what the 
performance of the real system would be if the proposed 
alteration were implemented. 

This paper presents results found by applying the above 
scenario to a particular system, the University of Maryland 
Computer Center's Univac 1100/42. The results concerning 
the first and second scenario steps have been excellent. 
Models were constructed which can accurately describe the 
current system's behavior. However, results from applying 
the third and fourth scenario steps have been very disap
pointing. When a system change is made, the predicted 

* This research was supported in part by the National Aeronautics and Space 
Administration, Goddard Space Flight Center, under Grant NASA #NAS 5-
24407, and in part by the Environmental Protection Agency under Grant 
R805478-01-0, to the Department of Computer Science, University of Mary
land, College Park, Maryland. 

51 

performance has, in many instances, been in error. Upon 
closer analysis of these instances, the scenario assumption 
that all unaltered parameters remain constant is found to be 
false. . 

MODEL CONSTRUCTION 

Three separate models (Models 1, 2; and 3) reflecting 
three successive configurations of the same basic system are 
constructed. The initial modeling effort is to construct a 
model of the Univac 1100/41 (Model 1) which consists of a 
single processor. Based upon this effort, performance is 
predicted when another processor (1100/42) is added. Our 
secondary modeling effort is to construct a model of the 
1100/42 (Model 2) and predict performance when the system 
is upgraded by adding a new drum and new disc units (Model 
3). The results between the predicted and actual perform
ance, when the proposed changes are configured, are com
pared and analyzed. 

Model 1 of the 1100/41 is the classical central server 
model. 1 The topology configuration is given in Figure 1. The 
assumptions of the model are I) a fixed degree of multipro
gramming (DMP), 2) exponentially distributed holding times 
at each queuing station, i, with parameter I-L(i), 3) fixed 
branching probabilities, p(i), which reflect the stationary 
probability of requiring channel service from channel i, given 
that some channel service is needed, and 4) first-come-first
serve and processor sharing queuing disciplines for the chan
nel devices and the CPU, respectively. The validation cri
terion for the model is the utilization of all devices. 

Model 2 of the 1100/42 is identical to Model I of the 11001 
41 with the exception of the central server (CPU) complex. 
The 1100/41 CPU complex in Figure 1 is replaced by the 
CPU complex of Figure 2. Because both CPU servers are 
identical, they share identical service rates. The complex is 
modeled as a single, load-dependent server with service rate 
I-L(CPU) when one customer is at the complex and 21-L(CPU) 
when two or more customers arc at the complex. 

Model 3 of the updated 1100/42, with additional channels 
for a new disc subsystem and a new drum, is illustrated in 
Figure 3. The assumptions for all three models are identical 
and are as specified in the description of the 1100/4] model. 
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PARAMETERIZATION 

Employing this level of queuing network modeling, the 
utilization of any device can be specified as a function of 
four parameters: the number of devices, the J,Ls, the ps and 
the DMP. The number of devices is set by the model topol
ogy (eight for the first two models-Figure 1; ten for the 
third model-Figure 3). The other three parameters are cal
culated using the Univac Software Instrumentation Package, 
SIP. 

The J,Ls, the service rates, are calculated as follows. The 
basic work unit (job, customer, request, run) is called a 
transaction. SIP records the number of transactions that 
each channel services in a unit of time, typically one hour. 
Dividing this number by the active time of the channel (also 
collected by SIP) yields an estimate of the channel service 
rate. Since it is assumed by the topology that all transactions 
flow through the CPU complex, the service rate of the CPU 
is computed by dividing the total number of transfers by the 
CPU's active time. 

The ps, the branching probabilities, are similarly calcu
lated. The number of transfers serviced by channel i divided 
by the total number of transactions serviced by all channels 
is taken as p(i). 

The degree of multiprogramming, DMP, cannot be cal
culated directly from SIP. SIP does record the average num
ber of jobs in core memory. However, this number is an 
unpredictable overestimate of the DMP. Jobs may be resi
dent in core which are waiting for activity from devices not 
explicitly modeled (e.g., interactive terminals). This violates 
a model assumption that all jobs must be either executing 
at. or queued for, a modeled device. The average number 
of jobs in core, as will become evident later, is not an 
accurate estimate for the DMP, and alternate methods be
come necessary for determining the DMP. 

EXPERIMENTAL RESULTS 

Once all the model parameters are obtained, standard 
queuing theoretical solution techniques are applied. 2 These 
techniques assume that DMP is integral. The SIP estimated 
DMP (based upon the number of jobs in core) is an average 
and is typically non-integral. Algorithms exist5 which allow 
non-integral values of DMP, but at the expense of disallow
ing load dependent servers in the network. The topology 
assumed in Figure 1 is not disallowed, but the models in 
Figures 2 and 3 are disallowed. In this case, interpolation 
around integral valued degrees of multiprogramming is per
formed. 

As an example, the parameters for the 1100/41 model 
(Figure 1) based upon a typical hour of SIP data are sum
marized in Table I. (The J,Ls are measured in transactions per 
second.) 

U sing the parametric values of Table I, the modeled de
vice utilizations are compared against the SIP observed uti
lizations. Table II presents the comparison results. Com
paring STP lItili7ationc;; with the mooel-derived utilizC'ltion" 
using the SIP estimated DMP (13.4). the error involved in 



TABLE I.-Typical 1100/41 Parametric Measurement 

Number of devices = 8 
SIP estimated DMP= 13.4 

u(O) 27.00 
u(l) 40.42 
u(2) 50.10 
u(3) 600.88 
u(4) 1730.12 
u(5) 10.20 
u(6) 33.71 
u(CPU) 68.17 

p(O) = .247 
p(l) = .452 
p(2) = .005 
p(3) = .057 
p(4) = .080 
p(5) = .014 
p(6) = .145 

each component is about seven percent. However, it is 
noticed that all predicted utilizations are overestimates, in
dicating that DMP is incorrectly calculated. Changing the 
DMP to 7.5 produces a model which correctly matches the 
utilizations of all devices within 0.3 percent. The value, 7.5; 
is termed the effective DMP and is found by calibration ,6 by 
allowing the DMP to vary to a point where a modeled pa
rameter (e.g., CPU throughput) matches the observed pa
rameter. The effective DMP was verified by independent 
techniques to be the actual multiprogramming level. The 
system was randomly halted and the number of jobs in 
execution was noted. This number is less than the SIP re
ported number of runs in core memory because of the prob
lems mentioned in the third section. 

The three models were tested on 37 separate time periods, 
and the model utilizations matched the observed utilizations 
within one percent in all cases on all devices when the 
effective DMP was used. The implication is that observed 
performance can be accurately modeled for any given time 
period, provided the correct parameters are supplied. It is 
further indicated that the assumptions (e.g., exponentially
distributed service times) do not seriously affect the model. 

We now consider the prediction of the 1100/42 perform
ance based upon the 1100/41 Modell, and the prediction of 
the upgraded 11 00/42 performance based upon the 1100/42 
Model 2 without the new devices. We have already estab
lished the fact that in all the various models, the actual SIP 
measured performance is very accurately predicted by the 
models, if the correct parameters are provided. It is theo
retically possible to have models with differing, but offset
ting, parametric values which yield a similar performance 
measure, such as CPU throughput. However, it is our ex-

TABLE H.-Utilization Comparisons 

Modeled Utilization 
SIP Observed DMP Percent DMP Percent 

Channel Utilization 13.4 Error 7.5 Error 

0 .574 .613 6.8 .575 0.2 
.703 .752 7.0 .705 0.3 

2 .006 .006 0.0 .006 0.0 
.006 .006 0.0 .006 0.0 

4 .003 .003 0.0 .003 0.0 
5 .086 .091 5.8 .086 0.0 
6 .270 .288 6.7 .270 0.0 

CPU .922 .985 6.8 .923 0.1 
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TABLE 111.-1100/42 Predicted Parametric Results 

Parameter Model Predicted Actual Percent Error 

DMP 9.2 8.0 15.0 
u(O) 30.95 29.72 4.1 
u(l) 40.58 41.07 1.2 
u(2) 48.84 13.71 256.2 
u(3) 871.96 735.66 18.5 
u(4) 1727.66 1722.62 0.2 
u(5) 10.44 8.17 27.8 
u(6) 37.03 34.89 6.2 
u(CPDO) 72.89 65.05 12.0 
u(CPUI) 72.89 65.06 12.0 
p(O) .251 .235 6.8 
P(1) .440 .373 18.0 
P(2) .005 .019 73.7 
p(3) .065 .071 8.5 
p(4) .072 .090 20.0 
p(5) .027 .043 27.0 
P(6) .140 .169 17.2 

perience that parametric prediction errors do not offset each 
other, but compound performance prediction errors. There
fore, it suffices to present the results only for the parametric 
prediction. 

Table III gives the results of predicting the 1100/42 param
eters from 1100/41 observed data. The parameters used for 
the prediction were averages from several hours of observed 
data of the 1100/41. All parameters were assumed to remain 
the same, except for the service rate of CPU 1 which was 
predicted to equal the service rate of CPU O. The actual 
parameters are likewise averages from several hours of ob
served data of the 1100/42. 

Table IV gives the corresponding results of predicting the 
parameters of the 1100/42 with the new drum and disc units 
(Model 3) from the observed data of the 1100/42 without the 
new units (Model 2). The parameters are predicted to be 

TABLE IV.-Upgraded 1100/42 Predicted Parametric Results 

Parameter Model Predicted Actual Percent Error 

DMP 8.0 3.9 105.1 
u(O) 29.72 42.49 30.1 
u(1) 41.07 46.30 11.3 
u(2) 13.71 41.77 67.2 
u(3) 735.66 1093.80 32.7 
u(4) 1722.62 1726.42 0.2 
u(5) 8.17 9.73 16.0 
u(6) 34.89 45.23 22.9 
u(7) 41.07 41.30 0.5 
u(8) 76.92 75.12 2.4 
u(CPUO) 65.05 86.15 24.5 
u(CPUI) 65.06 86.15 24.5 
p(O) .118 .092 28.3 
pO) .187 .267 30.0 
p(2) .019 .039 51.3 
p(3) .071 .092 22.8 
p(4) .090 .065 38.5 
p(5) .043 .036 19.4 
p(6) .169 .012 1308.3 
p(7) .186 .293 36.5 
p(8) .117 .104 12.5 
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Figure 4-Effective DMP hourly variability. 

identical to those observed in Model 2 (Table III, Column 
3) with the following additions. The predicted service rate 
of the new drum is set equal to the observed service rate of 
the existing drum unit. The predicted service rate for the 
new disc channel is 76.92 transfers per second. This value 
is based upon the hardware specifications for the new disc 
units and upon the predicted number of words per transfer. 
The number of words per transfer is predicted to be identical 
to that observed from the existing disc units. The motivation 
behind acquiring the new drum and the new disc systems is 
to lighten the loads on channels 1 and 0, respectively. There
fore, the existing load placed on the drum is predicted to be 
evenly divided between the two drums in the new system, 
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Figure 5-P(3) hourly variability. 

i.e., p(l) is predicted to equal p(7) where the sum of p(l) 
and p(7) in Model 3 equals the observed p(l) in Model 2. 
Likewise for the disc systems, p(O) is predicted to equal p(8) 
where the sum of p(O) and p(8) in Model 3 equals the 
observed p (0) in Model 2. 

To investigate the source of the poor results of predicting 
the model parameters (Tables III and IV), we analyze the 
degree of parametric change observed on an hour-by-hour 
basis for the three system models. Figures 4 to 7 give the 
SIP observed results for four of the parameters. The re
maining parameters possess similar results. 

CONCLUSIONS AND IMPLICATIONS 

We have been successful in constructing accurate models 
of specific computer systems. Given the correct model pa
rameters, the system performance from the model closely 
matches the actual system observed performance. However, 
the major application of system modeling is the prediction 
of performance when the system configuration is altered. 
The prediction results presented are disappointing but use
ful. We have been unable to satisfactorily predict system 
performance even on an hour-by-hour basis, where param
eters from one hour are used to predict performance of the 
following hour. Using larger time intervals for prediction 
yields poorer results. The major problem is traced to para-
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metric instabilities. As evidenced by Figures 4-7, parametric 
variations of 20 to 30 percent on an hourly basis are not 
uncommon. The usefulness of these results is to alert system 
analysts to these instabilities, even when the model structure 
is correct. 

The model parameters are a function of the total demands 
placed on the system resources. Clearly these demands in-
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clude both the user processing requests and the system 
overhead activities. In addition, the parametric values de
pend upon the device hardware characteristics. The inter
actions between the user demands, overhead activities and 
device characteristics must be considered in developing use
ful system models. The results presented in this paper rep
resent some of our initial findings from applying traditional 
modeling techniques to real systems. 
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Aids to the development of network simulators 
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INTRODUCTION 

In this paper we describe the features of a program designed 
to simulate computer networks. The networks are assumed 
to consist of hosts attached to one or more network nodes 
(communication units) which in turn communicate with one 
another via one or more communication channels. The pro
gram accounts for user-host, host-node, node-node, node
host, and host-user protocols, as well as network topology 
and hardware characteristics. As reported in a later section, 
the program has been primarily used to conduct simulations 
to ascertain the performance (in terms of message or packet 
throughput and delay) for a variety of node-node channel 
access protocols, for nodes connected to a single common 
communication medium (e.g. a multi-drop cable or radio 
channel). It is, however, possible to accommodate networks 
in which nodes may be connected to several separate com
munication channels. Further, it is possible to simulate the 
behavior of store-end-forward networks as they can be 
viewed as a network in which the nodes are connected to 
multiple communication links. For either class of network 
the program can be used to verify protocol correctness or 
to assess network performance. 

MODEL PROGRAM FEATURES 

The model program is designed (layered) to account for 
interactions at the user-host, host-node, node-node interface 
levels. The model program is constructed in a highly mod
ular manner, so that alterations at one interaction level can 
easily be made without affecting the other layers. That is, 
the program is designed to accommodate alterations for the 
inclusion of additional or altered features. The program was 
developed along modular lines so as to make it more recep
tive to the inclusion of new protocols, buffering strategies, 
etc. Its basic organization accommodates the following char
acteristics. 

Host-User Characteristics-Including message inter-gener
ation and length moduies, specification of the node or 
nodes to which a host is attached, and modules to handle 
the host-node message transfer mechanisms, including 
considerations of available buffer storage in both the host 
and node, and message addressing. 
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Node-Characteristics-Including queues and buffers for 
outgoing messages and message reassembly (from pack
ets), buffers for retransmission of packets (messages) and 
acknowledgments. 

• Additionally, node modules characterize the channel 
access protocol, i.e., node-node interactions (discussed 
later) and node-host interfaces including message ad
dressing and reassembly issues. Finally, modules are 
included to accomodate channel-error characteristics 
(due to noise) and error-handling procedures (for errors 
resulting from noise or message collision, as applica
ble). 

Measures-The model program modules currently collect 
data to provide estimates, where applicable, on: 

I. Channel throughput. 
2. Average node dependent transmission delays (message 

or packet). 
3. The total offered channel traffic. 
4. The expected length of the various node queues. 
5. The number of doubly-received packets (messages). 
6. The number of packet collisions. 
7. Graphs for delay/throughput and delay/offered traffic. 

Additionally, the modules will produce a full trace for 
each message that enters the network, from which additional 
information can be abstracted. 

NODE-NODE CHANNEL ACCESS PROTOCOLS 

We have stated that, on the one hand, the model program 
is constructed in a highly modular fashion to mitigate the 
process of altering one or more levels of protocol. We have, 
on the other hand, also attempted to make the extant mod
ules general so that changes can be accomplished by varying 
module parameters rather than module structure. It is pos
sible, for example, to characterize seemingly unrelated 
channel access protocols via scheduling junctions and the 
notion of node-groupings, and to capture the essence of 
network topology in the connectivi(v or distance-control 
matrix. 
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Figure la-Sample network, where H=host: N=node: The set of host+communication subnetwork=computer communication network solid lines between a 

pair of nodes implies they are within range and in LOS of each other. Subscripts identify the corresponding node sites. 

To explain these notions we must imagine the K nodes to 
be mapped by a grouping function g(i), into m, 1 $m:5k, 
groups such that each node with index-i is a member of one 
and only one group. For purposes of scheduling transmission 
times a node assumes the group identity, i.e., its identifier 
becomes the index of the group of which it is a member. 
The LOS (line-of-sight) matrix, X, for a network is KX K 
and has entries xij, such that: 

node-i4node- j* 
node-i~node- j 

where ~ denotes the presence of a direct point-to-point 
channel (not necessarily dedicated) between Ilode-i and 
llode-j. and 4 its absence. Using X, the connectivity matrix 
OCM (distance control matrix) can be constructed. 3 The 

" Note that this definition reverses a definition given in Reference 9. 

OCM matrix has entries dij such that: 

I dij I =minimum number of node-node transmISSIons 
required for a packet (message) to propagate from 
Ilode-i to Ilode-j. 

The value of sign (dij) can be used for secondary purposes 
and an example will be given below. Thus a OCM can be 
established to represent, for example, a star or loop net
work, a network organized around a multiple drop cable, a 
network based upon a radio channel with an arbitrary dis
persion of hidden nodes, or even a store and forward net
work. A sample network is shown in Figure la, and its 
corresponding OCM matrix is given in Figure lb. 

Using the grouping function, g, the connectivity matrix, 
OCM, and the scheduling function a wide variety of network 
ccmfigurations and transmission protocols are easily repre
sented. To so demonstrate, we must first define the sched-



Node i 

Node j 1 2 3 4 5 6 7 8 9 10 

1 -0 +1 -2 +1 +2 
I 

-2 +2 -3 -3 -3 

2 +1 -0 +1 -2 -3 -2 -3 -3 -4 -4 

3 -2 +1 -0 -2 -2 +1 -3 +2 +3 +3 

4 +1 +2 -2 -0 +1 +1 +1 +2 +2 +2 

5 -2 -3 -2 -1 I -0 

1 
-1 1 -2 1-

2 -3 

1-
3 

6 -2 +2 +1 +1 I +1 -0 +2 +1 +2 +2 

7 +2 -3 -3 +1 

I 
-2 -2 -0 +1 +1 +1 

8 -3 +3 +2 -2 +2 +1 -1 -0 +1 +1 

9 -3 -4 -3 -2 

I 
-3 -2 -1 -1 -0 -1 

10 -3 -4 -3 -2 -3 -2 -1 -1 -1 .,.0 

Figure Ib---DCM matrix for network of Figure la. 

uling function. To determine the next potential time at which 
it may transmit, a ready node with index-k, uses the sched
uling function SF(i, j), where g(k)=i and j=g(l) if node
I transmitted last, in the algorithm which appears below. 
That is each ready node can be thought to execute Algorithm 
A. 

Algorithm A 

I. Determine, T, the next scheduling period leading edge. 
2. Compute the next potential transmission time (for the 

ready node with index-i) by ti= T+ SF(g(i), j), with 
j the group identification of the node which success
fully transmitted last. 

3. At time, t i , if the channei is sensed idle (as determined 
by the LOS relationships given by the DCM) then 
transmit; otherwise return to Step I. 

The value of the scheduling period leading edge, T, is usually 
given by the trailing edge of a transmission (successful or 
not), or by the value of a counter which is zeroed and begins 
to increment at the termination of every transmission (used 
in the case where nodes approach an idle channel). Details 
on the determination of T can be found in References I and 
3. 

The expressive power of Algorithm A together with g( ), 
SF(,) and the DCM is demonstrated by Figure 2, wherein 
networks with a wide variety of channel access protocols 
are characterized by various configurations of g, SF, and 
DCM values. Descriptions of the protocols mentioned in 
Figure 2 can be found in Reference 7 (ALOHA, CSMA 
variants. TDMA), Reference 8 (MSAP), Reference I 
(BRAM), Reference 2 (parametric BRAM), and Reference 
3 (SUPBRAM). 

Some are applicable to a cable or radio channel (e.g., 
CSMA, BRAM) or to radio channels with a network con
taining hidden nodes (e.g., BRAM, SUPBRAM, etc). In the 
case of BRAM or SUPBRAM operating in a radio network 
with hidden nodes, the OCM sign is used to convey addi
tional message routing information. A sample DCM with 
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ro~tine information is given in Figure Ib, and Reference 3 
should be consulted for details. 

Other protocols can also be captured by the structures. 
and to imagine doing so the reader must bear in mind that 
while certain protocols may not be realized by these con
structs (in an actual system) they can be represented by 
them for simulation. 

FORMAL V ALIOATION OF MODELS 

Typically a simulation model program is validated em
ploying pilot runs and statistical tests. It is possible, how
ever, to formally validate the model program's input/output 
behavior against the actual system. Such validation can thus 
serve as a kind of "proof of correctness" of the model 
program. The methodology employed is described in Ref
erence 10 and in this section, for demonstration, we apply 
it to a simple network model which employs a slotted 
ALOHA transmission protocol. The reader should be as
sured, however, that the technique is applicable to any 
model program (configuration, protocol, etc.) constructed. 

The methodology is based on the notions of base model, 
an experimental frame and a lumped model. In summary 
(consult Reference 10 for details), a base model is a model 
capable of accounting for all the input/output behavior of 
the actual system. As a consequence it must be faithful, 
detailed and consequentially complex representation of the 
system. 

An experimental frame characterizes a limited set of cir
cumstances under which the actual system is to be observed. 
Thus the experimental frame serves to define the subset of 
allowable input/output behaviors which are of interest. 

The lumped model results from a process of abstraction 
by taking the base model and simplifying it (by grouping or 
lumping components, etc.) so that it accounts for the input/ 
output behaviors specified by the given experimental frame, 
but not necessarily others. 

The validation involves establishing a structural homo
morphism between the base model and the lumped model 
as determined by the well defined experimental frame. In 
the network context, the base model is required to account 
for all network nodes, queues, protocols, etc. as encoun
tered in the actual system. 

To establish a homomorphism between the base and 
lumped models a formal machinery is necessary. The meth
odology of Reference 10 proceeds by first generating an 
informal description of the models in terms of system com
ponents, descriptive varia hies (descriptive of the compo
nents) and component interaction rules. From the informal 
description a formal discrete event system specification 
(DEVS) springs. The formal description is given in terms of: 

at, a2, ... , an-The input variables, 
f3t , 132, ... , 13m -The state variables, and 
01, 02, ... , On-The output variables, 

with the cross product of the ranges of these variables giving 
the set of INPUTS, STATES, and OUTPUTS of the system. 
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Protocol name 

1 - persistent CSMA 
p - persistent CS~~ 
[1] 

non-persistent case 
CSNA [1] 

prioritized CSMA 
see [4] 

TDMA 
(time division 
mUltiple access) 

[1,9] 

MSAP 
see [8] 

BRAM or 
centralized polling 
[1 ] 

SUPBRAN [3] 

SF(i,j)= 

o 

o 

o 

i 

i packet 
transmission 
time 

(i-j+k) modk 
0 i 

(i-j+m) modm 
m 

See [3] 

i :I j 
= j 

i 1: j 
i = j 

g(i)= 

1 

1 

1 

i 

i 

i 

1~ g(i)~ m 
1< m< k 

l~ g(i)~ m 
1< m< k 

LOS/ 
DeN 

y-' LOS 
1 LOS 

Xij = Y 

Xij=Y 

= 0 

= 1 

= 0 

Xij = O,LOS case 
d lj = y;t LOS case 

arbitrary, dij 
see [3] 

Figure 2-Protocols currently captured by g ( ). SF (,) and DCM configurations. k = number of nodes in network; y =topology-dependent value; LOS::;>within line 
of sight and range. 

To account for the discrete time points at which events 
(inputs, outputs, state changes) occur, the notion of a hatch
ing time is introduced, to specify the times at which events 
occur. The next hatching time is specified by examination 
of a non-ordered set of linearly decreasing variables, T 1, 

T 2, ... , T K, (a kind of sequencing set) such that at time 
t;, the next event time (hatching time) is given by 
+(s)=t;+min{T 1 , T2 , ••• , TK} where s refers to the state 
variables. The formalism is completed by specifying first: 

84>: STATES~STATES 

which describes the internal or endogenous state transition 
that occurs in traversing from time t; to time t;+t- (s). 
specifying second: 

8ex: QxINPUTS~STATES 

which characterizes the transitions brought about by exter
nally-generated events, with Q denoting the set of pairs 
(s, e) where s denotes system state (as before) and eER 
[0, +(s)] (i.e., a real number in the range (0, +(s, e», and 
finally specifying; 

X: Q~UTPUT 

the output function. Taken together, the set (INPUTS, 
STATES, OUTPUTS, 84>, 8ex, X, +) constitutes the DEVS 
for the model (lumped or basic).** 

To apply the methodology we must first develop a DEVS 
for the base model, then determine the experimental frame 
from which the lumped model and its DEVS can be derived. 

Owing to limitations of space, we will not present the 

** Additional discussion can be found in Reference 10. 



DEVS for the base model, but instead, we will first infor
mally describe how our sample lumped model results from 
the base model; second, we give the DEVS for the lumped 
model; and finally informally establish the required homo
morphism, and hence the validation of the lumped model. 

To proceed, an experimental frame must be specified, and 
for simplicity we assume the experimental frame as given 
by the single variable which gives channel utilization (under 
the assumption of a slotted ALOHA protocol as assumed 
earlier). The lumped model then results in: 

1. Omitting in the lumped model variables, components, 
and interactions which account for user~host~node 
relationships. 

2. Accounting for the omissions of (1) by replacing certain 
deterministic variables having to do with packet length, 
etc. by variates drawn from distributions determined 
appropriate by examination of the omissions. 

3. Coarsening in the lumped model the range of certain 
descriptive variables in the base model (e.g., packet 
identification in the lumped model need only specify 
the associated source node, while in the base model 
packet identification must include source node identi
fication, destination, node identification, sequence 
number within a message, message number, etc.) and 
eliminating several queues. 

The network lumped model informal description 

Under the assumptions given above the lumped model 
consists of components, descriptive variables and interac
tions as given next. 

Components-Source, packet-queue, retransmission
queue, channel, with their obvious interpretations. 

Descriptive Variables-For the source we have (the vari
able) NEW PACKET which can assume values X, with 

,A,.ids to the Development of Net\vork Simulators 61 

range XE {O, 1, 2, . . . , K}. This specification is compactly 
written as: 

NEW.PACKET: XE{O, 1,2, ... , K} 
for a K node network. Additionally we have, 
PACKET.QUEUE: YiE-z+ 

where Yi gives the length of the queue at node i, 
and 

with ~i denoting the length of the retransmission queue at 
node i and Ti giving the scheduled retransmission time with 
Ti a variable drawn from a retransmission time generator 
with seed riE [0, 1]. For the channel we have 
TRANS.TIME.LEFTi=<TiE[O, Packet transmission 
time]with K, packet transmission time (PTT), and the re
transmission time (SCHEDULED.TRANS.TIME) distri
bution established parameters. 

Component Interactions-Component interactions are 
specified by noting that a newly-arrived packet joins 
PACKET.QUEUE, according to X, the value assigned 
NEW.PACKET, causing ~i to be incremented. If Yi=l the 
node proceeds to transmit by increasing <Ti to the value 
packet transmission time. If Yi> 1, a transmission is sched
uled for the time when <Ti becomes zero. If <Ti is reset while 
another <Tj, j=l=i, is non-zero a retransmission time is drawn 
and ~i' and Ti are adjusted. 

FormaL Lumped model descriptiol1 

The formal description constitutes the DEVS for the 
lumped model and contains the input variable 
NEW.PACKET such that: 

INPUTS= {<p, 1,2, ... , K} 

Further, using the state variables given in the informal description, we obtain: 

SESTATES={ RETR. TIME.SEED, PACKET.QUEUE\, RETR.QUEUE\, CHANNELl I 
PAC~ET.QUEUE2' RET~.QUEUE2' CH~NNEL2 J 
PACKET.QUEUEK , RETR.QUEUE K , CHANNELK 

= ( r\, Y\ , (Z\, T\), <T\ I 
1 Y2,(Z2,T2),<T2 ~ 

l : ) 
YK' (ZK' TK), <TK 

The time advance function becomes: 

and for simultaneous events we choose the tie-breaking rule function: 

SELECT ({TRANSM. TIME.LEFT, SCHEDULED.TRANS. TIME}) 
=TRANSM. TIME.LEFT 

otherwise: SELECT ({X}) = X (in the absence of simultaneous 
events) 
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The next hatching time will therefore be given by: 
tHI=tj+min«(Ij, Tj). 

If we let TI=minTb and (Il=min (Ii> then 8cp is given 
by: 

if TI<(Ii 

and if (I1=0 S=(f(rl)'Yl'(~I'TI-Ti)' (II-Ti ) 

yi, (el, -1,0), (Ii+ PTT 

YK' (rrK, TK-T 1 ), (II- T l 

s=(rl' YI' (~1' T 1+(Il-T1), (II- T I ) 

YK' (rK, T K+(II-Td, (IK-TI 

and if (I1>0 

if T/>(II 

and if YI'*O 

and if y,=O 

{

-oc x<O {O x<O 
where X= >0' X= -0' and r(rd denotes a x x- x x> 
drawing from a stream with seed rj, and initially (Ii=Ti=O. 
and Ti=-oo if tj>T j . In the absence of external events, i.e., 
when SOURCE= <1>, the next hatching time, t j + 1 , is given 
by tHI=tj+min«(Il, T I). For times, t, at which SOUR
CE~m, l~ m~ k, the state at time tH t is given by: 

8ex (s, t, m)= {rl' YI, Cel, .TI -t), (Il.-t} 
Ym+ l : : 
YK' (rK , TK-t), (IK- t 

Finally using the experimental frame which characterizes 
channel utilization, the output function becomes: 

K 

A.(S)= {YES if3 m~(Im,*OA .L (Ii=O 
NO otherwise, '=0 

i"om 

as for (Ij,*Ofor multiple i values collision results. From '\(s) 
channel utilization is trivially obtained. 

Lumped model mlidatioll 

Recall that our purpose is to validate the lumped model 
for the given experimental frame by using the DEVS of the 
base and lumped models. This validation is done by showing 
the existence of a homomorphism between the base and 
lumped models. That is. a valid lumped model has the same 
inpllti()utPllt ht"h(lviClf ::\1; the h(ll;t" m()de! fDr the given ex
perimental frame. 

The homomorphism is established by proving the exis
tence of a mapping h, h: (base model states) onto (lumped 
model states), which preserves the time advance, transition 
and output functions. To formally establish the mapping 
requires a formal DEVS for the base model which we have 
not supplied. We proceed informally, therefore, by suggest
ing that h has the form shown in Table I, wherein grouped 
states of the base model correspond to states of the lumped 
model (assuming both models initialized identically). 

As a result the states have been grouped (or lumped) from 
many to four. It is important to note that the mapping, h, 
must be Ol1to so that each component interaction in the base 
model is a member of only ol1e group in the lumped model. 
Having suggested a viable homomorphism, h, we can pro
ceed to establish the preservation of the input/output time 
advance and transition functions. 

Time advance preservation 

For both base and lumped models the next hatching time 
for a channel event is determined by the end of a transmis
sion or retransmission. Denoting the columns of the grouped 
base states by g 1, • • • , g 4 (from Table I) and the columns 
of the lumped states by S 1, ••• , S4' then +(s)= min 
«(Ii' T i ) for the lumped model. and +'(g)=min«(Ij. Td 
for the base model. Since we have assumed identical initial 
conditions for the two models, we have: 

which guarantees the preservation of the time advance func
tion. 

Transition function preservation 

To formally prove transition function preservation we 
have to show that given initial correspondence between the 
states of the two models. that any (group~ group or 
state~state) transition brings both models into corre
sponding states. Specifically, we have to show that: 
h(8cp(g»~8cp(s), i.e., for the columns gl' g2' g3' g4 we 
obtain by the h mapping the corresponding states S l' • • • , S 4 

for the columns of the lumped model. 
Additionally, we must show that Sj represents gi following 

T ABLE I-Suggested Homomorphism between Grouped Base Model 
States and Lumped Model States 

GROUPED BASE MODEL STATES "BECOME" LUMPED MODEL 
STATES 

I. User-host-nod~packet queue; 
2. Control unit-transmission buffer-channel 
3. Receiver buffer retransmission queue 
4. Retransmission seed 

packet queue 
channel 
retransmission queue 
retransmission seed 
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Qutput function preservation all state transitions. Although our ability is limited here due 
to not having a DEVS for the base model, we can still show 
the preservation by basic observation. We begin by recalling 
that the lumped model states are in fact representatives of 
"groups" of base model states. We further note that we 
assume all transitions within a group of base model states 
to be zero time transitions that do not affect O"i' T i . Thus 
only transitions among states from different groups have to 
be observed-and this is done by observing the state 
changes in the corresponding states of the base model. Be
cause of this special relationship between base and lumped 
model structures, the transition function preservation can 
be justified without use of DEVS. 

In this case preservation dictates that corresponding states 
(in the two models) have to provide the same output. In the 
lumped model a YES period is recorded for those cases 
where a single transmitter has a non zero 0" m value. In the 
base model a receiving controller records correct reception, 
i.e., a YES period if and only if the channel is busy with 
oniy one transmission. It is easily seen that the two YES 
periods correspond so that A(lumped model)=A(base 
model), since in the base model we record YES if: 
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Figure 3-Model program structure. 
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time 

--> 

I de~re~sing \!I pr1Orl.ty 
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next event 

------~~-T_P_T~l~> 
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J T 2 2 
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i,k- T i ,£ 
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\'1 

if P
T 
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Figure 4-Model program sequencing set structure. 

Commentary on validation approach 

Our purpose has been to demonstrate a formal approach 
to the validation of a simulation model. Our example was 
purposely chosen to be simple, where complexity of the 
lumped model is dependent upon the experimental frame 
and actual system. For an experimental frame addressing 
only channel utilization only four-state descriptions were 
necessary. Quite obviously, as the experimental frame com
plexity becomes more comprehensive, the lumped model 
approaches the base model in complexity, and Reference 10 
should be consulted for additional details. 

We find the approach helpful in structuring network model 
programs (configurations, protocols, etc.) even when ap
plied with no more rigor than was used in the example. 
Specifically, its use promotes the same forethought and 
structuring exercises for simulation programs as do verifi
cation and specification techniques for programming gen
erally. 

We helieve errors have been avoided and more highly 
structured lumped models produced in reasonable times as 

a result of only informal use of the methodology. In any 
case it serves as a guide to the abstraction process (always 
difficult), is consistent with the view of simulation we be
lieve most natural, 5 and so represents a formal approach to 
the art of modeling (model development), and several var
iants of the network model program were informally vali
dated using the approach. 

MODEL PROGRAM IMPLEMENTATION 
CONSIDERATIONS 

Guided by the validation procedure of the fourth section, 
and the scheduling function, SF(,), grouping function, g( ), 

and distance control matrix, DCM, as given in the third 
section, the model program is organized according to the 
modular structure shown in Figure 3. The program is written 
in FORTRAN (for efficiency, universality, and sequencing 
set structural reasons) and consists (for most variants) of 
around 3500 lines, which compile into approximately 62000 
octal words of executable code on a CYBER 74. 



Sequencing set considerations 

The model program structure shown in Figure 3 is de
signed, of course, to promote the alterability ofthe program. 
That is, for example, all issues concerned with addressing 
at the host~node interaction level are contained in a single 
module so that addressing functions can be identified and 
altered (replaced) without affecting the remaining program. 
While serving the primary function of flexibility the structure 
causes certain potential overheads at execution time. Spe
cifically because of the structure, i.e., the columns in Figure 
3, it becomes necessary for activities at time lito schedule 
mUltiple other actions for time Ii . Moreover, to maintain the 
rectitude of the model the multiplicity of events scheduled 
for a given Ii must occur in a specified order. The use of 
conventional sequencing set structuring techniques, e.g., the 
linear list, (see Reference 6), causes considerable overhead 
in the insertion or deletion of event notices when there are 
multiple events scheduled for a given event time. Further
more, these structures do not give particular attention to 
our paramount requirements on the ordering of the execu
tion of these simultaneous events. The nature of our model 
program suggests use of the two-dimensional sequencing 
structure shown in Figure 4, wherein each activity sched
uling notice contains not only a primary key giving time of 
occurence, T i , but also a secondary key PTiJ which reflects 
the activities assigned priority (which determines its place
ment among the collection of events scheduled for T i)' Note 
further that the priority value assigned a scheduled event 
cannot be static (i.e., cannot be assigned a priori to the 
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activity) but rather must be assigned dynamically when the 
activity is given an occurence time, with assignment based 
on the state of the system (the collection of events sched
uled) when the scheduling occurs. For example, the order 
of handling the simultaneous events "set node busy status," 
"set channel busy status" occur in different orders depend
ent upon whether the system state is node transmission or 
node reception. 

The two-dimensional structure, Figure 4, aids the assign
ment of activity priorities as well as the insertion and dele
tion of notices by reducing the number of scans (of notices) 
necessary to a more acceptable level than would be possible 
with conventionally used sequencing set structures. The 
structure thus allows use of the modular structure without 
the penalty in model program execution speed which would 
be incurred with conventional sequencing sets. 

Input traffic generators 

A large number of network simulations are conducted 
assuming that message intergeneration (arrival for transmis
sion) times at node-i obey a Poisson process with parameter 
Ai' 

Typically a simulation program responds to this assump-
tion by scheduling an activity "arrival" for each of the K 
nodes in the network. For large K this adds significantly to 
the number of event notices present in the sequencing set, 
and hence degrades notice insertion deletion operations. A 
cleaner more efficient approach is given by forming 

K 

A= L Ai and scheduling a single event with inter-event 
i=1 
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times drawn from the exponential distribution with param
eter A. Each occurrence of the event signals "arrival" and 
the "cumulative distribution" of the Ai, can be used to 
determine the node to which the message has arrived. Spe-

j-l 

cifically if a random number U is drawn and (1/ A) 2: Ai< 
i=l 

I j 

uS; ~ i~ Ai, the message is declared to have arrived at node-

j. The procedure works due to the ability to split a Poisson 
stream into mUltiple streams via a multibranch Bernoulli 
trial, and serves to insure that a single, rather than K~ 1, 
notice is in the sequencing set to signal message arrivals. 

CONCLUSION 

In this paper we have examined a number of techniques 
designed to aid our development of a modular network sim
ulator designed to serve as a research tool. We believe the 
aids have contributed to our ability to easily simulate a 
variety of network topologies and access protocols. In Fig
ure 5 we summarize the uses of the simulator to date. The 
uses shown by Figure 5 reflect our current interests rather 
than the limitations of the model. 
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A stochastic state space model for prediction of product 
demand 
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and 
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Newark, New Jersey 

INTRODUCTION 

This paper is concerned with the development of a fixed 
price, supply/demand market model which can be used to 
predict demand for customer premises telephone equipment. 
A state space approach is used to model system dynamics 
and a Kalman filter is used for estimation. The model is 
nonlinear, and provides for nonstationary statistical char
acterization of the elements. The formulation indicates the
oretically that, given perfect input (driving force) data, pre
dictions could be highly inaccurate using linear models (even 
if they are dynamic) or nonlinear models which assume 
stationary statistics. The conceptual framewOik at lorded by 
state space provides a vehicle for structuring more accurate 
models to predict product demand than do conventional 
approaches. Finally, the general model is suitable for pre
dicting product demand in a wide range of markets. 

DESCRIPTION OF THE PROBLEM 

Recent legal developments in the telecommunications in
dustry have necessitated the re-evaluation and consequent 
revision of the existing market philosophy. Emphasis has 
been on the need for accurate prediction of product demand, 
as opposed to the naively formulated forecasts of the past. 
This probiem must be faced in total by the manufacturing 
branch of the industry which must anticipate the demand for 
the individual telephone companies and long lines division. 
This demand is a derived version of actual demand generated 
by the ultimate consume~s of the various final products. 

The extremely large number of products to be forecast 
together with a multiplicity of causal relationships on de
mand necessitate the development of general forecasting 
mo~els to optimize the accuracy of prediction. Much of the 
work done in the area of estimating demand functions has 
been accomplished using statistically stationary processes 
with estimates provided only in the steady state. In some 
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instances such methodology may be sufficient in the sense 
of providing an adequate level of accuracy of prediction. 
However, if anyone of the assumptions (i.e. steady-state vs 

dynamic, linear vs nonlinear, stationary vs nonstationary 
statistics) is violated, then these methods can be relatively 
inaccurate. A method for achieving significant improvement 
in accuracy encompasses the development of dynamic 
models in state space. 

To obtain a grasp of the many facets of the prediction 
problem, it is necessary to have an understanding of the 
overall operating perspective. There are approximately 
500,000 manufactured items (of which about 14,000 are ac
tively tracked), divided into nine product lines. Each prod
uct line is broken down as indicated in Figure 1. 

The MFLs (Master Forecast Lists) are group configura
tions depicting a structure of individual items, defined as 
key or non-key, selected for the purpose of capturing a 
certain percentage of sales. Key items are components that 
are required solely for a particular product to function. 
These items are frequently options or ancillary items essen
tial for capturing the target total dollar sales for the MFL. 
The MFL is the level of aggregation for which accuracy of 
prediction is not only desired but necessary for future plan
ning. 

Current policy dictates that forecasts be made both on a 
short and long term basis. Short term forecasts are made 
three times a year projecting six quarters ahead. Long term 
forecasts involve projections for the next five years, revising 
figures as additional information becomes available. 

The product line under investigation is station equipment, 
the family is residential systems, the groups are various 
categories of telephones, i.e., rotary, touch-tone, and the 
MFLs are a narrow category such as wall rotary. The inten
tion is to develop models that will encompass the items 
contained within an MFL to forecast the latter. 

As an additional consideration, predictions are needed at 
various levels of aggregation, such as by region (seven re
gions) or by telephone company (twenty companies), as well 
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Figure I-Product line hierarchy. 

as a national total. Thus, the model must provide for isola
tion of regional demand functions and the special driving 
forces which affect them. 

In summary, the basic problem is to predict the volume 
of demand for a "canonical" set of MFL items Tp periods 
into the future. The volume of demand for other MFL items 
can then be related to demand for the canonical items on a 
linear stationary basis. 

DEFINING VOLUME OF DEMAND 

In this paper, volume of demand is defined by the area 
under a "demand function" curve, wherein the "demand 
function" represents the number of items which buyers 
(ready, willing, and able) will pay for at the maximum price. 
This general demand function differs from demand curves 
commonly used in economics as explained in Appendix A. 
Referring to Figure 2, q(p, t) is the general demand functio~, 
and allows improved conceptual representation of demand 
under a free or multiple price structure. If the product is 
supplied at fixed price Ps , then volume of demand is given 
by the area under the demand curve from Ps to the cutoff 
price Pc beyond which there is no demand. 

fPC 
A(t)= J, q(p, t) dp 

P s 

(1) 

Supply at a given price is represented by a Dirac delta 
function, 

Qs(t)=B(p- Ps) 

wherein Q$(t), the area or "height" of the delta function, 
represents the quantity on hand at time t. Although multiple 

quanti ty (q) 

Qs 

Qs(t) • bCp-ps) 

Ps Pc price (p) 

Figure 2-Demand function characterization. 

pricing, e.g. discounting, is not treated here, it can be mod
eled using an extension of the basic approach. 

We note that it is not economically feasible to directly 
measure q(p, t) or Qs(t). Thus, we look to estimate these 
quantities based on directly observable quantities, e.g. or
ders and shipments. The precision applied to approximating 
the demand function q(p, t) in the interval of interest [Ps , 

Pc] can in general affect the accuracy of prediction. How
ever, for predicting volume demand at a fixed price, the 
quantity of interest is the area, A(t), and any representation 
which accurately characterizes this area is suitable. In the 
case that price changes are being considered, a more accu
rate characterization of the demand function can be accom
plished using the previous formulation. 

PREDICTION OF DEMAND 

Before proceeding, we note the following. The competi
tive business enterprise is concerned with production sched
uling to satisfy demand in a way which maximizes profits, 
subject to various social and economic constraints. This 
problem can be treated as an optimal control problem. If 
one is concerned with maintaining market share, it is not 
sufficient to "track" demand. Rather, one must also be able 
to predict changes in demand in order to maximize utiliza
tion of resources. This problem is different from that nor
mally found in engineering applications wherein the driving 
forces are either random or controlled. In the competitive 
environment, one must determine an optimal trajectory 
when the driving forces, the model of the system, and the 
terminal state rapidly become more uncertain as we move 
into the future.* Control systems for solving this type of 
problem will only be as good as the imbedded prediction 
system for estimating trajectories into the future. 

The development of an accurate prediction system re
quires three ingredients. These are an accurate model of the 
system, an accurate quantification of the forces which drive 
the system, and an accurate prediction algorithm. These 
elements are described in the following sections as they 
relate to predicting product demand. 

* Refer to Reference I for definitions of "optimal trajectory" and "terminal 
state. " 



DRIVING FORCE CHARACTERIZATION 

Change in demand over the interval [T, T+ 1] due to 
various driving forces observed at T can be expressed as 

(2) 

where the dis are functions of the driving forces Ui(T). These 
functions can represent nonlinear, time-variant transforma
tions. For example, consider a continuous or smoothed state 
variable Xl (t) which represents change in demand at time t 
due to U l' sampled at time to in the past. If the effect of U 1 

on x 1(t) approximates a simple damped response, then it 
might be characterized by 

x 1 (t)= U 1(t 0)' e-<t-tO)/T. V(t- t 0) 

where Vet-to) is the unit step function,2 and T is the time 
constant. Converting to discrete form using a Taylor series 
approximation, 

where 

1 1 1 
K(T)=l- -;: + 2!T2 - 3!i3 ... 

is truncated to yield the desired accuracy (refer to Figure 
3). If, in addition, the relationship between x 1 and U 1 is 
nonlinear, this can also be taken into account in d l' For 
example, if the demand, A, saturated as d 1 increased, this 
could be represented by a describing function of A, (refer 
to Figure 4). Examples of driving forces which must be 
characterized as described above are number of new build
ing permits (linear) and advertising budgets (nonlinear). 

MODEL OF SYSTEM DYNAMICS 

In this section we offer, with rationale, a simplified ex
ample of a deterministic model of the dynamics of the system 
which generates demand for new telephone installations. 
The effects of uncertainty are added in the next section to 
produce a stochastic model. 

Ul(T) DRIVING 
FORCE 

SAMPLE 
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Our objective is to accurately predict the area A (T + 1) 
under the demand curve, Figure 2, Til time steps into the 
future. The demand for new installations, An' at T + 1 can 
be expressed as 

An ( T + 1 ) = An (T) + Dn (T + 1 ) - Qn ( T + 1 ) (4) 

where Dn(T + 1) is a function of the form D(T + 1) given by 
Equation 1. The individual d is can be nonlinear functions of 
A n (T+l), as shown in Figure 4. Such effects, commonly 
due to saturation, can occur with advertising or similar 
forces driving market demand. Qn(T + 1) is the number of 
new installations during [T, T + 1] and is given by 

where On (T) is total outstanding orders for equipment in
stallation, and a(Q) is a nonlinear coefficient depending on 
Qn (T + 1) characterizing inventory levels. (In a more com
plete control model, a can depend on the value of inven
tory.) )'n is a coefficient representing the efficiency of con
verting demand to orders. Total outstanding orders at time 
T+ 1 is given by 

Because outstanding orders at the end of a period may be 
small in relation to orders filled during the period, it is more 
accurate to use orders filled as an observable. Total orders 
filled during [T, T + 1] is given by 

o f( T + 1 ) = On ( T + 1 ) - On ( T) (7) 

To convert this problem to state space notation, we define 
the state vector J as 

and the observation vector as 

The previous simplified model typifies more complete 

INCREMENTAL 
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DEMAND 
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To T To T 

Figure 3-Example of damped response to driving force impulse. 
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ACT+l) 

Figure 4-Nonlinear effects, e.g. caused by saturation. 

models of the generalized form 

::r(T+ 1)= [(::r(T+ 1), ::r(T), y(T), T) 

;(T)=!:z(::r(n, T) 

where ::r, ;, y, f and !:z are vector quantities. 

(8) 

(9) 

Through linearization over the interval [T, T+ 1]; these 
equations can be rewritten as I 

::r( T + 1)= 4>(n· ::r(T) + B(T)· y(T) 

;(T)=H(n'::r(n 

(10) 

(11) 

The transformations of f to matrices 4> and B, and !:z to 
matrix H can be accomplis-hed using describing functions or 
other linearization methods. Refer to Reference 3. 

STOCHASTIC MODEL 

We recall that certain unobservable state variables, e.g. 
demand, were selected to provide a conceptual representa
tion of what are believed to be the dynamics of the system. 
We therefore look to estimate the state g from observations 
of ;, and to predict t based on estimated system dynamics. 

Due to uncertainty of the model and observations, the 
stochastic representation of the system is 

g(T+ 1)= 4>(ng(T)+B(T)y(n+ljI(n (12) 

t(T)= H(ng(T)+ y(T) (13) 

where !:Y(t) represents uncertainty in the model, and y(t) 
uncertainty in the observations. If we compute the estimate 
g(T+ Tp) from Equation 12, prior to observing ;, we can 
then estimate future values of t(T+ Tp) based on Equation 
13. 

If a model could be constructed which was precise for all 
T, i.e., w(T) and v(T)=O for a1l T, then estimates would be 
identical to actual values. Because precise models and meas
urements are not possible. predictions must be made in 
terms of probability density functions of the estimated val
ues. Thus. given a modeJ of the system. and a characteri-

zation ofthe observable driving forces, it remains to produce 
estimates of the probability density functions which describe 
the predicted trajectories z(T) and .£(T) over [T, T + Tp]. 

ESTIMATION PROCEDURE 

If the probability density functions are characterized by 
means and variances which are derived from the error re
siduals 

§=t-; 

then accuracy of prediction can be considered to be in
versely proportional to the variance of the propagated den
sity functions. Using this measure of accuracy, we seek 
minimum variance estimates conditioned on all available 
information. Kalman4 described such an estimator, and 
many authors, e.g. References 5 and 6, have subsequently 
expanded the base of knowledge on similar estimation pro
cedures, all convenient to state space modeling. 

The Kalman Filter, as it is widely known, provides min
imum variance Bayesian estimates of both the state of the 
dynamic system and the observation vector as described in 
(12) and (13). The basic algorithms can be modified to esti
mate nonlinear systems, such as described by (8) and (9), as 
well as systems whose statistics are non-stationary. To sum
marize the estimation procedure, one must identify the sta
tistics of the uncertainty elements ljI and y. It is assumed 
that these can be characterized as normally distributed white 
processes with zero mean, and covariance matrices given 
by 

Q=E[ljI'ljIT] 

R=E[y·yT] 

(Refer to Reference 6 for a discussion of items to be consid
ered when trying to characterize uncertainty.) Our problem 
is to estimate future states of the system given a starting 
state estimate and a statistical characterization of the un
certainty. This can be restated as follows. Given an estimate 
of ::r and a measurement of; at time T, we seek to propagate 
moments which describe the probabilities of the values of 
::r and; at time T+ Tp in the future. This is accomplished by 
computing the estimates g and j., and their corresponding 
error covariance matrices via the recursive Kalman filter 
algorithm.4 

NUMERICAL METHODS 

Given the model, driving force characterization, and es
timation algorithms, we must now come up with maximum 
accuracy predictions of future demand and corresponding 
orders. To do this we must determine numerical values for 
the unknown coefficients in the model, including those in 
the driving force characterization. which maximize predic
tion accuracy. From a practical standpoint, this model iden
tification process is the most difficult part of the problem. 
In general terms, one seeks values of coefficients in the 



system equations which will maximize some predetermined 
measure of accuracy. This model identification process must 
be accomplished using numerical optimization. If the system 
equations are nonlinear, then the optimization algorithms 
must be capable of seeking the global maximum. If the 
statistics are nonstationary, adaptive algorithms must be 
devised for updating the covariance matrices, Rand Q, 
based on most recent history. Finally, methods are needed 
to test for the presence of non-white noise components in 
the error residuals which can be further characterized as 
driving forces or model elements. 

Two systems have been used which remove most of the 
burden associated with accomplishing the above. These are 
the General Stochastic Analysis (GSA) and General Sto
chastic Modeling (GSM) systems. GSM provides the user 
with a high level stochastic modeling language which affords 
a direct description of the problem as described above. It 
also provides for tabularized input of describing functions, 
and nonlinear optimization algorithms for model identifica
tion. GSA provides for interactive input of vector time-series 
data, statistical testing, and plotting and report generation. 

To describe a state space model in the GSM language, the 
user writes FORTRAN like expressions for each state equa
tion, e.g. Equations 4 through 7 and observation equation. 
GSM scans these equations, which can contain XCT + 1) 
terms and describing functions on the right-hand side, and 
generates optimal sparse matrix solutions. These are then 
linked to a table look-up method for solving the nonlinear 
equations at each time-step. The user can also write any 
valid FORTRAN expression for inequality constraints as 
well as a function to be maximized (or minimized). For 
model identification, the user need only specify range limits 
on the unknown parameters. Starting solutions are unnec
essary. Using the GSM language, the person doing the mod
eling is left to concentrate on the development of intelligent 
model structures and characterization of driving forces to 
improve prediction accuracy. 

SUMMARY OF RESULTS 

Before comparing results of different modeling tech
niques, it should be noted that, given any modeling tech
nique it is possible to take alternative approaches to con
structing the model. Thus, it is possible for two people to 
obtain different results using the same technique. This is 
particularly true when the modeling tools being used provide 
a wide range of capabilities as well as a high degree of 
flexibility. The authors view the modeling process as a con
tinual refinement process, and therefore consider their re
sults for each technique subject to further improvement. 

A brief summary of results using other conventional tech
niques versus a simplified version of the model presented is 
as follows. Deviation error is defined as 

D .. E I Actual-Predicted I (%) 
eVlatlOn rror= Actual C • 

For the most accurate conventional approach used to date, 
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the average deviation error over a 22 time-step trajectory 
was 18 percent compared to 13 percent for the model pre
sented. Maximum deviation over the trajectory was 60 per
cent for the conventional approach versus 30 percent for the 
model presented. As indicated, the authors believe that im
provements can be made in all techniques investigated and 
are presently designing improved experiments to further val
idate model comparisons. 

CONCLUSIONS 

A general approach for developing more accurate predic
tions of telephone product demand has been described. This 
approach is based on a state space framework which pro
vides for maximum use of human judgment in structuring 
models to represent market dynamics. The models which 
have been structured are generally nonlinear, and methods 
have been devised for identification of statistically nonsta
tionary parameters. When structuring intelligent models of 
the type presented, it is apparent that numerical solutions 
are heavily dependent upon the use of highly sophisticated 
software, and the ease with which it can be used. 

APPENDIX A 

Consider the demand curve in Figure 5a with Q as total 
quantity of demand at price p. Except for the interchange 
of ordinate and abscissa this is the curve normally refer
enced in economics, with total quantity of demand decreas
ing as price increases. 

Figure 5b represents a general demand function as used 
in this paper, and described in Figure 2, where q represents 

Q 

Pc 
Figure Sa-Normal economic demand curve. 
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Pc P 

Figure 5b-General demand function. 

the demanded quantity at a maximum price which buyers 
will pay. Total quantity of demand using this function is 
defined by the integral, Equation 1, with Ps replaced by the 
general price variable p. Since this integral evaluated at the 

upper limit is always zero, the general demand function can 
be related to the demand curve (Figure Sa) as 

d 
q(p)=- dp[Q(P)]. 

REFERENCES 

1. Athens, M., and P. L. Falb, Optimal Control, McGraw-Hili, New York, 
N.Y., 1966. 

2. Papoulis, A., Probability, Random Variables, and Stochastic Processes, 
McGraw-HilI Book Company, New York, N.Y., 1965, pp. 97. 

3. Gelb, A., et aI., Applied Optimal Estimation, The MIT Press, Cambridge, 
Mass., 1974. 

4. Kalman, R. E., "A New Approach to Linear Filtering and Prediction 
Problems," Transactions ASME, Ser D: 1. Basic Eng., Vol. 82, 1960, pp. 
35-45. 

5. Jazwinski, A., Stochastic Processes and Filtering Theory, Academic 
Press, New York, N.Y., 1970. 

6. Schweppe, F. C., Uncertain Dynamic Systems, Prentice-Hall, Englewood 
Cliffs, N.J., 1973. 



The Bus Link-A microprogrammed development tool for 
the CMOS/SOS processor system* 
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INTRODUCTION 

The widespread use of microprocessor-based systems has 
made the problems of development time and development 
cost most urgent. With the increasing complexity of recent 
systems, there has come a great need for powerful and 
adaptive development tools. 

The Bus Link is a development tool for the MC2 processor 
system, which was developed along with the microprocessor 
chip. The Bus-Link can be used throughout the development 
cycle of any MC2-controlled system to solve either har.dware 
or software problems. This tool is not restricted to any 
particular system configuration and can operate with the 
maximum allowable processor speed (see Figure I). 

SYSTEM DESCRIPTION 

The Bus Link hardware can be partitioned into two 
parts-the controller and the Unit Under Test (UUT) inter
face (see Figure 2). 

The controller consists of a microprocessor and 8K x 16 
bit words of memory. In addition, the controller contains a 
serial data interface port (UART) and an IEEE standard 488 
interface port. Since the only front panel controls are the 
POWER ON switch and a RESET button, the user interacts 
exclusively from the CRT terminal connected to the serial 
data port. The terminal also contains a dual cartridge tape 
unit which can be used to load programs to or from the UUT 
memory. Since most of the hardware (including the dual 
comparators) is software controlled, the user can add and 
modify the entire system by loading new routines from the 
cartridge tape unit. 

The UUT interface consists of the following parts: 

1. The dual comparator unit with an ALU. 

* This work was compiled while employed by Hewlett-Packard Co. Data 
System Division, Cupertino, California. 

73 

2. The trace buffer unit. 
3. The UUT bus interface. 
4. The bus synchronizer unit. 

Each one of the above units is a separate entity, and the 
connection between them is done under the user's supervi
sion. 

MODES OF OPERATION 

The Bus Link can operate in two modes: 

1. Management Mode. 
2. Monitor Mode. 

Management Mode 

In the Management Mode of operation the user enters 
commands from the CRT keyboard. The commands can be 
entered at any time even while the UUT is executing pro
grams. The following capabilities are provided: 

a. Load and Store Programs-User programs are loaded 
from UUT memory to the cartridge tape unit or vice 
versa. 

b. Display and Modify DDT memory, registers and i/O. 
c. Display Trace-The specified number of entries in the 

Trace Buffer is displayed. 
d. Run, Halt and Single Step user programs. 
e. Interrupt UUT-A forced hardware interrupt. 
f. Reset the UUT system. 
g. Force Handshake-The Bus Link records initiation 

and compietion of handshaking activities (either Mem
ory or I/O) on the UUT Bus. When this command is 
executed, the Bus Link senses the incompleted hand
shake activity and simulates its completion so that 
UUT may resume execution. 
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BUS-LINK 

UNIT UNDER TEST 

Figure I-Bus link development system. 

h. Add Command-The user can enhance the capabilities 
of the Bus Link with additional commands which can 
be loaded into the Bus Link's memory from the sys
tem's cartridge tape unit. 

Monitor Mode 

Once the user issues the R UN command, control is passed 
to the UUT and the Bus Link enters the Monitor Mode. In 
this mode the Bus Link is monitoring a continuous process 
on the UUT. All 43 UUT bus lines (16 address, 16 data, II 
control) are continuously sampled. 

A Bus Event occurs whenever a preprogrammed set of 
specifications describing conditions on the MC2 bus has 
occurred. The occurrence of an event is a result of two 
individual comparisons being processed by an ALU unit and 
a delay counter (see Figure 3). Each comparator samples an 
actual condition on the UUT bus and compares it with an 
expected condition. Each one of the two comparators con
sists of three independent field comparators for the data 
field, address field and control field with a choice of: >, <, 
~; :5, =, =F, and bit mask on each field along with AND 
operation of all three fields (refer to Figure 3). Altogether 
we should have six comparator circuits (2 x data, address, 
control) and their associated masking registers. However, 
no physical comparators can be found in the Bus Link since 
the entire task is performed by software, a technique that 
will be discussed later. Each of the two comparators is 
connected to the ALU unit and a delay counter to provide 
the desired event pulse. The event pulse is used to start or 
stop the trace huffer or to halt the ('xt'clltion of ~ prognlm 
While in Monitor Mode, the static condition on the UUT 

may be loaded into a local memory (64 words x 43 bits) 
called the Trace Buffer. The Trace Buffer may be started 
with an immediate command or following an occurrence of 
an event. Similarly, the Trace Buffer may be stopped by a 
command or following an event. The Trace Buffer may be 
loaded continuously, may be examined at any time, and may 
be stopped once the Buffer has been filled up. 

The UUT may be programmed to halt under a certain set 
of conditions. When the condition occurs, the UUT is halted 
and control is passed to the user at the terminal. The U UT 
internal register values are updated on the screen and the 
instruction register is automatically disassembled. A UUT 
HALT condition can be set to follow an event condition or 
when the Trace Buffer is Full (see Figure 4). 

THEORY OF OPERATION 

The main building block of any microprocessor develop
ment system is the comparator circuits. There are two pop
ular ways of implementing this block; the first one is by 
using SSI gates (see Figure 5a) and second one is by using 
MSI circuits (see Figure 5b). When using only SSI circuits, 
the expected response is stored in the data register and the 
DON'T CARE (X) bits are stored in the mask register. The 
sampled data is stored into the input register and compared 
with the expected data stored in the data register. The result 
is then ANDed with the bit pattern stored in the mask 
register, before it is being ORed to provide a compare signal 
(see Figure 5a). Another common way of implementing the 
same block is by using an MSI comparator which can pro
vide not only the compare signal (-), but also greater than 
(» or less than «) signals. 
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The conventional techniques just described have three 
major disadvantages: 

a. Expensive-Both circuits require a large' amount of 
integrated circuits and also require a large P.C. Board 
since many traces must be routed between the com
ponents. 

b. Incomplete-Comparing the sampled data with an ex
pected response to determine a greater than (» or a 
less than «) equality while some of the bits are masked 
can't be implemented with the above circuits. 

c. Inflexible-Changes of existing design are hard to im
plement. 

The comparator circuit can also be implemented with Ran
dom Access Memories (RAMs), and such implementation 
contains none of the disadvantages described earlier (see 
Figure 5c). The Bus Link is only one of many development 
tools in which the comparators are designed by utilizing 
RAMs. This concept will be explained with examples in the 
next paragraphs. 

a. Comparing single breakpoint with single RAM-Let's 
assume that we want to compare an n-bit word with 
another n-bit word (expected response vs. actual re
sponse). If an n-word x 1 bit RAM is available, and it 
is possible to store the data (I-bit word) in each location 
(n-bits address), the comparison process can be pre
pared by software and can be exercised by the RAM. 
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The software routine stores a "I" in the Kth word 
where the address of K is equal to the bit pattern we 
want to compare with (see Figure 6a). 

Kth word address = expected response of n-bit word. 
The software also stores a . '0" anywhere else in the mem
ory. Now the RAM is ready to compare any' actual data 
sampled on the UUT bus. The sampled data word is con
nected to the address field of the RAM. The RAM is read 
continuously by the processor which can now determine the 
result of the comparison. If the data word read (one bit) is 
found to be a "0," it implies that the expected n-bit pattern 
is not equal to the actual one. If the data word is found to 
be a "1," a match between the expected data and the actual 
one exists. 

b. Comparing Multiple breakpoint with single RAM
Multiple breakpoints comparison can be performed 
with the same hardware, only the software routine 
must be modified. Let's keep the same definition of 
the Klh word. Again-Kth word address = expected 
response of n-bits word; we can deduct the following: 
lb. To compare =1= not equal, store in the Kth word a 

"0" and store a "1" anywhere else in the memory 
space. (See Figure 6b.) 

2b. To compare <, less than (or :s) store a "1" in the 
memory space from location 0 to (inclusive) the 
Kth address and a "1" from the Kth address and 
on. (See Figure 6c.) 

3b. To compare >, greater than (or 2:), use the 2b 
algorithm with a complemented data word. (See 
Figure 6d.) 

c. Handling masked (Don't Care-X) bits with single 
RAM-Masked bits (X) can be easily processed by the 
same algorithm, with minor modification. A masked 
bit is essentially a mUltiple compare situation; each 
masked bit doubles the number of words to be com
pared with since X = I and also X = 0 (see Figure 6e). 
No mask registers or AND gates are needed. 

d. Comparing multiple breakpoints with more than a sin
gle RAM-The Bus Link was designed as a develop
ment tool for the MC2 microprocessor. As mentioned 
earlier the MC2 has 16 bits of data word, 16 bits of 
address word and 11 bits of control word. If a RAM is 
to be used as a comparator, it must contain at least 216 

x 1 bit words (64K words). With an additional data 
bit, every single RAM can be divided down into smaller 
RAM units which may be cascaded to any arbitrary 
length. The additiomil bit is a dependency bit (carry 
bit) which enables the comparison of lower-order bits. 
In the example described in Figure 7, the 16-bit word 
comparator is implemented with two 256 x 2 bit words 
RAM. A comparison is always started with the high
order bits (byte) and carried to the lower-order byte 
only if it is needed. The software processes the ex
pected data word format and determines whether a 
carry bit should be entered. This example can be car
ried further if either a larger than 16-bit word is to be 
compared or if the RAMs are to be partitioned to 
smaller units (for economic reasons). 
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(a) COMPARE: FD (b) COMPAREi=-FD (e) COMPARE ~ FD (d) COMPARE ~ FD (e) Cm1PARE to 
:(111111 X1)2 

Figure 6-Examples of comparing with a single RAM. Addresses are expressed in hexadecimal notation. 

e. Multiple comparison of multiple breakpoints with more 
than a single RAM-Most development tools available 
today offer only a single comparator, which is adequate 
for most applications. But a single comparator isn't 
effective if complicated software routines or compli
cated I/O ports are to be developed. For example, an 
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Figure 7-Dual comparison of multiple breakpoint with two 256 x 4 RAMs. 

address space can be bounded to be greater than a 
minimum value AND less than another maximum 
value-upper bound ~ address;::: lower bound. If a 
hardware comparator (with SSI or MSI devices) is 
used, a second comparator almost doubles the amount 
of hardware. In using RAMs, only the RAM size (and 
some logic) is doubled which yields much greater price/ 
performance ratio. As shown in Figure 7, the additional 
comparator function is added with almost no additional 
cost since the standard 256 word RAMs are four bits 
wide anyway. More comparators can be added to the 
circuit without much difficulty. The software prepares 
the data for each comparator separately and then con
catenates the corresponding data words to form a single 
block before writing the entire block into each RAM. 

f. Do without multiplexers-The address for the RAMs is 
provided from two sources-the UUT and the control
ler. When the controller writes the data into the RAMs 
it must provide the address field, but when the actual 
comparison is performed, the address field must be 
connected to the UUT bus. Multiplexing 43 lines be
tween the controller and the UUT bus to the RAMs 
address field requires many multiplexers and consumes 
much of the PC Board area due to the large number of 
traces. Since the software prepares the data in blocks, 
multiplexing is not required, synchronous counters can 
be used instead. As shown in Figure 8, when the con
troller writes the information into the RAMs, the 
counters are automatically incremented and the pro
cessor only provides the data word to be written. When 
the actual comparison is to be made, the counters are 
used as registers where the count pulse is disabled and 
the load pulse is connected to the UUT clock. 

g. Single multitask sequential control circuit-the Hard
~1/are Subroutine-In the management mode of opera
tion, the user can enter one of many optional functions. 
The common method of designing the contwl logic is 
to implement each sequential logic (in a minimized 
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Figure 8--Conventional vs. counter multiplexing scheme. 

form) of every function separately, and to attach a 
selector unit to activate each one of the functions sep
arately (as shown in Figure 9). Further study of all the 
control functions revealed three important facts: 
I. The functions are similar to each other. 
2. Only one function can be active at any single time. 
3. The functions are not time-sensitive. 

Taking the previous facts into consideration and deviating 
from the standard approach, a new design method has re
sulted: 

1. Find the largest common denominator among the 
functions. Simple functions can be made to act like 
complicated ones by adding redundant states. 

2. Use a selector device to demultiplex the selected 
set of inputs (qualifiers) into the general sequential 
circuit block. 

3. Use a demUltiplexer to select one set of outputs 
from the sequential circuit block. 

Since this method resembles the activity of writing a general-
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purpose subroutine, it is called The Hardware Subroutine. 
A m·inimum of 3: 1 reduction in components count was 
achieved utilizing this approach. 

SOFTWARE DESCRIPTION 

The operation of the Bus Link is controlled by the soft
ware, which resides in 8K words of RAM. The software can 
be partitioned into three main blocks: 

a. Terminal handler. 
b. Controller. 
c. Comparator processor. 

Terminal Handler 

The terminal screen is partitioned into two areas (see 
Figure 4)-the dynamic and the static area. The static area 
is used to display the status of the processor and the status 
of the Bus Link. Commands are entered by the user in a 
form-fill-out fashion and interpreted only when the user exits 
this area. The dynamic area can be used for all control 
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Figure 9-The hardware subroutine vs. conventional implementation. 
··ASM" stands for, Algorithmic State Machine. 3 
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commands, for displaying the status of memory and regis
ters, and for the content of the trace buffer. The terminal 
handler routine also loads and stores programs in the car
tridge tape unit. 

Controller 

The controller part is the supervisor of the entire system. 
It is composed of interrupt-driven routines which answer 
demands from either the terminal or the various hardware 
blocks in their assigned priorities. The controller is also 
capable of self-diagnosing the system once a failure is sus
pected. 

Comparator Processor 

As described earlier, the preparation of the data to be 
stored in the comparator RAMs is done by the software. 
Since setting a breakpoint could be done while the UUT 
processor is running, a powerful algorithm was developed 
to minimize the required time to process the breakpoint 
data. The algorithm can be described as follows: 

I. Retrieve the breakpoint word. 
2. Form a mask word which is a copy of the breakpoint 

word after all the don't care bits (x) are marked as 
"O"s, and all the actual bits (" I" or "0") are marked 
as "I "s. 

3. Form a compare word which is a copy of the break
point word when all the don't care bits are modified to 
"O"s and the actual bits are left unchanged. 

4. Prepare a table in which the address of the table cor
responds to an identical breakpoint word (256 entries 
for eight-bit word) and the content of each address 
carries the following data-O: =(equal), I: >(greater 
than), 2: <(less than). 

5. Each address of the table must be ANDed with the 
mask word and compared with the compare word. The 
data of each address reflects the result of the compar
ison I, 0 or 2 (stands for =, >, <). 

6. For the high byte RAM refer to Table I. Select the 
desired row for the condition specified (=, =1=, <, >, 
< =, > =) and change each entry of the table prepared 
in (5) to the corresponding bit format described in -Table 
I (word-by-word table lookup). 

TABLE I.-Lookup Table for the Comparator's RAM Data 

Hi Byte Low Byte 

Condition =,0 <,2 >, I =,0 <.2 >, I 

I. 0 0 0 0 
2. "* 2 2 0 2 
3. < 0 0 0 
4. <= 0 0 
5. > 0 2 0 0 2 
6. >= 0 2 0 

2 = compare: I = carry: 0 = doesn't compare 

7. Store the new table in the high byte comparator RAM. 
8. Repeat Steps 2 through 6 for the low byte RAM and 

use Table I for the same task. 
9. Store the new table in the low byte comparator RAM. 
The following is an example of using the previous algo-

rithm for preparing the data for a four-bit compare word (see 
also Table I). 

Step I-Compare to ~ 10XO 
Step 2-Mask word: 1101 
Step 3-Compare word: 1000 
Steps 4,5-

table masked 
word mask word compare comparison table 

address word address word result data 
0000 1101 0000 1000 2 0 
0001 1101 0001 1000 2 0 
0010 1101 0000 1000 2 0 
0011 1101 0001 1000 2 0 
0100 1101 0100 1000 2 0 
0101 1101 0100 1000 2 0 
0110 1101 0100 1000 2 0 
0111 1101 0101 1000 2 0 
1000 1101 1000 1000 0 2 
1001 1101 1001 1000 I 2 
1010 110) 1000 1000 0 2 
1011 1101 1001 1000 2 
1100 1101 1100 1000 2 
1101 1101 1101 1000 2 
1110 I1Ql 1100 1000 2 
1111 1101 1101 1000 2 
Step #6---Compare with low byte of Table I, condition 6. 
Table data is shown on last column of previous step. 

CONCLUSIONS 

Four unique design contributions in the Bus Link have 
been presented in detail-RAM comparator unit, counter 
multiplexing logic, multitask sequential control circuit and 
a powerful algorithm to compute breakpoints. The above 
features when used together enable the designers to con
struct a very powerful development tool which is useful 
throughout the development cycle of any microprocessor
based system. The Bus Link is adaptive and can be easily 
modified to accommodate different systems. Each one of 
the previous features can also be used separately for differ
ent design applications to improve the cost-performance 
ratio. 

The Bus Link and the associated products are currently 
being used in many applications with great success. 
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A computer analysis tool for structural decomposition using 
entropy metrics 

by AARON N. SILVER 
Martin-Marietta Corporation 
Denver, Colorado 

INTRODUCTION AND BACKGROUND 

The decomposition of a metric space into successive subre
gions exhibiting distinctive characteristics is a problem of 
broad application. In pattern classification, the object is to 
partition the space such that pattern classes are easily sep
arable; that is, so that each subregion of the partition con
tains predominantly samples of only one class. In piece-wise
constant approximation the decompositions produced con
tain samples whose values are sufficiently close to allow 
approximation with a specified degree of accuracy. In defin
ing software it is quite often necessary to derive a structural 
model of a computer program which contains modules, i.e., 
partitions exhibiting the flow relations or connectivities 
among the elements (statements) in a program. The subse
quent analysis and manipulation of the structural model pro
duces useful design alternatives that enhance the operational 
qualities of the software generated in terms of program con
trol, logic paths, data transfer and other relevant software 
issues. The basic feasibility of this approach has been dem
onstrated by numerous investigators. 1- 5 However, the ana
lytical and diagnostic tools for performing structural decom
positions require further refinement and development. For 
example, the metrics usually used6,7 for defining the topol
ogy of a given software structure are primarily single attrib
ute measures. Although the entropy metric proposed in this 
paper is metrizable in terms of its hypergraph representa
tion,S the extension to a multi-attribute unique formulation 
is, as yet, elusive. This is because an all-purpose problem
independent metric space places unrealizable constraints on 
the structure it proposes to define. Thus, as Koontz et al. 9 

point out, even when a metric is given and a siructure weB 
known, the notion of neighboring points can not be rigor
ously defined for finite point sets from a computational point 
of view. since the simplest Euclidean distance measure must 
be scaled by a factor indicating its own respective distance 
to the nearest neighbor in order to avoid overlapping and 
ambiguous regions. Although conceptually, the construction 
of a neighborhood and the determination of the limit point 
of a sequence of real numbers is a widely used idea, a more 
fundamental requirement for metrizable hyper-spaces is that 
of specifying the existence of a limit point of a set. The 
resultant necessary and sufficient conditions for identifying 
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metrizable spaces is given by Hausdorff. 10 However. equiv
alent normalizations and the use of discrete semi-metrics 
over a restricted space have precluded some of these inher
ent problems in the quest for such a unique, multi-attribute 
metric. Thus, the primary emphasis is to obtain realizable 
decompositions using readily-implementable metrics, as well 
as focus upon suitable partitioning alternatives in terms of 
identifying mathematically consistent criteria for structural 
decompositions. 

Figure 1 indicates the application of several useful metrics 
to well defined problem areas. In this respect, it should be 
observed that the determination of the "correct" metric 
properties to be abstracted is largely an experimental proc
ess. This process involves two broad and interrelated ques
tions. The first of these concerns the investigation and clas
sification of the various concrete realizations, or models, 
which one may encounter. This entails the recognition of 
equivalent models, as is done for isomorphic groups, graphs, 
or congruent geometric figures, for example. In turn, this 
equivalence of models is usually defined in terms of a one
to-one reversible transformation of one model onto a metric 
space. This equivalence transformation is so chosen as to 
leave invariant the fundamental properties of the models. 
Typical examples are the rigid motions in geometry, the 
ismorphisms in group theory, etc. At the extreme end of the 
spectrum, Figure 1 includes the non-metric measures of a 
Calhoun distance as discussed by Bartels et al. l1 This dis
tance measure utilizes only the ordering of points along each 
dimension of the space. The basic concept for measuring 
the distance between two points is to imagine them as op
posite vertices of a hypervolume whose sides are parallel to 
the axes of the space. The distance is basically the fraction 
of all points which fall into this hypervolume and its exten
sions. The Calhoun distance is invariant to transformations 
which preserve the order of the points along the measure
ment axes. One kind of transformation to which the Calhoun 
distance is not invariant is an orthogonal rotation. Still an
other non-metric measure is the Lance and Williams12 ratio, 
which was developed as a generalization of the Czekanowski 
or Dice coefficient measure. 

The second broad question in studying structural decom-
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APPLICATION AREA 

I. STRUCTURAL NETWORK PROBLEMS 

1. Non-Directed Graphl 

2 eo Direct~d Graphl 

3. Structural.Connectlvlty 
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s. Geometric Graph' 
• 

6. Hamiltonian Cyclel 

II. FREE FORM STRUCTURES 

1. Vertex Connectivitiel 

2. Edge Progrellionl 

III. OTHER SPECIAL PRr'IlT .... ~ 

1. Stel-ner Problem 

2. Parallel Configurationl 

IV. NON-METRICS 
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b) 

c) 
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Figure I-Application of metric spaces to graphs. 

position as exemplified by topologized sets involves consid
eration of transformations more general than one-to-one 
equivalence transformation. The condition that the transfor
mation be one-to-one and reversible is dropped and one 
retains only the requirement that the basic structure is to be 
preserved. The homomorphisms in group theory illustrate 
this situation. In topology, the corresponding transforma
tions are those that preserve limit points. 

METRIC SPACES, ENTROPY FUNCTIONS AND 
GRAPHS 

It is convenient to establish a mathematical basis for map
ping a structure. i.e .. graph representation onto a metric 
space (particularly an entropy metric space). so that sub
sequent decompositions may be rigorously analyzed. The 
following concept of a metric space and its associated to
pology enables the investigator to identify a potential metric
based decomposition strategy, as well as formulate effective 

quality measures for the overall structure based upon a 
metrizable function; i.e., in this case the entropy function. 

Metric spaces 

A set X of elements x, y, z, ... is called a metric space 
if each pair x, y in X is assigned a non-negative number d(x, 
y) (called the distance from x to y), satisfying the following 
conditions: 

I. (identity axiom) d(x, y)=O, ifx=y; otherwise d(x, y»O 
2. (symmetry axiom) d(x, y)=d(y, x) 
3. (triangle axiom) d(x, y)+d(y, x)~d(x, z) 

It is clear that d(x, y) is a function of s, y; it is called the 
metric in X. A function having Properties 1 and 2 but not 
Property 3 is called a "semi-metric." If Property 3 is re
placed by 

3'. Max{d(s, y), d(y. z)}~d(x, z) 
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then a function with Properties 1, 2 and 3 and 3' is called an 
"ultra-metric," since 3' is considerably stronger than 3. 

A topology may be introduced in the metric space X by 
taking the neighborhood basis of the point xoEX to be the 
set of all open spheres with center Xo. It is easily verified 
that Axioms 1-3, for a neighborhood basis and the separation 
axiom (i.e., every pair of distinct points in X have disjoint 
neighborhoods) are satisfied so that X is indeed a Hausdorff 
topological space. In this case, the topology in X is defined 
by the metric d(x, y)~ Thus, a topological space is said to be 
.. metrizable" if a metric can be introduced in X which de
fines a topology in X, coinciding with the initial topology. 
Furthermore, a mapping of a metric space X into the metric 
space X' is said to be isometric if it preserves distances, 
i.e., if the distance d(x, y) between any two points x, yEX 
equals the distance d(x', y') between their images in X'. 
Clearly, an isometric mapping is a homeomorphism. Two 
metric spaces X, X' are said to be isometric if there exists 
an isometric mapping of X onto X'. Obviously, isometric 
spaces are homeomorphic. From the viewpoint of metric 
space theory, two isometric spaces are considered to be 
essentially the same. 

Entropy functions 

Consider the sequence Z={Zt, Z2' ... , Zn} of random 
variables defined on some metric space, i.e., a probability 
metric space with measure P. Let the entropy function H(Z) 
be denoted by 

H(ZJ, ~, ... ,Zn)= L P(Z) log2P(z) 

and let Pi equal the values assumed by the random variables. 
Thus, 

n 

H(Pt, P2, ... , Pn)~H{(Pi)}~- L Pilog2Pi 
i=t 

Let the set z={I, ... , n} be partitioned into two disjoint 
subsets {it, i2, ... , ik}={'T/} and {jt, j2' ... ,jn-k}={O,,} 

For simplicity 

let X=X{'T/}={Xit , Xi2 , ... , Xik} 

and Y = Y{O,,} = {Yjt, Yj2, ... , Yjn=k} 

also let x and y be the values assumed by the random 
variables X and Y. 

Thus, X and Yare finite non-empty sets such that 
{S}~X x Y, and 

Sx: {y I (x, y)ES} for xEX 

and 

Sy: {x I(x, y)ES} for yEY 

Property I-The conditional entropy is non-negative 

H(x I y)~O, or H(y I x)~O 
Property 2-The joint entropy is given by 

H(x, y):5H(x)+ H(y) 

Property 3---Combining 1 and 2 above 

where 

H(x, y)=H(x)+ H(y I x)=H(x)+ R .. (Y) 

=H(y)+H(x) I y)=H(y)+H~.(x) 

H(x I y)=Hix) and H(y I x)=Hx(Y) 

These three properties satisfy the conditions for a metric 
stated in the previous section. 

Graph structures 

A graph G =(V, E) consists of finite set of vertices V, and 
a finite set of edges E (adjacency) which is symmetric and 
irreflexive. 

G=(VJ, Et) is a subgraph of G if Vl~V and Et is the 
restriction of E to Et (some authors call Gt a vertex-g~ner
ated subgraph). The complement of G is a graph GC=(V, EC) 
with the same vertex and adjacency defined: for x, yEV and 
x*y, then x EC y~-x E y (any pair of distinct vertices are 
adjacent in exactly one of G and GC). 

A path v, to Vn is a sequence of edges (Vb V2), (V2, V3), 

... , (Vn-t> vn). If all vertices v;, l:5i~n are distinct, the 
path is simple. A graph is connected if there is a path be
tween any two distinct vertices. A bridge is an edge (v, e) 
that is in every path for v to e. 

A tree is a connected graph, where any two distinct ver
tices are joined by a unique simple path. A spanning tree of 
G is a subgraph containing all vertices of G. 

In a weighted graph, every edge e has a number W(e) 
called its weight. If T is a set of edges such as a spanning 
tree, the weight of T is IeEt (e). 

Using the preceding three sections dealing with metric 
spaces, entropy functions and graph structures, a hyper
grapht3 may be defined on an entropy metric as follows: 

Denote the hypergraph by Gil =(X, 8) such that 

8=(Ey)yEY, Y is a finite set Sy 

and 

UyEy{Ey}=X, X is a finite set Sx 

Then for GIl> f(H) is given by 

where EjnEj*O 
or 

Here I X I denotes the number of vertices in the metric space, 
while the connectivities (if they exist) are given by I Ejn Ej I. 
Thus the hypergraph Gil is defined on the metric H. 
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DERIVATION OF THE DECOMPOSITION 
CRITERION 

Consider an arbitrary partition of the space {S} into sub
sets {Sl' S2, ... , Sn} such that {ST}n{S'T}=O, and Un 
{ST}={S}, Let the information contained in {S} be represented 
by the entropy function H{S} as previously defined. Thus, 
the information or entropy contained in {ST} taken separately 
is I {H(ST}' Except in the case where there is no interaction 
at all between the subregions (i.e., statistical independence) 
the expression I H{(ST)} will be larger than H{S} only be
cause some information (entropies) will be counted more 
than once. This difference is commonly called the "redun
dancy" and is given by the difference between the two 
expressions: I {H(ST)}- H(S). It is a measure of the strength 
of the connectivities. Thus, one may write for two subre
gions x and y 

H(x:y)=HmaX<x, y)-H(x, y) 

As the space is partitioned into another subregion denoted 
by w, expressions for the redundancies may be easily ob
tained as follows: 

H(y: w, x)=H(y:x)+Hx(Y:w) 
lH(y: w, x)=H(y:w)+Hw(Y:x) I 

By adding ±H(y: x) and regrouping terms 

H(y: w, x)=H(y:w)+H(y:w)+H(wxy) 

where H(wxy) =Hw(Y: x) - H(y: x) is a composite entropy 
term. As the space is partitioned further into n regions, the 

Figure 2-Decomposition using entropy metrics. 

general expression for the redundancy criterion becomes 

- H(Yl : Y2 : ... , Yn) 

- H(xl : X2 : ... , xn) 

The minimization of this expression constitutes the decom
position criterion. Of course, each of the terms in the pre
vious equation can be expanded to examine individually all 
of the simple redundancy terms, plus the various composite 
terms. To extremize these equations constitutes a formida
ble task mathematically, i.e., analytically, since the func
tional forms must be explicitly stated and may involve com
plex expressions. However, some heuristics concerning 
feasible alternative metrics are under consideration, utilizing 

1.01 SET 101 z 3 5 

102 SET 102 1ft 15 

103 SET 103 S 9 21 

104 SU 104 10 11 19 20 

105 SET 105 13 1-. 

106 StT 10~ 10 11 19 

101 SU 107 4 11 22 

101 SET 10. ~ 16 11 18 ZZ 

09 StT 109 8 12 

Figure 3-Hierarchical recombination. 
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•• CWSfU DIAGRAM • .. partially-ordered binary data sets, corresponding to reduced 
suographs of adjacency matrices. For some limited cases 
of almost trivial consequences it appears technically feasible 
to obtain decompositions which are both analytically elegant 
and computationally executable. 

YAWl OF COEFnCIENT 

0.0 

ROW 2 l. 
ROW 3 I"'--~.,.I-I. 
ROW 13 .,.-----1 I-
ROW I ----I ... .1 
ROW 12 ---1---1 

ROW t I. RESULTS OBTAINED 
ROW II 1.,.-1-1 
ROW I ---I 1 
ROW·1I I. ... I 
ROW t7 1----1-1 
ROW 14 I. ... 1 I. 
ROW 15 1---1 I- I 
ROW 11 I. .1 1 
ROW 20 1-------1 1- -I 
ROW • I . I 1 
ROW 11 1---.. 1-1. I 1 
ROW 10 .... -."!"PI .1- a • 1 r 
ROW , -----1 «-I 

I 
ROW 4 I. 0.. • .. 1 
lOW tl 1 ... -1-----1 I 
ROW 2t ~-I .•. .. I -& 
lOW 22 -~-I 

ANDREU PROB. - DIST/ADJ MATRIX (WEICR'l'ED) 

The computer program used in this investigation for ob
taining partitions based on the entropy metric is a modified 
combination of the hierarchical decomposition scheme given 
in Reference 14 and the recent work of Andreu15 at MIT. 
Figure 2 shows a non-trivial sample problem suggested by 
Andreu, with the super-imposed disjunctive and non-dis
junctive solutions. Figure 3 represents the corresponding 
hierarchical recombination. The subgraph "strength" is a 
function of the ratio of connectivities that do exist to those 
that can exist. This parameter is controlled by the investi
gator, and thus the decompositions produced yield couplings 
which are problem-dependent. Heuristically, this amounts 
to picking a suitable a priori ratio without specifying whether 
it interacts with other nodes. 

THI DISTANCI-FUNeUON IlATRlll U FOMIID 

DIAGONAL ILIMENTS ARI UNALTIRID 

NO ROTATION II PIR,.,..D 

Figure 4-Agglomerative clustering solution (Andreu problem) . 
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SILVER PROB. - HOLtl ATDUUTE COMBINED METB.IC (WEIGHTED) 

THE CISTANClcFUNCTION MATRIX IS F9AMED 

DIAGONAL ELEMENTS ARE UNALTERED 

NO ROTATION IS PERFORMED 
Figure 5-Agglomerative clustering solution (Silver problem-semi/metric). 
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An independent solution, using agglomerative clustering, 
is given in Figure 4. 16 The solution was obtained using the 
matrix of '"core sets" given by Andreu. 

The use of a multi-attribute semi-metric is illustrated in 
Figure 5. Here, selected segments of rows and columns in 
the distance adjacency matrix were constructed and the 
dendrogram drawn based upon the poly the tic clustering al
gorithms. At this point, no attempt was made to analyze in 
detail the particular structure of the various solutions ob
tained. 

However, some general observations may be made. For 
example, weighting the variables by the variance accounted 
for resulted in a rather sharp delineation of the clusters when 
the distance function is used as the basis for grouping. The 
utilization of correlation matrices had the effect of producing 
larger, but fewer overall clusters. In both cases the varimax 
rotation produced the '"best"' parsimoneous solution in 
terms of simple structure taxa. From empirical results the 
covarimin criterion was found to produce primary factors 
which were highly correlated; the bi-quartimin is an inter
mediate position but tending toward the lower correlations. 
(See References 17-26). 

The conclusions emanating from this study will be de
ferred to a more comprehensive paper27 dealing with the 
details of the methodology. The intent of this investigation 
is to lay the foundation for decomposition using entropy 
metrics. without resorting to excessive rigor. while at the 
same time report some interesting results. 
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Interactive modeling systems for managers-Semantic 
models should underlie quantitative models 

by RAND B. KRUMLAND 
Bay/or College of Medicine 
Houston, Texas 

INTRODUCTION 

This paper is concerned with helping managers build ~nd 
use quantitative models in problem-solving, especially 
models that are built and used on on-line, interactive com
puter systems. Quantitative models playa large part in many 
of the activities of managers of a wide variety of organiza
tions. Indeed, several companies currently find it profitable 
to provide managers with the service of access to models 
and modeling systems which have increasing levels of so
phistication. 2,8 However, such models are not used as widely 
as they could be. 6 Certain concepts are beginning to emerge 
which will hasten the development and deployment of more 
sophisticated interactive modeling systems which may im
prove this situation. Here we define one such concept-that 
of a semantic model-and discuss its place in an advanced 
interactive modeling system. 

THE CONCEPT OF A SEMANTIC MODEL 

Neither a semantic model nor the facilities for construct
ing one exist in any modeling system available today for 
general use. The proposition that a semantic model would 
be a useful adjunct to a modeling system rests on new ideas 
about the process of creating quantitative models. 1,4,5 Con
sider the following simple description of a business situation: 

U. S. Robot is a corporation which produces and sells 
robots. Robots are produced out of bodies and central 
processing units. The bodies are fabricated out of sheet 
metal and rivets, and the central processing units are 
purchased from Texas Instrument. In 1977 sales of robots 
were 17 million dollars. It is expected that sales this year 
will increase by 12 percent, direct costs will increase by 
to percent, and overhead will increase by six percent. 

Suppose that the president of U. S. Robot would like to 
know what profits will be in 1978 in light of the expectations 
that are given. The following quantitative model would help 

89 

him answer that question: 

PRO FIT( 1978) = SAL ES( 1978) - COSTS( 1978) 
SALES( 1978) = SALES( 1977)* I. 12 
COSTS(1978)=DIRECT-

COSTS(1978)+OVERHEAD( 1978) 
DIRECT -COSTS( 1978)= DIRECT -COSTS( 1977)';' I. 10 
OVERHEAD( 1978)=OVERHEAD(1977)>i: 1.06 

Although this is a simple model, an analysis of what under
lies its production can yield important insights. 

Let us presume that a consultant has produced this model 
for the president, has implemented it as a computer program 
and stands ready to use it to answer the president's question. 
What must be true of the consultant and what must he have 
done to have produced the model? First, he must obviously 
know many things-most importantly, he must know some
thing about business in general and about manufacturing 
firms and processes in particular; he must know how busi
ness activities are measured and characterized; and he must 
know how to structure sets of algebraic equations into a 
useful model. Second, he must have learned the information 
that is given in the brief description of U. S. Robot. Third, 
he must know how to apply elements of the first set of 
knowledge to what he learned about U.S. Robot. In addi
tion, of course, the consultant must know much more
many "common sense" things, natural language, how to 
write or type, etc.-but we have enough to work with for 
the moment. 

A diagram of what the consultant knows is shown in 
Figure I. Of everything the consultant knows-of his entire 
knowledge base-only the quantitative model is ever made 
known to the computer. Yet it is those other things that the 
consultant knows that have allowed him to be successful in 
formulating the model of his client. This brings us to the 
first major point of our argument-if the power of the com
puter is to be brought to bear on the model building task, 
then it will have to contain more elements analogous to 
those that make up the consultant's knowledge base than it 
currently does. If the computer is to act more like the con-
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QUANTITATIVE MODEL US ROBOT 
OF U.S. ROBOT . . 

(MANUFACTURIN~ BUSINESS 

BUSINESS CHARACTERISTICS 
AND MEASURES. 

Figure I-What the consultant must know in order to construct the quanti
tative model. 

sultant, it will have to "know" about more things than 
simply the quantitative model. 

If we want to build such additional knowledge into a 
computer system, where do we start? More common sense 
would certainly be a candidate as would a natural language 
facility. However, the diagram of the consultant's knowl
edge points to a different answer-the quantitative model 
that the consultant built is part of his knowledge about U.S. 
Robot. That model is obviously linked in many ways with 
the other knowledge about U.S. Robot; in fact, it is an 
abstraction of other parts of that knowledge. This brings us 
to the second major point of our argument-based on our 
observations, that other knowledge about the current situ
ation-about U.S. Robot-would be extremely useful to 
have inside the computer and the capability to capture and 
use it is the best next thing to try to add to a modeling 
system for a manager. So in terms of the diagram in Figure 
I, if the current boundary of a computer's knowledge is 
congruent with the circle delineating the quantitative model, 
then we would like to push that boundary out to encompass 
more knowledge about the current situation. 

A semantic model is just that knowledge of the current 
situation; it includes the quantitative model plus other quan
titative and non-quantitative information. For the consultant 
it is everything he knows about the current situation; for a 
computer system then, a semantic model is the quantitative 
model plus other information that the system obtains and 
stores that is not necessarily part of the quantitative model 
but that represents parts of the situation for which that 
model is built. 

We have stressed the static relationships between seman
tic models and other knowledge: the place of semantic 
models in the modeling process is important to understand 
as wel1. Any model is an abstraction of the things that it 
models, a representation of them in some other terms. In 
the process of formulating the quantitative model, the con-

sultant first constructed his semantic representation, and 
then through abstraction processes he derived the quanti
tative model from it, as depicted in Figure 2. Thus, if the 
computer is going to aid substantially in the task of formu
lating a quantitative model, it, too, will have to have the 
semantic model as a basis for its actions. 

It is not uncommon for users of computer systems to wish 
that those systems were smarter, more intelligent, or "not 
so stupid. " Minsky argues that one hallmark of an intelligent 
system is that it contains "internal models" of its environ
ment and of the various objects, including itself, within that 
environment. 13 Our semantic models could serve as more 
effective internal models for quantitative modeling systems 
and therefore form the basis for more intelligent action in 
general part of which could be improved modeling capabil
ities. 

BUILDING A SEMANTIC MODEL 

A semantic model is a representation of something in the 
real world and as such it needs a representational system. 
Researchers in the fields of artificial intelligence and knowl
edge-based systems have developed methods to represent 
knowledge in computer systems-these include production 
systems, semantic nets, frames, conceptual dependency 
structures, etc. No single best way to represent knowledge 
has been found, but there are clearly several facilities that 
a representation system must provide and many problems 
that it must deal with. To be a useful basis for a quantitative 
model for a manager, a semantic model will at least have to 
contain representations of entities, actions, events, values 
and relationships in a business environment. Thus we would 
expect to be able to represent such things as a corporation, 
company or other business entity, the products or services 
that a company produces or provides, the different func
tional and organizational parts of a company such as a di
vision or the marketing department, activities that the or
ganization engages in such as selling, employing, producing 
and advertising, characteristics that a business entity uses 
to measure its activities such as sales, costs, prices and 
wages, etc. In addition, a representational system will need 
to deal with relationships that link these entities, actions and 
characteristics together. 

A simple example of a representation will illustrate some 
of these concepts. Figure 3 illustrates part of an encoding of 
the description of U.S. Robot in a diagram rendering of a 
frame system, i.e., a system which uses the ideas of frame 
theory for representation. The diagrams are similar to those 
used by Winston in explaining frames. 18 In Figure 4 an 

REAL WORLD 
ENTITI ES AND 
SITUATIONS 

Figure 2-The model building process. 

QUANTITATIVE 
MODELS 



encoding is given in a version of a knowledge representation 
scheme called OWL which is under development at MIT's 
Laboratory for Computer Science. 17,10 

In spite of the simplicity of this description, it presents 
some difficult problems in representation. For instance, 
there are two activities that U.S. Robot engages in-pro
ducing robots and selling robots-and a natural presumption 
is that the robots they sell are the same ones that they 
produce. Also, note that the quantity "sales of robots" is 
a measure of the selling robots activity. Such links must be 
encoded in the semantic model and the representation 
scheme must therefore provide ways to handle them. 

The nature of the representations given point to many 
aspects of a semantic modeling system which have not been 
addressed. First, semantic models are not very useful with
out programs which "know" how to use them to help in 
modeling. In fact, the knowle-dge that such programs effe-c
tively contain must be part of any semantic modeling sys
tem. Second, a semantic model is realized as a set of links 
and pointers to a larger structure within the system. For 
instance, the fact that U.S. Robot is a CORPORATION 
cannot be represented unless the concept CORPORATION 
has been previously defined in some way to the system. In 
addition, the fact is not useful unless some other general 
facts about CORPORATIONs are known which can be used 
to help understand and deal with this particular corporation. 
The concepts and links that make up the semantic model of 
the current user's situation are really only the tip of an 
iceberg, or rather the tip of a much larger knowledge base. 
A semantic modeling system that rests on only a limited 
knowledge base could be useful, but a larger knowledge 
base will provide greater power, flexibility and increased 
usefulness for the quantitative modeling task. 

! E'\JTITY FRAME I 
~NTITY: CORPORATION 
i NAME: U.S. ROBOT 
I BUSI NESS ACTI VITY: ( AND, , ) i 

I 
t t 

ACTION FRAME I ACTION FRAME I 
ACTION: SELL ACTION: PRODUCE 
OBJECT :--

I 
OBJECT:T 

DESCRIPTOR:, 

r L r t 
CHARACTERISTIC FRAME I ENTITY FRAME J 

CHARACTERISTIC:SALES ENTITY: ROBOT 
VALUE: 17,000,000 DOLLARS PHYSICAL PART ~~ 
TIME: YEAR 1977 PHYSICAL PART:, 

~ 
I 

W 

ENTITY FRAME I ENTITY FRAME I 
ENTITY: BODY ENTITY: CPU 

Figure 3-U. S. Robot description in a frame encoding. 
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[US-ROBOT = (CORPORATION ")] 

[ (PRODUCE ROBOT 1 = (ROBOT 1)) 
AGENT: US-ROBOT 
OBJECT: ROBOT 1 ] 

[ (SELL ROBOT 1) 
AGENT: US-ROBOT 
OBJECT: ROBOT 1] 

[ ROBOT 1 
PHYSICAL-PART: [ROBOT-BODY = (BODY ROBOT 1)] 
PHYSICAL-PART: [ROBOT-BRAIN = (CPU ROBOT 1) ] ] 

[ SALES-ROBOTS-77 = ((SALES ROBOT 1) (TIME (YEAR 1977))) 
(DESCRIPTOR (SELL ROBOT 1)) 
VALUE: (DOLLARS 17000000) ] 

[SALES-ROBOTS-78= ((SALES ROBOT 1) (TIME (YEAR 1978))) 
(DESCRIPTOR (SELL ROBOT 1)) 
[ ((BE (GREATER-THAN SALES-ROBOTS-77)) 

SALES-ROBOTS-78) 
BY: (PERCENT 12) ] ] 

Figure 4-U.S. Robot description in an OWL encoding. 

USING A SEMANTIC MODEL 

A semantic model serves as the repository for information 
that the user has transmitted to the system. Thus, for the 
quantitative modeling system it provides a focal point for 
interaction with the user; it provides a means for the system 
to "remember" what it has learned and it serves as the 
"raw" data from which the parts of the quantitative model 
can be constructed or parameterized. In a future modeling 
system quantitative models could be more automatically 
constructed from semantic models; however, the current 
genre of interactive modeling systems could also benefit by 
the incorporation of semantic models. 

Techniques have been developed for automatically for
mulating appropriate quantitative expressions and relations 
from semantic structures. 1,4,9,5 For example, in our sample 
of a semantic model given previously the English language 
phrase 

U.S. Robot's profit in 1978 will be 12 percent greater than 
in 1977 

if rendered in a semantic model as 

[«BE (GREATER-THAN 
[PROFIT-US-ROBOT-1977 

=«PROFIT US-ROBOT) 
(TIME (YEAR 1977»)))) 

[PROFIT-US-ROBOT-78 
=«PROFIT US-ROBOT) 

(TIME (YEAR 1978)))])] 

can be translated automatically into an equation such as 

profit( 1978) =projit( 1977)* 1. 12 
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For a more difficult example, consider generating an equa
tion for the quantity "cost of producing robots" which de
composes that cost into other costs. Cost is a measure of a 
process here that has an output, two inputs-CPUs and 
bodies-and undoubtedly involves some direct labor and 
overhead. Therefore the cost equation must be generated 
from the semantic descriptions of the process, of the de
scriptions of the inputs and outputs and other information 
that must be gleaned about labor quantities and rates as well 
as overhead and overhead allocation procedures. 

Individual terms and equations is the easy part of auto
matic model generation; producing a model that is complete, 
well formed and which addresses the manager's problem is 
significantly harder. General mechanisms have been identi
fied which make up any procedure for producing an entire 
model. 5 They include concept production, or finding parts 
of the semantic model to be recast for the quantitative 
model, integration or fitting, or completing concepts so that 
they correctly reflect the user's current situation and equa
tion t!eneration. or generating variables and the appropriate 
set of algebraic connectors and relations for a well formed 
equation. A modeling system that is at all automatic will 
incorporate these mechanisms to a degree. 

Semantic models would also be useful adjuncts to existing 
modeling systems. They could be used to enable more nat
ural command languages, to allow more flexible command 
structures, to provide for more intelligent and intelligible 
prompts for data acquisition and model parameterization, to 
satisfy a broader spectrum of naive and sophisticated users, 
etc. For instance, when a system prompts for and receives 
the value of a variable. a semantic model would provide a 
general place to store it allowing it to be more readily ac
cessed by other parts of the system. Or. a semantic model 
could allow model variables to be more readily related to 
the manager's meaning for them: if there is a variable 
"SLS(77)" in the quantitative model and the user refers to 
it as "our sales in 1977," through the use of a semantic 
model the system could "understand" the reference. A se
mantic model is a tool that could facilitate the addition of 
many important features to a modeling system which would 
make it much more useable and used. 

CONCLUSION 

We have discussed the notion of-a semantic model as an 
emerging concept in the design and construction of inter
active modeling systems for managers. In fact, a semantic 
model will underlie any interactive system which is intended 
to have users who are not obliged to program the computer 
at a low level. A detailed discussion of how to build a more 
general semantic modeling facility and how to integrate it 
with a quantitative modeling system must be deferred until 
better examples of such systems have been constructed and 
tested in use. Progress in this area will depend on progress 
in the relevant areas of AI and on the ability of builders of 
practical systems to take the work and results from that field 
and develop them for practical use. In the meantime systems 

like Management Decision System's EXPRESS and Mea
dor's PROJECTOR remain the most advanced practical sys
tems in this regard 8 ,11 and Malhotra's work on a prototypical 
system demonstrates many things that can be done. 7 The 
primary utility of a semantic model for current system build
ers is as an organizing concept and a conceptual focal point 
for design considerations that to date has been lacking. 
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Modeling regular, process-structured networks* 

by BRUCE w. ARDEN and HIKYD LEE 
Princeton University 
Princeton, New Jersey 

INTRODUCTION 

An interesting strategy to exploit micro-technology is to 
interconnect microcomputers (i.e., microprocessor with 
local memory) in a regular dataflow network of low degree. 
The network is regular so that each computer is a similar 
"building block" with regard to the number of connecting 
data buses. The number of buses is small not only because 
microcomputers are inherently limited in their bus capacity 
but also because many incident buses lead to switching and 
"memory port" complexity, which is difficult to handle by 
micro-circuits. Such complexity is one of the reasons why 
shared memory "mainframe" computers are relatively ex
pensive. In essence, the low-degree, regular network ap
proach replaces the hard-wired switching with programmed 
message-passing. Since the processor node will not be fully 
utilized by productive computing, some of the capacity can 
profitably be used for such message-handling. 

This paper is concerned with an illustrative comparison 
of performance of two such data flow networks. The first is 
not regular and it models a particular process structure in 
which all messages are passed to the intended destination 
within a single step. For convenience, we call this network 
aprocess network. In the second, the same process structure 
is mapped onto a regular network (of degree 3) with the 
result that a number of multi-step message paths are intro
duced. The comparison shows the effects on system utili
zation and response time of the additional message handling 
overhead introduced in the regular network. 

PROCESS STRUCTURE 

Current. multi programmed systems are usually described 
as process-structured. The processes that are enabled for 
execution are assigned system resources on the basis of 
some scheduling procedure. An alternative architecture, 
which arises from the development and low cost of micro
computers, is to assign each system and user process to a 
microcomputer (which may have attached 110 devices) for 
the entire life of the process. The use of a process becomes 
a matter of sending data to the appropriate process node, 

* This work has been supported by NSF Grant OCR 74-18655. 
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and ultimately, receiving the response. This is a data flow 
network in the sense that the messages enable the resident 
processes to carry out their specific computation. It is not 
unreasonable to think about networks of hundreds of micro
computers but, of course, the geometry of a regular network 
and the mapping of the process structure onto the regular 
network become important considerations.! 

In a system of processes, some are alltonomolls and some 
are subordinate. That is, some spontaneously generate a 
message and others are passive in the sense that they only 
react to the receipt of a message and are otherwise idle. 
Clearly, user processes are in the first category and most, 
but not all, of system processes are in the second. For 
example, system processes such as archiving, and spooling 
routines can act autonomously. 

Each autonomous process and the subordinate processes 
with which it communicates and for which it provides a 
workload comprise a chain with one circulating message. It 
is assumed that chains, even if they are indistinguishable 
with respect to their workload demands, cannot be com
bined in the process system, since they cannot be corre
spondingly combined in the regular system due to the dis
tinct locations of each autonomous processes resulting from 
the 1-1 mapping of the process structure onto the regular 
network. Hence, the number of chains is equal to the num
ber of autonomous processes and each chain contains one 
circulating message. This situation is quite different from 
the models of conventional, tightly-coupled systems where 
the number of processes is generally larger than the number 
of processors. 

In the language of queueing theory, the circulating entities 
are usually called customers and a specific customer class 
is identified by the distinguishing workload it presents at 
each service center. To preserve the data flow orientation, 
this concept is here called message class. Circulating mes
sages are processed at each node in the process system. In 
the regular system, they are, in addition, simply retransmit
ted at some nodes without being processed locally. 

UNDERLYING MODEL FOR PROCESS SYSTEM 

As the preceding suggests, the underlying model for the 
process system is a closed network of queues model with 
mUltiple chains and different classes of messages. There is 
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a finite number of processors indexed 1, 2, .... M and a 
finite number of circulating messages numbered 1, 
2, ... , N, where N is equal to the number of autonomous 
processes in the system. Obviously, we have N<M. Since 
each autonomous process defines a chain, we assume that 
there is a finite number of different classes of messages 1, 
2, ... , R, where R is equal to the number of autonomous 
processes, i.e., R=N. Let N j denote the number of mes
sages in chain i (i= 1, 2, ... , R), which is equal to one for 
each chain i. Assuming that the messages in chain i are of 
class i, Ni also denotes the number of class i messages in 
the system. 

The behavior of circulating messages is determined by its 
service time distribution at each service center and transition 
pattern through the network. The service time distribution 
of messages is assumed to be general with rational Laplace 
transformation6 and the queueing discipline at each service 
center is assumed to be LCFS-PR (Last Come First Served
Preemptive Resume). The transition of circulating messages 
is described by the transition probability matrix Q={qtris}, 
-.vhere qiris denotes the probability that a class r message 
completing its service at service center i will require its next 
service at service center j in message class s. Since class r 
messages are confined in chain r, we have 

qiris=O if r=l=s(r, s= 1,2, ... , R) 

We define the state of the model for the process system as 
the number of messages in each class at each service center. 
Thus. the state S is written as 

where 

Then a feasible state of the model satisfies 

M 

N=(N), N 2 , ••• ,NR )= L Yi' 
i=) 

where 

M 

N j = L nij=l (j=l, 2, ... ,R) 
i=1 

and 

R 

N = L N i =constant. 
i=1 

The nir denotes the number of class r messages at service 
center i. 

UNDERLYING MODEL FOR REGULAR SYSTEM 

The regular system is obtained from the process system 
by mapping the process structure onto a regular network. 
Hence. as in the process system. there are M processors 
and N circulating messages in the system. We assume that 
a specific netw0rk geometry anci tht> mapping for the regular 
system are given. 

Since the adjacency relationship between processes in the 
process system is not, in general, preserved due to the 
mapping, transition of class r messages from service center 
i to an adjacent service center j in the process system might 
take a multi-step path in the corresponding regular system. 
We add R new message classes i, 2, ... , R to our model 
for the regular system to distinguish messages being retrans
mitted, i.e., if a class r message at service center i makes 
a multi-step transition to service center j for the next service 
request, then we assume that there exists class r message 
arrival at each intermediate service centers along the path. 
Hence, each service center in the regular system is pre
sumed to execute a local, system or user process (which 
may involve the support of a connected I/O device) as well 
as simple message-passing task for inter-node communica
tions. 

We assume that the shortest path between service center 
i and service center j in the regular system is used for the 
inter-node communication. Furthermore, if there exists 
more than one such path. then each shortest path is used 
with equal probability. For convenience, we call this routing 
scheme as SPEP (Shortest Path with Equal Probability) rout
ing scheme. 

The service time distribution of messages is assumed to 
be general with rational Laplace transformation and the 
queueing discipline at each service center is assumed to be 
LCFS-PR (Last Come First Served-Preemptive Resume). 

The transition probability matrix P= {p iaJl3} (a, f3 = 1 , 
2, ... , R, 1, 2, ... , R) describes transition of messages 
and can be derived for the regular system from the transition 
probabilities given in the process system as follows. Let 
A;(0(3 denote the relative rate of class f3 message arrival at 
node j from node i and class a. Aillil3 corresponds to the 
average number of times a class a message at node i visits 
link (i, j) to become a class f3 message at node j. Let e ir 
denote the relative arrival rate of class r messages at service 
center i in the process system, where i= 1, 2, ... , M and 
r= 1, 2, ... , R. The e ir are obtained up to mUltiplicative 
constant from the following set of linear equations: 

M R 

e is = L L e Irq iris' 
i=) r=) 

where j= 1, 2, ... , M and s= 1, 2, ... , R. Then, for each 
node pair (x, y) in the process system such that e xr>O and 
q xryr>O for some r(r= 1, 2, ... , R), the total relative ar
rival of messages at node Y from node x in the regular 
system is e xrq xriJr and the fraction which passes through an 
edge (i, j) in the set of edges of the shortest paths from 
node x to node y is given by 

exrqxryrP(x, i: x, y)P(i, j: x, y), 

where P(x, i: x, y) denotes the probability that a message, 
which has completed a local service at node x and is making 
a multi-step transition to node y for the next local service 
request. will pass through node i. and P(i, j: x, y) denotes 
the probability that the message which is passing through 
node i will make a transition to an adjacent node j under 
SPEP rOllting scheme. Note that P(x. i: x. y) and PU. j: x. 



y) are given by 

P(x, i; x, y) 

and 

# of shortest paths from nx to ny which include ni 
total # of shortest paths from n x to n y 

P(i, j; x, y) 

# of shortest paths from n j to n y 

# of shortest paths from ni to n y . 

For the special case of fixed routing, where a specific single 
path is used for the inter-node communication between node 
x and node y, we have 

P(x, i; x, y)=P(i, j; x, y) 

_ r 1 if ni and nj are on the path. 
- 1 0 otherwise. 

... 

Considering all the node pairs (x, y)(x, y=l, 2, ... , M) in 
the process system such that e xr>O and q xryr>O for r= I, 
2, ... , R, we get ~!0f3(i, j=l, 2, ... , M and a, 13=1, 
2, ... , R, i, 2, ... , R) for the regular system. Then, the 
transition probability matrix P={Pia,if3} is obtained from: 

M 

P i<r.if3 = Aiwf3 / .2 (Aiakr + Aiakr ), 
k=1 

where a, f3=r or r, r=l, 2, ... , Rand i, j=l, 2, ... , M. 
We also get Aia, the relative arrival rate of class a messages 
at service center i in the regular system from: 

M 

~a= .2 (Akria + Akria), 
k=1 

where a= r or rand r= 1, 2, ... , R. Since each chain r has 
two different message classes, i.e., class r and class r, we 
denote the number of class r messages in chain r as N rr and 
class r as N rr' Then, for each chain r, we have 

Nr=Nrr + Nrr=l. 

The state of the model for the regular system is defined as 

S=(Yl' Y2, ... ,Yw), 

where Yi=(nO, ni2, ... , niR, nil' ni2, .. , niB)' Then a 
feasible state of the model satisfies 

• M 

. , NR )=.2 Yi' 
i=1 

where 

M 

Nj=NjJ+ N jj= .2 (njj+ na)= 1 (j=I,2, ... ,R), 
i=1 

R 

N= .2 Ni=constant 
i=1 

and 
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PERFORMANCE MEASURES 

The underlying models for both process and regular sys
tem are, in essence, special cases of the general queueing 
network model developed by Baskett et al.,3 where the equi
librium state probabilities are shown to have the following 
product form: 

M 

P(S)= C(N) II fi(Yi), 
i=1 

where 

for regular system 

The normalization constant C(N) is obtained by equating 
the sum of these products, over all states, to unity, i.e., 

M 

C(N)-l= .2 II fi(Yi)' 
all fl'asihll' i=l 

statl'S 

The direct approach to compute the normalization con
stant yields exponential growth in the number of algebraic 
operations. However, efficient computational techniques 
have been developed by several authors. 2•9 which are, in 
essence, generalizations of Buzen's result. 5 

Let Pi(yd denote the marginal probability that the service 
center i is in state Yh where Yi=(nil, ... ,niR) for the 
process system and (nil' ... , niH, n{j, ... , niB) for the 
regular system. Then, we have 

all statl's 
S.t. noell' i 

is in statl' Jli 

The mean number of class 0 messages at service center 
i, E(ni8) is given by 

11'8 

E(ni8)= .2 { .2 
k=1 all stall's IIi 

s.t. nill=k 

where 0= 1, 2, ... ,R for the process system and I, 
2, ... , R, 1, 2, ... , R for the regular system . 

The utilization of service center i by class 0 messages, PifJ 

is obtained from: 

Pill= .2 p.(,.)nil) 
all I Y I ni 

states .vi 

We define the mean response time of class r(r= 1, 
2, . . . , R) messages, T r as the time for the class r message 
leaving an autonomous node in chain r after finishing its 
local service request to revisit the autonomous node in class 
r after finishing its service requirements in the rest of the 
system. Assuming that node i is the autonomous node in 
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chain r, the total number of the messages in the rest of the 
system is N r - E(nir)' Applying Little's resule to the rest 
of the system, we have 

T = Nr-E(nir) 
r , 

Vir 
where Vir is the mean departure rate of class r messages at 
service center i. 

EXAMPLE 

A IO-node example of process system with necessary pa
rameter values is shown in Figure I. There are three auton
omous nodes, I, 2 and 3, each of which comprises a chain. 

This example, though not based on an actual system, is 
intended to represent a simple hierarchical operating system 
structure with different types of task requirements. Chain 1 
represents compute-bound batch processing. Node 1 reads 
a program either in card image format via spool controller 
or from disk file via file system. Similarly, it produces output 
to spool controller or for storage in the disk file. Chain 2 
and Chain 3 both represent interactive processing of high
level file operations, where Node 2 and Node 3 represent 
user terminals. It is assumed that Chain 2 represents rather 
long file operation compared to Chain 3. 

The regular system, onto which the process structure in 
Figure 1 is mapped, is shown in Figure 2. Transition prob-

_1- & _1_:1: _1_ It .002 
#Jo4Z #Jo 43 

4. SUPERVISOR 

CHAIN I "( CLASS I ) 

& { 1,4,5 •... ,IO} 

_I = .002 5. SPOOL CONTROLLER 
/-LSI 

7. READ 

I -&.020 
iJ. 71 

8. WRITE 

I 
--=.020 
#JoII 

9. DIRECTORY 
ACCESS 

I I 
-- -= ---= .0.0 
#Jo.l #Jon 

TRANSITION PROBABILITIES 

CHAIN I CHAIN 2 

q4111 =.50 q'I041 =.40 q4222 = .05 

C4ISI =.40 q6191 =.30 q4262 = .95 

C4~1 =.10 Q62JoF·30 q.242 =.40 

q5141 = .50 ~292 =.30 

QSJ7J =.25 ~102= .30 

Q5181 =.25 

Figure I-Process system. 

_1- • _1_ -= .005 
lJ.az #Jol3 

10. FILE 
ACCESS 

I --:I: .O~O 
1'10,2 

-' = .020 
1'10,3 

CHAIN 3 

q4333 = .05 

q4363 = .95 

Q~3:·40 

Q'393 : .30 

Q&3103= .30 



abilities obtained by the method explained in the preceding 
section are also shown for Chain 2 as an illustration. In the 
network shown, there is a unique shortest path for each pair 
of nodes. This particular geometry is known as a (3,2) Moore 
graph,l which is also called a Peterson graph. In this case, 
the mapping is intentionally non-optimal so that appreciable 
message-passing overhead is introduced. In an optimal as
signment, the process network adjacency would be pre
served to the greatest extent possible. The mean service 
time of messages in Classes 1, 2 and :3 is assumed to be 
equal at each service center and is given by: 

1 1 1 - = - =.OOly sec and - =.002y sec, 
~fi ~d ~ci 

9. DIRECTORY 
ACCESS 

6. FILE 
SYSTEM 
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where i=l, 2, ... , 10 and y is a multiplication factor. The 
statistics obtained on performance measures for the process 
system is shown in Table I. Table II shows corresponding 
statistics for the regular system with y= 1. Comparison of 
the result shows the effects of message-passing overhead on 
service center utilizations and mean response time of the 
system. For example, the productive utilization of Service 
Center I is decreased by =7 percent, while overall utilization 
is increased by = 1.5 percent, and the mean response time 
is increased by = 12 to =25 percent for each chain due to 
the message-passing overhead. 

Figures 3 and 4 show the effects of changing the mean 
service time for the messages in class 1, 2 and :3 on service 
center utilization and mean service time of the system. 

8. WRITE 

7. READ 

- .001 ysec I 
ll'--' == .002ysec 
rl2 

i = 1,2, ...• 10 

TRANSITION PROBABILITIES FOR CHAIN 2 

PZZ42 = l.0 P'ZI~ = .40 P'Z32 = 1.0 P~i'2:: .50 

P42Z2 =.05 P&232 =.30 P1oz7i =1.0 Psllz=·50 

P421~=·95 P127~ =.30 PI14Z=·50 PT&z=·50 

PI2Iz =.50 PrilOZ =.50 

Figure 2-Regular system. 
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TABLE I-Model Statistics of Process System 

a) Overall statistics 

Node 2 3 4 6 7 9 10 

PI .389 .814 .718 .()99 .062 .173 .156 .156 .104 .254 
E(n l) .389 .814 .718 .102 .062 .193 .156 .156 .111 .300 

b) Detailed statistics 

Node 2 4 5 6 7 8 9 10 

class 
I. .389 0 0 .078 .062 .049 .156 .156 .029 .058 

Pie 2. 0 .814 0 .007 0 .039 0 0 .023 .093 
3. 0 0 .718 .014 0 .085 0 0 .051 .103 

I. .389 0 0 .080 .062 .055 .156 .156 .031 .071 
E(nle) 2. 0 .814 0 .007 0 .044 0 0 .025 .109 

3. 0 0 .718 .016 0 .094 0 0 .054 .119 

c) Mean response time (sec) 

Node 3 

0.031 1.143 0.787 

T ABLE II-Model Statistics of Regular System 
(')'=\) 

a) Overall statistics 

Node 3 4 5 6 7 8 9 10 

PI .395 .778 .704 .092 .059 .163 .169 .145 .098 .269 
E(nl) .414 .778 .725 .096 .059 .181 .175 .145 .104 .323 

b) Detailed statistics 

Node 2 4 6 7 8 9 10 

class 
I. .362 0 0 .072 .058 .045 .145 .145 .027 .054 
2. 0 .778 0 .006 0 .037 0 0 .022 .089 

Pie 3. 0 0 .680 .014 0 .081 0 0 .049 .097 
L .007 0 .005 0 0 0 .005 0 0 .029 
2. .012 0 .009 0 0 0 .009 0 0 0 
3- .013 0 .010 0 .001 0 .010 0 0 0 

I. .372 0 0 .074 .058 .051 .148 .145 .029 .066 
2. 0 .778 0 .007 0 .042 0 0 .024 .107 

E(nle) 3. 0 0 .690 .015 0 .088 0 0 .051 .116 
L .007 0 .009 0 0 0 .006 0 0 .035 
2. .017 0 .015 0 0 0 .010 0 0 0 
3- .018 0 .010 0 .001 0 .011 0 0 0 

c) Mean response time (sec) 

Node 2 

0.035 1.433 0.911 
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CONCLUSION 

A network of queues model for process-structured sys
tems is discussed and analyzed by using solution techniques 
recently developed. The comparison of process system and 
regular system shows the effects on system performance 
measures of the message-passing overhead introduced when 
the process system is mapped onto the regular system. 

Although the issues concerning the mapping of a process 
system to a regular system and specific geometry for a 
regular network of low degree are not covered in this paper, 
they are vital considerations in considering the effects on 
system performance of the message-passing overhead. 

The analysis technique presented could be used to design 
networks to meet specific performance requirements. Given 
a particular geometry for the regular system, for instance, 
the analysis technique can be used as a tool to determine a 
mapping which gives preference to a certain set of autono
mous processes in terms of the mean response time or other 
performance measures. 
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The City of New York's integrated financial management 
system-From mandate to working system in 18 months 

by SALLY J. RUPERT 
Office of Computer Plans and Controls 
New York, New York 

The development and implementation of New York City's 
Integrated Financial Management System (lFMS) is prece
dent-setting in both its scope and its purpose. It is an ex
cellent example of the successful implementation of a large
scale computer system, a 20-million-dollar investment using 
the combined efforts of five consulting firms, into a complex 
organization, a municipal bureaucracy with 250,000 employ
ees in 109 agencies and with a constantly shifting executive 
management. This paper describes how it was accomplished 
in terms of the development philosophy, the building of the 
system and, finally, the post-implementation environment. 

Before beginning the presentation of how IFMS was im
plemented, a little history lesson seems in order. In 1975, 
when the fiscal crisis was a full-blown reality, the Federal 
and State governments issued a mandate that, unless New 
York City could put its financial reporting house in order 
and establish sufficient spending controls, no further monies 
would flow from their coffers to those of the City. It was 
from this mandate that the project named IFMS sprung. It 
was to be managed by two co-directors, David Woodbridge 
representing the then Mayor, Abraham Beame, and Steven 
Clifford representing the Comptroller, Harrison Goldin. The 
co-directors were given support and backing and authority 
which crossed both mayoral- and comptroller-directed func
tions and agencies. The City also made a substantial budget 
commitment to the project. The co-directors were charged 
with the awesome task of establishing standard municipal 
accounting practice throughout the City, creating entirely 
new central and line agency financial reporting procedures, 
establishing City-wide training programs, designing and im
plementing a fourth-generation computer system which 
would fully integrate the Budget, Accounting and Payroll 
activities of the City of New York and creating a line agency 
to operate, maintain and further develop the new computer 
system. They had exactly 18 months in which to complete 
the project. 

And so began the creation of IFMS. 

THE PROJECT DEVELOPMENT PHILOSOPHY 

Large-scale projects setting a new direction and involving 
many designers and decision-makers tend to get bogged 
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down in bureaucratic red tape and development indecision. 
In order to alleviate this major stumbling block to successful 
implementation, the co-directors of IFMS developed a phi
losophy for getting the job done rapidly and correctly, then 
implemented it and stuck with it throughout the project life. 
That philosophy consisted of the following three premises. 

The first premise said that today's business world, in both 
the private and the public sector, is changing with such 
rapidity that, if a project is not completed within a relatively 
short time span, it is outdated before it is impleme~ted. That 
includes not only the method of doing business, but also the 
data processing tools to be used and the decision-makers 
who would use them. Therefore, no project should have a 
life cycle of more than 24 months. It is not worth doing if 
it will take longer, no matter what the size of the effort. The 
longer the project takes the higher the risk of obsolescence 
as it nears completion. And so, IFMS was planned for 18 
months. 

A second premise was that different methods of manage
ment and control should be used as a project progresses in 
its life. During the developmental portion of the project the 
"czar" approach was used; that is, the co-directors had final 
say in all decisions needed to be made by the City. This 
alleviated the bottleneck of soliciting decisions from various 
managers, sometimes with digressent goals. As the project 
drew close to implementation the management control ex
panded to a task force including members from all devel
opmental areas, but, with the co-directors still holding final 
vote and veto power. Then, after the implementation, the 
project was placed under standard project control for main
tenance. In terms of how management knew what they were 
controlling, here also a methodology was applied that was 
suited to the stage in development. Progress was monitored 
in two ways, deliverables and status reporting. The latter, 
status reporting, forced the interdependencies among all par
ticipants in the project to be addressed and honored. 

The third premise said that the project could only succeed 
through the intelligent use of people. High-level technical 
people with functional and hardware/software computer spe
cialties were dedicated to the General Design phase, at 
which time the project strategy was set. That strategy in
cluded not only the functional aspects of the design but also 
the high-order technical concept. Throughout the project, 



104 National Computer Conference, 1979 

resources were allocated to get a specific portion of the job 
done. No matter what may have occurred in one area of the 
project, resources allocated to other portions were left in 
place. That kept the project moving while outside resources 
were brought in to shore up the limping portion. 

THE BUILDING OF IFMS 

IFMS was constructed and implemented through the ef
forts of over 200 people, including not only City personnel 
but also five consulting firms working under the direction of 
the IFMS co-directors, David Woodbridge and Steven Clif
ford. Each consultant performed a specific function during 
the development and all were brought together in a single 
effort during the final testing and implementation. American 
Management Systems designed and programmed the 
Budget, Encumbrance Control and Accounting subsystems. 
Bradford National Corporation designed and programmed 
the Payroll subsystem. Ernst and Ernst were the developers 
of line agency procedures to be used in accordance with the 
new Charter requirements implemented through IFMS. 
Touche Ross set the new accounting principals and devel
oped central agency organizations and procedures for op
eration under the new Budgeting, Accounting and Payroll 
methods. And finally, the Urban Academy developed op
erations manuals explaining how to complete input forms 
and forms flows, then trained City personnel in the use of 
the new system. Training for IFMS was and is still being 
done by the Urban Academy and consists of budget, ac
counting and payroll manual procedures, budget and ac
counting management, data analysis and on-line inquiry sys
tem use. 

As work on IFMS began, project personnel worked con
currently to develop both the computerized portion of the 
system as well as all the attendant procedures and processes. 
Design efforts and all other efforts were coordinated, to 
ensure that all development was consistent, through the co
directors and their staffs and, as implementation drew near, 
a task force composed of members of each consulting firm 
as well as members of New York City's Office of Manage
ment and Budget, Comptroller's Office and Department of 
Personnel. It was chaired by the IFMS co-directors. The 
task force was embodied with decision-making powers 
which were to be exercised whenever design or procedural 
criteria was to be determined. Without the co-directors and 
the task force with authority concept, IFMS could never 
have been implemented in those 18 months. In an organi
zation as complex and bureaucratic as New York's munic
ipal government. decentralized development and decision
making would have made the decision-making process im
possible. The single goal of the co-directors was to imple
ment IFMS. The common goal of the task force was imple
ment IFMS. 

Let us now turn our attention to the building of each 
component of the system. The systems design for the com
puterized budget and accounting portion of IFMS took ten 
months with a team of 10-40 analysts working. at times. 
around [he clock. The general design document totalled 32 

volumes, covering only the budget and accounting subsys
tem in detail and giving a specification only for the Payroll 
subsystem. A decision was made to phase Payroll in at a 
later date because the risk management factor was far 
greater than the other two subsystems. The Payroll subsys
tem design consisted of 17 volumes and was produced by 
seven analysts. Based on this design, which was approved 
by the co-directors and their staffs, programming began. 
Throughout the programming stage of development, approx
imately 30 analysts and programmers contributed to the 
effort. Structured programming techniques were used to 
build the thousands of modules which comprise the system. 
Each program was walked through both at the unit level 
then again at the integration level. 

Large-scale use of macros and common modules added 
speed to the implementation and centralized all common 
functions, thereby making maintenance easier. Master Ta
bles were developed for all variable non-data base infor
mation. A complete subsystem was built to support the 
maintenance of these tables and common entry routines 
were built to access them from application programs. 

Even before applications programs and technical support 
software were being created, another technical team was 
about the task of selecting the hardware configuration upon 
which the system would operate. The initial hardware con
figuration was in place in time for program unit testing. That 
configuration consisted of fourth-generation IBM hardware 
and a terminal network to support remote testing. Two 
CPUs were devoted to budget and accounting deVelopment 
while the Payroll subsystem was built on one CPU. 

The software configuration consisted of IBMs-IMS used 
to manage IFMS's data bases, VS 1 as an operating system, 
Data Analyzer to support report generation, and ROSCO E 
to support on-line testing. 

IMS was chosen because it provided the speed in devel
opment needed to support the extremely tight project sched
ules. VS 1 gave IFMS a stable proven operating system. 

While system design and programming efforts were going 
forward, two other teams were about the task of defining 
central and line agency procedures and organizations. Both 
procedures and organizations were built to interact with the 
IFMS computer system. At this point in the development, 
communication flowed across teams from the technicians to 
the procedural analysts and back. 

Once procedures were defined and inputs and outputs had 
been designed, work commenced on the development of 
procedures manuals and management manuals. So, another 
team, the manual procedures analysts, was added to the 
horizontal communications process. 

Also, during development a team of consultants defined 
the agency which would be responsible for the operation of 
IFMS. This definition included the organization and its basic 
operating procedures. Approximately seven months before 
implementation, this agency, the Financial Information Ser
vices Agency (FISA), was formed and its managers selected. 
These managers, with the aid of the consultants, then com
menced to hire and have trained both the technical and the 
operations personnel that would man the agency. 
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As IFMS was nearing the final stages of program testing, 
the task force formed an implementation group to coordinate 
the systems test and to make last-minute decisions. 

Six weeks before July I, 1977, the officially committed 
implementation day, a final integrated test began. The test 
consisted of two parts, a structured test with pre-determined 
test cases, from which agency personnel coded input, and 
an unstructured test in which situations were defined and 
central and line agency personnel interpreted the new pro
cedures and submitted input accordingly. During the un
structured test, members of the task force were invited to 
submit their own test situations and input. The test was 
designed to exercise all newly developed procedures, man
uals, organizations and of course, the computer system. 
FISA, the IFMS operating agency, acted in its full capacity 
during the test, thereby checking out its operating proce
dures, even including such things as courier routes and 
pickUp and delivery points. A test coordinator was named 
who became the central focus for problem reports, which 
were completed by personnel finding errors in any of the 
processes, procedures, or the computer output. The test 
coordinator monitored problem resolution and reported to 
the task force at its weekly meetings. In this final step before 
implementation, line and central agency personnel became 
directly involved with the system so that on day one they 
were prepared to face the system, thus alleviating some of 
the trauma of an entirely new operating process. 

As stated earlier in this paper, the Payroll subsystem 
implementation lagged the balance of IFMS implementation 
by about one year. And so, the system which went live on 
July 1, 1977 contained an interim computerized Payroll in
terface. When the Payroll subsystem began implementation 
in March 1978, it followed much the same process as the 
rest of IFMS. There was one major difference, however, in 
the implementation method; Budget and Accounting went 
live with all City agencies at once while Payroll was imple
mented on a phased basis, a few Agencies at a time. 

POST-IMPLEMENTATION-THE OPERATIONAL 
ENVIRONMENT 

As soon as implementation of the basic system was com
pleted, IFMS moved to an operational status. FISA, the 
agency created to operate IFMS, took control gradually over 
the first year of operation. First, the day-to-day document 
processing, then job running, then job integration and pro
duction linking and library functions moved to City control. 
Concurrently with the operations shift, the FISA program
ming staff was walking through and accepting responsibility 
for the applications programs. Finally, the data bases and 
technical software were turned over to the FISA data base 
and systems programming area. The transition was gradual 
and the consultants remained in place until City personnel 
felt comfortable with their ability to maintain and operate 
this very large and complex computer system. 

In order to support this system, FISA has employed over 
200 data entry, operations, systems, programming and an-

alytical personnel. With the planned growth for IFMS to 
incorporate other Funds and other financial applications that 
number will increase again before another year passes. 

IFMS has indeed accomplished its primary objectives, to 
provide the City of New York with single-source financial 
reporting, to provide an auditable record of every transac
tion processed by it, to incorporate Charter revisions into 
the City's financial processes, to increase the credibility of 
its financial information. 

Agency personnel learned very quickly to complete input 
forms wiih very low error rates. Forms continued to flow 
and financial functions improved. The City's personnel were 
indeed capable of being completely retrained in a short time 
frame, a task thought insurmountable by many of the sys
tem's early skeptics. 

The system has expanded steadily since its implementa
tion. New development demands have been high. The com
munications network has grown substantially. Inquiry pro
cessing alone has multiplied to at least ten times its start 
volume with a weekly inquiry rate of 60,000 transactions. 
Two million-plus documents will flow through IFMS oper
ations area this year. Requests for new information from the 
system outstrip available resources. If use of a system is a 
determinant of the success of the system, then IFMS was 
a roaring success. 

To support the rapid growth of IFMS, FISA's director 
has had to reconfigure the hardware environment to higher
powered CPUs, substantially more disk space, and higher
speed, added capability, printing hardware. The network 
has grown to over 400 on-line terminals. FISA has also 
installed a large tape library controlled by Tape Management 
System to facilitate its large volume of tape-stored data and 
its export data subsystem which interfaces with other City 
computer systems. Disk storage expands again and again to 
support the data availability requirements of the City. Cen
tral agencies have demanded on-line availability of historical 
information about every document processed during a fiscal 
year and even beyond in many cases. FISA's hardware/ 
software specialists continually review new products in the 
marketplace in order to keep FISA and consequently the 
City of New York at the forefront in latest generation equip
ment. 

AND IN CONCLUSION ... 

In conclusion I would like to state again those premises 
which drove the method of development and implementation 
of IFMS and those elements of sponsor support which, when 
combined, made the Integrated Financial Management Sys
tem of The City of New York a successful large scale com
puter system running in a complex organization. 

Premises appiied 

• The world is changing so rapidly that projects not com
pleted in a relatively short time span are obsolete before 
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implementation. Therefore, no project should go over 
two years in development. 

• Different methods of management should be used at 
different points in the project progress, from "czar" in 
the beginning to task force in the end. 

• Projects can only succeed through the intelligent use of 
people. 

Action taken 

• Project functional and technical concept were set early 
in the General design. 

• Hardware configuration and operations support func-

tions were established during the General design phase 
so that the operating environment was ready when test
ing commenced. 

• Both developers and sponsors took part in design eval
uation. 

• Both developers and users performed final testing. 
• Sponsors provided almost unlimited financial support 

and waived decision-making to IFMS co-directors. 

Obviously the Federal and State governments' mandates 
added additional impetus to getting the job done, but, in the 
end: it was the method, not the mandate, that put IFMS on 
the air. 



Recurrent dilemmas of computer use in complex 
organizations 

by ROB KLING and WALT SCACCHI 
University of California, Irvine 
Irvine, California 

COMPUTER SYSTEMS AS TOOLS 

Computer technology is usually spoken of as a problem
solving tool,33.3t; a helpful device used to ease the burdens 
and expand the flexibility of information processing. In this 
narrow sense, computer technologies have in fact increased 
the capabilities of people and organizations to carry out 
complex calculations, manipulate large sets of data and ac
cess data from geographically remote locations. 

These capabilities generate a corresponding and some
times unexpected set of problems for many computer users. 
People who use computer systems for a variety of daily 
tasks must adjust to changes in computer systems, vie for 
adequate priority for their computing jobs, develop backup 
procedures when automated systems fail and periodically 
search for skilled programming staff. As a result, the very 
technology which was supposed to be an unobtrusive aid 
and time-saver can become very attention-demanding and 
a source of continual low-level conflicts. The "problem solv
ing instrument" is capable of generating its own special 
problems. 

Easing problems of computer use has been a traditional 
concern of computer scientists and many solutions have 
been suggested and tested. Most of these solutions, how
ever, have assumed that computing is a fairly straightfor
ward dialogue between a hypothetical user and a machine. 
Focus may rest on one party or another. Thus, hardware
based solutions which focus on expanding the flexibility and 
reliability of the machines emphasize components such as 
new peripheral devices, distributed computing, micropro
cessing, operating systems protection schemes or computer 
graphics. Likewise, software-based soiuiions which focus 
on easing the cognitive burdens of the user include new 
programming languages, data base manipulators, or more 
"natural" interfaces. Lastly, managerial solutions empha
size the organizational arrangements within which computer 
based-services are developed and provided. Involving users 
in systems design, for example, is often recommended to 
ensure that system specifications are appropriately devel
oped. 16.21.27 

Analysts can suggest sensible solutions to difficulties that 
computer users face in dealing with computing by segment
ing the world into manageable chunks. Named topics such 

107 

as "ease of access," "software reliability" and "resource 
allocation" are well known labels for identified problems. 
This is the traditional "divide and conquer" strategy of the 
engineering disciplines and helps make complex production 
problems manageable. Solutions to these identified prob
lems, however, reduce only a selected portion of the burdens 
faced by computer users. As computing use grows in com
plexity, and the number of identified "problems" and "ef
fective solutions" increases, the likelihood that they can all 
be well handled by any group of service providers or instru
mental users diminishes. 

The routine use of computer-based services increasingly 
brings people in computer-using organizations into a com
plex set of dealings with the technology, its providers and 
other actors. These social relationships are both a source of 
service for computer users and a locus of difficulty. Factor
ing these relations into independent "problem areas," each 
with its own technical and managerial strategies for solu
tions, doesn't help a user comprehend the way in which 
computing is often problematic. First, no profession or ser
vice provider is usually capable of meeting all the needs and 
wants of its clientele. Secondly, the problematic aspects of 
computing arrangements often interact. Problems are best 
factored when their components interact weakly. In the case 
of computing, choices of which technology to use, who to 
staff it with, how to maintain it, and how to pay for it are 
often highly coupled. These are clearly social decisions as 
much as they are technical decisions. The social aspects of 
computer use are commonplace, but nevertheless they are 
poorly understood. 

Our studies of computer use in a variety of settings 16- 24 

indicate that many users often have recurrent problems in 
obtaining computer services smoothly. Management ana
lysts are quick to suggest that when users have difficulties, 
there must be a clearly identifiable management problem 
which needs a systematic solution. 7•9 In most of the organi
zations we have studied, managers and staff have developed 
sensible strategies for dealing with many aspects of com
puting: but problems still recur. It is easy to blame recurrent 
problems on "poor managers," "stupid users" and "inad
equate technology." Such sentiments are too loaded with 
blame and faith in simple solutions (i.e., "education," 
"more core") and too short on analysis to be uniformly 
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convincing. Simply identifying new "problems" and sug
gesting new, independent" solutions" may even add to the 
burdens of attention faced by computer users. We suggest 
a new approach to help understand why computer use is 
often problematic. 

We find it helpful to expand the traditional view of com
puting from that of a "tool" to that of a "package." The 
tool metaphor, which is very appropriate for simple, indi
vidually controllable devices, such as hammers and pocket 
calculators, suggests that the item denoted may be used with 
few attendent problems. Of course, some tools may be more 
graceful, effective and reliable than others; but in most cases 
one can safely focus on the device to understand its use and 
operation. 

In contrast, the package metaphor describes a technology 
which is something more than the physical device. In the 
case of computing, the package includes not only hardware 
and software facilities, but also a diverse set of skills, or
ganizational units to supply and maintain computer-based 
services and data and sets of beliefs about what computing 
is good for and how it may be used efficaciously. Many of 
the difficulties that users face in exploiting computer-based 
systems lie in the way in which the techology is embedded 
in a complex set of social relationships. 

Not only are most computer systems shared with other 
users, but programs and data are provided through several 
different social networks which often entail contact with 
different social groupS.20,26 This complex social setting in 
which computing is embedded makes computing a social 
object, and the use of computer-based services a social act. 

The primary thrust of this paper is to identify the recurrent 
aspects of the social world of computer users which are 
problematic for people who use computing to serve other 
ends. We have expanded our conception of computing as a 
potentially problematic '"tool" to computing as a social ob
ject. We will now explore some more specific consequences 
that this expansion reveals. We would caution that while we 
list a set of issues which are problematic for computer users 
and computer specialists, and advance some hypotheses as 
to their relative and absolute costs and importance, we in
tend this discussion to be an introduction to the bundle of 
issues which warrant further investigation, articulation and 
conceptualization. 

THE SOCIAL CHARACTER OF COMPUTING 

Our analyses of computer use are based upon several 
empirical observations and theoretical claims: 

I. Many people (instrumental IIsers) who use computing 
hope it will help them be more effective in their work. 
The substance of that work may have little connection 
with computing: computer use is a means to further 
some other end. 

2. In many important situations in which computing is 
used there may be many different people who are in
terested in utilizing the same computer-based data or 
reports. Th(:se p..;:uplc' (.ilil havt: Ji[feit'!!L unJerstand-

ings as to the capabilities of computing and indicate 
different interests in the uses of computer-based anal
yses. 

3. Much modern computing and most important auto
mated information systems are supported in settings in 
which several specialized groups provide the requisite 
computing services and data. 6,14,19,21,26 Automated in-
formation systems serve managers and organizational 
people who have little time or skill to carry out the full 
range of computational tasks to support their data use. 
Even skilled programmers rarely design, implement, 
test and maintain all the software they use while car
rying out their work. 

4. Users of computer-based services frequently report an 
array of difficulties in computer use. 22 Complaints us
ually focus upon aspects of computer use which are 
byproducts of the social arrangements in which com
puter-based systems are conceptualized, developed, 
provided and maintained. These problems rarely focus 
upon computing hardware, except when users believe 
there is too little of it or when some party allegedly 
chose less suitable equipment than might be available 
in the market. 

5. Computer-based services and information processing 
tasks are organized in vast array of distinctly different 
arrangements within and between organizations. 
Smooth computing use often entails the cooperation of 
distinct organizational groups and interests. 19,26 

6. We view organizations as patterned arenas for conflict
ing and cooperating interests. 8,35 We note there are 
often conflicts between the interests of participants 
who identify primarily with computing as their profes
sion or career interest, and those who identify with 
some other social world in which computer use is pri
marily an instrumentality. 23 These extremes are, of 
course, simplified since many participants align them
selves as specialists who mix computing and other sub
stantive interests. But the grounds for conflict of inter
ests remain similar. 

These observations encourage us to view much of com
puter use as a complex social phenomenon in which hard
ware and software plays an essential, but partial role. In 
fact. computer use can be expected to be particularly prob
lematic as the milieu in which it is embedded increases in 
social complexity. 

ISSUES IN INSTRUMENTAL COMPUTER USE 

Computing services are produced and consumed in work 
settings in which the participants take on specialized roles. 
The demands that instrumental users and computer special
ists make upon each other and of the technology hinge, in 
part, on their understandings of the appropriate role. ca
pabilities and limitations of computing. Typically, relations 
between service providers and their clients is problematic. 
Few service providers can meet all the wants of their clients 
or of [he organizational partic1pants to whom they are ac-



countable. Few clients have sufficient skill and interest to 
deal with technically skilled service providers on their own 
terms. 

Application development changes procedures and pro
cesses for users at various intervals which may be either 
relatively benign or disruptive. When instrumental users rely 
upon automated data systems, ensuring that the data pro
vided is of high quality (i.e., accurate and timely) is partic
ularly sensitive. Part of the social interaction around com
puting involves establishing and maintaining control over 
the various computing resources within the organization. 

Both specialists and users depend on the current state of 
software development practices to help construct reliable 
programs which are easy to operate and maintain. Similarly, 
computing creates special demands for the time and atten
tion of users. The social aspects of computer work and 
computer use play a large role in shaping each computing 
milieu, as does the particular technology in use. 

In Table I, we list the array of representative issues which 
we have clustered under the categories emphasized in the 
preceding three paragraphs. This set of issues has been 
selected because they appear problematic to instrumental 
users in studies we conducted in a variety of settings.16-24 
Some of the specific issues indicated in Table I are important 
to computer users in many settings; others occur infre
quently. Most of these issues should be easily recognizable 
since they are common in settings where there is extensive 
computer use. These issues are briefly examined in Appen
dix A to indicate how each one is a byproduct of the social 
elements of the computing package and how it can effect the 
quality of computer-based services. 

These issues do not exhaust those raised by the social 
nature of computing. But they do represent those social 
aspects of computing which strongly influence the patterns 
of computer use adopted by instrumental users. The relative 
importance of any of these issues is also dependent on the 
organizational setting where computing occurs. 
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THE ORGANIZATIONAL CONTEXT OF COMPUTER 
USE 

The actual difficulties experienced in using computing de
pend upon the interplay between both technical and orga
nizational arrangements. Consider, for example, the differ
ent impacts of data base management systems (DBMS) on 
the time to produce a program for a user in scientific and 
commercial settings. 

Computer specialists may assume that a scientist utilizing 
a DBMS will either carry out his own progamming or employ 
a skilled research assistant who is under his supervision. 
This is a result of the work organization of scientific labo
ratories in which each research team has dedicated research 
assistants to help carry out a variety of laboratory chores 
including data collection, reduction and analysis. If the sci
entist desires to change schedules or priorities in his use of 
the DBMS, he normally faces no bottlenecks in the process 
except the limitation on his own or assistant's time. Since 
he can regulate these alterations of priority, he is at most 
buffered by one queue from access to programming. 

A different situation faces the instrumental computer user 
in a commercial firm. In commercial firms, it is rare for staff 
to have their own programming assistants. Programmers are 
usually centralized in a pool, even in user departments and 
scheduled through a supervisor. The commercial user may 
thus be further buffered from the access to computing. He 
may have to negotiate with a supervisor, a special committee 
or a review board to achieve changes in schedules or prior
ities in dealing with a DBMS. Each of these parties has a 
separate queue of requests and demands with their attendant 
delays. Each such queue creates additional delays for the 
commercial user in gaining access to programming assist
ance. In practice, a person may wait much longer to get on 
the queue of a programmer than it takes to do the work. 

Even if a DBMS reduces the time required for a program
mer to write a given program, the time it takes for lIsers to 

TABLE I.-Common Issues in Instrumental Computer Use 

The Work Setting of Computer Use 
I. The concepts users and computer specialists have of their own work and 

the role of computing in it. 
2. The mutual perceptions of computer specialists and users. 
3. Differing responsibilities among computer specialists. 
4. Doing a '"good job" and being rewarded for it. 
5. Maintaining career mobility. 

Understanding the Role and Capabilities of Computing 
I. Learning about computing-what computers are good for. how their par-

ticular machine might be used. etc. 
2. Getting a computational task successfully completed. 
3. Dealing with computing/systems jargon. 
4. Getting adequate documentation for computer-based systems. 

Changes if! Computing .Arrangements 
I. Loci of change. 
2. Scope and rate of change. 
3. Formalizing change procedures. 

Attention 

Data Quality 
I. Collecting input data. 
2. Ensuring the correctness of processed data and analyses. 

Control Over Computing 
I. Control over the technology. 
2. Access to and control over expertise. 
3. Controlling the kinds of demands made by users. 
4. The '"values" sought after by those individuals and organizations which 

promote applications development. 
5. Developing and maintaining political support within the organization. 

Softll'are Development Practices 
I. Programming and design practices. 
2. Program testing. 
3. Software maintenance. 
4. Software documentation. 

I. The kinds of attention demanded by computing. 
2. The precision and detail demanded by computing. 
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get a given computing task completed depends upon orga
nizational arrangements. This example illustrates the way in 
which the social setting of computer use may influence users 
more than the technology in use. 

STRATEGIES AND RESOURCES 

The issues identified in this paper are representative of 
those that arise for many instrumental users and computer 
specialists in their daily encounters with computing. Im
proving the grace or ease with which computing is used 
hinges on coming to grips with these issues. This requires 
recognizing computing as a social object as much as it de
pends upon developing new software and new hardware. In 
addition, a major impact on groups using computing is the 
increased attention to information processing-its manage
ment and conflicts-that negotiating these issues demands. 
People's time, skills and organizational resources are in
volved in attending to these negotiations. The negotiation 
costs, in time, money, skills, foresaken opportunities, and 
sentiment borne by instrumental users may become a sub
stantial fraction (if not the largest) of the cost of a system 
during its life cycle. 

Computer specialists have been sensitive to some of the 
difficulties of computer use raised here: after all, they are 
commonplace. And computer scientists have been particu
larly adept at providing technical solutions for some of these 
difficulties. Generally, those technologies that diminish the 
"social size" of the computing package by decoupling in
strumental users from some of the groups upon which they 
depend may alleviate some of the burdens of computing. 
Thus, acquiring a minicomputer may insulate a group of 
instrumental users from demands for machine resources 
made by other groups. However, it doesn't diminish the 
difficulties of managing data and may even increase the 
difficulties instrumental users face in managing skilled staff. 

"Turnkey" installation of applications and hardware may 
reduce the instability of computing development. However, 
other technical improvements are more problematic from 
the perspective developed here. While advocates of data 
base management systems have stated objectives of making 
the development of ad hoc analyses easier for instrumental 
users. 2H

,29 the social complexity of the computing milieu 
should increase since new specialists (such as data base 
administrators) are often employed. It is empirically open 
whether the overall environment of data base management 
is easier or more difficult for instrumental users to negotiate. 
Similarly, software engineers often propose that develop
ment aids such as test data generators would help insure the 
correctness of programs. From our perspective, a test data 
generator, however carefully crafted, is another package 
subject to the recurrent social histories of computing pack
ages. 

Management and social analysts who identify difficulties 
of computing in the social milieu often propose organiza
tional reforms such as new pricing schemes or design dis
ciplines that emphasize user involvemenL 16,21,27 Such stra
tegies often resolve particular dilemmas of computer use in 

a specific setting, but they do not deal directly with the 
large, diffuse social elements that pervade the computing 
package. 

Our own field work in several large private firms and 
research laboratories indicates that effective strategies often 
entail large commitments of organizational resources. 
Chains of liaisons between instrumental users and comput
ing service providers facilitate multiple lines of communi
cation and smooth tensions between conflicting groups. Reg
ular meetings and redundant forms of communication ease 
coordination and minimize the likelihood of major slippages 
between the service providers and their clients. 

Technology-based strategies often require large resource 
commitments. We have seen, for example, one engineering 
firm which uses a large-scale computer for production ap
plications, and a similarly large computer devoted solely to 
software development so routine operations are unlikely to 
be interrupted. The point is that mitigating strategies which 
add more machine or staffing resources can add to the ex
isting complexity of a computing setting thereby potentially 
displacing one set of problems with another set of problems. 

In summary, technology-based strategies often miss major 
portions of the computing package that include important 
social relations and contingencies. In addition, the best mix 
of technology-based strategies and socially-oriented strate
gies for graceful computing can consume large resources, 
time and money. Since most computer using groups have 
limited resources, one should expect "budget strategies" to 
be the rule rather than the exception. Given constrained 
resources, some interests will be better served than others 
and some parties should be expected to face computing 
dilemmas routinely. The empirical prediction would be that 
any problem (such as data quality, response time, appropri
ate consulting or adequate documentation) should be trou
blesome for some minority of instrumental users in even the 
best managed setting of computer use. 22 

CONCLUSION 

Much of our account has focused upon the problems at
tendant in routine computer use. This is not because we 
believe that computing is a wholly troublesome technology. 
On the contrary, we believe that computer use often in
creases the information processing effectiveness and eases 
the work of many instrumental users.22 However, these 
gains often do not come gracefully or easily. Computer use 
is most troublesome when the necessary social resources 
(such as technical expertise, demands for time and attention, 
staff sentiment and control over computing services) are 
slighted or ignored when new computing arrangements are 
to be provided. 

From the analysis of the recurrent dilemmas of computer 
use presented in this paper, we draw the following conclu
sions: 

1. The computing tool metaphor displaces attention from 
the social dilemmas of computing by tacitly identifying 
advances in computing with advances in the technical 



sophistication of the equipment used. Moreover, many 
of the attendant difficulties in computing are not well 
predicted or understood by employing the tool meta
phor. 

2. Problems of computing vary with the particular com
puting technology in use and the organizational ar
rangements through which computing services are pro
duced and used. Hardware reliability is usually more 
salient in on-line systems than with batch systems. 
Allocation of machines and staff are typically most 
contentious when controi over each resource is cen
tralized. Staff highly sophisticatea in computing may 
provide the best technical assistance, but they are also 
the most difficult to interest in routine applications. 

3. Many of the problems experienced by computer users 
develop from their relationships within the "computing 
world. " The computing world is highly differentiated 
into specialty interests24 and organized to routinize the 
movement of innovations from producers, through ser
vice providers to instrumental users.23 Instrumental 
users face markedly more complex issues when they 
split their computing activities across equipment sup
plied from different "vendor worlds." Also, they often 
have little control over the pace at which small en
hancements or alterations are made in supporting soft
ware supplied by groups outside their organization. 

4. As technical advances in computer hardware and soft
ware simplify the technical problems of computer use 
faced by users, the social problems of computer use 
will become relatively dominant. Each of these prob
lems has associated costs. These costs are poorly 
understood and have yet to appear in the figures cited 
for total systems costS.3,13,25,38 

5. The social eiements of computing are typically under
estimated in proposals for new computing arrange
ments. Social resources such as time, attention, skills, 
information and inclination can be costly to acquire, 
utilize and maintain, but discounting their role in com
puting results in displaced organizational costs. For 
example, expert consultants and good system training 
aids are costly to provide. But when instrumental users 
cannot obtain needed assistance, they recurrently find 
computing use to be troublesome and uncertain. 

6. The package view implies that successful computer use 
depends on the organizational distribution of social and 
technological resources and how they are allocated or 
acquired. Successful computer-using organizations bal
ance their technological investments with explicit in
vestments in the social elements of the computing 
package. 

7. Currently, there are no simple or uniform solutions. 
Alternative computing arrangements which are pro
posed to solve certain individual problems can exac
erbate or manifest others if the social character of 
computing is disregarded. 

Computing is a problematic technology for many instru
mental users, in part, because it raises so man\" social issues 
which continually demand attention. We sugg~st that instru-
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mental users and specialists alike use the list of issues pre
sented in Table I as a diagnostic guide for assessing the 
impact of existing or proposed computing arrangements. As 
a checklist, Table I can help an analyst decide which activ
ities a new "solution" may alter, and which it may leave 
untouched. Table I can also help an analyst make explicit 
the rich set of social features which characterize the social 
milieu of complex organizations. 
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APPENDIX A-COMMON ISSUES IN 
INSTRUMENTAL COMPUTER USE 

The work setting of computer use 

The concepts users and computer specialists have of their 
own work and the role of computing in it. Specialists and 
users have different concepts of how central computing is, 
should and could be to the successful performance of their 
jobs. To specialists, computing can be everything. Instru
mental users, however, often view computers simply as a 
means to achieve some other ends. This difference of focus 
has substantial repercussions for the amount of effort people 
of each orientation are willing to spend learning and adapting 
to new computer system developments. 

The mutual perceptions of computer specialists and users. 
Specialists can influence the involvement of users in the 
computing process. Shared perceptions may be important to 
the specialist in determining how users should be educated 
or to what extent users should be involved in the design, 
implementation and maintenance of particular systems. 

Differing responsibilities among computer specialists. As an 
organizational unit grows and expands, the jobs within it 
often become more narrowly defined and specialized. 2 The 
resulting division of responsibilities and skills may increase 
the difficulties faced by clients of the unit when they seek 
a service which requires several specialists. For example, 
an instrumental user may find that to change an inquiry 
program, he or she must coordinate efforts with those of a 
programmer, a sysiems anaiysi, a daia base manager and a 
teleprocessing specialist. Increasing the technical sophisti
cation of a system often leads users to interactions with 
more specialists. 

Doing a "good job" and being rewarded for it. People 
often differ on which aspects of a job are important for 
satisfactory performance. Some programmers emphasize 
satisfying uSer demands, while other programmers empha
size elegant code. 

Despite these individual interpretations of what consti
tutes doing a "good job," the organizational structure may 
impose a reward system on specialists which emphasizes 
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different activities. 16 The rewards may be for meeting sched
ules, for the number of coding lines produced or for getting 
to work on time. Whatever reward system exists in an or
ganization for computing specialists, it may conflict with 
what specialists perceive to be important measures of job 
performance. 21 

Maintaining career mobility. Specialists appear no differ
ent than any other employees in being concerned about job 
security and career development. Specialists may feel that 
a strong position in the marketplace depends on one's ex
perience with the latest technological innovations. Conse
quently, specialists may influence their organization to con
tinually acquire state-of-the-art hardware and software 
packages. 23 

Understanding the capabilities of computing 

Learning about computing-What computers are good for, 
how their particular machine might be used, etc. Beliefs about 
the appropriate role and capabilities of computing vary con
siderably. Those who work closely with the technology often 
view computing as a special-purpose device which is best 
suited for applications something like their own. Thus ac
countants often view computers as "accounting engines," 
while urban planners may view them as statistical calcula
tors. 

Coupled with beliefs about appropriate tasks for auto
mation are beliefs about the ease of applying computing. 
Computer specialists often view the technology as speedy 
and convenient. However, programmers (like planners, de
signers, managers and other professionals), can underesti
mate the time required to develop and implement new pro
jects. 

Getting a computational task successfully completed. When 
a problem can be solved with the existing computing system. 
users may find themselves facing a procrustean software 
system. 33 Rigid system designs add to the complexity which 
users must overcome to compute a solution to their problem. 
In theory, computing may be both technically and organi
zationally complex. In fact, it is also complicated. * Most 
software packages, however simple or complex, usually 
have idiosyncratic conventions** which arise from problems 
in implementation, compatibility with odd features of related 
systems, or simply through "poor" design. Nevertheless, 
an instrumental user must master and remember the'se con
ventions to utilize a software system. 

In addition. the elapsed time to complete a computational 
task, from the point of view of an instrumental user, begins 

* Complexity refers to substantive logic-mathematical interrelations and dif
ficulties: complications can arise in almost any arrangement offacts. concepts 
and thoughts. Complication is an undesirable characteristic of any construct: 
complexity may be an inherent feature. s 

** For example. program runs may begin with an incantation such as IIJOB=. 
Variables may be restricted to six alphanumeric characters and begin with a 
letter. Or once a file is processed. it may not be reprocessed until a special 
routine is executed. Most computer users learn to use the technology despite 
JULCii~ uf ~iillilarly iJio!>}ii~lalk ~Uli-'':iiliuii~. IIOV.i:\.CI. they add undue 

complication to a complex technology. 

when the task is conceived and ends when the computed job 
is translated into a usable form. This time frame is larger 
than that of the computer specialist who counts from the 
time that a task is well specified until a product is delivered 
to the user. And it is still longer than the time to complete 
a computational job as viewed by the computer operators. 
This usually equals the time to complete a job once it is 
being executed by a digital computer. Despite these obvious 
observations, the time to complete computing tasks are us
ually conceptualized in time frames closer to those of ma
chine execution than to those of instrumental users. 

Dealing with computing/systems jargon. Specialized lan
guages enable work groups to communicate about their work 
compactly and to maintain a definition of "insiders" and 
"outsiders." "Jargon" is thus an inevitable element of 
worklife in specialized occupations. Smooth expert-client 
relations in computing milieus require that either one partic
ipant know the technical vocabularies and rationales of both. 
computing and the occupational world to which it is applied, 
or that one of the parties be skilled at developing commu
nicative bridges between computing and another world of 
discourse. If both parties possess either skill, so much the 
better. 

Purposive use of jargon enables an actor to structure sit
uations to her or his advantage by "snowing" the other 
parties in an encounter. When the legitimacy or competence 
of a computer specialist is brought into question, confident 
explanations couched in complex technical rationalities are 
difficult for most people to penetrate. Purposive use of jar
gon helps a specialist save face and protect his autonomy. 

Getting adequate documentation for computer-based sys
tems. Both computer users and specialists rely upon a va
riety of documents to learn the capabilities of and precise 
incantations for using particular system features. Different 
users of a given system may desire either a tutorial manual 
or a reference manual, although both rarely co-exist for any 
computer-based system. In fact, one dominant feature of 
computer settings is the extent to which participants depend 
upon clear and accurate documents to select, use and main
tain computer systems, and the relative paucity of appro
priate high-quality documents. Documents, like any other 
computing product, are produced within a social order of 
computer specialists, service providers, and clients. The 
difficulties of documentation are more those of the priorities 
within the computing world rather than the technical diffi
culties of writing. 30 -' 

Changing computing arrangements 

Loci of change. Most computer applications evolve grad
ually. However, changing an application often results in 
altering the routine procedures for many different people 
who use it. New features are usually negotiated between 
some mix of instrumental users, computer specialists, im
portant actors in the computer using organization, computer 
vendors, and outside consultants. 

Computing personnel often have more requests. demflnds 
and self-initiated ideas for changes than their staffing per-



mits. Thus, they can usually select certain alterations from 
the larger set of requested or required alterations. While 
many changes in computer applications or their supporting 
systems are requested or "needed" by some users, certain 
users appear better served than others. In addition, most 
users must expend personal and organizational resources to 
ensure that changes which they desire are actually imple
mented. The acutal dynamics of these negotiations, the re
sources they consume and their repercussions for both com
puter users and computer specialists are poorly understood. 

Scope and rate of change. Changes in the computing milieu 
vary in frequency and scope. While it is easy to assume that 
low rates of change are easier for users to adapt to, that 
hypothesis is oversimplified. Infrequent changes of wide 
scope, such as changing the formats for large sets of data, 
may disrupt a class of users regardless of frequency. Upward 
compatible features which are transparent to most users 
may be introduced into many systems and processors with 
relative impuniiy for most users. 

On the other hand, certain users often seek specific 
changes in both applications and support software. How
ever, in shared systems, changes developed for one party 
are typically imposed upon all users of the same computa
tional resources. Many technical changes that benefit one 
party may benefit others as well. However, there are also 
common conflicts between the technical needs of different 
users. It is an empirically open question as to how frequently 
technical changes are either "pareto optimal" or indicate a 
redistribution of computational resources. Thus, the advo
cacy and implementation of changes has a strong political 
content above and beyond the resources required to imple
ment the change. 

Formalizing change procedures. Large software systems 
are often used to support organizational activities. Since 
these systems operate in a production environment, any 
alteration to such a system is usually scrutinized to assure 
that it doesn't cause disastrous effects. Many organizations 
have thus instituted a series of bureaucratic procedures to 
be followed prior to the actual alteration of a system. These 
procedures can be cumbersome in certain organizational 
structures. 

The ability of an organization group to get a particular set 
of changes implemented may require interaction with, and 
the approval of, a number of intervening individuals or com
mittees. If there are a large number of system change re
quests pending, then some prioritization scheme may exist. 
The group seeking system changes may now have to rely on 
its members' negotiating skills to assure a suitable priority. 

Data quality 

Collecting input data. Many contingencies structure the 
situations in which one party collects data about the activ
ities of a second group from a third group for use by a fourth 
group. Some extreme situations include those in which (a) 
the groups are all the same or (b) all groups are aware of 
each other and share information with mutual consent and 
are all jointly concerned that the data be accurate. The latter 
case might occur with bank records, for example. In cases 
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of high mutual commitment, data capture may be smooth 
and· subject primarily to errors in data entry. 

However, in some important situations conflicts of inter
est or priority can arise among the various groups. If the 
data is to be used to assist the fourth party to control some 
activities of the data subjects (as in tax reports) there is 
some incentive for incomplete or inaccurate reportingY 
When several organizaiions share information systems, pro
viding high quality and complete information may be more 
important to some participants than to others.19 Thus the 
quality of data collected is influenced by the patterns of 
interest cooperation within the social order surrounding the 
information systems. 

Ensuring the correctness of processed data. It is common 
to believe that once data is accurately captured by a com
puter-based system it will remain accurate. There are at 
least two conditions under which this assumption can be 
problematic. Sometimes data is aggregated or reorganized 
to be used in an analysis. As the complexity and number of 
the data manipulation steps increases, programmers, oper
ators or the application system itself may introduce difficult 
to detect errors in the transformed data set. Since data do 
not reorganize themselves in useful ways without personal 
intervention, data analysts are an essential part of many 
policy analysis units, survey research centers, etc. Sec
ondly, in some systems which are shared by many users, 
particularly simulations, important parameters may be 
changed by one party without the cognizance of other users. 
Digital computers are particularly useful as calculating en
gines when the computations are too complex, tedious, or 
time-consuming for hand calculation. However, it is just in 
such cases that verifying the validity (or stability) of the 
results obtained is the most difficult. While such events are 
rare, their dynamics are instructive. 

Control over computing 

Control over the technology. Maintaining effective control 
over computing resources is a central issue for many com
puter users in an organization. In addition, some higher
level administrators who are not computer users, simply 
view computing as an expensive line-item to be kept in 
check. 

Since computing and information are rich organizational 
resources, issues over contention for control are naturally 
commonplace. Like other social aspects of computing, ne
gotiations over control of specific computing resources (e.g. 
data, programmers, budgets, I/O devices) take time and 
absorb organizational resources. 

Access to and control over expertise. Computing is a com
plex process. In spite of its complexity, its use by a variety 
of people is becoming widespread. Many people do not take 
the time or interest to learn a great deal about it. Therefore, 
they must rely on others to help utilize computing effectively 
and to handle problems and unanticipated situations. There 
is increasing evidence that when users have easy access to 
expert assistance, the computer-based systems are better 
accepted than in those situations where access is more dif
ficult.27 
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Controlling the kinds of demands made by users. Whenever 
a personal service is provided, the stage is set of its con
sumers and providers to continually negotiate the kinds of 
service each would most prefer. In this way, computing is 
little different from other personal services such as legal 
advice, financial counseling, or medical care. 

Computer specialists develop strategies for managing the 
behavior of their clients to help serve their own ends and 
make their organizational life tractable. Since they usually 
work as salaried employees with little freedom to negotiate 
a higher wage for difficult projects or those that incur an 
unacceptable level of dirty work, the strategies usually entail 
claims about organizational contingencies. Users may be 
told their requests are more expensive to fulfill, will take 
longer time to complete or entail unexpected technical com
plexity (such as system redesigns) to help displace less de
sirable work. Since computer specialists often have a rela
tive monopoly on the expertise essential for judging the 
complexity of different requests, specialists' work-moder
ating strategies are difficult for instrumental users to easily 
counter. 

The "values" sought by those individuals and organizations 
which promote applications development. Often computing 
systems are developed and installed when a specific person 
or small group of individuals actively promotes computing 
within an organization. 21 ,26 New computer applications are 
usually costly: promoters who want resources allocated to 
their project must often first obtain sanctions from other 
organizational members. Since different actors become in
volved in acquiring computing resources, computing will 
often serve many ends. For example, some actors may be 
seeking to enhance their administrative control, others seek
ing to cut costs, still others may be seeking to make their 
jobs easier or more interesting. Few applications can be 
designed to serve many different interests well. Some users 
of computing often face difficulties which derive from the 
way in which their system is "optimized" to serve the in
terests of some other group. 

Political support within the organization. Politics deals with 
the allocation of goods, services, symbols and values. The 
distribution of computing resources is often the focus of 
conflicts over budgets, staff and domain. This is not inci
dental. Rather, it is an illfrillsic aspect of computer use. To 
the extent computing resources are valued by different ac
tors in an organization, they will seek access to them. The 
resulting contention with its usual conflicts, bargaining and 
subterfuges is similar to other kinds of organizational poli
tics. 

Some actors seek control over computing resources sim
ply because it provides a relatively large, growing staff and 
consequently a growing budget. There is also some evidence 
that overall computing arrangements can be more strongly 
influenced by the political access of key actors than by the 
technical soundness of their preferences. 31 

S(~ltl1'are del'elopmellf practices 

Programming and design practices. Since the development 
of software has become a major expense of computing for 

most organizations, considerable attention has been focused 
on improving software design and programming productiv
ity. New techniques 12 and tools have been developed to 
assist specialists with their various tasks. Structured pro
gramming IO,1l,39 is currently emphasized to aid specialists, 
as well as Chief Programmer Teams I and automated design 
aids. 4,5 

While these techniques and aids may be beneficial for the 
organization, they may be problematic and disruptive for 
specialists. They may actually make the specialists' jobs 
more difficult and attention-demanding. They may create 
changes which are frustrating for specialists accustomed to 
previously established procedures. 

Most modern programming practices and tools are yet to 
be widely adopted in computing settings outside of where 
they were developed. Reasons for this are unclear, but we 
suspect that organizational contingencies (such as meeting 
schedule deadlines, budgetary constraints or personnel 
training costs) in a computing setting tend to shape the 
adoption and incorporation of such tools and techniques. 

Program testing. In theory, one would like to be able to 
automatically generate a sufficient set of test data necessary 
to demonstrate the probable correctness of a robust class of 
programs. However, for programs of moderate complexity, 
the set of test data to exercise all paths through a program 
is infeasibly large. 15 Nevertheless, some promising research 
is proceeding on various schemes to automate tests for spe
cial program conditions. 5,32 In contrast to the research on 
new tools for program testing, the state of current practice 
does not rely upon much automation at all. Test data, for 
example, are usually selected manually by a programmer or 
a knowledgeable user. 

Software maintenance. Maintenance is often considered to 
be everything that happens to software after user accept
ance. Maintenance can range from "bug fixes" through 
complete redesign and redevelopment of a delivered system. 
Often, the people who develop the system are not the same 
as those who maintain it. Given that different specialists are 
involved in system development and maintenance, finding 
those people (users or specialists) with dependable under
standings of a system operation can be quite salient in de
termining the ease, timeliness and reliable execution of 
maintenance tasks. 

Most programming work is in maintenance, not develop
ment. However, maintenance entails ongoing interaction 
between users, programmers, managers, vendor represen
tatives, etc. While current software system life-cycle costs 
reflect the high cost of maintenance, 3,5 the available figures 
do not distinguish the costs of program alteration work from 
the time, skill and attention required by specialists to suc
cessfully interact with those people requesting alterations. 
The extent to which these interactions are negotiated and 
completed with ease or difficulty, may better account for 
the variation in minimizing or exacerbating the costs of 
"routirie" maintenance tasks. 

Software documentation. Adequate and up-to-date soft
ware documentation is continually a weak feature of most 
suftware systems. Pour uocuIllt!ntation i~ Ilut usually a re~ult 
of some software development practice, We note that while 



many software system manuals can be measured in inches, 
their adequacy and currency vary. However, reasons for the 
variable quality of documentation appear not to be due to 
the unavailibility of suitable documentation support aids or 
deficient programmer practices. Rather, updating documen
tation demands time, skills in clear and concise writing and 
attention. Given that specialists face some number of com
peting demands for their services, their abiiity or desire to 
maintain documentation competes with other work demands 
whose completion may be more highly rewarded. 

Attention 

The kinds of attention demanded by computing. Computing 
may appear to some users and specialists as a technology 
that requires a person learn a great deal to effectively utilize 
it. Many users must (or are at least led to believe they must) 
use the computer efficiently because it is a scarce resource. 
However, the time required by a user to prepare and suc
cessfully execute (after "debugging" runs) efficient pro
grams often displaces any net savings in terms of completing 
the task at hand. Concern for minimal computer resource 
usage versus concern for minimizing the time to complete 
a work task often lead to conflicting demands for the user's 
attention. 

The precision and detail demanded by computing. As a 
tool, the computer is a fairly exacting device. It demands 
that procedures be followed explicitly. It does not allow 
loose or ad hoc procedures in handling transactions as might 
exist in a manual or more informal information system. 

At times, users complain that their jobs are actually more 
difficult or less interesting with computing than they had 
been previous to computing. Specialists complain that it 
takes a special person, like a "hacker," to be truly satisfied 
with the detail demanded by systems and application pro
gramming. 37 
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Project management through the Accomplishment Value 
Procedure (A VP) 

by DONALD J. AHARONIAN 
Digital Equipment Corporation 
Maynard, Massachusetts 

INTRODUCTION 

This paper describes a technique called the Accomplishment 
Value Procedure, AVP, which accurately measures the sta
tus of and provides visibility to an information systems de
velopment project. It builds upon the foundation of two of 
R. 1. Benjamin's axioms: 1 

Axiom #IO-"The great leap forward is best accom
plished in short, comfortable hops; if there is a 'Golden 
Rule' in information systems development, this is it." 
Axiom #14-"If you can't plan it, you can't do it." 

to which I add my own corollary: 

"If you don't schedule it, it won't get done." 

A persistent problem of project management has been to 
relate resources budgeted with work accomplished after the 
project begins. 2 A VP bridges that gap. As a tool of project 
management, A VP: 

1. Provides the means to schedule, monitor and control 
a project after it has passed the planning phase. 

2. Enforces a discipline for resource estimating and time 
scheduling that focuses on the completion of tasks. 

3. Provides a method to handle changes to schedules and 
to resources which can be documented and displayed 
simply and clearly. 

4. Provides a method for summarizing overall status of 
projects by management responsibility. 

A VP does all this by focusing on the gathering of data that 
is plotted on a Project Visibility Chart for an individual 
project and a Summary Visibility Chart for a group of pro
jects. 

In doing so, AVP communicates with all levels of an 
organization in a consistent manner: 

1. Top management sees a snapshot of the overall status 
of development projects. 

2. Middle management sees a snapshot of individual pro
jects. 
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3. Project leaders can monitor performance and compare 
it to schedules and estimates which point to areas of 
potential problems that might require management 
analysis. 

4. Project team members can see the status of the projects 
they are working on. 

The remainder of this paper deals with (I) a discussion of 
Background: A VP in the Perspective of Project Manage
ment, (2) a description of the Accomplishment Value Pro
cedure, (3) a description of an Example of the AVP Process, 
(4) a description of How A VP Handles Changes in schedules 
and estimates, (5) a description of the A VP Summary Proc
ess and (6) a Summary section that includes conclusions and 
observations regarding the applicability of A VP. 

BACKGROUND-A VP IN THE PERSPECTIVE OF 
PROJECT MANAGEMENT 

Project management usually means different things to 
each of us. A major reason is that a project is a unique effort 
marshalling resources to solve a unique problem. The 
uniqueness has attracted special management techniques 
which, according to Murdick and Ross3 include "outstand
ing characteristics," such as: 

1. Work breakdmvn structuring which is a method that 
decomposes the project end result, level-by-level, all 
the way down to something called the work package, 
the lowest identifiable element of work to be done. 

2. Network definition which describes task relationships 
in a project and which is usually associated with PERT! 
CPM activities. 

3. The integration of performance/cost/time for project 
planning and control. 

You can locate A VP in the perspective of project man
agement by relating the outstanding characteristics to the 
three basic managerial functions required as defined by Paul
son4 as follows: 

• Planning-oo . .. the various tasks ... must be per
formed to complete the project ... involves approxi-
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TABLE I.-Project Management Matrix 

Outstanding Characteristics3 

Work 
Breakdown 
Structuring Network 

Planning 

Scheduling 

Control 

Integration of 
Performance/ 

Cost/Time 

AVP 

AVP 

mate requirements for material, equipment and man
power ... " 

• Scheduling-" . .. the feasible start and completion 
dates for each activity ... " 

• Control-'". .. monitoring actual performance and 
comparing it to that which was anticipated from the 
schedule. The essence of control lies in recognizing 
differences when they occur, determining reasons for 
them, and promptly evaluating effects on the sched
ule. " 

In terms of the three '"outstanding characteristics," A VP 
assumes that (1) formal, or informal work breakdown struc
turing exists with or without a standard work breakdown 
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structure being built, and (2) that the relationships and de
pendencies among tasks are understood with or without a 
network being drafted. It is the third characteristic dealing 
with performance, cost, and time to which A VP applies
with one distinction. The distinction is that A VP takes place 
after planning is completed. 

The matrix in Table I shows where A VP fits in the rela
tionships between Outstanding Characteristics and Mana
gerial Functions of Project Management. A VP addresses 
itself to the articulation of accomplishment (performance) 
and manpower (cost) related to (integrated with) time. By 
displaying accomplishment and manpower at points in time, 
A VP provides a visibility that communicates the schedule 
and supports control. 

The quantification of the value of accomplishing each task 
is crucial to A VP. As each task is completed, the project is 
credited with the value of the task. There is no credit for a 
partial completion~ thus the notion of "percentage com
plete" is avoided. The expression of percentage complete 
has traditionally been difficult in its execution. arbitrary in 
its determination and misleading in its interpretation. 2 How 
often has one heard the response that a project is . 'x percent 
complete?" In fact, projects have been known to be "90 
percent" complete for months. 

THE ACCOMPLISHMENT VALUE PROCEDURE 

The mechanics of the procedure result in the creation and 
update of the Project Visibility Chart. The vehicle for this 

PROJECT v_m CHART ~D 
~--+-------------------~ 
~--4---------------------~ 
f:=....~--t-----------------1 

Figure !-Blank Project Visibility Chart and Estimating and Scheduling Form (Parts A-E). 
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procedure is the Estimating and Scheduling Form. The form 
integrates the key steps of the procedure and flows through 
to provide the data for the Project Visibility Chart. The form 
is a composite of five parts, referred to as Parts A through 
E. Figure I shows all parts in the relative positions of the 
flow of data and information, i.e., from A to B to E and' 
from A to C to D. 

Part A is where you would insert descriptive data about 
each task (milestone) deliverable. The procedure assumes 
a documentation standard and just about any version would 
do. Further, the procedure amplifies ih~ doctrine espoused 
by ADP Analyzer ,5 which says" ... documentation be com
pleted by the end of each phase and each review period. If 
the documentation has not been completed, then the phase 
has not been completed-and the next phase cannot begin. " 
A VP accepts any documentation standard and encourages 
even finer breakouts or subsets. 

Part B is where you would enter the estimates of resources 
committed to each task/milestone/deliverable by time period 
(usually a month, but the procedure can handle weekly and 
daily). We focused on manhours because it is the key re
source and it is easier to collect data regarding manpower 
on a timely basis. 

Part C is where you enter the time span for each task/ 
milestone/deliverable further annotated with the "value" 
calculated for each. 

ESTIMATING AND SCHEDULING 

~A ESTIMATING AND SCHEDULING 

PROJECT N"ME: ~ "~s:::r PAOJECTNO.~ ]NJ FEB M4R. APR WtY rUN IJUL 
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P~rt D is a table which is built on the accumulation of 
data concerning accomplishment units scheduled and actual 
for each time period and accumulated by the end of each 
time period. 

Part E is a table which is built on the accumulation of data 
concerning manhours estimated and actual for each time 
period and accumulated by the end of each time period. For 
convenience in preparation and for easy reference and anal
ysis, Parts D and E are physically part of the Project Visi
bility Chart. 

In Figure 2 is an example of a Project Visibility Chart for 
a completed project showing in the top portion, the Cumu
lative Accomplishment Values, Scheduled vs. Actual and in 
the bottom portion, the Cumulative Manhours (resources), 
Estimated vs. Actual, for the history of a project. The Chart 
displays the status of the project expressed in Accomplish
ment Units as well as the expenditure of Manhours, both 
over the life of the project. Notice that the points plotted on 
each Chart are derived from the data tables, Part D and Part 
E, contiguous with each. The data tables are built as a result 
of the process previously described. 

EXAMPLE OF THE A VP PROCESS 

The Accomplishment Value Procedure (AVP) highlights 
actual completion of milestones and ignores partial comple-
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Figure 2-Completed Project Visibility Chart and Estimating and Scheduling Form (Parts A-E). 
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Figure 3-Example of Parts A-B and A-C filled out at the beginning of the A VP process. 
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tion. It provides the mechanism for identifying those mile
stones in the development process that have specific deliv
erable documents which signal the completion of a 
milestone. 

Once the milestones are identified and resource estimates 
are associated with each, the sequence of events can be 
scheduLed. Next is the calculation of the "value" of each 
miiestone. For our purposes, value is based on the estab
lishment of an arbitrary denomination of units which reflect 
the relative estimated manhour resource for each milestone/ 
deliverable. 

The Accomplishment Value is the focal point for the pro
ject as it moves to completion. The Accomplishment Value 
is plotted monthly on the graph along with the resources. In 
this example, 20 manhours was selected as equal to one 
Accomplishment Value. Thus, if the milestone/deliverable 
is estimated to need 160 manhours of resources, then its 
Accomplishment Value is eight. 

See Figure 3, Key I, which is the Estimating and Sched
uling Form-Part A filled out with the Accomplishment Val
ues for each milestone/deliverable and represents the begin
ning of the process. 

Having completed Part A, you can proceed to Part B 
where the loading of the resources over the course of the 
project is entered. This loading then becomes the estimated 
manhours (resources) for the life of the project. See Figure 
3, Key II, which shows the manhour loading or MONTH 
EST (estimate) by month for each task/milestone/deliverable 
and the total MONTH EST (Estimate) for each month. 

For each milestone/deliverable that you have associated 
with a Scheduled Start and Completion date, you can enter 
the O--symbol for the start in the week in which the effort 
for that milestone/deliverable will begin and a 0 in the week 
that it is scheduled to be completed and delivered. 

In the square for the ending week, you can enter the 
Accomplishment Value. Next, add up the Accomplishment 
Values for each month. See Figure 3, Key III. 

The values of each milestone/deliverable are combined to 
roll up to the total value of the project. In the course of 
completing the project and as each milestone/deliverable is 
achieved, the value of each milestone is credited toward 
project completion, and a measure of project status is es
tablished. Credit is given only to those milestone/delivera
bles that are completed; resources expended on an incom
plete deliverable are given no credit. This criteria forces 
attention to establishing as many milestones as is logical and 
manageable-a basic rule in successful project management. 
As a corollary, a specific deliverable could be segmented 
with each segment becoming a separate milestone/delivera
ble that would be scheduled, estimated and accomplishment 
valued. 

Next, you build the data tables in Parts D and E that will 
be the plots for curves on the Project Visibility Chart. See 
Figure 4. 

The MONTHLY SCHEDULE Accomplishment Value in 
Part D is simply a posting of the totals from the bottom of 
Part C and from which the CUMULATIVE SCHEDULE 
Accomplishment Value data is calculated. 

The MONTHLY EST (Estimate) manhours data in Part 
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Figure 4---Project Visibility at end of April. 
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E is simply a posting of the totals from the bottom of Part 
B and from which the CUMULATIVE EST (Estimate) is 
calculated. 

The CUMULATIVE SCHEDULE Accomplishment 
Value and the CUMULATIVE EST (Estimate) manhours 
are the plots by month on the Project Visibility Chart in 
Figure 4. 

As the project develops, Actual Data is collected for Man
hours and Accomplishment Values. In our example you can 
see the data recorded through April, the fourth month. 

The Project Visibility Chart representing the status of the 
Sample Project through April would be as in Figure 4. An 
analysis of the charts and the data in the table above and 
below the charts (which are Parts D and E of the Estimating 
and Scheduling Form) shows that the Project fell behind the 
Scheduled Accomplishment during March but that we 
caught up during April. The recovery, however, seems to 
be costly since we have exceeded our estimated manhours 
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by nearly 200 manhours. If the trend continues, the project 
could get into a serious over-budget situation. This situation 
would require further analysis. 

HOW A VP HANDLES CHANGES 

The technique lends itself to a procedure for changing 
schedules and estimates based on changes in project scope 
or in availability of resources, etc. If for example, at the end 
of April it was determined that the project's schedule could 
be shortened by infusion of additional available resources, 
(while it may violate Brooks' Law6 it is optimistically es
poused here for illustration purposes) then the Estimating 
and Scheduling Form-Parts B, C, D, and E-should be 
modified to reflect this change and to show the impact on 
the bar chart schedules. The impact of the revision with the 
new manpower estimate, and the Accomplishment Value 
Units, for May and June is readily shown in the Project 
Visihility Chart, Figure 5, which shows a new chart with the 
scheduled and estimated lines shifted upward for both Ac
complishment Values and Manhours. This representation is 
significant since it provides visibility for changes in esti
mates and schedules. 

THE A VP SUMMARY PROCESS 

A VP further lends itself to summarizing groups of projects 
by management responsibility such as those of an individual 
cost center. A collection of Project Visibility data from sev
eral projects can be aggregated to provide visibility. By 
focusing on an individual fiscal month, you can display 
Scheduled and Estimated data for its development projects 
at the beginning of the month. At the end of the month, you 
can then aggregate the Actual data for Accomplishment and 
Manhours. 

On the right side of Figure 6 is a Summary Visibility Chart 
completed for a development cost center for the month of 
October 1978. The Bar Graphs show the Scheduled Accom
plishment Units next to the Actual Accomplishment Units 
in the top portion with the Estimated Manhours next to the 
Actual Manhours in the bottom portion. 

On the left hand side of Figure 6 is the A VP Log which 
is the vehicle for the Summary Process. The Log provides 
space for recording the Schedules and Estimates for each of 
a group of projects at the beginning of a time period (usually 
Fiscal Month) and for their Actual Data at the end of the 
period. 

While transferring Accomplishment Values from the Part 
Ds you have to make certain that the Unit of Measure (UI 
M) is consistent. If 20 man hours were used as the UIM for 
the Summary Process, then the procedure is to divide the 
UIM of each project by 20 and then to multiply the resulting 
fraction by the Accomplishment Value Units associated with 
the project. For example, if a project had scheduled 72 units 
with a {jiM of 10. then to convert-divide 10 hy 20 which 
results in ~~: then mUltiply 1/2 by 72 which results in the 
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Figure 5-Project Visibility Chart showing impact of revision at end of April. 

conversion of 36 Accomplishment Units. It is the latter 
number that you post to the Summary AVP Log. 

Six projects are posted on the Summary A VP Log with 
a total Accomplishment Value of 120 (based on a unit of 
measure of 20 manhours per each Accomplishment Unit) 
and 2,600 manhours are estimated (and committed) to be 
used in the process of doing project work. At the end of the 
month, the actual data are posted totaling 100 Accomplish
ment Value Units and 3,000 manhours respectively. It is the 
data from the totals column that is used as a basis for 
constructing the bar chart. 

SUMMARY 

This paper has introduced the Accomplishment Value Pro
cedure (A VP) by first discussing where it fits in the back· 
ground perspective of Project Management. Then, the paper 
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Figure 6--Summary Visibility for one month. 

described the steps in the A VP process which lead up to the 
creation of and provides the basis for updating the Project 
Visibility Chart. Included in the description was an illustra
tion of how changes in resources or in time would be shown 
on the Project Visibility Chart. Finally, there was a descrip
tion of the A VP Summary Process which provides for track
ing and displaying groups of projects of a functional orga
nization by aggregating their Visibility Data. 

A VP is currently in place in the Customer Service Oper
ations Development (C.S.O.D.) Department which is the 
internal ADP/MIS systems development and computer op
erations organization at the Field Service Headquarters of 
Digital Equipment Corporation. Maynard, Mass. C.S.O.D. 
provides system development and computer-based support 

to headquarters functions in worldwide logistics, financial 
control and product engineering and centralized design and 
deveiopment of distributed systems for decentralized imple
mentation at 15 data centers worldwide. 

The benefits of its application revolve around the simplic
ity of how well it can be understood by project team mem
bers and how effective it is in relating (communicating) sta
tus to users and to management. 

In addition, individual project team members reach a 
"comfort" level with the graphical representation of the 
project status and spend their time with greater attention to 
the objectives of the project. 

There are other benefits. A VP highlights the viability of 
resource estimates and schedules at the onset of the devel-
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opment cyc1e and the resource consumption and accom
plishment achievement during the development cycle by the 
smoothness or lack of smoothness of the curve on the Pro
ject Visibility Chart. 

The discipline of the Accomplishment Value Procedure 
lends itself to contracting applications development to a 
vendor. By focusing on specific deliverables you could con
tract for progress payments synchronized with each deliv
erable under either a cost re-imbursable basis or a fixed
price basis. 

At project completion, final payment could be held back 
until a reasonable warranty period has passed. Moreover, 
there can be variations that would provide incentives to a 
contractor. For example, a progress payment or a fixed
price commitment for a deliverable by a certain date would 
pay X dollars to the vendor but delivery one month earlier 

would pay 120 percent of X dollars where the incremental 
20 percent would serve as an incentive to the contractor. 
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Textfax-Principle for new tools in the 
office of the future 

by WOLFGANG HORAK and WALTER WOBORSCHIL 
Siemens Central Research Laboratory 
Munich, Germany 

INTRODUCTION 

By taking a closer look at today's office, we observe the 
following trend: The conventional typewriter is gradually 
being replaced by word-processors. These may merely be 
electric typewriters with a storage added or they may take 
on the form of highly sophisticated CRT workstations fea
turing screens carrying an entire standard size page and 
exchangeable storage media. These systems, which origi
nally had been intended for local word-processing, are now 
increasingly being supplemented by communication func
tions, permitting direct text communication from one's own 
buffer to that of a business partner-i.e. to his electronic 
'·mailbox." Whenever desired, the recipient can then call 
up the text from the buffer for reading or, if necessary, for 
editing and subsequent filing or forwarding. These functions 
can be summed up under the catchword "electronic maiL" 

First experiments on this have been performed especialiy 
in the United States, like those of the Citibank.l To permit 
not only internal, but also public text communication, na
tional and international standards still have to be elaborated, 
ensuring compatibility of the various products. 

Further important elements in today's office, besides text 
systems, are the numerous copiers and-to the extent to 
which international standardization progresses-also remote 
copiers, i.e. facsimile equipment. Copiers and remote cop
iers are required to duplicate or transmit documents con
sisting of text and graphics. Here, too, a fusion of individual 
functions can be observed, as is the case with the remote 
copier with local copying operation. 

Let us enter an office handling, for example, quotations 
for technical products. In this office, the quotation texts can 
be generated on the text system, perhaps by using stored 
text segments. However, the data sheet with photos, dia
grams, etc., must be prepared at the printer's in the various 
versions and kept in conventional files in the office. To mail 
the quotation copy and the data sheet to the customer, there 
are two possibilities. Either text and data sheet are jointly 
enveloped and mailed or, in case the customer happens to 
have a remote copier of the same type, both can be scanned 
and transmitted successively by the remote copier. During 
this process, the text is treated like a graphic and-compared 
with alphanumerical coding-is transmitted with unneces
sary redundancy, i.e. involving too much time. 
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The previous example shows that, in today's office, it is 
still not possible to jointly 

• Collect 
• Process 
• File 
• Output as hard and soft copy 
• Effectively transmit 

text and image at the same workstation by using the same 
hardware and software components. 

To be able to do so, new office tools are required. The 
underlying principle we call Textfax. 2 On the road toward 
a largely "paperless" office, we have done some research 
to work out this principle, trying to specify the functions of 
these tools and to study ways and means of implementing 
them. 

Developments in the direction of Textfax are 

• The printer plotters, where the same matrix printer is 
used for text and facsimile printout. 

• The image processing systems for computer-aided pro
cessing of TV images. 

• The system named Electronic Darkroom3.4 developed 
since 1970 at the MIT for Associated Press for editing, 
filing and transmitting of press photos. 

• The large printing facilities for electronic photocom
position, enabling above all combined text and graphic 
processing for ad offices. 

• The initial proposals5 for transmission procedures per
mitting combined transmission of alphanumerically 
coded text and coded facsimiles. 

• The experimental Soft Display Word Processor from 
Xerox,6 which has a facsimile graphic generator to pro
duce business forms or other graphics, that can be 
overlayed with text from the character generator. 

In the following, the performance features of Textfax will 
first be specified more closely to subsequently go into the 
first results from two processing runs carried out on an 
experimental workstation. 
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PERFORMANCE FEATURES OF INTEGRATED TEXT 
AND FACSIMILE PROCESSING AND 
COMMUNICATION 

Data entry 

Figure 1 illustrates the various possibilities of entering 
text, handwriting and hand drawings and collecting mixed 
text/graphic material on paper or microfilm. 

The tabLet is used for inserting hand drawings to be copied 
into mixed text/image documents. During copying, a sepa
rate positioning step is required which is not necessary when 
writing directly in the softcopy with a light pen or on a 
touch-sensitive device (TSD) attached to the screen. This 
way handwritten comments, corrections and signatures can 
be applied to documents. 

In the case of a boss/secretary workstation, e.g., the sec
retary has a complete system while the boss merely has a 
tiltable full-page screen with a TSD for handwriting and 
function selection. The boss can thus apply corrections to 
the text typed by his secretary and circulars and other sorted 
mail received electronically can be marked with comments 
before it is passed on, for example. 

The facsimile scanner has the same resolution as defined 
in CCITT recommendation T.4 for Group 3 facsimile appar
atus. As a compromise between facsimile quality and data 
quantity this resolution should suffice for most office appli
cations and represents the standard according to which the 
documents are processed, filed, output and transmitted at 
a Textfax station. With a scanning window of approx. 

Figure I-Entry. 

/ .... .... ' ..... 

215x297 mm, a page (size DIN A4=21O mm, x297 mm, 
U.S. standard=215 mmx280 mm) in the form of a loose
leaf, a book or a magazine page, is scanned with a horizontal 
resolution of 1728 pixels per line, and a vertical resolution 
of 7.7 lines/min. Scanning time per page of about 10 sec. is 
possible. Mixed documents are entered with 4 to 8 bits per 
pixel, with grayscale portions after rastering being passed 
on for further processing with one bit per pixel just like text, 
graphic and handwritten portions after passing a black-and
white threshold. 

On workstations having to cope with large text volumes 
of existing documents, character recognition circuits can be 
connected to the scanner. This way texts can be entered 
with low redundancy and alphanumerical coding, and not as 
facsimiles, i.e. in raster reproduction. In the case of mixed 
documents, texts in strange fonts, graphics, handwritings 
and grayscale images can be either masked via program
mable masks or, like unrecognized characters, be entered as 
facsimiles. In the latter case, undesirable portions of a doc
ument to be entered can only be erased afterwards by mark
ing the corresponding spaces in the softcopy with the cursor. 
In the same manner, unrecognized characters can be re
placed subsequently via the keyboard by alphanumerically 
coded ones. The most frequently occurring fonts, such as 
OCR-B, letter gothic and pica, should be recognizable. 

Via video camera, sections from leaf and book material 
can be entered quickly and conveniently. For example, via 
function keyboard and screen monitoring, the camera is 
positioned over the material, and the size of the section 
determined with the motor zoom. Thus, it is possible to 
enter details with a resolution larger than the standard re
solution. Furthermore, construction permitting, images of 
three-dimensional objects and persons (e.g. photos of au
thors) can be entered with one and the same camera. Mi
crofiches are either scanned at the workstation, using a 
suitable frontal attachment to the above camera, or with the 
scanner of a central microfilm file containing standard 
graphic segments, for example. 

Hardcopy and softcapy 

The softcopy on the screen is required for monitoring 
input and text/facsimile editing. To feature a full page flick
erless with Group 3 resolution, a video monitor with approx. 
2,300 visible lines at 60 Hz frame frequency would be re
quired. Depending on the size of image and line return, this 
corresponds to a beam dwell of less than four ns per pixel, 
and an output rate of more than 240 Mbit/s. Obtaining such 
data entails technological problems, above all concerning 
the picture tube. It is therefore recommended to instead 
make use of a monitor with approximately 1,200 visible lines 
and a 60 Hz frame. Selecting vertical format and a 44 cm 
screen diagonal, a full page with half the standard resolution, 
i.e. 3.85 lines/mm (=Group 2 resolution) can be shown flick
erless in original size with black text on white background. 

If half the standard resolution is insufficient, e.g. when 
editing smaller details, switching to full resolution is possi
ble. In this mode only one-quarter of a vertical format page 
enlarged by the factor two can be represented. However, 
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the window, i.e. the quarter section, can be shifted over the 
entire page, both horizontally and vertically. The video mon
itor is accompanied by a refresh memory of four Mbit ca
pacity. This corresponds to the number of black-and-white 
pixels of a complete page scanned with Group 3 resolution. 

Hardcopies are produced with a matrix plotter. It should 
output the mixed text/image documents in standard resolu
don on regular paper DIN A4 sheets within about iO sec. 
per page. As required, a processor-controlled device will cut 
the sheets from a paper reel of 210 or 215 mm width. Like 
entering, outputting and processing can be handled simul
taneously. 

The plotter and facsimile scanner, or videocamera or mi
crofilm scanner can be operated concurrently in the local 
copying mode. Enlarging or reducing is done via software. 
The local copy renders text duplication by way of an impact 
printer's carbon copy superfluous. However, since local 
copying by coupling scanner and plotter via the processor 
loses in resolution over conventional office copiers relying 
on xerographic techniques, a combination of copier and 
facsimile scanner in one and the same device would be 
desirable. With local copying, the original is reproduced on 
the copying paper on a I: 1 scale, whereas entering calls for 
the original to be reproduced-e.g. on a line-by-line basis 
on a small CCD line. 

Processing 

The known functions of text editing and processing are to 
be supplemented by the functions of facsimile processing, 
to the effect that mixed text/image material can be edited 
just as well. 

Texts are edited in alphanumerical coding, in the form 
entered via keyboard or character recognition circuits. Only 
for outputting on the screen or the plotter, and perhaps for 
transmitting, the text is converted into a facsimile and com
bined with the image information. However, as the plotter 
is restricted only in resolution with regard to reproducible 
type faces, and since the reproduction scale of the characters 
permits ample variations, the text editing software must 
allow for corresponding variables. Individual type appear
ance is thus ensured, right up to text graphics, without the 
limitations inherent in a printer's type set. Furthermore, the 
coordinates of facsimile fields must be taken into account in 
the case of automatic line wraparound and margin adjust of 
mixed documents. 

Compared to conventional text systems, where forms can 
be filled out only by way of complicated screen masks, 
filling out forms is considerably facilitated. The actual com
bination of text and form is now left to the printer's hard
copy. In the case of Textfax, writing can be done on the 
true-to-original form featured on the screen with signets and 
preprinted matter. The form can be signed without bothering 
about the softcopy paper. The forms are stored as facsimiles 
in the image file from where they are called up if needed. 
Figure 2 presents an outline of possible functions of a mod
ular editor for integrated text and facsimile processing. 
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FiUng 

Digitalized images involve large data volumes. While a 
DIN A4 page with text, alphanumerically coded, requires 
approx. 1.5 Kbytes, approx. 0.5 Mbytes are needed for a 
non-compressed DIN A4 page scanned with Group 3 resol
ution. On a double-density floppy disk for writing on both 
sides, roughly 600 text pages could be accommodated, but 
only two image pages. The previous figures could be in
creased roughly 10 times by taking recourse to single disk 
systems tailored to local office implementation. It is there
fore necessary to develop efficient compression codes, for 
filing both black and white images and rastered grayscale 
images. Depending on image content, compression factors 
around 10 should be expected. Viewed from this angle, too, 
the floppy disk and the disk seem to be suitable for short
term filing of facsimiles only. For long-range image filing, 
one therefore has to avail oneself of either central image 
data bases with magnetic disk, magnetic tape and microfilm, 
or develop new image mass storage for local use at the 
workstation. The videotape might be one way to solve the 
problem. A two-hour tape should accommodate some 10,000 
Group 3 facsimiles. Another way is the optical data disk for 
1010 bit from Philips, which is capable of storing at least 
2,500 Group 3 facsimiles. 7 

In the text file, e.g. on floppy disk, so-called document 
heads of images and mixed test/image documents are stored. 
They are prepared and managed like texts. The document 
head contains a list indicating the files in which the various 
component parts of the document are stored. Text and image 
shares can be stored in different media. 

Transmission 

The text/image documents prepared at a Textfax worksta
tion can simply be transmitted as Group 3 facsimiles. To 
this end-as is the case with the softcopy-text components 
are converted into a facsimile and combined with the image 
compontmts to form a full-page facsimile of approximately 
four million pixels. Implementation of the transmission pro
cedure and the compression code (modified Huffman run
length code) in compliance with CCITT Standards T.30 and 
T.4 is the precondition for international transmission of text/ 
image documents via telephone network to all Group 3 re
mote copiers, and their true-to-original output. 

Due to the standardized scan/plot speed of max. 1 line/ 
5ms a maximum transmission rate of 1728 bits/8x5ms=44 
kbit/s with an assumed mean compression factor 8 is pos
sible in traffic with Group 3 facsimile equipment without 
full-page buffer. However, over analog lines of the telephone 
network, transmission can be done at a rate of 4.8 kbits/s 
only, or 9.6 kbits/s at most. Depending on content, the 
transmission of a page thus takes approximately I minute. 
Transmission via data networks or future digital telephone 
networks at a signal transmission rate of 48 kbits/s would 
result in a transmission time of approximately lOs, which 
would be in keeping with the maximum plotter speed. 

If a text page is not transmitted as a facsimile, but al
phanumerically coded, only approximately 3 s. are needed 
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instead of one minute at 4.8 kbits/s, thus entailing substantial 
savings in transmission costs. 

To be able to transmit and receive simultaneously with 
local processing without interrupting either process, one 
would ideally need a multi page send or receive buffer. 
Among the eight CCIIT test documents the modified Huff
mann Code has the lowest compression factor with 5.2 with 
document No. 7. 8 Correspondingly, the buffers would have 
to have a capacity of nxO.8 Mbits. 

It is thus obvious that for reasons of economy-i.e. to 
operate with minimum transmission times and small buffer 
storages-care must be taken in transmission of mixed text/ 
image documents that text components are transmitted in 
alphanumerical coding, if possible. Depending on the con
tent of the document, switching between text and facsimile 
mode must therefore be possible during transmission. The 
most economical buffer storage capacity has still to be found 
by way of statistical analyses of the documents arising at 
the office. Assuming a one-page buffer for a mixed document 
consisting of text and image at a 50: 50 ratio, we would thus 
arrive at a capacity of about 6 kbits+O.4 Mbits, i.e. approx. 
0.4 Mbits. A page having been sent, sending can only be 

continued after the receiver has confirmed the empty state 
of the one-page buffer. 

To facilitate text transmission between Textfax and text 
stations, such as memory typewriters which are mapped out 
for communication, one should rely on the transmission 
standard for text stations during the text transmission phase. 
Corresponding international standards have not been estab
lished as yet, but they can be expected within the next few 
years. 

Concerning transmission, seven logical levels which will 
be outlined by the following can be distinguished. 

• The physical level with interface to the transmission 
equipment with signal and signalling lines for connec
tion setup and cleardown in manned and unmanned 
operation. If Textfax station and telephone are con
nected to the same telephone line, signalling during 
connection setup is required to distinguish between lan
guage and non-language transmission (corresponding to 
the data tone). Also, in the case of conversation-inter
rupting transmission, the receiver must be signalled the 
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Figure 4-Multiprocessor structure of the experimental workstation. 
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end of Textfax transmission. Basic CCITT standards 
for Level 1 are 

-Standards V.26 and V.27ter for modems, and V.25 for 
automatic calling equipment, in the case of transmission 
via the analog telephone network. 

-Standard X.21 in the case of transmission via data net
works or digital telephone networks. 

-Standard X.21 as a subset of X.25 in the case of packet 
switching networks. 

• The link level with the code-transparent, full-duplex 
HDLC protocol for protected transmission of text and 
facsimile blocks. 

• The packet level which is required only in case trans
mission is to be made via a packet switching network. 

• Level 4, which initiates the specific terminal and user
related control procedures for which no standards exist 
so far. POi this control level, control characters must 
be defined to identify the further transmission proce
dure as text transmission, Group 3 facsimile transmis
sion or combined text facsimile transmission. 

• Level 5 with which the end-to-end logs start out. This 
level provides for mutual identification of the stations 
according to duplex capability, character supply (al
phabet, font), resolution, compression code, automatic 
mUlti-page reception, etc. 

• Level 6 as the user level. It comprises passwork check, 
format selection, form number, beginning and end of a 
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page, if necessary change of transmission direction, 
etc. 

• Level 7 encompasses terminal control functions con
tained in the transmission code, such as control char
acters for text formatting (beginning of line, line spac
ing), change of font, change of character size, image 
position, text/fax switchover control characters, inter
rupt signals, etc. 

In Figure 3 possible features of transmission services of 
future Textfax stations are listed. In traffic between business 
partners using the same forms, preprints, etc., "virtual 
image transmission" is important. A form, for example, is 
transmitted only as a name under which it is stored in the 
sender's and the receiver's image files, together with text 
and position specifications for combined copying of text and 
form at the place of reception. 

FIRST RESULTS 

Textfax experimental workstation 

After this look into the future, let us now turn to the 
present state of our research work. In order to determine 
how the functions of Textfax can be implemented and how 
they will be accepted by the user, an experimental worksta
tion designed in modular multiprocessor technique, which 
will incorporate the previously-mentioned performance 

Control terminal 

Graphic tablet 
Plasma display 

floppy disk storagI 
Figure 5-InitiaI configuration of the experimental workstation. 
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characteristics, is to be set up in the research laboratory of 
Siemens AG. The multiprocessor structure is shown in Fig
ure 4. The first stage of this experimental workstation was 
essentially the configuration shown in Figure 5, which was 
used to carry out the processing activities described in the 
next section. 

The configuration in Figure 5 is based on the Siemens 
microcomputer SME 800 with a 64 kB internal memory and 
two 250 kB floppy disk drives. Text entry and operation of 
the workstation are handled by a control terminal. Actual 
text and facsimile processing is performed on a per window 
basis on a 512 x 512 dot plasma display showing approxi
mately one fourth of a standard size page in Group 2 resol
ution. The Group 2 remote copier HF 1048, attached via a 
digital interface, serves for data entry, hardcopy output and 
transmission of text/image documents. The graphics tablet 
can be used to insert handwritten drawings or comments in 
the softcopy. This configuration may be viewed as an ex
pansion of the remote copier to include local processing 
functions for text and image. 

An editor permitting the elementary functions listed in 
Figure 2 to be used on black and white images and rastered 
grayscale images was prepared for processing and mixing 
text and facsimile. Images are rastered according to the 
method illustrated in Reference 9, where different grayscale 
levels are represented by different dot densities. A special 
redundancy reduction method was developed offering stor
age economy combined with a low compute time require
ment. 

Figure 7 
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Processing examples 

Example 1 in Figure 6 shows an order form filled out at 
the Textfax workstation. The form, which previously has 
been scanned via the remote copier and stored in a forms 
file, is displayed on the screen where it is filled with text in 
a window-by-window fashion. The start of the text line is 
marked by the cursor which may be positioned to any dot. 
Font and character size may be changed even within a line. 
When the text has been entered in the form, the drawing is 
recalled from the image file and copied into the order form 
using the cursor for positioning. The order is now ready for 
approval. After this. it is transmitted as a facsimile from the 
buffer of the employee's Textfax station to the station of the 
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purchasing manager, who signs the softcopy before sending 
the order on to the remote copier station of the supplier. 

Example 2 shows processing of a rastered grayscale 
image. A photo was scanned by the remote copier, the 
resultant analog information was digitized with 4 bits per 
pixel and rastered using a 4 x 4 dot Dither matrix. Figure 7 
illustrates the softcopy of the raster image on the plasma 
display. The black and white image can now be processed. 
Figure 8 shows the same head done up with glasses, mous
tache, data relating to the individual, and the signature. The 
same procedures may be used for producing wanted persons 
pictures (composite drawings) on a police workstation. 
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Microcomputer programming skills 

by C. WRANDLE BARTH 
Goddard Space Flight Center-NASA 
Greenbelt, Maryland 

One of the most overwhelming aspects of the microcomputer 
revolution has been the speed with which hardware costs 
have plummeted. The software versus hardware costs ratio 
which prompted much of the interest in software engineering 
in recent years has grown dramatically as the parallel de
velopment of the microprocessors pushed down the cost of 
computer systems and their proliferation fueled software 
demand. This is increasing the need for skilled programmers 
for microsystems, part of which will be met by programmers 
currently working on big systems. In this paper we will 
examine some of the differences in skills and techniques 
that one can expect to encounter in the transition from 
programmer to microprogrammer. (The terms micropro
gram, microprogrammer, and microprogramming are fre
quently used in reference to the firmware or microcode of 
large machines. We will be using such terms only with ref
erence to microprocessors.) 

THE CONVERSION FROM PROGRAMMER TO 
MICROPROGRAM MER 

Microprocessors are being used in a wide variety of ap
plications. The programmer whose previous experience is 
with large batch systems may find that microprogramming 
for some of these applications requires a number of new 
skills. The hardware architecture, which high-level lan
guages and operating systems have kept hidden from him on 
the big computers, may now be the primary thing with which 
he is working. Even the systems programmer who is accus
tomed to working at the level of assembly language and the 
machine architecture may find he must dig another level 
deeper, down to the logic diagrams and gates of the system. 
The ands and ors may have a familiar ring, but there are 
new things to unravel. If the application includes hardware 
development, signal timing diagrams will have to be read 
and understood to ensure the equipment being developed 
will work together; and testing and debugging now require 
oscilloscopes and probes as well as the more common traces 
and dumps. 

These new skills are of particular importance when de
Veloping special-purpose systems that include microproces
sors. When the hardware is being developed along with the 
software like this, one of the most important aspects of the 
work is the hardware/software tradeoff. Many of the func-
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tions to be developed can be accomplished in either hard
ware or software, or a combination of the two. The greater 
the designer's understanding of both areas, the more valu
able he becomes in being able to create an optimal system. 

If one is writing programs for micros in EDP, the changes 
in skills and techniques are much less pronounced. It will 
still be necessary to be more familiar with the hardware than 
would be required on large systems (although not to the 
degree needed in systems involving dedicated microproces
sors). This is mostly prompted by the limited number of 
sophisticated tools currently available. Even though this is 
certain to become less of a problem as the necessary tools 
are produced, the EDP microprogrammer will have to bridge 
the gap for some time to come. 

Tumbling costs an" also making real-time EDP systems 
more viable. Progr- ,mmers of such systems may have fewer 
hardware conce.tlS than those programming dedicated mi
croprocessors; but the interfacing is certainly much harder 
than for the batch-style EDP systems to which their expe
rience may have been limited. 

Many of the skills and techniques required in program
ming microprocessors are dependent on whether the micro 
is part of a dedicated, general-purpose batch, or general
purpose real-time system. These distinctions, in fact, are 
often overlooked in the presence of the much more obvious, 
but somewhat more superficial transition from maxi to 
micro. Although much of our discussion will apply to all 
areas of microprogramming, parts will be appropriate only 
to certain applications. We will attempt to distinguish among 
these areas in the topics that follow. 

THE CONVERSION TO PROGRAMMING 
DEDICATED APPLICATIONS 

With each new decrease in the cost of computers, new 
applications for their dedicated use have become economi
cally justifiable. The maxis were limited to the really huge 
projects-defense, space and production control for large 
factories and utilities. The minis brought computer power to 
the smaller factories and research laboratories. And now the 
micros are making computers a part of everything from cash 
registers to video games. Those who are new to program
ming-dedicated microcomputers will not only need to learn 
techniques they never used in batch work, but they may 
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also find themselves using some techniques different from 
those of the traditional real-time programmer as well. The 
old ponderous real-time applications were frequently of a 
nature so large or critical that the only reasonable testing 
approach was simulation. With the smaller systems, it is 
more common to be able to test directly on a working pro
totype, using hardware test equipment instead of simulation. 

As we have already noted, the knowledge of hardware/ 
software tradeoffs is particularly important in projects in 
which both are being developed together. But such tradeoffs 
are not easily assessed. The cost of things accomplished in 
hardware recurs with every copy; the software costs occur 
only once. Thus there is a tendency to make the hardware 
"weak" for economic reasons. But this pushes more and 
more complexity into the software while trimming the hard
ware capability to a bare minimum. And when the applica
tion requires every last ounce of hardware power available, 
other things may have to be sacrificed. Such things as the 
use of high-level languages, various structured programming 
techniques. and the avoidance of coding tricks quickly fall 
prey to such an environment. Building systems that are 
friendly to the ultimate user requires resources that may be 
viewed as luxuries that cannot be afforded. Even high reli
ability or high programmer productivity can be lost when 
developing in a minimal hardware system. 

THOSE PAINFULLY PINCHING SHOES 

Developing programs in a minimal environment has al
ways been burdensome. Dijkstra spoke of the earliest com
puters that were slow and whose memories were too small 
as "painfully pinching shoes." 1 He said that the first pro
grammers were pushed into coding tricks in the machine 
language and that they viewed programming primarily as the 
process of optimiZing the efficiency of the computational 
process. Now, close to three decades later, we are faced 
with a brand new shoe of the very latest style, but one that 
is just as pinching as ever. 

Many programmers view the microprocessor's relatively 
slow speed as immediately ruling out the use of high-level 
languages, regardless of the application. Optimization be
comes glorified again, even optimization for its own sake. 
We know that optimization during coding is very error
prone. And with a dedicated computer, cycles saved on non
critical paths cannot even be made available to·' 'other 
users." The use of programming tricks makes software even 
more unstable in these environments. (I should mention that 
I am not talking about programming idioms-such things as 
subtracting a register from itself to clear it-that become the 
universally acceptable way of accomplishing a task. It is the 
perversion of an operation code into a meaning unclear to 
other humans that often leads to errors.) In general, the 
smaller the excess hardware capacity over that minimally 
required, the harder our systems will be to program~ the 
more the we will be pushed into poor programming prac
tices~ and the less reliable the end product will be. 

But these arc not the only asped~ of iila...:hine smallness 
that the new microprogram mer faces. An easily overlooked 

difference is that less help is available from the operating 
system. In many cases, there is no operating system at all; 
just a bare bones machine. But even where some services 
are available, they are far removed from the facilities that 
were taken for granted on the maxis. The programmer can
not count on a supervisor fixing up a division by zero, or 
recovering from an input error. His code must do more 
checking and correcting for itself. 

STRUCTURED PROGRAMMING ON MICROSYSTEMS 

Structured programming has always required a healthy 
helping of common sense. The programming manager who 
decrees that "all programs shall be structured" is quick to 
discover that really terrible programs can be written without 
a sign of a goto and with no module exceeding 50 lines. 
Structured programming is not a blindly mechanical process, 
nor is it a panacea. The more demanding the external con
straints, the more that sound judgment is required in apply
ing the principles of structured programming; but also the 
more that the discipline will payoff. 

Some people question whether structured programs are 
sufficiently efficient for use on micros. Of course, many of 
the techniques that have been loosely grouped under the 
name "structured programming" really have no bearing on 
efficiency at all. And while I've already indicated that I feel 
optimization is sometimes overemphasized, there is no 
doubt that certain constraints must be met, particularly in 
programming real-time applications (either dedicated or gen
eral-purpose). It is true that some structures which fre
quently tum up are inefficient. Redundant tests occur when 
using only standard control structures. Branch instructions 
whose targets are other branch instructions may be gener
ated by high-level languages or assembly macros for some 
of the standard control structures. And numerous short sub
routines can add substantial calling overhead to a program. 
Some of these problems can be overcome; others cannot. 

Of major interest is the use of structured programming in 
high-level languages. As new languages are developed with 
the structured programming techniques in mind, we may 
find that better code is generated than would be for the 
current high-level languages. For example, optimizers can 
work better on structured code. Even our best current op
timizers must abandon much of the optimization in program 
segments where a rat's nest of gotos prevents their deducing 
the flow of control. The optimizer for a structured program
ming language, however, could optimize every loop in the 
program since each begins with one of a small number of 
specific keywords. Furthermore, such optimizers could con
vert procedures that are called from only a single place in 
the program text into in-line code, thus cutting down on the 
calling overhead. But an of this is only what could be. What 
about what is? How should programs be written with the 
tools we have available now? 

We know that most programs spend the majority of their 
time in a minority of their code. Even real-time programs 
are often time critical in relatively few places. These facts 
can allow us to take advantage of structured programming 



techniques in our program development and then go back to 
post-optimize in those places where it is really critical. This 
also allows us to isolate our thinking about optimization 
from our thinking about the programming of the algorithm. 
Many of the techniques we use when optimizing are based 
on assumptions about the data of the program's variables. 
If we optimize as we code, it is particularly easy to make 
false assumptions that get violated as we also optimize other 
parts of the program. Post-optimization is both easier and 
surer since all of the parts of the puzzle are present, allowing 
us to completely verify any assumptions we must make. We 
can attack the problem piecemeal, assiIring each change is 
valid before making another. And most importantly, we can 
direct our efforts to those parts of the program that are most 
apt to be worthwhile. 

Other software engineering techniques can provide effi
ciency payoffs. The use of functional cohesion and decou
pling2 aid the complete replacement of algorithms with better 
ones. In a poorly modularized program, the code imple
menting an algorithm may be sprinkled about in such a way 
that it is impossible to change even when a better method 
is found. And replacing a poor algorithm with a better one 
can frequently yield a much higher optimization factor than 
can a ton of coding tricks. 

The most important realization is that efficiency is a very 
relative thing. On a microprocessor dedicated to a single 
activity (whether used in a dedicated hardware system or in 
a general-purpose single-task system), wasting CPU time is 
of no concern if we are totally I/O bound and there is nothing 
else to do. Wasting memory is unimportant until it crosses 
a quantum boundary; and as chips become bigger and 
cheaper, the size of that quantum keeps increasing. Even 
when poor efficiency causes the system to be slower, it may 
be preferable. Efficiency considerations must be weighed 
against reliability considerations. Up to a point, a slow sys
tem that works is preferable to a fast one that fails (although 
a sufficiently slow system may be a failure by definition). A 
latent bug can be costly in any system, but particularly in 
a commercial device. 

A NEW COMMUNITY OF USERS 

One of the biggest changes that the microprogrammer 
faces is the new user community he serves. As a program
mer of large systems, the "unsophisticated user" was a 
manager, a data entry clerk, a scientist, an engineer; with 
the micros it may well include a non-professional, an office 
clerk, a sales clerk, a houseperson, or a blue-collar worker. 
This is particularly true with programming for dedicated 
micros, somewhat less for real-time EDP, and least for batch 
EDP. However, even in this last case, the operator of such 
a system might well be the owner of a small business rather 
than a computer professional. The human interface of pro
grams must take on a new aspect. These people will find 
words like "input," "record," or "string" strange or un
derstand them differently and they are not accustomed to 
learning jargon. Moreover, they may not be just "down the 
hall" where they can ask you about some strange message 
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they receive when trying to run your program. They are 
going to put commas in their numbers and type the letter 
. 'I" when they mean the digit" 1." And they expect "end" 
and "END" and" end" to all be the same-except when 
they want them to be. different! But most important, they 
expect programs to work-and work right every time. 

RELIABILITY 

Consumers expect high reliability of the things they buy. 
No one expects to go to the store and find release 21.8 of 
a microwave oven! The closest things to "program fixes" 
that most consumers see are automobile company recalls. 
But if such recalls can hurt the images of the auto giants, 
think of what such bad public relations could do to a strug
gling company producing microcomputer-based systems. 

And yet the overwhelming majority of programs are mar
keted while still sadly undertested. They are, in fact, so bad 
that it has become common to talk of buying program 
"maintenance." But programs don't break down; so what 
people are really buying is not maintenance at all, but a 
warranty. The programs are effectively guaranteed not to 
work as advertised; the . 'maintenance" assures that they 
will be fixed up when they inevitably fail. This viewpoint is 
well understood by people that have been dealing with com
puters every day, for they know that much software is quite 
bad. But the consumers are only starting to find out. This 
is not just limited to consumer-oriented systems, either. 
Customers have little sympathy for merchants whose real
time systems are down and prevent them from transacting 
business. 

Is there a way to avoid bad software? There are some 
aids, for sure. Program certification (mathematical proof of 
correctness) offers the best hope, but is still far from prac
tical for most programs. However, the more critical the 
application, the more certification may be justified, even if 
only on a limited basis. Certainly programs that are a part 
of automotive systems are going to require higher reliability 
as they take over more crucial functions in those systems. 
For the time being, the best insurance for most non-critical 
software is probably the peer program walk-through. Such 
walk-throughs will frequently turn up bugs faster and better 
than testing methods will, and they have the additional ad
vantage of being educational. One of the biggest problems 
that is overlooked by many is how will field upgrades be 
dealt with, particularly the inevitable fixes. For in spite of 
all their preventive measures, if the handling of the correc
tion of a bug that slips through is mismanaged, a company's 
whole reputation may go down the drain. 

OLD LESSONS TO BE RELEARNED 

There are a number of lessons that we have learned over 
the years that apply as much as ever to the micros or even 
more. To make sure we do not lose sight of them, we will 
review some here. 

Use of high-level languages must be emphasized wherever 
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possible. Of course. there will be areas where the overhead 
is just too great and we must turn to assembly languages. 
But we must weigh this alternative carefully on a case-by
case basis. We know we can turn out better software faster 
using high-level languages. Even our "superprogrammers" 
can (and we all like to think of ourselves as superprogram
mers). But if we expect to keep up with the growing software 
need, we must use the better tools whenever possible. 

The same argument applies to using modularity. The gen
eral-purpose routine seldom takes much longer to write than 
a very special-purpose routine. And although it probably 
won't be quite as efficient, it can save programming time 
over and over if we can use it in future projects rather than 
reinventing the wheel. 

The biggest cost in changing hardware is changing soft
ware. The big boys learned it when they were repeatedly 
cursed with "downward" (backward?) compatibility. In 
microcomputing hardware, six months is forever. The more 
a given system is tied to a given architecture, the more that 
system is going to become obsolete with the hardware. This 
may be fine for dedicated use in a consumer product where 
the time frame during which we plan on being in production 
matches the expected availability of the component hard
ware. But for general-purpose programs, software compat
ibility will be the key to longevity. This adds another reason 
in favor of using high-level languages. Even though different 
compilers for the same high-level language may require some 
changes in our programs, assemblers for different architec
tures will require even more. 

One of the biggest differences between good programs 
and so-so programs is human engineering. This is all the 
more important when we consider our new user community. 
Programs should be written to be helpful and friendly to the 
user. In many cases he will be communicating in an alien 
environment and will not appreciate contorting himself to a 
system with a thousand rules he can't remember. Sometimes 
it requires a major increase in effort to build systems that 
are well engineered; but frequently simple changes can pro
vide great conveniences to the users as well as providing 
additional selling points in a competitive market. 

Patching is one programming technique that was falling 
into disrepute on the larger machines and is now making a 
reappearance. Patching object code rather than fixing the 
source is sometimes required as a temporary measure when 
testing micro software, particularly where the turn~round 
time to recompile the program is long. The key to avoiding 
errors when patching is maintaining the discipline of keeping 

track of all such changes and assuring that they get back 
into the source. There is actually a greater problem than this 
type of patching, and it is still seen regularly in all phases 
of programming. That is the patching of source code con
trary to the program's design. Sometimes such a patch is, 
in fact, the only reasonable way to fix a design bug-partic
ularly the last bug in a large design. If the time to correct 
the error at the design level and then "recode" is too long, 
then the source patch is just as reasonable as was the object 
patch. And just as for the object patch, the documentation 
should include complete information regarding the error for 
future reference. But we should not be too quick to write 
off such errors as unfixable at their true source. If any 
further use is to be made of the program, it is all the more 
desirable to correct the design error. And in well structured 
programs, corrections in the design should be able to be 
sifted down into the code fairly straightforwardly, allowing 
the number of final modules that must actually be recoded 
to be quite small. 

CONCLUSIONS 

The need for programmers for microcomputers is great 
and will draw people from many disciplines. Professional 
programmers for large machines can expect to have a big 
head start if they move to micros and there will not be as 
many differences ahead as they might think. Most of the 
techniques that were applicable on the big machines are at 
least worthy of consideration for the micros, although the 
actual application may require some changes. The biggest 
differences, however, will stem more from the differences 
in applications than from differences in machine size. The 
change to real-time programming is the most important of 
these differences (particularly on dedicated microproces
sors) and may entail dealing with hardware and machine 
architecture to a greater depth. The other primary difference 
is programming with a more computer-naive user in mind, . 
and dealing with his limitations and expectations. 
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Program conversion-One successful paradigm 

by CHARLES LYNN, JR., JEAN RISLEY and ROBERT WELLS 
Bolt Beranek and Newman, Inc. 
Cambridge, Massachusetts 

The continuing rapid development of computer hardware 
over the years has been both a blessing to the user who sees 
his computing power increase and cost decrease over time, 
and a disappointment to those who have found that the cost 
of converting existing software outweighs the advantages of 
the new machines. For any proposed change of hardware, 
there are at least three options whose cost the user must 
carefully weigh-( 1) the option of remaining with older hard
ware, (2) the option of completely redesigning/rewriting ex
istent software and (3) the option of converting those por
tions of the existing software which are portable and 
rewriting the rest. 

At BBN we have recently carried out the transfer of a 
large body of programs from one hardware environment to 
another. In the process of this task, we have developed an 
analytical approach to the problem of conversion of pro
grams written in a partially independent higher-level lan
guage. Our technique consists of several distinct phases: 

1. Identification of the programs to be converted and the 
environment in which they will be run. 

2. Isolation and analysis of those language features which 
are not portable and of those features of the hardware 
and system environment which were used. 

3. Design and implementation of a mechanical conversion 
process. 

4. Creation and use of a procedure for giving human at
tention to special or difficult areas. 

5. Conversion and debugging of the programs including 
definition and use of standards for debugging and pro
gram testing. 

6. Creation of the operational environment under which 
the programs will be run. 

7. Parallel operation of both systems with extensive com
parison of their respective results. 

8. Operational use of the converted system and the ar
chiving of material from the old system. 

Dividing the problem in this way makes it possible to keep 
control of the progress of the conversion effort. Also, per
forming a complete analysis before actually beginning to 
convert and run programs provides a better grasp of the 
scope of the work and tends to minimize surprises later in 
the project. 
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THE PROBLEM 

Our specific problem was to move all of the current Man
agement Information Services (MIS) functions of the com
pany from the GE Timesharing Service~' to an in-house 
DECSYSTEM-2020. Our primary motive was the reduction 
of the continually growing hardware cost in terms of ma
chine time and storage charges. Those costs were much 
higher than those projected for the in-house machine, and 
the prohibitive cost of increasing service and development 
of new software effectively precluded major improvements. 
We were also constrained by the absolute requirement for 
continuity of performance-the change of environment had 
to be transparent to the company. 

Throughout the conversion project, there were a few basic 
policies. The primary constraint was that the converted sys
tem behave "exactly" like the old one. This provided a 
strict guideline on program rewrites-nothing was to be re
written if it could be done in the old way. 

The body of programs comprising the MIS system to be 
converted consisted of approximately 450 source program 
files (70,000 source lines of code) written in three different 
dialects of FORTRAN ($FORTY$,l FIV2 and F774). There 
were both batch and interactive processes, and 15 hierar
chical data bases with a total of 65 record types were used 
by the programs. The system was developed almost entirely 
by internal BBN MIS development personnel over several 
years, with some support software such as the data base 
management system provided by the time-sharing vendor. 
Program documentation was generally limited or out of date, 
with most documentation consisting primarily of user in
struction memos. 

ANALYSIS 

During the analysis phase of the conversion. we divided 
the potential language and environmental conversion prob
lems into specific analysis areas, with responsibility for one 
or more areas assumed by each member of the team. The 
main areas were ( 1) character and string handling data types 

* GE is a trademark of General Electric Company: DEC, DECSystem-IO, 
and DECSYSTEM-20 are trademarks of Digital Equipment Corporation: Sys
tem 1022 is a trademark of Software House. 
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and features present in each of the GE FORTRAN dialects 
but absent from the DEC FORTRAN;3 (2) data base issues 
(HISAM hierarchical data bases on GE,7 relational data
bases provided by System 102210 on DEC); (3) input/output 
and file handling language features; (4) system-provided fea
tures (subroutine packages, monitor commands, SORTI 
MERGEs, interrupt error handling, etc.); (5) other language 
feature incompatibilities (ENCODE/DECODE, initialization 
statements, structured programming features, etc.); and (6) 
other facilities used, such as the data base report and batch 
stream command languages. 

All the source code files were initially transported to the 
DEC system where they were kept on-line continuously. 
During the analysis phase we used the vendor-supplied man
uals to locate potential incompatibilities in the languages, 
and then searched the existing on-line sources for actual 
occurrences of any potentially troublesome syntax. 

We specifically designed a search program to accept a set 
of search patterns and a set of exclusion patterns, specified 
as regular expressions, and scan a specified group of files 
for line matches, which were then listed with their locations. 
Exclusion patterns were used to eliminate non-interesting 
matches, such as those found within comments. This search 
program and all the programs used to mechanically translate 
the FORTRAN sources were written in FASBOL,9 a com
piled dialect of SNOBOL for the DECSystem-1O and DEC
SYSTEM-20 systems. SNOBOL5 is a powerful string pro
cessing language, and it proved ideal for the rapid 
development of these conversion programs. 

The information collected during the analysis phase was 
circulated within the whole MIS group by an on-line message 
system (HERMES6). This was useful both for communica
tion of specific points ("NAMELIST 110 is never used," 
"there is a lot of EQUIVALENCE with character data 
variables," etc.), and to provide on-line hard copy of prob
lem areas by topic as a guide for later phases. There were 
group reviews and discussion sessions on the findings in 
each area based on the collection of messages. This infor
mation was also circulated to the development group so that 
they would be aware of language features that should be 
avoided in their development work. 

MECHANICAL CONVERSION 

The design of the mechanical conversion itself began with 
listing, by area, the specific mappings of syntax which would 
change a feature in one of the GE FORTRANs to acceptable 
DEC FORTRAN. For example, in an unformatted read, 
map 'READ, .. .' to 'ACCEPT *, .. .': or in a type state
ment with initialization values, 'remove the initialization 
values and create a DATA statement for the variable,' Spe
cific translations were grouped into 17 processes, each of 
which became a FASBOL program. 

Each conversion process was conceived as a filter, taking 
an input file and applying a set of translations to it. The 
intermediate forms between these processes were not. in 
general, legal FORTRAN programs: for example, one of the 
initj~l filter" concatenated continuation lines together to 

make lines hundreds of characters long so that later filters 
would not have to be concerned with continuation lines. 
Another filter analyzed each routine to develop symbol table 
information about the variables used, then distributed this 
information as control character sequences to all occur
rences of the variables. This allowed later filters to trivially 
determine such information as the type and dimensionality 
of any variable. The last F ASBOL filters in the sequence 
removed such alterations to produce valid FORTRAN pro
grams. Due to the largely unstructured nature of SNOBOL 
programs, we felt it would have been much more difficult to 
develop only one large SNOBOL program to perform all the 
translations; most of our filter programs were under three 
pages long and understandable as a whole. 

The ordering requirements of the translation processes, 
shown in the graph of Figure 1, evolved based on special 
requirements of the processes themselves. For instance, the 
process to reconcile OPEN, CLOSE and unit assignments 
(OPCLOS) needed to occur before the one resolving prob
lems of format modes and expressions in 110 lists (lOLIST) 
in order to locate FORMA T statement numbers in the 
READs and WRITEs. Figure 1 also shows, for example, 
that the relative order in which SHORT and STATE were 
executed does not matter, but both require LINES to have 
been run and both must be run before any of the other 
routines (DBCALL, IOTRIV, or ENVIR) may be run. The 
execution order which was actually used for the 17 modules 
is indicated by the numbers in the upper left corner of the 
boxes in Figure 1. 

For many features, a choice had to be made between 
conversion to acceptable DEC forms and emulation of the 
GE-provided features, In most cases we favored conversion, 
since we hoped to minimize long-term maintenance prob
lems caused by the holdover of alien conventions. However, 
the use of the HISAM data base calls and the representation 
of character data in strings was so difficult to convert to 
DEC that it was decided to emulate these functions in the 
converted system. 

The HISAM hierarchical data base structure so dominated 
the logical structure of the programs that conversion of the 
programs to make optimal use of the System 1022 relational 
data base facilities would have required almost total restruc
turing and rewriting. We therefore decided to emulate the 
HISAM data base routines where possible rather than un
dertake extensive rewriting. The HISAM emulation consists 
of 14 external routines and several internal routines, com
prising 1700 lines of source code. The package was written 
in RATFOR,8 a structured FORTRAN pre-processor, be
cause of the readability and cleanliness of the structural 
statements it provided. 

Character processing in all the FORTRAN dialects, in
cluding the target DEC language, is very dependent on the 
number of characters that fit into single- and double-word 
variables. The GE code was firmly based on four characters 
per word and could not be practically mapped into the five
character words that are used for literals and support routine 
calls on DEC. We therefore provided a minimal preproces
sor (MISrOR) for long-lerm mainlenanl:e of the l:ode. This 
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GE Fortran 
Programs 

1 SPLIT: create file for each logical 
program; reformat line numbers 

2 LINES: lower case to upper; 
comment out JCL; remove spaces; 
II to '; remove continuation lines 

4 STATE: split one-line IF; IF .. THEN .. ELSE; DO 
WHILE/UNTIL; end DO with CONTINUE; split a=b= ... 

6 10TRIV: rewrite terminal 10 
statements (READ, ACC~PT, 
WRITE, TYPE) 

9 DATAST: create DATA 
statements for initialization in type 
statements; pod strings 

10 ENDECO: rewrite ENCODEs a 
DECODEs; preceed DECODEs 
with call to DECOER routine 

11 OPCLOS: associate file nome 
with unit #; note direct access 10; 
build new OPEN a CLOSE 

12 10LlST: create variable for 
constants in 10 list; remove BN, 
!m.!l; 4 character per word strings 

13 TEXT: character assignments, 
concatenations, substrings become 
subroutine calls 

14 PREFOR: mark 4 character per 
word literals; compress IF 
statements 

15 CLEAN: collect a order 
statements; remove symbol table 
info; build continuation lines 

i6 COIviBiN: recombine subroutines 
into single file 

converted 
programs 

17 MISFOR: TEXT4 ~ INTEGER; 
expand 4 character per word 
literals with blanks 

+ 
DEC Fortran 

Programs 

7 ENVIR: rewrite ABENDs, STOP, 
monitor calls; note SORT 

8 NAMES: collect variable type, 
length, dimension information; 
tog each variable 

Figure I-Execution precedence graph of translation processes. 
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preprocessor trivially translates a data type declaration line 
(TEXT4 to INTEGER) for variables containing four char
acter/word data and translates syntactically-marked literals 
by inserting a blank every four characters so that DEC 
FORTRAN will effectively store four characters per word. 
Support routines have also been provided to convert four
character-per-word strings to the five-character-per-word 
strings needed for interfacing with DEC system routines. 

Many capabilities that were language features on the GE 
system became calls to subroutines from the newly-created 
support library for the converted code. For example, the 
error return on DECODE, character assignment and com
parison statements, and the INQUIRE for file status all 
became subroutine calls during the mechanical conversion. 

MANUAL CONVERSION 

Once the mechanical translation had been completely 
specified and developed, there remained a list of problems 
that required manual intervention. These included cases of 
more complicated syntax which were not used often enough 
to justify complete treatment in the translation programs, as 
well as issues such as changing file name conventions or 
sort command syntax which were not simply decidable. The 
mechanical translation both listed these troublesome items 
and placed a comment before them in the source program. 

For the programmer performing the manual checking and 
editing there were a number of reference materials and mem
ory aids. First, there was search program output with line 
number locations of specific potential problems, (SORT, 
overlays. possible bit fields. PROCEDURE calls. monitor 
calls, etc.). Second, there was the output of the mechanical 
phase with error messages marking possible problems. 
Third, there was a summary document and a complete spec
ification of subroutines in the support library with calling 
conventions. Finally, there was a step-by-step document 
listing all issues expected to arise during the manual con
version. These reference materials were the primary force 
for completeness and consistency during the manual con
version, and they made it possible for each team member to 
recreate the conversion environment even when there had 
been distractions to other tasks. 

PROGRAM CONVERSION AND DEBUGGING 

For conversion, the program set was divided into 
subgroups of 10 to 30 programs each. usually by similarity 
of function or access to the same data sets. These subgroups 
were generally subsets of the functional groups defined by 
the operational system. The fact that most of the programs 
are organized around file input and output made it relatively 
straightforward to isolate each program. The actual conver
sion of programs tended to consist of four steps-( I) a pre
liminary (sometimes optional) manual edit, (2) the mechan
ical conversion, (3) a finalizing manual edit and (4) extensive 
debugging and testing. In general. each person tended to 
l:unverl iO lu 20 related programs ai once, moving a whole 

group of programs through all of the steps. There was spe
cialization within each group, with particular project mem
bers being most expert at understanding the complexities of 
sort conversion, data base usage, or data base report lan
guage usage. However, each member was responsible for 
conversion of groups of programs from beginning to end, 
with consultation if needed with the appropriate specialist. 

During the manual conversion we discovered that some 
repeated sections of code occurred sufficiently often to merit 
inclusion in the support library. The requests for interactive 
input (TYPE, FORMAT, ACCEPT, FORMAT) were so fre
quent that we created functions to receive literal messages 
and return a value of the appropriate type. Similarly, a 
function was added to locate and format the date for use in 
many of the programs. In general, however, we tried to 
minimize the number of subroutines introduced so that our 
efforts in the conversion phase could be concentrated on 
conversion rather than tool development. 

While most of the actual program conversion was straight
forward. a few problem areas were encountered. Some of 
the programs required history or parameter files which had 
not been transferred to the new system; short files were 
usually re-entered manually while longer ones were trans
ferred via tape. The time-sharing system used for the first 
part of the conversion (before our own DECSYSTEM-20 
arrived) crashed frequently: usually only a few minutes work 
was lost although at one point it crashed, was down for a 
week, and somehow managed to lose several additional days 
work. 

The most troublesome problems involved the parallel 
modification of programs. One situation involved GE pro
grams which were modified between the time they were 
transferred to the new machine and the time they were 
actually converted; checking the dates on which the pro
grams were last modified immediately before beginning to 
convert a group of programs prevented conversion of out
dated modules. A second situation involved GE programs 
which were modified after they were converted. When this 
happened, the modified program was either again trans
ported to the new system where it was mechanically com
pared to the earlier version, or else the development per
sonnel making the GE modifications also modified the DEC 
version. The latter procedure, when not carefully controlled, 
led to a third situation-two people modified a converted 
program at the "same" time. This problem was later avoided 
by making each program the responsibility of one individual 
and making sure that no one else modified it without first 
checking with the program's nominal owner. 

As each program was converted it was debugged. Debug
ging generally began with synthetic input and then pro
ceeded with copies of actual input from the running system. 
The use of synthetic data made testing of programs which 
performed input validation and editing operations much eas
ier since the actual input data was voluminous and would 
rarely, if ever, contain all possible errors. The use of large 
amounts of actual input from the running system made val
idation of the computations performed by the programs easy 
to check since the correct answers were already available. 



It should be noted that when a discrepancy was found, it 
was not always because the converted program was wrong; 
we found several bugs in the running system. The action to 
be taken in such cases required careful consideration. Re
pairing the operational system was not always desirable-in 
one case it required that many people change the way values 
were interpreted. Therefore, the converted program was 
modified to run in a "simulate-the-bug" mode. In cases 
where numbers which were printed on reports were trun
cated (without any indication by the GE system) the field 
widths were increased. Since the data i!l the reports was not 
generally re-entered into the system, these differences did 
not lead to further discrepancies. In several cases, bugs in 
the operational system were fixed. 

A disturbingly large portion of the debugging time was 
consumed by bugs, some amounting to a comedy of errors, 
which were not related to the conversion. Bugs in the DEC 
SORT utility provide many examples. One of its numerous 
errors was traced to a record in a sorted file whose record 
length was changed by the sort. After a couple days we 
were told that the bug would be fixed in the next software 
release. We could get it shortly but it required the next 
monitor release because it used new monitor calls to parse 
the new command string format. However, that version of 
the monitor was not scheduled for release for two months. 
Thus, all the calls to the sort utility had to be found and 
changed to conform to the new syntax and a routine had to 
be written to emulate those functions of the new monitor 
which the new sort used. 

BATCH STREAM DEVELOPMENT 

Most jobs on the GE system were run in overnight batch 
mode. The control file was built and submitted by a program 
which used a prototype and operator responses to simulated 
program queries. In addition to running programs, the 
streams created temporary backup copies of some files (it 
was too expensive to backup all of the files and data bases) 
and performed other file maintenance operations. The com
mand language made built-in recovery mechanisms so hard 
to implement that none were used. Development personnel 
were frequently required to perform manual recovery op
erations when a service interrupt occurred during ajob since 
time did not permit restoration of files from the normal GE 
dumps (that would require waiting until the next night). The 
batch streams were totally rewritten because of the large 
differences in the command ianguages and operating envi
ronments and because of the desire to improve error detec
tion and recovery mechanisms. 

The operations environment we developed on the DEC 
system is similar to the GE system in many ways. Batch 
control files are built from prototypes and operator re
sponses; specially marked strings in the prototype, the ques
tions, are replaced by the responses. Several advantages 
have resulted from running all programs from batch streams: 
the operations staff is free to use their terminals for other 
tasks, a log is automatically created for each job, and the 
running environment is consistently defined. Since space is 
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av~ilable, all major files and databases which are to be 
modified by a job are first copied; "deleted" files are only 
logically deleted. All intermediate steps are saved on the 
daily dump tapes before being physically deleted from the 
system. In the event of a crash or other large error it is 
relatively easy to backup to any specified point. 

PARALLEL OPERATION 

The validation of the system by running in parallel was a 
formidable task. The operational system worked under tight 
time constraints for data input processing and report distri
butions. Originally, the system had a fairly large component 
of interactive data entry and report request and retrieval. 
We made a few operational changes preparatory to running 
in parallel, replacing interactive data entry with batch entry, 
in order to get better control over input and changes to the 
system. 

The parallel operation phase evolved into two parts. Dur
ing the first part all inputs to the operational system, usually 
in the form of card decks, were collected and transferred via 
magtape to the new system. Every half-month (the company 
business cycle) the operational data bases and transaction 
files were dumped to tape and loaded onto the parallel sys
tem. About one day was required to read the tapes (I I 2400-
foot reels) and build the binary transaction files and System 
1022 data bases. Batch control files were then generated 
from the stream prototypes based on the GE operations log 
and then run (overnight) in the same order as they had been 
run on the actual system. This operation, in addition to 
testing the individual programs, tested the batch streams, 
their interaction with the programs (mostly file manage
ment), and our ability to recover and backup to any specified 
point. While some bugs were found, most required excessive 
amounts of time to locate since the actual bug could have 
occurred anywhere within the simulated bimonthly period. 

These problems led to a second mode of parallel operation 
during which the parallel system was run as close to the 
operational system as possible (typically within a day) with 
the reports being checked line-by-line (rounding differences 
of one cent were usually ignored). In order to isolate differ
ences in data files as quickly as possible, two techniques 
were developed. The first was a detailed RECAP program, 
used on both systems, which calculated transaction file sum
maries. After a job stream was run, RECAP was used on 
the modified files: comparison of the outputs quickly iso
lated the differing transactions. The second technique was 
a complete record-by-record match of the contents of all 
modified data bases and some transaction files performed 
by a set of batch jobs and programs to sort and run file 
comparisons. A match was run weekly during full parallel 
operation. 

Many of the differences encountered during the parallel 
operation were of a mechanical nature. Getting the same 
input data for both machines was a significant problem. The 
problem of dates had been foreseen and a modification to 
the DEC system date routine was made to allow the date to 
be pre-set. This was not sufficient, however, during the 
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latter stages of the parallel operation when the parallel sys
tem was run ahead of the operational one. Date discrepan
cies in runs made before or after midnight were common. 
This later resulted in several comparison mismatches which 
required further manual investigation to ascertain that the 
differences were only due to the differing dates. 

Card input was also a problem. Before the card reader for 
the DECSYSTEM-20 arrived (about five months late) card 
decks were sent to a service bureau for transfer to tape. 
Cards were occasionally lost or out of order. Later, a pro
gram was written to allow direct inter-machine transfer of 
ASCII files. Its 300-baud transfer rate was satisfactory for 
small card decks but was too time-consuming for larger 
ones. When the card reader finally did arrive, the data be
came worse since dark spots on the backs of cards were 
interpreted as punched holes by GE's card reader but not 
by DEC's. Correcting the consequences of these differences 
was time-consuming and frequently led to the necessity of 
additional correction runs. These, in turn, led to comparison 
differences caused by differences in the unique batch num
ber assigned to each run. This problem was solved by writing 
programs to selectively zero-specified fields in the files be
fore the comparisons were made. 

From the inception of parallel running the original oper
ational personnel played an increasingly important role in 
the conversion, advising us on how to make the system 
easier to use, identifying problems in the parallel runs, and, 
during the second part, conducting the parallel runs. Their 
enthusiastic cooperation in the conversion was invaluable 
both in the technical side of the conversion, and in familiar
izing them with the new system in advance of the actual 
switch to it. 

PERSONNEL AND SCHEDULING 

Our conversion team consisted primarily of four people 
full-time for 12 months, with expert consultations by several 
people including one of the original authors and one of the 
current operators of the system. None of the conversion 
team had significant previous MIS or business programming 
experience, but came from scientific, communications, or 
systems programming backgrounds. 

In selection and support of personnel for a conversion 
project, our experience shows that a careful separation be
tween conversion and development teams is very important. 
Some interaction is necessary to avoid conversion of obso
lete segments and to understand more obscure sections, but, 
in general, keeping the conversion team separate from de
sign issues permits complete concentration on reproducing 
the current functions. This tended to prevent a distraction 
into the history of the code, an involvement with all of the 
things the code could or should have been made to do, and 
any dependence on unverified premises about how portions 
of the code ought to interact. 

We had two major overall design and scheduling check
points, one before actual conversion began and one half
way through the ('onversion effort. We decided initially to 
spend half of the time (six months) in analysis. approach 

design, tool building and experimentation using one of the 
functional groups of the system, and at the end of that period 
the conversion procedure was essentially complete. The sec
ond half was originally scheduled to convert all the programs 
in three months, and run in parallel for three months. Ac
tually we converted about 213 of the programs in three 
months and did both conversion and running in parallel in 
the final three months. Converting programs, even with me
chanical aids, was made more difficult by having to switch 
between conversion and other support tasks such as install
ing system software on the new machine or transporting test 
data and new source files to the new machine. 

RESULTS 

When the switch to operational use of the new system 
occurred, all of the regularly-scheduled programs and batch 
streams were operational. A few quarterly reports and re
ports which run irregularly on a demand basis had not been 
converted. A request for one of these reports caused it to 
be placed at the top of the queue of programs to be con
verted. 

The conversion was essentially transparent to users of the 
new reports; except for the addition of report numbers andl 
or page numbers the actual reports are identical. The con
version was not as transparent to those who distribute the 
reports for mechanical reasons. Since the old system printed 
several reports interspersed with the batch log they were 
partially identified by their position in the printout. On the 
new system each report is printed separately so the report 
numbers must be used. This was initially a problem since 
reports which differed by either paging, sort order, class 
inclusion or exclusion, or run date had been given the same 
report number; addition of version numbers to these reports 
solved the problem. 

The conversion was least transparent to those people, 
such as the contract and personnel administrators, who had 
performed interactive data base updating under the old sys
tem. During the parallel operation phase all updates were 
batched and performed by the operations staff. This method 
of operation has been retained, at least initially, under the 
new system until the scheduling and security requirements 
are resolved. In addition, several people had interactively 
requested reports under the old system; they must now 
request the operations staff to run these reports. 

For the operations staff the day-to-day running of the 
system is structurally quite similar to the old system-only 
a few of the names have changed. The biggest difference 
involves having to run and distribute both those reports 
which were formerly requested interactively and the batched 
update results. The latter must be carefully scheduled since 
they have to be verified, and frequently corrected and re
submitted, by the people who are responsible for the data. 

It is difficult to make direct comparisons of execution 
times or costs between the two systems due to a large 
number of unknown factors. The old system provided the 
user with two quantities-time of day, in hours and minuLes, 
and "cost." The cost is an undisclosed function of at least 



CPU, memory and I/O usage. The new system also provides 
the user with two quantities-elapsed time and run-time, 
both expressed in hundredths of seconds. The direct and 
secondary effects of multiple users in a time-sharing envi
ronment cause these quantities to increase with load but 
correction factors are not known. In general, the overnight 
runs on the old system required less wall clock time than 
the corresponding overnight run on the new system but the 
difference does not seem to be "significant" in the opera
tions environment. This relationship can be reversed under 
appropriate loading conditions caused. by additional users. 

A complete cost analysis of the conversion project is 
difficult because many costs cannot be directly compared 
and several are not readily quantifiable. New development 
on the GE system directly increased costs; on the DEC 
system it only increases overall machine usage. The 4800-
baud remote station was critical for the GE system and 
communication difficulties frequently delayed operations. 
After a service interrupt there was no way to quickly catch 
up. The DEC system does not require remote communica
tions. After an interruption of service the operations staff 
can preempt the development group until things are back on 
schedule. Things can be scheduled more efficiently on the 
DEC system as system loading is more predictable. 

Ignoring the factors mentioned in the last paragraph, a 
rough estimate of the cost of the GE services was about 
$26,000 per month. This includes subscription fees, job and 
storage charges, communication costs, remote station lease 
and maintenance, shipping charges, etc. The costs associ
ated with the DEC system are about 513,000 per month. 
This figure includes two full-time operators, system hard
ware (appropriately depreciated) and software (including the 
SORT and System 1022 data base packages), maintenance, 
disks, tapes, cabinets, power and space. The one-time costs 
of the conversion from GE were about four person-years of 
labor and $65,000 for computer usage (additional GE usage 
due to the conversion and portions of the initial mechanical 
conversion which occurred before the DECSYSTEM-20 was 
delivered). It is estimated that the conversion will pay for 
itself within three years. 

CONCLUSIONS 

We found that only a very few programs actually needed 
extensive rewrites. Some rewriting was required, for ex
ample, when either there were not enough 110 channels to 
access files in the same order as before, or because the 
emulation routines were prohibitively slow for the reorga
nization of some data bases. 

The creation of standards for those aspects of the pro
grams which can change is a process which has continued 
throughout the conversion. We found that the creation of 
interactive entry conventions applied consistently made the 
programs easier to read and debug without changing actual 
user interaction. Conventions for file and program names, 
once created and consistently applied, made program and 
data grouping more reasonable. Conventions and routines 
for accessing and processing dates. for example, provided 

Program Conversion-One Successful Paradigm 145 

a b;:tsic consistency between programs that made functional 
differences easier to understand. In deciding to institute 
each of these standardizations, there was a careful weighing 
of alternatives in which the additional cost of implementa
tion had to be shown to be negligible and the benefit to be 
considerably positive. 

If we were to begin the project again, there are a few 
improvements we would make in the procedure. Attention 
would be given to the final operations environment before 
report naming and identification conventions were estab
lished. The HISAM emulation would have been written so 
that data base extensions could be made without having to 
modify the emulation package and recompile all programs 
using it. Time should have been spent to develop an effi
cient, reliable method of inter-machine data transfer. The 
tools to compare binary files, data bases and reports allow
ing error tolerances to be specified should have been devel
oped sooner. Finally, ample time should have been allowed 
for the "unexpected"; about one-quarter of our time was 
devoted to finding bugs in purchased software, installation 
of new releases, delays in delivery, finding ways around 
problems which could not be readily fixed and system 
crashes. 

The overall policy for a system which is undergoing con
version should be to restrain new development as much as 
possible until the conversion is finished. Even fixing bugs 
in the old system can be a problem for conversion if the 
fixes are not made to the converted programs as well. Any 
new development brings up a number of difficult issues such 
as whether to develop on the old or new machine, when to 
convert if developed on the old machine and how to run 
operationally on the new machine before conversion is done. 
We have been only partially successful in avoiding these 
problems, but without a deliberate management policy of 
only allowing the most essential changes, the conversion 
would have been made more difficult if not impossible. 

Based on our experience, the reliable conversion of a 
large body of code from one hardware environment to an
other is possible with a detailed analytical approach. We 
hope that as a result of our experience others will find 
conversion to be less of an intimidating, uncontrolled proc
ess and more of a task for which some reasonable. effective 
procedures exist. Conversion may be both expensive and 
difficult, but it is possible. 
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A generalized zooming technique 
for pictorial database systems 

by S. K. CHANG, B. S. LIN ana R. WALSER 
University of Illinois 
Chicago, Illinois 

INTRODUCTION 

Pictorial information processing relies heavily on the estab
lishment of an efficient pictorial database system. Present
day database management systems are designed primarily 
for efficient storage, retrieval and manipulation of alphanu
meric data. U ntiI very recently, little attention has been paid 
to the storage, retrieval and manipulation of non-alphanu
meric information such as digitized images which require 
a large amount of storage even for pictures of average com
plexity. With the growing list of new applications in picture 
processing, such as geographic data processing, demo
graphic data processing, computed tomography, whole-body 
scanner, earth resources survey satellite (LANDSAT) image 
processing, regional economic and health data processing, 
cartographic and mapping applications, etc., the problem of 
efficient, economical storage, retrieval and manipulation of 
vast amounts of pictorial information becomes more impor
tant and requires careful considerations. 

Two problems can be distinguished in designing pictorial 
databases-the storage, retrieval and manipulation of a large 
number of pictures, and the storage, retrieval and manipu
lation of pictures of great complexity. Traditionally, re
searchers in image processing have concentrated on working 
with a few pictures. However, the new applications for 
pictorial information sytems generally require that the sys
tems be capable of handling a large number of pictures, 
some of which are also very complex. Consequently, new 
techniques must be investigated for the efficient, flexible 
retrieval of pictorial information from large pictorial data
bases. 

In Reference 2, an approach to designing an integrated 
database system for tabular data, graphical data, and image 
data is described. It is based upon generalizations of the 
relational approach to database design. 5 The main idea is to 
represent pictorial information by both logical pictures and 
physical pictures. A logical picture can be regarded as a 
model of the real image. It is defined as a hierarchically
structured collection of picture objects. The logical picture 
can thus be stored as relational tables in a relational database 
and manipulated using a relational database manipulation 
language. Inquiries concerning the attributes of picture ob
jects can also be handled by this relational database man-
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agement system. Once a logical picture has been identified 
for retrieval, the corresponding physical picture can be gen
erated on the output device by retrieving the physical picture 
from an image store which is specially designed for the 
storage of image data. 

This paper describes a generalized zooming technique 
which can be used for flexible information retrieval and 
manipulation for pictorial database system. The design of an 
integrated pictorial database system to support generalized 
zoom is then described. This system is implemented for 
interactive map data retrieval and manipulation in a distrib
uted database environment. The project, called the DIMAP 
(Distributed Image Management and Projection) Project, is 
funded by the Defense Advanced Research Projects Admin
istration. 

In the following section, capabilities of the DIMAP system 
are described. Generalized zooming concepts, including ver
tical zoom, horizontal zoom and diagonal zoom, are dis
cussed. The concept of logical pictures and physical pic
tures, and the correspondence of maps and d-maps, are 
discussed in the third section. The fourth section describes 
the image store. An example pictorial database is described 
in the fifth section, followed by pictorial information re
trieval examples using the GRAIN language (sixth section). 
Dynamic zooming examples are discussed in the seventh 
section, and techniques for frame staging are discussed in 
the eighth section. 

SYSTEM CAPABILITIES 

System overview 

The goal of the DIMAP project is to design an integrated 
pictorial database system which combines a relational da
tabase management system, RAIN, with an image store 
management system, ISMS, to enable the user to perform 
various zooming and panning operations, and to browse 
through the pictorial database. The DIMAP system provides 
a pictorial information retrieval language called the GRAIN 
language. The integrated pictorial database management 
system, which includes the RAIN subsystem and the ISMS 
subsystem, is illustrated in Figure I. 
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RElA
RAIN ..... ---f TIONAL 

SYSTEM DATA-
BASE 

ISMS 
SYSTEM ..... ---f IMAGE 

STORE 

Figure I-An integrated pictorial database management system. 

Display terminal 

The user interacts with the DIMAP system via a display 
terminal. The display terminal has the following features: 
(a) A color raster monitor with good resolution (512 by 512 
pixels); (b) Two joysticks, one for panning, the other for 
zooming: (c) A cursor for pointing at picture objects in the 
window: (d) A functional keyboard. 

A user views a map through a window in a CRT screen. 
The window size in the present system is 512 by 512, cor
responding to the CRT screen size as well as the x-y size of 
one frame buffer. In later versions, it may be possible to 
display more than one (variable-sized) window on the screen 
at a time. It's possible to view a large map by panning the 
window in any direction over the map using a joystick. 
Panning proceeds in starts and stops: smooth panning is 
possible over an area nine times the area covered by a single 
window; when panning is uni-directional there is sometimes 
jerkiness due to loading of frame buffers. 

Vertical zoom 

By pushing ajoystick forward, the user zooms (vertically) 
in for a more detailed view of a map. The current map is 
replaced by a more detailed map. Pulling the joystick back 
causes an outward zoom and loss of detail apparent in the 
current map. 

Since the map set is organized hierarchically (see the next 
section and Figure 5), some picture objects in the current 
map may correspond to more detailed lower-level maps. 
The user can also zoom in on a single picture object, and 
request more detailed information on this picture object. If 
this picture object is indeed enlargeable, the current map 
will be replaced by another map corresponding to this pic
ture object. 

Generalized zoom 

Since the DIMAP system makes use of the relational 
database system RAIN, the user may ask questions about 
non-graphical attributes of picture objects appearing in a 
map. A list of all attributes known to the DIMAP system 
about a particular picture object is obtaineci ,imply by point
ing at the picture object and striking a button. A menu of 

attributes appears in the window near the picture object. 
The user may then ask questions about those attributes. The 
cursor could be controlled in several ways: through the 
keyboard, using a joystick, or via a data tablet pen. A light 
pen could also serve the same function. 

With the relational database system RAIN, the DIMAP 
system can provide generalized zoom capabilities to retrieve 
picture objects based upon their logical attributes. The con
cept of horizontal zoom (H-zoom) is illustrated in Figure 2. 
A zoom window is first displayed on the CRT screen, whose 
vertical axis corresponds to various picture objects in a 
picture file, and whose horizontal axis corresponds to a 
user-supplied selection index (which is obtained either by 
direct computation, or by table look-up). For example, one 
selection index could be the degree of similarity of a picture 
object with a given reference picture object. The zoom line 
can then be moved to set a threshold for selection of picture 
objects for display. If the zoom line is moved to the left, 
more picture objects will be selected. Thus, we are having 
a wide-angle view of the picture file. If the zoom line is 
moved to the right, fewer picture objects will be selected, 
meaning a close-up (telephoto) view of the picture file. This 
type of zoom is called horizontal zoom, because we are 
zooming in on subsets of picture objects belonging to a 
picture file. The traditional vertical zoom (V-zoom), on the 
other hand, provides close-up or wide-angle views of a single 
picture. 

Once the zoom line is set, the view line can be moved to 
select a picture object for display. The corresponding picture 
then appears in the display window. In later versions, more 
than one viewing window may be provided. 

Using functional keys, it may be possible to compute 
characteristics for a set of picture objects thus selected using 
the zoom line. We may sketch typical picture objects and 
atypical picture objects of the picture object set, and display 
their attributes. In case of raster images, an average picture 
object (in the sense of averaging the gray levels), can be 
painted, and its average attribute values displayed. We may 
also obtain a variable-valued logical description of the pic
ture object set using VVL reduction techniques, extract 
additional features from the picture object set using pattern 
recognition techniques, and obtain structural information 
from the picture object set using syntactic parsing tech-

Zoom Line 

-hfo- V_le_' _w _L_in_e_ 

Figure 2-Horizontal zoom (H-zoom). 
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niques. 6 Attribute values and texts associated with picture 
objects can also be displayed. 

Figure 3 illustrates picture retrieval by successive hori
zontal zooms. By moving the view line from one position to 
another and striking a function key, all picture objects be
tween these limits having selection index above the zoom 
threshold will be selected. A reduced picture file can then 
be constructed. The zoom line can again be used to further 
reduce the picture object set, perhaps using a different (user
supplied) selection index. Finally, by striking another func
tion key, the view line is set in the a_utomatic mode, and 
pictures appear one by one in the viewing window in rapid 
succession. If these pictures are successive frames ordered 
chronologically, a movie is produced. 

The concept of horizontal zoom can be further generalized 
to provide correlation capabilities among picture files. This 
is called diagonal zoom (D-zoom), as illustrated in Figure 4. 
Suppose picture files A and B are to be correlated, based 
upon a (user-defined) relation among picture objects. For 
example, picture file A may consist of prototypes of various 
types of tanks, and picture file B consists of picture objects 
to be classified. The user may first select a subset from file 
A by setting zoom line A. All picture objects in file B related 
to picture objects in this subset of file A can be selected 
(using the correlation matrix as shown in Figure 4). The user 

picture 
fiie 

Zoom Line 

Zoom Lne 

- 5 ----

V~W Li1e -If-'--
Figure 3-Successive horizontal zooms. 

) 

picture picture file 

A B 

relations among picture objects 

Zoom Line A 

-+---~---...",.~--...:--- Zoom Line B 

1415171 
Subset of picture objects 
selected in file B 

Figure 4-Diagonal zoom (D-zoom). 

may further prune the resulting set using zoom line B. The 
final subset of selected picture objects in file B can then be 
displayed. 

To summarize, V-zoom and H-zoom can be used to select 
a subset of picture objects from a single picture file. D-zoom 
can be regarded as generalized H-zoom and can be used to 
select a related subset of picture objects from multiple pic
ture files. 

Map ()v('riay and panning 

A map is composed of a collection of ovalays (see Figure 
5), which the user may seieci individually. In order to con
centrate on selected features, the user tunes out overlays 
simply by pushing buttons. A terrain map, for example, may 
show elevation contours, roads, vegetation and cities. These 
four features could be plotted separately, perhaps on clear 
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MAP SET D-MAP SET 

Figure 5-Correspondence of map set and d-map set. 

plastic sheets. When the sheets are overlayed, a complete 
map is obtained. 

In conventional maps, on paper, "What you see is what 
you get." The map reader can't tune out certain features.in 
order to concentrate on others. There's no such constramt 
in the DIMAP system. At any time the user may show a 
single or many features in a particular region. The only 
restriction is that features which interfere visually with one 
another may not be displayed at the same time. Consider, 
for example, the two features "vegetation" and "political 
system." Assume both are area features, meaning their 
frames consist of colored (or shaded) regions in the viewing 
window. Displaying both simultaneously would produce a 
masking effect. The color actually seen by the user would 
not be the intended color of either, unless the intended color 
of the two areas happens to be the same; and in the latter 
case information would surely be distorted because there's 
little chance that vegetation and political system would cor-
respond in an exact way. . 

The dynamic overlay capability of the DIMAP system IS 

implemented through the use of the image planes (see the 
fourth section). At load time, features (picture object set) 
can be arbitrarily associated with a particular image plane. 
The user can then move the display window horizontally 
over an image plane from one frame to another, which is 
called panning. 

CONCEPT OF LOGICAL VS. PHYSICAL PICTURES 

A map isn't stored in the relational data base in the way 
it appears in the window to the user. Rather, map~ are 
generated by various processes that transform relatlO~al 
data into a visual form. The overall process of transformmg 

relational data for display is called materialization. Clearly, 
there is a close correspondence between information in the 
relational database and information on the display screen. 
In fact, it's the same information, represented in two differ
ent ways. In Reference 2, it has been proposed that only 
logical pictures are stored in the relational database, and 
physical pictures are stored in a separate image store. 

To make the distinction among logical pictures and phys
ical pictures conceptually clear, the following terminology 
is adopted: 

• Relational Database 
d-map set 
d-map 
d-frame/logical 

picture 
relation 

tuple 

• Image Store 
map set 
map 
frame/physical 

picture/image 
picture object 

set/features/overlay 
picture object/feature 

A map set is a hierarchical collection of maps, whose 
logical representation is called a d-map set. A d-map set is 
the entire collection of d-map relations in the database. The 
correspondence of map set and d-map set is illustrated in 
Figure 5. 

In Figure 5, the top map is REGION-I5, consisting of 
three overlays CITIES, ROADS, and RIVERS. In the CI
TI ES overlay, there are two enlargeable picture objects 
CITY-A and CITY-B, each corresponding to another map. 
The map CITY-A in turn consists of two overlays, DIS
TRICT and POPULATION. 

A map is composed from one or many overlays, whose 
logical representation is called a d-map. A d-map is a set of 
relations in the data base, which defines a complete map. 
The correspondence of map and d-map is illustrated in Fig
ure 6. In addition to the relations CITIES, ROADS and 
RIVERS, there are two special relations POT and PLOT
TER, whose functions will be explained below. 

The smallest unit for visual display is called a frame, 
whose logical representation is called a d-frame. Ad-frame 
is a set of relations from which a single frame buffer may be 
loaded. Each relation in a d-frame corresponds to a group 
of picture objects (i.e. features) of the same class. The 
correspondence of frame and d-frame is illustrated in Figure 
7. It should be noted that these d-frame relations are re
stricted relations obtained from the d-map relations. 

The physical picture in a frame is also called an image. 
Thus, physical picture, frame and image are regarded as 
synonymous, whose logical representation is called a logical 
picture. 

For each d-map, there is a special relation called POT 
(Picture Object Table), which contains detailed definitions 
of all the d-map relations. An example will be given in 
a later section. 

Since all picture objects represented in a d-frame relation 
are of the same class, their visual interpretations are similar. 
The visual interpretations of tuples in the relation PEOPLE, 
for example, are alike insofar as they aU depict a head. two 
arms, and two legs. We associate with each d-frame relation 
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D-MAP 

Figure 6-Correspondence of map and d-map. 

FRAME 

REGION-15 
FRAME-1O 

O-FRAME 

ROADS 

RIVERS 

Figure 7-Correspondence of frame and d-frame. (Note: d-frame relations 
are restricted relations obtained from d-map relations.) 

a graphics program that can draw a stereotypical picture 
object that is characteristic of the class of picture objects 
corresponding to the relation. The graphics program asso
ciated with PEOPLE knows, of course, how to draw people. 
It doesn't know, however, how to draw specific people, like 
"Mary Scott" or "Ray Roth." It takes the information 
needed to draw a specific person (assuming it's capable of 
drawing details about people) from the tuple corresponding 
to the person in question. 

A typical d-frame is illustrated in Figure 7. There is a 
graphics program associated with every relation in the d
frame. The association is made via the special relation 
named PLOTTER, illustrated in detail in Figure 8. In the 
simplest implementation scheme, the "program" attribute 
in plotter takes program names as values. These are the 
names of graphical programs stored in regular executable 
UNIX files. The information the program needs to create a 
particular frame is found in the associated relation. This 
implies that the graphics program must somehow commu
nicate with the RAIN database system. 

Support for materialization, i.e. the process through which 
relations are given a visual interpretation, is one if DIMAP's 
central tasks. The problem is how to associate ad-frame 
with a frame buffer so that materialization may proceed as 
quickly as possible, leaving a pleasing visual impression with 
the user. This problem will be discussed in a later section. 

THE IMAGE STORE 

A detailed system diagram is illustrated in Figure 9. From 
the user's viewpoint, the DIMAP system can be used to 
retrieve a logical picture, called a d-frame, which is stored 
in relational tabular form. A logical picture, or ad-frame, 
consists of a number of relational tables which are retrieved 
from the pictorial database using GRAIN commands. The 

PLonER 

RELNAME PROGRAM 

CITIES .Icityplot 

ROADS .lroadsplot 

RIVERS ./riversplot 

VEG ./vegplot 

ELEV ./elevplot 

executable UNIX files 

Figure 8-PLOTTER relation. 
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(tabular, 
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Figure 9-Detailed system diagram of DIMAP. 

GRAIN commands can be used to retrieve pictorial infor
mation the user needed via attribute information, structural 
relationship, similarity measure, and complex image pro
cessing operations such as color level and gray level manip
ulation. At the bottom level, the ISMS system can be used 
to materialize logical pictures into physical pictures, called 
picture frames or simply frames. Using the display and print 
commands provided by the GRAIN language, the user can 
have flexible access to graphic, image, and tabular infor
mati on. The design of the integrated pictorial database sys
tem, the relational database system RAIN, and the image 
store management system ISMS, can be found in References 
2. II and 9, respectively. 

The viewing window is refreshed out of the image store, 
consisting of four image planes, as depicted in Figure 10. 
The basic unit in the image store is a four-(or larger) bit 
register called an image cell. The four bits can be used to 
code co)lor or gray level information. On display, th"e value 
in an image cell is interpreted visually as a point in a picture. 
Thus, an image store cell corresponds to a pixel. Each image 
plane has 2048 by 2048 memory cells, and is partitioned into 
nine areas, called frame buffers. Each frame buffer has 512 
by 512 memory cells; thus, a frame buffer has the same 
number of memory cells as the viewing window has pixels. 

Ideally, the image store would be implemented in hard
ware. This would be expensive in practice, however. To 
reduce cost, the frame buffers in the present DIMAP system 
are disk-resident. The result is a less expensive but slower 
system. The storage requirement (in UNIX blocks) of the 
disk-resident frame buffers is computed as follows: Since 
one frame buffer has 512x512x4 bits=131,On bytes=256 

UNIX blocks, and one image plane has 9 frame buffers, or 
256x9=2304 UNIX blocks, the total storage requirement 
for four image planes is 9216 UNIX blocks, which can be 
accommodated by a reasonably large disk system. 

It's assumed that a typical digitized map is so large that 
it won't fit within a single viewing window, nor even within 
a single image plane. This means that pixels in the map 
greatly outnumber points on the display screen. Thus if s 
necessary to partition the information associated with the 
map. Such a partition is called a frame. 

In the simplest case, a map fits entirely within one frame 
buffer. Thus the x dimension of the map is the same or less 
than a frame buffer's maximum width; and likewise for the 
map's y dimension and the frame buffer's maximum height. 
The d-map for such a map consists of just one d-frame. A 
frame buffer may be loaded from this single d-frame, and 
the map may be viewed in its entirety within the buffer, 
without panning. 

In the worst case, the map is very large and the d-map 
consists of a large number of d-frames, DFI, ... , DFn. 
Since the user can view only one frame at a time it will often 
be necessary to move the window from one frame to an
other. Using the image store, it should be possible to achieve 
a smooth (if slow) pan. 

The panning problem. from the database point of view, is 
to load the frame buffers from the proper d-frames as the 
user moves the window over the map. It should appear to 
the user that he is peering down through a window that can 
be moved laterally in any direction. 

AN EXAMPLE PICTORIAL DATABASE 

An example pictorial database will be described here, 
which will be used in future experiments. This database 
includes aeral features, linear features, and point features of 
a IOkm by IOkm area in West Germany around the city of 
Fulda. In order to define the pictorial database, approxi
mately 20 elementary relations have been defined. 

F23 

Foo FlO FlO 

F30 F40 FSO 
image plane 3 

FOO F70 F60 
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There are three types of features in the example database. 
Bridge relation and tunnel relation are point features. High
way relation, railroad relation and waterway relation are 
linear features. Land use overlay consists of five land dis
tribution relations-urban, forest, cropland, meadow and 
others. These are aeral features. Vegetation relation and soil 
type relation are also aeral features. Typical map overlays 
for aeral features are illustrated in Figure 11. 

The structure of the Fulda Gap example database to rep
resent the relationship among these elementary relations is 
illustrated in Figure 12. 

Fulda Cap Oat a 
--------- 1 --------------

Aeral Features Linear Features 
1 1 
1 1 
1 1 

Soil Land Use Vegetation 1 
1 ----1----
1 1 I I 
I 1 I I 

Railroad H1ghyay Uater,,-,ay 

1 ----- 1-------------
1 I I 1 1 
1 I I I I 

Urban Forest Cropland Meadolol Others 

Point Features 
I 
1 

------1-----
1 1 
1 1 

Bndge Tunnel 

Figure 12-Fulda Gap example database structure. 

From Figure 12, we can create a relation table. called 
POT (picture object table), to represent this Fulda Gap ex
ample database structure. In Figure 13, the data type field 
value R means raster data format, L means line data format, 
and P means point data format. If two relations both have 

data relation descriptor no. of 
nallle Qn",_ type operator type def init ion tuples 
urban land use R E- dl !oeo 

forest land use E- d2 2000 
cropland land use + E- d3 150C 
mea do .. · land use R + E- d4 150~ 

others landuse R [- dS looe 
veget. aeral E- db b400 
.oil aeral E- d7 b400 
landuse aeral C-
highway linear L + E- d9 30 
railroad linear L + E- da 20 
waterway linear L E- db IS 
llr ldg;; po1nt '"- de 
tunnel point + [- de 
aeral Fulda + C-
linea r Fulda L + C-
point Fulda + C-
Fulda C-

Figure 13-POT for Fulda Gap example database. 
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+ operators or one with + operator and the other with -
operator, and with data type Land/or R, then these two 
relations can be combined to materialize in the same frame 
buffer. If two relations both have - operators, then these 
two relations cannot be combined to materialize in the same " 
frame butTer. 

Elementary relations are indicated by type E in -Figure 13. 
A composite relation 3 is indicated by type C. The symbol 
" - " indicates this relation contains no picture object that 
can be enlarged. A "+" symbol would indicate this relation 
contains enlargeable picture objects. The user can then V
zoom in on such picture objects. The remaining fields of 
POT relation are pointers to descriptor definitions and num
ber of tuples in a relation. 

GRAIN RETRIEVAL EXAMPLES 

The syntax of GRAIN retrieval language is given in Ap
pendix I of Reference I. GRAIN also contains the RAIN 
language as a proper subset for manipulation of relational 
tables. In this section, we present some pictorial retrieval 
examples for DIMAP by using Fulda Gap example database. 
First we present several important commands of the GRAIN 
command language. 2 

I. Display (frame name )-Display the physical picture 
stored in frame buffer (frame name) on the CRT 
screen. 

2. Sketch (picture name)-The logical picture (picture 
name) is plotted on the CRT screen as a line drawing. 
(picture name> can also be a composite picture object 
which is defined in terms of other picture objects. If 
the clause "into (frame name)" is added to this com
mand, then the logical picture selected wiJ) be con
verted into physical picture and stored in the frame 
butTer calJed (frame name). 

3. Paint (picture name)-The physical picture corre
sponding to the logical picture calJed (picture name) 
is displayed on the CRT screen as a raster image or a 
line drawing depending on the picture data type. If the 
clause "into (frame name)" is added, the physical 
picture is stored in the frame buffer caned (frame 
name). 

4. Draw (picture name)-The line drawing for a new pic
ture object (picture name) is to be created. The draw 
command invokes a graphics editor, which utilizes the 
graphic system for interactive generation of line draw
ing. 

These are the more important GRAIN commands. In what 
follows, pictorial information retrieval using the above com
mands wiJ) be iJ)ustrated by examples. Pictorial information 
retrieval can be classified into several categories: attribute 
retrieval, structural retrieval, similarity retrieval, and com
plex retrieval. 

Attribute retrieval 

In attribute retrieval, pictorial objects are retrieved by 
their logical attributes. For example, in order to sketch the' 
railroads, the sketch command can be used: 

sketch picture; name equal 'railroad.' 

To select certain railroads, the fonowing command can be 
used: 

sketch railroad; rgage greater than' 120,' or 
sketch picture; name equal 'railroad'; rgage greater than 

, 120,' 

where 'rgage' means the rail gage. 
To generate urban land distribution of land use for Fulda 

Gap, we can say: 

paint picture; name equal 'urban.' 

Structural retrieval 

In structural retrieval, picture objects are retrieved by 
structural properties, such as component, container, left, 
right, up, down. For example, the following command 
sketches the picture objects having a component picture 
object with name 'urban': 

sketch picture; component (name equal 'urban'). 

In the previous statement, a line drawing for land use will 
be sketched. 

Similarity retrieval 

This command can be used to retrieve picture objects 
which are similar to a given picture using a certain similarity 
measure. For example, to retrieve an highways which are 
similar to a given highway called 'h3,' the command is: 

sketch highway; similar (highway·name equal 'h3') using 
'Ml,' 

where' M I' is the similarity measure routine which the user 
supplies for testing similarity among picture objects. For 
raster images, the user-supplied routine may range from 
simple template matching to sophisticated hierarchical struc
tural matching. If raster image data is converted into contour 
data, then several efficient similarity measures can be ap
plied. 

Complex retrieval 

Complex pictorial information retrieval involves the com
bination and processing of tabular. graphical. as well as 
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image data. Complex pictorial information retrieval can also 
be handled using GRAIN commands. For example, to paint 
a portion of a picture object with certain color, and paint 
the other portion with different color, the commands are: 

paint picture; name equal 'urban'; with 'red'; into frame
x. 

paint picture; name equal 'forest': with 'green'; into 
frame-x. 

display frame-x. 

If we have a special routine to convert line segment 
format data to coordinate format data, then we can use the 
following command to check which highway passes through 
certain city or town or village: 

pass=temp(*(x,y)) urban 
sketch pass. 

where the relation 'temp' is a temporary relation to store 
the converted coordinate format data for highway relation. 
The first statement is a RAIN equi-join command. 

DYNAMIC ZOOMING EXAMPLES 

As mentioned in the second section, the DIMAP system 
supports panning and zooming operations for pictorial in
formation retrieval. We again use Fulda Gap database in the 
following examples. 

Panning transformatioii 

To pan around certain portion of land occupied by forest, 
the statement is: 

paint picture; name equal 'forest'; (forest·x less than or 
equal '40') and (forest·x greater than or equal '70') and 
(forest·y less than or equal '20') and (forest·y greater 
than or equal '30'). 

Zooming transformations 

Three kinds of zoom-horizontal zoom, vertical zoom and 
diagonal zoom are supported. 

Horizontal zoom (H-zoom) 

To select the land occupied by coniferous forest and 
mixed forest, the commands are: 

paint picture; name equal 'forest'; forest ·class greater 
than '1.' 

Vertical zoom (V -zoom) 

For V-zoom within a map, it is almost the same as panning 
transformation, except that the origin and coordinate spac
ing should be specified. 

paint picture; name equal 'forest'; (forest·x greater thall 
or equal '20') and (forest·x less than or equal '40') and 
(forest·y greater than or equal' /0') and (forest·y less 
than or equal '30'); ((forest·x minus '2') mod '2') equal 
'0'; ((forest·y minus '4') mod '2') equal O. 

For V-zoom on enlargeable picture objects, we first 
select a picture object, and then load a new d-map corre
sponding to that picture object. 

load CITY-A. 
sketch picture. 

Diagonal zoom (D-zoom) 

This is the generalized H-zoom operation. This transfor
mation finds all picture objects which are similar to a group 
of picture objects. For example, in order to find all highways 
which are similar to two highways 'hI' or 'h2', the command 
is: 

get picture; similar (highwa.v 'name equal' hI') or similar 
(highway 'name equal 'h2') using' M2'; into TEMP. 

TECHNIQUES FOR FRAME STAGING 

In the previous cases, zoom operations are performed by 
dynamically constructing a d-frame using GRAIN retrieval 
commands. The advantage of dynamic zoom is its flexibility. 
The disadvantage of dynamic zoom is that it may be too 
time-consuming to construct d-frames dynamically. For ef
ficiency reasons, we need also consider the problem of stag
ing of d-frames. 

The problem can be conceived as in Figure 14a where a 
window is shown over an image plane. The image plane, in 
turn, is (conceptually) over a d-map. Since the map is larger 
than the image plane, it isn't possible to have the entire map 
in the image plane at one time. Relations from the d-map 
must therefore be materialized on a selected basis into the 
image plane. It may appear to the user that the window may 
move anywhere over the map, even though, plainly, this 
isn't physically straightforward. We need an algorithm 
which will indicate which frame to load from which relation, 
and when. 

A potential solution is depicted in Figure 14b. The image 
plane, consisting of nine frame buffers (shown from the 
"top"), is emphasized by heavy black lines. The viewing 
window is shown dashed, and the d-map (corresponding to 
a collection of d-frames in the relational database) is shown 
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Figure I4-Frame buffer staging concepts (a) and panning of window on 
image plane (b). 

underneath the image plane. It's helpful to notice that Figure 
14b is a top view of the arrangement shown in Figure 14a. 

To see the solution to the frame buffer staging problem 
(and, as a corollary, the panning problem) first imagine that 
the window (shown dashed) is positioned precisely over the 
central frame buffer. With the window in this position the 
problem is simple: just let hardware project the image in the 
central frame buffer up to the CRT screen. But now notice 
that if the user moves the viewing window at all it will 
partially cover not just one but four frame buffers. Precisely 
which four buffers are affected can be determined by noting 
which of the four central vertices is covered. It's easy to 
see that only one vertex may be covered at a time. Suppose 
vertex b is covered. This indicates that the viewing window 
is moving toward the upper right hand corner of the d-map. 
There's a strong likelihood that frames lying in that vicinity 
will have to be displayed. This is taken as a cue by the 
system to mean that the available frame buffers-FO, F3, 
F6, F7, and F8-are to be loaded. Assuming there are pro
cedures for properly mapping frame buffers into the viewing 
window, the question is: from which d-frames should the 
frame buffers be loaded? A staging rule that would work in 
the case illustrated in Figure 14b is as follows: 

If the window covers vertex b, then DFII is materialized 
into FO, DF12 into F3, DF22 into F6, DF52 into F7 and 
DF55 into F8. 

Other staging rules can be similarly formulated. 

IMPLEMENTATION STATUS AND DISCUSSIONS 

Prototype RAIN and ISMS subsystems have already been 
implemented. At the Knowledge Systems Laboratory, we 
are currently implementing RAIN II (a better version to 
replace RAIN), and the DIMAP system. 

The following research/development problems are cur
rently being considered: (a) The design of a pictorial rela
tional algebra for logical picture manipulation, which can be 
regarded as enhancement of the traditional relational alge
bra; (b) Evaluation of paging techniques for efficient storage 
of frames in image store,10 and staging techniques for effi
cient retrieval of frames from d-map; (c) Evaluation of sys
tem capabilities by combining the DIMAP system with a 
knowledge base system to test policy analysis applications; 
(d) Consideration of database decomposition in a distributed 
database environment. 
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An approach to real-time scan conversion* 

by FRANKLIN C. CROW 
University of Texas 
Austin, Texas 

INTRODUCTION 

Scan conversion-that is, the transformation of line segment 
endpoint coordinates into a collection of scanline segments 
suitable for raster display-is important because raster dis
plays have many advantages over random-scan, or calli
graphic, displays. The calligraphic displays require exten
sive special-purpose hardware to generate line segments, or 
"vectors," and to drive the beam deflection circuits of the 
CRT. Furthermore, by its very nature, the calligraphic dis
play is subject to damage caused by software defects; a 
program which directs the beam to the same portion of the 
CRT face for too long can damage the phosphors, creating 
a permanent dark spot. 

On the other hand, the raster display can be driven by 
simple digital signals and is immune to software-induced 
damage. The raster display uses a technology shared by 
millions of television receivers around the world. This means 
lower costs through mass production and more flexibility 
through associated devices designed to store, transmit, pro
ject and make hard copies from video signals. For these 
same reasons, research into new displays is almost entirely 
concentrated on TV-compatible proposals. Thus, inexpen
sive displays for computer graphics are most likely to use 
raster displays in the future. 17 

There are a number of current products offering raster
graphic displays using digital image memories with a bit for 
every picture element of the display .1-3 Such memories pro
vide a very straightforward way to perform scan conversion 
and are quite appropriate for primarily static images. How
ever, dynamic images pose difficult problems since moving 
portions of the image must be cleared from the memory and 
then re-drawn for each successive frame. Furthermore, any 
static portions of the image which coincide with cleared 
portions of the display will themselves be partially cleared, 
leaving unsightly gaps (Figure 1). It would be preferable to 
generate all dynamic lines together, in scan order, 30 to 60 
times a second. 

Ideally, static portions of an image should be stored in an 
image memory while the moving portions are dynamically 
scan-converted. However, there are arguments for dynam
ically scan-converting the entire image, assuming that scan-

* This work was supported in part by The National Science Foundation under 
grant # MCS76-83889. 
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conversion can be made to run fast enough. If vectors are 
to be colored or grayscale tricks used to smooth the lines 
(as discussed later in this paper) then several bits must be 
used to define the characteristics of each picture element. 
This requires a rather large amount of memory for an entire 
image of any worthwhile resolution (307,200 times N bits for 
a 640 by 480 element image). 

There is a reasonably clear trade of memory size against 
processor power in the decision between an image memory 
and real-time scan conversion. The image memory needs a 
processor for generating vectors, etc. But, it doesn't need 
the power necessary for the techniques discussed here. Buy
ing considerably more processor power could eliminate a 
few megabits of memory. It is not clear, given the rapid 
pace of development in both processor and memory sys
tems, which alternative will be more economical ten years 
from now. 

There are, of course, compromises. The image memory 
can be divided into character-sized cells and memory allo
cated only to those cells through which a line passes. 2,10,11 

This would allow important savings when using color or 
grayscale. It is also possible to use separate image memories 
for static and dynamic portions of the image, allowing the 
dynamic portion to be cleared after every frame display. 
This sort of functionally-divided form of display has been 
used successfully with direct-view storage tubes. 19 

There have been at least two previous efforts to develop 
systems using real-time scan conversion. Cheek 6 reported 
a system in which vectors were chopped into short lengths 
and then grouped into horizontal strips of the display. Lind
ner and Tozzi 14 have worked on a system which takes an 
approach similar to that ·of this paper but appears much 
more complicated. The approach taken here is heavily influ
enced by experience with scan-ordered hidden-surface al
gorithms; similarity between adjacent scanlines is depended 
upon to minimize computations. The basic scan-conversion 
algorithm, described next, was initially used, by the author, 
in a software implementation at the University of Utah in 
1973. 

THE BASIC SCAN CONVERSION ALGORITHM 

A line segment has a great deal of "coherence." That is, 
given one part of a line segment, the rest is easily extrapo-
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(a) 

(b) 

Figure I-The effect of selective erasure using a digital image memory. 

lated. Thus very simple changes suffice to update the scan 
segment description for a vector from one scanline to the 
next. Digital vector generators use this property to reduce 
vector drawing to a series of incremental 
operations. 4,9,13,15,16,18 The algorithms developed here differ 
from previously published methods in that all vectors are 
generated in an interleaved order dictated by the raster scan 
pattern. Earlier methods generate vectors individually, using 
the most convenient order for the algorithm involved. 

The scan conversion algorithm is composed of three rea
sonably distinct tasks. First, lines in the display list must be 
sorted by the order in which they first appear in the scan. 
Second, for each scanline the position and length of the scan 
segment representing each vector crossing that scanline 
must be computed. Finally, the scan segments for each 
scanJine in tum must be sent in proper order to the display. 

The conversion process is spread over a pipeline consist
ing of a general purpose image update processor, a Y-sorted 
buffer, a microprogrammed scanline processor, an X-sorted 
scanline buffer and, finally, a hardwired picture element 
processor (Figure 2). The two hutTer" are implicitly sorted 
by writing into predetermined slots. one for each scanline 

in the Y-sorted buffer and one for each picture element in 
the X-sorted buffer. 

The design process was heavily influenced by the desire 
to use general purpose processors wherever possible in 
order to be in the best position to take advantage of future 
advances in microprocessor components. Thus, while the 
scanline processor could no doubt be more effectively im
plemented in random logic, a bit-sliced microprocessor was 
chosen to maximize flexibility. 

Very modest design goals have been set for the first im
plementation, a machine capable of maintaining a few 
hundred vectors with no more than about 50 intersecting 
anyone scanline. For this effort a display resolution of 320 
by 240 picture elements at 60 fields per second will be used, 
roughly the resolution available from an inexpensive home 
television set. The eventual design goal is at least 1000 by 
750 picture elements, or about an order of magnitude im
provement. For the moment, the more modest goal allows 
concentrating on the algorithms and minimizes the sort of 
difficulties which arise from pushing digital circuitry to state
of-the-art limits. 

THE IMAGE UPDATE PROCESSOR 

At the head of the scan conversion pipeline, the image 
update processor is dedicated to keeping track of the vectors 
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Figure 2-The basic elements of the scan conversion pipeline. 



to be displayed (the' 'display list' ') and loading the Y-sorted 
buffer. The display list may be formatted to suit the appli
cation at hand, the architecture of the host computer, the 
architecture of the software system or whatever other con
straints exist. In short, the display list organization is of no 
concern here. Suggestions for structuring display lists can 
be found in Reference 16. 

The important task for scan conversion is loading the Y
sorted buffer. For the convenience of later, more tightly 
time-bound elements of the pipeline, the Y-sorted buffer 
stores vector descriptions in a different form. Only the X
coordinate of the higher end of the vector is stored, the Y
coordinate being implied by the position of the entry. An 
increment for the X-coordinate serves to define the direction 
of the vector since the Y-increment is assumed to be one. 
All that is left to completely define the line is a length 
measure. This is supplied as the number of scanlines 
spanned by the vector. 

The calculations involved in computing the buffer entries 
from vector endpoint coordinates are dominated (in small 
processors at least) by one division step. This division is 
necessary to computing the increment. The upper endpoint 
X-coordinate is available directly, after a compare of the Y
coordinates. Nearly as simply, the number of scanlines 
spanned is given by the difference of the Y-coordinates plus 
one. However, the increment is the difference in X-coordi
nates divided by the number of scanlines spanned. 

Updating an image consisting of 200 lines at a rate of 30 
times a second allows 166 microseconds per vector. Current 
16-bit microprocessors with built-in mUltiply and divide can 
execute the necessary instructions in about that same time. 
Since the image update rate can vary from 60 times a second 
down to around 20 times a second without destroying the 
smoothness of the motion, there is some leeway available. 
Use of a minicomputer or one of the more powerful 16-bit 
microprocessors now appearing should supply adequate 
power for the image update function. 
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THE Y-SORTED BUFFER 

The vector entries, as produced by the image update pro
cessor are stored in the Y-sorted buffer in a manner which 
makes it easy for the scanline processor to access the infor
mation it needs. Specifically, the scanline processor must 
be able to readily retrieve all the vectors whose upper end
points lie on a given scanline. Therefore, the Y-sorted buffer 
is organized as a fixed length array of list heads, each of 
which is either null or points into a memory containing 
linked lists of vector entries (Figure 3). 

All unused vector entries in the buffer are similarly linked 
in a separate list to make allocation and deallocation of the 
fixed-sized vector entries a simple operation. Algorithms for 
this sort of memory management can be found in Knuth. 12 

The Y-sorted buffer can be used in one of two modes. If 
the drawing displayed is very dynamic, it is simplest to 
recreate the entire set of vector entries for each image up
date. However, for partially-static drawings and those with 
only translational motion, processor cycles may be saved 
by modifying the existing structure. Using a doubly-linked 
list for each scanline, a vector entry can be removed from 
one scanline list and appended to another. If only the posi
tion and not the direction of the vector has been changed, 
it suffices to change the upper end X-coordinate in the vector 
entry. All other numbers remain the same. 

The latter mode, of course, involves contention for access 
to the buffer. Both the image update processor and the 
scanline processor must access the buffer. Since the scanline 
processor is under greater time constraints, it is given prior
ity. 

THE SCANLINE UPDATE PROCESSOR 

The contents of the Y-sorted buffer are used to generate 
a set of scan segments for each scanline. The scan segments 

Scanline IncreMent 
,Position 

Scanli'ne Increi'tent Forward 
Position Link 

Figure 3-The Y-sort buffer and its data structure. 
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consist of a start position and a run length (the number of 
picture elements to intensify) for each vector which inter
sects a given scanline. The scanline processor generates the 
scan segments for each scanline in tum, moving from the 
top of the drawing to the bottom. 

A scan segment is easily produced from the current X
coordinate of a vector and the increment giving the position 
of the vector at the next scanline. The start position is just 
the vector position; the run length is just the integer part of 
the sum of the increment and the fractional part of the vector 
position. 

As the scanline processor works its way down the picture, 
a "scanline array" containing those vectors which intersect 
the current scanline must be maintained. As each new scan
line is processed, three operations are necessary to maintain 
the scanline array. First, old vectors in the list which lie 
entirely above the current scanline must be discarded. Then, 
vectors which do intersect the current scanline must be 
updated to find the current point of intersection. Finally, 
new vectors whose topmost end coincides with the current 
scanline must be added to the array. 

Recall, the Y-sorted buffer contains three data on each 
vector: (1) The horizontal position of the topmost end, (2) 
the increment which will give the position at the next scan
line and (3) the number of scanlines spanned by the vector. 
Three similar quantities must be maintained by the scanline 
processor for all vectors intersecting the current scanline 
(Figure 4). 

At each scanline, the scanline array is processed. For 
each array position with a valid entry, the increment is 
added to the fractional part of the vector position. The 
integer portion of the result is then stored in the X-sorted 
scan buffer as the run length. The increment is then added 
to the vector position and the result stored for use at the 
next scanline. The number of scanlines spanned is then 
decremented. If the result is zero, the entry is tagged invalid. 

Position 

Current IncreMent NUMber of 
Position Lines Left 

0 52.25 4.36 43 

69.~5 0.01 2 
-- -------- - ---

2 314.0 ·-1 .23 15 
------- -------- - ---------- ----- --

3 5.0 -0.67 0 
_____________ -0 

49 

Figure 4--Information stored in the scanline processor's data memory. 

New vector descriptions are inserted where invalid entries 
are found or created while generating a scan segment. At 
each such occurrence, the Y-sorted buffer is checked for a 
new vector which, if found, is then loaded into the available 
array position and processed to generate a scan segment. 

Given the standard scan rate of 15,750 lines per second, 
the scanline processor has 63.5 microseconds to produce a 
scanline or 1270 nanoseconds per vector, assuming the initial 
design goal of 50 vectors per scanline. Pipelining the mi
croinstruction fetch, a vector can be processed in six micro
cycles: (I) Fetch the entry, (2) sum for the run length, (3) 
store the run length, (4) sum for the position on the next 
scanline, (5) decrement the scanlines spanned and (6) store 
the updated entry. Adding a new entry requires two or three 
more cycles to transfer the entry and update a list pointer. 
Thus a somewhat relaxed 200-nanosecond cycle time can be 
used without overly specializing the processor. This is well 
within the capabilities of current four-bit processor slices. 

THE X-SORTED SCAN BUFFER 

The scan buffer is actually two buffers. One receives scan 
segments from the scanline processor while the other is read 
by the picture element processor. After each scanline is 
processed the two buffers are functionally switched (Figure 
2). 

The scanline processor sends a run length to be stored at 
an address given by the accompanying vector position (Fig
ure 5). A read-modify-write cycle on the given address is 
used to fetch the previously-stored run length, compare it 
with the incoming run length and store the larger of the two. 
This process automatically resolves the problem of overlap
ping scan segments starting at the same picture element. 

At the end of each scanline, one buffer should contain all 
the scan segments for the next scanline stored in X-sorted 
order while the other should be zeroed, ready to accept 
another set of scan segments. This implies that the picture 
element processor must clear the memory as it reads it. 
Given 320 picture elements per scanline, the buffer must 
cycle at around 150 nanoseconds. If the picture element 
processor is to clear the memory in a read-modify-write 
cycle, then a 70-nanosecond memory is needed. Altema-
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Figure 5-Structure of the X-sorted buffer. 



tively, the memory can be interleaved on the least significant 
bit or a bulk clear executed during the beam flyback time 
(about ten microseconds). 

THE PICTURE ELEMENT PROCESSOR 

The final element in the picture production pipeline pro
duces a sequence of pulses which, when mixed with syn
chronization signals for a video monitor, result in intensified 
scan segments properly placed on the display. This involves 
reading the X-sorted scan buffer, setting a flip-flop at the 
beginning of a scan segment and resetting that flip-flop at 
the end of a scan' segment. 

A counter is used to divide the visible portion of a scanline 
into 320 parts and to address the X-sorted scan buffer. A 
down counter running at the same rate is used to define scan 
segment lengths. When the down counter is loaded, the 
output flip-flop is set. When the down counter reaches zero, 
the flip-flop is reset. 

The down counter is loaded directly from the X-sorted 
scan buffer. Before loading, however, the downcounter con
tents are compared with the run length from the scan buffer. 
Only if the magnitude of the incoming run exceeds the con
tent of the down counter is the down counter reloaded. This 
ensures that overlapping scan segments are properly han
dled. A series of overlapping segments will produce a single 
long intensified strip on the display. 

The ISO nanoseconds allowed by the 320-element scanline 
is ample time to perform the compare-and-Ioad operation. 
Accesses to the scanline buffer are overlapped with the 
compare operation using an intermediate register. 

SPEEDING UP THE IMPLEMENTATION-MORE 
LINES AND HIGHER RESOLUTION 

It should be clear that the picture element processor is 
designed to handle the case where there is a new scan 
segment at every picture element. Therefore arbitrarily com
plicated drawings can be handled at the tail end of the 
pipeline. However, higher resolution may require producing 
a picture element as often as every 15 nanoseconds, requir
ing high-power circuitry and greater concurrency for the 
scanline buffer and comparator. 

The word-processing industry is currently moving to high
resolution monitors in an effort to make the display look as 
much as possible like a standard 8!-by-Il typewritten page. 
Because of this, high-resolution raster monitors are now 
available at costs as low as a few hundred dollars. The 
semiconductor industry can be expected to eventually pro
duce high-resolution versions of the display controller chips 
now being produced for standard-resolution monitors greatly 
simplifying the problems in driving the faster displays. 

Current restrictions on the number of vectors which can 
be displayed lie in the scanline update processor. Bit-sliced 
microprocessors are not currently fast enough to allow more 
than 100 vectors or so to intersect a given scanline. The 
algorithm executed by the scanline processor is simple 
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enqugh to be readily translated to random logic. Estimates 
indicate a potential for increasing the processing rate by as 
much as an order of magnitude by such means. This would 
allow up to 1000 vectors on a scanline on a 240-line display 
or roughly 300 on a 750-line display. Wild guesses suggest 
that the chip count and cost of the scanline processor would 
increase by a factor of three to five. However, this violates 
the philosophy of minimizing special-purpose circuitry. 

The other approach to speeding up the scanline processor 
involves running several microprocessors concurrently. Un
fortunately, adequately speedy processors are not yet cheap 
enough that more than one or two of them can be considered 
economical in a supposedly low-cost terminal. If cost con
siderations are ignored under the supposition that the sem
iconductor industry will solve that sort of problem in due 
course, then a collection of processors could be arranged to 
deliver updated vector entries at a rate of one per micro;.. 
cycle. The processor cost and complexity could be expected 
to increase by a factor of five to ten. 

An order of magnitude increase in performance allows a 
1000 element by 750 line display with up to 300 vectors 
crossing anyone scanline. This would allow display of 
roughly 60 lines of 100 or so legible characters, or (equiva
lently) 18,000 short vectors, or 3600 vector-inches on a 16" 
by 12" screen (19" diagonal). These figures are for 60 frames 
per second. Stroke-writing displays with equivalent or better 
specifications currently start at around $20,000. The sort of 
display system discussed here should cost considerably less 
than one-half that amount. Whether it could be marketed at 
such a low price, however, is open to question. 

HIGHER QUALITY LINES 

One good look at Figure 1 will reveal the major aesthetic 
problem with scan-converted vectors. They have ugly kinks 
which are all too evident at any but impractically high re
solutions (compare with Figure 6 made on a calligraphic 
display). Getting rid of these kinks is a difficult, but not 
impossible proposition. The observer of the display can be 
tricked into perceiving smooth lines on the display by the 
judicious use of grayscale techniques. 7

•
8 

When using these techniques, the scan segments become 
gray-level functions instead of just run lengths. This neces
sitates a more complicated picture element processor. How
ever, the scanline processor and Y-sorted buffer need not 
be changed. 

Gray levels for producing any scan segment may be stored 
in a single table which stores the universal intensity profile 
for all scan segments. Any given scan segment may be 
produced by supplying an index into the table for the first 
picture element, the number of elements and the distance 
between table entries to be retrieved. 

Therefore it becomes the job of the picture element pro
cessor to generate these numbers from the scanline position 
and position increment maintained by the scanline proces
sor. The index of the first table entry is computed from the 
fractional part of the vector scanline position. The number 
of elements and the distance between table entries, in turn, 
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(a) 

(b) 

Figure 6-The pattern of Figure Ion a calligraphic display. 

must be computed from the vector position increment. The 
microcode for the scanline processor can easily be modified 
to deliver these two numbers instead of the truncated scan
line position and run length. 

The distance between table entries is obtained from the 
reciprocal of the vector position increment using a table of 
scaled reciprocals. The index for the first entry is given by 
the product of the fractional part of the vector position and 
the distance between table entries. The number of entries to 
be used is just twice the run length used previously. 

Note that each scan segment must now be treated indi
vidually. The problem of overlapping scan segments be
comes much more acute. Furthermore, each scan segment 
must now be twice as long as before. The likelihood that a 
number of nearly horizontal vectors will cause sufficient 
overlap to swamp the processor is quite high. 

The gray levels of overlapping vl.!ctors. must be arithmet
ically combined to determine the gray level for affected 

picture elements. To be absolutely correct about combining 
the intensities of overlapping vectors, some measure of the 
area each vector occupies in a picture element and the area 
of overlap between such vectors would be necessary. Al
though such calculations have been used for shaded raster 
images,5,7 the additional quality obtained isn't worth the 
expense in this application. Experiments indicate that a sim
ple sum, truncated to the maximum allowable intensity 
where necessary, gives acceptable results. 8 

It appears unlikely that all this arithmetic can be per
formed on the fly as the line is scanned out. Therefore, a 
buffer is needed in which the grey levels to be displayed are 
stored. Two such buffers may be used. While one is provid
ing grey levels to the display, the other may be used for 
building the next scanline (Figures 7,8). 

The scan segment information provided by the scanline 
processor is acted upon by a picture element processor 
which loads its output into the scanline buffer via a read
sum-write cycle, accumulating intensity at a pixel until sat
uration. This arrangement eliminates the strict timing con
straints involved in scanning directly from an X-sorted buffer 
of run lengths. 

For simple images, the picture element processor should 
be less than three times as complex as in the initial design. 
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FIgure 1-fhe basic elements of a scan conversion pipeline for smooth 
vectors. 
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However, a high-performance implementation would require 
using several picture element processors in parallel. 

CONCLUSIONS 

The algorithms for the approach to scan conversion pre
sented here have been demonstrated in software. The trans
lation to a hardware implementation for a limited number of 
lines and modest resolution should pose no problems. The 
expansion of the concept to higher resolutions and smooth 
vectors is expected to provide some challenge, but no in
surmountable problems. 

The failure modes exhibited when the scan converter is 
overloaded are totally different from the flicker seen on an 
overloaded calligraphic display system. There are two 
choices for a failure mode: either repeat the last scanline, or 
leave out some scan segments. The former method will 
cause noticeable stripes on the screen, the latter will cause 
some vectors to disappear on certain scanlines and perhaps 
leave other vectors out altogether. 

A safer failure mode could be engineered by going to 
lower resolution whenever overload is detected. At a 60-
hz refresh rate one slightly bad frame produced while dis
covering overflow would probably be acceptable. The de
graded mode of operation for low-resolution (320 by 240) 
would provide only 120 lines vertically. Surely, most users 
would find this intolerable. On the other hand, a high resol
ution implementation might run in the degraded mode quite 
successfully. 

i\n i\pproach to Real-Time Scan Conversion 163 

A practical approach to real-time scan conversion has 
been described which can be implemented straightforwardly 
using currently widely available parts. Projected trends in 
LSI development indicate that high-resolution implementa
tions competitive with low-end calligraphic displays could 
be produced at quite reasonable cost within a few years. 
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The evolution and architecture of a high-speed workstation 
for interactive graphics 

by WILLIAM L. PAISNER 
California Computer Products, Inc. 
Anaheim, California 

INTRODUCTION 

In 1975, California Computer Products, Inc. (CaIComp) 
embarked on the design of a multi-station Interactive Graph
ics System. As a major part of this design effort, a fresh 
look was taken at the requirements for the workstation, 
which, after all, is the operator's sole point of contact with 
the system. The needs of the operator were perceived as 
follows: 

• To examine the working drawing-any part at any mag
nification. 

• To interact with the drawing-pointing where useful, 
typing where useful. 
-To perform the above rapidly so that he functions in 

a result-oriented rather than mechanics-oriented en
vironment. 1,3,4 

• To receive prompting as necessary for compiex oper
ations. 

In addition, the design goal of mUltiple simultaneously 
operating workstations added the following requirements: 

• A workstation must have a substantial share of the 
distributed processing load so that rapid response time 
can be maintained at all times. 

• A workstation must share major peripherals with other 
workstations. 

The remainder of the paper illustrates the workstation design 
which evolved from these needs and requirements, concen
trating on the architecture of an innovative high-speed 
graphics processor at the workstation core. 

STRUCTURE OF CALCOMP IGS 500 SYSTEM 

The system is based around a CalComp 16/40 16-bit mini
computer. It incorporates from one to four large high-speed 
disks which contain program and drawings. The system is 
structured as in Figure I, which is drawn to emphasize the 
workstation elements. 

The requirement of speed and distributed intelligence was 
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satisfied by the inclusion of a "Picture Processor." The 
description of the architecture and capabilities of this high
speed graphics processor occupies the remaining sections of 
this paper. 

The Alphanumeric CRT/Keyboard provides the operator 
with high-speed prompting (9600 baud) and allows keyboard 
input wherever relevant and useful. The tablet or digitizer 
allows the operator to point at the drawing being digitizedl 
edited and in general allows a close interaction with the 
drawing through local functions supported by the Picture 
Processor. The tablet and keyboard can both also be used 
for menu selection. 

A three-axis joystick allows the operator, locally sup
ported by the Picture Processor, to pan and zoom over the 
entire drawing in real time. As will be seen in the next 
section, the drawing is resident in the Picture Processor for 
the duration of the session. The speed of the Picture Pro
cessor allows a single scan (re-display) of the drawing 
through the joystick-defined window in 16-200 milliseconds, 
depending on drawing complexity. 

Vector graphics are presented on a raster scan display, 
operating at 60 Hz, non-interlaced. This provides a bright, 
flicker free display at minimum cost. An optional two-bit 
gray scale is available to support gridding and cursor oper
ations. 

It should be emphasized that the drawing contained in the 
Picture Processor memory is a working copy of the archived 
drawing on the disk. It is in an application-structured hier
archical form-it is in "database" coordinates, not 
"screen" coordinates. During the session, this is the only 
copy of the drawing to be modified. At the end of the session 
it is returned through the centrai minicomputer and packed 
onto the disk. This concept of a single resident application
structured drawing, acted upon by a local high-speed graphic 
processor, is the heart of the workstation and has allowed 
significant advances to take place in operator interaction. 

GEN ERAL ARCHITECTURE OF THE PICTURE 
PROCESSOR 

The Picture Processor connects to the Host Computer, a 
l6-bit minicomputer, through a high-speed parallel interface. 
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The interface has full handshake and is capable of speeds 
up to two MBYTES/second. As discussed earlier, the Pic
ture Processor contains a large (64-256 KBYTE) Data Base 
Memory which holds the drawing during the interactive ses
sion. The memory is structured as 64K 32-bit words. A small 
area of the memory (less than 200 words) is used to pass 
command and outputs to and from the Host Computer, 
Local Function Manager, and Display Manager. (See Figure 
2.) 

The Data Base Memory is, in effect, shared by t"hese three 
processors during the session. The Host Computer is a 16-
bit general purpose minicomputer distributed and partially 
manufactured by CalComp under license from SEMS Cor
poration. Through the Host Input/Output module, it manip
ulates the drawing in the Data Base Memory and issues 
commands to the remaining two processors. The Local 
Function Manager is a 6800-based microcomputer which 
manages the joystick and tablet/digitizer and which serves 
as a "local'· Host Computer to perform functions which 
reduce the load on the central minicomputer. The position 
of the local Function Manager within the Pictllre pf()C'e~l\or 
architecture allows it to perform a significant number of 

useful tasks. These wiJI be described in more detail later in 
this paper. The Display Manager is a high-speed (200 nsec. 
cycle time) custom-designed microcomputer whose primary 
task is to scan the drawing in Data Base Memory and output 
vectors to a pipelined sequence of graphics processing mod
ules which then drive the graphics CRT. 

The actual pipeline is a byte-structured 10 MBYTE/sec
ond path with a FIFO at the entrance to each module. The 
pipeline has its own language, using control bytes and data 
bytes, which allows a standard interface for each processing 
module and supports the introduction of new ones in future 
designs. So that the Display Mapager may make additional 
use of these modules, the pipeline is fed back to the Display 
Manager, allowing it to accept data after processing. This 
capability is fully exploited in the Picture Processor and is 
described in the next section. 

The graphics CRT is a 15-inch video monitor driven 
through frame buffer technology. The basic workstation 
contains one monochrome graphic CRT, switch-selected re
verse video and a resolution of 300x416 pixels. An addi
tional frame buffer plane can be added for an optional twu
bit gray scale. The Picture Processor can support up to three 



additional graphics CRTs, each with optional two-bit gray 
scale. The 300x416 resolution was selected as the basic 
display because the operator's ability to rapidly pan and 
zoom over the drawing made it less necessary to observe 
larger areas of the drawing at one time. This, in tum, allowed 
a less expensive display system, with savings in the size 
(and cost) of the frame buffers and in the selection of the 
video monitor. At the time of submission of this paper, 
larger and higher resolution monochrome and color CRT 
display systems are under development and will be available 
as options. 

The ability of the Picture Processor to allow rapid motion 
on the screen required a corresponding sophistication in the 
display system. The graphics CRT is actually driven by two 
independent frame buffers which are used in various ways 
during a session. While pan/zoom is taking place, the frame 
buffers are used as a double-buffered output system. While 
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one buffer is refreshing the CRT, the other is being loaded 
with new information from the graphics pipeline. When this 
loading is complete, taking one to 13 frame times, the buffers 
are swapped, the other buffer is cleared and loading of new 
data begins again. The result is a smooth, no-flicker motion 
of the drawing on the screen. 

Another mode of frame buffer operation supports local 
"dragging," in which an element of the drawing is attached 
to the tablet stylus and moved around on the screen. In this 
case, the initial screen image is displayed through one frame 
buffer. The object to be moved is undrawn from the buffer 
and redrawn into the other frame buffer, thus avoiding the 
typical holes which are left when only one buffer is available. 
During this operation, the contents of both frame buffers 
appear on the screen but a priority logic is used to ensure 
that the intensity level of the object being dragged overrides 
that of the objects over which it passes. 
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INFORMATION FLOW WITHIN THE PICTURE 
PROCESSOR 

The functions performed by the Picture Processor fall into 
two major categories. The first group are those involving 
scan and interpretation of the drawing in Data Base Memory 
and are performed through the Display Manager/Graphics 
Processing pipeline path. The second group are those in
volving the joystick and tablet and the functions which in
volve them. These are performed by the Local Function 
Manager which in many cases makes use of the Display 
Manager/pipeline functions as part of its operation. Figure 
3 illustrates the major functions in the first group. The Local 
Function Manager is described in the next section. 

The drawing data base is fetched from disk and loaded 
into Data Base Memory when the operator types the drawing 

START OF SESSION 

SAVE OUR lNG/AT END 
OF SESSION 

name. The disk file is not accessed again for graphical in
formation until the drawing is saved during or at the end of 
the session. A drawing can be loaded in a few seconds. The 
drawing structure in Data Base Memory consists of two 
""files." The Control File has fixed length entries and con
tains information common to all graphical objects-origin, 
geometry type, boxing parameters, and certain parametric 
information such as drawing level, subtype, and a pointer to 
disk-resident application-dependent properties of the object. 
Each Control File entry also contains a pointer to a related 
Geometry File entry. The Geometry File has variable length 
entries-the structure of each entry depends on its geometry 
type. 

Geometry types supported by the Picture Processor are: 

Line-A series of connected or unconnected line seg
ments. 
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Short line-A series of short connected or unconnected 
line segments. 
Arc-A circular arc, up to and including a full circle. 
Text-A character string with optional size, rotation, and 
inter-character spacing. All characters come from a selec
tion of system or user-defined fonts and are completely 
arbitrary. A step-and-repeat capability is provided that 
allows an individual character, of arbitrary structure, to 
be repeated in a string up to 256 times. 
Group-A collection of any of the above entities or other 
groups. The collection is treated as-an entity and may be 
scaled, rotated, and placed in mUltiple locations in the 
drawing. Independent X, Y scaling is provided, allowing 
for example, an ellipse to be generated from an Arc group 
member. 

From this description, it can be seen that it is a hierarchical 
structure, and in fact most drawings contain a variety of 
multi-level groups. This sharing of geometries allows the 
data base to become extremely compact, allowing a smaller, 
lower cost memory to be used. The data base structure 
allows for 24-bit precision in all coordinates except for Short 
Line (12-bit) and text font construction. The Picture Pro
cessor Graphics Processing Modules, however, allow 24-bit 
data in window specifications and the origins of objects at 
the top of the hierarchy-all other coordinate information is 
limited to 16 bits. This decision was made to permit reason
able construction costs for the critical Picture Processor 
boards. 

The Host computer directs the Display Manager operation 
by placing a command block in a reserved area of Data Base 
Memory. Once the command block has been placed, the 
Display Manager generally follows the sequence in Figure 
3 and the Host is free, during this sequence, to service other 
workstations, plot, or do other background tasks. 

Initially, the Display Manager defines the window, in data 
base coordinates, and the viewport, in screen coordinates, 
to be used for this command sequence. In some modes, 
namely Search and Hit Detect, only the window is defined; 
for simple Search, neither are defined. Next the scan param
eters are examined. The Display Manager can sequentially 
scan the Control File within the parameter limits, or it can 
process only those Control File entries whose addresses 
appear in a list in Data Base Memory. In the latter case, 
only the address of the list is given as a parameter. List 
input is a powerful tool for the Display Manager, as it is also 
able to generate lists in the same format. 

As each Control File entry is accessed, the Dispiay Man
ager compares its level, type, subtype and property pointer 
against a selection block given to it as a parameter. Selection 
parameters can be lists or ranges and a Control File entry 
can be either included or excluded if it "passes·· selection. 
The speed of the Display Manager allows an entry to be 
tested in microseconds. Selection serves a variety of func
tions for the application software: among them is the ability 
to avoid or reduce the "hit ambiguity" problem by allowing 
only certain objects to be "hit" by the user. In practice, the 
combination of memory-resident drawing and a very high 
speed processor (Display Manager) has had a synergistic 
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effect in the selection mechanism and new uses are still 
being found for this capability. 

Once a Control File entry is selected, it is processed 
according to one of four basic modes of operation: 

Search-No further processing is done. The address of 
the selected Control entry is added to a list being built in 
Data Base Memory. At the end of processing of the Con
trol File, the address of this list is returned to the Host 
computer through Data Base Memory. Note especially 
thai this list is in the form accepted by the Display Man
ager as list input and can therefore, if desired, be resub
mitted to the Display Manager in a subsequent command 
for display or even further search operations. 
Display-The selected Control File entries are processed 
to extract their coordinates. The associated Geometry File 
entries are located and interpreted to produce vectors. 
These vectors are then output to the pipeline where the 
Graphics Processing Modules perform the necessary 
transformations into screen coordinates. The end result is 
to load a frame buffer with the proper bits for the raster 
display. 
Plot-Processing is identical to Display except that in
stead of the vectors being "drawn" in the frame buffer. 
they are returned through the pipeline (see Figure 2) back 
to the Display Manager which then places them in a buffer 
in Data Base Memory for the Host computer. In this case, 
the "viewport" definition is chosen so that the precision 
of the output vectors match the precision of the plotter to 
be used. The Host then queues the plot data for actual 
plotting. This capability allows a complete plot file to be 
generated in seconds with a minimum of Host computer 
involvement. 
Hit Detect-In this mode, the window definition is typi
cally (although not necessarily) a very small region in data 
base coordinates surrounding the data base coordinate 
location of the tablet/digitizer stylus. The processing of 
Control File and Geometry File entries proceeds as be
fore, but for this mode, the Graphics Processing Modules 
are used differently. Vectors are output to the pipeline 
but processing terminates at the WindOW/Clip module 
(described later in this paper). The module generates for 
each draw vector, a 2-byte hit response word and outputs 
that word to the remainder of the pipeline. The Display 
Manager, on receiving this response word, generates an 
output list entry in Data Base Memory, just as in Search 
Mode. At the end of processing, the address of this list is 
returned to the Host computer, where, as before, it can 
be re-input to the Display Manager in a subsequent com
mand, for example, Display (for flashing the hit object). 

THE LOCAL FUNCTION MANAGER (LFM) 

As previously described, the high-speed processing ca
pability of the Picture Processor is located in the Display 
Manager/Graphics Processing modules pipeline. The Dis
play Manager receives command information from and out
puts results, if any, to the Data Base Memory. Because both 
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the Host computer and the LFM are capable of reading and 
writing Data Base Memory, the full power of the pipeline is 
available to the LFM as well. In this mode of operation, the 
Host computer places command information for the LFM 
in Data Base Memory. Included in that information are the 
proper command blocks for the LFM to use when invoking 
the Display Manager. The flow of information is therefore 
as shown in Figure 4. 

The variety of LFM tasks within the Picture Processor is 
best illustrated by describing six of the major ones: 

• Panning and zooming 
• Picking 
• Dragging 
• Flashing 
• Performing application-specific functions 
• Managing Picture Processor diagnostics 

Panning and zooming 

The LFM samples the X, Y and Z axes of the joystick 60 
times a second. If a change has occurred, the values are 
used to modify the center and size of the window(s) given 
to the LFM by the Host computer when the Pan/Zoom 
command was issued. The LFM then, using command 
blocks given it by the Host, invokes the Display Manager 
to erase the current frame buffer, redisplay the drawing 
thrOi ~h the modified window, and swap frame buffers. This 
process repeats as often as possible (s; 60 times a second) 
while the operator is manipulating the joystick. The process 
of calculating the window modifications from the joystick 
position was subject to considerable optimization during 
development of the Picture Processor to improve the' 'feel" 
of the joystick. The joystick is the operator's movie cam
era-its operation is required to be smooth, self-evident, 
immediately rewarding in terms of screen motion, and, most 
important. to require no mental effort whatsoever from an 
experienced operator. The LFM modifies both the window 
center/size and the update rate as a table-lookup function of 
joystick position. Note that once the initial command was 
issued. all pan/zoom activity has been completely local. 
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Picking 

This is the process used by an operator to identify a 
particular screen object. The LFM reads the tablet stylus 
position in screen (tablet) coordinates. Using the viewport 
in which the access is made and its associated window, the 
LFM uses one of the Graphics Processing modules (invoked 
through the Display Manager) to "inverse map" the stylus 
coordinates into data base coordinates. A small window 
centered at these coordinates is created and the Display 
Manager used in Hit Detect mode to determine if an object 
is being pointed to. The LFM interrogates the list output by 
the Display Manager and, if null, continues to monitor the 
stylus until it is lifted. At this point, or if an object is "hit," 
the LFM quits and raises status to interrupt the Host com
puter. From the time that the Pick command is issued to the 
first hit, if any, all operation is local to the workstation. 

Dragging 

This capability allows the operator to "attach" an on
screen object to the tablet stylus and to literally drag it 
around on the screen. As part of the command, the Host 
has identified the object to be dragged, usually from a pre
ceding Pick. The LFM uses the inverse mapped stylus co
ordinates, obtained as in the Pick operation, to update the 
origin of the object. The LFM then uses the Display Man
ager to erase the priority frame buffer and to redraw the 
object at its new location. This process continues as the 
operator moves the stylus and terminates when he lifts the 
stylus. An important aspect of this operation is that the 
updating takes place on the real drawing object in actual 
data base coordinates. Thus, when the operation terminates, 
the drawing is correctly updated and no Host involvement 
has taken place since the initial command was issued. Due 
to the high speed of the Picture Processor, objects of any 
complexity can be dragged in real time. 

Flashing 

Flashing is a simple LFM function during which an object 
or list of objects with appropriate Display Manager com
mand blocks is given to the LFM by the Host. The LFM 
from then on. unless told to stop by the Host, periodically 
draws and blanks the object(s), using the Display Manager 
as usual. 

Performing application-specific functions 

In addition to PROM-resident firmware, the LFM also 
contains a read-write memory, most of which is available 
for additional firmware. The LFM contains a loader and the 
Host may, as part of the initialization of a given application 
software package, download specific functions to be exe
cuted in the LFM. Such function"l can he ('hosen to further 
offload the Host or to make use of the joystick or tablet in 
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ways not provided by the standard LFM firmware. This is 
a powerful capability in its ability to support future appli
cation areas. 

Managing Picture Processor diagnostics 

When power is first applied to the workstation, the LFM 
performs an extensive, carefully sequenced fault detection 
and isolation pmcess. It tests itself, its peripherals, its access 
to Data Base Memory, the memory itself, the Display Man
ager and each of the Graphics Processing Modules. As the 
tests are performed, each using only those capabilities 
proven by the previous test, indicator lights are decremented 
on the edge of the LFM board. When all tests are successful, 
a status line is raised to the Host computer to indicate an 
available workstation. If a failure occurred, the board or 
boards at fault can be deduced from an examination of the 
indicator lights. The presence of this test, together with 
loop-through capabilities in the Host Input/Output Module 
(Figure 1) provides an exceptional degree of confidence in 
the workstation at the start of a session. 

GRAPHICS PROCESSING MODULES 

The modules in Figure 5 perform all of the high-speed 
work of the Picture Processor. The architecture of the Dis
play Manager and of the pipeline itself were described earlier 
in this paper. Of the remaining modules in Figure 5, all but 
the Video Function module are custom designed microcom
puters with a cycle time of 200 nsec non-overlapped. All 
modules shown operate on standard 10 MHz and 5 MHz 
clocks generated by and distributed from a timing module, 
not shown here, which also generates the video sync and 
other timing signals. 
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Matrix transform module 

The Display Manager outputs vectors for an object (Con
trol File-Geometry File pair) which are in the local coordi
nate system of the object. These vectors may require scal
ing, rotation, and translation to transform them into true 
data base coordinates. The Matrix Transform module stores 
a working matrix, Mw. internally as 

As vectors are input from the pipeline, they are transformed 
by this matrix as follows 

(X', Y')=(X, Y,l) Mw 

and output to the pipeline following the module. The matrix 
can be cleared to the identity by a command to the module. 
If nested transformations are required, as in multi-level 
groups or italic text, a new matrix can be sent via the 
pipeline to the Matrix Transform module where it will be 
concatenated onto the working matrix as follows: 

It should be noted that for compatibility, a (0 0 1) column 
is appended to both matrices before concatenation-the re
sulting (0 0 1) column is then deleted before Mw' is stored. 
The matrix can also be output to the pipeline, back to the 
Display Manager, where it can be saved either in local stor
age or Data Base Memory. This saving (and subsequent 
restoring) of the matrix occurs as part of context changes 
during the traversal of nested groups-also in specialized 
areas of Text and Arc generation. 

The Matrix Transform module represents all scaling and 
rotational terms in twos complement with 14 fractional bits. 
This allows the values ± 1 to be represented exactly which 
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reduces the accumulated error present in nested transfor
mations. In practice, visual feedback has tended to compen
sate for any such error and nesting levels of five or six (of 
a maximum of 14) are used routinely. 

The Matrix Transform module performs all calculations 
in 16-bit twos complement fixed-point arithmetic. In vector 
multiplication the microprogram sequences a set of serial 
multipliers and adders which calculate X' and Y' simulta
neously. Typical processing times are 5.8 microseconds for 
vector transformation and 17.4 microseconds for a full ma
trix concatenation. 

Window/Clip module 

During the Environment Definition phase of operation 
(see Figure 3), the Display Manager has output the current 
window size to this module. As each top-level object in the 
hierarchy is output, the difference between its 24-bit origin 
and the 24-bit window center, called the "offset," is cal
culated by the Display Manager and output to the Window/ 
Clip module. Using this information, the module then per
forms a clipping algorithm on incoming vectors, and in Dis
play and Plot modes. outputs the clipped vectors, if any, to 
the pipeline. In Hit Detect mode, only a result code is 
output. Vectors entering the Window/Clip module are in an 
"object-centered" data base coordinate system. When they 
leave. they have been clipped to the window edges and 
translated so that they are in a window-centered data base 
coordinate system. 

The algorithm used is a modified version of the Clipping 
Divider.2 The hardware operates in 18-bit precision and, 
using essentially two microprocessors operating from the 
same microprogram, performs X and Y clipping simultane
ously. Typical clipping times. range from five to 20 micro
seconds per vector. 

Viewport map module 

During the Environment Definition phase, the Display 
Manager has output the current window size, viewport size, 
and viewport center to this module. Since the incoming 
vectors to this module are in window-centered data base 
coordinates. a simple linear transformation turns them into 
screen coordinates as follows: 

where 

Xs=Xw(VXSIZE!WXSIZE)+ VXCTR 
Ys= Yw(VYSIZE!WYSIZE)+ VYCTR 

(Xw,Yw) - Window-centered vector in data 
base coordinates. 

(WXSIZE, WYSIZE) -A diagonal vector from the cen
ter of the window to the upper 
right corner, in data base coor
dinates. 

(VXSIZE, VYSIZE) -A diagonal vector from the cen
ter of the vic\.vporl to tht: UpPt!I 

right corner, in screen coordi
nates. 

(VXCTR, VYCTR) -The center of the viewport, in 
screen coordinates. 

(X s, Y s ) -The screen vector in screen co-
ordinates. 

The Viewport Map module implements this transforma
tion and also the inverse, in which a screen coordinate 
vector is input, resulting in a window-centered data base 
coordinate vector. In both cases, vectors are input from the 
pipeline and the resulting vector is output through the 
pipeline to the next module. 

Calculations are performed in 16-bit precision. Multipli
cations are done in fixed point for multipliers of less than 
one-in floating point for mUltipliers greater than one. 
Since, in general, this module operates on fewer vectors 
than the preceding modules (since clipping has taken place), 
X and Yare produced sequentially and the total time to 
map a vector is 13 microseconds. 

Line generator rnodule 

This module receives screen coordinate vectors of four 
types-absolute move, absolute draw, relative move and 
relative draw. In Display mode, the module is enabled. It 
takes all "draw" vectors and performs a line algorithm in 
firmware to turn on bits in the current frame buffer along 
the path of the line. For gray scale, two bits are written at 
each pixel position along the line. For other modes, this 
module is disabled and passes all received vectors through 
itself to the pipeline. 

The line algorithm is essentially the same eight-vector 
incremental algorithm used in CalComp plotter software and 
hardware, biased so that a line is drawn identically when 
drawn from either end. The line generator operates in 12-bit 
precision so not to limit future display resolution. 

Video junction module 

This module has several tasks, all related to display. It 
manages the frame buffer outputs by receiving commands 
through the pipeline which direct it to connect the two frame 
buffer outputs together to the screen through a priority 
scheme, or to connect only one at a time, as used by the 
pan/zoom LFM operation. It can optionally synchronize the 
connection of frame buffer output to the next video frame 
to avoid flicker during rapid motion. 

The Video Function module also manages the actual video 
outputs, monochrome and gray scale, as well as providing 
a reverse video capability (black on white). It should be 
noted that this module is in the pipeline only so that it can 
receive buffer connection commands from the Display Man
ager-al1 other pipeline information is passed through un
changed. 



PIPELINE THROUGHPUT 

The pipeline architecture allows the processing of the 
Display Manager, Matrix Transform, Window/Clip, View
port Map and Line Generator modules to operate essentially 
at the speed of the slowest module. For a given number of 
displayed lines, only the latter two modules have a constant 
processing time-the others depend on the drawing structure 
and the current window in use. The design goal called for 
5000 visible one-half-inch vectors, with an arbitrary mix of 
primitive and group structures, to be ~isplayed in 100 mil
liseconds. In general this has been met for all except pure 
text, in which the inclusion of an italic transformation at the 
character level has raised the display time for 1200 visible 
four-segment characters to approximately 220 milliseconds. 
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INTRODUCTION 

To have fast response time is often a requirement for a data 
base system especially in the on-line environment such as 
inventory control, stock quotation or hotel/airline reserva
tion. This requirement for fast response time can be easily 
obtained by carefully organizing the file at loading time. Due 
to subsequent insertions, the file structure designed with 
fast response time would be damaged because insertions 
were stored in overflow area. As more insertions are added, 
the response time will be lengthened since accessing records 
in overflow area takes more time than in home area. When 
the response time exceeds the tolerance limit that a user can 
stand, a reorganization is required. In general, reorganiza
tion of a file is a costly and time-consuming job and should 
be avoided as much as possible. In order to maintain a fast 
response time and to avoid frequent reorganizations, a tech
nique called "distributed free space"l0 within home area 
was introduced. 

When data description and instances are loaded into a 
physical storage device by a data base management system 
(DBMS), the access methods (or file manager), which are a 
portion of DBMS, allocate one or more storage rooms, each 
of them includes spaces for both initial records and future 
insertions. Such a storage room allocated at loading time to 
accommodate both initial records and insertions is called a 
"data storage area (DSA)." Figure 1 shows an example of 
DSA. There wi11 be no problem of future deletion of data 
because many DBMSs have utility routines to reclaim the 
vacated space and merge them to the realm of distributed 
free space for future insertions. So the effect of deletion is 
not discussed here. Many commercial DBMSs have such 
facilities. Examples are VSAM in IBM"s IMS, CYBER RE
CORD MANAGER in CDC's DMS-170, CINCOM's 
TOTAL. MRI's System 2000 and Cullinane's IDMS, etc. 

In commercial access methods, there are parameters pro
vided for users to claim an amount of free space at creation. 
In general, a user may overestimate or underestimate the 
amount of distributed free space he needs. In order to de
termine how much distributed free space a user should 
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claim, Chin 2 presents a mathematical model to estimate the 
size of free space so that insertions do not cause the fast 
response to exceed the pre-set limit. The model in Reference 
2 is derived based on the worst case, namely all insertions 
are added into a single DSA. As a result, that model reserves 
too much free space. In this paper, we present a new model, 
which reserves less amount of distributed free storage space 
than Chin's model, without increasing the fast response 
time. 

In the next section the models are discussed. We illustrate 
the simulation tests in the third section. Finally, character
istics of the models and consequences of the experimental 
tests are discussed in the fourth section. 

MATHEMATICAL MODEL FOR DISTRIBUTED FREE 
SPACE 

For clearness, let us restate Chinos problem, assumption, 
and classification on access methods. 

• Problem and Assumptions-If the number of initial rec
ords and the subsequent insertion rate of a file are both 
known a priori, how much free space should be claimed 
such that the probability of overflow is less than any 
pre-specified value? 

• Classification on Access Method-The various access 
methods can be classified into two groups by way of 
data organization; namely, ordered access method 
(OAM) and non-ordered access method (NAM). The 
former refers to those access methods which require 
data in an ordered sequence with respect to some field 
values such as index sequential access method or bi
nary search. The later refers to those access methods 
in which data are not required to be in an ordered 
sequence for storage or retrieval such as hashing func
tion or non-ordered sequential searching. Hereafter, 
the size of "distributed free space" has been analyzed 
on the base of these two classes of access methods. 
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secondary 

Notations 

Figure I-Data storage area (DSA). 

R: The total number of initial records within 
a file at load time. 

I: The number of records inserted into the 
file in time t units subsequent to the load 
time. 

Si: The number of initial records loaded into 
the ith DSA at load time. 

rj: The number of insertions added to the ith 
DSA. 

E(rj I Sj): The number of expected insertions added 
to the ith DSA given Si initial records 
within t units after load time. 

Ii: The amount of free space should be pre
allocated in the ith DSA. 

YAR(ri I Sd: The variance of random variable rj with 
a given Sj. 

m: The number of DSAs created at loading 

to be the same, which is the case if the number of initial 
records in each DSA is the same and the ranges of key
values are evenly distributed among all DSAs. However, if 
DSAs have the same number of initial records, it is impos
sible to make the range of key-value to be evenly distributed 
among all DSAs. Different DSA will have different ranges 
of key values. Hence the probability of inserting records 
into different DSA is different. Keehn and L acy 6 show that 
the probability of adding exactly x insertions to a DSA with 
n initial records is as follows: 

Ps.= (r.=x)=P (x)= ((!)(~))_n 
1 n 1 n (R + I) n + x 

n+x 

(1) 

I 

O$X$I, l$n$R, and 2 Pn(x)= 1 
x=O 

Curves of P5 (x), P lO (x) and P20 (x) are shown in Figure 2. 
the probability P n(x) in (1) is true regardless of the key

value distribution F k so long as that both the R initial rec
ords and I subsequent insertions are originated from the 
same F k • 

Using (1), we find that the expected number of records to 
be added into a DSA with n initial records is 

Its variance is 

2_ - - nl [(n+l)(l-l) nl J* 
(j i-V AR (r i lSi - n) - R + 1 R + 2 + 1 - R + 1 

for 1$;$m (3) 

Since /-ti of (2) is only an "expected estimation," the 

time. 20 

B: The insertion ratio of the file at time t 

units after the load time. It is a given value 
which is used to estimate the quantity of 
I. B=I/R. 

Ordered access method 

When a file is created by using an OAM such as IBM's 
YSAM, records in a DSA are stored, maintained and re
trieved with respect to a pre-ordered sequence which de
pends upon the value of a selected attribute. It bases on the 
mathematical model, called B-tree, which is developed by 
Bayer and McCreight. 1 

Traditionally, each DSA is initially loaded with the same 
number of records at file creation time. If n fixed-length 
records are loaded in m DSAs at load time, then 
Sj-S'l.-:-:-···.,-S"'=n, and !~j Sj.,.,-R. Ideally. one would like 
to have the probability of inserting records into each DSA 

N 
I 
o 
M 

~15 

5 

Figure 2 

'" Derivations are given in Appendix. 



probability of overflow could not be known even if J.t; rec
ords are reserved as free space within the ith DSA. Intui
tively, an "appropriate free space" within a DSA will not 
only be able to accommodate J.ti insertions, but also give an 
arbitrarily small amount of deviation for J.t; insertions. For 
these reasons, we use the Central Limit Theorem to deter
mine an "appropriate free space," I;, for the ith DSA as 
follows: 

Step I-Use (2) and (3) to find the expected value and stand
ard deviation of random variable r i . 

Step 2-By Central Limit Theorem, the probability density 
function (pdt) for random variable Z i = (r i - J.t i) / U" i 
approaches a normal distribution for a large sample. 
We are interested in the probability that the number 
of subsequent insertions added to the ith DSA is 
less than I;, i.e., P(r;$I;). Hence, 

P I .<1. \=P (r i- J.ti < 1;- J.ti) 
~r,- I) -

U"i U"i 

=P (Zi~ li:~i) 

= <P C;:~;) = <p(z) (4) 

Step 3-Choose the probability <p(z) as large as needed so 
that we can lower the percent of overflow. * For a 
value z from the normal table,4 we can obtain 
l i=J.ti+ zU"i· 

Example l-R=I000, 1=500, n=I00, m=lO 
From (2), (3) J.ti= 100,500/1001 =50 

U"i=8.06 

From these values of J.t i and U" i' we know that the degree 
of deviation away from a "mean" value of 50 is 8.06. This 
value of U" i signals us that we have a non-zero overflow 
probability of J.ti=50 records pre-allocated as free space. In 
order to avoid the overflow problem, Ii should be adjusted 
according to Steps 2 and 3. 

From the normal table,4 we select a value for z such that 
this selection makes <p(z) approach one. In our example, 
selection of <p(z)=0.9995 makes z=3.29. 

Using z=3.29 as an adjustable coefficient and by (4), Ii 
should be equal to 50+[3.29*8.061 =77. Therefore, the size 
of DSA should be 177 records. The additional 77 records are 
allocated for subsequent insertions. Under such arrange
ment, the probability of overflow will be less than 0.0005. 

Non-ordered access method 

When a file is created by using NAM such as hashing or 
sequential access method, records within a DSA are stored, 

'" When <P(z) approaches one, it really means that the probability of more 
than 1 i insertions being added to the ith DSA is very small. That is, 
<P(ri>1i )~E. When <P(r;>1,) is small, it means the probability of adding 
insertions outside of the ith DSA is small: therefore, the probability of 
overflow is small whenever <P(z) is large. 
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retrieved and maintained in a random, non-ordered se
quence. For instance, if a file of 1000 records is created by 
using a hashing function with divisor 11, then the divisor 
may be represented as 11 DSAs whose sizes are undefined 
at the moment. Due to the key distribution of original rec
ords, each DSA may be initially loaded with different 
amounts of records. Assume SI initial records are loaded 
into the ith DSA at load time, and 'i insertions are added to 
the ith DSA within period t. Then, we cannot use the model 
derived in the last section since both the key distribution of 
initial records and the function of an access method play an 
important role in determining the number of insertions rj. 

The earlier model of Chin 2 uses the concept that all I 
insertions may be added into a single DSA and hence focuses 
his analysis on one DSA only. It performs well for a file 
organization with a few DSAs. But when the number of 
DSAs increases. it will over-allocate free space and thus 
yield low storage space utilization. 

A different approach to this problem can be illustrated by 
the following example. Suppose the key-values of a given 
file originate from a "global key space," denoted as N, and 
suppose the key-values of R initial records and I insertions 
are members of N. Now let N be the nine-digit social se
curity number system, which contains 109 distinct members. 
These 109 members can be partitioned into seven disjoint 
clusters, say N l , N 2 , N 3 , ••• , N 7 , when a division 
method with divisor 7 is used. 

According to a certain NAM, N can be partitioned into 
m disjount clusters N 1, N 2, ... , N m , which correspond 
to m DSAs. Let the ith cluster contain both Si initial records 
and ri subsequent insertions. All those records will even
tually be mapped into the corresponding ith DSA through 
loading and insertion operations. From the point view of 
clustering, the probability of having x records, whether they 
are stored at loading or subsequent insertion time, added to 
a DSA is a hypergeometric distribution. Without ambiguity, 
we will use Nand N j , to represent the size of global key 
space and the size of the jth cluster, respectively. 

Consider a population of N individuals. of which N 1 are 
in the cluster 1, N2 are in the cluster 2, ... , and N m are 
in the cluster m, with I.~l Ni = N. Suppose a sample of size 
R is chosen from N individuals without replacement. Then 
the joint distribution of the random variables, S 1 , 

S 2, ..• , S m , which represent the numbers of individuals 
in clusters N l , N 2 , ••• , N m in the sample space R, is 
defined as 

with 

m 

2: Sj=R, O::;Sj~min(Nj, R) 
j=l 

for j=1,2, ... , m. 

(5) 

This is cal1ed by 10hnson5 the multi-variate hypergeometric 
distribution with parameters N 1 , N 2, ••• , N m , R. There
fore, the probability distribution function of Sj is hypergeo-
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metric with parameters R, N, N j : 

(6) 

Os;Sjs;min (N j , R) for ls;is;m 

where R, N, and Nf represent the file size, the number of 
elements in global key space and the number of elements in 
the ith cluster, respectively. Since (6) is a hypergeometric 
distribution, its mean and variance can be written as fol
lows: 5 

E(Si )=R*Nd N (7) 

VAR(Si)=R*(Nd N)*(1- (NdN)*(N- R»/(N-l) (8) 

Unfortunately, N j is unknown and cannot be determined 
analytically since different hashing functions generate differ
ent clusters. However, we can estimate N j from the known 
value Sj. For any particular set Si' R, N, the value of Ni 
for which P(Si 1 N, N i , R) is the largest is denoted by NI . 
It is called the maximum likelihood estimator of N j .4 For 
convenience, let (6) be abbreviated as qSj(Nj ). Then 

and 

(
X+ l)(N-X-l)/(N) qSi(X+l)= SI R-S

j 
R' 

The ratio q s;(X + 1)/ q s;(X) equals to (X + l)(N - X - R
S i )/(X + 1- S i)(N - X), simple calculation shows that when 
this ratio is equal to one, q s;(N i) achieves its maximum. 
When 

qSt(X+ 1) = (X+ I)(N-X-R+Sd =1 
qSj(X) (X+l-Sd(N-X) , 

we have X=Sj*(N+ l)/R. 
Hence, the maximum likelihood estimators Ni is the 

greatest integer less than or equal to S i (N + 1) / R. That is 

(9) 

In a similar way, the probability of x out of I insertions that 
are added to the ith DSA with S I initial records is also a 
hypergeometric distribution: 

P(rl=xIN, N i , R, I, Si) 

= (Ni~Sj)(N-R~~~i-Si»)/ (N~R) (10) 

for Os;xs;min (I, N j - Si) 

We use Ni - Si instead of N j for the reason that Sj initial 
records were chosen at load time and there are only Ni - Si 
records left in the ith cluster. The insertions are originated 
from these N j - Sf records out of a sample of N - R records. 

Now the values of all parameters are known. The ex
pected number of insertions ri to be added into the ith DSA 
with SI initial records is 

E(rj I Si )=I*(Nj - Si )/(N - R) (11) 

Its variance is 

VAR(rjISi)=I [~=!i][I- ~=!i][Z=~=~] (12) 

Using the same strategy as OAM, the free space to be left 
in the ith DSA is E(riISJ+z*VAR(rjISi)1I2, where z is an 
adjustable coefficient as noted in OAM. 

Example 2-A fiLe created by using a hashing function 
through a selected three-digit field. Suppose 
there are five DSAs available for the file and 
each file is initially loaded with 16, 11, 26, 52 
and 295 records, respectively. If 200 insertions 
(1=200) are estimated to enter into the file 
within the t time units, then the corresponding 
size of each DSA is tabulated below: 

R=400, 1=200, N={000-999}, z=3.29 

Distributed 
Free Space Size of 

ith DSA Sj E(rdSd VAR(riISd II DSA 

1 
2 
3 
4 
5 

16 8 4.9 15 31 
11 5 3.2 11 22 
26 13 7.9 22 48 
52 26 14.9 38 90 

295 147 25.9 164 459 

400 250 650 

Using S4 =52as an illustration, we know N= loa, 
R=400, and 1=200. 

From Equation 9, 

From Equation 11, 

E(r41 S4 )=200(129- 52)/(1000-400) 

=26 

From Equation 12, 

VAR(r4 1 S4)= 14.9 

14 =E(r41 S4)+ 3 . 29*VAR 1/2(r41 S4) 

=38. 

Therefore, the size of the 4th DSA is equal to 
90 records. 

SIMULATION AND DISCUSSION 

Methods of simulation 

Since data can be stored, retrieved and maintained differ
ently by different access methods, experiments are done 
separately for each method. In OAM, the total number of 



TABLE I-OAM with Various m 
R=5000, B=O.I, 1=500, z=3.29 

No. of 
initial No. of Distributed Average Average Total Space Free Space 

records DSA Free Space No. of Additional Utilization Utilization 

SI m F Overflows Accesses TSU FSU 

20 250 1750 1 0.00034 .8146. .2850 
25 200 1400 2 0.00062 .8590 .3555 
50 100 1300 0 0.00001 .8730 .3846 

100 50 1050 0 0.00003 .9091 .4761 
200 25 875 0 0.00000 .9362 .5714 
500 10 730 0 0.00000 .9599 .6849 

1000 5 655 0 0.00000 .9726 .7634 

records in a DSA are dominated by the following two fac
tors-(i) the number of initially loaded records in each DSA 
and (ii) the key distribution of these initial records and the 
subsequent insertions. As both data must be chosen from a 
specific global key space with a distribution Fb6 we gen
erated 10 sets of key-value each with 1000-5000 distinct 
elements from a selected distribution. Five of them are 
sorted and used as initial records, the second five testing 
data sets are used as subsequent insertions. Therefore a test 
consists of a set of 25 repetitions. Experiments are divided 
into two parts, one with changing number of DSAs and the 
other with different insertion ratio. The results are given in 
Table I and Table II. 

In NAM, the dominative factors include those in OAM as 
well as which hashing functions are used. Here we did many 
different experiments. The procedure of generating test files 
was the same as that used in OAM. At first, we tested 
whether the DSA size has an effect on the model by changing 
the number of DSAs available for the file. Next we changed 
the insertion ratio. The results are given in Tables III and 
IV. Since the hashing function is a dominant factor, we also 
did our experiments on various hashing functions such as 
division transformation, radix transformation, random trans
formation, etc. The results are given in Table V. In addition, 
comparisons between our model and Chin's model are made 
in terms of total distributed free space, average overflows, 

TABLE II-OAM with Various Insertion Ratios 
R=5000, SI=250, m=20, z=3.29 

Total Free 
Space Space 

Insertion Distributed Average :/I Average Utiliza- Utiliza-
Ratio Insertion Free Space of Additional tion tion 

B 1 F Overflows Accesses TSU FSU 

0.1 500 840 0 0.0 .9418 .5952 
0.2 1000 1500 0 0.0 .9231 .6667 
0.3 1500 2120 0 0.0 .9129 .7075 
0.4 2000 2760 0 0.0 .9021 .7246 
0.5 2500 3380 0 0.0 .8949 .7396 
0.6 3000 3980 0 0.00019 .8908 .7536 
0.7 3500 4600 0 0.00009 .8854 .7608 
0.8 4000 5200 0 0.0 .8824 .7692 
0.9 4500 5800 0 0.0 .8796 .7759 
1.0 5000 6420 0 0.0 .8757 .7789 
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TABLE III-NAM with Various m 
R=5000, 1=500, B=O.I, METHOD=DIVISION, z=3.29 

No. of Distributed Average Total Space Free Space 
DSA Free Space Avg. of Additional Utilization Utilization 

m F Overflows Accesses TSU FSU 

113 1273-1281 0 0.00012 .8762 .3913 
67 1095-1100 0 0.0 .9019 .4554 
34 920- 925 0 0.00001 .9288 .5424 
23 843- 847 0 0.00000 .9410 .5917 
13 754- 756 0 0.00002 .9558 .6627 
7 679- 681 0 0.0 .9683 .7353 

average additional accesses, total storag~ utilization and free 
space utilization. Results are given in Table VI. 

As for the file organization, we use a conventional indexed 
sequential method for OAM, and a division transformation 
for NAM. We use both of them as main access methods 
because of iheir popularity. If overflow occurs, we use 
chaining as an .overflow handling technique. 

The values in the fourth column of the Tables is calculated 
as follows: Each record located in its home area is required 
one access. If an overflowed chain has length L, then a 
given overflow record took L + 1 accesses. If Ii was the 
amount of free space reserved in the ith DSA, and x inser
tions were added to that DSA, then overflow occurred for 
x> Ii' The number of accesses to fetch all these records 
which are sequentially chained together is 
0+ 1 +2+ ... + (x- Id=nai' Then the average additional ac
cess per record is equal to I,~1 nad(R+ I). 

Discussion of results 

Based on the results obtained from both OAM and NAM, 
we see that there are almost no overflows whenever F rec
ords are reserved, where F equals I,~1 Ii . But if more than 
F insertions were added, the number of overflows would 
increase rapidly. It means that the distributed free space 
reserved by the model is sufficient to maintain the short 
response time and yet not much storage space is wasted. 

When the number of DSAs increases, more free space 
will be allocated. The collection of free space of all DSAs 

TABLE IV-NAM with Various m and B 
R=5000, METHOD=DIVISION, z=3.29 

Inser-
tion No. of Distributed Average Total Space Free Space 

Ratio DSA Free Space Avg. of Additional Utilization Utilization 
B m F Overflows Accesses TSU FSU 

0.1 67 1095-1100 0 0.0 .9019 .4554 
0.2 1842-1846 0 0.00013 .8766 .5421 
0.4 3185-3192 0 0.00025 .8549 .6272 
0.1 23 843- 847 0 0.0 .9410 .5917 
0.2 1486-1489 0 0.0 .9248 .6721 
0.4 2687-2689 0 0.00006 .9105 .7440 
0.1 13 754- 756 0 0.00002 .9558 .6627 
0.2 1358-1360 0 0.0 .9435 .7356 
0.4 2509-2510 0 0.0 .9322 .7971 
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TABLE V-Results of Various Methods of NAM 
R=5000, 1=500, m=67, z=3.39 

Total Free 
Average Space Space 

Distributed Number Average Utiliza- Utiliza-
Free Space of Over- Additional tion tion 

Method F flows Accesses TSU FSU 

Division 1095-1100 0 0.0 .9019 .4554 
Random 

transformation 1092-1097 0 0.00002 .9022 .4562 
Radix 1094-1099 0 0.00008 .9020 .4554 

reduces the storage utilization as indicated in Figures 3a and 
4a. As shown in Figures 3b and 4b, when more DSAs are 
claimed at loading time, more distributed free space is al
located. 

In Figure 5. as insertion ratio increases. the free space 
utilization will increase also. The reason is as follows: A 
high insertion ratio means a larger amount of insertions will 
be added into a file. Therefore. the amount of pre-allocated 
free space is more effectively utilized than that of a small 
insertion ratio. On the contrary, total space utilization de
creases as insertion ratio increases. The reason is that a high 
insertion ratio pre-allocates a larger portion of free space 
than that of small insertion ratio. 

From the Column 4 of Table V. the free space reserved 
for each hashing function is nearly the same but the addi-
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Figure 3b-Total distributed free space for OAM on various m. R=5000, 
B=O.I, 1=500, z=3.29. 

tional accesses have a slight difference. The average addi
tional accesses of division method, random method and 
radix method are 0, 0.00002 and 0.00008, respectively. The 
result is the same as in Reference 9; namely, division method 
often outperforms other methods. 

Figure 6 shows the comparison of storage space between 
our method and Chin's. As shown by this figure, the new 
model (NEW in Figure 6) is superior than the old model 
(OLD in Figure 6), especially when a large number of DSAs 
are allocated to the file. 

m 

101 
67 
37 
23 
13 
7 
5 

TABLE VIa-Comparison Between Chin's and New Method 
R=lOOO, B=0.2, 1=200, METHOD=D1VISION, z=3.29 

Total Distri- Total 
bution Free Average Storage Free Space 

Space Average Additional Utilization Utilization 
F Overflows Accesses TSU FSU 

NEW OLD NEW OLD NEW OLD NEW OLD NEW OLD 

404 2181 6 0 0.00653 0.0 .8501 .3806 .4791 .0957 
402 1850 0 0.00295 0.0 .8456 .4208 .4718 .1080 
407 1407 0 0 0.00017 0.0 .8527 .4980 .4909 .1419 
368 1092 0 0 0.0 0.0 .9772 .5736 .5435 .1831 
325 770 0 0 0.0 0.0 .9057 .6771 .6154 .2590 
287 500 0 0 0.0 0.0 .9324 .7999 .6%9 .3999 
270 387 0 0 0.0 0.0 .9449 .8657 .7407 .5179 
246 253 0 0 0.00010 0.0 .9630 .9575 .8125 .7899 
228 178 0 22 0.0 0.15193 .9772 .9999 .R772 .9999 

200 94 a /06 0.0 4.7258 I. 1. I. I. 
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TABLE Vlb---Comparison Between Chin's and New Method 
R=l000, B=0.5, 1=500, METHOD=DIVISJON. z=3.29 

TotaJ 
Total Distri- Average Average Storage Free Space 
bution Free No. of Additional Utilization Utilization 

Space Overflows Accesses TSU FSU 

m NEW OLD NEW OLD NEW OLD NEW OLD NEW OLD 

101 1010 2970 I 0 0.00117 0.0 .7457 .3782 .4938 .1686 
67 1005 2618 0 0 0.00037 0.0 .7479 .4146 .4970 .1910 
37 851 2124 0 0 0.00013 0.0 .8103 .4806 .5873 .2358 
23 782 1736 0 0 0.0 0.0 .8475 .5486 .6394 .2883 
13 715 1320 0 0 0.0 0.0 .8748 .6460 .6993 .3783 
7 651 932 0 0 0.0 0.0 .9085 .7762 .7680 .5362 
5 615 755 0 0 0.0 0,0 .9288 .8529 .8130 .6633 
3 576 528 7 0.00208 0.0409 .9511 .9772 .8663 .9339 
2 386 113 2.33829 - 1.0 - 1.0 

Figure 7 shows the comparison between response time of 
the new model and the old model. As indicated in Figures 
6 and 7. the fast response times are nearly the same for both 
models, but the new model reserves less amount of free 
storage space than the old model does. 
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CONCLUSION 

In this paper we have developed a new mathematical 
model to determine a sufficient "distributed free space" 
within a DSA in terms of the number of records. In either 
OAM or NAM, we assume initial records and subsequent 
insertions are selected from the same distribution. But in 
NAM, we further assume that the size of global key space 
N can be calculated from the length of key field. In practice 
this may not be true. However, in general, N is much larger 
than the file size so that this assumption causes no serious 
problem. 

Although the experiments have shown that there is almost 
no overflow when F records are reserved as free space for 
subsequent insertions, it is not easy to know mathematically 
that how long the fast response time can be kept. The reason 
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is that various applications have different rates and period 
of insertions. 

From the testing results, we know the storage space uti
lization is economical for a larger DSA. How to partition a 
large DSA into a number of small blocks has been discussed 
in Reference 2. 

If the storage cost does not exceed reorganization cost, 
it is economical to distribute free space within home area 
even if distributed free space has poor storage utilization. If 
storage cost exceeds reOiganization cost, it is very costly to 
leave large amount of free space. In this case, optimal re
organization point should be considered and the associated 
topics have been studied in References 11-13. 
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~o~ecasting computer resource utilization using key volume 
Indicators 

by DAVID E. Y. SARNA 
Price Waterhouse & Co. 
New York, New York 

INTRODUCTION 

The purpose of capacity planning is to determine how much 
computer power we have overall, how much we are using 
and, most importantly, how much is left and how much is 
required. There is some justification for the current interest 
in capacity planning. We have recently improved our ability 
to predict the quality of service, i.e. the turnaround time 
that can be expected from a given configuration when a 
known workload is imposed. This is a basic activity in ca
pacity planning. 

If we use the right tools, and obtain the right measure
ments, we can determine the service requirements of exist
ing workloads. Capacity planning tools, usually based on 
queueing theory, enable us to predict with remarkable ac
curacy the effect on utilization, thruput, turnaround and 
response times to be expected for a given change in com
puter workload or configuration. The challenge then comes 
not in predicting how much raw capacity remains unused on 
the existing computer, but rather in predicting the expected 
workload. The specific equipment required can be deter
mined straightforwardly once the expected workload has 
been established. 

CURRENT FORECASTING TECHNIQUES 

Forecasting growth in computer utilization is the key to 
successful capacity planning. There are three basic tech
niques that have been used up to now, with varying degrees 
of success, to forecast computer utilization: 

1. Divide up the total current usage by department. Ask 
each department to estimate next year's requirements 
in terms of CPU-seconds and EXCPs. 

2. Take this year's job accounting figures and adjust them 
for expected change over the next year. 

3. Apply a trend analysis to this year's job accounting 
tapes to obtain an (overall) forecast for next year. 

What are the disadvantages of these techniques? 

1. Ask the user-Try forecasting your monthly require
ments for dish washing liquid! To most users, CPU-
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seconds or EXCPs are quantities even more obscure 
and difficult to estimate. 

2. Estimate based on last year's results-This is the clas
sic seat-of-the-pants approach. Some are better at it 
than others. 

3. Watch the trend-This is a step in the right direction. 
Use of this technique presupposes that next year's 
usage pattern will mirror this year's. If sufficient data 
are used and the trending techniques are sufficiently 
sophisticated, good results can often be obtained. 
However, there is no assurance that the current trend 
will continue. For example, an installation may expe
rience flat growth this year, but may then experience 
a large workload increase when the applications cur
rently under development go on-line. Simple trend 
analysis is not going to predict that type of growth. In 
a decentralized environment, such as is found in many 
RJE-oriented shops, this problem is particularly acute. 

KEY VOLUME INDICATORS 

We have been using a concept called key volume indica
tors (K VI) to overcome deficiencies in forecasting using 
existing methods. The tools required are a job accounting 
analysis program and a regression program found in statis
tical software packages and available on many pocket cal
culators. The underlying principle behind this technique is 
that the end user, given sufficient information, understands 
his business best. He should be responsible for predicting 
his own needs. He cannot be expected to predict computer 
usage, but he probably can predict business-related growth 
with a fair degree of success. The key volume indicator is 
a way of relating an application' s inputs and outputs to 
computer utilization. Appropriate key volume indicators 
(KVI) must be chosen in order to prepare reliable forecasts. 
The key volume indicators must relate to computer usage 
and at the same time be business- and application-related in 
order to be forecastable by the users. Procedures have been 
developed to assist in selecting statistically valid indicators 
based on the accumulated volume and computer usage data 
relating to an application. A useful by-product of the process 
will be the availability of unit costs for many applications, 
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permitting comparisons among user constituencies and bet
ter cost estimates for planned applications. 

Once the indicators have been identified, the user will 
prepare a forecast in terms of the key volume indicator 
units, and the computer will translate these units into a 
forecast of computer resources. EXCPs, CPU-seconds, or 
any other measure of utilization can be forecast using this 
technique. 

TYPES OF WORKLOADS 

Growth in corporate computer use will come primarily 
from three sources: (a) Increased workloads for existing 
applications, (b) shifts from batch to on-line processing and 
(c) new applications. Other factors influencing use are re
lated to changes in processing time caused by program mod
ifications, new techniques such as a conversion from se
quential processing to a data base management system, or 
changes in run frequency. 

DETERMINING KEY VOLUME INDICATORS FOR 
AN APPLICATION 

To determine key volume indicators, potential indicators 
are selected for their forecastability, relationship to the ap
plication and availability of historical data. Then, historical 
volume and computer utilization data is examined statisti
cally, in order to select the potential volume indicators with 
the greatest correlation to computer utilization over time. 

MONITORING AND IMPROVING FORECASTING 
ABILITY 

Forecasts will improve because (l) users will be able to 
do a better job of forecasting key volume indicators than 
computer-related measures such as CPU seconds or EXCPs, 
(2) the indicators will be chosen carefully and bear a known 
relationship to computer utilization and (3) users will prepare 
forecasts periodically and as they gain experience in actual 
usage as compared to their forecasts, their forecasts should 
improve. 

STANDARD COSTS 

An additional benefit from the use of key volume indica
tors is the collection of data relating to the computer re
sources required per KVI unit of work. This data can be 
used to develop standard costs for applications, and to com
pare the standard costs with actual costs to highlight vari
ances for further study and possible management action. 
Comparisons of the costs of similar applications among the 
divisions should assist in identifying inefficient programs 
;:md in f{'ducing cost., 

DETERMINATION OF THE ADEQUACY OF 
INSTALLED EQUIPMENT TO MEET PROJECTED 
REQUIREMENTS 

Simulation models based on queueing network theory can 
be used to predict the effect on response times and CPU 
utilization of workload changes. For a given computer con
figuration and workload, the model will predict the average 
CPU utilization, the average batch job turnaround times and 
the average terminal response times to be expected due to 
workload changes. The model also can be used to predict 
the effect of volumes different from the forecasts. 

NEW APPLICATIONS 

Usage data is not available for applications not yet in
stalled. If a similar application is installed at another divi
sion, the key volume indicators and coefficients may be 
borrowed as a first approximation. If such comparable data 
is not available, the analyst will have to base his estimate 
on the time required to process the approximate number of 
CPU instructions and I/O operations per transaction. If a 
new application will replace an existing application, care 
must be taken to deduct from the total forecast all resource 
utilization to be displaced by the new application. After the 
application is placed in production, and the usage data be
comes available, the procedure for existing applications 
should be followed. 

ON-LINE APPLICATIONS 

On-line application usage can be projected using basically 
the same procedures as for batch systems, using key volume 
indicators appropriate to the on-line system. However, in
teractive programming systems pose a special problem. We 
have found that the number of programmers is an appropri
ate K VI since in most shops the amount of computer utili
zation for interactive systems is directly related to the num
ber of programmers doing interactive programming, and this 
relationship is fairly constant from month to month. 

STEPS IN DEVELOPING THE FORECAST 

Forecasts for existing and new applications are prepared 
in terms of key volume indicator work units. These figures 
are extended by coefficients produced by the statistical rou
tines to give forecasts of computer resource utilization. A 
forecast is also prepared for all other computer workloads. 
The sum of all the individual forecasts gives the total com
puter utilization forecast, which may be adjusted to take 
into account additional factors, such as overall improve
ments to operations as a result of equipment changes, or 
performance improvement programs. The procedure for 
forecasting computer utilization will be summarized. More 
detailed procedures are provided in the appendices. 



1. List the potential key volume indicators. For example, 
potential indicators for an order/billing/accounts re
ceivable system commonly found in computer shops 
might include: number of invoices, number of orders, 
number of updates, number of line items, number of 
parts in the file, and dollar invoice value. 

2. Sort and summarize the job accounting records (SMF 
tapes) by major application system. Ai least six 
months' worth of records should be used. Please note 
that summarization should be by major application. Ill' 
many shops one or two letters of the job name or other 
job accounting information is used to identify the major 
application. 

3. Summarize the total monthly resource consumption by 
CPU-seconds, EXCPs, monthly computer charges, or 
any other quantity to be forecast. The resource usage 
data are referred to as dependent variables. 

4. If a significant portion of the application is run on a 
daiiy basis, divide the figures obtained in Step 3 by the 
number of workdays per month. 

5. Obtain from the appropriate user department actual 
monthly volume figures for the potential key volume 
indicators identified in Step 1, for the accounting pe
riods used in Step 2. If the computer usage was divided 
by the number of workdays per month in Step 4, divide 
the potential key volume indicators by the same figure. 
The data for the key volume indicators are referred to 
as independent variables. 

6. Perform stepwise multiple linear regression using the 
potential indicators as the independent variables and 
CPU-seconds, or other quantities to be forecast as the 
dependent variables. The important outputs from the 
regression program are (a) regression coefficients and 
(b) a standard error of estimation. The regression coef-

OCT 

1. Key Volume Indicators 
Numbers of invoices 24,017 
Number of updates 3,145 
Number of open-term records 49,752 

2. CPU Utilization 
Measured (minutes) 273 
Regression: invoices and updates. R2=.77, a=430.74, b=.OI, 260.5 

c=.OI 
Regression: invoices and open items. R2=.80, a=585.24, 252.3 

b=-.Ol, c=.00202 
Regression: invoices oniy. R;:=.70, a=505.64, b=-.Oi 25i.O 

3. EXCP Utilization 
Measured (000) 4205 
Regression: invoices and updates. RI= .86, a=6624.65, 4087.5 

b=-.13, c=.22 
Regression: invoices and updates. R2=.86, a=8866.79, 3956.6 

b=-.15, c= -.03 
Regression: invoice only. R2=.78, a=7768.21, b=-.16 3930.8 
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ficients for each computer resource, when extended by 
a forecast expressed in terms of key volume indicators, 
predict the expected utilization of the resources by the 
application being forecast. 

Potential key volume indicators are ranked by the regres
sion program in order of correlation. The standard error of 
estimation tells us how well the coefficients explain or pre
dict the input data. An indication of the "goodness" of fit 
is given by the coefficient of determination. A high value 
indicates a good fit and a low value indicates a poor fit. 

Generally speaking, we have found that one or two po
tential key volume indicators will account for most of the 
utilization and these become the key volume indicators. At 
one client, we found that the number of invoices could be 
used to explain almost all utilization within an order-entry/ 
billing/a(:counts receivable application. (See Figures I and 
2). 

FORECASTING PROCEDURE 

How are key volume indicators used in practice? Assume 
that the number of monthly invoices has been found to be 
an appropriate key volume indicator. The user would then 
be given a report showing the number of invoices produced 
each month over the past year. He is asked to prepare a 
quarterly forecast of invoices-the key volume indicator
to be generated over the next year. His forecast is extended 
by the regression coefficients to obtain the resource fore
cast. This process is continued for all major applications. In 
most shops, Pareto's law applies. Most of the utilization can 
be accounted for by a relatively few major applications, and 
only these applications need to be forecast individually. All 

NOV DEC JAN FEB MAR APR 

21,570 23,411 21,644 23,476 26,311 24,774 
2,960 2,012 2,500 2,709 2,108 2,013 

51,552 49,896 45,144 53,136 48,384 55,512 

268 262 280 250 221 230 
279.6 250.7 272.8 259.4 226.3 238.0 

272.9 258.4 285.1 251.3 233.5 233.0 

277.0 257.4 270.2 256.8 226.7 "' .. .., .n £'t.).v 

4268 3970 4384 3908 3595 3651 
4365.9 3915.5 4254.3 4061.5 3558.4 3737.0 

4265.2 4041.4 4433.2 3941.5 3658.4 3684.0 

4321.7 4027.6 4309.9 4017.2 3564.2 3809.0 

Figure I-Key volume indicators in an accounts receivable application. 
The above figure shows the measured resource consumption and the expected utilization predicted by the regression equation using the indicated KVls. It can 

be seen that the best correlation was achieved using both invoices and open items as KVls. However, forecasting using only invoices as the KVI still gives an 
acceptable correlation. Other potential KVls, such as volume of vendor master records, did not correlate well. 
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other utilization is lumped together, and the number of jobs 
used as the key volume indicator. Regression is performed 
and the regression coefficients obtained. These coefficients 
will be extended by the overall growth forecast for the com
ing year. Note that, where a CPU utilization forecast is 
being prepared, the sum of the individual forecasts must be 
mUltiplied by the ratio of the total CPU time recorded by a 
hardware or software monitor to the total recorded by job 
accounting (the "capture ratio") to obtain a forecast for the 
total CPU consumption. This correction is necessary be
cause most job accounting systems do not allocate all of the 
CPU time to individual application programs. For example 
if it is known that only two-thirds of the total CPU time is 
allocated by a job accounting system, the total result fore
cast would be multiplied by three over two to obtain a more 
accurate estimate of the total CPU consumption being fore
cast. 

FORECASTING ACCURACY 

What unusual conditions may arise when preparing fore
casts using key volume indicators? The most obvious pos
sibility is that the standard error reported by the regression 
program is unacceptably large. This indicates either that the 
key volume indicators selected are not, in fact, good pre
dictors of computer utilization, or that the data are incom
plete or reflect a temporary exceptional condition. This 
question can be resolved by inspecting the output from the 
regression program. 

Most regression program listings contain the following: 

Regression Program Output 
Independent variables 
Depende'1t variables: 

• Expected values 
• Actual values 
• Variance 

Explanation 
Key volume indicators 
Resources utilization being 

forecast: 
• Predicted values 
• Input values 
• Difference between 

expected and actual 
values 

If the variance is large for most months, the potential key 
volume indicators were not found to correlate well with 
utilization, and different indicators must be selected. How
ever, if the data generally correlate well, but correlate poorly 
for a few months, this would also impact the standard error 
of estimation. If possible, the data should be researched to 
determine whether there were any unusual conditions relat
ing to processing the application system for those months 
where the variance is large. The non-representative data 
should then be disregarded and the regression program run 
once again, using the remaining data. This will often produce 
an acceptable result. 

Another item of concern in some shops relates to distri
bution of the workload by shift. The procedure described 
will calculate a total load for the CPU. Where an installa
tinn's wnrkloao is oistrihuteo unevenly (lver the oCly. it may 
be necessary to calculate the expected load on a per-shift 

basis. To do this, the accounting data should be sorted using 
the shift as the major sort key and the application name as 
the minor sort key. Regression would then be performed for 
each shift individually. The assumption here is that the dis
tribution of utilization throughout the day will be the same 
next year as in the past year. If this assumption is definitely 
known to be incorrect, the forecast should be appropriately 
adjusted. 

Other adjustments to the forecast may be necessary. For 
example, a computer performance improvement program 
may be under way, and an overall reduction of perhaps 20 
percent in CPU utilization may be anticipated. The forecast 
would then be reduced by the amount of expected perform
ance improvement. 

ADVANTAGES OF KVI FORECASTS 

What are some of the major advantages to be expected 
from using key volume indicators to predict computer uti
lization? The main advantage is that the forecasts them
selves will be prepared by the end-user who will now be 
forecasting in terms he can understand. Forecast usage is 
then accurately related to resource consumption. Once use 
of key volume indicators is instituted, the reliability of the 
forecast can be monitored. This feedback can be expected, 
over time, to improve the forecast's accuracy. Moreover, if 
the user exceeds his forecast utilization, he cannot demand 
that the computer center handle the unexpected workload 
with the same ease that it handles scheduled work. On the 
other hand, users who consistently overforecast their re
quirements should be penalized by the pricing algorithm 
employed in the computer center. For example, the rate 
charged the user should be based on forecast usage. U n
forecast usage should be charged at a higher rate. Usage 
forecast but not used should be charged for, although per
haps at a lower rate than charges for actual usage. 

As previously noted, other benefits expected through use 
of key volume forecasts are the accumulation of standard 
cost information and the suitability of the data generated for 
input to a queueing model. This makes it easy to predict not 
only the total utilization "demand" but also the ability of 
existing and/or planned configurations to handle the ex
pected workload. 

UTILIZATION FORECASTS AND CAPACITY 
PLANNING 

One last observation relates to the accuracy of forecast: 
In our experience with this technique, accuracy was sur
prisingly good. However, a key point to remember, though, 
is that computer capacity does not generally come in very 
small increments. The purpose of preparing a capacity fore
cast is to determine the need for additions or changes to the 
computer configuration. The forecasting accuracy is suffi
cient if it can correctly predict the need for equipment 
chflnges. One useful Wfly to test the sensitivity of the ('(1-

pacity prediction to small changes in user forecasts is to 
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Figure 2-ActuaI and predicted CPU utilization in an accounts receivable application. 

bracket the projected forecasts when preparing the capacity 
plan. This is especially easy to accomplish where a mode1 
is employed. As is well known, up to a point, computers are 
very tolerant of additional workloads imposed upon them; 
they respond with only small changes in turnaround time 
and thruput until a critical point or knee is reached. Loads 
in excess of the critical values will cause serious deteriora
tion in service. By appropriateiy bracketing the forecast 
assumptions, it would be possible to estimate the equip
ment's ability to handle the probable range of the expected 
computer workloads. 

We have found the use of key volume indicators to be a 
useful method of improving the accuracy of computer utili
zation forecasts. 

REFERENCES 

1. Bonner, L., ""An Introduction to Capacity Planning," 0022-9001-00. IBM 
Washington Systems Center Technical Bulletin, January 1977. 

2. Beizer, 8., Micro-Analysis of Computer System Performance, Van Nos
trand Reinhold Co., 1978. 

3. Buzen, J. P., "Principles of Computer Performance Modelling and Pre
diction," Performance Modelling and Prediction, Vol. 2, 1977. 

4. Buzen, J. P. et aI., "BESTIlTM-Design of a tool for computer system 
capacity planning," AFIPS Conference Proceedings, Vol. 47, pp. 447-455. 

5. Denning, P. J., and J. P. Buzen, ""The Operational Analysis of Queueing 
Network Models," Computing Surveys, Vol. 10, No.3, pp. 225-261. 

6. Wesolowsky, G. 0 .. Multiple Regression and Analysis o{Variance, John 
Wiley & Sons, Inc., 1976. 

APPENDIX I-PROCEDURE FOR DEVELOPING 
EQUIPMENT UTILIZATION FORECASTS USING 
KEY VOLUME INDICATORS 

I. Select the key volume indicator for each application 
for which a utilization forecast is to be prepared, by 
carrying out the appropriate procedure (batch, on-line 
or new) for determining key volume indicators in Ap-
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pendix 2, 3, or 4. As a result of this step, regression 
coefficients will also be obtained for each application. 

2. Obtain the users' forecasts for each application in 
terms of the key volume indicators identified in Step 
1. 

3. To forecast CPU seconds per month and I/O count per 
month, extend the volume forecasts by the correspond
ing regression coefficients obtained in Step 1. 

4. Adjust each forecast to take into account other factors, 
such as expected 
• Changes in run frequency or additional runs. 
• Equipment and software changes. 
• Changes in resource utilization due to optimization 

or tuning. 
• Any other factors expected to influence computer 

use. 
5. Forecast the net additional utilization from all other 

applications and for system software. To do this, for 
the most recent month, subtract from the total monthly 
utilization (CPU seconds and 110 count) that portion 
of utilization represented by applications forecast in
dividually in Step 3, above. This result represents the 
net additional utilizatiop from all other applications 
("other work"). Determine regression coefficients for 
the net additional utilization for other work by carrying 
out the procedure for determining key volume indica
tors. Use the number of jobs as the potential key vol
ume indicator. As in Step 3, extend the regression 
coefficients obtained by the net number of jobs forecast 
for other work to obtain a forecast of CPU seconds per 
month or I/O count per month. 

6. In order to obtain the forecast of total CPU seconds 
and I/O counts, add the individual forecasts resulting 
from Step 4 to the net additional utilization developed 
in Step 5, giving a forecast of total utilization. 

7. To correct for inaccuracies in recording CPU utiliza
tion by job accounting routines, multiply the total CPU 
utilization obtained in Step 6 by the ratio of total CPU 
utilization, as measured by a software or hardware 
monitor to the total CPU utilization recorded by the 
job accounting programs. Other resource measures, 
such as 110 counts, are usually accurately recorded by 
job accounting programs and do not require adjust
ments. 

8. The ratio of the forecast to current utilization gives the 
growth percent. This growth percent is used by capac
ity planning tools such as queueing models to predict 
the effect of the changed workload on terminal re
sponse times and job turnaround times. 

APPENDIX 2-PROCEDURE FOR SELECTING KEY 
VOLUME INDICATORS FOR INSTALLED BATCH 
APPLICATIONS 

1. For each application, list all transaction types and the 
organization (key or sequence) of each major file and 
report. These are potential key volume indicators. Also 

identify the job names used to identify the application 
to the operating system. 

2. From this list, identify logical intersections within the 
application. For example, paychecks/employee and up
dates/employee are logical intersections within a pay
roll system, and line-items/order is a logical intersec
tion for an order entry system. These also are potential 
key volume indicators. 

3. List any other potential key volume indicators. 
4. Reduce the list to those potential indicators that would 

be forecastable by the divisions, and for which histor
ical data could be collected. These are called "predic
tors. " 

5. Obtain the monthly volume data by application for 
these predictors, together with the corresponding CPU 
seconds and total I/O count, which are figures that 
should be available in the job accounting reports. These 
are the major measures of equipment utilization most 
subject to fluctuation and directly related to individual 
applications and. therefore, these are the statistics that 
will be forecast. 

6. Use a statistical package, such as BMD, developed by 
the University of California, or SPSS, developed by 
the National Opinion Research Center of the Univer
sity of Chicago, to perform stepwise linear regression 
using the predictors as the independent variables and 
the CPU seconds and I/O counts as the dependent 
variables. The regression program should be used for 
each application to relate CPU seconds to each predic
tor and also 110 count to each predictor. The advantage 
of running the regression program separately for CPU 
seconds and for I/O count is that it is possible that 
certain predictors will correlate well with CPU seconds 
and others will correlate well with I/O count. 
Input to the regression program consists of the monthly 
volumes for each predictor, and the CPU seconds or 
110 counts for that application. In addition, certain 
regression programs must be provided parameters 
which limit the number of program iterations to the 
most likely range of coefficient combinations and 
weightings. Appropriate values to be specified are 1.0 
for the "F-Ievel for inclusion" parameter, 0.5 for the 
"F-Ievel for deletion" parameter, and a "tolerance 
level" of .001. These values will minimize the com
putation required. 
The regression program calculates the correlation be
tween predictor volume and computer utilization (CPU 
seconds and 110 count). This correlation is expressed 
in values called regression coefficients for each predic
tor. The regression program automatically bypasses 
predictors that do not correlate well with computer 
utilization. Output of the program is a rank listing of 
predictors and regression coefficients in order of best 
correlation. For each predictor following the first, the 
program gives the additional correlation that is ob
tained by using that predictor in addition to the prior, 
better predictors. 
Also given by the program is the multiple correlation 
coefficient called R2. This is the precision of the regres-



sion coefficient for the group of best predictors selected 
by the program. R2 is calculated by the statistical pro
gram based on the variance between the actual utili
zation data and the utilization predicted by the regres
sion program. The value of R2 can range from 0.0, for 
an imperfect fit, to 1.0 for a perfect fit. An R2 value of 
0.7 or more is usually adequate for planning since the 
objective of a utilization forecast is equipment capacity 
planning, which usually involves large increments of 
capacity. A small value for R2 may indicate either that' 
the predictors are unsatisfactory key volume indicators 
or that certain historical data assoCiated with the pre
dictors may have been skewed by some additional fac
tor. Therefore remove the one or two months' data 
(called "cases" in the regression computer output list
ing) with highest "residual," that is, the largest differ
ence between the predicted and empirical results. 
Rerun the regression program. If the value of R2 is 
satisfactory, proceed to Step 7. if the precision ratio 
is still unsatisfactory, additional predictors must be 
chosen. 

7. When a satisfactory precision ratio has been achieved, 
the predictors selected in the final regression step 
should be used as key volume indicators. 

APPENDIX 3-PROCEDURE FOR SELECTING KEY 
VOLUME INDICATORS FOR NEW APPLICATIONS 

For new applications, no usage data would be available 
and a different approach must be used. 

1. If forecasts have been prepared for a similar application 
(perhaps one in use at another division) the regression 
coefficients obtained for that application may be bor
rowed and used in developing equipment utilization 
forecasts. 

2. If there are no similar applications, the following "rules 
of thumb" may be used in place of the resource utili
zation data normally collected: 

a. Based on the feasibility studies and system design 
documentation, estimate the number of I/O opera
tions by multiplying the average number of I/O op
erations for each transaction type by the expected 
monthly transaction volume. Use this estimate in 
place of actual I/O counts. 
b. Average CPU utilization can be estimated by using 
the average CPU utilization per key volume unit. In 
one test on an IBM 3701158 computer, the average 
CPU utilization for batch portion of the accounts 
receivable application was 0.6 seconds per invoice 
and for on-line CICS applications the average CPU 
time per transaction was found to be 0.3 seconds. 
These rates appear to be representative. Therefore, 
to estimate for any other CPU of similar architecture, 
mUltiply these figures by the ratio of the relative 
CPU speeds of the 3701158 and the other CPU. 
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c. If a more detailed estimate is desired, the following 
procedures can be used: 

• Estimate the number of CPU instructions required 
for processing each transaction, based on the system 
design specifications. Multiply the number of I/O 
operations obtained in Step 2a by the average num
ber of machine instructions per I/O operation to 
obtain the number of CPU instructions for I/O pro
cessing. Add the number of CPU instructions for 
transaction processing to the number of CPU in
structions for input/output processing to obtain an 
estimate of total CPU instructions per transaction. 
Multiply by the average machine instruction time to 
obtain estimated CPU time per transaction. Multiply 
the CPU time per transaction by the expected 
monthly transaction volume to obtain expected total 
monthly CPU utilization for the application. 

• For the IBM 3701158 running under the OS/SVS 
operating system and using the COBOLIVS compi
ler, the estimated number of COBOL statements 
executed can be mUltiplied by 16 to give the esti
mated number of machine instructions. About 2,000 
instructions are required for each EXCP. The av
erage machine instruction time is 1.24 microseconds. 

3. Subtract the computer resources used by any existing 
programs expected to be displaced by the new appli
cation from the estimates obtained in Step 1 or Step 2 
to obtain the net increase expected from the planned 
new application. 

4. Include the estimates developed above when carrying 
out Step 6 of the procedure for developing the equip
ment utilization forecasts (Appendix I). 

5. Once the application is placed into production and 
meaningful utilization figures become available (prob
ably after a three-month shakedown period), the ap
propriate procedure for determining key volume indi
cators should be carried out using actual utilization 
statistics. 

APPENDIX 4--PROCEDURE FOR SELECTING KEY 
VOLUME INDICATORS FOR ON-LINE 
APPLICATIONS 

On-line systems can be projected using basically the same 
procedures as for batch systems. 

I. List the potential key volume indicators. The basic unit 
of work for an on-line application is the transaction. 
Most on-line teleprocessing monitors collect statistics 
about the number of executions of each transaction 
type, and also the number of transactions per terminal. 
The major transaction types and the number of termi
nals are thus potential key volume indicators. For on-
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line programming systems, the number of programmers 
is frequently an appropriate key volume indicator. 

2. Reduce the list to those potential indicators that would 
be forecastable by the divisions, and for which histor
ical data could be collected. These are called "predic
tors. " 

3. Obtain from the teleprocessing monitor monthly data 
for those predictors together with the corresponding 
utilization, i.e., CPU seconds and total 110 count. 

4. Perform Steps 6 and 7 of Appendix 2 (Procedure for 
Determining Key Volume Indicators for Batch Appli
cations). 
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Workflow-A technique for analyzing JES systems 

by H. PAT ARTIS 
Bell Laboratories 
Piscataway, New Jersey 

INTRODUCTION 

During the last decade, the mode of operation of many 
centralized computer installations has been significantly 
changed by the widespread use of remote job entry (RJE) . 
facilities. The increasing usage of remote work stations pre
sents the analyst a significant problem in sizing remotes to 
efficiently handle the flow of jobs. Currently, few, if any, 
tools exist to aid the analyst in this area. 

A tool called Workflow Analysis has been developed to 
assist the analyst in identifying bottlenecks and sizing JES 
systems. This tool processes the System Management Fa
cility 1 (SMF) log file to produce graphical reports on the 
queues managed by a JES subsystem. 

BACKGROUND 

RJE was initially provided to IBM users by the HASP 
and ASp2 spooling packages in the late 1960s. Since then, 
the number of installations using RJE facilities and the per
centage of their system's workloads handled by the remotes 
have steadily increased. When the MVS operating system 
was introduced, HASP and ASP evolved from optional 
spooling packages to subsystems called JES2 and JES3. 
Today, a typical JES2 or JES3 system serves 20 to 30 re
motes with a high percentage of the system's workload being 
submitted by the remotes. 

Coincident with the evolution of the software to support 
RJE has been the development by IBM and other vendors 
of a wide range of potential remote devices. They range in 
size from a 360 or 370 CPU work station supporting multiple 
readers and printers to small work stations or minicomputers 
that emulate a remote's protocol. With the variety of avail
able hardware, a user can size a remote from a single 300 to 
500 line-per-minute (LPM) printer to a CPU that can handle 
mUltiple 2000 LPM printers. The development by many ven
dors of moderately-sized* and -priced devices has hastened 
the proliferation of remotes by allowing more users to re
quest and justify their own workstations. 

* These remote stations typically consist of a 300 card-per-minute (CPM) 
reader and a 1000 line-per-minute (LPM) printer. These values are rated 
speeds that are usually degraded by transmission line capacity and other 
influences. 
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Experience has shown that only one or two poorly-sized . 
remotes can significantly skew turnaround statistics for an 
entire JES system. Also, it is generally the users who control 
the flow of work to and from the remotes by their selection 
of an input station and specification of an output destination. 
Hence, a tool was needed not only to assist in the sizing of 
remotes but to' monitor and report on their daily utilization. 

JES MEASURABLES 

To identify and comment on the measurable quantities in 
a JES system it is useful to consider the diagram in Figure 
t. As shown in the figure, at the center of the system is one 
or more processors that process the jobs submitted by the 
users. ** There are three methods for entering a job into the 
system. They are 

• Reading in the job at a local input device. 
• Reading in the job at a remote. 
• Submitting the job to the system's internal reader. The 

internal reader is available to TSO users and any job 
currently executing in the system. 

When a job is entered into the system It IS queued for 
execution. The input queues are maintained by job class and 
JES provides priority queuing within each job class. 

Once a job has been processed, its output is queued for 
spooling. The output queues are maintained by destina
tion, *** output class and output forms type. Priority queuing 
is also available for the output queues. 

It should also be noted that jobs are free to enter and exit 
the system at any point specified by the user. The user may 
also specify that various portions of ajob's output be routed 
to different or mUltiple destinations. 

One of the most convenient methods for studying a J ES 
system is to measure the content of the queues on an interval 
basis. The following measurements of system activities are 

** JES2 systems typically contain a single processor while JES3 systems 
consist of two or more processors. However. some users employ the shared 
spool facility of JES2 to control multiple processors. 
*** The term "destination" refers to the location to which a file is to be 
spooled. A file may be spooled locally or to a remote work station. 



194 National Computer Conference, 1979 

JES SYSTEM 

/~ 
LOCAL INPUT DEVICES 

LOCAL OUTPUT DEVICES 

INTERNAL 

REAOER 

JOB 
CLASS 
INPUT 
QUEUES 

REMOTE! 
FORMS! 
CLASS 
QUEUES 

CPU 1 

considered to be important for each interval: 

Jobs Read-The number of jobs read into the system 
during the interval. This measure allows the analyst to 
study the load arrival pattern for the entire system. The 
cumulative value of this measure gives the total number 
of jobs that have entered the system since the start of the 
study. 
Jobs Purged-The number of jobs purged from the system 
during the interval. The difference of the cumulative val
ues for Total Jobs Read and Total Jobs Purged is number 
of jobs in the system. 
Input Queue-The average number of jobs of all classes 
waiting in the input queues during the interval. This value 
provides a measure of the total amount of work quellen 
for the processor(s). 
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Figure I 

Output Queue-The average number of jobs waiting in 
the output queues for all locations during the interval. A 
comparison between this measurement and the Input 
Queue measurement provides an indication of how well 
the sytem's output facilities are matched to the load arrival 
pattern. 
Executing-The average number of jobs currently exe
cuting on all processors during the interval. This measure 
is the sum of the average mUltiprogramming levels of all 
of the processors. 
Job Queues-The average number of jobs of each class 
queued for execution during the interval. This measure
ment allows the analyst to study the arrival patterns and 
the system's capability for serving each job class. 

Furthermore, the following measurements of location (i.e. 



local or a remote workstation) activities are considered to 
be important for each interval: 

Jobs Read from Location-The number of jobs read into 
the system from a location during the interval. This meas
urement allows the analyst to study the work patterns of 
users at different locations. t 
Jobs Backlogged from Location-The average for the in
terval of the number of jobs in the system that originated 
from a location. This measurement allows the analyst to 
compute the percentage of the system's current backiog 
that originated at any location. 
Lines Backlogged to Location-The average for the in
terval of the number of logical records (print and punch) 
queued for spooling at a location. This measure allows the 
analyst to determine how well the hardware at a given 
location is matched to the load which it is assigned. 
Files Backlogged to Location-The average for the inter
val of the number of files (print and punch) queued for 
spooling at a location. This measure allows the analyst to 
estimate how many users are waiting for output at the 
location. 

The jobs processed by the system may also be measured. 
These measures are collected for each job, by job class and 
for all jobs. The measures are: 

Input Queue Time-The input queuing delay from the time 
a job was read into the system until it was selected for 
execution. 
Output Queue Time-The output queuing delay from the 
time the job completed execution until it was purged from 
the system. 
Total Queuing Time-The total of the input and output 
queuing delays. This is the total non-productive time the 
jobs spent in the system. 
Execution Time-The duration the job spent in execution. 
Turnaround Time-The total time the job spent in the 
system. This measure is the total of the job's execution, 
input queuing and output queuing times. 

IMPLEMENT ATION 

The measurements described in the previous section can 
be implemented using the data available in the JES Job 
Purge (Type 26) and the JES Output Writer (Type 6) SMF 
records. The JES Job Purge record contains the following 
items used by the algorithm: 

• JES Job Number 
• JES Input Device (location) 
• Job Class 

t The measure "Jobs Purged by Location" is not suggested since jobs need 
not be returned to the location at which they entered the system. One of the 
best examples of this is jobs submitted to the internal reader from TSO users. 
The output from these jobs is routed to some location convenient to the user 
for printing. 
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JOB STATISTICS 

JOB NUMBER INPUT QUEUE OUTPUT QUEUE EXECUTION TOTAL QUEUE TURN AROUND 
CLASS OF JOBS (MIN) (MIN) (MIN) (MIN) TIME (MIN) 

A 12,457 2 35 2 37 39 

B 4,108 6 35 9 41 50 

C 5,555 25 64 5 89 94 

E 1,431 4 14 1 18 19 
J 997 1 38 2 39 41 

I 
M 

I 

571 

I 

20 21 3 41 44 

N 493 2 23 13 25 38 

1 
ALL JOBS 1 25,612 1 8 40 4 48 52 

Figure 2 

• Reader Start Time and Date, Tl 
• Execution Start Time and Date, T2 
• Execution End Time and Date, T3 
• Job Purge Time and Date, Ts 

Since a job rriay spool multiple output files there may be 
more than one JES Output Writer record for the job. The 
record for the ith output file contains 

• JES Job Number 
• JES Output Device (location) 
• Number of Logical Records Printed 
• Writer Start Time and Date, T(4,i) 

• Writer End Time and Date, T(5,i) 

The Type 26 and all of the Type 6 SMF records for a job 
may be assembled using the J ES job number as a key. 

Each of the variables to be measured must be represented 
by a table whose size is determined by the granularity of the 
interval size chosen. Currently, the existing implementation 
uses a granularity offive minutes and requires 288 full words 
for each table to represent one day. 
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Using the tables and the data from the SMF Type 6 and 
Type 26 records, the previously-listed measures can be im
plemented as follows: 

Jobs Read-Increment the table at time T1• 

Jobs Purged-Increment the table at time T6. 
Input Queue-Increment the table from time Tl to time 
T2 • 

Output Queue-Increment the table from time T3 to time 

T6 • 

E.xecuting-Increment the table from time T2 to time T3. 
Job Queues-Increment the table for the job class speci
fied in the Type 26 record from time Tl to time Tz. 
Jobs Read from Location-Increment the table for the 
input location specified in the Type 26 record at time T 1• 

Jobs Backlogged from Location-Increment the table for 
the input location specified in the Type 26 record from 
time Tl to time T6. 
Lines Backlogged to Location-For the ith output file for 
a job increment the table for the output location specified 
in the Type 6 record from time§ T3 to time T(4,i) or T(s,i) by 
the number of logical records to be spooled. * 
Files Backlogged to Location-For the ith output file for 
a job increment the table for the output location specified 
in the Type 6 record from time T3 to time T(s,i)' 

§ Unfortunately, the Type 6 SMF record does not indicate when an output 
file was queued. Hence, all files are usually assumed to be queued for output 
at the termination of the job's execution. Although this is generally true, JES 
does provide the user the ability to dynamically free a file to the output me 
during execution. In such cases, the output is assumed to have been queued 
since T2• 

* The analyst may either choose to credit the output as being backlogged 
until the writer starts or stops. One could also choose to credit the complete 
output as being backlogged to T(4.0 and then use a linearly declining value 
IIntil T,".i, whf'1'1 zem linf'~ Wf)I}lt:! rf'TT1~in Th(' f'11rrent iTT1l'Jpmpnt::1ti(,11'1 n~e~ 

T(5.il· 

Input Queue Time-The difference between T2 and T1• 

Output Queue Time-The difference between T6 and T3. 
Total Queuing Time-The difference between T and Tl 
plus the difference between T6 and T3 • 

Execution Time-The difference between T3 and T2. 
Turnaround Time-The difference between T6 and T1• 

CASE STUDY 

A study was conducted of a moderately-loaded 3701168 
JES2 system that supported TSO users and seven remote 
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workstations in a testing environment. Although this system 
only processed about one thousand small jobs per day, the 
system's service objective of a 30-minute average turna
round time for batch jobs was not being achieved. One 
month of SMF data was obtained for the system. 

The first step of the study was the analysis of the turna
round time statistics for the month. The turnaround time 
statistics were compiled by job class and summarized for all 
jobs. As shown in Figure 2, the average turnaround time for 
all jobs processed by the system was 52 minutes. Rov/ever, 
the average input queuing and execution times only repre
sented 12 minutes, 23 percent, of the average turnaround 
time. The low values of input queuing and execution times 
corresponded with the observations of moderate load and 
relatively small jobs. The high average value of output 
queuing time, 40 minutes, indicated the presence of a bot
tleneck in the system's output spooling. 

The prime shift period, eight AM to four PM, was analyzed 
for a number of days in the month using the Workflow 
Analysis tool. In each of the days studied, the same output 
spooling bottlenecks were evident. A typical day is dis
cussed in the following paragraph. 

The arrival pattern of the jobs, Figure 3, is very typical 
for testing installations. The arrival rate of jobs peaks just 
before and after lunch and prior to each coffee break. The 
system's output queue length, Figure 4, follows the arrival 
pattern of the jobs. However, the output backlog does not 
decline as rapidly in the afternoon as it does in the morning. 
This led to an investigation of the Lines Backlogged to 
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Location reports for the local and remote stations. As shown 
in Figure 5, Remote Stations 3, 6, 7 and 8 are lightly loaded 
throughout the entire day. However, remote stations 5 and 
10 present significant output bottlenecks in the afternoons 
with backlogs of 50 to 60 thousand lines. Since the remotes 
are configured with printers that average only 450 LPM, 
these backlogs represent more than a two-hour output delay 
for jobs routed to either of the remotes. It is the output 
delay of these two remote stations, used by about 20 percent 
of the jobs, that results in the system's service objective not 
being met. Although similar output backlogs occur at the 
local station, it is not a concern since the local station has 
several high-speed printers with a net effective rate of more 
than five thousand LPM. 

REMARKS 

The tool presented in this paper is relatively uncompli
cated and is very straightforward to implement. However, 
it provides a great deal of information to the analyst about 
the flow of jobs thru a JES system that is not currently 
available from other sources. 
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MMPS-A reconfigurable multi-microprocessor simulator 
system 

by DANIEL KLEIN 
Carnegie-Mellon Institute of Research 
Pittsburgh, Pennsylvania 

INTRODUCTION 

The computing industry is currently undergoing a quiet rev
olution. Along with the recent advances in LSI design and 
production, a new trend in computation is forming. Many 
corporations are realizing that an important part of the future 
of computers lies in distributed data processing. The em
phasis here is not on distributed data, for this field has been 
extensively (though certainly not completely) researched by 
computer scientists, but on distributed processing. 

While there exist a great many design and debugging tools 
for uni-processor systems, such as simulator systems, as 
well as off-the-shelf in-circuit emulators for almost any mini
or microprocessor on the market, there exist few real design 
or debugging tools for multi-processing systems. While it is 
relatively easy to simulate any uni-process machine on al
most any other, there is no easy method of either simulating 
a mUltiprocessor or of simulating any algorithm which is 
designed to run on such a system. And while it is possible 
to hand code a multi-processor simulator, this is certainly 
not a desirable method. Any design modifications must be 
incorporated into the current simulator by reprogramming 
(possibly large) sections of the code. A network simulator 
cannot limit itself to the simulation of a specific network, 
with fixed characteristics and configurations. Rather, what 
is needed is a software system development tool which is a 
general purpose network simulation package to provide a 
simulation environment for the design, checkout and main
tainance of mUltiprocessor computer networks. 

What we have set out to do is to construct tools for the 
network designer. A multi-microprocessor design language 
and dynamically reconfigurable multi-microprocessor sim
ulator (MMPS), (which can be used in conjunction with a 
reconfigurable hardware network emulator, the BUCS sys
tem,l provides an aid to an efficient design methodology, 
and is described here. 

DDP system description and simulation is an important 
step in the development of computer network systems. It 
not only tests the correctness of the overall design scheme, 
but also that of the individual elements, with relation to 
speed, instruction set, unit MTBF, etc. It should also test 
for possible run-time hazardous conditions which might 
arise, such as integrity problems, before the actual construc-
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tion of the network, thus enabling the designer to bypass 
large amounts of testbed development. 

The simulator should have the capability to provide both 
hardware and software level breakpoint tracing, as well as 
a static method of tracing the overall system performance, 
for later evaluation and possible redesign. Such a system, 
coupled with a full complement of production aids such as 
cross-assemblers, cross-compilers and cross-interpreters, is 
a highly desirable precursor system to the actual construc
tion of the network system. If this system also has the ability 
to interface with some high-level hardware descriptive lan
guage, so that previously undep",pd pieces of hardware may 
be easily included into the libr~ry of simulator components 
already available, then this sytem becomes a very powerful 
mUlti-processing development tool. 

Unfortunately, most of the existing computer hardware 
descriptive languages (CHDLs) such as LOGICSPEC, 
AHPL, COL, DOL and CONLAN are designed to sPecify, 
or to reduce to, the gate level of operation within the de
scribed piece of hardware. While this may suffice for de
scribing small logic elements, such as interface devices, or 
even small processors, it most certainly is not ideal for 
describing a large computer, and even less suited for de
scribing a network of computers. 

From the system standpoint, a designer of a mUlti-pro
cessing network only needs to know about the interactions 
between the individual processors, not how each of them 
performs on the minute scale. Realistically, all that is needed 
for each element of the network is a knowledge of how fast 
an element can accept an input, how fast it provides an 
output, and that the time between input and output is a 
black-box function of the data provided. The black-box pro
gramming, is of course effected by the designer of the in
dividual elements, and "hooks" into the box should be 
provided, should observations of the gut-level functions of 
the elements be desired. However, for the most part, all the 
system designer need know is that the black-box exists, and 
that it functions as specified. Gate level CHDLs are simply 
not suited for this purpose. On the one hand, they are ex
ceptionally slow when simulating large systems, and on the 
other hand, they are not designed to be reconfigurable, as 
the specifications state. 

There exists at least one CHDL that approximates the 
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desired functions. In its current state, ISPS2 is semi-interpre
tive, but it has the capabilities to be a compiled language. 
In ISPS, it is sufficient to declare a memory subunit of a 
specific size, and not need to specify (or have automatically 
specified) the specific gate level functionings of a memory 
module. The register transfer level that ISPS reduces to is 
on a much higher level than the gate level reduction of most 
other CHDLs. Being an instruction set processor, ISPS can 
provide the black-box simulation desired with a small de
scription of the hardware. A Digital Equipment Corporation 
PDP-8 can be described in ISPS on a page or two of code, 
while LOGICSPEC, for example, would require many more 
pages of description to perform the same operations in a 
greater amount of time. (An· ISPS description of the Man
chester Mark- I computer, the simplest ISPS description 
available, appears in the Appendix). Although ISPS is better 
suited for a mUltiprocessor simulator environment than any 
of its companion hardware languages, it would still require 
some modifications to optimally interface it with a reconfi
gurable network simulator. 3 These modifications are, how
ever, beyond of the scope of this paper, and will be dealt 
with at some later date. 

USER LEVEL DESCRIPTION OF MMPS 

The MMPS system is currently being designed on the 
UNIX time-sharing system,4 produced at Bell Laboratories. 
This system was chosen for its availability on small main
frame systems, and for the mUltiprocessing capabilities it 
provides. 

When the user initializes MMPS, he has available to him 
a number of "build" commands, for declaring and connect
ing elements of his network together. Once the network is 
defined, there are a set of "trace" commands for defining 
breakpoints and for passively monitoring actions within the 
network. There is also a set of "peek/poke" commands for 
loading and dumping memory, and setting or reading the 
values of certain busses. Additionally, on-line help is always 
available for any command or set of commands. 

The main goal in designing the command set of MMPS 
was to parallel the predicted actions of a hardware designer. 
Thus through the use of a DECLARE command, the user 
can define any number of duplicate elements of particular 
(predefined) system elements. Thus, a sample command: 

DECLARE 8085[2]; MEMORY[I](4,8), MEMORY[2](8) 

would define two 8085s, one memory with four bits of ad
dressing space and eight bits of data, and two memories 
with eight bits of address and data. Using the standard 
pinouts of the 8085, the user could then CONNECT the 
various elements together via a generalized backplane by 
issuing a command of the form: 

CONNECT 8085[*](12.15), MEMORY[I](0.3) TO 
WIRE(0.3). 

Thi"i command would connect four of the 8085's address 
lines, and the four address lines of memory module 1 to-

gether on backplane wires zero through three. This effec
tively makes a common memory unit, shared by both pro
cessors. If the user wants to disconnect a wire, all he need 
do is use the DISCONNECT command to do so. Notice, that 
all of these commands are dynamic, and may be done at any 
time during the simulation. Thus, if the user wished to test 
a fault tolerant system, various elements could be DISCON· 
NECTed during the run, and faulty elements could be CON· 
NECTed in, thus effectively simulating a failing unit. 

Special consideration has also been made for non-standard 
features in a network. The user has the facility with which 
to clock each processor at a different speed (via the CLOCK 
command), and to specify wired OR connections (via the 
WIREDOR command). In this way, potential difficulties 
may be overcome. There is also a way to specify the default 
floating value of any particular wire. Through the use of the 
FLOAT command, lines may be declared to float high or 
low, depending on the application. Special consideration has 
also been made for the accomodation of bidirectional busses, 
and tri-state bus features. Depending on the type of simu
lation, I/O may be simulated in any of a number of modes, 
including ASCII or binary/octal/hex dump modes. 

The "peek/poke" commands are designed to emulate the 
loading and dumping of memory, but on a much higher level 
than is currently available to the technician. While it is of 
course possible to "load memory from the simulator, mim
icking the insertion of a different PROM, it is also possible 
to dump memory at any time, examine the signals on any of 
the wires and, most importantly, assert different signals than 
are currently on the bus. Since the user has the capability 
to "freeze" the state of the system at any time, he may 
dynamically alter the state of the system, and continue its 
operation. Additionally, through the use of the SAVE com
mand, the user may save the current state of a network 
simulation, to be RESTOREd at a later time. 

However, of all the commands, the "trace" commands 
give the MMPS simulator its most power. To make a sim
ulator better than the hardware it is emulating, the simulator 
must provide features that the hardware cannot. The MMPS 
system does this by providing both breakpoint and passive 
tracing facilities. MMPS provides passive tracing in the form 
of an active hardware bus monitor, which records in a file 
all bus transfers across the backplane. Once the system has 
been halted, this log file may be examined by a group of 
people at their leisure. MMPS also has three other levels of 
selectable tracing. Operations which occur local to a pro
cessor (such as a register to register move, or addition of 
two loaded operands) can be TRACEd in a log file that is 
local to the processor. Since all of the log files have their 
entries keyed by time, multiple log files may be merged and 
compared to detect possible race or lock conditions. Addi
tionally, operations may be switched to SIGNAL the user of 
their occurrence without freezing the system, or by causing 
a BREAK in operations, and holding the system in a frozen 
state following an action. The access of certain memory 
locations (such as the entry point to a subroutine) may be 
monitored, as well as the values of internal processor reg
isters. Certain classes of informatiun, su~h as PC overflow 
and halt instruction execution, are not switchable, but are 
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considered serious enough to warn the user of their occur
ance, regardless. The system can be continued after this 
type of breakpoint error, though. 

OPERATIONAL LEVEL DESCRIPTION OF MMPS 

Since MMPS is not only simulating the parallel processing 
of a network, but also spawning a series of parallel UNIX 
processes to do this simulation, special consideration had to 
be given to the problem of simultaneous actions in the net
work. The problem of two processes reading or writing the 
same bus at the same time must be dealt with, as these 
actions can and will happen in the real network. To cope 
with this problem, MMPS uses an asynchronous queue to 
schedule the actions of the individual elements. When two 
elements have simultaneous actions, the scheduler allows 
both to occur, and then updates the state of the busses in 
any of a number of user selectable ways. Simultaneous reads 
present no problem, but simultaneous read/write operations 
do. The user may select a random order of evaluation, or 
may elect to have all reads processed before writes, or all 
writes processed before reads. If the wired OR capability 
has been selected, simultaneous writes will be dealt with 
according to the specified logic, and if not, an error is gen
erated (since two processes writing at the same time to a 
non-wired OR bus will cause that bus to blow). 

The best way to describe the mechanism of synchroniz
ation of MMPS is to call it a packet-switched network. 
Whenever a process needs to interact with the "outside 
world," it sends a packet to the "overlord" indicating which 
units it wishes to communicate with. Of course, a unit (or 
process) may interact only with those elements to which it 
has been CONNECTed. Upon receipt of this message, the 
"overlord" process sends as many copies of this message 
as are necessary to the other subunits of the network. Thus, 
a sample interchange between a processor and memory 
would be as follows: 

1. Processor puts address on bus, and sets memory read 
request line on control bus. (Message is sent from 

processor simulator to "overlord:' and then to mem
ory simulator.) 

2. Memory gets signal on control bus, reads address bus, 
and gets the appropriate memory location. (Message is 
received by memory simulator, and the appropriate 
calculations and simulated delays occur.) 

3. Memory places contents of selected address on data 
bus. (Message is sent from the memory simulator to 
the "overlord," and then to the processor simulator.) 

4. Processor, after appropriate delay, reads data bus, and 
compietes the memory fetch. (Message is received by 
processor simulator, and cycle is complete.) 

Since simulated times may vary considerably from real 
times, each message also contains the time of its occurrence, 
so that the actions may be properly synchronized. Notice, 
also, that the distinction is made between internal and ex
ternal actions. That is, if a process need not communicate 
with the "outside" world for a while. and need only update 
its internal re~isters, when it again writes a message, the 
time field will reflect this time spent "inside." 

Since it would increase the general simulation time to 
have a process poll a particular bus (as does the hardware) 
to implement interrupt lines, a special feature has been built 
into the "overlord" whereby a process can advise which of 
its lines an interrupt can be generated on. The process can 
then go into an idle state (i.e. not polling, but perhaps doing 
other operations), and be automatically interrupted when 
the indicated line is asserted- by another process. This 
method takes full advantage of the asynchronous method of 
coordinating the various subprocesses. 

EXAMPLE 

The following is a sample interchange between the system 
designer and the MMPS system. In this example, the user 
will connect two imaginary processors, called MINIs, to a 
common memory. The MINI is used for simplicity's sake. 
As in the MMPS simulator, commentary (which is ignored 
by the command parser) is preceded with a "!," and ends 
with a carriage return. 

>' First, the user must declare the processors, the memory, and the 
>~ associated backplane wires. 
> 
>DECLARE MINI[2], 
+> MEMORY[l] (4:4), 
+> WIRE[lO]; 
> 
>' Notice that the memory is declared to have four bits of addressing. 
>~ and four bits of data space. The control lines are assumed. The 
>' nine backplane wires are for connecting the processors to the 
>' memory units, etc. 
> 
>' Now the clock speeds are set on the processors 
> 
>CLOCK MINI[l]at .5MHz, 
+> MINI[2] at .75MHz: 
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> 
>! Now the elements are connected. The address and data lines of 
>! both the processors and the memory are connected together, along 
>! with the control lines. One I/O line of each processor is 
>! connected to the other for handshaking purposes. (This is declared 
>! to be wired OR). The remaining lID line per processor is connected 
>! to a wire for monitoring purposes. 
> 
>CONNECT MINI[*] (0:3), MEMORY[1](0:3) 
+> TO WIRE (0:3); 
> 
>CONNECT MINI[*] (4:7), MEMORY[I](4:7) 
+> TO WIRE (4:7); 
> 
>CONNECT MINI[*] (8) TO WIRE (8); 
> 
>WIREDOR WIRE (8); 
> 
>CONNECT MINI[I] (9) TO WIRE (9); 
>CONNECT MINI[2] (9) TO WIRE (10); 
> 
>! Next establish the tracing and monitoring points. First, 
>! determine what are the valid points in the memory. 
> 
>NAMES MEMORY[l]; 
MREAD MWRITE DATA ADDRESS CONTROL 
> 
>! Set the traces names. 
> 
>TRACE MEMORY[l] : MREAD, MWRITE, ADDRESS; 
> 
>! Print out what is being traced, and also what is being signaled 
>! on in the memory. 
> 
>PRTRACE MEMORY[I]; 
MREAD MWRITE ADDRESS 
>PBREAK MEMORY[I]; 

(No break names) 
> 
>! Load the memory, starting at location 5. 
> 
>LOAD MEMORY[I]FROM 5 WITH PROG 
Locations 5-15 loaded from PROG; Total II words. 

(End of memory reached before end of file!) 
> 
>! Set the default tracing on the MINI's, and go 
> 
>TRACE MINI[*] : DEFAULT; 
>NOBREAK MINI[*]; 
MINI[I] : Are .vou sure? Y 
MINI[2] : Are you sure? Y 
>GO 

BREAK on MINI[2] : Halt executed at time 5135ms. 
> 
>' Now dump memory. 
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> 
>DUMP MEMORY[l]TO DMPDIL 
Locations 0-15 dumped to DMPFIL; Total 16 words. 
>QUIT 
% 

The logfiles (called MINI.1, MINI.2, and MEMORY. I) 
can now be examined. Additionally, BUSREQ is a file that 
contains all information transferred along the busses, in
duding ihai information that came out of the I/O lines to 
wires nine and ten. In case the user wanted to recreate the 
system above, he could utilize the USE command with the 
file COMLOG, which contains a running summary of the 
commands given to MMPS. 

CONCLUSION 

MMPS provides a highly flexible tool for the network 
designer. As such, it can be used by many applications 
users, including the communications and data base manage
ment fields. Since MMPS is a simulator, it of course runs 
considerably more slowly than the hardware it is simulating. 
There are plans to interface MMPS with a downloadable 
hardware emulator, giving the added advantage of being able 
to look at detail with the simulator, and an overall picture 
with the emulator. With these tools, network desi ... and 
implementation speed should be greatly increased. 

REFERENCES 

1. McConnell, Tron, Ronald Krutz and Don Gregg, BUCS-A Bus Utilization 
Control System (a reconflgurable hardware emulator), CMIR, 1978. 

2. Barbacci, Mario, Gary Barnes, Roderick Cattel and Daniel Sieworek, The 
ISPS Computer Description Language, Department of Computer Science, 
Carnegie-Mellon University, 1978. 

3. Rose, Charles, and Donald Hewitt, The Human Engineering of a System 
Design Environment for Microprocessor-Based Systems, Case Western 
Reserve University, 1978. 

4. Ritchie, Dennis, and Ken Thompson, "The UNIX Time-Sharing System, " 
CACM, Vol. 17, No.7, July 1974, pp. 365-375. 

5. Drongowski, Paul, "Capability Requirements in a Multimicroprocessor, 
Hardware/Software Simulation Environment," Symposium on Design Au
tomation and Microprocessors, IEEE-ACM, 1977. 

APPENDIX 

The following ISP description is given courtesy of Mario 
Barbacci of the Department of Computer Science, Carnegie-

Mellon University, Pittsburgh. It describes a very simple 
computer, and is provided for those who would desire an 
example of an actual ISPS computer description. 

MARKl := 
BEGIN 

The Manchester Mark-I architecture is described. 

The Mark-I was an early (circa 1948) computer. 

**MP . STATE** 
m[0:819J](0:31), 

**PC . STATE** 
pi\present.instruction (0: 15), 

fVunction (0:2) := pi (0:2), 
s (0:12):= pi (3:15), 

cr \control.register (0: 12), 
acc \accumulator (0:31), 

**INSTRUCTION . EXECUTION**{TC} 

icycle \instruction.cycle : = 
BEGIN 
REPEAT 

BEGIN 
pi ~m[CR·· (0:15) NEXT 
DECODE f =) 

BEGIN 
#0 := cr ~ m[s], 
#1 := cr ~ cr + m[s], 
#2 := acc ~ - m[s], 
#3 := m[s] ~ acc, 

#4: #5 := acc ~ acc - m[s], 
#6 : = IF acc LSS 0 =) cr ~ cr + I, 
#7 := STOP ( ) 
END NEXT 

cr ~ cr + I 
END 

END 
END 
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SUMMARY 

This paper describes the encoding and the decoding of a 
(31,15) Reed-Solomon Code for multiple-burst error correc
tion for large memory systems. The decoding procedure 
consists of four steps-(1) syndrome calculation, (2) error
location polynomial calculation, (3) error-location numbers 
calculation and (4) error values calculation. The principal 
features of the design are the use of a hardware shift register 
for both high-speed encoding and syndrome calculation, and 
the use of a commercially available (31,15) decoder for de
coding Steps 2, 3 and 4. 

INTRODUCTION 

With present technology, very large memory systems 
(2:1012 bits) designed for the archival storage of digital data 
are critically dependent on electronic error correction sys
tems (EECS) for ensuring system viability and integrity}-4 
In the IBM 3850 Mass Storage System, the EECS used is 
an Extended Group Coded Recording capable of correcting 
up to 32 eight-bit bytes of data in a 208-byte data block. In 
the CDC 38500 Mass Memory System, the EECS used is a 
modified Group Coded Recording similar to that used in the 
IBM 2400 Series magnetic tape systems. The use of magnetic 
tape systems for archival storage of digital data depends 
even more critically on EECS to make them viable. The 
EECS, devised by Brown and Seller, and used in the IBM 
2400 series magnetic tape system, is not adequate for long
term archival storage of data. 5- 7 

At the Institute for Advanced Computation (lAC), archi
val storage systems such as the UNICON 690, magnetic 
tape systems, and other mass memory systems are no ex
ceptions. The viability of these systems depends critically 
on EECS. Instead of designing a different EECS for each 
particular archival system, it is advantageous to design a 
single EECS powerful enough to serve all systems within 
the Institute. 

This paper describes a (31,15) eight -error-correcting Reed
Solomon (RS) code and a decoding procedure suitable for 
implementation using present technology. This code is not 
a binary code, but a q-ary code with code symbols from 
GF(25); i.e., each code symbol consists of five bits. For the 
I4-TENEX system-PDP-lO, PDP-ll, and ILLIAC IV com-
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puters-the RS code is planned to have two modes of op
eration-the 36-bit mode and the 16/8-bit mode. Decoding 
will be implemented by hardware which consists of four 
steps-(1) syndrome calculation, (2) error-location polynom
ial calculation, (3) error-location numbers calculation and 
(4) error values calculation. The encoding process is per
formed by a hardware shift register in 31 clock cycles (50 ns 
per cycle). The syndrome calculation in Step 1 is also per
formed by the same encoding shift register in 31 clock cy
cles. Decoding Steps 2, 3 and 4 are performed by a com
mercially available (31,15) GFJT:'vI decoderS in one msec 
maximum, depending on the number of errors which actually 
occurred. 

REED-SOLOMON CODES 

Reed-Solomon (RS) codes9 - 12 are the most powerful of 
the known classes of block codes capable of correcting ran
dom errors and muiiipie-burst errors. From coding theory, 
there are codes with code symbols from a q-symbol alphabet 
if p is a prime number and q is any power of p. These codes 
are called q-ary Bose-Chaudhuri-Hocquenghem (BCH) 
codes. RS codes, with code symbols from a Galois field of 
q elements GF(q), are a special subclass of BCH codes. 

For present engineering applications only binary codes 
derived from RS codes are of interest. For this reason, 
GF(q) will be restricted to GF(2m)where m is a positive 
integer. The field G F(2m) is formed by a primitive polynom
ial of degree m with a as the primitive element of the field. 
In the algebra of a Galois field, a is also called the nth root 
of unity in GF(2m) since a n = 1 for n=2m -1. With q=2m, 
the code symbols of an RS code are ai, i=x, 0, 1, 
2, ... ,2m - 2, which are the 2m distinct elements of G F(2m). 
The notation a"'=O is used here. 

The RS codes have a, a 2
, a 3

, ••• , a 21 as roots. Since 
the minimum polynomial with root a i is simply (x+ a i ), the 
generator polynomial g(X) of a t-error-correcting RS code 
of length 2m - 1 is 

g(X)= (X + a)(X + a 2
), ••• , (X +a 21 

) (0 

The code word polynomials generated by g(X) consist of 
the multiples of g(X) modulo xn+ 1, and have a, a 2 , 

a 3
, ••• , a 21 as roots. Since g(X) has degree 2t, and a is a 

primitive nth root of unity in GF(2m), the RS code generated 
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by g(X) is a t-error-correcting cyclic code with the following 
parameters: 

) 

(2) 
Minimum distance d=2t+ 1 

Number of information symbols k=2m -1- 21 

Code length (symbols) n=2m-l 

Number of parity check symbols n - k=21 

Since a symbol in G F(2m ) can be expressed as an m-tuple 
over GF(2), the parameters of an RS code over GF(2) are 
simply m times larger. 

ERROR-CORRECTING CAPABILITY 

RS codes over G F(2m ) are very effective in correcting 
random and burst errors. Since each code symbol is an m
tuple over GF(2), a t-error-correcting RS code is capable of 
correcting any error pattern that affects 1 or fewer m-bit 
symbols. For example, since a burst of length 3m+ 1 cannot 
affect more than four m-bit symbols, a four-symbol cor
recting code can correct any single burst of length 3 m + ) or 
less. It can also simultaneously correct any combination of 
two bursts of length m +) or less because each burst can 
affect no more than two symbols. At the same time, it can 
correct any combination of four or less random errors. In 
general, the RS code with error correcting capability t can 
be used to correct any of the following errors: 

1. All single bursts of length b 1, no matter where they 
start, if b 1 S m (t - J) + 1. 

2. Two bursts of length no longer than b 2 each, no matter 
where each burst starts, if b 2 sm[(t/2)-I]+ I, or any 
p bursts of length no longer than b T, each, no matter 
where each burst starts, if b

"
sm[(t/p)-I]+1. 

From the previous discussion, it follows that the RS code 
can be used to correct random errors, single-burst errors, 
or multiple-burst errors. 

CODE SELECTION 

RS codes offer the designer a wide range of code param
eters as indicated in Equation 2. In coding theory, a block 
code with parameters nand k is denoted as (n, k). For the 
lAC 14-TENEX system that consists of computers with 
work lengths of 16 bits (PDP-lis), 36 bits (PDP-lOs), and 32/ 
64 bits (lLLIAC IV), the best choice for fitting these word 
lengths is the (31,15) code. The formats for the 36-bit and 
the I6/8-bit are shown in Figure 1. 

ENCODING 

There are two methods for encoding linear cyclic codes
the serial shift register method and the parallel matrix 
method. BeCcHlse of hardware complexity in the parallel 
method. only the serial method is described in this paper. 

BIT 0 1 2 . . . 36 37 38 39 . . . 73 74 75 76 . . . 154 

NOT ONE PDp·10 WORD ONE PDp·10 WORD PARITY·CHECK 
BITS USED 

o 1 2 . . . 6 7 - 23 24 - 40 41 - 57 58 - 74 75 - 154 ------ -- -- -- -- --
NOT USED B, B3 PARITY·CHECK 

BITS 

Figure I-Data formats of the (31,15) RS code for 36-bit and 1618-bit modes. 
Unused leading bits are always zero. 

Let M (X) be a message polyomial with k symbols encoded 
into a code polynomial (code word) V(X) with n symbols. 
In the serial shift register method, encoding in systematic 
form is accomplished by dividing x n - k M(X) by g(X) and 
appending the remainder r(X) to xn-kM(X); i.e., 

V(X)=r(X) + xn-k M(X)=q(X)g(X) (3) 

where q(x) is the quotient. This indicates that 
[r(X) + xn-k M(X)] is a mUltiple of g(X) and, therefore, is 
a code polyn<;>mial generated by g(X). The code word gen
erated is 

I+- parity. check -+ II +-me~sage -+ 

bits bits 

and the most significant symbol of the message, mk-1, is 
sent first. 

There are two shift register methods for encoding linear 
cyclic codes. One method uses an (n - k)-stage shift register, 
and the other uses a k-stage shift register. 9 In practice, the 
(n - k)-stage shift register is more commonly used unless 
n-k is much greater than k. For encoding the (31.15) RS 
code, an (n - k)= 16 stages shift register (Figure 2) can be 
used to implement Equation 3. The feedback multipliers go, 
g 1, • • • , g 15 are coefficients of the generator polynomial 
g(X), where g(X) from Equation 1 is 

g(X)=(X+a)(X+a2), ... ,(X+a 15 )(X+a 1o ) (4) 

Multiplying out Equation 4 and selecting the primitive po
lynomial p(X) in GF(25 ) to be 

p(X)=X5+X2+1 (5) 

51 

M(X) >-----~r 

figure 2-Em.:udcl [UI (31,15) coue. g; i!> a field elemenl [I lim GT(2') and R; 
is a five-tuple shift register stage. 
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the coefficients are 

go=a l2 g4=a 14 gs=a 25 gl2=a S g16=1 

gl =a 1S gs=a 23 g9=a 21 g13=1 

g2=a 22 g6=a 4 glO=a g14=a
13 

g3=a 23 g7=a 7 gl1=a 3 g15=a 23 

Each Ri register stage is a five-tuple shift register. The 
operation of the encoder is as follows. With SI set for 
feedback and S2 set to position 2, k information symbols 
are shifted into the encoder and simultaneously sent to the 
channel. Then S 1 is turned to disable the feedback and S2 
is turned to position 1; the 16 parity-check symbols stored 
in the encoder now are shifted out to the channel, clearing 
the shift registers. 

DECODING 

Let V(X) be the transmitted code word, E(X) be the 
channel noise-error pattern, and R(X) be the received code 
word and represented as follows: 

V(X)= vo+ v1x+ V2X2+ ... + vn_1x n- 1 
) 

E(X)=eo+ e1x+ e2x2+ ... +en_1xn- 1 

R(X)=ro+ rlx+ r2x2+ ... + rn_1xn- 1 

(6) 

where Vi> ej and rj are elements of GF(2m ), i=O, 1, 
2, . . . , n - 1. At the decoder 

R(X)= V(X)+ E(X) (7) 

The error pattern E(X) can be described by a list of values 
and locations of its non-zero components. For the decoding 
procedure to be described, the error location will be given 
in terms of an error-location number which is simply a i for 
the (n - j)th symbol. Let x j be the error location number 
and e i be the error value. Then for each non-zero component 
of E (X), a pair of field elements (x j, e j) is required to 
describe that error. If E(X) has p errors, then p pairs (Xi' 
e j) are required to describe the errors. Any decoding pro
cedure is a procedure for locating these p pairs of (x j, e j ) 

if p$,t. 
Assume that E(X) is an error pattern of p errors at loca

tions j 1, j 2, • • • , j p. Then 

(8) 

where p$,t and 0$,jj<j2<···<jp$,n-l. The first step in 
decoding is to check whether V(X) is a code word by cal
culating the syndrome. If the syndrome is zero, then either 
V(X) actually has no errors or V(X) has an undetectable 
error. In either case, V(X) is accepted as errorless. A non
zero syndrome indicates that an error has been detected; 
the error mayor may not be correctable. For the RS codes, 
the syndrome is defined as a vector S with 2t components 
as follows: 7-1U 

(9) 

for ;=1, 2, 3, ... , 2t. Combining Equations 7 and 9, the 

result is 

(10) 

Since V(ai)=O. 

p 

Sj=E(a i)= L ej,Xj, (11) 
1=1 

An effective decoding procedure is described below and 
a design implementation for the (31,15) RS code is given. 
This procedure consists of four major steps as follows: 9

-
12 

1. Calculate the syndrome S = (S 1, S 2, . . . , S 2t) from 
R(X). 

2. Calculate the error location polynomial O"(X) from S. 
3. Determine the error locations X j by finding the roots 

of O"(X). 
4. Calculate the error value e j from Xi and S. 

Decoding Step 1 is straightforward. Steps 2-4 are difficult 
and are very t!me-consuming. 9 -

12 

Step J -Syndrome calculation 

For large t (t~4), a good way to calculate the syndrome 
is to use the g(X) encoding shift register as shown in Figure 
2, except that R(X) is exclusived-ored with the output from 
go to form the input to R o. This will result in some saving 
in logic because this shift register is already used for encod
ing. If V(X) has no errors, the S calculated is always zero. 
However, if V(X) has an error, the S calculated by g(X) is 
not the same as the S calculated by R(a i ) of Equation 9, 
but they are related. This relationship is described below. 

From Equation 9, let 

S = (S 1, S 2, • . . , S2t ) 

be the syndrome calculated by R(a i
) with 

S ;=R(a i ) 

for i= 1, 2, ... , 2t. Let 

(12) 

(13) 

S*=(SI*' S2*, ... , Sit) (14) 

be the remainder calculated by dividing R(X) by g(X). The 
remainder S * is another form of the syndrome but S * *- S. 
Using the Euclidean division algorithm, the result of R(X)/ 
g(X) is 

R(X)= Q(X)g(X)+ S* (X) (15) 

where Q(X) is the quotient and 

is the remainder. Substituting X by a i in Equation 15 gives 
the result 

(17) 

since Q(ai)g(ai)=O. From Equations 13, 16 and 17, the 
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relationship between Sand S 1 * is 

S i = S * ( a i) = S 1 * + S 2 * ( a i ) + S 3 * (a i)2 

+ ... + S 2/ (a i )21 - 1 (18) 

for i= I, 2, 3, ... , 2t. In our design, the actual value of S 
is not needed because decoding Steps 2-4 will be performed 
by the GFFM decoder. The GFI T :l.l decoder has a built-in 
capability for calculating S, albeit at a lower speed. 

Steps 2-4-Error correction 

The implementation of decoding Steps 2-4 in our design 
will use the GFFM decoder, which is a commercially avail
able device. 8 Viewing the GFFM decoder as an LSI chip, 
its functional block diagram is shown in Figure 3. The re
ceived code word R(X) has 31 five-bit digits. Assuming the 
the GFFM has been initialized by pUlsing the INIT line and 
that the DATE-IN ENABLE line is activated, R(X) is input, 
one digit at a time. to the DI lines. After the last digit (31 st) 
of R(X) is input, the GFF!'>I decoder immediately starts the 
decoding procedure to correct the errors in R(X). The de
coding time is a variable depending on the actual random 
errors as well as erasures in R(X). The GFF!\1 can correct 
at a maximum of 2t+s:516 errors, where t is the number of 
random errors and s is the number of erasure errors. Input 
code symbols that have erasure errors are indicated by the 
ERASURE INDICATOR line. In the worst case, the max
imum decoding time is one millisecond. 

The corrected output of R(X) is VeX) and V(X) is avail
able on the DATA OUT lines as soon as the OUTPUT 
READY line is activated by the GFI T.\1. The GFP'M output 
has a total of 19 digits. The first four digits are labels and 
are used to indicate correctable and uncorrectable status 

CLOCK 
(5 MHz) 

DI 

ERASURE 
INDICATOR 

DATA-IN 
ENABLE 

INIT 

" , .. 
~ .. , 

~ .. ..., ... , - , 
~ GF,TM , ... , 

DECODER 

~ ~ , .. , 

~ , .. 

Figure 3-Block diagram of GFrr" decoder. 

DATA 
OUT 

DATA-OUT 
ENABLE 

OUTPUT 
READY 

and the actual number of errors which have occurred. The 
last 15 digits are the information digits of V(X). 

CONCLUSION 

A decoding procedure has been described for a (31,15) 
eight-error-correcting Reed-Solomon (RS) code. The code 
parameters are chosen for cyclic codes so that encoding and 
syndrome calculation can be implemented by shift registers, 
each requiring 31 clock cycles. Using current STTL tech
nology, a clock cycle can be as short as 50 ns so that 
encoding or syndrome calculation can be accomplished in 
1.55 f.Ls (about 48 megabits per second). For error correction, 
decoding Steps 2-4 are implemented by the GFI™ decoder,8 
which is a commercial (31,15) RS decoder. This decoder can 
correct 2 t+ s:516 errors where t is the number of random 
errors and s is the number of erasure errors. The maximum 
decoding time of the GFF!\' is one millisecond. 
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English dictionary searching with little extra space 

by DOUGLAS COMER 
Purdue University 
W. Lafayette, Indiana 

INTRODUCTION 

When text is typeset using a computer-based system, it can 
also be checked for spelling errors automatically and effi
ciently. Several methods of spelling error detection have 
been proposed. Morris et al. [MORR75] study statistical 
properties of English words, and describe an algorithm to 
catch possible typos by examining the relative frequency of 
trigrams (3-letter combinations). Kernighan et al. [KERN78] 
report a more conventional approach which looks up each 
word in a machine readable spelling dictionary. 1 Knuth 
[KNUT73] comments on dictionary storage, and suggests 
an organization intended to reduce space requirements. An
other, somewhat unsophisticated technique sorts all words 
in a document and prints those which occur infrequently. Of 
course, habitually misspelled words escape unnoticed in a 
frequency based system. 

Both [KERN78] and [KNUT73] mention removing suf
fixes from the speliing words and storing oniy the stems. 
When a word is to be looked up, its suffixes are removed 
by the same method, and only the stem is checked. This 
method has the advantage of requiring less space, but the 
disadvantage of not always catching illegal stem and suffix 
combinations. For example, the typo "computions" would 
pass the spelling test because removal of the suffix "ions" 
leaves the valid stem "comput." 

Because there are several hundred thousand words in the 
English language, a complete spelling dictionary is too large 
to keep in main memory. Fortunately, a complete spelling 
dictionary has almost no value for catching typos: misspell
ings commonly turn out to be obscure or archaic terms 
which appear in the dictionary. Even a dictionary of 40,000 
words may be too large to be useful. For example, the 40,000 
word dictionary used by Purdue University's computing 
center includes terms such as "de," "hod," "'ila," "'10," 
"moo," and "'pul," which would probably be typos in tech
nical prose. 

While one cannot give an optimum size for an on-line 
dictionary, it is clear that "the bigger the better" does not 
apply. Since writers use most words infrequently and a few 
words very frequently, the best scheme seems to be: 

1 More precisely, a word list; this paper uses the terms interchangeably. 
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1. Start with a small core of, say, 10,000 commonly used 
English words. 

2. Add new words to the dictionary only as users request 
them. 

This way, an appropriate dictionary evolves without unnec
essary or obscure words. A small dictionary, grown by user 
request, is less likely to accept misspellings, and it can be 
managed more efficiently as well. 

Carrying the evolution strategy further, researchers at Bell 
Labs derived a spelling dictionary solely from user's docu
ments [KERN78]. The resulting dictionary is one-third the 
size of their original spelling dictionary. It has proved to be 
more useful, however, since it contains all the heavily used 
technical jargon as well as common words. Of course, if the 
user popUlation spans a wide variety of interests, each group 
should probably grow its own augmentation dictionary, 
keeping the core for common English words. Any term 
appearing in all augmentation dictionaries should be deleted 
and moved to the common core. 

Small spelling dictionaries often fit into main memory and 
can be searched without accessing secondary storage. The 
words themselves usually occupy a large portion of the 
available space, however, leaving only a little extra space 
for the program and data structures. This paper explores 
searching techniques in the context of a small spelling dic
tionary, and presents a technique which exploits a small 
amount of extra space to lower access costs. The second 
section reviews conventional search methods; the third sec
tion presents the trie-binary search (which uses a modest 
amount of memory). The fourth section examines an appli
cation to a particular spelling dictionary, and the fifth section 
presents performance statistics for typical input data. The 
final section suggests extensions and improvements. 

DICTIONARY SEARCHING TECHNIQUES 

We view a spelling dictionary D as a static set of keys kj, 
1 :si :sn, each key being composed of m letters. For each 
word w in the input text. the search procedure must answer 
the membership question, "is w in D?" We assume that: 
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1. The dictionary fits into main memory and occupies a 
fraction of the available space, a, O<a=S:l. 

2. The dictionary is not to be compressed (see [MORR75] 
for compression techniques). 

3. The dictionary may be preprocessed (eg. sorted) to 
decrease search times. In particular, an index may be 
built to speed retrieval. 

The general problem of data storage and retrieval for static 
sets of keys has received wide attention in the literature. 
Knuth [KN UT73] provides a summary. When the keys 
themselves occupy all but a small fraction of the available 
memory space, only a few candidate strategies emerge: 

• sequential search 
• binary search 

• interpolation 
search 

• hash table search 

• partial index 

-each probe eliminates 1 key. 
-each probe eliminates half the 

keys. 
-each probe eliminates more than 

half the keys in a uniform (or 
nearly uniform) distribution. 

-each probe eliminates most of the 
remaining keys (given sufficient 
memory). 

-a small, auxiliary data structure is 
searched to eliminate all but a 
subset of the keys. Then, one of 
the above methods is used to 
search the subset. 

The first four methods have been analyzed. and expres
sions for the expected number of comparisons per look-up 
have been derived under the assumption of a uniform dis
tribution of keys. Sequential searching examines one-half of 
the dictionary for each look-up, and is obviously inferior to 
binary searching, which makes an average of 

(1) 

comparisons in a dictionary of n words [KNUT73]. 
Interpolation search requires only C I ·log2(1og:t1) +C 2 com

parisons on the average for nearly uniform distributions 
[Y A076]. In practice. however, the constants make inter
polation search too expensive, especially with a highly 
skewed distribution like that of a spelling dictionary 
[KNUT73]. 

The performance of hashing depends on the fraction of 
the space that is occupied, a, and can be estimated as: 

CHash =(1 + 1/(l-a))/2 (2) 

comparisons for a successful search, and 

C~mrh =(1 + 1/(1-a)2)/2 (3) 

comparisons for an unsuccessful search [KNUT73]. 
Ignoring for the moment partial index methods, one must 

choose between binary searching and hashing. In the case 
of an English spelling dictionary which contains less than 216 

words. binary searching requires less than 15 probes on the 
average, and 17 probes in the worst case. From (2) we have 
that hashing is inferior for a>.966. For example. when only 

2 percent of the space is unused, hashing requires over 25 
probes for an average successful search, and 1250 probes 
for an average unsuccessful search. 

TAKING ADVANTAGE OF A LITTLE EXTRA SPACE 

As shown in Figure I when only a small fraction of mem
ory is free, binary searching requires fewer comparisons on 
the average than hashing, even though a binary search uses 
none of the extra space that is available. This section pre
sents a partial index method that uses only a little extra 
space; the next section demonstrates that it makes fewer 
comparisons on the average than a binary search. 

Figure 2 illustrates the use of a partial index mechanism. 
During each look-up, the spelling program searches the 
index to identify the appropriate subset of the dictionary to 
search. Presumably, the index identifies the proper subset 
rapidly. The program then uses a binary search to explore 
the specified subset. 

One particular index method, called a [rie-binary search 
keeps the dictionary in sorted form, using a trie index 
[FRED60] to identify the correct subset to search. As shown 
in Figure 3, the simplest trie index consists of an array of 26 
pointers, one for each letter of the alphabet, which give the 
starting location of words starting with that letter. Using the 
first letter of a word to index into the array, one can quickly 
locate the subset of all words starting with that letter. The 
array is referred to as a node of the trie; many standard 
English dictionaries provide a I-node trie in the form of a 
thumb index to help the user find the appropriate section 
faster. 

A trie index can be extended to more than one level easily 
by allowing a pointer in the first level to point to another 
trie node instead of directly into the dictionary. For exam
ple, if the level one pointer for "c" pointed to a second 
node. then the second node would contain the starting lo
cations of the subsets of words beginning with "ca," "cb," 

Hashing 
Superior 

Binary 
search 
superior 

memory 
used 

by 
keys 

increasing 
memory 

size 

Figure I-The relationship between memory size and optimal search strate
gie~ Bin;lry search is superior to hashing when only a litllc ~PJCC rcmains 

free, even though it does not use the free space. 
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index 

part 

n subsets of 
keys 

Figure 2-The idea of an index. A short search in the index data structure 
identifies some subset of the keys which is then searched for the exact key. 

... , "CZ." If a third level node were inserted following the 
pointer in a second level node for "co," then the third level 
node would give the starting locations of words beginning 
with "coa," "cob," ... , "coz." 

The following terminology will be useful in the sequel. 
Pointers in the trie which point into the dictionary are called 
leaf pointers; all others are called trie pointers. The level 
one node of a trie is called its root, and a node which can 
be reached by following a pointer from a level i node is said 
to lie at level i+ I. 

Searching in the trie begins by indexing into the root node 
based on the first character. Decisions at subsequent nodes 
depend on subsequent letters. In general, an ith level node 
in the trie further restricts the subset of words to be searched 
by testing the ith letter. 

Since storage space is limited, care must be taken to build 
the trie so that each node allocated reduces the average 
number of comparisons by the maximum amount possible. 
For example, if space exists for only two nodes, dividing 
the set of words starting with letter "s" results in fewer 
comparisons than dividing the set of words starting with 
'"a." The idea of allocating nodes to produce lowest cost 
searches leads to the following algorithm for trie construc
tion: 

Algorithm A: (construct minimum cost trie using available 
storage) 

construct a I-node trie for the dictionary; 
while storage is not exhausted do 

begin 
find dictionary pointer p which yields best improve

ment in search time when its set is divided~ 
insert a new node after pointer p 

end 
end A; 

Algorithm A exhibits a high running time unless one em
ploys an efficient method for finding the optimum dictionary 
pointer to be replaced. For uniformly distributed sets of 
keys, dividing a largest set is optimal; for non-uniform dis
tributions the size of the set is not always related to the 
effect that division of that set would have on the cost. 
However, assuming that division of the largest remaining 
subset produces a good, if not optimum, trie leads to an 
efficient, practical algorithm for index construction: 

Algorithm B: (construct a low cost trie efficiently) 
construct a I-node trie for the dictionary; 
select a maximum set size, t; 
while a dictionary pointer, p, points to a subset of more 

than t keys do 
insert a new node after pointer p 

end B; 

Note that the tries constructed by either algorithm do not 
have fixed depth. Of course, each pointer in a variable depth 
trie must have an indication oJ whether it points into the 
dictionary or to another level of the trie, so an additional bit 
is required to store the indicator. Furthermore, pointers into 
the dictionary should include both a starting and ending 

'a' 
'b' 

t---i 

'z' 

Figure 3-The simplest trie-binary search. The index consists of one array of 
26 pointers giving the starting locations of words beginning with 'a,' 'b,' 

... , ·z.· 
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location, since finding adjacent pointers in the trie would be 
time consuming. Even with these additions, the variable 
depth trie uses far less storage to achieve the same search 
time as a fixed depth trie. 

The choice of the maximum set size, t, is crucial to fitting 
the trie into a small amount of memory. If t is too large, not 
enough nodes will be generated, and search efficiency will 
be lost. If t is too small, the algorithm will run out of space 
before the trie can be completed, and search performance 
may be poor. The next section discusses the relationship 
between storage used and the maximum set size, giving data 
from a sample dictionary. 

PERFORMANCE OF TRIE-BINARY SEARCH 

This section describes the performance of the trie-binary 
search strategy on a typical spelling dictionary . Usually, 
such empirical data has limited value because key distribu
tions vary from file to file. In English, the relative distri
bution of keys remains fairly constant over a large range of 
dictionary sizes. Thus, the performance study presented 
here applies directly to other English dictionaries. 

The sample dictionary consists of 16,949 words, and was 
originally formed from computer tapes of newspapers. Grad
ually, some technical terms have been added, and obscure 
and nonsense words have been eliminated (although words 
like "MR", "MRS", "AVE", "sr', and "BLDG" re
main). 

With space for 26 pointers (I node), trie-binary, binary, 
and hash search were implemented, and the actual number 
of probes 2 necessary to find each word in the dictionary was 
recorded. Using the collected data, the average and worst 
case number of probes for a successful search were calcu
lated. Using equations (I), (2) and (3), and assuming that the 
trie divided the set of words into 26 equal size subsets, 
predicted average and worst case probes were computed. 
Table I summarizes the results. 

The trie-binary search (using 1 node) requires only 75 
percent of the probes needed by a straight binary search, 
and clearly performs better with only 26 extra storage lo
cations. Two questions arise immediately: how does trie-

TABLE I 

Binary Trie-
Search Binary Hashing 

Observed 
avg. 13.05 9.80 
worst 15 12 

Predicted 
avg. 13.05 9.35 652 
worst 15 " 16949 

The average and worst case search times for 16949 word dictionary, and 
the predicted values assuming equal size subsets are produced by the trie. 
The observed values for hashing are omitted because of the excessive com
putation costs. 

2 Throughout this paper we count each access in the index as one probe ... 
Thus. if two characters are tested m the tne and three comparisons are made 
in the dictionary. the lookup requires five probes. 

binary search perform with more space, and what is the 
relationship between the maximum set size, t, and the num
ber of nodes allocated? 

The graph shown in Figure 4 answers the first question in 
the case of the sample dictionary. It is clear from this plot 
that the best tradeoff space for time occurs with a small 
amount of space. For example, Table II summarizes the 
number of nodes necessary to lower the average number of 
probes in steps of one. Each successive reduction requires 
more space. 

For the dictionary in question, a choice of 100-120 nodes 
represents a good compromise and brings the average num
ber of probes for a successful search down to about 6.25 (or 
48 percent of that used by a binary search). Doubling the 
space to 200-240 nodes further reduces the average number 
of probes by only .5, and hardly seems worthwhile. 

The relationship between the maximum set size, t, and 
the number of nodes allocated, p, is important because the 
fast trie building algorithm depends on t, while the user can 
most easily estimate p. Knuth [KNUT73] estimates that 

p=nl((·ln b) 

for a file of uniformly distributed keys, where b is the branch 
factor of each node. Using a branching of 26 for English 
yields 

p=nl(3.3 t) 

For the sample spelling dictionary, the estimate turns out to 
be close to 50 percent low for some t. This discrepancy can 
be explained easily by the non-uniform distribution of keys. 
It turns out that an average branching factor of around 8 
provides a closer estimate of p: 

p=n/(2.08 t) (4) 

Figure 5 shows both the estimated and actual number of 
nodes needed as a function of the maximum set size, t. 
Unfortunately, the number of nodes rises rapidly for small 
t, the steep slope making selection of optimum t difficult. 
However, the cost of trie construction is small, and the task 
will be performed once in a preprocessing phase, so version 
A of the trie building algorithm can be used to find optimum 
t, if necessary. As noted earlier, adding a few extra nodes 
does not lower the average number of probes drastically. 
Thus, a conservative estimate of t will not degrade perform
ance severely when version B of the algorithm is used. 

total nodes 
allocated 

I 
9 

24 
77 

236 

TABLE II 

average 
probes 

9.8 
8.8 
7.8 
6.8 
5.8 

The number of nodes necessary to lower 
average probes in steps of I. Each successive 
reduction takes increasingly more space. 
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Figure 4-The average number of probes needed to find a word as a function of the number of nodes allocated in a trie. This data comes from an actual dictionary 
of 16,949 words. 

IMPLEMENTATION PERFORMANCE 

To see how trie-binary search performs in practice, al
gorithm B was implemented and compared to binary search. 
The implementation was done in Pascal, and the programs 
shared all code not involving the searching. Each program 
was run and timed ten times on a CDC 6500, using as input 
a text file of 7841 words arranged on 1359 lines. The maxi
mum set size for the trie-binary search was t= 125, which 
resulted in a trie with 77 nodes (using approximately 3 per
cent extra storage). The performance from runs with median 
search times is given in Table III. 

TABLE III 

read build read 
dictionary trie search text 

binary 
991 ms 4908 ms 4203 ms search 

trie-binary 
998 ms 1642 ms 2242 ms 4193 ms search 

CPU times from a CDC 6500 for processing a text me of 7841 words using 
binary search and trie-binary search. The column "read text" includes CPU 
time for scanning and extracting the words as wen. 

Note that trie-binary search requires only about 46 percent 
as much CPU time during searching as a binary search on 
the sample input. Furthermore, binary search requires 20 
percent more CPU time than trie-binary search, even if the 
trie is built "on the fly." When the trie is built and stored, 
the time required to read it is insignificant compared to the 
time required to read the dictionary. 

OTHER INDEX STRUCTURES 

This section considers several other index structures, and 
compares them to trie-binary search. The first variation, 
called a length-binary search, works as foHows: words in 
the dictionary as sorted by length, and within each length 
lexicographically. An index is created which consists of a 
vector of pointers giving the starting location of each length 
group. Searching proceeds by indexing the length vector to 
find the locations of words of the appropriate length. Having 
located the appropriate subset, the spelling program 
searches it using a binary search. Length-binary search has 
the advantage that equal length words are stored contig
uously so that memory can be compacted. 

For many computer architectures, a combination of 
length- and trie-binary search leads to the best use of stor-
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Figure 5-The relationship between nodes allocated and maximum set size, t, for a spelling dictionary of 16,949 words. The estimate assumes uniform distribution 
of keys. 

age. At the root node of the trie, the length is used as an 
index; successive nodes rely on character indexing. Because 
words are stored compactly, a significant amount of memory 
is available for the trie. 

Another variation is related to the work of Coffman and 
Eve [COFF70] who consider storage of keys in a tree. To 
improve the tree balance, they suggest hashing the key first, 
and using the bits of the hashed value to make decisions in 
the tree. Figure 6 shows how hashing can be applied to trie
binary search. First, one divides the dictionary into subsets 
by hashing the words into a fixed number of "buckets." 
Each subset is stored contiguously, in lexicographic order, 
and its starting position is stored contiguously, in a I-level 
trie node. During a search operation, the program hashes 
the input word to obtain an index into the trie node, from 
which it obtains a pointer to the appropriate subset. In fact, 
one can view trie-binary searching as a hashed trie search 
in which the hash code is given by the character ordinal. 

One final variation frequently suggested involves a tree
structured index which guarantees the dictionary will be 
divided into equal size subsets. Figure 7 shows how the 
method. which is based on the Indexed Sequential Access 

Method [GHOS69] organizes the tree. By selecting K J keys 
at equally-spaced intervals in the dictionary and placing 
them in the root, the tree divides the file into equal size 
subsets. Of course, a program to search the multi-level tree 
makes approximately log2 K J comparisons at the root before 
finding the correct pointer to follow (assuming a binary 
search). If the search continues through m levels, the 
method makes an average of: 

(5) 

comparisons and follows m pointers, where n is the number 
of keys in the dictionary. We assume here that the number 
of keys promoted into the index is insignificant compared to 
the total number of keys. 

For trie-binary search we assumed that the cost of follow
ing one pointer was the same as the cost of performing one 
comparison. Applying the same assumption here implies 
that an Indexed Sequential tree costs the same to search as 
a straight binary search when the entire set of keys resides 
in main memorv. Therefore, trir-hinFlry "eFlrch j" fFlr supp
rior. 
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HASH (KEY) 

subset 1 subset 2 subset 3 subset 4 subset m 
Figure 6-A I-node trie using hashing. To locate a key, its hashed value is used to index a vector which points to the correct subset. The subset must be searched 

to locate the exact match. Note that the subsets may differ in size. 

CONCLUSIONS 

This paper has presented a data structure and algorithm, 
the trie-binary search for dictionary searching. The method 
performs well compared to a binary search while using very 
little extra space beyond that required to store the keys 
themselves. Trie-binary search has been applied to a typical 
spelling dictionary, and statistics have been gathered on its 
performance. For the distribution of words in a typical spell-

! II 

. . . 

t 1 

ing dictionary ~ trie-binary search makes 52 percent fewer 
probes than binary search, while using less than 3 percent 
extra space. For an input document of roughly 30 pages, 
trie-binary search required 74 percent as much total CPU 
time (46 percent as much CPU time during searching) as a 
binary search. 

Several questions remain unanswered. It would be inter
esting to find out how trie-binary search performs on sets of 
keys other than spelling dictionaries. One might conjecture 

K.. KEYS/NODE 
.L 

• • • .... K2 KEYS/NODE 

Figure 7-A multi-level tree which requires searching at each node. The structure works well for a file in secondary storage, but is no better than a binary search 
when keys reside in main memory. 
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that typical data are no more skewed with respect to a 
uniform distribution than a spelling dictionary. If this is the 
case, trie-binary searching should perform well. There is 
also no reason to test the letters in left-to-right order. Testing 
in other orders might produce a better distribution for Eng
lish. Finally, if a hashed method is considered, choice of an 
appropriate hash function needs to be considered. 
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INTRODUCTION 

The KWIC Index is a widely-used tool for finding desired 
paper titles since it is simple yet very powerful. So in a 
bibliography of some specific area, the KWIC Index of Ti
tles, Author Index and Subject Index are normally used. 
These indices are, however, not always sufficient for finding 
mutually-related papers. In this paper new indices for bib
liographic data will be presented together with their appli
cations. 

The RS Index (Reference Structure Index) handles ref
erence citation structure and is suitable for detecting influ
ential papers, getting research trends and finding mutually
related research fields. A basic algorithm and improved al
gorithms have been developed, each of which requires mem
ory only proportional to the number of papers to be handled 
(i.e. minimum). Functions of these algorithms are explained 
and example outputs are shown (see Figures 1,2,9 and 10). 

The MULTI-KWIC has a capability of automatic detec
tion of key phrases by finding maximum common subsequ
ences contained in the paper titles. Using these key phrases, 
the following two kinds of indices are generated: (1) A 
MULTI-KWIC list (a linear list of titles ordered by one key 
phrase and one keyword, as in Figure 6), and (2) a year
distribution table (for each key phrase a table which shows 
identifications of papers classified by year is prepared, as in 
Figure 8). 

These new indices are applied to 1600 papers in relational 
database and related areas which have been collected by the 
authors. The result shows their usefulness in bibliographic 
data-handling. A personal information system based on 
these indices has been also developed. 

REFERENCE STRUCTURE INDEX 

In order to treat a reference citation structure of bibliog
raphy, the following problems must be considered: 

1. Large amount of input data is required, since for each 
paper the information on its references must be sup
plied. 

2. Reference citation relationships among papers are us
ually represented by a directed graph. It is, however. 
very difficult to print out a directed graph. 
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3. Usually a large amount of memory space and large 
software are required to print out a directed graph. 

4. It is necessary to print out a directed graph which is 
human-oriented (i.e., the information contained in the 
graph is understood easily by looking at the graph). 

In our implementation of the RS Index, these problems 
are solved by the following methods: 

1. Reference information is shortened by the use of the 
identification code (ID for short) representing the 
paper. The ID is constructed from the names of the 
authors and the publication date. It can be easily con
structed and the maximum length is 10. 

2. Usually we need to know a set of papers which have 
a direct or a transitive citation relationship with a given 
paper. In such a case, we can use a tree expansion of 
a directed graph. By this reason, the RS Index only 
treats tree outputs, which are easy to understand. This 
output tree is called an RS tree. 

3. Even if we restrict the outputs to trees only, usually 
the required space for output buffer is more than O(n), 
where n is the number of papers contained in the output 
tree and O( n) denotes that the value is proportional to 
n. We have developed a procedure which utilizes a 
push-down stack. O(n) is the minimum storage space 
for memorizing the data, and the stack itself normally 
requires O(fog n) space. 

4. An RS tree is printed from left to right. When the RS 
tree reaches at the right end of the output paper, suc
cessive trees are printed after the main RS tree. So we 
can print the tree whose maximum level is arbitrary. 
Since the width of the tree is also arbitrary, essentially 
the tree of the arbitrary size can be printed (the size of 
the tree is actually restricted by that of push-down 
stack). 

5. When the number of papers in the RS Index is large, 
the RS tree spreads widely. In such a case it may be 
difficult to get useful information from the RS tree. A 
procedure to produce compact RS trees without chang
ing their structure is developed as well as a procedure 
with tree trimming and ordering facilities. These facil
ities are also realized by algorithms based on pushdown 
stacks, thus we don't need separate procedures for 
these facilities. 
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We have developed a PL/I program for the RS Index, which 
consists of approximately 800 steps. 

Identification codes for papers must be simple as well as 
human oriented. We use a character string 0000 <l>nn~~X 

of length ten as an ID. 

0000 <1>: (author field) It consists of first four characters of 
the first author's name (0000) and first character 
of the second author's name ( <1». When the first 
author's name is shorter than four and there is a 
second author, - (hyphen) is inserted. If only the 
first author is shown with et al., * is used. 

nn~~: (date field) Year (nIl) and month (~~) of the 
pUblication are shown. If not known, ? is used. 

x: (extension field) It is optionally used to distinguish 
the papers which have the same name and date 
fields. It is taken from the first letter of the title 
of the paper except articles. If two distinct papers 
have the same extension, the next unused char
acter in the alphabetical order is assigned. 

There are two kinds of RS Indices; one uses "A refers to 
B" and the other uses "A is referred to by B". For simplic
ity, only the "A refers to B" relationship is considered in 
this paper to explain the algorithm. 

Basic algorithm for the RS index 

This algorithm needs only one-line output buffer and has 
a simple recursive formulation, which shows why a stack is 
needed. 

Call display (P, 0), where P is the root paper and pro
cedure display is defined as follows: 

procedure display (p: Paper, i: Integer); 
begin L~list of papers referred to by p; 
for x in L do; 

begin display (x'; +/); 
if x not last in L then newline; 
end; 

print p at level i; 
end 

In an actual progam, in order to add many additional 
facilities easily the iterative procedure is adopted using a 
push-down stack. 1 The above algorithm is simple since it 
does not need to store the output position of each ID. The 
lines to indicate reference relationships among papers can 
be drawn by providing a bit for each level of the tree. In 
actual program, if there exists a paper appearing more than 
once, after first appearance only "TO i**j" is printed if the 
paper is first printed at the j-th position of the i-th level. 
This algorithm needs constant output buffer, and the re
quired size for the stack is O(n), which is in the worst case, 
where n is the number of nodes in the tree. If each paper 
has more than one reference (it is normally satisfied), the 
size is O(log n). 

In order to use the RS Index practically the following two 
problems must be solved. 

1. If there exist two papers A and B such that A and B 
refer to (or transitively refer to) B and A, respectively, 
then the basic algorithm fails. 

2. When the number of references increases, it may be 
difficult to see the whole figure produced by the basic 
algorithm, because it spreads widely (see Reference 1 
for the output of the basic algorithm). Figure 1 is an 
example generated by an improved algorithm. 

In order to handle Problem 2 some useful facilities are 
prepared such as ordering facilities and filtering facilities. 

1. Elementary facilities 
a. Output of keywords, comments for each paper. 
b. Output of information about connection between 

papers. These are printed on edges. 
c. Designation of the width of the print-out by restrict

ing maximum level of the RS tree. 
d. Process of pattern matching for IDs. In the case of 

specifying a paper, we may not know when the 
paper was published even though we know who 
wrote it. For this reason, if we specify "COD
D******," for example, the RS trees can be pro
duced whose root paper's first author is Codd. 

2. Ordering of references 

We have adopted the following orderings from the 
practical viewpoint: 

a. To arrange IDs in alphabetical order by author's 
name. 

b. To arrange IDs in order of published date. 
c. To arrange IDs in order of labels of edges, which 

means the relationship or connection strength be
tween a pair of papers. 

d. To arrange IDs in order of the path length from the 
root. In an RS tree, in order not to print out redun
dant subtrees, if there exists a paper appearing in 
the tree more than once, "TO i**j' , is printed after 
the first appearance. This means that the maximum 
path from the root is not always expressed explic
itly. We can position papers in the RS tree more 
clearly if the maximum path is output explicitly. 

3. Tree-trImming facilities 
a. To eliminate IDs expressed such as "TO i**j." This 

is available when looking over what papers are 
printed. 

b. To print out the papers which are cited more than 
N times, where N is a threshold value. 

c. To delete the transitively connected edges from the 
RS Index. 

d. To print out IDs whose authors and publishing date 
are specific. 

c. To eliminate IDs by the label of edges. 
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Figure I-An example of the RS Index. 

Figure 1 is an example which expresses the maximum 
path explicitly. Figure 2 shows the RS Index obtained by 

. deleting transitively connected edges from Figure 1. More 
complicated examples are shown in Figures 9 and 10. 

The algorithms of the aforementioned facilities are given 
in Reference 2. 

MULTI-KWIC INDEX 

The MULTI-KWIC Index offers the following facilities: 

1. KWIC list with an improved ordering-Paper titles are 
ordered by a keyword and words before and after the 
keyword. 

2. Key phrase extraction-Key phrases are extracted by 
finding maximum common subsequences contained in 
the given set of paper titles. 

3. MULTI-KWIC list-Titles with one common key 

phrase and one common keyword are adjacently 
printed in a MULTI-KWIC list. 

4. Year-distribution table-For each extracted key 
phrase, a table is prepared in which IDs are grouped 
by their publication years. 

For the purpose of simplifying the algorithm, the MULTI
KWIC Index uses no dictionary. The program is written in 
PLiI and the totai number of sieps is about WOO. A utility 
for sorting is combined with the program. 

Figure 3 shows a KWIC list produced by our program in 
which paper titles are ordered by a keyword and words 
before and after the keyword. There are two known versions 
of the KWIC. A primitive version produces a KWIC list by 
considering only a keyword. Figure 4 shows an example of 
such a KWIC list. In this example two titles with the com
mon phrase "RELATIONAL DATA BASE MANAGE
MENT SYSTEM" are not adjacently printed since words 
other than the keyword are not used to determine the order 
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Figure 2-The RS Index obtained by deleting transitively connected edges from Figure l. 
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Figure 3-An improved KWIC list. 
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Figure 4-Conventional KWIC list. 

the following problems: 

CODD6908 
SYMOL7011 
KUNIW7408 
KAHN7606 
PALM7408 
HOLL7509 
SCHNS7505 
BANDJ7505 
RA~IR7405 

GRAV7505 
Mt::RTF7405 
KALI7501 

HELDS7504 
HELOS7504 
HI T(7405 
HOFFS7509 
HDMMS7505 
HUIT7501 
JERV7405 
KALIR7404 
KALI7501 
KOSSN7610 
KUNIW7408 
LIN-S7509 

of the titles. In another version a KWIC list is produced by 
considering the keyword and words after the keyword. The 
total length of the subsentence (the keyword and the words 
after the keyword) is fixed and thus a sorting facility can be 
used to produce the output. This version, however, still has 

1. Since titles are not ordered by the words before the 
keyword, there are still cases when two titles with a 
common key phrase are not printed adjacently. 

A B A B A 

C A B C A B C A 

C A A D C A 

C A E A 

A F A 

( a) (b) (c) 

Figure 5-Rearrangement by the consecutive retrieval property. 

B 

B 

E 

D 

F 

2. Because of the inflections of words, similar key phrases 
may be printed separately. 

In our version of KWIC the following methods are used 
to solve .these problems: 

1. For each word only the first six characters are used for 
the ordering information. 

'7 Words hefore the keyword are considered as well as 
the keyword itself and words after the keyword. 
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Figure 6-J'vIulti-KWIC list. 

ClATA 
JATA 
OATA 
DATA 
DATA 
DATA 
:lATA 
JATA 
DATA 
OATABAA
DATA8l1c'!': 
OEVICF 
L:FVIU 

Approach 1 is employed since a dictionary is not required. 
By our experience in using 750 titles there are only three 
cases when different key phrases are regarded as the same 
ones. For the purpose of handling this kind of error, an 
editing facility is prepared in the program. In order to handle 
the problem of ordering by words before and after the key
word the following approach is used: 

any characterizing key phrases and thus thesauri may be 
required for full automatic classification of papers. 

1. First, a primitive version of a KWIC list is prepared. 
2. Letfdl1-'} be the operation of extracting first six char

acters from W (when the length of W is less than six, 
blank characters are added and the length is adjusted 
to six; w can be a null string-a string of length 0) and 
let W be the keyword in the list prepared in Step 1. 
For each sub sentence w 4W 5 W W tW 2W 3 of the title, 
calculate f6(W), f6(wd, f6(W2), f6(W3), f6(W 4) and 
f6(w 5).Here WI' W2, W3 are words after the keyword 
and W 4, W 5 are words before the keyword. 

3. Sort the titles by f6(W)0 fsCwt)o fsCW2)0 f6(W3)0 
f6 (W 4)0 f6 (w5), where 0 denotes the concatenation of 
the words. 

The output of the above procedure gives an improved 
KWIC list. For further improvement the consecutive re
trieval property is used. The consecutive retrieval property 
is introduced by Ghosh 4 for organizing an efficient file. 
(For further information see the list of papers prepared by 
Lipski, currently of the Coordinate Science Laboratory, 
University of Illinois6). For example, consider the titles 
containing key phrases AB, CA, CAB where A is the 
keyword. The ordering shown in Figure 5(a) is appropriate. 
By this method the list shown in Figure 5(b) is rearranged 
and the list in Figure 5(c) is obtained. 

U sing this result key phrases consisting of less than 
seven words can be extracted from a set of titles. The 
program has a facility to extract key phrases contained in 
MC~N) for a given threshold value NC~2). By this method 
key phrases of the form of .. Wt of W2" or "WI and W2" 

can be extracted. Extraction of such key phrases is not 
possible by the commonly used extraction method whereby 
phrases are selected from words between conjunctions and 
prepositions. 

By this method sometimes improper key phrases are 
extracted. Editing facility for eliminating such key phrases 
is also prepared. Since key phrases contained in many titles 
are not useful for characterizing the paper, key phrases 
contained in M(Nt~M~N2) titles can be used for paper 
characterization, where NI and N2 are the user-determined 
threshold values. There will be, however, papers without 

The extracted key phrases are used to generate a 
MULTI-KWIC list. In the list titles with one common key 
phrase and one common keyword are adjacently printed. A 

1 A B c E F 

2 A H 

3 A B F , H 

4 A B C D F 

5 B C D E R 

6 B C R S 

(a) 

1 A B C E 

3 A B F 

1 A B C F 

4 A B C D F 

2 A H 

3 A B H 

5 B C D E 

6 B C R 

5 B C D R 

6 B C S 

(b) 
Figure 7-Algorithm for the Multi-KWIC Index. 
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CONCEPTUAL SCHEHA 

FREQ. 7 

--1970)- --1970-- --1971-- --1972-- --1973-- --1974-- --1975-- --1976-- --1977-- --1978--

TSIC 7507 BENCB7601 BIllN7701 
TSIC 7509 MELT 7609 BUBE 7708 

NIJS 7701 
---------

.. _-----._----. 

~ElATIONS 

FREQ. 18 

--1970)- --1970-- --1971-- --1972-- --1973-- --1974-- --1975-- --1976-- --1977-- --1978--

CODD 6908 CO DO 7306 HITC 7405 GOTl 7505 BERN 7612ABEERF7704 
MELT 7405 HAllT7501 HAll07601 BEERF7708 
TITH 7404 LIENT7509 lOZI 7609 FURTK7708 

VAll 7503 HUNTS7703 
RISS 17.12 
TODD 7"708 

Figure 8-Year-distribution table. 

Double-KWIC list3 is also known as a list with two keys. 
The major differences are (1) a MULTI-KWIC list has a 
capability of automatic key phrase extraction and (2) the 
output format of MULTI-KWIC is similar to conventional 
KWIC so the both outputs can be combined. 

An example of the MULTI-KWIC list is shown in Figure 
6, where the titles containing "access" and "data" are 
listed. The procedure used for the MULTI-KWIC list is 
explained in Figure 7. Assume that we have a set of titles 
having key phrases and keywords shown in Figure 7(a) 
(here, the first line shows that the identification number is 
1 and the title contains one key phrase ABC and two 
keywords E and F). The priority of sorting is determined as 
(1) the keyword part of the key phrase, (2) the keyword and 
(3), the remaining part of the key phrase. The result is 
shown in Figure 7(b). 

Figure 8 shows a year-distribution table which will be 
prepared for each extracted key phrase (here, 'relations' 
and 'conceptual schema'). If a paper contains two key 
phrases WI and W2 , where W2 is a proper substring of Wi> 
then the paper is classified to key phrase Wl category. By 
this table activity transition of some specific area will be 
observed. 

APPLICATIONS 

Figures 9 and 10 show RS Indices taken from the result 
of application to papers of relational database and related 
areas, which are collected by the authors (it is an extension 
of Codd's bibliography9). Figure 9 shows the RS tree for the 
referred-to-by relationship whose root is Abrial's paper 
which discusses data semantics. This RS tree presents many 
papers concerned with some kinds of data models and con
ceptual schema. For example, there are the DIAM II model 
by Senko (SENK7601. SENK750I), conceptual schema by 
Tsichritzis (TSIC7507, TSIC7606), DBMS architecture of 

the next generation by Nijssen (NIJS760l), criterion of con
ceptual schema by Kent shown in KENT7609, entity-rela
tionship model by Chen (CHEN7603), and so on. Figure 10 
is a descendant tree whose root is the paper of Armstrong. 
This paper is concerned with axiomatization for functional 
dependency in relational databases. Some of the descen
dants of this paper are one of Bernstein, which discusses a 
synthetic design of relational databases, and one of Fadous, 
which introduces the algorithm for finding candidate keys 
efficiently. The papers written by Zaniolo, Fagin and Beeri 
are also printed, which discuss multi-valued dependency or 
generalizations of functional dependency. 

Another application of indices introduced in this paper is 
a personal information system. The system has been devel
oped under the LABOLINK network 7 using the model M-
190 computer of Fujitsu at the Data Processing Center, 
Kyoto University. Papers are accessed by a combination of 
keywords, authors and years. The system has the following 
specific features: 

1. For selecting appropriate keywords, a key phrase 
KWIC table is shown (see Figure 11). It is a KWIC list 
of key phrases which are automatically detected by the 
MULTI-KWIC. 

2. For each specified key phrase a year-distribution table 
(Figure 8) can 'be displayed. 

3. For each paper an RS Index for the paper can be 
generated. 

The system is examined by nCST (Japan Information 
Center of Science and Technology) bibliographic data tapes 
as well as the papers of relational database areas collected 
by us (about 1,600 papers) and the effectiveness of the sys
tem is proved. These facilities are to be merged with the 
relational-model-based research information system cur
rently under devclopmcnt. R 
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AL SCHEMA 
2**3 3**5 

--RUCH 76 3**1 --SENK 76 2**1 
2**4 3**6 4**4 

--MIJAP7601 --NIJS 7601--- --RUCH 76 3**1 
DATA BASE S ARCHITECTUR 
TRUCTURES E FOR THE N 

EXT GENERAT 
ION DATABAS 
E 

2**5 
--MACH 7601 

INTEGRITY C 
ONSTRAINTS 

4**5 5**2 
--MIJAP76-2**41--GROTV76 4**1 

I 

I 2**6 4**6 I 5**3 6**1 
1--KERSK7609 --MACH 76 2**51~-ADIBD7601---I--MIJAP76 2**4 
I DATA MODELS LOGICAL DAT I 
I A BASE DESI I 
I GN I 
I 2**7 4**7 I 6**2 
I--KENT 7609 --KENT 76 2**7 1--KERSK76 2**6 
I CONCEPTUAL 
I MODEL 
I 2**8 4**8 
I--KALI 7501 --GROTV76 4**1 

DATA DESCRI 
PTION LANGU 
AGE I 

I 4**9 
I--FALK 76 3**3 
I 4*10 5**4 
1--BRACP7601---I--KERSK76 2**6 

3**7 4*11 I 5**5 
--MOULR7601---I--MIJAP76 2**41--GROTV76 4**1 

CONCEPTUAL I 
MODEL I 

3**8 I 4*12 
--KERR 7509 1--KERSK76 2**6 

I 4*13 
I--FALK 76 3**3 

3**9 4*14 5**6 
--CHEN 7603---I--YAO 7703------YAO- 7704 

VIEW OF DAT MODEL FOR D DATABASE OR 
A ATABASE GANIZATIONS 

3*10 4*15 5**7 
--BRACP76 4*10 --WEBE 7601---I--RUCH 76 3**1 

I NTEGR ITY C I 
ONSTRAINTS I 

2**9 3*11 4*16 I 5**8 
--HUIT 7501---I--MACH 76 2**5 --KERSK76 2**61--GROTV76 4**1 

DATA BASE S I 
YSTEMS I 

I 4*17 
I --KENT 76 2**7 
I 3*12 4*18 
1--BENCB7601---I--RUCH 76 3**1 

CONCEPTUAL I 
SCHEMA I 

2*10 3*13 I 4*19 
--HALL076C1---I--KENT 76 2**71--KERSK76 2**6 

2*11 I 3*14 I 4*20 
I--FALK 76 3**31--GROTV76 4**11--GQOTV76 4**1 

2*12 I 3*15 I 4*21 
1--BRACP76 4*101--FALK 76 3**31--FALK 76 3**3 
I 2~n3 
I --BENCB76 3~H2 
I 2*14 
1--ADISD76 5~H3 Figure 9-The RS Index for ABRI7404. 
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ARMS 7408 
1 ); ~~ 1 2 ~~ ;: 1 ~ ~:- ~; 1 

AR~IS 7408---I--ZAN I 7607------BEERF7704 
I ANALYSIS AN MULTIVALUEO 

o DESIGN DEPENDENCI 

I 2~f.,;2 

1--FAGl 7607 
I MULTIVALUED 
I DEPENDENCI 
I ES 
I 

ES IN DATAB 
ASE RE.LATID 
NS 

I 2 ~H( 3 3 ~: If 2 
1--FADOF75C5---I--ZANI 76 2**1 
I 2 ~~ ;~ 4 I 3 ·;Hc 3 4 iBn 
I--BERN 7510 I--BERN 75-2**4---FAGI 76 2~H2 
I FUrKT I ONAl 
I DEPENDENCIE 
I S 
I 2~H':5 
I --BEERF77 3~HH 
I 2 ~H; 6 3 ~H~ 4 4 lH' 2 5 ~Hf 1 6 ~HH 
1--ADIBD7bOl---I--MIJAP7601---I--6RoTV7601------RUCH 7~Ol------GROTV7b 4**2 

LOGICAL DAT I DATA BASE S I INFORMATION 
A BASE DES I I TRUCTURES PROCESS I NCi 
GN I 

I 3·:Hi5 I 4~~*3 
1--KERSK7609 1--AUIRD76 2*H6 

DATA 
LARGE DATA 
LEVEL DATA 

NETWOIiK DATA 
V I E rJ n FDA T A 

SEMANTICS OF DATA 
RELATIONAL DATA 

DATA MODELS 
Figure to-The RS Index for ARMS7408. 

DATA 8ASE 
SHARED DATA nASE 

LOGICAL DATA RASE 
RELATIONAL DATA BASE 

MODEL FOR DATA BASE 
DISTRIBUTED DATA 8ASE 

DATA 8ASE DESIGN 
DATA BASE ENVIRONMENT 
DATA BASE MA~AGEMENT 

RELATIONAL DATA 8ASE MANAGEMENT 
GENERALIZED DATA 8ASE MANAGEMENT 

D A TAB AS E M A ~J /1, GEM E NT S Y S T E M 
DATA BASE MANAGEMENT SYSTEMS 
DATA BASE STRUCTURES 
D A TAR AS E S Y S T E ~1 

RELATIONAL DATA HASE SYSTEM 
DATA BASE SYSTEMS 
DATA RASES 

LARGE DATA RASES 
UELATr~N~~ Q~TA H~SES 

Figure II-Key phrase KWIC table, 

60 
4 
3 
3 
4 
3 
9 

75 
5 
3 

24 
3 
6 
8 
3 

23 
6 
3 

12 
4 
3 

22 
12 
18 
35 

4 
7 
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Visual inspection of metal surfaces 

by J. L. MUNDY 
General Electric Company 
Schenectady, New York 

INTRODUCTION 

The majoTity of applications of automatic visual inspection 
have been the case in which a high contrast image can be 
obtained. This will result from object silhouettes 1 and high 
contrast reflectivity changes as in printed text. In these 
cases, the image can usually be successfully segmented by 
a threshold operation2,3 leading to a two-level or binary 
image. 

The cases that lead to difficulty at present involve the use 
of reflected light. Here one is faced with shadows and highly 
variable reflected intensity. This is the case for metal sur
faces where the reflected intensity is a strong function of 
illumination and viewing direction. On the other hand, the 
inspection of metal surfaces represents an important domain 
of applications. Of particular interest is the detection of 
small surface defects such as nicks and scratches. 

In order to implement automatic computer inspection of 
metal surfaces, optical and illumination means must be Plv 

vided that provide high contrast images of surface defects. 
In addition, there must be a relationship between image 
intensity and surface profile. This paper will discuss a num
ber of theoretical aspects of the scattering of light from metal 
surfaces. This provides a basis for computer modeling of the 
metal surface. The theory is based on earlier work by Beck
mann 4 and Horn. 5 The method has been tested experimen
tally and several examples will be demonstrated. 

SCATTERING THEORY 

Several phenomena playa role in the distribution of light 
scattered from a metallic surface. The most important effects 
are 1) the variations of the surface normal and 2) shadowing. 
The variation of surface normal generally occurs on two 
scales. A fine scale variation is present that represents the 
basic surface roughness. In the case of surface defects, there 
exists a more gradual variation corresponding to the surface 
deformation associated with the defect. The combined var
iation is illustrated in Figure 1. In the case of shadowing, 
portions of the surface are occluded by variation in the 
surface due to defects. This condition is shown in Figure 2 
for a crater or pit type defect. 

The theoretical situation is best developed for the case of 
surface normal variations in the presence of random fine 
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scale surface height variations. Beckmann and Spizzichin06 

have explored this case extensively for various scales of 
surface roughness. In this paper we will only consider the 
case where the surface is rough compared to the wavelength 
of light. The reflection coefficient for scattered power in this 
case is given as 

(pp)*= 4kA;!2S2 0
1 
~: (~:)2 exp {~~:Y22 (T/O-)2} 

where 

R=Reflection coefficient of an equivalent smooth sur-
face. 

k=2'1T/X (X-wavelength of illumination) 
A=Area of illuminated surface 
V=klk2 

V x =Component of V along the surface normal 
V Xy=Component of V perpendicular to surface normal 

kl =Incident wave vector 
k2=Reflected wave vector 
T =Correlation distance of surface roughness 
o-=Surface height variance. 

The coordinate system and scattering vectors are defined in 
Figure 3. 

It will prove useful to transform this notation to that 
introduced by Horn. This notation is defined in Figure 4. It 
follows that 

-kl·k2=k2 cos g 

V2= k1
2+ k22- 2k I' k2 

=2k2( 1 + cos g) 

also 

V z=k(cos i + cos e). 

Horn defines the I, E, G as the cosines of the angles i, e, g 
respectively. From the consideration above, 

V2=2k2( 1 +G) 

Vz2=k2(1+E) 

* This appears as Equation 59, p. 88 of Reference 4. 
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SURFACE 1Al\11,IVVI/V 

HEIGHT 

POSITION 

Figure I-The variation in surface height for a rough surface in the vicinity 
of a surface defect. 

Noting that 

we finally obtain 

(pp*)E 2=a (I + G), 2) e-f3[20-G>/(I+E)2]-H 
o (l+E)4 

R2A 
a=-/3 71'r02 

(2) 

Here Etb 2 is proportional to the power scattered by a smooth 
plane of area A. This is given by 

k2A2J2 
E02= 471' 2r02 

where ro is the distance from the observer to the plane. Thus 
the result in (2) would be proportional to the scattered power 
from the rough surface. This form is suitable for interpre
tation and comparison with experiment. 

CASE I-SOURCE AT OBSERVER 

If the illumination source is columinated (unidirectional) 
and located on the axis of the observation, then I=E inde-

SURFACE 

DEFECT~ 

Figure 2-The shadowing of the surface due to a defect. 

z 

SURFACE 
NORMAL 

x 
SURFACE 

Figure 3-The scattering geometry according to Beckmann. 

pendent of the direction of the surface normal. In this case 
we find 

a 1 [2 p= (pp*)E 2= - - e-f3 (1/1 )-1] 
o 4 14 . (3) 

This is a particularly simple form which can be easily inter
preted. The first observation is that /3 depends only on 
surface roughness. As the surface becomes rougher /3 de
creases. The exponential term in (3) dominates the behavior 
of P and, for large /3, will lead to a rapid fall off in intensity 
for I =f:. 1. P is maximum for 1=1 which corresponds to the 
specular reflection condition. Note also that surface reflec
tivity only affects a and thus not the angular distribution. 
Also the peak power is proportional to /3. which is to be 
expected, since smoother surfaces concentrate more power 
into the specular direction. 

This expression was tested for a number of surface rough
nesses found from a selection of metal industrial parts. The 

SURFACE 
Figure 4--The scattering geometry according to Horn, 
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Figure 5-The experimental and theoretical variation of reflected power with 
surface normal inclination. The theory in Expression 3 is shown as a solid 

line. 

surface was rotated relative to the optical viewing axis and 
the reflected power on axis is given in Figure 5 for two 
surfaces. In the same figure a best fit of Expression 3 is 
shown as solid lines. The agreement is quite satisfactory. 

CASE II-GRAZING AND NORMAL ILLUMINATION 

From the previous development, it can be seen that the 
slope of metal surfaces can be deduced from reflectivity 

GRAZING 
ILLUMINATION 

9 DETECTOR 

I \ 
I \ 

I \ 
~ OBJECTIVE 

\ 7 I 

\ 1 ' \ I 
• I \ . 
\ I 
\ I 

NORMAL 
ILLUMINATION 

~\i 
Figure 6--An optical configuration for obtaining two directions of illumina

tion. 
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measurements. This assumes that both reflectivity and sur
face roughness are known. The former condition is not easily 
obtained in practice. Industrial parts are usually dirty and 
reflectivity can vary rapidly over the surface. 

In order to obtain more information it is necessary to 
provide an additional direction of illumination. The arrange
ment shown in Figure 6 provides two nearly orthogonal 
directions. To see the relationship between the power due 
to each illumination direction consider (2) for each case. It 
is assumed that the direction of view is along the normal 
illumination direction. 

a) 

b) 

Figure 7-(a) A photomicrograph of a surface nick and (b) the resulting S 
array shown in perspective. The signal variations near the top of the array 

are due to an unilluminated region. 
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a) Normal illumination 

This is just the previous case, i.e. 

a 1 t> 2-1 P = - - e-... [(1IIn) ] 
n 4 In 4 

b) Grazing illumination 

Gh=O 

Ig = VI-Eg 2 

So in terms of In 

If we assume that the surface normal does not vary greatly 
from the direction of normal illumination. 

Thus 

p = ~e-/3[(2IIn2)-I] 
g {In)4 . 

Now taking the ratio of power due to grazing illumination 
and normal illumination we have, 

Taking the logarithm of this ratio and dropping subscripts 
we have 

S= In (~:) = In 4-.B/I~ (4) 

Figure;: 8a-A photomicrograph of a series of .OO5-inch-wide scratches. Nole;: 
the large relative surface roughness. 

Figure 8b-The perspective of the corresponding S array. 

Note that this quantity depends only on surface roughness 
and slope and not surface reflectivity. It is a reasonable 
assumption that roughness is constant over a region larger 
than the size of defects that are to be detected. 

A number of surface defects on metal surfaces were im
aged using the illumination scheme in Figure 6. Two images 
were obtained for each case, one for normal illumination, 
one with grazing light. The quantity S in Expression 4 was 
obtained by digitizing the images and performing the indi
cated calculations. 

The first case consists of the nick shown in Figure 7a. 
The resulting S array is shown in perspective in Figure 7b. 
The nick appears near the center of the array with good 
contrast. The mountainous peaks near the top of the array 
were due to random sensor noise since that region was not 
illuminated. 

A more striking example is the series of scratches (-.005" 
wide) shown in Figure 8a. The S array is shown in Figure 

Figure 8c-A binary image of the S array produced by thresholding. 



a) 

b) 

Figure 9-(a) A photomicrograph of a smaIl pit. (b) The resulting S array as 
a grey-level image to illustrate the contrast. 
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8b. The signal has enough contrast to allow a reasonable 
segmentation of the scratches by thresholding the S array 
as shown in Figure 8c. 

As a final example consider the pit (-.010'1 shown in 
Figure 9a. The resulting S array is shown as a grey-level 
image in Figure 9b. The main contribution to S in this case 
is the occlusion of the grazing illumination. There is good 
contrast between the pit and surrounding metal even though 
the surface roughness is on a scale comparable to the defect. 

CONCLUSIONS 

By considering the theory of scattering from rough sur
faces, it has been possible to derive an illumination scheme 
and method of image analysis that results in good contrast 
and detectability of surface defects. 

It is also noted that the scattering ratio, S, is sensitive to 
surface occlusions and shadowing. Thus we have a result 
that provides good contrast for most surface defects. The 
main drawback to the approach is the necessity to provide 
two directions of illumination. 
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Monitoring the earth's resources from space
Can you really identify crops by satellite? 

by DAVID LANDGREBE 
Purdue University 
West Lafayette, Indiana 

INTRODUCTION 

Of the most important questions facing society today, those 
near the top of the list include the status and future of the 
world's food supply, its environmental quality and its 
sources of energy. These questions have increasingly been 
before the general public in recent years and have for an 
even longer period of time, been of concern to the world's 
thinkers, planners and policy makers . It had long been rec
ognized that after all, our earth and its resources are finite 
and that as society continues to grow we must find better 
ways to manage these finite resources. 

A primary need for good management is up-to-date and 
accurate information on the status of the resources to be 
managed. Thus it was that early in the last decade the pos
sibility of using aerospace technology for accumulating bet
ter information about the current conditions of agriculture, 
the earth's resources and man's environment began to be 
examined. It seemed clear that to monitor resources directly 
associated with the land, the best vantage point would be 
above the land looking down upon it. 

The need to be higher simply resulted from the need to 
see more. In practical terms this immediately implies the 
gathering of larger and larger quantities of data, and the 
computer was immediately suggested therefore, as somehow 
an important tool. But how? There now exists a first gen
eration answer to this question. The program of systematic 
and step-by-step research which led to it, will first be briefly 
outlined. After description of some typical examples of its 
use, we will examine the directions being taken to devise an 
even more effective second generation solution. 

THE FIRST LAYER OF TECHNOLOGY 

Figure 1 shows a view of a small portion of the earth's 
surface as seen from space. This image was made from data 
from the Landsat-2 multi-spectral scanner. It is a simulated, 
(,;olor-infrared image of a region in north central Indiana, 100 
nautical miles on a side. Such an image could only be imag
ined in the early 1960s as no one had seen it at that time. 
But even then the immensity of the problem was readily 
apparent. To place a sensor capable of producing such an 
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image appeared challenging but possible, but scenes such as 
this would present a real challenge to analyze by computer. 
The human interpreter can immediately recognize a major 
river generally flowing in a southwesterly direction across 
the scene and with a little additional information can identify 
forest lands in the river bottoms as compared to lands which 
have been prepared for crops in a great portion of the rest 
of the image. The more obvious features of a major city, 
Indianapolis, Indiana are apparent in the southeastern por
tion of the image; however, a number of smaller cities are 
barely even identifiable. To see how by computer analysis 
one would be able to answer such questions as . "How many 
acres of wheat are there in this scene and what will their 
yield be?" or "Where are there serious problems of soil 
erosion, resulting not only in stream pollution but also loss 
of valuable agricultural land?" or "What is the extent and 
condition of various classes of urban land use and how are 
they changing?" surely represented a great challenge. 

In addition, thinking of this scene in terms of the data 
volume to produce it and therefore the processing capability 
which would be needed to analyze it also revealed another 
challenge. This image consists of about 7.5 million digital 
pixels in each of four spectral bands. Each of these pixels 
may have any of 64 shades of gray. This amounts to 180 
million bits for only one look at a 185x 185 km (100x 100 n. 
miles) area. Landsat collects such images at a rate of more 
than two a minute. 

Such a situation seemed made to measure for the emerging 
field of pattern recognition to tackle. Figure 2 shows the 
now classical view of the organization of a pattern recog
nition device. A series of measurements are taken of the 
scene by the receptor, which in this case corresponds to the 
spaceborne sensor system, and these measurements are 
turned over to a classification algorithm. Realizing the great 
complexity of the scene it was recognized as especially 
important to devise a receptor which was very efficient in 
representing the needed scene characteristics in a manage
able number of features. 

For it to become possible to measure crop acreages in 
data such as shown in Figure 1 it was decided to rely for 
these features upon the spectral characteristics of individual 
pixels. 1 Figure 3 shows in conceptual form the spectral char
acteristics of three types of land cover. The features to be 
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Figure I-A scene of north central Indiana from the multispectral scanner of Landsat-2. (Original in color.) 

measured would be the relative spectral response in each of 
the several wave bands. These responses would then be 
represented in a multivariate form as implied by the two
dimensional plot in Figure 3. The pattern classifier is trained 
by segmenting this multi variant space into an exhaustive list 
of nonoverlapping regions, each region corresponding to one 
informational class. 

The choice of this spectral approach puts primary empha
sis on the spectral characteristic of the measurement as 
compared to the image characteristics. For this reason a 
multispectral scanner, as opposed to a camera, was needed 
for the sensor so thiH the prrcision of the wave hand energy 
measurement could be high and regions of the spectrum in 

addition to the visible and the near infrared would be ac
cessible. 

The results of the first test of this concept are shown in 
Figure 4. 2,3 On the left is an air photo of an agricultural area 
with the crop type present in each field indicated by a letter 
symbol. On the right is the result of using a maximum like
lihood classifier on four bands of data in a pixel by pixel 
fashion. Based on this and similar early results obtained in 
1966 there followed a period of two or three years of inten
sive research to define methods for data collection, pre
processing, classifier design, training procedures and the 
like. 

By 1969 with the launch of the Apollo 9 spacecraft the 



technology was ready for its first test on space data. The 
Landsat-l spacecraft then referred to as ERTS-A, was al
ready in the planning and design stages. Apollo IX carried 
aboard it an experiment known as S065. This experiment 
consisted of a bank of 4 bore sited cameras with film and 
filter combinations to simulate the expected Landsat data. 
After exposure and developing of the film e~ch of the 4 
images from the different parts of the spectrum of the same 
scene were scanned then precisely registered to one another. 
This was accomplished by computer implemented precision 
image registration algorithms which had also been devised 
during the previous research period. Since these algorithms 
were capable of registration to sUbpixel accuracy, data sim
ulating multispectral scanner data was available. Promising 
results were obtained from pattern recognition results in 
applications associated with agricultural crops, general land 
use and geologic recognizance mapping among others. 4 

A second major test of this emerging technology occurred 
in 1971 as a result of a major episodic event in the com belt. 
Southern com leaf blight emerged during the 1970 growing 
season, and though it arrived late enough in the season that 
devastating damage did not occur, it appeared that a catas
trophe could occur during the 1971 season before new strains 
of seed com which would be resistant to the blight could be 
produced. Thus during the winter of 1970-71 a major effort 
to monitor the com crop during the 1971 season was 
planned. The effort involved overflight of some 220 1 x 10 
mile segments located over the seven states of the com belt 
on a bi-weekly basis. All segments were overflown by a high 
altitude aircraft carrying photographic cameras; 30 of the 
segments in western Indiana were also overflown by a low 
altitude aircraft carrying a multispectral scanner. The results 
showed that not only could crop species be distinguished 
accurately but that the condition of a single crop (com) 
could be successfully subdivided into subcategories based 
on the degree of blight infestation. 5 This proved to be true 
using both the more well established manual image interpre
tation methods and the newer computer implemented mul-
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tispectral techniques. In the latter case however, the results 
were demonstrably more precise and objective. 

Thus by the time of the launch of Landsat-I in July 1972 
a new technology had been well researched and tested and 
was ready for exposure to the potential user community. 
This exposure began with the studies of some more than 400 
principal investigators in the U. S. and around the world who 
for the first few years of Landsat-l's life tested out both 
image-oriented and computer-implemented algorithms for 
extracting information from earth-orbital views of the 
earth. 6-

g Since that time Landsat-2 and Landsat-3, launched 
in January 1975 and March 1978 respectively with nearly 
identical sensor systems to that of Landsat-I, have been 
used. Landsat is now an essentially operational system in 
that data is routinely collected and placed in the public 
domain. It is routinely available to anyone from any nation. 
Table I gives the location of Landsat ground stations in 
addition to the three operated by the U. S. 

The technology represented by this satellite series and 
computer-aided processing techniques associated with it is 
indeed now quite broad touching essentially all application 
fields which deal with land resources. 9-

11 Machine-imple
mented techniques for processing the data for improvement 
of its geometric properties to high cartographic standards 
are now not uncommon. The registration of two frames of 
data of the same scene collected at different times is now 
also being accomplished at a number of locations and to 
pixel and in some cases sUbpixel accuracies. A large number 
of pattern recognition algorithms implemented on both spe
cial purpose and general purpose hardware are being used 
routinely and are commercially available. 

EXAMPLE APPLICATIONS 

The precise definition of operational is an elusive one; 
however clearly routine use of these methods is now begin
ning to occur in the fields of agricultural crops and soils 

PATTERN RECOGNITION: 
Scheme for Multivariant AnalYSis 
of Physically Observable Data 

Receptor 
(Sensor) Classifier ~----I~ResuHs 

Figure 2-The organization of a pattern recognition device. 
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Figure 3-The representation of spectral characteristics in two-dimensional space. 

TABLE I.-Location of Non-U.S. Landsat Ground 
Stations 

Country Date Station Began 
Receiving Data 

Argentina 1980* 
Australia 1980* 
Brazil 1973 
Canada 

Prince Albert 1972 
Shoe Cove 1977 

India 1979* 
Iran 1978* 
Italy (ESA) 1975 
Japan 1978* 
Sweden (ESA) 1978* 

* Anticipated date. Source - N ASA/Goddard Space 
Flight Center. June I, 1978. 

mapping, forest cover and condition assessment, geology 
and mineral prospecting, rangeland assessment, general land 
cover mapping especially associated with the mapping of the 
urban and near urban regions. We will discuss only a few 
examples to illustrate this technology, especially that portion 
with it associated with computer processing. 

Land Cover Mapping Examples. One of the earlier large 
scale applications of Landsat data came about as a result of 
the need to remedy problems of pollution of the Great 
Lakes. The International Joint Commission of the U.S. and 
Canada set about to determine the precise causes of the 
problem. It established several reference groups associated 
with sources of the pollution, one of which was the reference 
group on land use. This reference group was concerned with 
the introduction of undesirable materials into the Great 
Lakes which enter them through the various streams of the 



Figure 4-An early result of crop species classificati<m from mUltispectral 
data. (Original in color.) 

watershed and which result from the manner in which the 
land of the Great Lakes watershed is being utilized. To begin 
this work it was necessary to study the relationship of the 
land use to the possible pollutants which might be carried 
by these streams. It was immediately found that no up-do
date land use maps of the region existed. Thus the first step 
would be the construction of such maps. More specifically 
land use maps of each of the 192 counties were needed on 
a county-by-county basis. It was desired to know the type 
of land use in each four- to five-acre plot of counties. Fur
thermore, while the requirements on map classification ac
curacy were modest, the time available was short being less 
than one year. Such maps were produced in 1973 at a cost 
of approximately $1,000 per county. The processing required 
involved selection of the proper Landsat frame, geometric 
correction of the data to reasonable cartographic precision, 
and delineation in the data of the county boundaries. This 
was followed by derivation of appropriate classifier training 
statistics and classification of the county using a maximum 
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likelihood Gaussian classifier. Maps were then produced in 
a color coded form showing the various land cover classes. 
Place names and boundaries were later overlayed onto the 
maps using conventional (non-computer) techniques and the 
intention was to interpret the required land use knowledge 
from these land cover maps by conventional means. Tables 
giving the aerial proportion of each county in each land 
cover class were also produced. 

Work has continued since that time to further refine the 
techniques and adapt them to the needs of user agencies. In 
1978 the U.S. Geologic Survey produced and published a 
land use map of the Washington, D.C. urban area using 
essentially these same techniques. 12 This map which is for 
sale by the U.S. Geologic Survey at Reston, Virginia (map 
I-858-E) is to a scale of 1: 100,000; it contains a color coding 
showing the classes given in Table II. Supplied along with 
this map are quantitative tabulations of land use classes in 
each 5 x 5 km UTM grid cell. 

An even more detailed land use map has been prepared 
and published as a demonstration product by the U.S. De
partment of Interior, the Pacific Northwest Regional Com
mission and the National Aeronautics and Space Adminis
tration. 13 This map of the land cover type of the Puget Sound 
Region in the state of Washington is at a scale of 1 : 250,000 
and shows 21 land cover types as listed in Table III. 

An Example in Forestry. The field of forest lands man
agement is another important application area; to illustrate 
the use of earth observational data in this field we will 
consider briefly the management of commercial forest lands. 
In this case the need is for (I) complete, accurate, and 
current data as a basis for both immediate and long range 
management planning, (2) information within the time span 
required for the management decisions, and (3) augmenta
tion of the difficult task of data collection by increasing the 
efficiency of ground sampling procedures while maintaining 
the scope and precision of the data collected. 

Active forest management practices were begun in the 
United States at the turn of the century but have become 
greatly intensified in the post World War II years. They 
have in this period become increasingly quantitative in na
ture and quite sophisticated. The problem is one of choosing 
the correct management actions to take on forest lands 
which may total millions of acres but which may require 
different management decisions on tracks as small as a few 
tens or hundreds of acres. Management decisions required 
are both of a technical nature (plantation and fertilization 
schemes, harvesting schedules, etc.) and an administrative 

TABLE n.-Land Use Classes of Computer-Derived U.S.O.S. Map of Washington, D.C. Urban Area (and number of spectral classes)12 

Build Up Area 

Commercial, industrial, & services (3) 
-includes bare rock 
Parking. paved surfaces (2) 

-includes special runway 
Residential, older (1) 

-with maturing landscape 
Residential, newer (5) 
-with less mature landscaping 

Transitional 

Disturbed land (3), cover in transition 
-includes extractive industry 
Improved open space (1) 

-includes golf course, cemetary, grass 

Open Space 

Agriculture (3) 
Unimproved open space (3) 
-includes forest land and brush land 
Clouds (1) 

Cloud shadows (1) 

-includes some wetland 
Water (3) 
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TABLE IlL-Land Cover Classes Discernable from Landsat MSS Data in 
a Mapping of the Puget Sound Region13 

Residential Clear Cut Water 
Wooded Residential Brush Turbid Water 
Mobile Homes Deciduous Wetland 
CommericallIndustrial Mixed Forest Barren 
Pavement Immature Conifer Ice/Glacial Debris 
Crop Land Second Growth Conifer Snow 
Grass/Pasture Old Growth Conifer Shadow 

nature (decisions on buying, selling or leasing of lands, con
tracting for timber, etc.). Time intervals between decisions 
and results may be as long as 30 to 40 years and as short as 
a few days or weeks. 

Variables to be monitored include (1) quantitative timber 
values in terms of commercial units of value (cubic feet, 
board feet, tons, etc.), (2) stand structure and condition 
including stand composition by species, cover type, timber 
size and condition, age classes, density, topographic posi
tion, competing vegetation, past cultural activity, etc. and 
(3) the dynamic response of the stand in time, both to natural 
and cultural factors. A manager must know not only the 
conditions at the present time but how well and in what 
fashion a stand has responded to past management practices 
and natural environmental conditions. 

Traditionally, data for forest management has been ac
quired by manual ground observations. This can, of course, 
be a very expensive (and disagreeable) process to carry out. 
Sites must be suitably located over the land to be managed 
according to a suitably designed statistically sampling plan. 
These sites have to be visited by ground sampling teams 
periodically. The work may be slow and difficult to carry 
out because of terrain difficulties. It was natural in this case 
for the field to turn to remote sensing techniques, first from 
aircraft and now spacecraft, as a means to increase the 
efficiency of data collection, to increase its objectivity, and 
to realize its availability on a more timely basis. 

Even if it were not possible from remote observations to 
increase the accuracy of data collection, one would antici
pate that it should be possible to improve the timeliness and 
especially the efficiency of ground data collection. For ex
ample, the number of ground sites needed in a sampling 
scheme depends on how well they are located relative to the 
stratification of parameters to be measured. The synoptic 
view from space provides a very effective vantage point for 
sensing this scene stratification and therefore can lead to 
improved efficiency in dispatching ground teams. 

The techniques of machine processing of Landsat MSS 
data have been shown over the last few years to very clearly 
be capable of providing the needed stratification and iden
tification capabilities in an objective and timely manner. 
Even in the rugged terrain of the U.S. Rocky Mountain 
region where the high degree of terrain relief causes varia
tions in illumination due to shadowing and slope angle ef
fects, it has been possible to convincingly demonstrate the 
ability to distinguish between deciduous and coniferous 
stRnds ~nd to some extent to distinguish he-tween sreries or 
species groupings. 14-16 These capabilities are precisely the 

ones needed to more efficiently assign ground observations 
teams and to provide accurate aerial determinations for use 
in multistage statistical sampling procedures. These tech
niques have been and are being adapted very rapidly to the 
specific requirements of forest information systems operated 
over both public and private land holdings. The St. Regis 
paper company, Southern Timberlands Division, for exam
ple has a very active program at the present time to incor
porate such Landsat techniques for managing its 1.7 million 
acres of land owned or controlled in the states of Florida, 
Georgia, Alabama, Mississippi, and Louisiana. St. Regis had 
some time ago seen the need for objective management 
schemes and had devised a number of computer imple
mented management models. The development of these 
models gave the corporation the ability to rapidly make large 
numbers of decisions of a forest lands management nature. 
This, in turn, very greatly increased the need for input data 
on quantitative timber values, stand structure and condition 
and dynamic temporal response, the very variables which 
the Landsat technology can readily produce. This situation 
is not atypical of that which the manager of both commercial 
and public lands finds himself in today. 

A Food Commodity Production Forecast Example. As a 
third example of the application of computer technology in 
remote sensing we will cite an experiment known as LACIE, 
the Large Area Crop Inventory Experiment. 17 LACIE was 
a proof of concept experiment conducted between 1974 and 
1978 by NASA, USDA, and NOAA in which the major 
wheat production areas of the world were monitored by 
Landsat in order to obtain continual estimates of the 
acreage, yield, and production of wheat. The goal of the 
program so far as accuracy is concerned was that the at
harvest estimates were to be within 10 percent of the true 
estimate at the national level nine years out of ten. This 
goal, if achieved in an operational system, would be a sig
nificant improvement in the current ability to be able to 
estimate at-harvest production. An important feature of 
LACIE for the application of existing remote sensing tech
nology was a self-imposed constraint against the use of ob
servations from the ground to identify wheat. This restric
tion was imposed on all geographic areas, both the U.S. and 
foreign, to insure the development of a technology applica
ble to regions inaccessible to observations from the ground. 

The procedure used involved a statistical sampling scheme 
in which 5 x 6 mile segments located in each subregion were 
used to estimate the wheat acreage in that subregion. 
Weather station reports of the subregion were used with a 
yield regression model to estimate the subregion yield. The 
total wheat production for each subregion is then obtained 
as the product of the available wheat hectarage times the 
yield for that subregion. The production forecasts for all 
subregions are then summed to obtain the national level 
forecast. 

During the course of the LACIE program about 15,000 
such 5 x 6 mile data sets from more than 2600 sample seg
ments in five major global crop regions and meteorological 
data from more than 1500 reporting stations were used. 
During at least one grmving season of the program, monthly 
reports on area. yield. and production estimates on wheat 



were generated for the U.S. Great Plains, Canada, and the 
U.S.S.R. Exploratory analysis was carried out for segments 
in five other countries; Argentina, Australia, Brazil, India, 
The Peoples Republic of China. 17 

Based upon a very extensive effort to measure, evaluate, 
and report the results of LACIE, it is clear that the ability 
to monitor wheat production by multispectral means has 
been demonstrated. Figure 5 shows an example LACIE 
result for the U. S. S. R. 17 The solid curve of this figure shows 
the monthly estimate reported by the project. These pro
duction forecasts were generated and released to USDA in 
Washington, D.C. the day prior to the corresponding public 
release by the USDA Foreign Agricultural Service (FAS). 
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The FAS forecasts are also shown for comparison. The third 
variable graphed in the figure are LACIE recomputed esti
mates. The recomputed estimates are the seasonal forecasts 
obtained from the LACIE system after correction of two 
Landsat data problems encountered during that year of op
eration; these problems were of a type typical of first time 
system operation and would not be expected to occur in an 
operational system. Also indicated in this figure is the 1977 
production figure of 92 million metric tons officially released 
by the U.S.S.R. in January 1978. The ability of this system 
to produce an accurate estimate but also to produce an 
estimate of this accuracy so early in the season is indeed 
impressive. 
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Figure 5-LACIE Phase III USSR total wheat production results for 1977 compared to FAS and official USSR estimates. 17 
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The need for such data grows stronger as the degree of 
international interdependence increases. Though this inter
dependence has always been growing the growth has accel
erated greatly in the last few years. For example in 1950-52 
the U.S. Balance of Trade in the agricultural area was at 
approximately minus one billion dollars. By 1960-62 the 
figure was approximately plus one billion dollars. By 1970 
the figure had increased to approximately 1.5 billion and by 
1975 the same figure exceeded 12lh billion. Clearly these 
figures show the increasing importance to the U.S. of early 
and accurate estimates not only of the projected U.S. pro
duction but that of its trading partners around the world as 
well. 

These three examples were selected not only to sample 
the spectrum of different uses as related to different disci
plines but also to illustrate the differing types of information 
needs which the technology is now able to supply. In the 
case of the land cover mapping example the need was for 
highly accurate categorization of land cover type displayed 
in a map format of high cartographic quality; ground obser
vations were readily obtainable. In the second example the 
information required was not in map but statistical form. In 
addition in this case the remote observations were to be 
used to reduce the amount of ground observations which 
had been previously necessary. In the third case again sta
tistical information rather than map output was required and 
no ground observations were possible at all. In all three 
cases an improvement in an existing data source was the 
objective rather than the production of a wholly new type 
of data. 

RESEARCH DIRECTIONS FOR A SECOND LA YER 
OF TECHNOLOGY 

These techniques are flowing rapidly into routine use in 
a series of application areas which is so large and diversified 
as to defy listing. Given the continued availability of data of 
the type now being returned to the earth, the technology 
seems destined to mature to a position of considerable im
portance. However, in addition to this maturing of the cur
rent technology significant new advances are in the offing. 
A new series of Landsat satellites is now under construction. 
The first will be launched in 1981. In addition to the current 
type multispectral scanner (MSS) it will carry a more ad
vanced scanner known as thematic mapper (TM). Table IV 
provides a comparison of the specifications of thematic map
per as compared to MSS. It is seen that thematic mapper 
will have a larger number of bands of greater spectral re
solution covering not only the visible and near IR but the 
middle IR and thermal region as well. Note also the signif
icant improvement in spatial resolution and the signal-to
noise ratio of the data as reflected by the 8 bit data providing 
256 shades of gray per band as compared to the 6 bit data 
of MSS providing 64 shades of gray. The data thus provided 
will make possible deeper penetration into the hierarchy of 
classes of earth cover. For example, as compared to the 
identification of wheat u~ing MSS in the LArTF experiment 
the thematic mapper should make possible crop species 

TABLE IV.-A Comparison of some Parameters of MSS, the Multispectral 
Scanner Aboard the Early Landsat Satellites with Thematic Mapper (TM) 

to Be Aboard Landsat D in 1981 

Scanner Parameter 

Spectral Bands 

Instantaneous Spatial 
Field of View 

Data System Precision 

MSS 

4: .50- .60 JLm 

.60- .70 JLm 

.70- .80 JLm 

.80-1.1 JLm 

80 m 

6 bit 

TM 

7: .45- .52 JLm 

.52- .60 JLm 

.63- .69 JLm 

.76- .90 JLm 

1.55-1.75 JLm 
2.08-2.35 JLm 

10.4 -12.5 JLm 

30m 

8 bit 

identification and condition estimation approaching that 
achieved with the airborne scanner used in the 1971 corn 
blight watch experiment. In this latter case, corn, soybeans, 
and other crops typical of the U. S. Corn Belt were identified 
with high accuracy throughout the growing season. 

A second area of progress in the research laboratory 
which is leading to an advancement in applications capability 
is in the use of various types of ancillary data geographically 
associated with Landsat data. Data bases constructed by 
registering Landsat observations at different times through 
the season together with such variables as elevation, slope, 
aspect, radar return, political boundaries, land ownership 
data, soil type, etc. will significantly widen the number of 
applications by greatly increasing the number of land cover 
classes to which the data can be divided into. 

On the other hand, the construction of such new data sets 
will greatly increase the amount of stored data which must 
be accessible and will place increased demands upon anal
ysis procedures of higher and higher sophistication. It is in 
these areas techniques associated with the construction, 
storage, and accessing of more complex data sets and the 
creation of more sophisticated analysis procedures capable 
of achieving the full advantage which such data sets provide 
that an enhanced research effort is needed at the present 
time. 

Though it is usually the case that advancements are first 
made in data collection, in this field it is most important that 
a balance be achieved in the development of the state-of-the 
science of data collection and information extraction. These 
in turn require a continued effort to increase our understand
ing of the scene and just which attributes in the scene are 
information bearing and also in the problems of the user 
community and which techniques are needed to interface 
the information extraction techniques of this emerging tech
nology with bonafide user needs. 
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Digital image shape detection 

by R. :MICHAEL HORD 
Institute for Advanced Computation 
Alexandria, Virginia 

INTRODUCTION son are: 

Determining algorithmically the presence of specified ob
jects in test imagery is desirable in many circumstances. 
Typically, a reference image containing an example of the 
object of interest is compared with a test image. The four 
primary characteristics of the object used for this compari-

• Translation-location of the object's centroid in the 
format. 

• Orientation-rotation of the object's principal axes with 
respect to the format axes. 

• Size-scale of the object with respect to the sample 
spacing. 
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• Shape-the distribution of gray level values of the ob-
ject. 

Often, only the shape is relevant. i.e., a match is sought 
between the test image and the reference image even if they 
differ in translation, orientation and scale. It is desirable in 
these cases to transform the image pair in ways that are 
independent of these irrelevant geometric features. 

be matched to shape, independent of translation, rotation 
and scale. Mention of this approach is found in the litera
ture: 6•7 this paper explores this approach in more detail. 
Listings of the FORTRAN programs used in this study are 
available from the author on request. 

Shape detection has been a topic of interest to the digital 
image pattern recognition community for many years,8 and 
it remains a prominent topic of discussion in the current 
literature .1,2,5 Two recent survey articles3.4 document the 
popularity of the topic. 

The Power Spectrum of an image is well known to be 
independent of translation. The Mellin Transform has been 
shown9 to be scale-independent. The Polar-Cartesian (POL
CAR) Transform1o described in the following. converts ro
tation into translation. The Power Spectrum of the POLCAR 
Transform is then independent of rotation. Hence. a com
bination of these performed sllccessiv("lv will :=tllow "hl'lpf' to 

POLCAR TRANSFORM (32x32) 

In a NXN image. let I be the row index and J be the 
column index with (I, J)=( 1, 1) in the upper left hand corner. 
Let 

S=(N!2)+ 1.01 

X=J-S 

Y=-I+S 

R=SQRT(XxX-+-YxY)+.! 

(I) 

(2) 

(3) 

(4) 

(5) 



Then for N=32, the X axis is origined at 17.01 and is positive 
to the right while the Y axis is originated at 17.01 and is 
positive upward in the I, J system. R ranges, for integer I, 
J, between 0.11 and 22.74 while T ranges between 0 and 
6.2832. Let 

IR=INT(LOG(R)*13.155+ 14.2) (6) 

ITH=INT(T*5.+ 1.) (7) 

then IR is an index ranging between 1 and 32 and ITH is an 
index ranging between 1 and 32. Let IR be a row index and 
ITH be a column index with (IR, IT H) =(1 , 1) in the upper 
left corner of a 32x32 array. This array is termed the POL
CAR transform of the input array: G(IR, ITH)=G(I, J). 

An input array of horizontal lines is shown in Figure 1; 
the geometric features of the POLCAR Transform of Figure 
1 is shown in Figure 2. Figure 3 shows the isolines of Figure 
2. Figure 4 shows the full POLCAR Transform of Figure 1, 
including gray level amplification as a function of R squared. 
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Asterisks indicate format overflow for values greater than 
99. 

A set of vertical lines are shown in Figure 5; the geometric 
features of the POLCAR Transform of Figure 5 are shown 
in Figure 6 with the isolines drawn in in Figure 7. Note that 
Figure 7 resembles Figure 3, shifted eight spaces to the right 
corresponding to a 90-degree rotation of the input array. 

Figure 8 shows the array of IR values as a function of I, 
J; Figure 9 shows the isolines of Figure 8. The array of ITH 
values as a function of I, J is shown in Figure 10. The 
isolines of Figure 10 are shown in Figure 11. 

The FORTRAN subroutine implementing the POLCAR 
Transform is given in Table I. It is intended that the input 
array, IMAG, is the Power Spectrum of a 32x32 image, 
rearranged to emulate an optical power spectrum so that the 
zero frequency component is position at (17, 17). Setting, 
the origin at (17.01, 17.01) assures that R is strictly positive. 

The form of IR is 

IR=H log R+K. 
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Figure 4 

Hand K are chosen so that the minimum value of IR is I 
and the maximum value of IR is 32. The log is employed to 
provide the scale insensitivity of the Mellin Transform, 

The gray-level values are amplified by a factor of R 
squared since in the frequency domain this is comparable to 
taking a second derivative of the spatial domain input image. 

SHAPE DETECTION ALGORITHM 

A block diagram of a shape detection algorithm incorpo
rating the POLCAR Transform is shown in Table II. Two 
images, I I and 12, are input. Their Power Spectra are ob
tained using a Fast Fourier Transform subroutine (FFT). 
The output of FFT has the zero frequency component at 
(I, I); by analogy with optical power spectra, a rearrange
ment of the frequency components with the zero frequency 
component at (17, 17) is desired. The output, aside from 
various intermediate displays, is a value of QMAX(ll, 12). 
This is used to obtain M(I I, 12). 

DISCUSSION 

Sixteen binary 32 x 32 arrays contammg simple objects 
were studied. There are essentially six types of objects ca
tegorized by shape in the set of test images: 

A. Solid rectangles, 2.6: I aspect ratio; 11, 12. 15. 16 
B. Solid right isosceles triangles; 13, 14, 110 
C. Solid rectangles, 3.0: I aspect ratio; 17, 18, 19 
D. Solid circles; Ill, 112 
E. Hollow right isosceles triangles: 113, 114 
F. Hollow rectangles, 3,0: I aspect ratio; 115, 116 

The values of M obtained by comparing various image 
pairs using the SHAPE program are shown in Table III. 
High values indicate a good match, low values, a poor 
match. 

16 is simply 12 with gray values mUltiplied by 4: the M 
values in Table III for 16 as expected are virtually identical 
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Figure 5 

to those for 12. Hence, 16 need not be analyzed as a distinct 
object for these purposes. For the 15 distinct objects, 105 
cross comparisons are possible. It is expected that objects 
with shapes of the same type should have high M values. 
Naturally, all objects have somewhat the same shape as all 
other objects. Hence, M can take on a continuous set of 
values from zero to one. For discrimination purposes a 
threshold T can be specified; here T=0.080 is chosen, that 
is, M is considered high if M is greater that or equal to T. 

Tables IV through IX exhibit subsets of Table III for the 
six object types. Ofthe 12 comparisons shown, 11 detections 
succeed, but one falls below the threshold T, that for Il vs. 
15. This comparison involves a scale factor of 2, together 
with a 90 degree rotation and a translated centroid. 

There are, other than these expected high M values. 36 
cross object high M values. Most of these are not too dis
turbing. Twenty are rectangles matched to rectangles but 
solid vs. hollow or of differing aspect ratio. Five are triangles 
matched to triangles, solid vs. hollow. 

Seven spurious high M values match triangles with circles; 
of these seven, 5 are solid triangles, 2 are hollow triangles. 
Discrimination is shown to be unreliable in these 32 x 32 
format cases. 

TABLE I 

SUBROUTINE POLCAR (IMAG,N) 
DIMENSION IMAG(32,32),IA(32,32) 
XX = FLOAT(N)/2.+ 1.01 
DO 1 I=I,N 
DO 1 K=I,N 

1 IA(I,K)=O 
00 81=I,N 
Y=-FLOAT(I)+XX 
DO 8 J=I,N 
X=FLOAT(J)-XX 
R=X*X+Y*Y 
R=SORT(R) 
R=R+.I 
IR=ALOGIO(R)*i3.155+ 14.2 
TH=AT AN2(Y ,X) + 3.14159 
ITH =5*TH + 1. 
IF (lR.LT.I.OR.ITH.LT.I) GO T0 8 
KR=R-.I 
IMAG(I,J)=IMAG(I,J)*KR*KR 
iA(iR,iTH)= IMAG(I,J) 

8 CONTINUE 
DO 7 I=I,N 
DO 7 J=I,N 

7 IMAG(I,J)=IA(I,J) 
RETURN 
END 
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The four remaining anomalous high M values erroneously 
match triangles and rectangles. The other 57 M values of 
Table II I are all less than T. 

arrays measuring 64 x 64. The FORTRAN SHAPE program 
described previously was used with minor modification in 
this 64x64 study. These modifications are: 

FORMAT SIZE (64x64) 

The digital image shape detection research for binary im
ages of size 32 x 32 has been extended to address image 

TABLE II 

1. Substitute 64 for every occurrence of 32 in the main 
program and all subroutines except FOURT. 

II -- FFT -- AI+iBI -- AI2+BJ2 -- REARRANGE -- POLCAR -- FFT -- Cl+iDl -- I 

12 -- FFT -- A2+iB2 -- A22+B22 -- REARRANGE -- POLCAR -- FFT -- C2+iD2 -- 2 

M ~ Q~M_A-:-:X-,-:-(I 1-:-, I2_}*-c"-Q:-:-MA __ X-:-,-:(l~1 ,I~2) 
(JMAX(II.ll l*(JMAX(l2.121 
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000 0 8 0 000 0 0 000 0 000 Q 0 0 000 
u 0 0 000 000 0 0 0 0 0 0 000 000 000 
00000 0 000 0 0 000 0 000 0 n 0 0 0 0 
D 0 0 U 0 0 0 0 0 000 000 000 0 0 0 0 0 0 
000 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 
000 0 0 000 0 000 000 000 000 000 
000 0 0 0 000 0 0 000 0 0 0 0 0 0 000 0 
000 0 0 0 0 0 0 000 000 0 a 0 0 0 0 0 0 0 
000 0 000 0 0 0 0 0 000 000 0 0 U 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 000 000 0 0 0 0 0 0 000 0 000 
000 0 0 0 0 0 000 000 0 0 0 0 000 
(I Ci I) I) (I 01 'J (I (I (I I) I) 0 
(10 00 )00 000 
o 0 0 0 000 (I 0 
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2. In the POLCAR subroutine, change to 

IR=ALOGlO(R)*24.0+24.1 

ITH= 1O.*TH+ 1. 

Sixteen binary 64 x 64 arrays containing simple objects were 
studied. The values of M obtained by comparing various 
(64x64) image pairs using the SHAPE program are shown 
in the accompanying table, Table X. 

3. Delete array output displays to reduce wall time. 

II I2 I3 14 IS 16 

11 1.000 
12 0.103 1.000 
I3 0.018 0.078 1.000 
14 0.020 0.057 0.797 1.000 
IS 0.068 0.344 0.087 0.071 1.000 
16 0.102 0.999 0.078 0.057 0.346 1.000 
17 
18 
19 
1I0 
III 
1I2 
113 
I14 
115 
116 

0.131 0.925 0.071 0.057 
0.310 0.177 0.048 0.039 
0.154 0.237 0.029 0.048 
0.026 0.043 0.461 0.347 
0.018 0.078 0.091 0.108 
0.010 0.040 0.132 0.136 
0.032 0.056 0.327 0.328 
0.036 0.024 0.077 0.083 
0.215 0.307 0.021 0.023 
0.087 0.116 0.029 0.042 

0.317 0.923 
0.122 0.176 
0.089 0.237 
0.056 0.044 
0,035 
0.041 
0.048 
0.020 
0.045 
0.207 

17 

1.000 
0.198 
0.278 
0.037 
0.060 
0.035 
0.055 
0.027 
0.350 
0.130 

There are essentially five types of objects categorized by 

TABLE III 

18 19 1I0 

1.000 
0.080 1.000 
0.061 0.021 1.000 
0.031 0.053 0.078 
0.015 0.028 0.137 
0.076 0.176 0.100 
0.033 0.041 0.239 
0.270 0.253 0.018 
0.143 0.109 0.012 

111 

1.000 
0.276 
0.053 
0.047 
0.033 
0.015 

1I2 

1.000 
0.086 
0.087 
0.029 
0.013 

113 

1.000 
0.264 
0.101 
0.136 

1I4 

1.000 
0.066 
0.036 

lIS 

1.000 

0.233 

I16 

1.000 
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Figure 8 

TABLE IV -Object A TABLE VII-Object D 

II 12 15 III 112 

II 1.0 I II 1.0 
12 0.103 1.0 112 0.276 1.0 
15 0.068 0.344 1.0 

TABLE V -Object B 
TABLE VIII-Object E 

13 14 110 
113 114 

13 1.0 
14 0.797 1.0 113 1.0 

110 0.461 0.347 1.0 114 0.264 1.0 

TABLE VI-Object C 

17 18 19 
TABLE IX-Object F 

115 116 
I7 1.0 
18 0.198 1.0 115 1.0 
19 0.278 0.080 1.0 116 0.233 1.0 
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Figure 9 

TABLE X 

11 I2 13 14 15 16 17 18 19 110 III 112 113 114 115 116 

II 1.000 
I2 0.229 1.000 
13 0.025 0.045 1.000 
14 0.021 0.064 0.201 1.000 
15 0.032 0.031 0.032 0.033 1.000 
16 0.050 0.055 0.008 0.008 0.01 I 1.000 
17 0.028 0.025 0.204 0.059 0.164 0.010 1.000 
18 0.051 0.051 0.005 0.005 0.011 0.076 0.006 1.000 
19 0.205 0.217 0.190 0.106 0.028 0.035 0.037 0.035 1.000 
I10 0.039 0.145 0.106 0.311 0.022 0.002 0.057 0.003 0.039 1.000 
111 0.806 0.162 0.032 0.027 0.038 0.045 0.034 0.046 0.216 0.038 1.000 
112 0,038 O.OlR 0.066 0.231 0.154 0.009 0.232 0.006 0.021 0.150 0.038 1.000 
113 0.054 0.052 0.030 0.031 0.123 0.008 0.125 0.003 0.015 0.028 0.060 O. t07 1.000 
114 0.007 0.025 0.081 0.109 0.025 0.003 0.045 0.001 0.036 0.174 0.010 0.050 0.113 1.000 
It5 0.038 0.041 0.003 0.002 0.005 0.169 0.004 0.103 0.028 0.004 0.033 0.002 0.003 0.002 1.000 
116 0.006 0.005 0.004 0.003 0.002 0.003 0.003 0.007 0.003 0.004 0.004 0.002 0.027 0.015 0.005 1.000 
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shape in the set of test images: 

A. Solid rectangles, 3.0: 1 aspect ratio: 13, 14, 15, 17, 110, 
112 

B. Solid right isosceles triangles: 11, 12, 19, 111 
C. Solid circles; 16, 18, 115 
D. Unequal arm crosses: 113, 114 

For the distinct objects, 120 cross comparisons are possible. 
It is noted that in contrast to the 32 x 32 study, the average 
M value is lower by half. The mean of the 105 entry M32 
table is 0.122; the mean of the 120 entry M64 table is 0.061. 
Accordingly, a lower threshold for discrimination purposes 
can be selected; here T=0.056 is selected, where T=0.080 
was used in the 32x32 case. 

13 
14 
15 
I7 
110 
112 

E. Random noise: 116 

TABLE XI-Object A 

I3 14 15 I7 110 

1.000 
0.201 1.000 
0.032 0.033 1.000 
0.204 0.059 0.164 l.000 
0.106 0.311 0.022 0.057 l.000 
0.066 0.231 0.154 0.232 0.150 

112 

1.000 

Tables XI through XIV exhibit subsets of Table X for four 
of the five object types. No table is needed for object type 
E since, as expected, none of the other objects produce a 
high M value when compared with 116, random noise. 

1 I 
12 
19 
III 

TABLE XII-Object B 

I I 12 19 1 II 

l.000 
0.229 l.000 
0.205 0.217 l.000 
0.806 0.162 0.216 l.000 
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Of the 25 comparisons shown, 22 succeed, but three fall 
below the threshold T. The three failures are all for 15. 15 
is a vertical rectangle and matches are found for the other 
vertical rectangles, 17 and It 2, but matches are not found 
for the horizontal rectangles 13 and 14, nor is a match found 
for the 45 degree rectangles, 110. The other vertical rectan
gles do find matches with the horizontal rectangles and the 
45 degree rectangle. 

There are, other than the 25 expected high M values, I! 
cross object high M comparisons. Of these 11 false alarms, 
seven are for object type D. II3 is mistaken for vertical 
rectangles three times and once for a triangle; 114 is confused 

TABLE XIII-Object C 

16 IS 115 

16 1.000 
18 0.076 1.000 
115 0.169 0.103 1.000 

9 
9 '3 
'3 ';J 

II 

Digital Image Shape Detection 253 

1 
2 
•• "1 

4 

'? 
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24 
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31 

twice for horizontal rectangles and once for the 45-degree 
rectangle. Clearly this algorithm is not suited for discrimi
nating unequal arm crosses from other simple objects. The 
other four false alarms are triangle/rectangle mismatches. 

It is satisfying to note that the circle/triangle discrimina
tion problem encountered in the 32x32 case has in the 64x64 
case gone away. All circles are detected, no circles are false 
alarmed. The other 84 M values of Table X are all less than 
T. 

No attempt at minimizing execution time was made in 
programming. Execution time for the 32 x 32 SHAPE Pro
gram on a PDP- to computer operating under the TENEX 

TABLE XIV-Object 0 

113 114 

113 1.000 

114 0.113 1.000 
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operating system is approximately ]7 seconds; the 64x64 
SHAPE Program executes in approximately 23 seconds. 

CONCLUSION 

The performance of the SHAPE algorithm on these simple 
objects continues to be encouraging; additional investigation 
is intended. 
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MOTIVATION AND OBJECTIVES 

Pictorial information is often described by digitized arrays, 
syntactic (and semantic) strings and high-dimensional trees 
or graphs. The analysis and extraction of meaningful infor
mation for pictorial patterns by digital computers is called 
pictorial pattern analysis. Pattern analysis tasks require a 
wide variety of processing techniques and mathematical 
tools. In most machine intelligence systems, large computers 
are employed to process pictorial information. Because most 
image processing tasks require only repetitive Boolean op
erations or simple arithmetic operations defined over ex
tremely large arrays of picture elements (pixels),l the use of 
large computers with rigidly structured sequential or parallel 
processors may result in intolerable waste of resources. 2 For 
example, the array-structured ILLIAC IV3 and STARAN4 
are efficient for processing fixed-length vectors, but are very 
inefficient for mixed scalar and vector operations, due to 
the fact that multiple instruction streams do not exist si
multaneously in these supercomputers. 

In the application domain, explosive amounts of pictorial 
information need to be processed. For example, a single 
frame of LANDSAT imagery contains 30 million bytes of 
information and it takes 13 such images to cover the state 
of Alabama. What is even more demanding is that an entirely 
new set of imageries is produced for the entire earth surface 
every nine days. The conventional parallel computers are 
,not tailored for such large-scale image processing. A com
puter system is demanded to maximize the utilization of 
parallelism embedded in repetitive image operations. A sim
ple example may help to quantitatively justify such a need. 
Suppose that we are interested in performing the texture 
analysis of an image with size 500x500 pixels. A lOx 10 
pixel window size is selected. Assume that, on the average, 
ten assembly instructions are required to perform one tex
ture analysis (neighborhood) operation. It then requires 
5oox500x lOx lOx 10=2.5 X 108 instructions to analyze the 
whole image. For a computer system with one MIPS, it will 
take 2.5 x 108/106=250 sec. =4.17 min. to perform each tex
ture analysis operation on the whole image. An increase of 
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machine speed to 100 MIPS will reduce the time required to 
perform one texture analysis operation to 2.5 seconds. Sim
ilar examples can be easily found in cluster analysis and 
statistical classification of high-dimensional pattern recog
nition problems. 

To meet the needs of the 80s or beyond, a versatile com
puter system must be able to execute more than 100 MIPS 
with a memory bandwidth of 256 megabytes or greater. With 
the rapidly growing IC technology, it is now possible to 
consider the use of a large number of microprocessors as 
the processing elements of a computer system for pattern 
recognition. This system will derive its high performance by 
the multiplicity of processing elements and the high level of 
concurrency of processing. 

In this paper, we report a powerful computer system that 
is currently under development at the Advanced Automation 
Research Laboratory (AARL) of Purdue University. The 
system consists of hundreds ofLS! bit-slice microprocessors 
with a large number of shared memory modules and flexible 
interconnection networks for efficient image processing and 
pattern recognition applications. The system is designed to 
be able to reconfigure its resources under system control to 
assume four different operation modes-SIMD, MIMD,2 
multiple SIMD and distributed mixed modes. Fast interac
tive 110 and large image data base are incorporated into the 
system. Cost effective system architecture and wide range 
of applications are the main development concerns. 

An overview of various existing special computer archi
tectures for pattern information processing can be found in 
Fu. 5 The system presented here offers a relatively new ar
chitectural configuration with high application flexibility and 
high system throughput at only a modeiate system cost. 

THE PM4 SYSTEM ARCHITECTURE 

The architecture of the Purdue Multi-mode Multimicro
processor (PM4) system grew from a consideration of exist
ing system organizations like the c'mmp" ILLIAC IV and 
Cm*.7 We wanted a system that would reconfigure itself to 
execute MIMD or SIMD processes. In fact, the flexibility 
was extended so that the system can be partitioned into 
groups of processors which may be assigned to different 
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SIMD processes. Hence, mUltiple SIMD (MSIMD) and 
MIMD processes can be in execution concurrently. More
over, since we wanted dynamic system reconfiguration of 
resources and high level of concurrency of processes, each 
processor would be designed to handle such system require
ments. The reconfiguration is mostly software controlled. 
This architecture differs from the restructurable computer 
system proposed in Reference 8 or the partitionable multi
processor system discussed in Reference 9 in many aspects, 
as will be seen shortly. The architecture of the PM4 was 
configured by considering some of the major problems in
volving multiprocessor systems as discussed in Reference 
10. 

The basic components of the PM4 consist of N identical 
Processor-Memory Units (PM U), K identical Vector Control 
Units (VCU), a three-level hierarchical memory connected 
by a set of interconnection networks and memory manage
ment units. Figure 1 shows a block diagram of the PM4. We 
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I PCN: 

Monitor Processor 
Vector Control Unit 

Interprocessor Communication Network Mp· 

will give a brief description of each of the individual com
ponents and their interrelationship in the system. 

The Vector Control Units (VCU) are used in the SIMD 
mode of operation. Each of these units has a microproces
sor, a local memory (LM) which is managed by its own 
Local Memory Management Unit (LMMU) as shown in 
Figure 2a. The vector control instructions and program of 
an SIMD process are loaded into the VCU local memory 
prior to execution. When the SIMD process is ready-to-run, 
the VCU broadcasts instruction to all of the Processor
Memory Units (PMU) that are assigned to the SIMD proc
ess. The VCU may also send permutation function com
mands to the Interprocessor Communication Network 
(IPCN) to permute the data in a group of PMUs. Further
more, the VCU has the ability to mask or disable PM Us so 
that only the active or unmasked PMU s execute the broad
casted instructions. 

Each of the PMUs consists of three functional units, 
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Figure I-The PM4 architecture. 
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namely, a microprocessor (P), a local memory (LM) and a 
local memory management unit (LMMU) as shown in Figure 
2b. The LMMU in the PMU is similar to that in the VCU. 
Each local memory, which acts as a cache memory to its 
associated processor, is interleaved to allow it to meet the 
speed requirements of the high speed LMMU. 

Both VCU and PMU operate under a virtual memory 
system and hence have hardware facilities to map virtual 
addresses to physical addresses. We have decided to imple
ment each processor so that it can directly address all of 
shared memory. 

The LMMU of the PMU is also used to load and unload 
the local memory of a PMU. Furthermore, it can also act as 
a channel to transfer a block of shared memory to any VCU 
memory that is associated with that PMU. Each LMMU in 
a PMU or VCU handles the page replacement policy for its 
local memory. In both cases, the transfer may be initiated 
by a command from the processor of the PMU to its LMMU. 
A mUltiplexor has been conveniently located between each 
PMU and the Vector Control busses to switch the signal 
path from any veu to either the processor (P) or the LMMU 
of the PMU. Hence, the program for an SIMD process may 
be transferred from shared memory to the VCU's local 
memory through the LMMU of an assigned PMU. More
over, during the execution of the SIMD process, the multi
plexor can route the broadcasted instruction from a VCU to 
the PMU. 

The Interprocessor Communications Network (lPCN), is 
used to implement permutation functions needed during ex
ecution of SIMD processes. This network permits concur
rent permutation of data from multiple SIMD processes 
which are assigned to distinct subsets of PMU s to be per
formed simultaneously. The IPCN is controlled by the 
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Figure 2b---Details of Processor Memory Unit (PMU). 

VCU s over a time-shared bus and contains its own internal 
conflict resolution logic. 

The Shared Memory Management Unit (SMMU) is con
nected to each LMMU of a PCU via the Memory Manage
ment (MM) Bus. The SMMU acts to control the use of the 
shared memory by communicating with each LMMU or the 
File Management Control Unit (FMCU) and effecting ap
propriate page replacement policy in the shared memory. 

The Processor Memory Interconnection Network (PMIN) 
is used to transfer information between the shared memory 
and the LMMUs. Transfers are made in a burst-mode on 
this network. Hence, once a path through the network has 
been established, it is held (for the most part) until the 
transaction is completed. Further discussion on the PMIN 
is given in a later section. 

The file memory control unit (FMCU) controls the trans
fer of information between the shared memory and the file 
memory. We defer the discussion of the shared memory to 
a later section. 

For performance measurement purposes, we have incor
porated a monitor processor (MP) to monitor the activities 
of the various modules of the system as shown in Figure 1. 
The information collected will be used to determine the 
operating characteristics of the system. 

We have incorporated fault-tolerance capabilities into the 
architecture of the PM4 by modularizing the system struc
ture. This, for example, may permit a PMU or VCU to be 
logically isolated from the rest of the system once a fault is 
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detected in the unit. The logical isolation of a unit will permit 
its diagnosis to be carried out without appreciably affecting 
system peIformance. 

CHARACTERISTICS OF THE MICROPROCESSORS 

The processors used in the multiprocessor system must 
have certain desirable characteristics in order to handle the 
multi-modal requirements of the PM4 system architecture. 
We have investigated the characteristics of existing LSI 
microprocessors such as the LSI II, Intel 8086, Z8000 and 
Motorola 68000 only to find that they do not meet either our 
operating system requirements or they fall a bit short on our 
speed requirements. We will discuss some of the processor 
characteristics we find desirable in our system configuration. 
We feel that such processor requirements can be attained 
by using bit-slice microprocessors. 

For swift reconfiguration of system resources, a processor 
must be capable of holding more than one active process 
state. Hence, the VCU and PMU are multiprogrammed. The 
degree of multiprogramming in the PMU is tentatively cho
sen to be four. Hence, the processor of a PMU should 
consist of four register arrays. Each register array may be 
used to hold the state of an active process. For example, 
one array may be assigned to the kernel of an operating 
system while the other three are assigned to user MIMD 
and SIMD processes. A register array which is designated 
for an SIMD process when the PMU is allocated to a VCU 
will retain the state of the SIMD process until the PMU is 
deallocated. The coexistence of SIMD and MIMD processes 
in a PMU will permit the switching of a current SIMD 
process to an active MIMD process, and vice versa, effi
ciently. Further studies will be needed to determine the 
degree of multiprogramming in the VCU which will be re
quired to maintain a high level of concurrency efficiently. 

Each processor of a VCU or PMU has a Status Output 
Register (SOR), the contents of which can be read by any 
other processor. Traps and interrupts are also needed to 
handle fault and communication problems. For example, a 
page fault from either VCU or PMU should cause a page 
fault trap which will abort the execution of the current in
struction. The instruction may be re-executed when the page 
fault condition is resolved. In the case when the trap con
dition occurs in a PMU which is assigned to a VCU for an 
SIMD process, the VCU is signalled to suspend its instruc
tion broadcasting. Furthermore, all PMUs in that group will 
be interrupted to suspend the current SIMD process and 
switch to a ready-to-run MIMD process until the SIMD 
process is awakened. The context switching of processes 
can be performed, in this case, simply by modifying a Cur
rent Process Pointer (CPP) register in the PMU to point to 
a ready-to-run MIMD process whose process state is resi
dent in a register set of the PMU. 

Note that when an SIMD process is suspended due to, 
say, a page fault, the PMU group is still allocated to the 
suspended SIMD process. When the VCU is ready to re
sume its suspended process. it may do this hy hroadcasting 
an instruction to the allocated PMU group. If the PMU is 

within an instruction cycle of a current MIMD process when 
the vector instruction is broadcasted, it sets an internal VIP 
(Vector Instruction Present) flip-flop. Hence the broadcast
ing of an instruction may be asynchronous with respect to 
a group of PMUs. The VIP flipflop is checked at the end of 
the instruction cycle if the PMU is allocated to an SIMD 
process. If the VIP is set, the CPP register may be modified 
to point to the state vector of the resumed SIMD process 
which is resident in the processor of the PMU s. Further, it 
puts the processor in the instruction fetch state in order to 
receive the broadcasted instruction. 

When a processor of a PMU is executing broad casted 
instructions in the SIMD mode, an instruction completion 
signal is sent to the associated VCU at the end of each 
instruction cycle. This will permit the VCU to broadcast the 
next instruction to the PMUs. In general, instruction fetch 
and execution may be overlapped in both the VCU and 
PMU by prefetching the instructions in both SIMD and 
MIMD modes. We are currently investigating some other 
characteristics of the processors. 

MEMORY HIERARCHY 

The memory hierarchy consists of three levels of memory. 
The highest level of memory are the local memories in the 
Vector Control Unit (VCU) and the Processor-Memory Unit 
(PMU). The next level is the shared memory that is shared 
by all the processors in the system. The lowe~t level is the 
file memory which is essential for the data base. Generally, 
the higher the level of the memory, the faster is its speed, 
the higher is its cost per byte and the smaller is its capacity. 
Transfer of information between adjacent levels of memory 
in the hierarchy is entirely controlled by activities in the first 
level. The first level in this case consists of the set of VCUs 
and the set of PMUs. However, this does not imply that the 
memory access times for the local memory in the VCU is 
identical to that in the PMU. 

One of the advantages of the hierarchical memory orga
nization is that the working set 11 of a process accumulates 
rapidly in the fastest level. Hence, accesses to memory 
words in a process are completed at nearly the speed of the 
local memories, but the total cost of the storage system 
approaches that of the lowest level. Another advantage is 
that the mechanism which effects the transfer of pages be
tween adjacent levels of memory can be readily implemented 
with very little intervention by the operating system. 

The local memory of a PMU or VCU acts as a "cache" 
memory to its local processor. The wide usage of cache 
memories has shown that a process' memory references 
tend to cluster in a small portion of its· address space in a 
space-time window. 12•13 Each local memory is logically par
titioned into several pages which is large enough to hold the 
working sets of the several active processes. The local mem
ory also has the appropriate hardware to keep track of the 
usage of each page. This information may be collected by 
the Local Memory Management Unit (LMMU) and used to 
implement the page replacement policy-

The shared memory uses a buffered version of the L-M 
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memory organization studied by Briggs and Davidson. 14 This 000 
memory consists of I memory lines and m memory modules 
on each line. A line refers to a bus within the shared mem- 00 I 
ory. Each memory module has an address and data latch so 
that the address cycle (hold-time), a, is much shorter than 
the memory cycle time, c. Hence, if a = 1 and c =4, four 
memory requests can be in different stages of the service a I 0 
concurrently on the same line, thereby increasing the mem-
ory bandwidth without increasing the cost of the PMIN. all 

Multiple-access conflicts which occur when simultaneous 
(parallel) requests reference the same line are resolved in 
the PMIN as discussed in the next section. 

In our studies, we assume that the number of lines, I, is 
equal to the number of parallel PMUs, N, so that the cost 
of the processor memory interconnection network (PMIN) 
will be kept to a minimum with respect to l. 

Each line has a Line Request Buffer (LRB) which buffers 
and resolves the conflicts of the memory requests made to 
modules on the same line. The LRB may subsequently issue 
the request to a referenced memory module which is idle, 
and initiate a return path through the PMIN for the refer
enced data. A memory request for a page can be made to 
the LRB which will eventually generate the series of se
quential accesses required to retrieve or store the requested 
block. Furthermore, the LRB may be interrupted by the 
File Memory Control Unit (FMCU) when it performs DMA 
(direct memory access) transfers between shared memory 
and file memory. 

The performance of the L-M organization was discussed 
in Reference 15 for the nonbuffered requests with random 
address references. The analysis of the buffered requests is 
currently being investigated, but intuitively the implemen
tation of block transfers on such an organization would 
result in a higher memory band with than discussed in Ref
erence 15. 

The file memory is a very large data base and backup for 
the programs and data in the system. 

INTERCONNECTION NETWORKS 

Several communication paths exist between different 
components of the PM4 system. A glance at the block dia
gram of Figure 1 shows the explicit connections between 
vector control units (VCUs) and the processors. Other prin
cipal connections shown simply as black boxes are inter
processor communication network (lPCN), processor-mem
ory interconnection network (PMIN), and the implied con
nection in the file-memory control unit (FMCU). Of these 
three networks the connection in the FMCU is the simplest 
and the least demanding of all. For these reasons, a single 
high-speed time-shared -bus is chosen as the communication 
path between the shared memory and the file memory due 
to the slow transfer rates of the file memory. The other two 
networks, namely, PMIN and IPCN, are quite complex and 
if their design is not properly chosen these networks can 
either become the bottleneck of the system or they can 
become the most expensive parts of the whole system. 

For processor-memory interconnection (PMIN) we have 
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Figure 3-An 8x8 delta network. 

investigated the delta networks. 16 These networks are easy 
to design and control. The networks use 2 x 2 crossbars as 
the basic building blocks. The logic for arbitration between 
conflicting requests is distributed throughout the network. 
A connection between a processor, LMMU, and a shared
memory module is established at the request of the proces
sor which sends the address of the requested module on the 
control lines. This address acts as the pathfinder through 
the network and the path is established locally at each 2x2 
crossbar module. Each module requires a single bit from the 
address to establish a path, thus the control is completely 
distributed. An example of an 8 x8 delta network is shown 
in Figure 3. The 2 x 2 modules used are sketched in Figure 
4. The complexity of a N xN delta network grows as Nlog 2N 
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Figure 4--Details of 2x2 modules for delta networks. 
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as opposed to N2 for a full crossbar. However, the band
width of the delta network, assuming completely random 
requests, is not substantially less than that of crossbars. For 
example, for a delta network of size 256x256, the expected 
bandwidth is 77 requests per memory cycle; for a full cross
bar of the same size the bandwidth is 162; however, the 
crossbar costs about 20 times as much as delta. Once a path 
between a processor and a memory module is established, 
the words can be transferred at a continuous rate without 
any conflict. Thus, every subsequent word transfer does not 
suffer the initial delay to establish a path, and, therefore, 
the effectiveness of a delta network is higher in the block 
transfer mode than in single word transfer mode. We will 
study the use of delta networks to do block transfers be
tween the processor memory and the shared memory, where 
a block may consist of 64, 128,256 or 512 bytes. 

The interprocessor communication network (lPCN) is still 
under investigation. When it is finally designed, it will have 
the following characteristics. _ 

The network will be of low cost, recirculating type. The 
design will be such that the permutations most frequently 
used in an SIMD environment can be generated in a single 
pass through the network. Other less frequently used per
mutations may require several passes. Furthermore, the net
work will be partitionable in fixed-size blocks so that several 
small size independent SIMD operations may be executed 
in parallel. For example, a network of size 64x64 can be 
partitioned into four networks of size 16x 16, and each of 
these networks will be partitionable into two networks of 
size 8 x8. To reduce the cost and delay, arbitrary partitions 
will not be implemented. Again for cost reasons, the network 
will not necessarily be of the same dimension as that of PM4 
system. For example, if we build the system with 256 pro
cessors, we may have an IPCN of size 64x64. The d~sign 
and cost performance trade-ofTs of the IPCN will be reported 
at a later date. 

PARALLEL PROGRAMMING LANGUAGES 

In order to have an operational PM4 system, a mUltiple 
mode operating system must be developed for the multipro
cessor system. The resident UNIX system in PDP 11145 is 
currently under extensive revision at Purdue to handle the 
following four operation modes of PM 4. Special high-level 
programming languages for parallel processing need to be 
developed, most probably by extension of the C-program
ming language or the concurrent PASCAL17 or APL. The 
parallel programming language will provide the user the 
power to exploit the full capacity of the system. This will 
include vector operations (SIMD mode), and two or more 
distinct vector operations in parallel (Multiple SIMD mode). 
MIMD mode will permit concurrent execution of several 
scalar processes and distributed mixed mode allows part of 
the PM 4 system to operate as an SIMD computer and part 
as an MIMD computer. The user will not be burdened with 
the layout of the vectors in the memory, or the allocation, 
deallocation and synchronization of processors. 

The four fundamental operation modes of PM4 and the 

corresponding user programming requirements are briefly 
described as follows: 

1. SIMD Mode-Vector instructions with Single Instruc
tion Stream and Multiple Data Streams (SIMD) must 
be explicitly declared by user's programs. The compiler 
is responsible for the layout of vectors and the VCU 
is responsible for broadcasting the instructions. The 
VCU executes control or non-vectored instructions 
without passing them to the PMUs. In this mode, each 
SIMD vector statement is executed in parallel, but 
subsequent vector statements are executed sequen
tially. In other words, no multiple SIMD statements 
can be simultaneously executed as demonstrated. 
Example 1: Consider the use of a 32-processor 

PM4 system for SIMD operations. 
Begin 
Integer Vector A, B, C [0:31]; 
Real Vector X, Y, Z [0:31]; 
Integer I, J; 

A~bB+C; 

X~Y+(Z/2); 

End 

2. Multiple SIMD Mode-In this mode, mUltiple number 
of SIMD operations are executed in parallel. With a 
64-processor system, typical Multiple SIMD instruc
tions may assume the following form. In this example, 
A, B, and C can be considered to be arrays of 128 
vectors each, where a vector has 16 elements. Similarly 
X, Y and Z are arrays of vectors with 32 elements in 
each vector. The notation X[I,*] signifies a vector: 
X [1,0], X[I, 1], ... , X[I,31]. 
Example 2: 

Begin 
Integer Vector A, B, C [0:127,0:15]: 
Real Vector X, Y, Z [0:127,0:31]; 

Parbegin 
For 1=0 until 127 do 
A[I,* ]~B[I,*]+ C[/,*], 
For J=O until 127 do 
X[J,*]~ Y[J,*]+ Z[J,*], 

Parend 
End 

The two vector processes between the parbe gin (parallel 
begin) and parend (parallel end) may be executed simulta
neously by two VCUs in this mode. 

3. MIMD Mode-Multiple Instruction streams and Mul
tiple Data streams (MIMD) operations are the most 
generalized parallel programs. Each individual instruc
tion stream must have a sequence of scalar operations. 
These parallel processes may be interdependent. Sys
tem deadlock would be a major problem to be solved 
for MIMD operations. Vector instructions may not ap-



pear in strict MIMD mode, but may appear in the 
mixed mode to be described in 4. 
Example 3: 

Parbegin 
Subprocess 1, 
Subprocess 2, 

Subprocess n, 
Parend 

4. Distributive Mixed Mode-In this mode, SIMD vector 
instructions and parallel MIMD processes are simul
taneously executed as declared by. the following state
ments. 
Example 4: 

Parbegin 

~:~:i.} SIMD mode 

Subprocess 1, } 
: MIMD mode 

Subprocess n, 
Parend 

The above operation modes are only the fundamental ones 
to be implemented. There are many combinations of the 
above modes. Only after we implement the basic modes can 
we challenge the implementation of more sophisticated op
eration modes to upgrade the system throughput and en
hance its flexibility. 

Special system control instructions must be developed to 
make the above operations possible. Listed below are sev
eral typical system command instructions that may be im
plemented in the system. 

1. INITIALIZE-Set the program counters of allocated 
processors to specific values. 

2. SYNCHRONIZE-Put the allocated PMUs in the 
WAIT or FETCH state. 

3. Vector issue, mask, routing, etc. 
4. Memory management, interrupts and I/O commands, 

etc. 

For special parallel-processing applications, such as mul
tiple-frame image processing or pattern classification, spe
cial programming or query languages must be developed to 
handle the very large scale data bases. There always exists 
a trade-off between the complexity of user programming 
language and the operating system capabilities. 

OPERATING SYSTEM REQUIREMENTS 

The operating strategy for the PM4 system has to be de
cided from the following choices: 

1. Multiprogramming versus uniprogramming on vector 
control and processor-memory units. 

2. Distributed versus dedicated processor operating sys
tem. 
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Based on the architectural features of PM\ a Distributed 
Multiprogramming Operating System (DMOS) is under de
velopment for the PM4 machine. The DMOS system will be 
developed based on operating system design trade-offs of 
existing MIMD machines such as the C.mmp Hydra,18 the 
CM* operating system. 19 We will also consider the incor
poration of some of the operating system aspects of multiple 
SIMD machines proposed by Nutt for the MAP system20 

and the DIMO for the DAMP system discussed in Hwang 
and Ni. 21 

The DMOS is to handle all the four operation modes 
described in the preceding section with emphasis on multiple 
SIMD and MIMD modes. We have considered the case in 
which the operating system is distributed over all PMUs. 
Each PMU contains a local kernel operating system which 
resides partly in its local memory and partly in shared mem
ory. This kernel will be used for scheduling of MIMD and 
SIMD processes as well as supervising the execution of 
MIMD and component vector processes. 

In the DMOS system, the processes are scheduled to 
processors on. the basis of processor availability and its 
workload. In addition, the availability of other system re
sources demanded by the processes will influence the proc
ess scheduling algorithm. However, we have investigated a 
vector or SIMD process scheduling procedure that is flexi
ble. In this case a PMU, which is a temporary master sched
uler, schedules the vector process to an available veu. In 
the following illustration we assume that the veus are un
iprogrammed systems and the PMUs are preemptible. 
Hence a vector process always has a higher priority over a 
user's MIMD process in being assigned to a PMU. 

Let us assume that a vector process which was allocated 
to a (VCUi , [lj,k) pair has just been completed. [lj,k is a set 
of 2k consecutively numbered PMUs starting at PMUp , 

where p= j.2k, for j=O,I,2, ... and k is a nonnegative in
teger. For example, [l4,3={PMU32 , PMU33 , ... , PMU40}. 
Furthermore, assume that there exists a PMUm E [lj,k which 
is a master for the [lj,k group of PMUs. The completion of 
the old vector process causes PM U m to search the vector 
process queues (VPQis) (which may reside in SMMU) for 
a schedulable process. A vector process of vector size, V, 
is schedulable if it is independent or if all the dependencies 
for that process have been satisfied. The schedulable proc
ess is scheduled by the PMUm to VCUi if there exists a set, 
[10.,(3 of PMUs which is not currently allocated to an SIMD 
process and consists of 2(3 PM Us such that f3= r log 2 vl . If 
the vector process is scheduled to VCUi ; PMUm requests 
allocation of processors in [10.,(3 for the new SIMD process 
by transmitting the request signal to the processor via the 
MM bus as shown in Figure 2. Of course, such a scheduling 
process would be implemented as a critical section. 22 

The PMUm also gives the processor in [lo.,fJ the necessary 
information to load-in the mUltiple data streams required 
for the SIMD process into their respective local memories. 
While these PMU s are being loaded with their data, the 
PMUm may also initiate the loading of the program segment 
of the SIMD process through its LMMU to the VCUj's local 
memory. After the loading of VCU j is complete, the PMUm 
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Figure 5-Queuing model for performance evaluation of scheduling disciplines. 

may assign any PMUn in YQ ,{3 as the new master of YQ ,{3' 

Henceforth, the current master, PMUn , will coordinate and 
monitor the activities of VCUi and handle page fault traps 
from VCUi• Notice that the loading of multiple data streams 
in YQ ,{3 may be overlapped with MIMD process execution in 
these processors. Now the new pair (VCUi, YQ ,(3) is allocated 
to execute the new SIMD process. 

In case a vector process is not scheduled because of the 
unavailability of an appropriate sized Y group of PMUs, the 
master of the next set of PMUs released may check the 
vector process queue for the schedulability of a vector proc
ess. However, if the VP queues are empty, any PMU not 
currently assigned to an SIMD process may periodically 
check the VP queues for a process. Alternately, if an empty 
VP queue becomes non-empty it may signal PMUs not as
signed to an SIMD process for service. 

Figure 5 shows a typical queuing model which may be 
used to study the performance of various scheduling disci
plines for SIMD and MIMD processes in the PM4. In this 
diagram, VPQi is a queue which buffers vector processes 
that require a set of 2{3f PMUs for their execution. SPQ is a 
queue which buffers MIMD processes. Each process may 
have tags that will indicate the dependency of the process 
on another. 

Control and scalar instructions in an SIMD process are 
executed directly by the VCU with no need to broadcast 
them to the PMU. However, some information may be 
broadcasted to the PMU during such executions to inform 
the PMlT of current ~ctivitie" in the vC'n. During the exe
cution of a sequence of vector instructions, the veu may 

issue a MASKing instruction to select the necessary subset 
of PMUs among the PMU group allocated to the VCU. Only 
the masked (enabled) PMUs will execute the broadcasted 
instructions while the remaining allocated PMUs can con
tinue executing their resident MIMD processes. A DEAL
LOCATE or RELEASE instruction is needed to release part 
or all of the allocated PMUs when the SIMD process or 
subprocess is completed. 

Figure 6 illustrates a simplified state transition diagram 
for each PMU assuming the VCU is operated in uniprogram
ming mode. States cf>, K, V and correspond to the PMU 
being idle, executing a kernel process, vector process or an 

State: Description 

cf>: idle 

K: kernel 

V: SIHD 

S: HIHD 

ECPk 

Figure 6-State transitions in P\1U for SIMD and MIMD modes. 



MIMD or Scalar process respectively. The events which 
trigger the state transitions are listed below. 

E «px-Arrival of a new process 
EK<f>-Departure of a last process in PMU 
EKy--Vector process initiation on allocated PMU 
Eyx-Trap condition in SIMD process 
EKs-----MIMD process scheduled 
Esx-Trap condition in MIMD process 
Eys-----Suspended SIMD process causes process switch to 

MIMD 
Esy--Process switch to ready-to-run SIMD process 
Ess-----Process switch from one MIMD 'process to another 

It is expected that the utilization factors of the PMU s will 
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be high if we assume that deadlock problems are eliminated 
in this multi-mode multiprogrammed operating system. 

APPLICATION AREAS AND COMPUTATIONAL 
TASKS 

The PM4 system was designed for the following applica
tions. Both statistical and syntactic methods 23.24 are to be 
used in image enhancement, feature extraction, picture seg
mentation, pattern recognition and scene analysis. 

1. Industrial automation (automatic assembly and inspec
tion) 

2. Medical diagnosis of X-ray pictures and cytology anal
ysis 

TABLE I.-Computational Tasks Required for Various Application Problems in Intelligent Systems 

Image Processing 
& Pattern Clas- OIl/) I/) 

sification e OJ l) 

I 'r- 01 'r-

Problems 'r- ,.... L. IU I 01 .J::. 
I/) - ..... :I ..... 01 e Q 

e e I/) IU VI 01 u e 'r- It) 
0 e ..... 0 It) e u e OJ·r- .J::. L. 

'r- 0 e 'r- e - O·r- 01 VI '+- It) L. VI U l!) 
OJ ..... 'r- OJ OJ ..... OJ 0 U or- .... e OJ O.J L. L. ..... 

Typical 01 It) OJ ..... OJ E mit) L. 'r- ..... I/) 'r- :I o It) It) L. 
It) L. 01 It) 01'11 It) ..... :I ..... e It)'r- L. IT 01 OJ uo.. ~ OJ 

Computa- E ..... It) L. It) u OJ 01 E e ..., u L. u ..... OJ''''' e OJ ..... 
>-4 VI E 0 E e Ole >-4 OJ It) It) OJ 'r- It) ..... e 'r- L. L. 01 .J::. :I 

tional Tasks 'r- >-4 ..... >-41l) Il) 'r- E OJ L. ..... '+-"" VIr; VII-- o e Q a. 
01 I/) .c: E'O en u. ..... ..... VI ::J u L. L. 'r- Il) E 
OJ OJ e >-4 0 OJ X ~; ...... - OJ IU L. L. L. a 

0:: 0:: UJ U V'l UJ U I- a.. a UJ l!) u 

Solving Linear System X X X X X of EQuat ions 

Solving Noniinear X X System of Equations 

Matrix Multipl ication 
X X X X X and Inversion X 

Polynomial X X X X X Evaluation 

Nonlinear X X Mapping 

Interpolation X X Methods 

Iterat i ve Relaxa-
X X tion Methods X 

Transformation 
X X X X g, Convolution Methods X 

Linear and Non-
X X linear Programming 

Searching & X X X X X X X Sorting 

count ing, Backtrack-
X X X X ing & Estimating X 

Graph 
X X )( X X Operat ions 
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3. Remote sensing of LAN DSA T pictures 
4. Automated cartography and stereo compilation 
5. Target identification and change detection 
6. Computer vision and three-dimensional s'cene analysis 
7. Recognition of human faces, fingerprints and hand

written characters 
8. Speech recognition and understanding 
9. Pollution control, archaeology and socio-economics 

Typical computational tasks associated with above appli
cation problems are summarized in Table I. Both numerical 
and combinatorial (syntactic) algorithms need to be effi
ciently implemented. An illustrative example is given here 
to show the advantages of using parallel processing in syn
tactic pattern recognition and image analysis. 

It has been demonstrated that tree languages are efficient 
in describing and analyzing two-dimensional pictorial pat
terns. 25 Application examples include classification of bub
ble chamber events,26 fingerprint identification,27 texture 
analysis 28 and recognition of objects of LANDSAT im
ages. 29,30 In order to effectively analyze noisy and distorted 
images, the use of error-correcting tree automata has been 
suggested. 30,31 The price to pay for the error-correcting ca
pability in image analysis is the increase of computation 
time. However, with a parallel processing computer system, 
such an increase of computation time can be easily reduced. 
An SIMD parallel parsing algorithm for tree languages has 
been recently proposed. 32 Computer simulations based on 
the analysis of five tree languages L(G1) , L(G22), L(G34), 
L(G3R), L(~R) (one for highway recognition is a LANDSAT 
image and four for texture analysis, with a window size of 
9x9 pixels) have produced the interesting results shown in 
Figure 7. Furthermore, since all the windows in an image 
are indepen~ent in this problem, they can certainly be proc-
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Figure 7-Speed-up for a 9x9 window. 
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essed in parallel to improve the processing speed. With 100 
window patterns processed in parallel, the speed-up of high
way recognition (L(G1» result is shown in Figure 8. It is 
noticed from Figures 7 and 8 that either the parallel parsing 
of tree languages or the parallel processing of image win
dows would result in significant speed-up of computation 
time in image analysis and recognition. 
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Transportable image-processing software* 

by R. G. HAMLET and A. ROSENFELD 
University of Maryland 
College Park, Maryland 

INTRODUCTION 

The -computations of image processing, like those of many 
technical disciplines, require substantial programs to per
form. These programs are often organized into "packages" 
with the intent of making them easy for the (computer) 
novice to use. Access to a package of programs is an im
portant resource, since its creation is beyond the capabilities 
of all but a few research groups. Unfortunately, while pack
ages are invaluable, they could often be improved in the 
following ways: 

1. They could be easier to use. The intellectual task of 
communication with the package is too difficult, the 
commands too peculiar and errors too easy to make. 
When things go wrong, very little help is available. 

2. They could make more efficient use of the underlying 
machine and its operating system. A package may use 
very sophisticated algorithms for its discipline-oriented 
operations, while at the same time using the most cum
bersome mechanisms for controlling the resources of 
the machine. Its authors are seldom systems program
ming experts. 

3. They could be easier to move from machine to ma
chine. In the process of getting the package to work at 
all, many peculiarities of the programming language (in 
its local implementation) and the local system become 
entwined in the code and getting it to run elsewhere 
may be difficult or impossible. 

4. They could be easier to understand, modify and ex
tend. To add a new routine or alter the behavior of an 
existing one may not be too difficult for the program's 
author, but for others it may be impossible. If many 
changes are made independentiy, combining them 
without conflict is difficult. 

Improvements in package programs must resolve the con
flict between quality (Items 1, 2 and 4) and transportability 
(Item 3). Here, "transportability" is to mean more than the 
ability to export software from a development site to many 
others. We have in mind a software system moving freely 

* This work was partially supported by National Science Foundation Grant 
MCS 77-18719. 
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among research groups using a variety of machines, in which 
modifications arise simultaneously in several places. In this 
situation the structure of the programming package is all
important-it must be rigid enough to support changes that 
conform to the style of the original; yet, changes must be 
easy to make. In the research environment no single group 
can long affor4 to maintain and support a large, changing 
system, so the system must be so constructed as to take 
care of itself. . 

Although the scheme presented here applies to many 
kinds of packages, it is designed to support image pro
cessing. From a systems -point of view, this means that the 
computations of the package are characterized by a short 
interchange of control information with a human user, which 
determines the amount of resources needed (and these vary 
greatly), followed by operations that are either input-output 
limited, or in which there is little overlap between input
output and computation. This rough characterization is used 
to decide the compromise between quality and transporta
bility. 

In the sections to follow, we assume that transportability 
is a requirement, then attempt to find a way to attain it with 
the smallest loss of quality. The second section considers 
the programming language to be used; the third section deals 
with the operating system and program organization is the 
subject of the fourth section. 

PROGRAMMING LANGUAGE 

Even a cursory survey of existing computers shows that 
FORTRAN is the only programming language with a stand
ard, widespread implementation. FORTRAN is widely im
plemented partly because it is already so popular. but also 
because it was designed to fit the von Neumann architecture, 
still in widespread use. Most FORTRAN implementations 
"extend" the ANSI standard of 19661 in some (nonstandard) 
way; of course, these extensions are not transportable. 

The deficiencies of FORTRAN are widely recognized, but 
they are largely the other side of the transportability coin
the language allows no control of computer resources; ex
cept for the ability to write arithmetic formulas, it is not 
very high-level and the facilities for separating, protecting 
and centralizing information are minimal. If a modem lan
guage designed with software engineering in mind were 
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widely available, its programs could be moved more easily 
than FORTRAN programs can be. For example, a language 
like Alphard 2 produces programs that are easy to move. The 
kicker is that Alphard compilers (when there are some) can 
be expected to be very difficult to implement on a variety 
of machines, since the compiler (and its run-time support) 
must make up the gap between the machines and the trans
portable programs. 

The history of digital computers certainly shows that it is 
foolish to await the rapid spread of good ideas-somehow 
the bad ideas wind up cheaper-so there seems little danger 
in making FORTRAN work properly rather than waiting for 
(say) Pascal. 3 Furthermore, an ambitious language may 
never spread to the range of machines on which FORTRAN 
already exists. Major vendors will have to deal with better 
languages; many mini- and micro-processor systems may 
never support them. We thus consider how FORTRAN can 
be tamed and transported. 

RA TFOR 4 is the most popular version of structured FOR
TRAN. It has the virtues of a published definition and a 
partial inverse processor. 5 Perhaps it should have been de
signed with one less iteration construct and one more con
ditional construct, but its wide acceptance more than com
pensates for such matters of taste. If we specify RATFOR 
as the implementation language for a transportable package, 
we must consider the transportability of RA TFOR itself. 
Although the preprocessor exists for many machines, that 
is not sufficient. Minor variations result from conflicts be
tween the definition 4 and its presentation in a text6 and from 
an unfortunate choice of delimiting characters unavailable 
on many machines. The solution is evidently to transport 
RATFOR along with the package, and the techniques for 
doing so are well developed. 7 RAT FOR is written in RAT
FOR, and once any preprocessor exists, a pure FORTRAN 
version is available, for use on any machine. (It is tempting 
to use this mechanism to extend RATFOR, for example, to 
include a fancy macroprocessor; 8 we judge that the depar
ture from the published standard is not worth the power 
gained.) 

Even with a universal RATFOR available, there may be 
difficulties in transporting programs and difficulties in writ
ing them, because RATFOR is a "permissive" translator
most of a source is never examined, but simply passed along 
to FORTRAN. There are three difficulties: 

I. Errors in the source are first detected by the FOR
TRAN compiler, and difficult to relate back to RAT
FOR. 

2. Nothing prevents the FORTRAN imbedded in the 
RATFOR structure from being machine-dependent, so 
that although it gets through compilation on a machine, 
it will not run properly. 

3. RATFOR makes no attempt to eliminate a number of 
legal but error-prone constructs in FORTRAN, notably 
involving undeclared variable names and inconsisten
cies in usage. These usually result in strange run-time 
behavior. 

lJifticulty (I) is more annoying than fundamental: the oth-

ers can be eliminated without compromising transportabil
ity, by a mechanism similar to preprocessing-the RA TFOR 
source can be checked for problems before being translated, 
compiled and run. The PFORT verifier9 is a tool of this kind 
that attacks Problem 2-it checks that the FORTRAN does 
not go outside the 1966 ANSI subset and that certain ma
chine-dependent tricks are not used. 

There is one transportability problem of any word-ori
ented language that PFORT makes no attempt to solve, that 
of numeric precision in the presence of different word sizes 
and arithmetic algorithms. Techniques have been devised to 
attack this difficulty, 10 but for the purposes of many pack
ages, it is sufficient to trust the mathematical subroutine 
library of the target computer. 

Problem 3 remains. For all that programmers try to keep 
usage consistent, mistakes are easy to make. In FORTRAN, 
a well-meaning programmer cannot see if his intentions were 
carried out. Since most of the errors that we want to detect 
occur across the boundaries of separate compilations, 
checks must operate on the complete package of subpro
grams as a single source. It is convenient to distribute a 
package as a single file on magnetic tape, so the preproces
sor that goes with it should divide the routines for separate 
compilation and checking can then be done on the composite 
source. The following seems a minimal set of operations, 
and its implementation is no more difficult than building an 
identifier scanner coupled with a symbol table of usages: 

a. Check for declaration of all variables and observance 
of conventions in variable names. (The latter is nec
essary to avoid conflict in libraries.) 

b. Check for consistency across subprograms-argument 
counts and types, COMMON sizes and types, etc. 
More restrictive conventions can be enforced here: for 
example, one can forbid potential side effects. 

c. Prepare a cross-reference table for all symbols of the 
composite program, listing usage and location in the 
source. (This can be helpful in decoding FORTRAN
generated error messages.) 

Writing in RATFOR according to a set of conventions, 
then checking for those conventions before preprocessing 
and compilation, is almost as pleasant as programming in a 
modern language. On many systems it is more cumbersome, 
since several programs are involved in a sequence, but the 
payoff in debugging time saved is excellent. 

OPERATING SYSTEM INTERFACE 

FORTRAN's deficiencies as a low-level language-its in
ability to get at this or that machine feature-have always 
been supplied by a "few littlE; assembler routines." As op
erating systems have grown and excluded regular programs 
from direct manipUlation of shared resources, the most val
uable machine instructions have become the system service 
calls. Since shared resources are scarce, a program that 
makes intelligent use of operating system service calls can 



run more efficiently than one that does not. Two obvious 
examples are 

1. A program that calculates an optimal memory alloca
tion will give better response at less cost than one 
which runs with the largest space it might ever need. 

2. A program that knows its pattern of record requests on 
a file can seek these records more efficiently than can 
any standard access method. 

Proper support services are avaiiabie in aimost every sys
tem, but in varied form. For transportability we need a 
standard FORTRAN-callable interface to system functions. 
This interface must be kept so small that its implementation 
on a new machine is easy. At the same time, there is a need 
to make operating system services easy to use, and to tailor 
them to the application. These conflicting needs can be 
resolved by separating the interface into two parts-a' 'ker
nel" and a "surround." 

In the kernel we seek the bare minimum of code, which 
we expect to be machine-dependent. The kernel is to be a 
collection of entry points that transmit essential system 
functions outward without regard for convenience of use. 
This kernel is always too large to best serve transportability, 
partly because there are many needed features. Part of its 
size results from seeking a set of features common to all 
systems-the smallest set may not be implementable in some 
cases. This factor also works against the quality of the ker
nel-it tends to mimic the worst system on which it must be 
implemented rather than the best. 

Outside the kernel we disguise its awkward properties 
with another level of interface, the "surround." The sur
round contains only machine-independent FORTRAN code. 
It is therefore appropriate to make its routines easy to use 
and not worry about their extent. The surround has the 
special property that although its calling sequences are fixed, 
and it is viewed as a part of the operating system interface, 
its code may be juggled in package conversion. In contrast, 
the kernel routines require modification to implement their 
standard calling sequences; in the package code outside of 
the surround the code is movable, and the calling sequences 
themselves are subject to alteration. It can happen that on 
some particular system one of the surround routines is easy 
to rewrite as a direct system call, with important advantages 
in efficiency. So long as the entry sequence is not changed 
this is encouraged, but no package user needs to make the 
change and it has no effect should the package be retrans
ported. 

Functions supported b.-v the kernel 

A detailed description of the interface kernel, with FOR
TRAN calling sequences and implementation hints for many 
machines, is presented in Reference i i; here we only indi
cate the necessary functions. 

Random-access file operations form the heart of the ker
nel. It must be possible to create mass storage files, manip
ulate their names and protections and read or write them in 
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arbitrary-sized blocks in a true random-access fashion. The 
input-output operations themselves, and the file formats, 
should be at the lowest level the operating system provides, 
to minimize memory and processing overhead. Thus it is 
important that the operations move data directly to/from 
FORTRAN arrays without invisible buffering; where pos
sible, the operations should be started and the calling FOR
TRAN routine permitted to continue, waiting for completion 
only when necessary. It is common to provide routines of 
this kind for FORTRAN use and the implementation is 
straightforward. 

FORTRAN provides no memory control facilities. In 
image processing it is often desirable to calculate memory 
space required for a given picture (particularly for input
output buffers). The usual implementation of this scheme in 
FORTRAN uses "get" and "put" routines to move blocks 
of words out of and into dynamically allocated space. This 
is unsatisfactory because the overhead is high whenever the 
elements are addressed in small groups. It is much better to 
provide a single array whose addressing is efficient and 
which can grow and shrink as needed; in almost every sys
tem it is possible to place such an array in memory so that 
it can indeed change its real size. 

Process control is needed in the kernel to support the 
open-ended programming techniques suggested in the sixth 
section. The minimum facility required is the ability for an 
executing program to "call down" another as its replace
ment, without the overhead of more than an input operation. 
In some systems implementation is difficult, but a variety of 
tricks exist. 

The final portion of the kernel is concerned with user 
communication, in the form of cosmetic features and error 
control. Most systems can provide information such as the 
date and time. Of more importance are parameters such as 
the best record sizes to use for disk operations and the 
precision/storage capacities of machine words. Run-time in
formation should include resource usage a.nd limitations, 
particularly for memory. The more a package can find out 
about what is really happening in the underlying system, the 
better it can communicate with its human users about prob
lems encountered in execution and the more efficient it can 
be. Error control is also important. Most errors are unex
pected in the sense that they appear as failures at a very low 
level, and are then communicated up to be processed by the 
package code. The kernel must see to it that all errors are 
in fact handled in this way, and in some systems that can be 
very difficult, since the error appears first as an asynchron
ous interrupt. Something similar to PUt's ON unit can us
ually be arranged, leading to cumbersome but complete con
trol. 

Functions supported by the surround 

Serial file operations can be easily built on the random
access ones of the kernel and there is seldom any reason to 
rewrite these outside the machine-independent FORTRAN 
versions, since these can be better adapted to a package's 
needs than the usual serial routines of either FORTRAN or 
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most systems. For example, it is easy to specify a buffered 
scan through a file in which (say) every tenth record is 
actually read; or, a file can be reblocked to take advantage 
of the availability of large buffers. 

The surround can also be used to eliminate functions from 
the kernel that cannot be accomplished on all machines. For 
example, if immediate-return input-output operations are 
impossible, placing the entries in the surround allows imple
mentation of the starting operation as "start and wait" and 
waiting as "no operation." 

Most interactive communication with package users can 
employ the FORTRAN formatted input-output package. The 
memory overhead of the format-scanner routines is high, 
however, so formatted i-o can be eliminated by including 
some functions in the surround. 

Experience with two systems 

An operating-system interface has been implemented on 
two very different systems. The first is Univac 1100 Exec 
8, an "old" system. The second is PDP-11 UNIX, which is 
about as "new" as operating systems come. The design 
phi10sophies of these two are also almost opposite-the 
Univac is very low-level, compensating for its deficiencies 
with large library packages; UNIX is designed to support 
high-level programs. 

A technique designed to reduce the implementation effort 
was used for the kernel. On each machine a routine was 
written in assembler to provide FORTRAN access to the 
necessary system calls. For example, on Exec 8, one such 
call is for programmatic execution of a control statement; 
under UNIX one is for direct execution of another program. 
Neither system has the other's service; their different ser
vices are needed for a "change to new program" function 
of the kernel. Once these basic services are available, the 
interface routine to employ them is written in FORTRAN. 
The code is peculiar to one machine, but it is often easy to 
adapt to another. In the example, 30 lines of FORTRAN are 
common to both systems, the Univac routine has 20 extra 
lines setting up its peculiar system call, while for UNIX this 
takes only one line. 

In another example, the input-output part of the kernel 
keeps a table of open files and their characteristics. The 

TABLE I 

Property Exec 8 UNIX 

Systems programmer experience 
(excluding learning assembler) 5 years 5 hours 

Assembler "service caller" 
Number of system calls 50 15 
Code instructions (excluding 

dispatch tables) 80 100 
Hours to design, code 15 10 

FORTRAN Routines 
Number of interface entries II II 
Support function routines 20 14 
Total RA TFOR statements 700 530 
Hours to initially design, code 30 
Hours to convert 10 

format is different for the two systems, but the code that 
uses the table is exactly the same. 

Code characteristics of the complete kernel are summa
rized in Table I. 

Because the interface routines are largely independent of 
each other, they can be tested individually. An interesting 
point is that the test driver is machine-independent, so it 
can be distributed with a package to help the systems pro
grammer who must convert the kernel. Debugging is further 
aided by the existence of the package itself. It may contain 
bugs, but when one of its working features goes wrong, it 
tends to point to an error in the kernel. 

OPEN-ENDED SOFTWARE 

The package software that is to be built in FORTRAN on 
the operating system interface can be expected to undergo 
almost constant modification, to fit the changing needs of a 
community of research users. Under this stress it is easy to 
imagine a "good" package turning into many disparate 
"bad" packages as the code is modified by many unskilled 
hands. Insult is added to injury when even the most slipshod 
changes are hard to make, requiring extensive study of the 
existing code, then extensive debugging. The internal struc
ture of the package must protect against such changes. 

Careful adherence to programming and documentation 
standards are often offered as solutions to the problems of 
program modification. But it is observed that not everyone 
will follow standards and not everyone who tries, succeeds. 
The bad easily drives out the good. The only structure that 
will preserve itself is one that is easier to work within than 
to violate. 

The primary technique for structuring software to en
courage change is that of centralization and information 
hiding. 12 Operations should be confined to a single place in 
the code and encapsulated with access to just the informa
tion needed to perform properly. For example, in a package 
program, the user interface is a candidate for this treatment. 
If all interactive communication is confined to a collection 
of routines, rigidly bounded by a well defined interface 
across which the information passes to other parts of the 
software, several advantages are gained: 

1. It is easy to learn to employ the communication rou
tines, because only the stable interface need be mas
tered. 

2. Collecting the code in one place makes it easier to 
study, and if it is modified, the modification applies 
uniformly to all parts of the system. 

3. When the centralized code is not in use, it may be 
possible to get rid of it, reducing the memory overhead. 

There are two common methods of circumscribing oper
ations in software. The operation may be implemented as a 
separate, stand-alone program, linked to other programs 
only by files. Or, the operation may be implemented as a 
collection of sub-routines and data structures within a pro
gram, communicating with the rest of the program through 
parameters and global data. In the first mechanism separa-



tion is easy to enforce, but it is less easy to provide support 
functions for the independent programs; in the second mech
anism support routines are readily available and the problem 
is to preserve the separation of the parts. Both mechanisms 
are valuable in an image-processing package. 

Communicating independent programs 

Of course, any two programs can "cooperate" by inter
changing information in files. The user interface of a package 
is a good example. One program is the collection of routines 
that interact with the human user, and another is devoted to 
actually processing the information so obtained. Communi
cation between the programs is through a file of commands/ 
results. The separation is perfect in the sense that the pro
cessing program does not interact with the user, and the 
user 'routines do not process the information they receive. 
Furthermore, memory overhead is handled perfectly by this 
organization-the scanner, command tables, etc. are en
tirely gone once processing starts, leaving only a standard
ized command, already checked so that little error recovery 
code need be part of the processing. The payment for this 
ideal separation comes when one of the independent pro
grams is changed-how can the changes be taken into ac
count by the other programs without modifying them also? 
In the example, suppose the behavior of one processing 
program is changed. How can this be automatically reflected 
in the user dialogue? Similarly, how can the communications 
program really check input commands when it does not 
know exactly what the processing program intends to do 
with them? 

These problems can be solved by arranging another level 
of communication between the independent programs. Each 
can notify the others of its capabilities in an initialization 
run, resulting in the creation of a kind of "configuration" 
file. This file records what programs exist, what operations 
they perform and describes the commands for those opera- . 
tions. When a change takes place it is only necessary to 
repeat the initialization run to have its effect felt throughout 
the collection of programs. This organization suggests an
other independent program function, that of explaining the 
system's capabilities and operation. A "help" program 
would make use of the configuration file to explain difficul
ties and provide on-line documentation, with this high-over
head operation entirely divorced from all "working" pro
grams, yet necessarily up-to-date. 

The two essentials for cooperation of independent pro
grams are the ability of one to invoke another (and itself be 
reinvoked to inspect the results), and the definition of pro
cessing tasks in a format that can be concisely described in 
a configuration file. The operating system interface provides 
the former and the latter is a natural consequence of any 
command language that can be formally described. 

Linked sub-routine organization 

The primary reason for encapsulating package operations 
as complete, independent programs rather than as loadable 
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overlays is that overlaying is done very differently on dif
ferent machines, and is usually a high-overhead process. 
Nevertheless, connecting groups of sub-routines by conven
tional linking is often a better organization than that of 
separate programs. In particular, this organization is essen
tial for cascaded processing such as neighborhood opera
tions on an image. In this situation the separate-program 
organization would lead to as many passes through the image 
file as there are operations, while subroutines called in se
quence would require only one pass. The question for linked 
s'ub-routines is how we can centraiize support functions and 
make it easy to add sub-routines and integrate them with 
existing ones. 

There is no difficulty in passing information about sub
routine capabilities across program boundaries-the de
scription in the configuration file can be broken down by 
routine within program. Rather, the problem is that existing 
routines interact in an intricate pattern, and a new or altered 
routine must be allowed to participate without its author 
mastering very much of the complex code environment. We 
illustrate how this can be done for the composition of neigh
borhood operations. 

Neighborhood operations in cascade can be performed on 
a very restricted portion of an image. There is always a 
"window" that, moving serially through a file, contains all 
the pixels needed to perform one step of the composite 
operation. Some operations in the cascade make use of the 
results of others as well as data from this window, but it is 
straightforward to arrange row buffers so that all of the 
necessary data is present at once. Control flow is more 
complex, since one operation (or sequence of operations) 
may have to be repeated before the next can proceed. An 
open-ended package requires that the routines which partic
ipate in the sequence be written as unit operations, trans
forming a fixed number of rows of input into a similar output. 

To add a routine requires no understanding of the complex 
driver mechanism that adjusts buffer pointers and sequences 
the operations, but only the understanding of the parameter 
conventions for receiving unit input and delivering unit out
put. The existing routines are selected and called through 
tables, which must be updated to reflect changes. This or
ganization is as flexible and easy to extend as might be 
imaged. The routine-name table is the basis for building the 
configuration file, so an independent program interacting 
with users knows which neighborhood operations are avail
able, and what parameters each requires. Any sequence of 
these operations can be passed to the program in which the 
unit-operation routines are driven by the same table. The 
user-communication program can even determine memory 
requirements, and break the sequence up with intermediate 
files if not enough core is available for the necessary win
dow. 

PRESENT AND FUTURE PLANS 

Our immediate goal is the production of an image-pro
cessing package design that is both transportable in the wide 
sense described in the first section, and of high quality. As 
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a practical demonstration of this design we imagine the fol
lowing pieces of software: 

1. Operating system interface kernels for several ma
chines, along with documentation describing the im
plementation on a new machine. Operating system in
terface surround. 

2. Preprocessors for RATFOR and for extended syntax 
checking of transportable code, themselves transport
able. 

3. An independent user-interface module capable of 
checking commands for and invoking any number of 
processing routines, their operations described and dri
ven by tables. This module will include "help" infor
mation driven by the same tables. 

4. A sample processing module implementing neighbor
hood operations with almost arbitrary cascade and par
allel capabilities. 

Once this design has proved itself, it will be appropriate 
to extend it to a full-blown image processing package by the 
addition of other processing modules. This task will be less 
difficult than the complete creation of a package, but it is 
not easy. The major advantage is that once the effort has 
been expended, nothing like it should ever be needed 
again-the package should be adaptable to new situations at 
very low cost. 
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INTRODUCTION 

The data-handling algorithm in many current editors 2 uses 
a text which is a continuous string of characters. In this 
technique the characters are moved directly from their input 
source to the text string by expanding it in tue core buffer. 
The disadvantage of such existing systems is due to the core 
buffer constraint. The buffer can be extended to the auxiliary 
storage but will result in less efficient auxiliary storage ac
cessing. 

The data-handling algorithm presented here uses a text 
which consists of several substrings. Initially the text con
sists of only one substring which is the original version of 
the text. This text resides in the consecutive blocks of the 
scroll area of the tape; the characters carry smoothly across 
the blocks boundaries, producing a continuous string. No 
writing is permitted on this scroll area during the editing 
process. The characters which are inserted into the text for 
editorial changes are moved directly into a core buffer, pro
ducing new substrings. The substrings are logically inter
connected in a linear fashion through a map. The map, in 
fact, contains pointers to all the substrings in the text. 

DESCRIPTION OF THE EDITING PROCESS 

The editing process starts with the originai version of the 
text residing on the tape unit. Initially the map will contain 
pointers to this text string. An entry consists of the location 
of the string in the storage and its length, i.e., the number 
of characters in it. Figure 1 below, for example, shows that 
the pointer which corresponds to the string of characters 
"'ABCDEF," consists of two integers, LA, the address of 
the string starting with the character A, and the length 6. 
The string A through F is assumed to reside on the tape 
unit. 

Suppose an input string "xyz" is to be inserted between 
the character positions D and E of the string as shown in 
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Figure 2. Instead of physically splicing in this string between 
D and E, it is moved into a buffer located in main storage. 
The entire string now consists of characters in the following 
sequence: 

1. Characters ABCD 
2. Characters XYZ 
3. Characters,EF 

on tape 
in core buffer storage 
on tape 

We have given the name "substring" to each of these 
smaller strings (e.g., "ABCD") and the map of Figure 1 is 
updated to contain three pointers to identify each of the 
above three substrings. The first entry in the map (Figure 2) 
consists of the location of the first character A of the sub
string" ABCD" and its length, 4. The second entry contains 
the location of the first character x of the substring "xyz" 
and its length 3. The third entry consists of the location of 
the character E of the string "EF" and its length 2. The 
location of "'E" is LA +4 because it is four character posi
tions to the right of the character A in the string 
"ABCDEF." A delete command simply updates the map. 
If the character "Z," for example, is deleted the length field 
of the second entry in Figure 2 is changed from value 3 to 
2. 

When the input buffer is full an overflow area is needed 
to save the characters currently being input. Instead of this 
overflow area the buffer can also be emptied onto a disk 
storage. In the latter case, however, the most recently input 
characters will no longer remain in the main storage; two 
input buffers can be used to eliminate this problem. One 
difficulty of transferring substrings onto the disk is that the 
substring locations in the map have to be updated. To avoid 
this update logical addresses are used for the substrings. 
Several of these substrings are stored in fixed size page. A 
substring location is now given by the page number and the 
offset of the substring in the page. To handle all characters 
uniformly, the initial text on the tape is assumed to be split 
into fixed length substrings each fitting into separate pages. 
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Address Length 

6 

Figure I-Map for the character string "ABCDEF" 

Paging scheme is simple here because the content of a page 
is not directly updated when they are on the tape or on disk; 
this is done logically through the map. 

The direction of data flow between the storage mediums 
is shown in Figure 3 below. The flow of data from disk and 
tape into core is required to regenerate any part of the text. 

GROWTH OF THE MAP 

The growth in the number of pointers in a map is due to 
the splitting of the substrings by the edit operations into 
more substrings of smaller sizes. The number of substrings 
created for each edit operation depends on the type of edit 
function (i.e., insert, delete and replace) and the editorial 
point. Figure 4 below shows the number of new entries 
created by each edit function. Some of the factors that 
influence the growth rate of the map are the type of editing 
task the user is performing, the familiarity of the user with 
the editor, and the type of edit functions available on the 
editor. Figure 5 below shows the growth rate of the maps 
on an experimental editor described in Appendix 1. 

BOUND ON THE MAP SIZE 

The size of a map depends on the growth rate of the 
pointers in the map and the time a user spends in editing the 
file. Let YI be the growth rate of the pointers in the ith map 
buffer. Then at anytime the total number of pointers in the 
buffer is less than or equal to t. Yi , where, t is the total time 
spend in editing. The total number of pointers for editing N 
files is given by 

~ 

t. L Yi (for pooled buffer) 
i=1 

A B C ~E F 

~ 
Address Length 

LA 4 

L 3 
x 

LA+4 2 

Figure 2-Updated map 

Figure 3-Data flow between storage devices 

The probability of overflow for a buffer size of N.a is as 
follows: 

Pr (I.N Yi2:: N.a) 
i=1 t 

where a is a constant. 

Let {yd be a set of statistically independent, identically 
distributed random variables. Then by Markov inequality 
the bound is given by the relation 

P ( ~ N.a) t.Ey r ",-Yi2:-- :5--
i=1 t a 

where Ey is the expected value of the random variable y. In 
direct editing system the bound on the size of the buffer is 
computed as follows: 

Let F j be the size of the ith fIle. Then the storage require
ment for N fIles is given by 

So the probability of buffer overflow for an in-core buffer 

,..... __ -po ___ -,~--_characters in the text r I consisting of three substrings 
~~, ". h h A A A A I I I I I A A A A A A ln t e sequence as sown 

Note: 

I I I I I I 
I I I I I I 

~ ~ ~ ~ ~ f 

A: characters on auxiliary storage 
I: characters in the input buffer 
a,b,c,d,e, and f denotes the editorial point. 

Insertions are made preceding the character 

Editoria 1 Insert Delete Replace 
Point 

a 2 a 1 
b 1 a a 
c 2 1* a 
d 2 a a 
e 1 a 1 
f 2 1* 2 

*Delete function does not produce any new substring if it is 
t:hp pnd rhilri'lrtpr nf thp <;llh<;tri'lg tn hI" rlplptpn 

Figure 4-Number of pointers created for each edit function 
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Figure 5-Probability density function of the growth rate of the pointers in 
the map 

size of N.o: is bounded by 

Pr L Fi2':N.o: :s 2 (
" ) E 

i=l 0: 

where EF is the expected value of the variable F. From 
Figures 5 and 6 one can compute the value of t· Ey and EF 
to be 310 and 1140 DEC- 10 words respectively. A session 
time of two hours i~ assumed. Thus EF~t'Ey which implies 
that the map requires much less core storage than the direct 
editing system. 

GROWTH RATE OF INPUT CHARACTERS 

Figure 7 shows the growth rate of input characters per 
user in the experimental editing system. A typical editing 
session of two hours has been assumed. The bound on the 
growth rate, of course, is determined by the typing speed of 
the user. Each user in the experiment was using CRT ter
minals to debug and run the scientific programs. The aCtual 
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Figure 7-Probability density function of the growth rate of new data 

growth rate is much smaller than the speed at which a user 
can type. In fact, users working at display terminals appear 
to spend much of their time displaying different parts of the 
text and only occasionally making an editorial correction. 
Figure 8 below shows the overflow rate for different input 
buffer sizes. This is computed on the basis of the growth 
rate of input characters in Figure 7. 

PERFORMANCE COMPARISON OF MAP EDITING 
WITH A DIRECT-EDITING SYSTEM 

One commonly used data structure for a direct-editing 
system is a continuous string of characters stored in the 
logically contiguous blocks of the tape unit. 2 Here, a block 
is simply the transfer unit between the tape and the main 
storage. Locating any part of the string on the tape unit, 
however, takes longer time because the blocks are accessed 
sequentially. This problem is eliminated by storing the entire 
text in random access core storage. But the typical con
straint in the size of core storage often allows only a part of 
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Figure 8-0verflow rate of the new data buffer 
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the text to remain in it while the rest is resident on the tape 
unit. Whenever the data to be edited or displayed is not in 
the core, the new data is read in from the tape unit by 
scrolling through the text. Many times this process requires 
the re-writing of data from the core to the same tape unit. 
These write operations slow down the scrolling process be
cause the sequence of read and write operations involves 
reversing the tape motion. This reversal occurs more fre
quently when core buffer sizes are small. Writing is com
pletely eliminated in map editing, thus considerably improv
ing the access speed of the tape drive. 

In a direct-editing system the insert or delete operation 
causes the character strings to expand or contract within the 
core buffer. This character movement can be reduced to 
some extent by inserting sparingly null characters in the text 
string l . But the reduction of character movements by this 
method will depend on the nature of the programmer's ed
iting pattern. In map editing these character movements in 
core is completely eliminated. In many tape systems writing 
in place is not permitted because positioning the tape at a 
precise location is not possible; here direct-editing is impos
sible. Usually, tapes are completely rewritten for making 
any update changes. 

CONCLUSION 

The increased processing time in this editing system is 
due to a considerable amount of fragmentation of the text. 
The substrings need to be remapped, sometimes, into one 
continuous string for improved editor performance. This 
remapping is done by copying the substrings into a scratch 
file on the disk. 

APPENDIX I 

t.xpaimental Editor 

This is a CRT-oriented text-editor implemented on a PDP
lO time-sharing system at Yale University. When the user 
is editing a file, his CRT screen appears to be a window on 
the target file. This window can be moved up or down to 
display any part of the file on the screen. A cursor on the 
screen is used to point to the place where the editor is to 
perform an editing function such as inserting and deleting 
text. In most non-CRT editors this is accomplished by typing 
a line number or the surrounding text (context), neither of 
which is as convenient or natural as being able to directly 
use the cursor. This editor works in the user mode under 
the standard PDP-lO operating system and uses its file struc
ture. 

The general format of the edit commands is as follows: 

(Enter) Parameter (Edit-function) 

The angular bracket indicates a key on the terminal key
board. (Enter), for example, is a key on the terminal which 
when pushed echos a ')' character on the terminal to indicate 

that the system is in parameter mode. Any text now typed 
in goes into a parameter buffer without affecting the file. 
Parameter mode is terminated when any other function key 
is typed in and the parameters typed in are associated with 
that function. The command to delete next seven lines, for 
example, will be as follows: 

(Enter) 7 (delete-lines) 

The following commands are available on this editor: 

File functions 

These functions specify the target file to be edited. 

(Enter) File-name (Make- Creates a new file whose name 
File) is file-name and gets it ready for 

inputting text. 
(Enter) File-name (Set- Gets an already existing file 
file> ready for editing 

Screen movement functions 

These functions move the window represented by the CRT 
screen with respect to the file. 

(Enter) N (+ Lines) 

(Enter) N (- Lines) 

(Enter) N (+Pages) 

(Enter) N (-Pages) 

Moves the window N lines for
ward in the file 
Moves the window N lines 
backward in the file 
Moves the window N pages for
ward in the file (a page is de
fined as 20 lines-the size of the 
screen) 
Moves N pages backward 

Cursor positioning functions 

These functions move the cursor around within the window 
without moving the window with respect to the file. Up, 
down, left and right cursor keys are grouped together on the 
keyboard and have a built-in auto-repeat which makes it 
convenient to position the cursor rapidly at any desired 
place on the screen. Echo to the CRT terminal is generated 
at monitor level by the teletype service routine. This ensures 
instantaneous response and the editor may not process the 
functions till somewhat later. These four function keys do 
not need any parameter. 

Editing functions 

These functions are used to update the text on the screen. 

(Enter) N (Insert-space) Opens N spaces by expanding 
the tl;'xt 



(Enter) N (Delete-space) 

(Enter) N (Insert-line> 
(Enter) N (Delete-line) 
(Enter) N (Pick) 

(PUT) 
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Deletes N characters from the 
text 
Inserts N blank lines in the text 
Deletes N lines from the text 
Picks N lines from the text and 
saves it in the pick-buffer 
Does not require any parame
ier. Ii puts the content of the 
pick-buffer into the text. 

In all of the previous cases the editorial point is indicated 
by the location of the cursor. 
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How do we best control the 
flow of electronic information 
across sovereign borders? 

by PETER SAFIRSTEIN 
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When all is said and done, the United States must answer 
one basic question: How do we best control the flow of 
electronic information across sovereign borders? 

Essentially the question is one of power politics. Infor
mation is an entity which must be viewed as a form of 
power. When one considers that 50-60 percent of European 
domestic records are processed by American companies, 1 

it becomes rather apparent that the United States subse
quently exerts a great deal of power vis-a-vis Europe. Our 
"power," or ability to influence, does not end in Europe 
though, but extends rather significantly into the Third and 
Fourth Worlds as well, thus making our basic question a 
global one. 

Electronic technology, by providing the means to accu
mulate, store, change and transmit information on an un
precedented scale, 2 has recently emerged as an issue of great 
importance as well as controversy. The complex myriad of 
issues involves personal data, economic data, financial data, 
statistical data, etc. and affects our daily lives through tele
vision, telephones, satellites, etc. More specifically, elec
tronic technology's uses can be seen today in the airlines 
reservations network (SITA), the international banking net
work (SWIFT), creditworthiness evaluation data bases us
ually situated in the United States, global satellites providing 
remote sensing, corporation electronic information systems 
used in management controls for production, marketing, 
personnel, capital expenses and investment. 3 These exam
ples represent just a few of the controversial issues which 
governments are beginning to realize that they must con
front. 

Confrontation has emerged as a necessity for one overrid
ing reason directly related to the recent emergence of elec
tronic technology. That one concern is economic power. 
Europe has recognized that the uncontrolled flow of data 
creates hardships for its economy. European political pun
dits are frightened by the prospect of being cut off from vital 
data that is stored in foreign data bases. Hence, advisers 
warn of the dangers of dependence and advocate the crea
tion of domestic data bases. Europeans are quickly devel
oping their own data processing capabilities, yet they remain 
still far behind the Americans for primarily economic rea-
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sons. It should come as no surprise then, that European 
governments feel an incentive to make their data processing 
industry competitive with that of the United States. In order 
to make a domestic data base network more competitive 
with the United States alternative, Europeans are imple
menting non-tariff barriers that take on the very appealing 
appearance of privacy legislation designed ostensibly for the 
protection of the principles of individual rights and national 
sovereignty. 

It has been stated repeatedly that the principle questions 
involved in the transborder data flow controversy revolve 
around the issues of privacy and sovereignty. To view the 
controversy in terms of these areas is to beg the question. 
The essence of the dispute is, as stated above, eco11omics. 
What we are dealing with is a question of economic domi
nation which dwarfs the privacy and sovereignty questions 
to a status deemed secondary at best. 

Privacy and sovereignty are relative objectives within the 
framework of international affairs. It may be well and good 
to espouse a policy that fosters absolute privacy and total 
sovereignty; however, a realistic appraisal must encounter 
the notion that in a world of interdependence and tradeoffs, 
there can exist only limited privacy as well as limited sov
ereignty. The days have passed when we could have viewed 
both individuals and nations as islands unto themselves. 

Policies of privacy and sovereignty gain importance, 
though as convenient diplomatic tools to facilitate economic 
gains. That is precisely how Europe is using them. 

Sweden, France, and West Germany have already imple
mented restrictive privacy laws and five other Western Eu
ropean nations are considering similar action. These restric
tive laws are said to be the basis for the confrontation. Of 
course both sides want to have the economic edge and it is 
clear that the United States' business community is consid
erably opposed to any non-tariff barriers that might effec
tively exclude or hinder the opportunities within the Euro
pean community. On the other hand, France, for example, 
does not want to be dependent upon the United States for 
raw data. France considers its present situation to be trou
blesome. William Fishman of the National Telecommuni
cations and Information Administration noted France's pre-
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dicament in a speech before the 4th International Conference 
on Computer and Communications in Japan: "at a recent 
OECD Symposium in Vienna ... an official of the French 
government noted with alarm that France relies for a good 
deal of its macroeconomic planning on economic models, 
data bases and associated expertise located in the United 
States. "4 The dispute is a clear one, with both sides defend
ing vital national interests. 

Yet, it is the author's opinion that Europe should not be 
the dominant area of concern for U.S. policymakers and 
businessmen. The teachings of history indicate that the 
United States and Europe have been in competitive situa
tions before the postwar era and that reasonable statesmen 
have followed prudent guidelines of diplomacy toward re
solution of the differences. Because of the interdependent 
status of the Western developed nations and the complex 
nature of the entire array of policy linkages, a compromise 
is inevitable. 

The main domain of concern should be the Third World, 
yet the literature on the transborder data flow controversy 
focuses primarily on Europe. This is an unfortunate situa
tion, for unlike the European case, we cannot depend upon 
reasonable men and prudent statecraft to win the day for us 
in the Third World. 

The Third World is an area of significance to the United 
States (as is the Fourth World) because U.S. based multi
nationals have expanded into this area in large numbers over 
the past years so that they may take advantage of the wealth 
of natural resources and the plethora of cheap labor that 
exists in those regions. This considerable investment, 
though always at a risk, is now further threatened by the 
clamorings of the Third and Fourth World for a new eco
nomic order. In regard to information specifically, the major 
conflicts revolve around the precept of equity. Ali Shumo, 
of the Sudanese government, was referring to the upcoming 
World Administrative Radio Conference (WARC) where na
tions will reevaluate the allocation of the radio spectrum, 
when he stated to representatives of industrial nations, 
"Y ou have 90 percent of the spectrum and 10 percent of the 
population. We have 90 percent of the population and 10 
percent of the spectrum. We want your share." 5 

At the recent Spin Conference (Intergovernmental Con
ference on Strategies and Policies for Informatics) held in 
Torremolinas, Spain, Benin and Tunisia submitted a recom
mendation calling for aid in assisting developing countries 
to obtain "access to information located in national and 
international data banks in the more advanced countries." 
The impetus behind the motion is obviously a strive for 
equity. At that same conference, Bolivia, Morocco and Tun
isia submitted a resolution recommending that "countries 
which have developed substantial data base capabilities 
should provide in their programs for the use of scientific and 
technological information resources by all interested coun
tries. "61t is rather apparent that these nations have realized 
the "power" that information holds. 

What makes negotiations with Third and Fourth World 
nations so difficult is their perception of capitalism and co
lonialism (with all its distasteful connotations) as synony
mous. Hence, leaders of the nations can achieve great do-

mestic popularity and support by challenging the developed 
nations. 

Historically, consider the example of Nasser of Egypt. It 
was said that his power and influence rest on his ability to 
symbolize Arab nationalism as an idea and as a political 
force. As he walks on the world stage, millions of Arabs see 
him playing the role they would like to play and doing the 
things they would like to do ... When he challenges the 
great powers and takes daring risks in the name of Arab 
rights and dignity, and gets away with it, the Arab masses 
feel an emotional lift and a satisfaction that no Arab leader 
has given them within memory. 7 

Stated simply, Nasser achieved immediate political con
sensus by maintaining an obstreporous foreign policy. His 
death was heavily mourned by the masses despite the fact 
that his failure to provide substantive leadership left the 
Egyptian economy and standard of living in shambles. It is 
quite conceivable for Third and Fourth World nations to 
neglect their nations' standard of living status for immediate 
political support. This becomes much clearer when one 
takes note of a major paradox of our times: there is a political 
disincentive for widespread economic improvements. This 
is so for two reasons: 1) When Third World nations increas
ingly move toward modernity, their popUlation inevitably 
succumbs to discontent due to the principle of rising expec
tations. Citizens of a nation are told that political and eco
nomic subservience to technologically superior nations is 
necessary and should be tolerated, despite its distaste, for 
economic gains. When these economic gains are not im
mediately forthcoming to the populace due to a lack of an 
industrial base, there is political upheaval and popular sup
port will sway to the leader that promises to throw the 
"exploiters" out. 2) The second economic reality is also 
unpleasant. Industrialized nations will insist that underde
veloped nations use the former's technology to industrialize, 
yet the situation will quickly emerge into one where every
one realizes that the more they, the indigent population, 
work and increase their production, the more prices in the 
marketplace will fall resulting in economic displacement. 

Having stated these principles; how is this Third and 
Fourth World discourse relevant to the information com
munity? It is relevant on a number of levels: 1) Industry will 
be faced with difficulties at times in exporting hardware and 
software to these areas, 2) these nations could conceivably 
pass laws making it difficult for multinationals to transmit 
vital data into and out of the country and 3) these nations 
could unite and sabotage multilateral conferences such as 
WARC. 

In the final analysis, Europe and the United States will 
achieve agreement that is satisfactory because the econom
ics of the situation mandate it. As was pointed out, the Third 
and Fourth Worlds are not easily impressed with compro
mises that will strengthen them economically. This makes 
dealing with the Third and Fourth World more difficult. It 
has become clear that economic assistance does not provide 
the United States with the leverage that it did with regard 
to different regions in different times. 

These political and economic realities affect everyone, but 
the information community is right at the core of the dispute. 



Flow of Electronic Information Across Sovereign Borders 281 

for the information community carries great weight in pol
itical and economic planning. Inevitably, the solution must 
be comprehensive and this is the major criticism that the 
author has of the present attempts to deal with the trans
border data flow problems. Our present approach is a frag
mented one that carries with it devastating consequences. 
Few people are looking at this problem in toto; rather they 
maintain specialists who are keyed into certain areas of 
controversy. 

While it is true that the United States lacks a unified and 
coherent national information policy which would give le
gitimacy to a definition of information; it cannot be denied 
that recent major conferences have scheduled information 
policy questions on their agendas. It is in that regard that 
they are all somewhat similar. The conferences, however, 
take on a fragmented appearance: 

• A UNESCO meeting in Paris in October, 1978, where 
a topic for discussion revolved around a government's 
right to control news generated and reported within its 
own borders. 

• A World Administrative Radio Conference next Sep
tember where Third and Fourth World nations will seek 
a far larger share of radio frequencies now used by the 
United States and other developed nations. 

• A United Nations Committee meeting next spring and 
summer where many countries will push a resolution 
requiring TV broadcasters of one nation to get advance 
clearance from another nation before sending programs 
there directly via broadcast satellites. 8 

• The United Nations Conference on Science and Tech
nology for Development meeting will take place next 
year where developed and developing nations will dis
cuss the linkages involved between science and tech
nology applications and the world economic order. 

• The United Nations Conference on the Peaceful Uses 
of Outer Space will meet to discuss the implications of 
remote sensing. That is, one nation's surveillance of 
another nation's vital resources. 

• OECD will meet to discuss the transborder data flow 
problem. 

Further adding to the disparate attempts to come to grips 
with the problem: 

• The President has ordered a review of the recommen-
dations of the Privacy Protection Study Commission 
which contains transborder data flow considerations. 

• The State Department Advisory Committee on Trans
national Enterprises has set up a sub-group on data 
flows. 9 

This listing of the conferences dealing with information 
policy questions is not complete. When one considers how 
disjointed our approach to the transborder data flow problem 
is, one realizes that our method is dangerous as well as 
impractical. Undoubtedly, the United States will be pressed 
for concessions at each of these conferences. Should the 
United States concede certain holdings at each of these 

discussions, as is expected, it will be confronted with a 
cumulative effect of astronomical proportions. The United 
States must negotiate from a position of strength which will 
not be facilitated in a framework in which the United States 
is pitted against hostile entities negotiating on a piecemeal 
basis. 

What is desperately needed is a joining of public and 
private sector forces in a comprehensive, international con
ference where all the relevant issues will be discussed by all 
interested nations. This conference should be held in lieu of 
the list of conferences mentioned before. The United States 
should seek internationally acceptable parameters as to 
what information entails. Furthermore, the United States 
should seek, similar to the U.N. Law of the Sea Conference, 
a weighted vote so that bloc voting by the developing nations 
will lose some of its effectiveness. 

For the United States to achieve its aims, three factors 
loom important: 

1. Confronted by a demanding Third and Fourth World, 
the United States and Europe need to unite on the 
common ground that they have. While their interests, 
as explained previously, are presently not compatible, 
a quick resolution of their differences will strengthen 
their position in such a conference. Despite their prob
lems, Europe and the United States should realize that 
they are closer to each other than they are to the LDC" s 
and that a united position can only serve to strengthen 
their hand. 

2. The United States and Europe need to take advantage 
of changes within the Third and Fourth Worlds. Some 
of the leaders of the developing nations have estab
lished such a firm political foundation in their lands 
that they can afford to be friendly toward the deveioped 
nations and the multinational corporations. The di
chotomy between a Sadat of Egypt and a Qaddafi of 
Libya serves an analytically useful purpose. Both these 
lands are designated as developing states, yet no rea
sonable man can lump these two states together and 
call them identical. Sadat reflects a slow but changing 
nature toward prudent judgment within the Third and 
Fourth Worlds whereas Qaddafi represents the uncom
promising element that is just as much a reality today 
as well. The key for the United States and Europe 
deals with their ability to put the developing nations at 
odds with each other. A weighted industrial nation vote 
linked with a divided Third and Fourth Worlds vote 
does make the prospects for success of American ob
jectives seem encouraging. 

3. Within the context of a comprehensive conference, the 
developed nations are afforded the luxury of tradeoffs 
and compromises that go into the formation of a unified 
and coherent international information policy. The 
comprehensive nature of the conference will tactically 
provide negotiators with linkages that are not subjects 
for discussion within a more limited framework. This 
will serve to guard against sacrificing elements on all 
issues which would only serve to weaken the United 
States' position in the world. 
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This comprehensive conference is a realistic solution. The 
position of the United States should be that it will negotiate 
on its own terms at a conference of its choosing. This it can 
do now, because it is U.S. possessions that the others want. 
A United States refusal to attend W ARC with a comprehen
sive conference offered as an alternative would serve to 
signal to those Third and Fourth World nations that the 
United States is ready to take a firm stand. 

A more limited comprehensive conference was given the 
support of Representative Goldwater in his Joint Resolution 
I 141 offered in the 95th Congress. Unfortunately, Mr. Gold
water's resolution is internally inconsistent. He claims: 

Whereas communications and information transactions and as
sociated activities are of major and growing economic impor
tance to industrialized societies and developing societies which 
require rapid and reliable information transmission and pro
cessing systems to effectively advance commerce and govern
mental responsibilities; and whereas a growing divergence in 
national laws, regulations, and practices which impose special 
conditions, preferential rates, tariffs and technical standards, 
taxation policies and licensing, reporting, and disclosure prac
tices, may threaten fair commercial competition and may jeop
ardize the widest sharing and utilization of information and 
knowledge made possible by electronic technologies; and 
whereas such a divergence threatens internation cooperation 
and harmony: Now therefore be it resolved that the President 
of the United States shall 1) convene an international confer
ence on Communication and Information not later than January 
I. 1980, to which governments of the PRINCIPAL INDUS
TRIALIZED NATIONS (emphasis added) will be invited to 
designate official delegations to attend ... 10 

Mr. Goldwater explicitly states that developing societies 
are integral to communications and information transac-

tions, but then he calls for a conference that would not 
contain even all industrialized states, but only the principal 
industrialized nations. 

That is an unacceptable solution. The conference that 
should be held must invite all interested parties. While the 
position that the United States takes should be strong, there 
still is a need to settle the dispute with all interested actors. 
Failure to do so would simply further the animosity that is 
felt between the developed and developing nations. 

How do we best control the flow of electronic information 
across sovereign borders? Only when all sovereign states 
are involved in a major conference that supersedes the pres
ent fragmented approach. 
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INTRODUCTION 

Transnational data processing systems are international 
value-added, public, special-interest community, or private 
computer-communications networks that operate com
puters in several countries and provide computing services 
to users in these apd other countries. Examples of such 
systems are the North American-based Telenet, Infonet, 
Mark III, Tymnet, and Datapac, and the European devel
opmental Euronet and the Nordic Data Network. Among 
computer networks operated by international communities 
are SITA, an airlines reservation system, and SWIFT, a 
worldwide interbank financial telecommunications network. 
In development is the European Informatics Network 
(EIN) which will provide information services and data 
base access to users in the countries of the European 
Economic Community (EEC). Finally, private computer
communications systems are operated over international 
data carrier networks by multinational corporations in 
many countries. 

To date, transnational data flows in the various types of 
computer communications networks have proceeded rela
tively freely among most of the industrialized countries in 
the world, subject only to economic and technical consid
erations, but these flows have not been balanced. Most of 
the international data processing services are offered by 
vendors that are located in a single country-the United 
States. Multinational corporations, likewise, tend to be 
headquartered in only a few countries. As a result, data are 
flowing to these countries for processing and storage from 
the countries that subscribe to the services of international 
data processing systems or that contain subsidiaries of 
multinational corporations. Thus, organizations in public 
and private sectors in many "computer-poor" countries 
depend heavily on vendors of data processing services, 
data processing industry, and computer communications 
networks located in and operated from abroad. It is not 
surprising, therefore, that a number of concerns over this 
situation have surfaced in countries from where such trans-
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national data flows originate: 

1. The possible erosion of the sovereignty of a country 
when large amounts of data about its ec:onomy, citi
zens, or government operations are transmitted 
abroad for processing or storage in data bases. In
creased vulnerability to disruption· of access to these 
data, and the lack of control over data processed and 
stored abroad can put a country in a position of 
significant dependency on foreign data processing ser
vices. 1 

2. The increased complexity and technical and proce
dural difficulties in ensuring data security and main
taining accouniabiiiiy when data are transmitted in 
networks that may span several countries, may in
volve several transmission link technologies, and may 
be operated by several organizations that may be 
headquartered in different countries. As discussed 
later, international conventions regarding communica
tions further complicate the situation. 

3. The possible erosion of privacy rights provided to 
individuals in their home country when identifiable 
personal information about them is transmitted to be 
processed and/or stored in countries where privacy 
protection requirements are weaker. Thus, the possi
bility of .. data havens" arises, where personal data 
about individuals may be maintained and used in ways 
that are violating the privacy protection requirements 
that exist in their home countries. 

4. Potentially adverse effects on the development or 
continued existence of native data processing exper
tise and industry in countries that utilize foreign data 
processing services. The principal reasons for using 
foreign data processing services are economy, as com
pared to services available in the home country, and 
unavailability of the desired data processing resources 
or capabilities in the home country. 2 

These problems and the possibility that restrictive meas-
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ures may be taken by data-exporting countries to alleviate 
them, are causing concern among vendors of transnational 
data processing services, multinational corporations and 
users of international computer communication systems 
that (1) free data flows (i.e., subject only to economic 
considerations and not hindered by the so-called "non
tariff' barriers) may be constrained by national laws, (2) 
international business, commerce and information ex
changes may be severely discouraged when the necessary 
transnational data flows are continuously at risk of being 
curtailed by the countries involved, and (3) protectionist 
policies regarding international data processing systems and 
services will be instituted by data-exporting countries. 

Extending privacy rights of individuals to countries 
where personal data about them may be processed and 
stored, and providing security to all data in transnational 
computer communication networks are two of the impor
tant questions that are currently in the focus of attention of 
national policy-making bodies and international organiza
tions. The purpose of this paper is to examine the technical 
and procedural considerations that arise. 

PRIVACY PROTECTION REQUIREMENTS 

In the context of automated personal data record-keeping 
systems, the term "privacy" is used to refer to certain 
rights of individuals vis-a-vis collection, processing, stor
age, dissemination and use in decision-making of personal 
data about them. In Europe, the term "data protection" is 
used in the same sense, but the difference in terminology is 
causing some confusion. Privacy protection is achieved 
when these rights are granted, corresponding requirements 
are placed on record-keeping organizations, and compliance 
is enforced. Privacy protection takes on a transnational 
scope when individuals can exercise their privacy rights in 
other countries where personal data about them are handled 
or maintained. 

National privacy protection laws 

Privacy protection legislation has been enacted in several 
countries. In the United States, the Privacy Act of 1974 
places privacy protection requirements on record-keeping 
agencies of the Federal Government. 3 In the private sector, 
legislation has been enacted to provide privacy protection 
in the areas of credit reporting, education, bank records 
and in emerging EFT systems. Several states have enacted 
their own privacy protection and information practices 
laws. 4 In Canada, privacy protection requirements are 
placed on agencies of the federal government by the Cana
dian Human Rights Act of 1977. 5 In Europe, several coun
tries have enacted .privacy protection legislation, starting 
with Sweden in 1973 and followed by the Federal Republic 
of Germany, France, Norway, Austria and Denmark in 
1977 and 1978. 6,7 

The importimt dimeno;ions of a privacy protection law 
include the following: (1) The scope of coverage (e.g., 

public sector, private sector, both, or various subsections 
of them); (2) data subjects covered (physical persons, 
associations of physical persons, legal persons); (3) types 
of record-keeping systems covered (automated, manual); 
(4) privacy rights granted to individuals; (5) privacy protec
tion requirements placed on record-keepers; (6) mecha
nisms and authorities for enforcement (licensing, self-regu
lation, national commissions); and (7) systems of penalties. 
There are strong similarities between, but also considerable 
differences in, these dimensions between the laws enacted 
in the United States and in Canada, on one hand, and those 
enacted or pending in Europe, on the other hand. These 
differences can lead to problems in attempts to implement 
privacy protection requirements on an international scale. 

To date, privacy protection legislation in North America 
has followed an area-by-area approach in the scope of 
coverage-laws have been enacted to regulate record-keep
ing by federal governments, other laws have been enacted 
by state or province legislatures, and additional laws pro
vide for privacy protection in selected parts of the private 
sector. In Europe, however, privacy protection laws tend 
to be based on an omnibus approach-the same law and 
the same requirements apply to record-keeping organiza
tions in both the government and the private sector. There 
are differences also in other dimensions, as depicted in 
Table I. 

Privacy rights and requirements 

Despite some of the differences previously described, 
privacy rights granted to individuals by the national privacy 
protection laws tend to be remarkably similar, and so are 
the corresponding requirements placed on record-keeping 
organizations. This is due to the use of essentially the same 
principles of privacy protection-the Code of Fair Infor
mation Practices as first stated in a U.S. government com
mittee report in 1973 8 and augmented by the Privacy Pro
tection Study Commission in 1977,9 and the Council of 
Europe's resolutions on individual rights of privacy. 10,11 

Collectively, these principles can be stated as follows: 

1. Openness. There must be no personal data record
keeping systems whose very existence is secret, and 
there must be a policy of openness about any organi
zation's record-keeping policies, practices and sys
tems. 

2. Individual access. There must be a way for individuals 
to find out what personal data about them are on 
record and how they are used, and to see and make 
copies of those data. 

3. Individual participation. There must be a way for 
individuals to correct or amend personal data about 
themselves. 

4. Collection limitation. There must exist limits on types 
of personal data organizations may collect about indi
viduals, and restrictions on the manner in which they 
collect these data. 

5. Use limitation. There must be a way for individuals to 
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TABLE I-Features of National Privacy Protection Laws 

Covered data Enforcement 
Explicit trans
national data 

flow requirements Country Scope subjects 

United States Federal gov. Citizens 
Some states Certain aliens* 
Parts of private 

sector 
Sweden Both public and AU residents 

private sectors 
Federal Republic Both sectors All residents 

of Germany 
France Both sectors All residents 

Norway Both sectors All residents 
Associations 

Denmark Both sectors All residents 
(separate laws) 

Austria Both sectors All residents 
Legal persons 

Canada Federal gov. Citizens 
Some provinces Certain aliens'" 
Some parts of 

private sector 

* Aliens admitted for legal residence 

prevent-the personal data collected about themselves 
for one purpose being used for other purposes without 
their prior knowledge or consent. 

6. Disclosure limitation. There must exist limits on ex
ternal disclosures of personal data about individuals 
that record-keeping organizations may make, and 
there must exist legally enforceable confidentiality 
obligations of record-keeping organizations with re
spect to the use and disclosure of identifiable personal 
data. 

7. Accountability. Record-keeping organizations must be 
accountable for their personal data record-keeping 
policies, practices and systems. 

In privacy protection laws these principles are stated as 
rights that individuals have vis-a.-vis record-keeping organi
zations, and requirements that the latter must comply with. 
As is to be expected, the national privacy protection legis
lation in each country tends to state the requirements and 
provide for compliance in a manner that is consistent with 
its existing legal system, traditional approach to establish
ing regulatory mechanisms and cultural setting. For exam
ple, some countries require licensing of record-keeping 
systems prior to permitting operation (e.g., Sweden), while 
other countries (e.g., the United States) rely on a corrective 
approach-those record-keeping organizations that fail to 
comply can be subject to court proceedings and penalties. 

In general, national laws require that record-keeping or
ganizations implement the following types of procedures 
and safeguards: 

1. Inform individuals and the public in general about the 
existence and details of all record-keeping systems. 

mechanism 

Self-enforcement No 

Data Inspection Yes 
Board 

Data Protection No 
Commissioner 

National Commission Yes 
on Informatics 
and Liberties 

Data Surveillance Yes 
System 

Register Board Yes 

Data Inspection Yes 
Board 

Privacy Commissioner No 

2. Notify individuals about existence of personal data 
records about them. 

3. Establish procedures and facilities where individuals 
can inspect their own records; make records available 
in comprehensible form; establish procedures for re
viewing challenges to data quality; provide means for 
correction and inclusion of rebuttal statements; and 
establish mechanisms for notifying prior recipients of 
disputed records of any corrections or additions. 

4. Refrain from using data for new purposes unless ex
plicitly permitted by law or by individuals concerned; 
establish procedures for requesting permission. 

5. Keep accountings of all disclosures to external orga
nizations such that the data could be traced (e.g., for 
sending corrections). 

6. Establish procedures and means to ensure that per
sonal data are collected by lawful means, and that 
they are appropriate and relevant to the purposes for 
which they are collected, and that they are maintained 
accurately, completely, and are up-to-date. 

7. Maintain confidentiality of personal data by permitting 
access by oniy those personnei who need them to 
carry out their job functions. 

8. Conform with security standards that afford reasona
ble protection to the installation. programs and data 
against accidental or willful loss or destruction, and 
against unauthorized access, alteration, or transfer. 

A guiding principle in implementing privacy protection 
requirements by record-keeping organizations should be 
"easy access" by individuals to personal data about them
by mail or at locations close to their residences, at conven
ient times, without need to justify why they would like to 
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inspect their records, with the least amount of red tape in 
identifying themselves, and with the record-keeper, rather 
than the individual, charged with the burden of proof that 
the chal1enged data are actually correct or relevant. 

International aspects 

Any extension of one country's privacy rights to some 
other country to follow exported personal data involves the 
possibility that privacy rights in the "host" country are 
weaker, total1y absent, or incompatible in some manner. 
For example, compared to some of the European countries, 
privacy protection in the United States at present is 
weaker, since only a small part of the private sector is 
covered, only citizens or aliens admitted for permanent· 
residence are covered, and compliance is on a self-enforce
ment basis. Consequently, non-tariff barriers to interna
tional data flows and transnational data processing can 
arise when countries with strong privacy protection laws 
restrict data exports to those with weaker laws. \Vhile 
privacy protection should relate only to personal inforrna
tion about individuals, its scope can be extended to data 
that are indirectly related to individuals. Laws that also 
cover legal persons (e.g., corporations) have, of course, a 
much wider scope and can be used to restrict export of 
nearly all data. 

The potential legal obstacles and conflicts in providing 
privacy protection on a transnational scale have prompted 
several international bodies to study the problem and de
velop solutions. 12 Since 1977 the Council of Europe is 
developing an International Data Protection Convention to 
establish a minimum set of privacy protection principles for 
all people in countries that ratify the convention (possibly 
the 21 countries in Europe. but others are also encouraged 
to join) without regard to their nationality, but permitting 
each signatory country to choose its own method of imple
mentation. 13 Several procedural considerations in the Con
vention are still unresolved, such as the question of which 
country has jurisdiction, and what international mechanism 
is best for enforcement. 

Another activity toward harmonization of national pri
vacy protection laws is taking place in the Organization for 
Economic Cooperation and Development (OECD) in 
France. OECD membership includes a larger community of 
countries (European countries, U.S., Canada, Japan, Aus
tralia, New Zealand) and. thus, could achieve harmoniza
tion on a larger scale. At the present time OECD is drafting 
a set of guidelines for establishing the basic rules governing 
transborder data flow and protection of individual privacy 
in transnational data processing systems. 14 Finally, also 
concerned with privacy protection on an international scale 
and the associated concerns in transnational data flows are 
the European Economic Community (EEC) and the Inter
governmental Bureau for Informatics (lBn. 15,16 The latter 
represents many of the so-called "third world" countries 
which, as data exporters, have many serious concerns 
regarding their position \'is-a-\'is the developed countries. 

The recent conference on Strategy and Policies for Infor
matics (SPIN) brought out many of these concerns. 16.17 

IMPLEMENTATION IN TRANSNATIONAL SYSTEMS 

Implementation of privacy protection requirements in 
transnational data flow situations can be discussed with the 
help of a set of simple models. The following basic elements 
will be used in these models: 

X-An organization in a "home country," A, that col
lects, maintains and uses personal data on individuals 
residing in A, subject to privacy protection laws and 
regulations that may be in force in A . 

Y -An organization in a foreign "host country," B, that 
collects, receives, processes, stores, and/or uses, as 
the case may be, personal data about residents of A, 
subject to applicable privacy protection laws and 
regulations of B. 

In each of the following data-flow situations, the basic 
goals from the point of view of privacy protection authori
ties in the home country A are to ensure that (1) individuals 
involved be able to continue exercising their privacy rights 
granted in A, (2) data quality and integrity continues to be 
maintained, (3) misuses of the data, as defined in A, are 
prevented, and (4) confidentiality and security of the data 
are maintained. 

Transnational service bureaus 

A common situation in transnational data flows is the 
case where Y is an international vendor of data processing 
services with computers and data bases in country B, as 
well as in several other countries, that services subscribers 
in several countries. Y may provide processing services 
only, or provide both processing and long-term storage of 
the subscribers' programs and data. A record-keeping or
ganization X in its home country A may contract for Y's 
services because of competitive economic advantage or 
because Y may offer resources or capabilities not otherwise 
obtainable. 

The responsibility for complying with any privacy protec
tion requirements in its home country, A, naturally belongs 
to X, independently of where the data themselves are 
processed and stored. Thus, in the public notices about its 
record-keeping operations, X must reveal information on 
any uses of foreign data processing services, and satisfy 
other requirements regarding the rights of its data subjects 
to inspect, correct and amend their records. X must also 
assure data quality (relevance, correctness, completeness 
and currency) prior to transmitting these data abroad. In 
this regard, it would be preposterous to require data sub
jects in country A to deal directly with the vendor Y in 
country B when they want to exercise their privacy rights, 
or to require that Y estahlish the d8ta qll::tlity (e.g .. to 
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assure completeness when engaging in data collection activ
ities in country A), in the first place. 

In contracting with Y for data processing or storage 
services, X must be assured that data accuracy is not 
diminished while in V's system, and that confidentiality and 
security are maintained so as to prevent any unauthorized 
disclosures or uses while in Y's custody. For this purpose 
Y must implement appropriate procedural and technical 
safeguards in its computer systems and data communication 
networks. In general, it is not likely that Y would clandes
tinely copy and retain its customer's programs and data-it 
would not stay in business very long. Even then, confiden
tiality and security requirements, and prohibitions about 
retaining data or programs should be explicitly stated in the 
contract between X and Y. Any violations could then be 
handled in ways commonly used in the case of international 
contracts. 

A more difficult situation arises when X deliberately 
attempts· to evade privacy protection requirements in its 
home country, A, by maintaining illicit data abroad. For 
example, X may be a credit reporting bureau that collects 
personal information items not permitted in A. Here it is 
unreasonable to require Y to police the data processing 
requests of its subscribers and to make determinations 
whether or not they violate laws in the subscriber's home 
countries. To protect itself against unknowingly being an 
accomplice to activities illicit in A, Y may require that X 
certify in the contract with Y that its data processing 
activities are not illicit. In general, Y should not be held 
responsible for the uses of the data it processes or stores, 
but it should be obliged to inform privacy protection au
thorities of suspected violations. 

Shared data banks 

In a different situation, Y, the data processing organiza
tion abroad, may operate a data bank of personal informa
tion and make information available to an international 
community of subscribers who also contribute personal 
data on individuals in their respective countries. An exam
ple would be an international credit reporting bureau. X 
could be an international chain of department stores that 
gives credit to purchasers in many countries that, as a part 
of its contract with Y, sends credit status information on its 
customers in country A and in other countries. The individ
ual records in Yare likely to contain personal information 
from mUltiple sources. 

In the case of a similar system within a given country, 
privacy protection laws in that country give rights to indi
viduals to examine their records. request correction. etc. 
directly at the record-keeping organization (e.g., the credit 
reporting bureau). In the transnational case the situation is 
more complicated. Again, it is not reasonable to require 
individuals to interact directly with the organization Y 
abroad. Enforcement of privacy rights afforded to individ
uals in A whose personal data are in Y's records can also 
be done only in indirect ways. This is a good example of a 

case in which international harmonization and cooperation 
between privacy protection authorities would payoff-each 
country would provide at least an agreed-upon level of 
privacy protection to everyone whose personal data are 
processed or stored in the country and, thus, all record
keeping organizations would be made to comply to essen
tially similar laws. In that case, any organization X in A 
that subscribes to Y's services could be required to act as 
an interface between individuals in A and Y, and Y would 
be required by privacy laws and authorities in its own coun
try to make their records available at X's facilities and treat 
their requests with the same attention as it would treat those 
by individuals in its own country. 

Maintenance of data confidentiality and security, and tak
ing steps to assure that the existing data quality does not 
diminish in Y's systems would be the procedural and tech
nical responsibility of Y, but the quality of the data provided 
by subscribers X would be the latters' responsibility. Imple
mentation and enforcement of this could be based on affixing 
unforgeable digital signatures to all data items to indicate 
their origins. IS Techniques for generating such signatures 
through cryptographic methods have recently been devel
oped. 19 

Multinational corporations 

For the case in which X is a subsidiary or an operating 
unit in country A of a multinational corporation Y that is 
headquartered in country B, X is likely to send to Y 
personal data on at least some of its employees who are 
also residents (citizens) of A. Unlike in the previous two 
models, these data are likely to be used abroad to make 
decisions about the individuals involved, not just merely to 
be processed and stored there. X must necessarily comply 
with any privacy protection requirements that are in force 
in A, and, thus, its employees would have access to their 
employment records to the extent specified by those laws. 
They would also have to be informed about personal data 
files maintained on them at the headquarters, Y, in country 
B. Again, X may have to serve as the interface between 
these individuals and the corporate headquarters (which it 
would do anyway as an element of corporate hierarchy) 
and be responsible for compliance with privacy protection 
laws in A. However, in this case it would not be unreason
able for the employees concerned to interact directly with 
Y, too. 

To arrange for access to personal data about them at Y 
in accordance with their privacy rights in A when such 
rights are not available in the headquarter's country B, the 
privacy protection authorities in A may have to make 
special arrangements with Y. In the limit, they may prohibit 
transmission of personal data from X to Y, or recommend 
other regulatory restrictions on the operation of lhe muiti
national in country A. Of course, any such actions would 
involve analyses of tradeoffs of benefits to A of the multi
national" s operations in A as against possible limitations of 
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the privacy rights of its residents employed by the multi
national. 

Data collection abroad 

There are at least two cases where data about residents 
of A are acquired by an organization in B directly without 
the role of some organization X in A: (l) in B, personal data 
on visiting residents of A are collected by some organiza
tion Y (e.g., the customs office or the police), and (2) in 
country A, employees of an organization Y located in 
country B are collecting personal data on residents of A 
(e.g., salesmen of a business firm). In both cases it is 
necessary to find out that such activities are taking place 
and, if legitimate, attempt to arrange privacy protection 
available in A to include personal data on residents of A 
maintained by these organizations. 

In the first case, privacy protection to residents of A 
depends entirely on privacy protection laws that may be in 
force in B, or on bi- or multilateral agreements that may 
have been made between A, B, and other countries in this 
regard. Under such agreements, participating countries 
could compile lists of organizations in their countries that 
collect personal data about visitors from abroad, make 
these lists public on a reciprocal basis with other countries, 
and permit the basic privacy rights of access and request 
for correction to be exercised. Thus a certain balance could 
be established whereby international travelers would be 
assured that data are not collected about them for purposes 
of harassment or other actions against them when they are 
abroad or upon their return home. 

Not much can be done in the second case when data 
collection in A in behalf of some organization Y in B is 
done clandestinely. When such collection is in the open, 
however, the privacy protection authority in A can insist 
that this be permitted to continue only if privacy rights in 
country A be extended to cover these data when maintained 
by the organization Y in country B. In some cases such 
collection may be prohibited entirely, as in the so-called 
Reader's Digest case in Sweden where the Swedish Data 
Inspection Board objected to the establishment of a data 
base in England on nearly all households in Sweden. 

TECHNOLOGICAL CONSIDERATIONS 

Technical concerns in implementing privacy protection 
requirements in both national and transnational data sys
tems arise mainly in the areas of data security. maintenance 
of data quality, design and maintenance of data bases of 
personal information, auditing, and enforcement of compli
ance. In each of these areas there exist considerable tech
nical capabilities, but also certain shortcomings of the state 
of the art. These must be kept in mind when privacy 
protection requirements are specified. Any problems that 
may arise in implementing national privacy protection re
quirements are likely to he amplified in transmltional data 
systems where. unless perfect harmonization of privacy 

protection laws is achieved, different countries are likely to 
have different requirements for data quality, confidentiality, 
etc., which may have to be reflected in the system design 
and operation. 

Data security 

Privacy protection principles and associated require
ments that limit the use and disclosure of personal data, 
and that establish data quality and accountability responsi
bilities imply the use of data security techniques and safe
guards. In general, data security encompasses the proce
dural and technical means for reducing the risk of 
unauthorized data disclosure, distribution, modification, or 
use, and of any physical damage to the computer commu
nication system. Case histories of computer crime, attacks 
against computers by terrorists, and uses of computers to 
defraud their owners or the public at large underscore the 
reality of these risks. Indeed, concerns of the users of 
transnational data processing services over continuing 
availability and integrity of these services are not entirely 
unfounded. 

After a decade of concern over data security and re
search and development of technological safeguards, there 
is now available a variety of techniques for implementing 
physical security, access controls within software and com
munications security: 

1. Except for international standards, physical security 
techniques are well in hand for protecting computer 
installations against natural disasters, preventing un
authorized access, providing safe data storage, and 
setting up backup data bases, processing facilities, 
and communications links.20 

2. Software security techniques deal with protecting pro
grams and data, and especially the operating system 
software against unauthorized access or modification 
due to hardware malfunctions of deliberate attempts. 
While software security cannot yet be guaranteed, the 
"security kernel" approach is promising and is being 
pursued actively. 21 

3. Techniques for unique, unforgeable identification and 
authentication of users have made considerable prog
ress; the development of new approaches to digital 
signatures are particularly relevant in the context of 
transnational data systems. 

4. New developments in cryptographic techniques, such 
as the Data Encryption Standard22 and the proposed 
public-key cryptosystems23,24 are making communica
tions security easier and less costly to implement. 

The use of encryption in transnational data communica
tions is subject to more than just technological and economic 
considerations that complicate options for achieving effec
tive communications security: 

I. While international stand:uds f()f technical (llIpects of 
data communication are being developed, no stan-
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dards are available for data security in communications 
systems. 

2. Existing international agreements, such as the Inter
national Telecommunications Convention of Malaga
Torremolinos, recognize the "sovereign right of each 
country to regulate its telecommunications," and re
serve the right to monitor any communications and 
their contents. Thus the use of encryption in transna
tional data systems depends on whether or not gov
ernments involved insist on access to the keys or 
prohibit the use of encryption entirely in their com
munications systems. The use of satellite communica
tions can reduce some of the severity of this problem, 
however. 

3. On the international scale, there is no uniformity of 
legal prohibition against interception or diversion by 
private parties of data transmitted in telecommunica
tions systems. 

4. There is a wide variation in the technical characteris
tics and quality of the telecommunications links in 
various countries that may be involved in transna
tional data flows and, correspondingly, there are wide 
variations in their vulnerabilities from the data secu
rity point of view. 

Among the state-of-the-art shortcomings that must be 
taken into account when formulating privacy protection 
requirements that depend on implementing data security 
techniques in various subsystems of a data network are the 
following: 25 

1. Absolute security is not yet achievable in any auto
mated, multi-user, resource-sharing data processing 
system or computer network, since it is not yet feasi
ble to prove correctness of its operating system's 
design and implementation, nor can the hardware be 
guaranteed to be free of design flaws. 

2. Physical security of a computer communication net
work, even though all techniques are well known, 
cannot be guaranteed against sophisticated penetration 
or overpowering attacks. 

3. Personnel trustworthiness cannot be reliably pre
dicted, assured, or maintained. 

4. Currently-proposed encryption techniques appear to 
offer high levels of resistance against attempts to 
"break" them, but this has not been proven against 
massive analytical or trial-and-error attacks based on 
advanced computer technology. 

5. The "confinement problem," leakage of sensitive data 
from a protected system using some externally ob
servable system variable (e.g., the execution time of a 
program), has not been adequately solved and, thus, 
represents another security vulnerability. 

Even a reasonable amount of security may be difficult to 
achieve in a provable manner in large and complex sys
tems. Risk analysis methodology and techniques have not 
yet been developed to_levels where they can be used with 
confidence since adequate guidelines on how to satisfy a 

specified security requirement are yet to be developed,26 
and threat detection and monitoring techniques are not 
adequate for detection of covert penetration attempts while 
they are in progress. These shortcomings are mUltiplied in 
complex, transnational telecommunication systems. In sta
tistical data bases that contain personal data in aggregate 
form, it is still possible to compromise such data by asso
ciating the summary data with identifiable individuals on 
the basis of other data that may be available and the 
context of particular situations. 27 

Finally, a system of security safeguards is effective only 
when it is correctly designed and implemented, operates 
correctly, and is constantly monitored for lapses in per
formance. In a transnational computer communication sys
tem this implies standards, access to equipment that may 
be located in other countries, ability to audit the system's 
operation and, if parts of the system are under the control 
of third parties, cooperation from them when corrective 
actions must be taken. While many of the necessary pro
cedures can be established within a contractual framework 
between the I'arties involved, certain aspects of enforcing 
these contracts may require effective international agree
ments and support. 

Data base systems 

The design of personal information data bases is strongly 
affected by privacy protection requirements regarding data 
quality, confidentiality and security, auditing and account
ing. In general, it will be 'quite difficult and costly to 
restructure existing data bases to incorporate the additional 
data fields and data traceability capabilities that are im
plied. Tbe design of new data base systems that incorporate 
these requirements is a much simpler matter. 

Maintenance of data quality is an important privacy 
protection requirement in any personal data record-keeping 
system since these data are the principal and sometimes the 
only representation of the individual for decision-making 
purposes. Thus, these data must be (1) appropriate and 
relevant for the purposes for which they are used, (2) 

accurate, complete, and up-to-date, and (3) obtained by fair 
and lawful means. Determination of the relevance and 
appropriateness of personal data items to be collected is an 
important policy matter. Inclusion of certain data items and 
exclusion of others, and the time periods of retention can 
significantly affect the fairness of decisions. Some of the 
national privacy protection laws (including the Privacy Act 
of 1974) contain restrictions on the types of data items that 
may be collected, and the Council of Europe's draft Con
vention has proposed others, but more work needs to be 
done in this area, especially from the point of view of 
transnational data flows. 

Achieving and maintaining accuracy, timeliness and com
pleteness in personal data items that have been determined 
to be relevant is mainly a procedural and technical matter. 
It may be necessary to include in records additional data 
fields to indicate the age of various data items, to provide 
for appending any rebuttal statements and to provide for 
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tracking data disseminations such that corrections can be 
propagated to recipients as well as into backup files. Access 
limitation requirements imply establishing a selective ac
cess capability in the data base system. Special programs, 
possibly in several languages, may have to be written for 
translating data codes into natural language statements 
comprehensible to individuals who may wish to inspect 
their records. Associated with the above are various ac
counting requirements to (1) permit furnishing to individu
als records of all uses made of their personal data, (2) 
permit propagation of corrections and rebuttal statements 
to prior recipients and (3) provide information for audits 
and compliance verification. While these data base addi
tions are relatively simple to include in newly-designed data 
bases, retrofitting them into existing data bases is a much 
more difficult and costlier task. 

Auditing and compliance verification 

Auditing of a transnational data processing system for 
compliance with privacy protection requirements, and ver
ifying that no one involved is taking actions to circumvent 
required safeguards, is a difficult technical problem. In
deed, there are several reasons why assuring total compli
ance may be technologically infeasible, especially in trans
national data systems: 

I. Auditing of the system software and' its operation 
cannot be done with high confidence due to the com
plexity of tracing system's transactions, and the diffi
culty of understanding the software. Proving software 
correctness by formal means is infeasible for all but 
very small systems, although advances have been 
made in proving correctness of software design rela
tive to specifications. 28 

2. It is not possible to prove that the system's hardware, 
software or applications programs have not been spec
ified and designed to covertly circumvent privacy 
protection requirements, or to mislead the auditors. 
Clever techniques could be used to hide deception, 
such as the use of "shadow systems" where auditors 
may find complete compliance, while illicit data are 
maintained in other parts of the system inaccessible to 
the auditors. 

Thus, in general, it is not possible at the present time to 
verify positively without full cooperation of the record
keeping organization being audited that its automated re
cord-keeping systems are in full compliance with privacy 
protection requirements. That is, it is not possible to prove 
that an organization does not maintain secret record-keep
ing systems or illicit data, that it permits individuals to 
inspect all data about them, that it is not engaged in 
clandestine data exchanges with other organizations, or 
that it is not using personal data in its system for purposes 
that have not been publicly announced. 

Technical solutions to the auditing and complilmce veri
fication problems are now being developed 29 but they are 

likely to be complex and costly. For example, it may be 
necessary to design and install tamper-proof accounting 
systems similar to the flight recorders now used in com
mercial aircraft. In the interim, it may be necessary to 
depend on the expectation that technically-motivated em
ployees of record-keeping systems, especially those of 
transnational data processing systems, will inform privacy 
protection agencies or the media of suspected violations. 

CONCLUDING REMARKS 

Implementation of privacy protection and data security 
requirements in transnational data systems involves numer
ous unanswered questions about policies, procedures and 
technical means. From a brief examination of different 
types of transnational data processing situations it appears 
that individual privacy rights are easiest to exercise when 
organizations that send personal data abroad are made 
responsible for interfacing with the individuals involved. 
Organizations abroad that perform only the processing and 
data storage functions have to be responsible for maintain
ing data quality at the original level, and assuring data 
confidentiality and security. 

Techniques now exist for satisfying most of the data 
security requirements, but shortcomings still exist, and 
their effective use in transnational co~puter communica
tion systems may be constrained by the lack of interna
tional standards and by the policies of the countries in
volved. No technical problems appear to arise in designing 
new data base systems that include provisions for meeting 
privacy protection requirements, but retrofitting old ones 
may range from excessively costly to downright technically 
infeasible. No technological means are available to assure 
total compliance with privacy protection requirements. 

Computer technology is advancing rapidly and new ca
pabilities for record-keeping in national and transnational 
systems are certain to emerge. Some of these may enhance 
avoidance or circumvention of privacy protection require
ments. Hence it is important that technological advances in 
record-keeping be monitored continually and the adequacy 
of existing privacy protection requirements be periodically 
reevaluated. 
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INTRODUCTION 

Risk management is concerned with the identification, meas
urement, control and minimization of impact of uncertain 
events upon organizations that depend upon automated op
erations. ll It is an analytical process with a large number of 
variables, many of which are unique to the environment 
under consideration. For this reason, there has not yet been 
developed within general state-of-the-art a single method
ology broadly applicable to all risk management environ
ments.I,IO 

The proposed risk management model is designed to pro
vide a framework responsive to the rieeds of most environ
ments. To derive this model, many risk assessment schemes 
were reviewed and analyzed for their ability to satisfy a 
broad range of needs. 3- 7,9 While none were found which 
could meet these criteria, their different philosophies and 
schemes provided excellent background for development of 
the present model. Additionally, experts from industry were 
consulted and many security surveys, tests, evaluations and 
audits were analyzed for useful methods and procedures. 

It is generally accepted within industry and the federal 
government that, given today's state-of-the-art in data pro
cessing and security, there does not now exist the capability 
to completely assure the security of sensitive automated 
operations. It is also agreed that the best method of con
trolling risk and achieving optimum security is through the 
use of some type of risk analysis or assessment process 
which provides decision-makers sufficient information to 
enable them to make informed judgments regarding the rel
ative risks to these sensitive automated operations. 2 

Risk management is a management responsibility, involv
ing all levels of management dependent upon sensitive au
tomated operations. I These managers need to play an active 
role in the risk management process, making decisions re
garding impact of risks upon support vital to operations of 
their organizations. Data processing has traditionally been 
a support function. However, it has become so indispensable 
and so much a part of overall business operations as to be 
virtually inseparable. As part of the risk management proc
ess, senior management must accurately ascertain its degree 
of reliance upon the data processing function. 

Current risk management schemes are based almost ex
clusively on assessing the impact of uncertain events upon 
the data processing function alone, when in fact, losses 
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suffered through compromise of sensitive information, un
authorized exposure of personal information, or misappro
priation of resources handled by automated systems are not 
borne by the data processing function. These losses are 
sustained by the owners of the data, the functional propo
nents and users of the system who, through senior manage
ment at various levels, must be represented in and dominate 
the decision-making process. Given the risk management 
responsibility, the data processing function (since it does 
not absorb the true loss) can reasonably be expected to 
accept the risk rather than divert resources from the data 
processing budget to. counter security weaknesses. 

, Similarly, senior managers should carefully assess the im
pact upon the data processing function of attempting to 
implement necessary security improvements within existing 
data processing resource levels. In most instances, because 
of previous inattention to data processing security needs, 
considerable resource investment will be needed initially to 
bring operations up to minimum security standards. Past 
experience has shown that failure to supplement data pro
cessing resource levels for basic security needs has resulted 
in (a) minimal implementation of security improvements, or 
(b) considerable degradation of operational programs due to 
significant diversion of data processing resources. Managers 
should review these potential impacts and consider an initial 
supplement of data processing resource levels so as to elim
inate undesirable contention for resources. 

The specific features desired in a risk management model 
include the following: 

1. It should be modularly structured so that discrete ac
tivities and tasks can be described and independently 
conducted, where appropriate. Some 40 separate mod
ules have thus been identified in the accompanying 
model as a result of decomposition of basic activities. 

2. It should be hierarchical, so that it can be applied in 
varying depths and degrees based upon the sensitivity 
and size of the data processing environment being as
sessed. 

3. It should be iterative, logically allowing the entire proc
ess or a part of the process to be reinitiated or repeated 
as necessary. 

4. It should prescribe. for each major step or activity, the 
participants, their responsibilities and decision-making 
authorities, with particular emphasis upon the involve-
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ment of system users, proponents and senior manage
ment. 

5. It should not require all factors to be reduced to quan
titative terms. State-of-the-art is such that all factors 
cannot be reduced to discrete dollars and probabilities. 
Experience has shown that, except in highly specific 
situations, attempts to fully quantify all factors usually 
produce misleading results. Instead, managers and de
cision-makers must be involved in making qualitative 
judgments. 

THE RISK MANAGEMENT MODEL (RMM) 

The model described herein decomposes into sufficient 
detail to allow depth of analysis to vary with the specific 
nature of the problem. The less sensitive operation will 
require lesser analysis, while the more sensitive will require 
considerably more extensive analysis. The RMM (Figure 1) 
is composed of eight basic steps-Value Analysis, Threat 
Identification/Analysis, Vulnerability Analysis, Risk Anal
ysis, Risk Assessment, Management Decision, Control Im
plementation and Effectiveness Review. 

Vallie analysis (1.0) 

The purpose is to determine the relative value of a facility 
or operation and its components for the purpose of evalu
ating its susceptibility to exploitation. The objective is to 
use value analysis to achieve an understanding of the like
lihood that a particular facility, the information handled by 
that facility, and/or the function performed by that facility 
would be singled out for exploitation. 

The value analysis process is based upon the following 
analytical procedures as illustrated in Figure 2: 

1. Determine sensitivity of information handled (1.1). 
2. Determine mission impact of loss or denial of support 

(1.2). 
3. Estimate the asset value of automated resources pro

viding support (1.3). 

Determine sensitivity of information handled (1.1 ) 

The basic analysis of sensitivity should begin at the ap
plication level. The objective is to relate each application 
(including data base manipulated) to a sensitivity level based 
upon the most sensitive type of data processed (e.g., pri
vacy, asset/resource, proprietary). This analysis provides 
the framework for subsequent analysis (Task 1.2), so its 
detail and accuracy are important. 

Information collected at the application level should be 
aggregated at the subsystem, system and finally at the data 
processing activity level in order to accurately assess the 
types of sensitive information being handled and the nature 
of processing performed on that information. The cumula
tive value of this analysis lies in the factual data compiled 
about application software and the data bases being manip
ulated. This should reveal the sensitivities of the data bases 
and the products derived therefrom. The bulk of this infor
mation should be collected from within the data processing 
functional area of assessment by system proponents and 
user organizations. 
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Figure 2-The value analysis process. 

Determine mission impact of loss or denial of support (1.2) 

Analysis should be performed of the general impact upon 
the mission of the organizations supported in case automa
tion support capability is partially or totally lost for varying 
periods of time. This includes determination in as much 
depth as necessary (i.e., application, subsystem, or system 
level) the impact of any loss of automated support. Impact 
could be categorized as "Negate," "Major Impact," "Mod
erate Impact," "Some Impact", and "Little or None." If 
useful, period of time of loss can be quantitatively estimated 
for each degree of impact (i.e., one-day loss of support 
would be of "some impact," whereas loss of support for 
seven days can have "major impact"). 

Judgment as to the impact should be made by management 
officials that use the product of the application. If the usets 
are not the sponsoring organization, the judgment of the 
sponsoring organization should also be solicited. Judgments 
on impact of loss should be rendered by higher-level man
agement officials as applications are aggregated into subsys
tem, subsystems into systems and impact upon entirety of 
supported organizations is adjudged. Final review and judg
ments of impact should be made by the heads of organiza
tions supported. 

For purposes of value analysis, it is not intended that in
depth study and analysis be conducted into the specific 
losses and into quantification of losses. Such analyses will 
be conducted during later tasks. At this juncture, all that is 
required are subjective statements by management-level of
ficials about the importance of automated operations to the 
mission of supported organizations. 

Estimate the asset value of automated resources providing 
support (1.3) 

While the risk assessment process should be oriented pri
marily toward the impact of loss upon supported organiza
tions, the asset value of automation support resources is 
often so high as to merit consideration in this process. Con
sequently, fixed assets such as physical facilities, equip
ment, furnishings and other ADP-related assets (add equip
ment, supplies, software and documentation) should also be 
valued at either cost or replacement value, whichever is 
more realistic. The following should be determined in terms 

of the dollar value of: 

Physical Facility 

• Building/Rooms 
• Office equipment and furnishings 
• Special equipment (fire extinguishers, degaussers, mi

crofiche viewer) 
• Utilities (electricity, air conditioning, heat) 

Subtotal 

ADP Equipment and Supplies 

• CPU and memory units 
• Peripheral storage devices 
• Input/Output equipment 
• Specialized devices (off line plotters, COM) 
• Communication devices (controllers, modems) 
• Storage media (mag tapes, disk packs) 
• Remote ItO devices 

Subtotal 

Software (cost or lease-use estimated purchase price. Do 
not include applications software unless purchased or 
leased) 

• Systems software 
• Utility software 
• Other software (programming aids) 

Subtotal 
Total 

Nature of Supporting ADP Operations 

• Estimated hours of processing (annually) 
• N umber of applications 
• Size of data base manipulated 

Threa t iden iiftca tion /analysis (2.0) 

The purpose is to identify threat agents as they relate to 
the particular facility or operation, and the manner by which 
they may be manifested. A threat is manifested by a threat 
agent using a specific technique, methodology, or sponta
neous occurrence to produce an undesired effect upon a 
facility, operation, or system. Threats may be actual. in 
which case there is documented evidence of a threat or class 
of threats, or they may be postulated, based upon an as
sumed capability for which there is no hard evidence. Re
search and investigation of threats should be conducted 
jointly by facility personnel, security personnel, local fire 
department officials. and others able to contribute to this 
analysis. Figure 3 illustrates this process. 

Idelltifv threat agents (2.1) 

Threat agents are considered to be environmental factors 
(tornado, hurricane, earthquake, flood, fire, rain, etc.), au-
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Figure 3-Threat analysis process. 

thorized users (programmers, operators. customer) and 
"hostile" agents (anyone not an authorized user). The pur
pose of this step is to identify those threat agents likely to 
affect this specific facility or operation by reviewing generic 
threat agents. documenting evidence of those agents perti
nent to the specific situation and/or drawing inference as to 
the seriousness of the thre<lt they roo;;e to the f::lcility or 
operation. 

Environmental factors (2.1.1) 

Some areas of the country are more prone to certain 
environmental influences than others. Managers should be 
aware, for example, of the types of natural disasters likely 
to occur in their area. Some types of disasters, such as fire, 
are not geographically dependent, while others, such as tor
nadoes and floods, can be anticipated on a more regular 
basis in specific areas. 

Chapter Two, Federal Information Processing Standards 
Publication 31 (FIPS Pub 31), June 1974, a U.S. Department 
of Commerce, National Bureau of Standards pUblication on 
Computer Security in ADP Operations, deals with the sub
ject, "Anticipating Natural Disasters." Areas of the country 
particularly susceptible to the various types of disasters are 
clearly identified, and methods of preparing for these dis
asters are discussed. 

In addition to natural disasters, appropriate concern 
should be directed towards the threat of mechanical and 
electrical equipment failure and curtailment of electrical 
power. They can easily disrupt operations as effectively as 
other more hostile types of threats. 

Authorized users (2.1.2) 

Authorized users and ADP personnel engaged in support
ing operations can be considered as potential threats when 
they exceed their privileges and authorities and thus affect 
the ability of the system to perform its mission. Personnel 
granted access to systems or occupying positions of special 
trust and having the capability or opportunity to abuse their 
access authorities, privileges, or trusts will have to be con
sidered as potential threats during this evaluation. 

Hostile agents (2.1.3) 

"Hostile" agents could be anyone, not an authorized user 
of the system, who by design, attempts to interrupt the 
productivity of the system or operation either overtly or 
covertly. Overt methods could include outright acts of sab
otage affecting hardware and associated equipment, or more 
subtle efforts of destruction which could be accomplished 
through the manipulation of software, both systems and 
application. 

Identify penetration techniques (2.2) 

A threat agent mounts an attack against a facility or op
eration using a single or a group of specific techniques, 
methods, or spontaneous occurrences. A useful means of 
categorizing these techniques is according to the five sub
disciplines of automation security-physical, personnel, 
hardware. software and procedural security. For example, 
a threat agent mounting an attack against a facility by trying 
to "llhvert (lcceo;;s control" wOlll<'l he ming a physical pene 
tration technique. 
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Physical (2.2.1) 

Physical penetration implies use of a physical means to 
gain entry into the restricted areas housing the ADP system 
or any of its components. It could be a building, compound, 
room, or any other area designated as part of the ADP site. 

Personnel (2.2.2) 

Penetration techniques and methods generally deal with 
the subverting of personnel authorized some degree of ac
cess and privilege regarding a system, either as users or 
"operators." (As used here, "operators" are considered to 
be anyone involved in the operation of the system-analysts, 
progrl;immers, operators, tape librarians, input/output sched
ulers, maintenance, custodial personnel, or the like.) They 
can be recruited by a threat agent and used to penetrate the 
system, operation or facility, or can themselves become 
disaffected or motivated to mount an attack. Highly tech
nical functions performed with minimum effective supervi
sion or control represent the types of circumstances under 
which an attack may be launched. For example, the vendor's 
hardware maintenance personnel are equipped with detailed 
technical knowledge and sophisticated diagnostic tools that 
can be used to penetrate the system. Generally, no one in 
the user organization has the technical knowledge base (a 
vulnerability) to effectively review and affirm the actions of 
the customer engineer. 

Hardware (2.2.3) 

Attacks can be mounted against the hardware for the 
purpose of using the hardware as a means of subverting or 
denying use of the system. A physical attack against the 
equipment, a "bug" implanted within the hardware or an 
attack against the supporting utilities are means of subvert
ing the system by using the characteristics of the hardware. 
Hardware, as used in this category, generally includes any 
piece of equipment which is part of, or comprises the sys
tem, i.e., the mainframe, peripherals, communications con
trollers, or modems. It also includes indirect system support 
equipment, such as power supplies, air conditioning sys
tems, backup power, water supplies and the like. 

Software (2.2.4) 

Software penetration techniques can be directed against 
systems software, applications programs, or utility routines. 
Software attacks can range from discrete alterations, subtly 
imposed for purposes of compromising the system, to less 
discrete changes, intended to produce catastrophic results 
such as destruction of data or important systems features. 

Procedural (2.2.5) 

Authorized users or "hostile" agents can effect proce
dural penetration due to lack or inadequacy of controls, or 

failure to adhere to existing controls. Examples of penetra
tions include former employees retaining and using valid 
passwords, unauthorized personnel picking up output, users 
"browsing" without being detected due to failure to dili
gently check audit trails, and personnel removing material 
from the computer room when not authorized. 

Vulnerability analysis (3.0) 

The purpose is to identify possible weaknesses existing in 
the defenses of a facility, system, or operation. Through 
analysis of identified weaknesses and weighting each on the 
basis of exploitability, an appreciation of the likelihood that 
a threat agent will mount an attack to exploit a specific 
weakness or series of weaknesses will be achieved. Vulner
abilities are weaknesses in our defensive mechanisms, ex
posing that which we are trying to protect. Vulnerabilities, 
like threats, are also causative factors. Vulnerabilities are 
generally und~r our control and can thus be modified to limit 
the effectiveness of an attack. Figure 4 illustrates the vul
nerability analysis process. 

Identification of vulnerabilities (3.1) 

Weaknesses or flaws in the design, implementation, or 
operation of the security controls of a facility, system, or 
operation must be identified, whether through analysis of 
the security controls alone, or as causal factors directly 
related to a previously identified threat. Vulnerabilities can 
be classified and their relationships to threats more easily 
identified using the same basic categorizations used for 
threats. 

Weighting of vulnerabilities (3.2) 

Vulnerabilities just identified should be considered in re
lation to one another and arrayed according to adjudged 
seriousness and potential degree of exploitability. These 
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Figure 4-Vulnerability analysis. 



298 National Computer Conference, 1979 

judgments are made without consideration of the threat 
(threat relationship will be evaluated later) and based upon 
the experience of the appropriate management-level official. 
Not all vulnerabilities need to be weighted; general catego
rizations can be used (e.g., extremely serious, serious, 
minor). Weighting, at this point, should be pursued only to 
the depth and degree necessary to inform data processing 
management of the vulnerabilities and elicit management 
opinion as to their relative exploitability. It is not necessary 
that discrete values be assigned to each vulnerability or that 
probabilities and potential dollar losses be computed during 
this step. Informed judgments by data processing or other 
knowledgeable management-level official are desired and 
adequate. 

Risk analysis (4.0) 

The purpose is to identify specific undesirable events 
through analysis of the possible impacts of previously iden
tified threats and vulnerabilities. The primary objective of 
this step is to determine the effects upon the system, facility, 
or operation caused by the interaction of threats and vul
nerabilities. This is the "effect" portion of the "cause-ef
fect" relationship. Identification of these relationships is 
extremely important to future analysis and documentation 
of impact, identification of countermeasures and cost/benefit 
analysis. Undesirable events are generally categorized as 
unauthorized disclosure of information, unauthorized ma
nipulation of information, unauthorized use and denial of 
service, as depicted in Figure 5. 
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Figure 5-Risk analysis. 
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Ana(vze threats/vulnerabilities (4.1) 

In this step, the formal relationships between threats and 
vulnerabilities are documented. The threat agent, the spe
cific techniques or methods available to mount an attack 
and the vulnerabilities to be exploited (as previously iden
tified), are now formally related and their relationship doc
umented. The following two examples illustrate such rela
tionships: 

a. Case I 
Threat Agent-Authorized User. 
Attack Methodology/Technique--Mounts an attack on 
the systems software by scavenging through memory 
workspace searching for passwords or other sensitive 
data. 
Vulnerability Exploited-Residual data in memory 
working space is not erased, thus allowing sensitive 
information to be accessed by subsequent users not 
authorized such access; or 

b. Case 2 
Threat Agent-Hostile Agent. 
Attack Methodology/Technique~(a) Accesses remote 
terminal by bypassing physical security features; (b) 
Uses an authorized password, found on printout dis
carded in trash and unsecured User's Manual to access 
system. 
Vulnerabilities Exploited-(a) Inadequate physical se
curity of remote terminal area (area unguarded; simple 
key lock on door; no alarms or motion detectors); (b) 
Terminal software not disabled during non-duty pe
riods when use is not authorized: (c) User's Manual 
left unsecured, revealing detailed sign-on procedures: 
(d) System software fails to suppress or block out pass
word during sign-on/validation routine; (e) Sensitive 
trash left unsecured/unattended after duty hours. 

As noted in Case I, the relationship between threats and 
vulnerabilities may be linear or, as in Case 2, the relation
ships may be more complex. 

Identification of undesirable events (4.2) 

An undesirable event is considered to be a potential oc
currence resulting from the activity of a threat agent ex
ploiting a vulnerability. Whereas threats and vulnerabilities 
are causative factors, the undesirable events identified 
herein are the effects of these factors. Undesirable events 
are generally categorized according to effect upon the sys
tem, facility or operation: 

a. Unauthorized disclosure of information. 
b. Unauthorized manipUlation of information. 
c. Unauthorized use. 
d. Denial of service or use. 

In Step 4.]. the Case I situ(ltion descrihing the (luth(lri7ed 
user as the threat agent scavenging through working memory 
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covered only the causative threat/vulnerability factors. In 
this step, the effects must now be described. Continuing 
with the Case 1 scenario, the effect could be compromise of 
passwords and thus possible compromise of sensitive data 
accessed through use of those passwords. 

Unauthorized disclosure of information (4.2.1) 

Unauthorized disclosure includes access. either deliberate 
or inadvertent, to any type of sensitive information for which 
the individual has not been authorized access or does not 
have a need-to-know. In this context, sensitive information 
includes not only national defense, privacy, asset/resource, 
or proprietary information, but also critical system or op
erational information (passwords, system software, sensitive 
control processes) which should not be disclosed. 

Unauthorized manipulation of information (4.2.2) 

This category implies not only accessing information, but 
also manipulating and/or modifying it to destroy the integrity 
of the original information. Generally, a much more serious 
effect than unauthorized access, unauthorized manipulation 
is extremely difficult to detect and can insidiously deceive 
users or processors and contaminate other information. Un
authorized manipulation can also be a vehicle in fraud, and 
may take the form of creating unauthorized accounts and/or 
records. 

Unauthorized use of information (4.2.3) 

This category involves an authorized user using informa
tion for other than its intended purpose. Examples include 
using contractual or proprietary information for personal 
gain or using privacy information, such as home addresses 
and phone numbers, to solicit business. 

Denial of service or use (4.2.4) 

This category encompasses a wide variety of effects in
tended to partially or completely prevent use of the system 

or its features caused by technologies ranging from blowing 
up ·the computer, destroying its source of power. causing 
the system to crash, or overloading the computer with tasks 
so as to make it sluggish and unresponsive. The primary 
variable in denial of service or use is the consistency of the 
effect lasting from micro-seconds to days or weeks. Denial 
of service or use may be either deliberate or inadvertent. 

Risk assessment (5.0) 

The purpose is to evaluate identified risks to determine 
their relative impacts upon the facility, the information han
dled, the processing performed, the support being provided 
and the mission accomplishment of the organizations being 
supported. The primary objective is to assess the severity 
of the identified risks and weigh the likelihood of occurrence 
so that they may be ranked according to degree of accept
ability or unacceptability. This risk assessment task is the 
single most important activity in the Risk Management 
Model since it summarizes all previous risk analysis activi
ties and presents these findings to appropriate levels of man
agement for their review and evaluation. It is during this 
step that the senior management officials of the supported 
organizations are able to qualitatively confirm their reliance 
upon automated support for accomplishment of their mis
sion. It is at this pOInt also that the appropriateness of the 
assigned sensitivity designation should be reviewed and ac
tion initiated to change it, if necessary. The Risk Assessment 
Process (Figure 6) includes tJ1~ sub-tasks of Assignment of 
Event Weights, Determination of Relative Impacts, Esti
mation of Likelihood and Ranking According to Accepta
bility/U nacceptability. 

Assignments of event weights (5.1) 

This task relates to the assignment of individual event 
weights indicating the severity of the effects of the undesir
able events identified in the risk analysis process. This step 
is common to all risk analysis schemes and usually involves 
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some metric based upon probability of occurrence and esti
mated annualized dollar loss. As stated previously, use of 
quantitative probability and dollar-based metrics are gener
ally not appropriate for the total measurement of impact 
upon the information being handled, the processing being 
performed, or the mission accomplishment of the supported 
organizations. Such metrics may have some utility in deter
mining impact upon the physical facility. It is recommended 
that individual event severities be adjudged qualitatively by 
management-level officials using descriptive adjectives or a 
"fuzzy metric" and, at the most, a simple 0-10 or 0-100 
rating scale. The success of this activity is dependent upon 
the quality of judgments made by management officials after 
they have had the benefit of all previous analysis. It is 
appropriate for replacement costs of physical facilities, 
equipment, supplies, data, or software to be estimated and 
entered into the decision-making process during this step. 

Determine relative impacts (5.2) 

This task formally assesses, for the first time, the relative 
impacts of all identified risks. The objective is to evaluate 
each in relation to all others to develop an appreciation for 
their relative severities. All quantitative and qualitative data 
collected thus far is evaluated and events scaled according 
to severity of impact. Again, qualitative descriptions such 
as "severe," "moderate," "light," possibly supported by 
a simple 0-10 or 0-100 rating scale, applied by the appropriate 
evaluators and/or managers, are the key inputs to this proc
ess. The end product is a table of undesirable events with 
qualitative descriptors of severity assigned. 

Estimate likelihood (5.3) 

This task requires analysis of individual undesirable 
events, and their interrelationship with other such events, 
to derive an estimate of the likelihood that each event will 
occur. Again, the application of qualitative descriptors, of 
"fuzzy metrics," such as "high," "moderate," or "low," 
to describe the possibility of occurrence is required, Pre
vious weights and estimates assigned to threats and vulner-

abilities must be considered in arriving at these determina
tions. The end product is a table of undesirable events with 
qualitative descriptors of likelihood assigned. 

Rank according to acceptability/unacceptability (5.4) 

This task considers all previous analysis in arriving at an 
assessment of the relative degree of acceptability/unaccept
ability of each undesirable event. Qualitative descriptors, 
such as "unacceptable," "marginally acceptable," "ac
ceptable," possibly supported by a simple 0-10 or 0-100 
rating scale, and based upon the informed judgments of 
management officials, are the key inputs to this process. 
These officials must, for each undesirable event, consider 
the impact (Step 5.2) and the likelihood (Step 5.3) in order 
to adjudge the degree of acceptability/unacceptability. The 
end product of this step is a listing of undesirable events 
ranked according to acceptability/unacceptability, which 
will then form the basis of action in identifying and imple
menting countermeasures. It is in this step that senior man
agement officials will be called upon to make informal judg
ments as to the effect of undesirable events upon 
performance of mission and thus assess their dependency 
upon this automated support. 

Management decision (6.0) 

The purpose is to evaluate identified risks according to 
degree of acceptability/unacceptability and, in consideration 
of the nature of the threats and vulnerabilities as they relate 
to risks, to identify and select countermeasures to effectively 
reduce the risk. The Management Decision Process (Figure 
7) requires the use of management techniques such as cost/ 
benefit analysis to determine those countermeasures which 
appear most effective and offer the best return on resource 
investment. Top management involvement is required to 
judge which countermeasures should be implemented and 
the priority for implementation. The Management Decision 
Process includes the sub-tasks of Risk Review, Identifica
tion of Countermeasures, Evaluation of Countermeasures 
and Selection of Countermeasures. 
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Figure 7-Management decision process. 
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Risk revieM' (6.1) 

This task requires the critical review of previously iden
tified risks and related threats and vulnerabilities. It is a 
review and revalidation of the cause-effect relationships, 
previously identified in Steps 2, 3, and 4 of this Risk Man
agement Model, for the purpose of determining which of the 
cause-effect factors would be most favorably influenced by 
counteraction. In attempting to alter the cause-effect rela
tionship, countermeasures may be applied to either threats 
or vulnerabilities. However, countermeasures are usualiy 
applied against vulnerabilities since they are most directly 
under our control and are the easiest and most cost-effective 
to influence. Such traditional responses as the use of secu
rity guards, card-entry access control devices, or sophisti
cated' password systems are directed toward correcting a 
weakness or vulnerability. In some very limited situations, 
the threat may also be reduced by taking counteraction; for 
example, denying the authorization to use the system to a 
person who fails to follow approved procedures or who 
abuses the system. The results of this task will be an initial 
indication of where to apply emphasis in development of 
countermeasures. 

Identification of countermeasures (6.2) 

In this task, the threats and vulnerabilities associated with 
a specific risk are analyzed to determine the best means of 
countering them. Specific actions are recommended which 
will lessen or minimize their impact. As pointed out previ
ously, threats rarely can be cost-effectively countered but 
this course of action should not be discounted without some 
consideration. In this analysis, countermeasures should also 
be evaluated for effect upon other causal factors and these 
effects entered into the considerations. It is rare for a single 
countermeasure not to impact upon multiple events, so these 
relationships must be carefully explored so as to fully define 
their effect. Analysts must be careful that a countermeasure 
does not create a more serious vulnerability than that which 
it is intended to correct. The classic example of this situation 
is the implementation of software security measures requir
ing multiple, lengthy, passwords which end up being written 
down in wallets or displayed on walls and provide an easily 
accessible key to the system and data bases. Whenever 
possible, this task should present alternative measures for 
evaluation in the next step. To provide continuity with threat 
agent aiiack methodoiogies/penetration techniques (Step 
2.2) and identification of vulnerabilities (Step 3.1), counter
measures should be identified and similarly categorized 
(e.g., physical, personnel', hardware, software, and proce
dural security). 

Evaluatioli of couiitermeasures (6.3) 

This step focuses upon alternative countermeasures, eval
uating the relative costs and benefits of each in relation to 
the tangible and intangible losses which each is trying to 

prevent. Using such techniques as cost/benefit analysis to 
display cost offset or detail cost avoidances attributable to 
a specific countermeasure, this step is intended to provide 
the informational base for subsequent decision-making by 
management-level officials. Full life-cycle costs and offset 
savings should be documented for consideration in the de
cision-making process. It should be noted that formal cost/ 
benefit analysis techniques are inadequate for detailing in
tangible losses and benefits of avoidance of a loss, and 
therefore should be used only as a guide for decision-mak
ers. No countermeasure should be dismissed by analysts 
based upon cost/benefit analysis alone, but rather should be 
presented to management-level officials for consideration in 
light of intangible benefits. Analysts will identify these in
tangible benefits as part of the evaluation process. 

Selection of countermeasures (6.4) 

This task is concerned with the gathering of pertinent 
information regarding proposed countermeasures in order 
that management may determine those that appear to be 
most effective and offer the best return on resource invest
ment. Management will decide which should be imple
mented and the priority for implementation. While all efforts 
thus far have been directed towards minimization of risk, or 
"risk avoidance,"' it is here that management can decide to 
establish full or partial alternate or back-up capability (e.g., 
continuity of operations plans) or, if the risk potential is 
large enough, to no longer entrust the storage and handling 
of that information to automated processing. 

Control implementation (7.0) 

The purpose is to develop and execute a plan to implement 
those countermeasures required to improve the security and 
provide an acceptable degree of risk to senior management. 
This process requires the development of a comprehensive 
plan, the acquiring of management-level approvals neces
sary to commence implementation of the plan, the actual 
implementation of the selected countermeasures and testing 
of the effectiveness of selected countermeasures once im
plemented. The Control Implementation process (Figure 8) 
includes the sub-tasks of Development of a Plan, Approval 
of Plan, Implementation of Countermeasures and Test and 
Evaluation of Countermeasures. 

Development of a plan (7.1) 

To develop a plan to implement required countermeasures 
it will be necessary to establish priorities for their imple
mentation. Generally, countermeasures should be imple
mented according to the severity of the undesirable cffect 
being countered, as determined during preceding analysis. 
U sing this as the basic criterion, other influences can be 
brought into consideration (e.g., ease of implementation, 
fiscal restrictions, personnel constraints, timing limitations). 
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Figure 8--Control implementation. 

Each countermeasure must be examined, both individually 
and collectively, to preclude duplication. The plan should 
identify specific resource requirements and the timeframe in 
which these resources will be required so that it may be 
used as the basis for input to planning, budgeting and other 
resource justification documents. 

Approval (~r plan (7.2) 

Once developed, the plan must be reviewed and approved 
by senior management. In this step, senior management 
must be given the opportunity to validate or change the 
priority of implementation based upon previous assessment 
of the risk. The level of management which controls the 
approval or allocation of resources must exercise decision 
authority on the plan so that it reflects their priorities and 
has their support. Senior management will be given the 
opportunity to assess the full resource impacts and make 
judgements as to how to best respond to resource require
ments. It is important to give these resource requirements 
separate visibility rather than to attempt to bury them in 
normal data processing operating budgets. The decision can 
be made by management whether to handle the plan as a 
separate major program: to assign an allocated, "charge
back" type cost to users: or to include them in the data 
processing budget. Once these decisions have been made, 
formal justification can be made in budget and other re
source management documents. 

/l1Iplemellfatioll of COlllltermeaSllres (7.3) 

Once the planning documents have been completed action 
can commence on implementation of countermeasures. 
Some will be procedural or of such small dollar impact that 
they can and should be implemented immediately, while 
others have already been implemented during the risk as
sessment because of the severity of the security deficiency. 
Others will involve long-term, multi-year pro.iects. such as 
the construction of an entirely new faculty. During impJe-

mentation, it is imperative that the integrity of the plan be 
preserved and no significant deviations allowed without con
scious management decision. The analytical risk assessment 
process should have resulted in the selection of counter
measures to support interlocking and mutually supportive 
defensive barriers for the operation. Arbitrary alteration of 
planned improvements will inevitably disrupt the cohesive
ness of security features and lead to less than optimum 
results. 

Test and evaluation of countermeasures (7.4) 

Sensitive systems with stringent security requirements 
should have formal test and evaluation of significant coun
termeasures immediately prior to or during initial implemen
tation. The purpose of test and evaluation is to ascertain, 
with reasonable assurance, that the proposed countermea
sure will produce the desired effect and will not result in 
undesirable side effects. Testing can be supplemented by a 
formal review and evaluation period during the initial imple
mentation phase during which the effect of the countermea
sure is carefully monitored. In some cases, such as the 
implementation of a security front-end or a secure telecom
munications monitor, it would be appropriate to constitute 
a formal test team, develop a test scenario and conduct a 
formal documented test of the effect of the countermeasure. 

Effectiveness review (8.0) 

The purpose is to periodically review the effectiveness of 
security controls and to assess the impact of those planned 
and currently being implemented in order to determine that 
they do what they were intended to do and have not created 
additional vulnerabilities. A formal audit of effectiveness 
should be conducted at a frequency determined by the sen
sitivity of the facility and its operations. As a result of the 
audit, management can make the determination whether or 
not to reinitiate the entire ri",k m,magement pr0ce"", Fignre 
9 illustrates this activity. 
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Figure 9---Effectiveness review. 

Review controls (8.1) 

Management is responsible for designing and implement
ing security controls. At this stage in the process, manage
ment must review all previously implemented controls to 
assure proper placement and operation. Particular attention 
should be paid to new controls and their integration into the 
overall security system. 

Audit of effectiveness (8.2) 

If deemed appropriate, full and formal review by outside 
experts should be conducted to determine the overall effec
tiveness of security controls. This can be accomplished by 
formal security survey teams and internal auditors. Audit is 
an important part of the risk management process, providing 
independent review and analysis for senior management. 

Control adjustment (8.3) 

This step in the process deals with the "fine-tuning" of 
the overall security system to address deficiencies and gaps 
found in the review and audit steps. Based upon the outcome 
of the effectiveness review, this step may lead to reinitiation 
of the total risk management process. 

CONCLUSIONS 

Most risk analysis/assessment schemes fall prey to the 
challenge of precise quantification of impact in terms of 
probabilities and dollar losses, preferring to be "exactly 
wrong rather than approximately right." To their detriment, 
these schemes focus primarily upon impact upon the data 
processing function (e.g., loss of or damage to equipment, 
cost to regenerate a data base, or accomplish a missed pro
cessing) rather than the effect upon the total business sys
tem, the real loser and bearer of risk. Perhaps the greatest 
weakness of these schemes is that they keep the risk anal
ysis/assessment process a strictly data processing problem, 
inevitably victimized by the "conflict of interest" between 
security and productivity goals, whether real or merely per
ceived. This model attempts to address these problems and 
many of those raised by Turn, Gaines and Glaseman 10 while 
providing the foundation for further work in this area. 
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The design and operation of public-key cryptosystems 

by ERIC H. MICHELMAN 
Intel Corporation 
Santa Clara, California 

INTRODUCTION 

Recently, there has been a major advance in the area of 
communications security-that of a practical way to imple
ment public-key cryptosystems (PKCS). 

Public-key cryptosystems make use of a method for en
cryption and decryption in which the encryption key is dif
ferent from the decryption key. Not only are the keys dif
ferent, but revealing one doesn't provide any useful help in 
determining the other. A particular value for one key does 
of course "set" the value for the other, but for practical 
purposes, the other key is impossible to determine without 
additional information. 

One major implication of this scheme is that encryption 
keys can be public; literally anyone can have access to them 
without threatening the security of encrypted communica
tions. The decryption key is kept private; there is never any 
need for anyone to communicate his decryption key to any
one else. This eliminates the need for a secret transferrai of 
keys, as is the case with conventional encryption methods. 
In systems using conventional methods, before two parties 
can communicate, they must agree on a key to be used for 
both the encryption and decryption. This key must be kept 
secret, as well, or someone who intercepts a message will 
be able to read and/or modify it. This agreement on a key 
is generally either very expensive and time-consuming or 
relatively insecure. 

PKCS largely eliminate this problem. There is still a need 
for reliable transferral of the public keys, to be discussed, 
but it is minimal and, not requiring secrecy, may be done 
inexpensively. 

The second major implication of PKCS is that it is possible 
to "sign" messages in a way that is unforgeable but easily 
verifiable. In other words, John can send Marya "signed" 
message which she can prove came from him, even though 
the content and the encryption key may be public knowl
edge. This can be accomplished because the keys can be 
used in either order; encrypting with the private key and 
then decrypting with the public key produces the original 
message. To sign a message, John first encrypts the message 
with his private key (yes, his decryption key), then encrypts 
the result with Mary's public key (her encryption key). Mary 
now has a doubly-encrypted message which she first de
crypts using her private decryption key, then decrypts again 
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using John's public key (his encryption key) to arrive at the 
English message. Since only John knows his private key, 
only John can create an encoded message which produces 
English when his public key is applied to it. 

The idea of PKCS was first publicized in an articie by 
Diffie and Hellman of Stanford. 1 In this article, they dis
cussed the advantages that could be obtained from an al
gorithm which allowed the implementation of PKCS. They 
did not, however, suggest a specific algorithm. Such an 
algorithm was first published in April 1977 by Profs. Ronald 
Rivest, Adi Shamir and Len Adleman of MIT. This algo
rithm (the RSA algorithm) is based on the computational 
difficulty of factoring large numbers. This paper focuses on 
the use of that algorithm in particular. 

THE RSA ALGORITHM 

As described in the paper by Rivest, Shamir, and Adle
man,6 the encryption and decryption operations are quite 
straightforward. 

The encryption and decryption algorithms 

Both the encryption key and the decryption key are com
posed of a pair of numbers, (e ,n) and (d,n) respectively. To 
encrypt a message, the message must first be represented 
as an integer between zero and n - 1. This can be done in 
any way that is convenient, such as stringing together the 
characters' ASCII representations. Long messages can be 
broken up into a series of blocks of this size, with each 
block treated as an individual message. The purpose of this 
is to put the message into numeric form as required by the 
encryption procedure. 

The encryption is performed by simply raising the mes
sage to the e-th power modulo n. That is, the encrypted 
message C (for ciphertext) is obtained by raising the message 
M to the power e, and then taking as C the remainder 
obtained by dividing Me by n. Decryption is similar io en
cryption. The d key is used where the e key is used for 
encryption. 

Stated as formulas, the encryption and decryption algo
rithms are: 
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Encryption: C= Me(mod n) for a message M 
Decryption: M= Cd(mod n) for a ciphertext C 

The encryption key, then, is the pair of integers (e,n) and 
the decryption key is the pair of integers (d,n). 

Choosing the encryption and decryption keys 

The first step is to generate two very large primes, p and 
q. To compute n, simply multiply p and q: 

n=pXq 

The d key is a large random number which is prime rel

ative to (p- I)*(q-.!). This implies that 
q 

gcd(d,(p-l) (q-l)=l 

where gcd means greatest common devisor. 
Finally, the e key is computed from p, q, and d to be the 

"multiplicative inverse" of d modulo (p- I)*(q-l): 

e*d= 1 (mod(p-l)*(q-l) 

Although n will be revealed publicly, it will be virtually 
impossible for others to determine p and q by factoring n. 
This is due to the tremendous computational difficulty in
volved in factoring very large numbers. The size of the keys 
involved are typically, but not necessarily, about 50 to 200 
decimal digits for p and q and about 100-200 decimal digits 
for n. Procedures for generatingp,q,n,e, and d are presented 
in the Rivest paper. 

Theoretical security (~r the RSA algorithm 

In terms of theoretical security, using the fastest factoring 
algorithm known to the authors of the Rivest paper, the 
amount of time necessary to break the encryption scheme 
by factoring the n parameter is given in Table I. Rivest 
makes the claim that any method of breaking the scheme by 
mathematical analysis must be at least as difficult as factor
ing n as it would provide the factors of n. This table, taken 
directly from that paper, shows the time needed to factor n 
on a computer which performs one operation per micro
second. 

There does exist the possibility that a faster factoring 
algorithm will be discovered. In that case, the time needed 
to crack the system with a given key length will decrease 
accordingly. However, it is likely that any improvement in 
the factoring algorithm will produce a marginal rather than 
a dramatic improvement, although that would be relative to 

TABLE I 

Digits in n Number of Operations Time 

50 
75 

100 
200 
300 
500 

1.4x 1010 

9.0x 1012 

2.3x 1015 

1.2xlO23 
1. 'ix 1()29 

1.3x 1039 

3.9 hours 
104 days 
74 years 
3.8x 109 years 
4.9x 1015 years 
4.2x 1025 years 

the key length in use. An improvement of a factor of ten, 
for example, would be a matter of concern with a key length 
of 50, but not with a key length of 200. It should be noted, 
however, that this has not been proved to be a difficult 
problem. It has been worked on extensively by mathemati
cians, though, and it is generally believed that there is no 
easy solution possible. 

KEY MANAGEMENT AND ADMINISTRATIVE 
SECURITY 

With respect to key management and administrative se
curity, PKCS compare very favorably to conventional sys
tems. In systems where the encryption key is the same as 
the decryption key, two parties must agree on a key prior 
to sending messages. This secure transmittal of keys is gen
erally an expensive and time-consuming process. 

In establishing a common key in conventional systems, 
there is always a tradeoff between security and expense
the easier and cheaper ways to transfer the keys, such as by 
telephone or mail. are relatively insecure. The more secure 
methods, such as a trusted carrier, are expensive, especially 
over long distances. Often these systems are not as secure 
as they should be because of the expense involved and the 
tradeoff present between expense and security. The risk 
exposure may be greater than the cost of the desired secu
rity; however as is often the case in computer security, the 
risk of possible security failures in the future is preferable 
to the manager in charge than the immediate outflow of 
dollars necessary to provide the desired level of security. 

In fact, relying only on the competence and trustworthi
ness of others in a security system introduces a great deal 
of risk. This is a primary problem with conventional en
cryption systems-even using a courier to transmit keys is 
only as secure as the courier, unless special precautions are 
taken such as using tamper-proof, locked containers to 
transport the keys. 

With PKCS one still needs to be careful, particularly con
cerning the authenticity of encryption keys that are trans
mitted over the communication lines. It is important to note 
that there is little security in a system in which people 
happily broadcast their encryption ke.vs for the other users 
as often and whenever they like. With such a system there 
is nothing to prevent an intruder from tapping into the com
munications lines and substituting his own encryption key 
for the legitimate keys sent by users. Other users receiving 
these encryption keys will then unwittingly send messages 
encrypted with the intruder's key. The intruder can then 
read the messages (having tapped into the communication 
lines), retransmit them with the intended user's real encryp
tion key (which the intruder had intercepted), and even alter 
the message and then retransmit it. None of this would be 
detectable by the users. 

The suggested remedy for this problem is to have a trusted 
"system controller" keep track of all the users' encryption 
keys. With an encryption/decryption key pair of its own, the 
system controller can send users signed messages indicating 
what the encryption keys of other users are. As an impostor 
could not forge the system controller's signature, the users 
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can be assured of the authenticity of encryption keys re
ceived in this manner. 

Implementing this scheme requires that each user be able 
to transmit his encryption key to the system controller in a 
reliable manner so that the system controller can then relay 
it to other users. It also requires that each user be sure of 
the system controller's encryption key so that he can verify 
the system controller's signature. These keys cannot simply 
be transmitted over the communications lines for the reason 
just discussed. 

If both keys (the system controller's. and the user's) had 
to be transmitted externally to the system, the requirements 
would be similar to those with conventional encryption 
methods. That is, a secure external transferral of keys would 
be necessary, although with PKCS secrecy would not be 
required (we are, after all, dealing with just the public keys). 

Fortunately, this can be avoided if two conditions can be 
met. First, the system controller's key needs to be made 
public knowledge. This shouldn't be very difficult as there 
is just one for the entire system. Second, there must be an 
appropriate action available to users if they discover a se
curity problem. This also seems likely; however, if only the 
first condition is filled, then one can run into the problem of 
being guaranteed detection of security problems but not 
being able to do anything about them. These conditions will 
be further discussed later. Assuming they are filled, users 
can send their encryption keys to the system controller over 
the insecure communications lines in the following manner. 

To establish a new encryption key, a user first sends it to 
the system controller. The system controller then signs it 
and sends it back to that user. As the user knows what the 
system controller's encryption key is, he can verify the 
signature on the returned message and thus be sure that the 
system controller has accurately received the key. If the 
returned key isn't accurate, then the user knows that there 
is an active security threat and can take appropriate action. 

To prevent an impostor from sending a new key to the 
system controller purporting to be from someone else, the 
following restrictions are necessary. First, key changes take 
effect at pre specified times, perhaps the same time every 
day, week or month. At a given time before the key changes 
are scheduled to go into effect, the system controller stops 
accepting key change messages. It then sends a signed mes
sage to each user indicating what it thinks the user's key is 
for the next period. If there is a discrepancy-either a key 
was incorrect or the message wasn't received-the user 
takes appropriate action. All confirmation messages that are 
sent by the system controller should be date- and time
stamped to prevent an intruder from recording one and play
ing it back at a later time. 

In a physically-insecure communications system, it is not 
possible to prevent the recording and/or modification of 
message traffic (presumably in its encrypted form), or even 
denial of service (perhaps by being as crude as just cutting 
the line). It is possible, though, to meet the following goals: 2 

1. Prevention of release of message contents. 
2. Detection of message modification. 
3. Detection of denial of service. 

The procedures just described for use in a PKCS meet these 
three goals without requiring any secure external key trans
ferrals, either between the users themselves or between 
users and the system controller (with the exception of the 
one public encryption key for the system controller). 

It might seem that an undeservedly large amount of effort 
is devoted to changing keys with these procedures. Tradi
tionally, key changes have been very important, though. 
They limit the potential exposure in case of a compromised 
key to the time until the next key change. The time that a 
cryptanalyst has to crack a key while it is still active is 
limited. Also, often after having given someone else a key, 
a user wants to revoke access by changing the key (e.g. 
after an employee goes to work for a competitor). In appli
cations where the information transmitted is sensitive for 
only a short time, one also has the option of using more 
frequent key changes in conjunction with shorter keys to 
decrease the cost of encryption and decryption. While the 
shorter keys would be easier to break, there would be less 
time to break them while they are still in use. 

The system 'controller referred to here is expected to be 
contained in either the central computer or the communi
cations links, as appropriate. Little functionality is required 
other than maintaining a list of user encryption keys and 
communicating these to users in a signed form. It is neces
sary, though, that the integrity of this list be ensured al
though it need not be kept secret. The system controller's 
decryption key does need to be kept secret, of course. 

The two critical assumptions in this scheme are that the 
system controller's encryption key can be made public 
knowledge and that appropriate corrective action would in 
fact exist if a user found that his line was compromised. As 
the system controller will presumably have only one key for 
the entire system, it shouldn't be very expensive to make 
that key public knowledge with respect to the system's 
users. This can be accomplished in many ways-via com
pany newspapers, the Federal Register, public newspaper 
ads, etc. The success of this phase will be easily and im
mediately apparent to the system operators and if there is 
a problem there will be actions that can be taken, ranging 
from not changing the system controller's key to shutting 
down the system, depending on how serious the situation is 
thought to be. 

The problem of being sure that a user will be able to take 
appropriate action in case of a security problem is a bit 
stickier. If the user finds that his new key confirmation 
message hasn't come or showed an incorrect key, he may 
assume that an impostor has substituted a new key. This 
means that the user must contact the system controller or 
(human) operators before the new keys are to go into effect 
or the other users will start using the impostor's key to send 
encrypted messages to that user. The seriousness of this 
situation depends on the time constraints and the physical 
situation. In some cases it is clear that this wouldn't be a 
concern at all. Such a case would be a communications 
system that connects sales offices in American cities with 
the company's main office and in which keys are changed 
once a month with a two-week clearing period before key 
changes go into effect. On the other hand, if an operative in 
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a hostile country had five. minutes to contact his home office, 
he shouldn't be optimistic. We assume physical force isn't 
an issue, since by that method an intruder could also gain 
access to everything via the user's own terminal. 

It seems likely that this wouldn't be an either-or constraint 
in most applications, but more of a limitation on how often 
the. keys can be changed. Two weeks to take corrective 
action should be long enough to guarantee success in almost 
all applications, while five minutes would be cutting it close 
in most applications. Where one can safely draw the line 
depends on the application. It might very well be that keys 
can be changed once a day (with a few-hour clearing period 
for the new keys) in the vast majority of applications, es
pecially if the protocols are largely automated. 

Obtaining other users' keys 

To communicate with another user, a user obtains the 
appropriate encryption key from the system controller. This 
can be done in a number of ways, all relying on the integrity 
of the system controller's signature to prevent an impostor 
from posing as the system controller and sending one system 
user a false encryption key for another user. 

One arrangement would be for the system controller to 
issue signed messages indicating what the encryption key is 
for any given user. These "certificates"· may be traded 
about among users with the authenticity guaranteed by the 
system controller's signature. The major disadvantage to 
this scheme is the problem of outdated certificates when a 
key is changed. 

An alternative similar to certificates is for the system 
controller to periodically issue a list of the system users' 
encryption keys. Keys could then easily be changed on new 
lists, but only when a new list is issued. This sort of arrange
ment would likely be largely automated within the commu
nication system, with the lists being transmitted as messages 
signed by the system controller. 

Another alternative, but certainly not the last, is for users 
to request the appropriate key from the system controller 
prior to communication with other users. This could be a 
useful adjunct to abbreviated lists, with each user being 
supplied a list of the most likely communicants and request
ing the keys of the others as the need comes up. 

SIGNATURES 

Uses 

There are two primary uses for signatures in communi
cations systems-future verification and immediate identi
fication. Future verification is potentially very important in 
commercial systems in which users may want to effect a 
contract over the system. In this sense the signature is just 
like a written signature: its purpose is to prove at a later 
date that the sender did in fact author the message. This is 
valuable and particularly important among mutually suspi-

cious parties, such as two banks executing a contract over 
communications lines. 

Immediate identification is important for a more technical 
reason. In an electronic communications system, if someone 
taps into the communications line he can originate a message 
purporting to be from someone else. However, with the use 
of PKCS signatures, a receiver of a message can verify the 
sender's identity. This is important for both mutually sus
picious parties and those who are not. In communications 
between two trusted parties, one still wants to ensure that 
he cannot be impersonated. 

Added cost 

As always, nothing is free. There is a potentially-substan
tial added cost to using the signature capability, depending 
on how it is implemented. With a hardware implementation, 
the added cost is either an extra encryption/decryption de
vice on each terminal and communications link or extra time 
consumed by cycling messages through one encryption de
vice twice. This applies to both sending and receiving mes
sages. 

With a software implementation, if the encrypted message 
is signed as it is, it will require twice the time to encrypt 
and decrypt a signed message as an unsigned message. There 
is, however, a way to save time in this operation-that is to 
sign a compressed version of the message and send the 
signed compressed version along with the unsigned version. 
A reduction procedure for this would have to be such that 
it wouldn't be possible in practice for someone to change 
part of the message without changing the compressed ver
sion. 

The need for impartial recording of encryption keys 

Unfortunately, there is another operation requirement in 
terms of future verification: One must also be able to prove 
what the encryption key was when the message was sent 
before a disputed signature can be considered proven. A 
good example of the issue here would be a money transfer 
system connecting two banks. 

It sounds very easy for two banks to send signed messages 
back and forth, secure in the knowledge that if there is a 
dispute each can produce the signed messages from the 
other as proof of contract. However, assuming that the keys 
change periodically, they must also be able to prove what 
the other's encryption key was at the time any given mes
sage was received. Otherwise a situation could arise in 
which one bank fabricates a message purporting to be from 
the other, generates a decryption key to sign the fake mes
sage with, and claims that the message was actually received 
from the other, and, at the time it was received, the corre
sponding encryption key was the public key in effect for the 
other bank. 

An analogy can easily be drawn between this problem and 
cnnventinnal paper-!mci-ink signatures. That paper signa· 
tures can be used as proof is partly based on the fact that 
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someone's signature doesn't change over time. In a court of 
law, then, the signature on a document can be compared to 
the person's signature at that or any other time. If people 
changed their signatures frequently, or at all, it would be 
much harder to prove that someone did in fact sign a doc
ument. Similarly, if the keys didn't change in a PKCS this 
problem wouldn't exist. However, from a security point of 
view it is desirable to change keys. 

The implication of this is that for signatures to be useful 
for future verification between two mutually suspicious par
ties, an impartial referee must record the public keys with 
the time that they are in effect. This would be very easy for 
the system controller to do, as it needs to have an accurate 
list of encryption keys at each point in time so it can transmit 
key information to users. The only extra effort necessary is 
the retention of the lists. 

The question of automatic signatures 

It seems that one would like two modes of operation, one 
in which all messages are signed when requested to by the 
system controller, and one in which messages are signed 
only when the user indicates. 

Whether or not the signature operation should be user
controlled depends on the system and the purpose of the 
system. If its purpose is to ensure the identity of the sender, 
then it is probably more convenient to have the signature 
operation under system control. An example of this might 
be water-level sensors in a large dam's floodgate control 
system. There is an instance in which someone proved able 
to dial into the control computer in a large dam and have it 
release all of the floodgates. Similarly, if the water-level 
sensors indicated that the floodgates should be opened, ihe 
computer might well ask for a signature to make sure that 
a disgruntled employee didn't tap into the line and send the 
message. 

On the other hand, in an electronic bill-paying system, 
one would probably want the user to retain very explicit 
control over what gets signed. 

The major difference between these two examples seems 
to be that in the first, the signature is used to ensure proper 
identification. In the second, it is used in the conventional 
sense as well-for future verification. Through the signature, 
the user is presumably committing himself to a contract. 
Another way of looking at it is that the first case concerns 
itself with ensuring system integrity and therefore should be 
under system control. The second case concerns itself with 
user intent, clearly the domain of the user. 

HARDWARE VS. SOFTWARE IMPLEMENTATIONS 

The encryption/decryption and key generation functions 
can be implemented in either hardware or software. A com
bination is also quite possible, if not often desirable. Pres
ently, hardware implementations are not available, although 
at least one hardware implementation project is under way 

and various companies have given consideration to an IC 
chip version. 

The software programs needed are rather simple and 
straightforward. With multiple precision routines to work 
with, they can be on the order of a few dozen lines of code. 
The multiple precision arithmetic routines are more compli
cated than the rest of the code, but algorithms and example 
programs are provided in Knuth's volume on semi-numerical 
algorithms. 3 Complete functional specifications and design 
instructions for encryption/decryption and key generation 
procedures are provided in Rivesfs paper. 6 The problem 
with software implementations is that they seemed to be 
slow. The speed of software implementations will be ex
plored in depth in the next section. 

Until a PKCS chip becomes available (we don't know of 
any that are planned), the alternative for hardware imple
mentations is the use of microprocessors and discrete ICs. 
The one hardware implementation project currently known 
is using ICs. The component cost is expected to come to 
between 51900 and $2000 for one and about $1200 in quan
tities of 1000s: For commercial products of this sort, the 
component cost is usually mUltiplied by from three to seven 
to arrive at the selling price for a finished product. This 
particular implementation is designed to be fast-about 6000 
baud-and uses high-quality components. Alternative de
signs could be done at lower cost. In comparison, a DES 
(the National Bureau 'of Standards' Data Encryption Stand
ard) device is available for $2500 in small quantities and less 
than $2000 in large quantities. This particular DES device 
is faster as well-up to 19.2 Kbaud, depending on mode of 
operation. DES boards are sold for $850 in small quantities 
and less than 5500 in large quantities (these boards operate 
at 6.7 to 56 Kbaud, depending on mode of operation.) 

Microprocessors are now too siow io be used for PKCS 
applications. This is true for several reasons: the actual 
instruction speed is slow compared to larger machines, the 
word size is generally eight bits (necessitating more opera
tions), and they do not have cache memories. On the other 
hand, microprocessors are continually getting faster, 16-bit 
microprocessors are becoming commonplace (the Intel 8086 
and TI's TMS9900), and cache memories on the chip are 
expected within a couple of years. So while microprocessors 
are not presently an adequate vehicle for implementing 
PKCS, they may well be in a few years. Another interesting 
possibility is that since message blocks can be processed 
independently, microprocessor arrays may become a viable 
alternative. In this case the speed of encrypting one block 
would be the effective speed for encrypting an entire mes
sage. 

Software speed analysis 

One of the primary considerations in determining the use
fulness of PKCS is the cost of using them. In terms of a 
software implementation, this refers primarily to the time 
required to encrypt and decrypt messages. This is dependent 
on the number and types of instructions necessary to carry 
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out these operations, as well as the speed of the individual 
computer. 

As software implementations do not offer the option of a 
speed/cost tradeoff, we present here estimates of the time 
requirements for software encryption and decryption. 

The procedure considered for encryption and decryption, 
whi.ch is recommended in Rivest's paper, is called "expo
nentiation by repeated squaring and multiplication:" 

FOR ]=LOG2(e) TO I BY -I 

C=REM «C*C),n) 

IF ej= 1 THEN C=REM «C*M),n) 

END 

where ej is the ith bit, starting with the most significant, in 
the binary representation of e. C is then the encrypted form 
of the message. 

From this procedure, it is clear that the bottleneck in a 
software implementation will be the mUltiple precision mul
tiplication and division routines. The multiplication and di
vision routines analyzed here are basically from Knuth. 3 A 
combination is used, in that each operand is assumed to be 
split into eighths and the basic "high school" algorithm is 
used in mUltiplying the individual eighth sections. They are 
split into eights to utilize the following technique: 

A=Ao+ (2n )*A j Example: lI001O=01O+(23}*1 10 

B=Bo+ (2n )*B I 

A*B=A IB 1*(22n +2n )+2n (A 1- Ao)(Bo- B 1 )+ (2 n + I)AoBo 

Note that only three multiplications were required, whereas 
in the basic algorithm, if A and B were each more than one 
computer word long, four multiplications would have been 
necessary (mUltiplying by a power of two in a computer is 
only a shift operation and can be done very quickly; with 
multiple precision numbers, only keeping track of the deci
mal point is involved.) Since splitting the operands in half 
yields only three-fourths the number of multiplications that 
would be needed otherwise, splitting them into eighths yields 
W3 =H mUltiplications. The actual number of sections the 
operands can be split into depends on the size of the oper
ands. We chose three splits as a representative illustration. 

Adding time for overhead to the it figure, we will estimate 
that multiplications are done in half the time estimated by 
Knuth's basic algorithm (he also describes more advanced 
algorithms, including the one just discussed, but he only 
provides detailed time estimates for the basic one.) It should 
be noted that these time estimates are based on simple, 
straightforward techniques. We are not suggesting that this 
is the best that can be done. Optimization techniques and 
coding tricks would provide a time reduction. On the other 
hand, these figures do not take into account any system 
overhead. With the assumptions described just below, it is 
expected that the system overhead would be smalL but there 
would be some. 

Since the encryption/decryption routines are small pro
grams running in tight loops. we (l~Sllme in these calculations 
that if a cache memory is available. the instructions will be 

found in the cache. Further, since the number of operands, 
parameters, and counters is also small, we assume that op
erands are found in the general registers. While both of these 
assumptions will not always be true, they will be true the 
great majority of the time. One last assumption is that of the 
total number of cycles required to perform some function, 
half will be for executing the instructions and half will be 
for obtaining operands. Encryption/decryption times are 
shown for four machines: The PDP 11145, PDP 11170, IBM 
3701168, and CDC 6400. The times are shown for both an n 
of 100 and 200 decimal digits, and key sizes of n, log2n, and 
three. 

The key size of three refers to actually using three as a 
key; it is the smallest key that can work. Using a key of less 
than log2n risks the encrypted message coming out the same 
as the clear text; that is, no encryption will take place. 
However, if a message block is filled out through all log2n 
places, using a key of three will work. Message formatting 
schemes can be easily devised to ensure that all messages 
will be encoded; however. there is corresponding overhead. 

Note that encryption and decryption of a given message 
require the use of two different keys, at least one of which 
will be on the order of size n. This implies that while a small 
key may be used on one end, providing very fast operation, 
a large key must be used on the other end, with its corre
spondingly-higher overhead. Presumably the decryption key 
will be about size n as it mustn't be guessable. To find the 
total time involved in encoding and then decoding a mes
sage, add the time required to encode with whatever size 
key is to be used to the time required to decode with the 
decryption key. 

Table II summarizes the execution times (in microse
conds) for encrypting a 1000-byte message. Table III pro
vides the number of bits per second that can be encrypted 
using the different key sizes and machine word sizes: The 
detailed derivation of these timing figures can be found in 
Reference 5. In comparison, DES software routines have 
been claimed for the 370/ I 68 which perform encryption/de
cryption at rates of 600 Kbits/second. 

TABLE lJ- IOOO-byte Encryption Times in f.lsecs 

KEY SIZE 

3 logtl n 

I6-BIT MACHINE SIZE (the PDP I I) 
200-DECIMAL-DIGIT n SIZE 

without cache store (11145) 1,826,877 8,563,485 606,821,235 
with cache store (11170) 81I,945 3,805,993 269,698,326 

1000DECIMAL-DIGIT n SIZE 
without cache store 1,040,185 4,356,207 170,229,626 
with cache store 462,304 1.936,092 75,657,611 

32-BIT MACHINE SIZE (the 3701168. 
which has a cache) 

200-DECIMAL-DIGIT n SIZE 44,417 208,223 14,754,988 
1000DECIMAL-DIGIT n SIZE 25,629 107.333 4,254,457 

60-BIT MACHINE SIZE (the CDC 
6400, which has no cache) 

200-DECIMAL-DIGIT n SIZE 112.331 '12{;. 'iQ7 :n3JO,7Q7 
1000DEClMAL-DIGIT n SIZE 76,799 321.595 12.755.416 
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TABLE III-Bits Encrypted per Second 

KEY SIZE 

3 log:{l n 

I6-BIT MACHINE SIZE (the PDPII) 
200-DECIMAL-DIGIT n SIZE 

without cache store (11/45) 4,379 934 13 
with cache store (11170) 9,853 2,102 30 

lOO-DECIMAL-DIGIT n SIZE 
without cache store 7,691 1,836 47 
with cache store 17,305 4,132 106 

32-BIT MACHINE SIZE (the 370/168, which 
has a cache) 

200-DECIMAL-DIGIT n SIZE 180,111 38,420 542 
lOO-DECIMAL-DIGIT n SIZE 312,146 74,534 1,880 

60-BIT MACHINE SIZE (the CDC 6400, which 
has no cache) 

200-DECIMAL-DIGIT n SIZE 71,218 15,192 214 
1000DECIMAL-DIGIT n SIZE 104,168 24,876 627 

PKCS/DES HYBRID COMMUNICATIONS SYSTEM 

A promising technique for utilizing the respective advan
tages of both PKCS and DES is a two-level key system 
using PKCS for the primary key system and DES for the 
secondary key system. 

In a two-level key system, each user has a primary key 
and a secondary key. The primary key is used solely to 
encrypt secondary key changes that are communicated be
tween the user and system controller over the communica
tions lines. The secondary key is used to encrypt messages. 
By using the primary key for encrypting the secondary key, 
the secondary key can be sent over insecure lines and thus 
be changed frequently at little cost. With traditional systems, 
the primary key must be transmitted externally to the com
munications system. This is the expensive and awkward key 
agreement problem discussed previously. 

A promising technique for utilizing the respective benefits 

of both DES and PKCS is implementing a hybrid two-level 
system. Messages would be encrypted and decrypted using 
DES. The DES keys would be transmitted over the com
munications lines encrypted with the PKCS system. This 
would in effect be a two-level system with PKCS constitut
ing the primary key system and DES constituting the sec
ondary key system. 

The advantage of such a system would be that the speed 
of a DES implementation would be available with the key 
management cost and security of a PKCS implementation. 
Note that the primary keys would be changed infrequently, 
leaving plenty of leeway for the key management technique 
suggested above. Generating and transmitting a new sec
ondary key would only involve encrypting a 64-bit message. 
This would require little time in a software implementation. 
At the same time, DES encryption hardware or software 
routines would be used for the messages, yielding the en
cryption/decryption cost of a straight DES system. 
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Safeguarding cryptographic keys 

by G. R. BLAKLEY 
Texas A&M University 
College Station, Texas 

INTRODUCTION 

Certain cryptographic keys, such as a number which makes 
it possible to compute the secret decoding exponent in an 
RSA public key cryptosystem,1,5 or the system master key 
and certain other keys in a DES cryptosystem,3 are so im
portant that they present a dilemma. If too many copies are 
distributed one might go astray. If too few copies are made 
they might all be destroyed. 

A typical cryptosystem will have several volatile copies 
of an important key in protected memory locations where 
they will very probably evaporate if any tampering or prob
ing occurs. Since an opponent may be content to disrupt the 
system by forcing the evaporation of all these copies it is 
useful to entrust one or more other nonvolatile copies to 
reliable individuals or secure locations. What must the non
volatile copies of the keys, or nonvolatile pieces of infor
mation from which the keys are reconstructed, be guarded 
against? The answer is that there are at least three types of 
incidents: 

• An abnegation incident is an event after which a non
volatile piece of information is no longer completely 
reclaimable by the organization which entrusted it to a 
guard. There are three main types of abnegation inci
dents: 
-Destruction of the nonvolatile piece of information. 
For example, a person carrying a copy of a number can 
meet with an unexpected accident, during which the 
copy is destroyed. 
-Degradation of the nonvolatile piece of information. 
For example, a person may lose his copy of the number 
and, in embarrassment and confusion, produce some 
other number when asked. 
-Defection with the nonvolatile information. For ex
ample, the person with the copy of the number may 
divulge it to the opposition and refuse to tell it to the 
organization which entrusted it to him. 

• A betrayal incident is an event after which a nonvolatile 
piece of information is completely known to an oppo
nent of the organization which entrusted it to a guard. 
Defection, which we have already encountered among 
abnegation incidents, is one kind of betrayal incident. 
The other main kind of betrayal incident is 
-Dereliction with the nonvolatile piece of information, 

313 

an act which reveals it to the opposition so as not to be 
discovered by the organization which entrusted it to 
the guard, either before or after he has been requested 
to return it. For example, the person who has the copy 
of the number can show it to an opponent but still play 
the part of a faithful guard, and even report the number 
back codectly when requested. 

• A combination incident is an abnegation incident which 
is also a betrayal incident. The main kind of combina
tion incident is defection. The three types of incident 
are, thus, A, Band C. And the commonest kinds of A, 
B or C incidents are the four Ds. Note that none of the 
four Ds need imply malfeasance, misfeasance or even 
nonfeasance on the part of the guard. But it would be 
wise to consider such possibilities whenever an incident 
of any of the three types is detected. 

Why was simple loss of the nonvolatile piece of infor
mation not included above? The answer is that some types 
of loss amount essentially to destruction of the nonvolatile 
piece of information, in the sense that neither the organi
zation that entrusted it to a guard nor any of its opponents 
is likely to get the piece of information before the encrypted 
information becomes valueless. For example, the person 
with the copy of the number was on a Mars flyby which lost 
contact forever with Earth as it went behind Mars. But if a 
loss cannot be confidently regarded as a destruction, the 
proverbial "prudent man," in charge of evaluating this in
cident for the organization which entrusted the nonvolatile 
piece of information to a guard, must regard it as a defection. 
For example, if the person who memorized the number 
disappeared after a family quarrel the prudent man evalu
ating the incident must assume that an opponent knows the 
piece of information in question. 

COUNTING AND DISCOUNTING INCIDENTS 

There are two principles for counting incidents. The first 
is Boole's law of inclusion and exclusion. Suppose that an 
organization issues nonvolatile pieces of information to 
guards and waits a modest period of time during which 
incidents occasionally occur. Let a stand for the number of 
abnegation incidents, b for the number of betrayal incidents 
and c for the number of combination incidents. The total 
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number d of incidents is d=a+b-c because a combination 
incident gets counted twice, once by a and once by b. 

The second principle is that incidents are so rare, that the 
possibility of two separate incidents occurring with the same 
nonvolatile piece of information is usually dismissed on 
probabilistic grounds as absurd. A defection is a single in
cident with two aspects, abnegation and betrayal, so it is 
not dismissed as too improbable. But the idea that the per
son who has a copy of the number dies in a plane crash one 
month after confiding it to an opponent is dismissed as too 
improbable. Too slavish an adherence to this "second-order 
improbability" prejudice can lead to ludicrously inappro
priate actions, such as that of the statistician who always 
carries his own bomb on airplanes because it is so improb
able that there will be two bombs on the same flight. But it 
is a good rule of thumb if used properly. 

This latter principle implies, among other things, that none 
of the four numbers a, b, cor a+ b- c exceeds the number 
g of nonvolatile pieces of information entrusted to the g 
guards. 

Suppose an organization chooses in advance the number 
a of abnegation incidents and the number b of betrayal 
incidents it feels it must be protected against when entrusting 
several nonvolatile pieces of key reconstruction information 
to a set of guards. Each guard gets a different piece of 
information. The lifetime of this scheme must not be very 
many months if separate incidents involving the same piece 
of information are to be ruled out. We know that 
c~MIN{a,b} since a combination incident is both an ab
negation incident and a betrayal incident. From the two 
counting principles above it then follows that 

a+ b-MIN{a,b}~d~a+b 

and that d~ g, where g is the number of guards to which 
the organization entrusts the g nonvolatile pieces of infor
mation. 

The prudent man, when designing a system of safeguard
ing key information which is secure from a abnegation in
cidents as well as b betrayal incidents, must assume that the 
number c of combination incidents is zero. This means that 
the maximum number of incidents must be anticipated, since 

d=a+b-c=a+b-O 

in this case. Such a key information safeguarding system 
must have the property that a+ b+ 1 different nonvolatile 
pieces of key reconstruction information are generated, and 
given to distinct guards. The key must be reconstructible 
from any b+ 1 of these pieces (this assumes a abnegation 
incidents) but there must be no information whatever about 
the key which can be inferred from knowledge of only b of 
these pieces (this is protection against b betrayal incidents). 
This last requirement is unusual. For example, a polynomial 
of degree b can be reconstructed from its values at b+ 1 
points. But already its values at any b points tell a lot about 
it. It can also be reconstructed from the values of its Oth 
through bth Taylor coefficients at a point. But already the 
valut!s uf any b of these b+ I numbers tcll a lut about it. 
What we are asking for. then. is somewhat couunter-intui-

tive. Let us a coin a metaphor to describe it. We want to 
give everyone of a+ b+ 1 guards a shadow of a different 
profile of the key, so that the key can be reconstituted in its 
entirety from any b+ 1 of these shadows. However, some
body who has seen only b such shadows should be com
pletely in the dark, in the very strong sense that any key on 
the keyring could cast these b shadows when illuminated 
from b appropriately chosen directions. 

Let us look at what happens if a=b=4. Then any five of 
the nine guards have the wherewithal to reconstruct the key. 
Thus, there is considerable protection against defection and 
dereliction, since even four of the nine pieces of information 
are not enough to reveal anything at all about the key to an 
opponent. There is also protection against destruction. If 
the four pieces of information belonging to any four guards 
are destroyed the other five can still be used to reconstruct 
the key. As to degradation, suppose that six guards give 
correct reports of the shadows they carry, to return to the 
metaphor. Then there are six different sets of five guards 
whose pieces of information can reconstitute the same key. 
If the other three misreport their shadows then anyone of 
the 120 sets of five guards containing at least one of the 
misreporting three guards will give a description of the key, 
but probably all these descriptions will differ among them
selves and will also differ from the true value of the key. 
Thus, the six reports of different sets of five guards which 
agree are singled out as correct. Of course, if it is possible 
to tell whether a proffered key is the right one, then it is 
possible to reconstruct the key when only five guards report 
correctly. So protection against degradation need not be 
synonymous with protection against destruction, but they 
are largely concomitant with each other. In the approach to 
be discussed it will be assumed that the right key can be 
recognized when proffered. This assumption is reasonable 
since lists of plaintext to cryptext pairs can be publicized 
for testing as a backstop to the simpler test, which is that 
stored ciphertext messages will probably yield nonsensical 
diecipherments under a false key. 

The rest of the paper describes one way to cast the a+b+ 1 
shadows of a key in such a fashion that it can be recon
structed from any b+ 1 of them, but that no b of them tell 
anything about it whatever. The way this is done is to set 
up a many-to-many correspondence between keys and one
dimensional vector subspaces of (i.e. lines through the origin 
of ) a finite vector space, F. One key determines a vast 
collection of lines but one line determines a tiny collection 
of keys. When an organization has a key to apportion among 
a+ b+ 1 guards, it picks at random one of the lines corre
sponding to that key. Let us call this line L. Then it picks 
at random a+ b+ 1 vector subspaces of I-the shadows of 
the key-such that any b or fewer of them intersect in a 
large vector subspace of F whose various one dimensional 
vector subspaces lead back to all possible keys with ap
proximately equal probability, but such that any b+ 1 of 
them intersect in L. Once L has been found there are only 
a few possible keys which could have given rise to it. Each 
one is tried against a stored list of plaintext to cryptext pairs 
and thc correct one identified. This is not the first application 
of projective geometric ideas to problems involving codes. 2 



SOME PRELIMINARY RESULTS 

a ibis the bth power of a, and a*b is the product of a 
and b. 

• Lemma I-Let a and b be positive integers. Let R be 
a set with at least a+b+2 members. Then there are 
more than a + b+ 2 subsets of R which consist of b + 1 
objects. There are more than a+b+l subsets of R 
which consist of b objects. If fand g are two members 
of R there are more than a+ b subsets of R', {f} which 
consist of b objects, and there are at least a+b subsets 
of R", {f,g} which consist of b objects. 

• Lemma 2-Suppose that a and b are positive integers 
s maIler than z. Let M be a matrix with at most a + b + 2 
rows and at most b+ 2 columns. Then M has as most 

(z+ 1)(2z) entries and at most(z+ 1) (2zZ) b+ 1 by b+ 1 

submatrices. Thus M has fewer than 3z i 2 entries and 
fewer than 4 i z submatrices of size b+ 1 = by= b+ 1. 

• Lemma 3-Suppose that O<2Ex<2Q<2<E. 
Then 21(1- x) i E- (1- Ex)l< Q i 2. 

• Lemma 4-If 4:5A<B then rr(1- jf B)<rr(1-2/ B), 
where the products are over positive integers j<A. 

• Lemma 5-Suppose that A and B are integers and that 

O<2(A-l) i 2<2BQ<2B«A-l)B. 

Then 1-2Q<B!/([(B- A)!]*[B i A])<I, and 
1-2Q«(B-2)/B) i A«(B-1)/B) i A<l. 

• Lemma &-Suppose that A and B are integers and that 

O<2(A -1) i 2<2BQ<2B«A -1)B 

Suppose that a sample of A points (with replacement) is 
taken from a population of B points. Then the probability U 
that all sample points are distinct exceeds 1-2Q. If two 
distinguished points of the population are specified in ad
vance the probability V that no sample point is equal to 
either of them exceeds 1-2Q. Therefore it follows afortiori 
that if one or two distinguished population points are spec
ified in advance, then the probability W that none of the 
points of the sample is equal to any of the distinguished 
points or to any other point of the sample exceeds 1-4Q. 

.Lemma 7-Let p be an odd prime. Let d be a positive 
integer. Let S(d,p) be the collection of all d by d matrices 
with entries taken from the field F of integers modulo p. 
Let v and w be two non-zero members of F. Then there are 
as many members of S(d,p) with determinant equal to v 
as there are with determinant equal to w. 

.Lemma 8-Let p be an odd prime. Let k and n be 
positive integers. Let f(p,n,k) be the number of k by n 
matrices over the field F of residue classes modulo p 
whose rank is less than k. Then f(p, n, 1)= 1 and, whenever 
2:5k:5n, 

f(p, n, k)= p t [(k-l )(n+ 1)]+ (p l' n- pi (k-1)) f{p; n; 
k-l). 

Consequently, 

pi [(k-l)(n+ l)]<f(p, n, k)<p i [(k-l)(n+2)]+ (p i n) 
f(p, n, k-I) 

for every integer k such that 2:5k:5n. 
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• Lemma 9---Let p be an odd prime. Let f(p, n, k) be as 
in Lemma 8. Then pi (ni 2-1)<f(p, n, n)<2pi (ni 2-1). 

• Theorem I-Let p be a prime larger than 6. Let d be 
a positive integer. Let S(d,p) be the collection of all d 
by d matrices with entries taken from the field F of 
integers modulo p. If vEF let n(v, d, p) be the number 
of members of S(d,p) whose determinant is equal to v. 
Suppose that hand g are members of F. Then 

n(h, d, p)<3n(g, d, p) 

and [p i (n i 2-1)]/2<f(p,n,n)<2p(n i 2-1). 

Thus, all determinants occur approximately equally often. 
In fact every non-zero field element occurs equally often as 
the value of the determinant of a member of S (d, p) but zero 
occurs more often, though not thrice as often. 

• Theorem 2-Let a, band p be positive integers. Let 
M be a matrix with a+b+2 rows and b+2 columns. 
Suppose that 

O<2[(a+ b+2)(b+ 1)- Ili 2<2pQ<2p 
<[(a+b+2)(b+ 1)-I]p. 

Suppose that one position in each row of M is chosen at 
random, and that that entry is set equal to 1. Suppose that 
the remaining (a+ b:.r2)(b+ I) entries of M are chosen at 
random (with replacement) from the population of all p 
residue classes modulo p. Then each of the two events 

1. Two entries of M, neither of which is one of the a+b+2 
entries which were set equal to I at the outset, are 
congruent to each other modulo p 

2. An entry of M, other than one of the a+b+2 entries 
which were set equal to I at the outset, is congruent 
to either 0 or 1 modulo p 

have probability sma1ler than 2Q. Consequently, the prob
ability that neither Event I nor Event 2 occurs exceeds 
1-4Q. 

It is easy to verify that if Q= 1/10 i 7, and a and bare 
both smaller than 10, then it suffices to choose any p> 10 i 12 
in order to satisfy the hypotheses of Theorem 2. This is the 
order in which users of the keyguard system wi1l usua1ly 
proceed. The tiny positive number Q is a measure of the 
departure from complete randomness of the concealing pro
cedure. The modest-sized positive integer a (resp. b) is the 
number of abnegation (resp. betrayal) incidents to be 
guarded against. After deciding on these three safety levels 
a user must then accept a value of p as large as dictated by 
the hypotheses of Theorem 2 in order to achieve them. The 
keyspace wil1 then be chosen to contain at least p keys. 

Consider, now, the probabilistic interpretation of Theo
rem 1. If you choose a member x of the field F of integers 
modulo p, and choose some d by d matrix Mover F at 
random (by choosing its successive entries at random with 
replacement from .fJ then the probability W that det(M)=x 
satisfies the inequality 1 /2p< W<2/ p. 

We wil1 assume that the manner in which the matrix in 
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Theorem 2 is chosen (salting each row with a 1 entry) does 
not do much violence to this conclusion. In other words. we 
will make the following '(unproven but plausible) assump
tion. 

• Hypothesis I-Let p be an odd prime. Let a and b 
be positive integers. Let M be a matrix with a+b+2 
rows and b+2 columns. Suppose that a position in each 
row is chosen at random and that that entry is set equal 
to I. Suppose that. thereafter. each of the remaining 
(a+ b+2)(b+ I) entries is chosen at random from the 
field F of residue classes modulo p. Suppose that. 
then. a collection of b+ 1 row indices is chosen at ran
dom from the set of all b+ I member subsets of the set 
of all a+b+2 row indices. Suppose. finally. that a col
lection of b+ 1 column indices is chosen at random from 
the set of all b+ 1 member subsets of the set of all b+2 
column indices. Let x be a member of F. Let W be the 
probability that the value of the determinant of the b+ I 
by b+ I submatrix S of M corresponding to these row 
and column indices is equal to x. Then W satisfies the 
inequality 

1/2p< W<2/p. 

To put matters in a nutshell. a judicious salting of an 
otherwise randomly chosen matrix with a few entries equal 
to 1 should not cause the determinants of its large square 
submatrices to depart from the quite uniform distribution 
that determinants of completely randomly selected matrices 
exhibit. 

GUARDING KEYS 

A key k is a positive integer. A key set K is a finite set of 
keys. Let B be the largest member of the keyset K. A 
reasonably small positive integer z is chosen. On pradical 
grounds z should probably be smaller than 100. Two positive 
integers a and b smaller than z are chosen. A prime p only 
slightly smaller than B is found. It would not. in fact, be too 
expensive to find the largest pseudoprime smaller than B 
and let it be p. A pseudoprime is a large positive integer 
which satisfies a considerable number of Rabin's (hopefully) 
stochastically independent necessary· conditions for primal
ity, and can therefore be assumed to be prime with a prob
ability in excess of 0.99999 99999 99999 99999, or even more, 
if desired. Though p might be composite we shall regard it 
as prime in the development below. Let F be the field of 
integers modulo p. Let V be the b+2 dimensional vector 
space over F which consists of all lists (written in the form 
of rows) of b+2 members of F. For every member g of the 
set G of a + b + 1 guards we will define a corresponding b+ I 
dimensional vector subspace V(g) of the b+2 dimensional 
vector space V. To each key k there will correspond many 
lines, through the origin of V. representing k. The organi
zation wishing to entrust k to a set of guards will choose 
one of these lines at random and call it L(k). When b guards 
intersect their subspaces the intersection must be at least 
two-dimensional. Moreover. it will he "lIch thell it" variou" 
one-dimensional vector subspaces represent all members of 

F with approximately equal likelihood. But when b+ 1 
guards intersect their subspaces the intersection is the line 
L(k), which does not depend on which b+ 1 guards were 
chosen. To L(k) there will correspond only b+2 possible 
keys. The candidates can be checked and the key reclaimed . 
The rest of this section fleshes out this outline. 

To begin we pick z and choose positive integers a and b 
smaller than z. Then we choose a small Q, and thereafter a 
suitably large p to satisfy the inequalities in the hypotheses 
of Theorem 2. We construct a matrix M with a+b+2 rows 
and b+2 columns as follows. For each row of M we pick an 
entry at random and set it equal to I. Next we pick an entry 
at random in the first row of M and choose its value k at 
random from F. Then we choose the remammg 
(a+b+2)*(b+2)-1 entries of M at random (with replace
ment) from F. Now we test M for acceptance or rejection. 
In order to pass the first test M must have only one 1 in 
each row, it must have no zero entry and no two of its 
entries can be equal unless they are both equal to I. Since 
a and b are non-negative integers smaller than z it follows 
from Lemma 2 that there are fewer than 3z i 2 entries of M. 
Since p and Q satisfy the inequalities in the hypotheses of 
Theorem 2, it then follows from Lemma 4 that such a ran
dom process will produce a matrix which passes the first 
test with probability in excess of 1-2Q. In order to pass the 
second test M must have no b+ I by b+ I submatrix whose 
determinant, calculated in F, is zero, and must have no two 
b+ 1 by b+ I submatrices whose determinants, calculated in 
F, are equal. There are fewer than 4 i z such submatrices. 
according to Lemma 2. The foregoing suggests that the ran
dom process which produced M will cause it to pass the 
second test with probability in excess of 1-2Q. Therefore, 
it should pass both tests with probability in excess of 1-4Q. 
In other words, the process used almost always produces a 
usable matrix M the first time it is employed. Once a matrix 
M passes the tests we know from Lemma 1 that we can 
form more than a+b+ 1 sets of b+ 1 rows of M which con
tain the first row of M. So we pick a+ b+ 1 different sets of 
b+ 1 rows of M, each of which contains the first row of M. 
Each such set is linearly independent since every b+ 1 by 
b+ 1 submatrix of M is non-singular. Let N(j) be the b+ 1 
by b+2 submatrix of M formed in the obvious way from the 
jth of these a+b+ 1 sets of rows. Its first row consists of 
the first of M's rows which occurs in the set. Its second row 
is M's second. And so on. Now for each xE V it is possible 
to form the b+2 by b+2 matrix Y(j,x) from N(j) by ap
pending a last (i.e. (b+2)nd) row 

x = (x(I), x(2), ... , x(b+ I). x(b+2» 
= (Y(j,x)[b+2, I], Y(j,x)[b+2,2], ... , 

Y(j,x)[b+2,b+ I]; Y(j,x)[b+2,b+2]) 

The b+ 1 dimensional vector subspace of the vector space 
of rows with b+2 entries taken from F determined by N(j) 
is the set 

U(j)= {xldet( Y(j.x»=O} 

Evidently the first row f of M belongs to U(j) fu!' every j 
since Y(j,j) has first and last row equal to ffor every j. 



So when b+ 1 of these b+ 1 dimensional vector subspaces 
of the b+2 dimensional vector space of rows of b+2 entries 
taken from F are intersected their intersection is the line 
through the origin which also contains the vector I which 
is the first row of M. The equation det( Y(j,x»=O is, of 
course, a linear equation of the form 

c(j,l)x(I)+c(j,2)x(2) ... +c(j,b+ I) 

x(b+ 1)+ c(j,b+2)x(b+2)=O 

where cU,t) is a determinani of some b+ i by b+ 1 sub
matrix of M. These are non-zero, and pair-wise unequal by 
the way M was produced. And, because of the foregoing, 
they probably appear to be approximately randomly selected 
from F. 

But now look at what happens when only b of these 
subspaces is intersected to form a two-dimensional vector 
subspace. This means choosing integers 

1~j(l)~j(2)< ... <j(b)~a+b+i 

and solving the simultaneous equations 

det( Y(j(1 ),x)=O 
det( Y(j(2),x)=O 

det( Y(j(b),x)=O 

for x, by using Gauss elimination, then choosing a basis of 
two vectors for this space of all such x. The two-dimensional 
vector space in question contains the first row of M. But 
the randomness of the choices of the members of M should 
mean the following: 

• Hypothesis 2-Consider the collection of all vectors 
in this two dimensional subspace which have exactly 
one entry equal to I and which have pairwise distinct 
entries none of which is zero. Any two members of 
F""'-. {O, I} will be represented approximately equally 
often in the count of multiplicities of occurrence of 
members of F""'-. {O, I} as entries in the vectors of this 
collection. 

If this is correct then isolation of this two-dimensional 
subspace sheds no light whatever on how to recover the 
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key. The recovery system, when you have b+ 1 subspaces 
U(j) is to solve the system 

det( Y(j( I ),x»=O 

det( Y(j(b+ 1 ),x»=O 

as above. The solution is a line through the origin. A basis 
for it is a single vector g=(g(l),g(2), ... , g(b+ l,g(b+2» 
which is some non-zero multiple of I, the first row of M, 
which contains the key as one of its entries. You know g, 
not I. But for each entry g(i) of g it is easy to find the 
h(i)EF such that gU)h(i)= 1 mod(p). The b+2 vectors 

h(l)g 
h(2)g 

h(b+2)g 

are the only multiples of g which have I as an entry. There
fore lis among them, and the key k is among the entries of 
I. SO one of" the (b+2) i 2 entries on the list of vectors 
above is the key. And the key is not equal to I, which occurs 
once among the entries of each vector. So there are 

(b+ 1 )(b+2)~z(z+ I) 

candidates to be tested. One of them will pass the test. 
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Applications for multilevel secure operating systems 

by JOHN p" L WOODWARD 
The MITRE Corporation 
Bedford, Massachusetts 

INTRODUCTION 

The need for secure computer systems has been identified 
in many areas of 000 operations, but in the past these 
systems have not been built in a secure manner because a 
secure operating system on which to run has not existed. 
Now that verifiably secure minicomputer operating systems 
are becoming a reality, applications for secure systems are 
becoming more clearly thought-out, designed and imple
mented. This paper surveys some proposed 000 and non-
000 secure computer applications. 

We will discuss the applications presented in this paper 
in the context of their implementation on a secure operating 
system. This paper will survey four applications: 

a. The "'guard" application; 
b. Secure database management systems; 
c. Secure message processing systems; and 
d. Secure front-ends. 

We will discuss the first two of these applications in more 
detail, and the other applications are discussed in Reference 
1. 

Before the discussion of secure computer applications, 
the following section describes the past and present work 
that is leading to the completion of a mathematically verified 
Kernelized Secure Operating System (KSOS), and briefly 
discusses the organization of kernel-based secure systems. 
This organization provides a framework for our survey of 
major applications for secure computer systems in the next 
sections. The conclusions highlight some of the major points 
of the paper. 

SECURE COMPUTER SYSTEMS 

Background 

The need to process multiple levels of data in a single 
computer system has been recognized within DoD for a long 
time. This need led the Air Force Electronic Systems divi
sion in 1972 to study how one could verify that a system 
meets 000 security requirements. 2 This need for verifica
tion led to the development of a mathematical model that 
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describes 000 security policy in terms of a "reference mon
itor' '-an abstract mechanism that controls the flow of in
formation within a computer system by mediating all ac
cesses by subjects (processes, users) to objects (files, I/O 
devices).3 

Given the concept of a reference monitor and a mathe
matical model that embodies a specific security policy, one 
can formulate an inductive proof in terms of secure system 
states, proving that security is preserved in moving from 
state to state. Several models that embody 000 security 
rules have been developed 4•5 and each of these models has 
two basic rules: the 'simple security condition and the *
property (read "star-property"). 6 

The simple security condition mandates that a subject 
cannot read an object unless the security level (in 000 
terms, a classification and a set of categories) of the subject 
is greater than or equal to that of the object. This rule is a 
precise statement of the basic premise behind 000 security, 
and is analogous to controls in the people-paper world. 

The *-property dictates that a subject cannot write an 
object unless the subject's security level is less than or equal 
to that of the object. The *-property is motivated by the 
need to prevent a program operating on behalf of a user 
from reading information that the subject (user) is cleared 
to read and writing this information into a container of a 
lower classification level, thus allowing access to the infor
mation by subjects at lower levels. 

The hardware and software mechanism that implements 
a reference monitor and enforces the rules of the model is 
called a kernel (or security kernel). To adequately provide 
security, an implementation of a kernel must~have three 
properties: 1) It must mediate every access of every subject 
to every object; 2) it must be isoiated from other code in the 
system so it cannot be modified or tampered with; and 3) it 
must be mathematically verifiable, i.e., it must perform its 
functions correctly. The kernel satisfies the first property 
by creating and controlling an environment in which all non
kernel software must run. The second requirement is gen
erally satisfied by relying on hardware domain mechanisms. 
The third property is satisfied by developing the kernel 
with a formal methodology that allows proof that the kernel 
enforces the desired policy correctly. This methodology 7 

uses a formal specification technique to describe the kernel 
interface, and allows the correctness proof to be carried out 
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in (at least) two steps: a proof that the top-level (kernel 
interface) specification obeys the rules of the model,!! and a 
proof that the kernel code correctly implements this inter
face. 9 

Some of the earliest kernel work was done under Air 
Force sponsorship by The MITRE Corporation. MITRE 
developed a simple kernel for the PDP-11145 computer. 10 

This kernel, designed with no particular operating system in 
mind, was successfully implemented and verified. The top
level specification was verified with respect to the model 
and example lower-level proofs carried out. 

A logical extension of the early MITRE PDP-II kernel 
work led to a MITRE/Honeywell project to design a kernel 
for the MULTICS operating system, 11 also under Air Force 
sponsorship. MITRE specified a MULTICS kernel and ver
ified it with respect to the model. 12 

Other major kernel developments have produced proto
type kernels for the UNIX*tm* operating system, running 
on PDP-II computers. Prototype Secure UNIX systems 
have been developed by UCLA 13 (under DARPA sponsor
ship) and MITREI1 (under Air Force and DARPA sponsor
ship). Experience with these prototypes has contributed to 
the current development of a production-quality Kernelized 
Secure Operating System (KSOS)15,i6 by Ford Aerospace 
and Communications Corporation (FACC), under the spon
sorship of DARPA and other government agencies. 

The KSOS project has two phases, a design phase and an 
implementation phase. The design phase was carried out by 
two contractors, TRW17 and FACC.IS Both contractors pro
duced designs for a somewhat machine independent design 
for a secure operating system that emulated the UNIX op
erating system. FACC was chosen to implement their design 
on a PDP 11170 computer. 

The organization of secure computer systems 

The organization of KSOS is similar to previous secure 
system designs. Secure systems are most often divided into 
three portions: the kernel, the trusted (or privileged) pro
cesses, and the Emulator. We will discuss each in turn. 

The security kernel 

The kernel, the concrete implementation of the software 
portion of a reference monitor, encapsulates the security
related functions of a conventional operating system and 
provides an external interface which allows mUltiple pro
cesses to access data files and 110 devices. Kernels typically 
operate on the basis of the following assumptions.: 

a. The kernel provides a process-structured environment. 
b. Each process (supported by the kernel) has available 

to it a set of objects that can be created, deleted and 
accessed only by using defined (kernel provided or 
mediated) operations. 

-, UNIX is a trade/service mark of the Bell System. 

c. Each process is confined with respect to the defined 
protection policy. 

d. Each process can execute whatever programs it 
pleases; because it is confined it cannot, by construc
tion, violate security. 

It is important to note that for any security kernel of some 
sophistication, the security kernel not only controls access 
to objects, it must define the objects and construct opera
tions to access these defined objects. 

Most kernels also support the notion of a privileged proc
ess-a process that is allowed (privileged) to violate some 
or all of the rules of the security model being enforced. 
Since a privileged process can potentially violate security, 
it must be constructed and verified with the same rigor 
applied to the kernel itself. Privileged processes are often 
referred to as . 'trusted processes, " because they are trusted 
(because of their verification) either not to violate security 
or to violate the security rules in a known and controlled 
manner. 

Trusted processes 

Trusted processes augment the capabilities of the kernel 
itself, and provide security-related functions more properly 
performed above the kernel interface. Examples of trusted 
processes are: a process to downgrade files; a process to 
handle logins at terminals (reading user names and pass
words), etc. In the UCLA prototype secure UNIX system, 13 
trusted processes are used to set scheduling policy, protec
tion policy, and create a primitive, flat, file system. 

The emulator 

The emulator portion of a secure operating system runs 
on top of the kernel and creates an operating system inter
face out of the interface provided by the kernel and the 
trusted processes. Because the emulator runs in a kernel
provided process, and typically does not need any privi
leges, it does not need to be trusted or verified. Most secure 
minicomputer operating system developments to date have 
emulated the UNIX operating system. 

A SURVEY OF MAJOR TYPES OF SECURE 
APPLICATIONS 

There are two major types of applications for secure op
erating systems, unilevel and multilevel. We will discuss 
each in turn. 

Ullilevel applications 

Unilevel applications involve the use of a secure operating 
system as a whole to allow many users, each operating at 
a single level, to use the same computer at the same time. 
Such operation of a non-secure operating system would be 
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in violation of DoD security rules because you cannot de
monstrably prevent a low-level user from accessing higher
level data. 

There are many instances within DoD where periods pro
cessing and multiple computers are used to perform unilevel 
operations at several levels. Periods processing refers to a 
mode of computer operation whereby the system is used to 
process data of different classifications at different periods 
of the day, because the multiple levels of data cannot be 
simultaneously processed without overclassification. Use of 
secure operating systems in environments such as those 
running unilevel applications can greatly increase machine 
utilization and decrease hardware costs due to security. 

Unilevel applications rely on the secure computer system 
to provide complete isolation between users of different 
security levels. Very frequently, the real driving requirement 
is for controlled sharing among users of different classifi
cations. The applications that permit this are called multi
level. 

Multilevel applications 

Very often a computer system user needs to process sev
eral levels of information at the same time. This need is 
addressed in some installations by operating in a mode 
known as "system high:" each user of the system is cleared 
to the level of most sensitive data being processed, and can 
operate on any data up to and including that level (within 
the constraints of the "need-to-know" policy enforced at 
the installation). The problem with this type of operation is 
that data tends to become overclassified: all data leaving the 
system must be considered highly classified until a manual 
review process aHows the data to be properly classified. 
Although the "system high" mode of operation allows the 
processing of several levels of data, it is not properly termed 
multilevel, because it does not preserve the different clas
sification levels of the data it processes. 

Whereas the unilevel applications we have previously dis
cussed, if run on a secure operating system, would typically 
run on the emulator portion, multilevel applications gener
ally run on either the emulator or kernel portions. The basic 
premise behind kernel-based operating systems is that any 
unprivileged code running on the kernel, no matter how 
malicious it is, cannot violate any security rules. Thus, the 
emulator portion of a secure system is not trusted, and exists 
only to provide a richer operating system interface than a 
kernel alone would. Therefore, applications that run on se
cure operating systems can run on the emulator interface, 
or they can run directly on the kernel interface. The latter 
is often the case if the features provided by the emulator are 
not relevant to the desired application, or if the application 
requires very high performance. 

Furthermore, some portion of a multilevel application 
might need to be privileged to perform its task. If this is the 
case, then the code must be trusted to perform its function 
properly, and the code must run directly on the kernel be
cause the Emulator is not trusted. 

Because of these different options for implementation of 

multilevel applications, we will survey some multilevel ap
plications that have been proposed to date, and indicate how 
each application would run on a secure system. Each appli
cation has either been worked on in the past, or is presently 
under development. 

The guard application 

In military operations, there is a great need to be able to 
interconnect computers of different classification levels: 
evolving defense systems depend heavily on the capability 
of passing information between computers operating at dif
ferent levels. Unfortunately, such connections are very dif
ficult to implement in a secure manner. This problem would 
be made much easier if all computers had secure operating 
systems available, but such is not the case. 

There is also a recurring need to make a subset of class
ified data available for use at a lower classification level. 
"Sanitization" and "downgrading" must be performed to 
do this without compromise. To better illustrate this need, 
consider a highly-classified computer that maintains an in
telligence data base. This data base typically contains pieces 
of data with attributes that make them very sensitive. How
ever, to be operationally useful, the data is needed at lower 
levels where command decisions are made. Thus there is a 
great need to be able to' "sanitize" the data. Sanitization is 
often accomplished by removing the sources (sensors, etc.) 
of the data or by reducing the precision of the data. If the 
computer with the intelligence d~ta base is not secure, then 
we cannot trust a sanitization and release function per
formed on the computer not to allow the release of highly
classified data at a low level. 

Currently, there are several methods available to provide 
a sanitize and release function. The simplest involves read
ing the information to be sanitized from one terminal, and 
entering the sanitized version on another terminal. The two 
terminals involved are not connected to the same system; 
there is no electrical connection between the two systems. 
A more sophisticated solution involves a single CRT ter
minal that can be connected to either system (by means of 
a switch), but only one system at a time. In this mode, data 
from the intelligence computer is read onto the screen of the 
CRT and sanitized by using the local editing capabilities of 
the CRT. Then the CRT is disconnected from the intelli
gence computer and connected to another, lower level sys
tem, and the data is read into the lower level system. 

The problem with these solutions is that they are time
consuming and cumbersome. The best solution would be to 
use a secure operating system on intelligence computer, and 
directly connect it to a lower-level system, providing a fa
cility on the higher-level computer to securely sanitize data 
before releasing it at the lower level. This solution may not 
be viable however, because existing intelligence data bases 
are on compuiers for which no secure operating system 
exists, and which are, in some cases, not securable (because 
of lack of necessary hardware features). 

The Guard application is an intermediate solution to this 
problem. The Guard is a secure minicomputer system that 
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acts as an interface between two computers of different 
security levels and allows data to flow between them in a 
secure and controlled manner. The Guard can provide better 
throughput than the switched terminal described above, and 
is much more flexible in its capabilities. The Guard appli
cation uses trusted processes and unilevel processes to ac
complish its functions. The Guard will be described in more 
detail in a later section. 

Secure database management systems 

Using a secure computer system allows one to process 
multiple levels of data without having to overclassify the 
data. Using the system high mode of operation for example, 
all data of classification SECRET and below can be proc
essed on a unilevel SECRET computer, but all outputs of 
the computer must be considered SECRET until a manual 
review process allows them to be downgraded. If mUltiple 
levels of information are to be organized and accessed in a 
meaningful manner, it makes sense to use some form of 
Database Management System (DBMS). However, most 
current database management systems do not take classifi
cation levels of data into account, so using them to process 
mUltiple levels of data would result in all of the data being 
processed at one level, causing some of the data to be 
overclassified, an adverse side effect to be avoided if pos
sible. 

Since the advent of secure system development work, 
there have been several attempts to incorporate multilevel 
security into a DBMS. These DBMS designs have relied to 
varying degrees on the kernel of the underlying secure op
erating system for protection of data in the database. Work 
in the design of secure database management systems has 
shown that although they can be designed to function in a 
secure environment, the environment provided by many 
past and present kernel designs may not be ideally suited to 
building a Secure DBMS. Another concern in the design of 
secure database management systems is the nature of the 
user interface to the database. 

A later section will survey recent work in this area and 
describe some problems that still need to be solved. 

Secure message processing systems 

Another military application for secure computer systems 
is message-processing systems. These systems automate the 
task of day-to-day military message communication. These 
systems are in reality transaction-based database manage
ment systems, but have a much stronger requirement for 
good user interfaces than many other database applications 
if they are to be widely used by military staff. 

Recently, there has. been an effort to evaluate the use of 
such systems in a secure environment. and to design secure 
message-processing systems to run on secure operating sys
tems. DARPA, the Navy and CINCPAC are conducting a 
Military Message Experiment tn evaluate computer-aided 
message handling systems in an operational military envi-

ronment. MITRE's security-related role in the experiment 
has been to investigate the security ramifications of such 
systems: to identify the kernel primitives needed to imple
ment the systems, and to identify the impacts that security 
imposes on the user interface. 

Several message systems were developed during the ex
periment, and the SIGMA system developed by the Infor
mation Science Institute of the University of Southern Cal
ifornia19 was chosen for installation. SIGMA is an interactive 
message handling system providing computer-aided message 
handling services for the receipt, filing, retrieval, creation 
and coordination of military messages. Although SIGMA 
runs on the (insecure) TENEX operating system, it presents 
a user interface that reflects DoD security policy. A key 
concept in the design of SIGMA is that of a multilevel 
terminal: a terminal with multiple "windows" on the screen, 
each of which can potentially contain information at differ
ent classification levels. 

If such a system were implemented on a secure operating 
system, it would have to be integrated closely with the 
kernel. Either the kernel would have to be able to deal 
securely with the concept of a multilevel terminal, or some 
kind of trusted process would have this responsibility. 
FACC, as part of their KSaS effort, is investigating the 
applicability of KSaS as a host for multilevel terminals and 
secure message processing systems. 1 

Secure front ends 

Early in our Multics effort we discovered that to make a 
Multics system fully secure and able to handle multiple 
levels of terminals attached to the system in a feasible man
ner, that we had to make the Multics front-end terminal 
controller secure also. The front-end terminal controller has 
to multiplex the data streams coming from many terminals 
into the Multics computer, and it was quickly recognized 
that if this multiplexing were not done properly, untold se
curity violations could result. We could have used multiple 
controllers each dedicated to a single level, but this usage 
of resources is wasteful and inflexible. Unfortunately, the 
Datanet 355 controller being used did not have the hardware 
features necessary to support a security kernel. The Multics 
project undertook, with Honeywell, the development of a 
secure communications processor, called the SCaMP. 20,21 

Currently, the SCaMP hardware (a modified Honeywell 
Level 6 minicomputer) is complete and Honeywell is build
ing a version of KSaS to run on the SCaMP. 

Thus, front-end controllers are another major type of ap
plication for secure computer systems. Indeed, this appli
cation is not limited to terminal controllers, though. Secure 
front-end controllers have application in secure computer 
networks, also. Front-ends have many different functions 
and require varying amounts of security support from secure 
systems. Some front-ends would need much trusted code 
and therefore run on the kernel interface. Some more so
phisticated front-end applications may also need the type of 
file systems supported by the emulator portion. Currently, 
Ford Aerospace and Communications Corporation is look-
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ing into the applicability of KSOS as a base for a Network 
Front-End for the World Wide Military Command and Con
trol System, WWMCCS. 

A DEEPER LOOK AT THE GUARD APPLICATION 

The Guard application described earlier is being devel
oped by Logicon under DARPA sponsorship at the Ad
vanced Command and Control Architectural Testbed 
(ACCAT) in San Diego. The Guard appJication is expected 
to run on KSOS when KSOS becomes available. ACCAT, 
a joint DARPA/Navy undertaking, provides an ideal envi
ronment for Guard development. The Guard application is 
often referred to as the ACCAT Guard. 22,23 

The ACCAT Guard system is a minicomputer that pro
vides an interface between two computers or networks at 
different classifications. ~ereafter, the computer or network 
of lower classification will be referred to as the LOW com
puter or network, and the higher classification computer or 
network will be referred to as HIGH. 

Guard allows the two computers/networks of different 
classifications to communicate by providing (I) an upgrading 
facility to pass data from the LOW computer/network to the 

. HIGH computer/network, and (2) a sanitization and down
grading facility to pass properly sanitized data from the 
HIGH computer/network to the LOW computer/network. 

Two general classes of data transfers are provided by 
ACCAT Guard. The first is ARPANET network mail trans
fers. Network mail can normally flow among computers on 
the LOW network or among computers on the HIGH net
work, but cannot flow between the two networks at different 
classifications. ACCAT Guard allows mail to pass betv/een 
the LOW and HIGH networks in a secure, controlled man
ner. 

Second, Guard allows users on the LOW computer/net
work to query Datacomputer24 databases residing on HIGH 
computers, and allows a properly sanitized response to be 
sent to the requesting user. Additionally, Guard accepts 
queries either in English or in Datalanguage, the Datacom
puter database query language. English queries are trans
lated into Datalanguage by a Guard operator. 

The Guard minicomputer is connected to the LOW and 
HIGH networks through Private Line Interfaces (PLls)25 
over the ARPANET. PLIs are encryption devices that allow 
a computer with a specific key to securely communicate 
with other compuiers having ihe same key. Thus the Guard 
has two distinct ARPANET connections that are at different 
security classifications. Figure I shows the connection of 
the Guard computer via PLls and the ARPANET to the 
other computers. The LOW and HIGH computers are pro
hibited from directly communicating because their keys are 
different. They can communicate only through the Guard 
computer, which has two PLIs and keys to communicate 
with both the LOW and HIGH computers. Thus the Guard 
computer must control the communication between the 
LOW and HIGH computers. Note that there could be other 
computers in the network with PLls keyed the same as the 

LOW or HIGH computers. All such computers that share 
the same key form a secure "subnet" of the ARPANET. 
Thus the Guard can be viewed as an interface between two 
networks of different classifications. 

Guard operating personnel 

There are two types of personnel designated to operate 
the Guard system, Guard operators and Security Watch 
Officers. The main responsibility of the Guard operators is 
sanitization. A Guard system can have many Guard opera
tors, whereas it has only one Security Watch Officer. whose 
function is to review all data downgraded by the Guard and 
approve or deny the downgrade. Thus the Security Watch 
Officer has responsibility for the security of the system. The 
specific duties of both Guard operators and Security Watch 
Officers are identified below in the context of each type of 
data transfer. 

Guard operatiol1 

As outlined briefly above, Guard provides two types of 
communication between LOW and HIGH computers: net
work mail and database queries. Moreover, each of these 
two types of communication can be initiated by a user on a 
LOW computer or a HIGH computer. The operation of the 
Guard in handling each of these four cases is described in 
general terms below. 

HIGH network mail 

HIGH network mail is mail sent from a LOW computer 
and intended for delivery to a HIGH computer. No security 
violation is involved when sending mail from LOW to 
HIGH. The HIGH network mail enters the Guard system 
as mail through the LOW ARPANET interface, passes 
through the Guard Software with no human intervention, 
and leaves the Guard via the HIGH ARPANET interface. 
Thus neither the Guard operator nor the Security Watch 
Officer is involved in Guard processing of HIGH network 
mail. 

LOW network mail 

LOW network maii is maii sent from a HiGH compuier 
and intended for delivery to a LOW computer. Such a trans
fer has a potential for a security violation if the data in the 
mail is classified higher than the LOW level for which the 
mail is intended. Therefore, LOW network mail is processed 
by the Guard system as follows. 

First, the main enters the Guard system as mail through 
ihe HIGH ARPANET interface. From there it is manually 
reviewed by the Security Watch Officer who must determine 
if the mail is free from information classified higher than the 
LOW level. If the Security Watch Officer determines that 
the mail can be sent, the mail leaves the Guard via the LOW 
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Figure I-ACCAT guard ARPANET connections. 

ARPANET interface. If the mail cannot be sent, the mail is 
sent back to the sender marked as rejected. Thus, only the 
Security Watch Officer is involved in Guard processing of 
LOW network mail. 

HIGH database queries 

A HIGH database query is a query originating on a LOW 
computer and intended for a HIGH computer database. 
Passing a query from LOW to HIGH does not involve a 
security violation. However, passing the reply from HIGH 
to LOW could p.otentially involve a security violation if the 
reply is not properly sanitized. HIGH database queries are 
processed by the Guard as follows. 

First. the query enters the Guard system as mail through 
the LOW ARPANET interface. If the query is in Datalan
guage, the query is passed through the Guard without human 
intervention, and passes through the HIGH ARPANET in
terface to the HIGH Datacomputer. If the query is in Eng
lish. it is translated into Datalanguage by a Guard operator. 
and then passes to the HIGH Datacomputer through the 
HIGH ARPANET interface. 

Replies coming from the HIGH Datacomputer (through 
the HIGH ARPANET interface) contain potentially classi
fied information and are processed by the Guard system 
before passing to the requester. The replies are in Datalan
guage. but when sanitized, may take on a different form. A 

Guard operator reads the query and its response and at
tempts to sanitize the response by editing it to remove in
formation pertaining to the nature of sources, etc. The Guard 
operator (sanitization officer) either sanitizes the response 
or replaces it with a message indicating that there was no 
response, and passes the query and the sanitized response 
to the Security Watch Officer, who must make the final 
determination of whether or not the response is passed on 
to the requester through the LOW ARPANET interface. If 
the Security Watch Officer decides against sending the re
sponse, the sanitization officer is so notified so he can do a 
better job of sanitization. 

LOW database queries 

A LOW database query is a query originating on a HIGH 
computer intended for the LOW Datacomputer. Passing 
such a query from HIGH to LOW involves a potential for 
a security violation if the query contains some data classified 
higher than LOW. However, passing the reply from LOW 
to HIGH does not involve a security violation.· LOW data
base queries are processed by the Guard as follows. 

The LOW database queries enter the Guard system as 
mail through the HIGH ARPANET interface. If the query 
is in DataJanguage. it is reviewed hy the Security Watch 
Officer who allows or disallows the query. If the query is 
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disallowed, it passes back to the requester as mail (through 
the HIGH ARPANET interface) marked as rejected. If the 
query is allowed, it passes through the Guard to the LOW 
Datacomputer. 

If the query is in English, it is translated into Datalanguage 
by a Guard operator, and then passes to the Security Watch 
Officer for review. If the Security Watch Officer allows the 
query, it passes to the LOW Datacomputer. If however the 
query is disallowed, the Guard operator is so notified so that 
he can take the appropriate action (i.e., to translate again or 
send the query back to the requester as rejected). 

USER 

DOMAIN 

LOW 
PROCESSES 

GUARD 
APPLICATION 
CODE 

The reply from the LOW Datacomputer can pass back to 
the requester (from LOW to HIGH) without a security vi
olation, and does so without human intervention. The reply 
is in Datalanguage. 

Guard design 

The programs that implement the Guard system are di
vided into three types of processes, LOW, HIGH, and 
TRUSTED. The integration of these processes with KSOS 
is shown in Figure 2. LOW processes have a security level 
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equal to that of the LOW ARPANET connection, and have 
read/write access only to files at the LOW level. Similarly, 
HIGH processes have the same level as the HIGH ARPA
NET interface, and have read/write access only to files at 
the HIGH level. The TRUSTED processes are able to read 
and write both LOW and HIGH files, and therefore has the 
capability of passing data between LOW and HIGH pro
cesses. 

The LOW and HIGH Guard processes deal with the LOW 
and HIGH ARPANET interfaces, respectively, and HIGH 
Guard processes provide the interface that Guard operators 
use to perform their functions of English to Datalanguage 
translation and HIGH response sanitization. 

Just as the kernel is the encapsulation of the security
related portion of an operating system, the Guard 
TRUSTED processes are the security-related portion of the 
Guard code, and are therefore the only portion of the Guard 
that must be verified. The Guard TRUSTED processes run 
directly on the kernel, and have little or no knowledge of 
the envirunment created by the UNIX emulator, The other 
Guard processes run in a UNIX environment, and commu
nicate with the TRUSTED processes via kernel-provided 
inter-process communication (IPC) messages. 

The guard TRUSTED processes 

Since the TRUSTED processes are the only security-re
lated portion of the Guard application, they are the only 
Guard processes that we will discuss in more detail. The 
TRUSTED processes provide the interface to the Security 
Watch Officer and provide one major function, that of down
grading. 

The downgrade function allows a HIGH process to send 
some data to a TRUSTED process for downgrading and 
release at the LOW level. This function is used to: 

• Downgrade LOW Mail (mail sent from a HIGH user to 
a LOW user). 

• Downgrade LOW Queries. 
• Downgrade sanitized responses to HIGH Queries. 

The downgrade function must be provided by a 
TRUSTED process because its operation violates the *
property. When the TRUSTED process receives some data 
for downgrading, it notifies the Security Watch Officer, who 
can read the data and decide whether or not the data can be 
released at the LOW level. The TRUSTED process releases 
the data only when so instructed by the Security Watch 
Officer. Thus the Security Watch Officer is solely respon
sible for what data is released at the LOW level. 

Verification of the TRUSTED downgrade function in
volves demonstrating that the only data allowed to flow from 
HIGH to LOW by the TRUSTED process is data that has 
been seen by the Security Watch Officer and approved for 
downgrading. The Security Watch Officer's terminal is con
nected directly to the TRUSTED process through the ker
nel. so there is no unverified code between the terminal and 

the TRUSTED process, and hence no chance for spoofing 
the Security Watch Officer. 

A DEEPER LOOK AT SECURE DATABASE 
MANAGEMENT SYSTEMS 

As mentioned earlier, the area of secure database man
agement systems is one that has received some attention in 
the past, but that has many avenues yet to be explored. In 
this section we review some of the Air Force-sponsored 
work, and present some problems yet to be solved. 

The Air Force Electronic Systems Division sponsored 
several research and development efforts in the design, 
specification, and validation of secure database management 
systems. Of primary importance are the contributions of 
System Development Corporation 26 and I. P. Sharp Asso
ciates Ltd. 27 Both of these studies helped to identify and 
clarify the key technical issues in secure database manage
ment technology. 

The SDC secure data management system 

The SDC effort concerned the design of a secure relational 
data base management system that interfaces with the mul
tilevel environment provided by the secure Multics Opera
ting system. SDC concluded that a relational data base could 
comfortably exist within the multilevel environment. The 
following technicaJ evaluation of the SDC work is taken 
from Reference 26. 

"The objective of this work was to develop a model 
and design of the security-related portions of a Data Man
agement System (DMS). The model and design effort fo
cused on those portions of a traditional DMS which are 
affected by the security constraints of the operating sys
tem. The result is a design framework which provides the 
basis for the development of a complete DMS which only 
has to draw on conventional DMS design technology. 

"The mathematical model of a secure DMS encompas
ses DoD-based security policies which the DMS is to 
enforce with respect to some of the basic OMS operations. 
The modeling effort encompasses the modeling of the 
various levels of the DMS and its operating system inter
face. 

"The modeling work suggested a design for a relational 
data management system that interfaces with the multi
level environment provided by the secure Multics opera
ting system. The design utilizes the protection provided 
by the operating system in such a manner that the OMS 
contains no code which has an impact on the security of 
the data in the system and, thus, whose correctness must 
be verified. The OMS is designed according to the prin
ciple of least privilege; hence, the DMS operating as part 
of the user's process has no privileges that are not also 
afforded the user." 
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The DMS described in the SDC work is designed to store 
database information in the storage containers provided by 
the underlying Multics operating system: segments. In order 
to contain no security-relevant code, the DMS must use a 
number of unilevel segments, because segments are the 
smallest unit of protection in secure Multics. 

The SDC work is important because it shows that a secure 
DBMS can exist on a secure system without arty additional 
security-relevant code. However, the SDC effort does not 
address the additional flexibility that could be gained if 
smaller units of data could be efficiently protected. The SDC 
effort is a good example of a DBMS design around existing 
secure operating system primitives. 

The I. P. Sharp protected DMS tool 

The approach taken by I. P. Sharp is unique in that rather 
than working from existing kernel designs and primitives, 
they investigated the design of kernel primitives that would 
support the implementation of a family of secure data man
agement systems. The primitives identified are referred to 
as the "'DMS TooL" The study shows that the DMS Tool 
is general enough to apply to data management systems 
implemented as a dedicated DMS, as an application on a 
secure operating system, or in a computer network. 

The view of the data in the I. P. Sharp work was rela
tional. 28 The I. P. Sharp study recommended that each re
lation be assigned a single security level, i.e., the data in 
each relation must be considered at one level. Data from 
several levels cannot be gathered into a single relation and 
maintain their individual classifications. The resultant rela
tions would have the classification of the most highly class
ified data that made up the reiation. 

The MITRE secure INGRES system 

MITRE, working from these past studies, attempted to 
impose security constraints on the INGRES relational da
tabase management system, and to integrate the resultant 
secure INGRES system with the MITRE secure UNIX pro
totype. 29 This effort is important because it was one of the 
first actual implementations of a secure DMS on a prototype 
secure operating system. Like the SDC study, the MITRE 
effort worked with existing kernel primitives to investigate 
their sufficiency for supporting a secure DMS. 

The approach taken by MITRE was also very similar to 
the SDC approach, in that no security-relevant code was 
added to the INGRES system. Use was made of the objects 
provided by the MITRE Secure UNIX kernel to accom
modate the relations in an INGRES database. 

The design of the MITRE Secure UNIX file system, like 
that of UNIX, is hierarchical, consisting of directories which 
may contain other directories or data files. In the MITRE 
design, data files in a directory assume the same access level 
as the directory. Consequently, the security level of an 
INGRES relation (a data file) must be at the same level as 
its database (a directory). Although this limitation does re-

duce the convenience of the secure INGRES system, the 
coordination of INGRES with the MITRE Secure UNIX 
necessitated the mapping of relations in this manner. Ad
hering to these restrictions, a user is still able to perform 
multilevel operations on relations in the INGRES database 
directory structure. 

In order to use secure INGRES to process multiple levels 
of information, the user must create a database at each 
security level to be included in the database. Also, a user is 
able to "read" information from a file at a security level 
lower than his current level, established at login time. As a 
result, a new relation can be created by combining infor
mation obtained from relations in databases at access levels 
less than or equal to the level of the database being added 
to. 

Areas for future work 

There are two problems that have recurred in much of the 
past secure da~abase design and implementation work: 

1. The fact that protection of very small objects is diffi
cult, and often results in relational database designs 
that force relations to be at the same level. 

2. The fact that user interfaces to secure database man
agement systems are seemingly difficult to design in 
such a way that the user is not greatly hindered by the 
security features. 

The solution to the first problem seems to lie in the proper 
design of security primitives, and the implementation of 
protection features in the right places. For example, a 
DBMS can rely on the protection primitives provided by the 
underlying secure operating system, or it can, using trusted 
processes, provide its own protection, possibly at a much 
finer grain. Currently trusted processes are rather difficult 
to verify, so they are used sparingly. However, as verifi
cation technology develops, it will become much easier to 
design with trusted code. IBM has made a survey of many 
database management systems to determine the relationship 
between operating system and database system security. 3U 

Their conclusion is that it is most convenient to separate the 
design of kernel primitives and DBMS security features. 

The solution to the user interface problem has been ad
dressed in the context of message processing systems,:11 
which are really special cases of a DBMS. The techniques 
proposed in this paper need to be further studied and appiied 
to more secure database designs. 

CONCLUSIONS 

Secure computer systems are moving rapidiy oui of the 
"research arena" and into the field. The KSOS effort will 
soon demonstrate that multilevel secure operating systems 
can be built feasibly and cost-effectively. Many important 
applications for KSOS and other secure operating systems 
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are being designed and developed now, and the potential for 
future applications is tremendous. 
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INTRODUCTION 

PSOS has been designed according to a set of formal tech
niques embodying the SRI Hierarchical Development Meth
odology (HDM). HDM has been described elsewhere, 1-3 

and thus is only summarized here. The influence of HDM 
on the security of PSOS is also discussed elsewhere. 4 In 
addition, Linden 5 gives a general discussion of the impact 
of structured design techniques on the security of operating 
systems (induding capability systems). 

HDM employs formally stated requirements, formal spec
ifications defining the design of each module in a hierarchical 
collection of modules, and formal statements of the module 
interconnections. In the case of PSOS, there is a formal 
model describing the requirements of the basic protection 
mechanism, and additional formal models of the require
ments of various applications (e.g., Reference 6). HDM pro
vides the formalism and the structure that make the formal 
verification of the system design and implementation pos
sible and conceptually straightforward. This formal verifi
cation consists of formal proofs that specifications satisfy 
the desired requirements, 6 and subsequently that the actual 
programs for the system and its applications are consistent 
with those specifications. 2 

The design of PSOS has been formally specified using a 
SPECIfication and Assertion Language called SPECIAL. 7 

These specifications 1 define PSOS as a collection of about 
20 hierarchically-organized modules. Each module typically 
is responsible for objects of a particular type defined by that 
module. From the user point of view, the most important 
modules are those for capabilities, for virtual memory seg
ments, directories, user processes, and for creating user 
defined abstract objects. Some modules are to be imple
mented in software, some in firmware, and some in hard
ware-as dictated by the efficiency required. 

Capabilities provide the protection mechanism for all such 
objects in PSOS, and are discussed in the next section. The 
subsequent sections of this paper summarize the develop
ment methodology used in PSOS, present the protection 
mechanism provided by PSOS capabilities, exhibit its prop
erties, show its applicability in developing data and proce
dure abstractions, and contrast the PSOS approach with the 
kernel approach to achieving secure systems. There are 
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many important issues relating to the use of capabilities in 
PSOS (and other computer systems) that are not presented 
in this paper. Many of these issues are discussed in the 
references cited here. 

PSOS CAPABILITIES 

The concept of the capability has appeared in several 
other operating systems (e.g. References 8-13). Although 
capabilities are a funeamental part of the design of each of 
these systems, they all differ in the way they use and inter
pret capabilities. PSOS differs from its predecessors in its 
uniform use of capabilities throughout the system and in the 
simplicity and primitive nature of the basic capability mech
anism. 

Each object in PSOS can be accessed only upon presen
tation of an appropriate capability to a module responsibie 
for that object. Capabilities can be neither forged nor al
tered. As a consequence, capabilities provide a controllable 
basis for implementing the operating system and its appli
cations, as there is no other way of accessing an object other 
than by presenting an appropriate capability designating that 
object. 

Each PSOS capability consists of two parts, a unique 
identifier (uid) and a set of access rights (represented as a 
boolean array). By definition neither part is modifiable, once 
a capability is created. 

• Unique Identifiers-PSOS generates only one original 
capability for each uid. Any number of copies can be 
made of a given capability, but making a copy requires 
presenting an existing capability for which a copy is to 
be made. Therefore, a procedure or task that creates 
a new capability with some uid knows that the only 
capabilities that can have that uid must have been cop
ied either directly or indirectly from the original. In 
other words, the creator of a capability with a given uid 
is able to retain control over the distribution of capa
bilities with that uid. 

• Access Rights-The set of access rights in a capability 
for an object is interpreted by the module responsible 
for that object to define what operations may be per-
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formed by using that capability. The interpretation of 
the access rights is constrained by a mOl1otol1ici(v rule, 
namely that the presence of a right is always more 
powerful than its absence. The interpretation of the 
access rights may differ for different objects, but the 
monotonicity rule must always apply. 

The access rights for a segment capability (as interpreted 
by the segment manager) indicate whether that capability 
may be used to write information into the designated seg
ment, to read that information, to call that segment as a 
procedure, and to delete that segment. In PSOS, a directory 
contains entries, each of which is a mapping from a symbolic 
object name to a capability. Each directory is accessed via 
a capability for that directory. For directories, the interpre
tation of access rights is done by the directory manager. The 
access rights for a directory capability indicate whether that 
capability may be used to add entries to the designated 
directory, to remove entries, and to use the capability con
tained in that entry. 

A copy of a capability may be made, but the resulting 
capability cannot have any access rights that the original 
capability did not-as is seen from the following list of 
possible operations upon capabilities. (There are other ac
cess rights, meaningful to capabilities of all types, to be 
discussed under storage permissions.) 

THE PSOS PROTECTION MECHANISM 

Capabilities provide the basis for a flexible protection 
mechanism, as follows: 

Tagging of capahilit;es 

In PSOS, capabilities can be distinguished from other data 
because they are tagged throughout the system (i.e., in the 
processor, and in both primary and secondary memory) by 
means of a tag bit inaccessible to programs. Consequently, 
the hardware can enforce the nonforgeability and unaltera
bility of capabilities. 

Operations upon capabilities 

There are only two basic operations that involve actions 
upon capabilities (as opposed to actions based on capabili
ties, which is the normal mode of accessing objects), as 
follows. 

c=create_capability creates a new capability (i.e., with a 
previously unused uid) having all access rights. 

c1=restrict~ccess(c, mask) creates a capability with the 
same uid as the given capability c and with access 
rights that are the intersection of those of the 
given capability c and the given maximum 
(mask): i.e., it creates a possibly restricted copy. 

Store permissions 

The second capability operation described above appears 
to permit unrestricted copying of capabilities. For certain 
types of security policies this unrestricted copying is too 
liberal. For example, one may wish to give the ability to 
access some object to a particular user but not permit that 
user to pass that ability on to other users. Because simplicity 
of the basic capability mechanism is extremely important to 
achieve the goals of PSOS, any means for restricting the 
propagation of capabilities should not add complexity to the 
capability mechanism. 

A few access rights (only one is currently used by PSOS 
itself) are reserved as store permissions. This is the only 
burden placed on the capability mechanism. The interpre
tation of the store permissions is performed by the basic 
storage object manager of PSOS, namely the segment man
ager. Each segment in the system is designated as to whether 
or not it is capability store limited for each store permission. 
If a segment is capability store limited for a particular store 
permission, then it can contain only capabilities that have 
that store permission. This restriction can pe enforced by a 
simple check on all segment-modifying operations. 

By properly choosing the segments that are capability 
store limited, some very useful restrictions on the propa
gation of capabilities can be achieved. The restriction used 
in PSOS is not allowing a process to pass certain capabilities 
to other processes or to place these capabilities in storage 
locations (e.g., a directory or interprocess communication 
channel) accessible to other processes. (Other restrictions 
are also possible using store permissions, such as restricting 
a capability to a subsystem or a particular invocation of a 
subsystem. For example, see Reference I, page 11-25.) More 
general means for restricting propagation of capabilities and 
for revoking the privilege granted by a capability can be 
implemented as subsystems of PSOS. The store permission 
mechanism has been selected as primitive in the system 
because it achieves the desired result with negligible addi
tional complexity or cost. 

DATA AND PROCEDURE ABSTRACTIONS 

PSOS consists of a collection of data and procedure ab
stractions constructed in a hierarchical fashion as shown in 
Table I. Each level in the hierarchy represents a collection 
of abstractions introduced at that level. Abstractions at 
higher (numbered) levels are implemented using abstract 
objects introduced at lower levels in the design. It is unim
portant whether an abstraction is implemented in hardware, 
firmware, or software. It is reasonable that abstractions 
introduced at lower levels be implemented largely in hard
ware or firmware and that abstractions introduced at higher 
levels be implemented largely in software. However the 
demarcation between hardware and software is not estab
lished by the design, and it is quite possible that abstractions 
occurring throughout the system be implemented as hybrids, 
i.e., partially in hardware and partially in software. 
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TABLE I-PSOS Abstraction Hierarchy. 

Level Abstractions 

16 
15 
14 
13 
12 
II 
10 
9 
8 
7 
6 
5 
4 

user request interpretation 
user environments and name spaces 
user input-output 
procedure records 
user processes and visible input-output 
creation and deletion of user objects 
directories 
abstract object manager 
segments and windows 
pages 
system processes and system input-output 
primitive input-output 
arithmetic and other basic procedures 
clocks 

2 interrupts 
1 registers and other storage 
o capabilities 

It is convenient to group the levels of Table I into generic 
categories as shown in Table II. The generic categories 
collect abstractions satisfying similar goals. At the base of 
the hierarchy is the capability mechanism, from which all 
other abstractions in the system are constructed. Above the 
basic capability mechanisms are all the physical resources 
of the system, e.g., primary and secondary storage, proces
sors and input/output devices. From the physical resources 
are constructed the virtual resources. These virtual re
sources present a more convenient interface to the program
mer than the physical resources, permit mUltiplexing of the 
physical resources in a manner largely invisible to the user, 
and allow the system to allocate the physical resources so 
as to maximize their efficient use. Next in the PSOS hier
archy comes the abstract object manager, providing the 
mechanism by which higher-level abstractions may be cre
ated. As will be discussed in detail, it is possible to construct 
higher-level abstractions based solely on the capability 
mechanism; however, the abstract object manager provides 
services that make construction of such abstractions easier. 
The top two categories in the generic hierarchy include 
community abstractions and user-cr~ated abstractions. The 
community abstractions are intended to be used by a large 
group of users, e.g., by all the users at a particular site. 
Such abstractions may be simple utility routines such as a 
compiler, or may actually create and control access to new 
virtual resources such as directories. The user abstractions 
are those intended for use by a limited group of individuals. 

Of the properties stated previously, there are two impor-

Level 

F 
E 
D 
C 
B 
A 

TABLE II-PSOS Generic Hierarchy. 

Abstractions 

user abstractions 
community abstractions 
abstract object manager 
virtual resources 
physical resources 
capabilities 

PSOS Levels 

14-16 
10-13 
9 
6-8 
1-5 
o 

tan.! ones that make the PSOS capability particularly useful 
in the construction of abstract objects. 

1. The capability serves as a unique name for an abstract 
object. 

2. The capability is unforgeable. 

This means that a capability can be used as a name (guar
anteed to be unique) by which an abstract object can be 
referenced, and access to the object can be controlled by 
limiting the distribution of the capability. 

In addition, there are several important pragmatic reasons 
why PSOS capabilities are useful as a naming and protection 
mechanism for supporting abstract objects. 

1. The capability mechanism has a very simple imple
mentation. This allows capabilities to be built into the 
system at the lowest level of abstraction, thus making 
capabilities avaiiable for the most primitive objects. 

2. Capabilities are uniform in size, making them easy to 
manage. 

3. The inclusion of access rights in capabilities permits 
efficient fine-grained control of access to objects. 

4. Capabilities can be written into storage (including sec
ondary storage) and retrieved from storage in the same 
manner as other data, and therefore have many of the 
properties of other data. 

Capabilities serve as names or tokens for all objects of 
PSOS. It is because the basic capability mechanism is so 
simple in concept and in implementation that construction 
of the most primitive objects (e.g., input/output channels, 
processors, and primary memory) as weB as the most com
plex system objects (e.g., directories and user processes) 
and user application objects (e.g., a data management sys
tem) is possible using capabilities. This promotes a high 
degree of uniformity throughout the system and eliminates 
the need for many special-purpose facilities. 

Objects that have many properties and operations in com
mon and are managed by a single program are said to have 
a common type; that program is called a type manager. The 
type manager implements operations on an abstract object 
in terms of operations on the more primitive objects used to 
represent the abstract object. The type manager must be 
able to determine which objects are part of the representa
tion used to implement an abstract object denoted by a given 
capability. In other words, a type manager must be able to 
map the unique identifier of a given capability into capabil
ities for its representa:tion objects. The capability mechanism 
of PSOS does not predispose a type manager to any partic
ular implementation of this mapping. Different type man
agers will require diverse mapping algorithms, depending 
upon the number of abstract objects and representation ob
jects they must manage, the desired efficiency of operations 
on the abstract object, the desired simplicity of the mapping 
algorithm, and numerous other factors. For example, the 
segment type manager uses a mapping algorithm that is in 
almost all cases extremely fast; however, the algorithm is 
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quite complex, requiring implementation in both hardware 
and software. Extreme speed is essential to the operations 
of the segment type manager because the segment opera
tions are used very frequently (at least once on every in
struction). The directory type manager uses a less speedy 
algorithm because fast access is not essential. 

Although the capability mechanism of PSOS does not 
prescribe a particular mapping algorithm, the system does 
provide some assistance in managing abstract objects. The 
abstract object manager provides a set of operations by 
which type managers can associate capabilities for abstract 
objects with the capabilities for their representation objects. 
The type manager can then retrieve the representation ca
pabilities by presenting to the abstract object manager the 
abstract object capability. This is done in such a way that 
only the type manager program itself can obtain the repre
sentation capabilities, and then only upon presentation of 
the abstract object capability. The abstract object manager 
performs the mapping from abstract object capabilities to 
representation object capabilities, some of the bookkeeping 
functions necessary to impiement abstract objects, and some 
storage allocation. Although the abstract object manager is 
intended to be useful and approp~iate for a wide variety of 
type managers and does make the programming of a type 
manager much easier, it is only a service and is not essential 
to the construction of type managers. 

The capability mechanism itself could have been con
structed with many of the facilities of the abstract object 
manager included. This would have resulted in a capability 
mechanism that would be more elaborate and-for some 
applications-more efficient and easier to use. This is the 
approach taken by other capability systems cited above. On 
the other hand, such a capability mechanism would have 
required a more complex implementation. More signifi
cantly, the capability mechanism could then not have been 
·placed at the lowest level of abstraction in the system design, 
and some of the physical and virtual resources of the system 
could not have been implemented using capabilities-re
quiring a different means for reference. Although having 
several different naming schemes is possible (and common 
in most systems), it destroys the uniformity, conceptual 
simplicity, elegance, ease of use, and possibly the efficiency 
of the system. It is for this reason that PSOS has a very 
simple, but fully general, capability mechanism, and that 
programs enhancing the use of the capability mechanism 
can be introduced as extensions at higher levels of the de
sign. 

As noted above. there is no clearly-delineated system 
boundary in PSOS. One would normally draw the system 
boundary at the interface to the community abstractions. 
However, all the programs that implement the community 
abstractions (such as directories or user processes) could be 
provided by users as user programs. The community pro
grams have no special privilege other than claiming re
sources at initialization by taking possession of certain ca
pabilities. For example, the user-process type manager takes 
possession of the capabilities for certain system processes 
which it then mllJtipJexe~ to create many \1~t:'r pror.ec;;ses. If 
the system's user-process type manager did not claim all the 

available system processes, then it would be possible for a 
user to provide a different user-process type manager with 
the same or different facilities. Similarly, the abstract object 
manager has no special privilege at all. A user might program 
his own abstract object manager if he so desired. 

The abstractions at or below any level in the design of 
Table I form a consistent and useful system. Clearly, the 
lower the level chosen as the "top level" of the system, the 
more primitive that system will be. If all of the physical 
resources (levels t through 5) are present, then the full PSOS 
could be reconstructed on the restricted system, but more 
likely, one would construct a somewhat different system. 
Thus, the PSOS design represents a family of systems. One 
can choose the level that provides the best set of resources 
to fulfill the needs of the desired system without having to 
include unnecessary facilities. Then one can augment this 
level with new type managers to create abstract objects 
appropriate to the desired applications. Writing such "sys
tem" type managers requires no additional skill or privilege 
other than that required to write ordinary user programs. 
The distinction between a "system" program and a "user" 
program is thus indeed blurred. 

PSOS RELATIONSHIP TO KERNELS 

Several recent operating systems have been constructed 
using a "kernel" architecture. Such systems include the 
Kernelized Secure Operating System (KSOS) 14,15 and two 
precursor systems developed at MITREI6,17 and UCLA.I8 

The term kernel is used loosely in the literature, but for the 
purpose of this discussion a kernel is that part of the oper
ating system that is both necessary and sufficient to satisfy 
certain requirements of the system. For example, if the 
essential requirement of a system is that it enforce a certain 
security policy, then that part of the system that enforces 
the security policy constitutes the kernel. By this definition, 
a kernel is meaningful only with respect to some requirement 
or some set of requirements. The kernel must contain all 
those parts of the system that pertain to meeting the require
ments, i.e., there is no part of the system outside the kernel 
that can cause the system not to meet its requirements. 
Also, the kernel can contain only those parts of the system 
that are necessary to meet the requirements, i.e., the kernel 
should not contain anything that does not pertain to the 
meeting of the requirements. The reasoning behind kernel
based architectures is that since a kernel contains only that 
part of the system essential to meeting requirements, it can 
be small, compared to the system as a whole, and therefore 
has a better chance of being correct. 

One of the main advantages of the kernel approach is the 
clear statement of purpose of the system. Since a kernel is 
meaningful only with respect to some explicit requirements, 
these requirements serve as the statement of purpose of the 
system. The other main advantage is the enhanced proba
bility of correct operation. Since the programs that are crit
ical to the correct operation of the system are isolated in the 
kernel, a great deal of attention can be paiJ Lo gelting this 
code right. and less attention can be paid to other system 
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code that may be important but is not critical. The relatively 
small size of the kernel significantly improves the chanc~s 
of applying formal verification techniques to the programs 
in the kernel in a cost-effective manner, where applying 
these techniques to the entire system would be unwieldy. 

There are, as one might expect, some disadvantages to 
the use of kernels. Kernels cannot be casually modified 
because, by definition, all the code in the kernel is essential 
to meeting the requirements of the system, and any modi
fication is likely to cause the system to deviate from that 
which is required. One must take extreme care to be sure 
that a change in the kernel will not com,promise its correct 
operation. 

In order to be able to construct a small kernel, the re
quirements must be fairly narrow and highly specific. Such 
requirements limit the applications for which the kernel is 
useful. For example, if the requirement of a kernel is to 
enforce a particular security policy, then only applications 
requiring that policy can be reasonably implemented using 
that kernel. It is not possible to implement another security 
policy that is inconsistent with the given security policy. 

Yet another of the major problems with the kernel ap
proach is the difficulty of designing a system in such a way 
that those programs essential to meeting the requirements 
are isolated from the nonessential programs. Finally, expe
rience with the systems mentioned above indicates that ker
nels are still quite large. Clearly the size of a kernel depends 
upon the requirements it is supposed to meet, but reasonable 
requirements tend to require a large part of the system to be 
part of the kernel. Large kernels do not enhance one" s con
fidence in the correct operation of the system. 

Consider, for example, the kernels of KSOS and of the 
MITRE system. The requirement of these kernels is that 
they enforce a multilevel security policy. Upon close ex
amination of these systems, it is seen that what is labeled 
the "kernel'" is not really the kernel at all, but is only a part 
of the kernel. These systems have so-called trusted pro
cesses, namely programs that are internally able to violate 
the requirements, but whose external interface is consistent 
with the requirements. These trusted processes include pro
grams for file system backup and retrieval, 110 spooling, 
and network interfaces. These programs are not labeled as 
part of the kernel because their function is in some sense 
peripheral to the main task of the system. However, their 
correct operation is as essential to meeting the requirements 
as any kernel program. If the system is to be proven correct, 
the programs that are used by the trusted processes must be 
formally verified. Inclusion of the code for the trusted pro
cesses into the kernel makes the resulting kernel much 
larger. This illustrates a difficulty in designing a small kernel. 

It is a matter of judgment as to whether the advantages of 
the kernel approach outweigh the disadvantages. For the 
situation in which one has clearly defined, specific overrid
ing requirements for which a small kernel can be con
structed, then the kernel approach is ideal. 

PSOS is well suited to situations in which one wants to 
support many applications with different or conflicting re
quirements. Because PSOS is highly extensible and easily 
supports different type managers with strong control over 

access to objects and type managers, it makes possible the 
support of many different sets of requirements on one PSOS 
implementation. For example, several subsystems have 
been designed for PSOS that enforce different security con
straints. A particular task could be constrained to have ac
cess to only one of these subsystems, but several tasks may 
be executing different subsystems simultaneously. In a 
sense, each of these subsystems can be viewed as a "ker
nel"" for the tasks having access to them, but PSOS can 
support any number of such subsystems. Of course, one still 
has the problem of assuring the correctness of these sub
systems and those parts of PSOS which the subsystems use. 
However, assuring the correctness of these subsystems on 
PSOS should be significantly easier than assuring the cor
rectness of a stand-alone kernel,. because each subsystem 
will be much smaller and simpler than it would be if it had 
to be implemented as a stand-alone system. 

The UCLA system 18 is an interesting case in that its re
quirements for security are very broad and general. The 
UCLA kernel attempts to be like PSOS in its ability to 
support a wide range of security policies simultaneously. 
However, the resulting requirement does not permit as wide 
a range of policies to be implemented, and the system design 
is not as uniform or elegant as the PSOS design. 

SUMMARY 

The capabilities of PSOS provide a flexible naming and 
protection mechanism that can be used to implement arbi
trarily complex subsystems efficiently fulfilling a wide va
riety of requirements. The properties of PSOS that make 
this possible are summarized as follows. 

I. The capability mechanism is extremely simple, with 
only two operations involving the creation of capabil
ities and none permitting the alteration of capabilities. 
There is no policy embedded in the mechanism. 

2. The operations on capabilities can be completely con
trolled at the most primitive conceptual level of the 
system design and implemented in hardware. Capabil
ities are tagged and nonforgeable, and the protection 
they provide is not bypassable. 

3. Capabilities and other PSOS facilities encourage strong 
modularity via the creation of data and procedure ab
stractions. Such abstractions are the basis of the design 
of the PSOS system itself and can be used equally well 
in application programming. 

4. The capability mechanism can be used equally well for 
user programs, application subsystems, and system 
programs. There are no special protection mechanisms 
necessary to protect system programs. 

5. The capability mechanism is fully general and can si
multaneously support subsystems that implement ar
bitrary policies. Mechanisms for initialization, backup 
and recovery, and auditing for both PSOS and its sub
systems can be constructed without subverting the pro
tection mechanism. 

6. The operations that can be performed on an object of 
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a particular type are precisely those defined by the 
type manager for that object. The operations permitted 
upon the particular object designated by a given ca
pability are limited by the access rights of the given 
capability. 

7. If a user is in possession of only one capability for an 
object, and he wishes to confer some or all of the 
access rights to another user (or to another program), 
he may create and pass a new capability whose access 
rights are a subset of those of the original capability. 
There is no way in which an additional access right can 
be introduced. (Note, however, that type managers 
must consistently enforce the monotonicity of access 
rights. That is, the presence of the right must be more 
powerful than the absence of that right. This is guar
anteed for system-defined object types, and must be 
assured by the type managers for other types.) 

8. Propagation of capabilities can be restricted by use of 
capability store permissions. The passage of a capabil
ity to other users can be prevented by not including 
process store permission in that capability's access 
rights. 

Although no single commercially available computer has 
the facilities necessary to implement PSOS efficiently, each 
of the required facilities does exist on some computer. 
Therefore, the proper hardware support for PSOS can be 
implemented using established techniques. The formal tech
niques used to design PSOS make implementation straight
forward 19 and. make formal verification of correct operation 
possible. All of the advantages summarized here can make 
PSOS and subsystems implemented on PSOS far more se
cure and reliable than contemporary operating systems. 
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INTRODUCTION 

The VM/370 Security Retrofit Program is a continuing re
search and development initiative, funded by the Defense 
Advanced Research Projects Agency (DARPA), with addi
tional funding provided by the Canadian Department of N a
tional Defense. The program's primary goal is the security 
retrofit of a popular commercial operating system, VM/370. 1 

Two approaches were originally planned: (1) the design of 
a feasible, formally verified security kernel to VM/370 and 
(2) a "hardening" effort to repair known VM/370 penetration 
weaknesses. It was subsequently decided not to proceed 
with the VM/370 hardening task because of the uncertainty 
of the end result: correction of known security flaws does 
not guarantee the absence of exploitable, but not yet de
tected, security flaws in the hardened system. 

In the first year of the research program, the feasibility of 
adding a security kernel to VM/370 was studied and a kernel 
design for the system was produced. The retrofitted system 
is called K VM/370 (for Kernelized VM/370). The security 
enforcement mechanism, the kernel, must implement a ref
erence monitor2 that enforces a security policy. A security 
kernel is a reference monitor that: 

a. Mediates all attempts to access security objects; 
b. Is protected from the tampering attempts of either the 

control software or the users; 
c. Is verifiably correct. 

A security policy has been evolved that will permit as 
general a form of controlled sharing of machine resources 
and classified data as possible within the constraints of de
fining a kernel that will: 

a. Be verifiable with respect to enforcing that policy; 
b. Have an acceptable effect on overall VMi370 perform

ance; 
c. Require minimal rewriting or replacment of existing 

code in the VM/370 Control Program (a retrofit); 
d. Preserve a maximum compatibility with VM/370 ap

plications. 

Although K VM/370 has been developed primarily for the 
defense and intelligence communities, its security policy can 
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be applied to other environments as well. For example, the 
system can operate in a private-sector environment where 
privacy2 safeguards are necessary. At this time, several 
commercial organizations as well as other agencies in the 
Department of Defense that are outside of the inteiligence 
community are considering the possibility that K VM/370 
may satisfy their "secure" data processing requirements. 

The KVM/370 effort has been inspired by the belief that 
encapSUlation of mUltiple, individual copies of an operating 
system under a virtual machine monitor system can provide 
a practical, secure operating system. SDCs experience with 
IBM's VM/370 supports this belief. Even though the com
mercially available implementations of VM/370 continue to 
be insecure against planned intrusion,:3 this system appears 
to have sufficient potential to warrant the present retrofit 
effort. 

RETROFIT STRATEGY 

A methodology was developed for partitioning the VMI 
370 control program (VM/370-CP) into security-relevant and 
nonsecurity-relevant modules. The decision process is based 
on the principles of least privilege and least common mech
anism,2 defining security-relevant code in CP as that code 
which executes privileged instructions or the code which 
accesses global system data (i.e., control blocks traversing 
security levels). In this way, security-relevant CP modules 
are directly identifiable. 

It was found in the first year of the project that most 
system data need not be truly global, but global only over 
the Virtual Machines (VMs) at a given security level. The 
VMs at a given security leveF could be supported by a 
combination of a formally verified kernel operating in real 
supervisor stateS and a Non-Kernel Control Program 
(NKCP) executing in real problem state and consisting of all 
non-security-relevant VM/370-CP code. The NKCP would 
execute as a virtual machine, having access only to global 

* A security level {C, K} consists of a hierarchical classification C from the 
ordered set {unclassified, confidential, secret, top secret}, and a category K 
consisting of a subset (possibly empty) of the set of special access compart
ments (e.g. NATO, CRYPTO, etc.). The categories form a partial order under 
set inclusion. 
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system data for the virtual machines it is supporting at the 
given security level. 

In principle, there are significant differences between a 
security retrofit to VM/370 and a new design of a secure 
VM/370. In both cases it is necessary to design and specify 
the security enforcement mechanisms for the security ker
nel, as well as to derive the set of formal security invariants 
the kernel must preserve over the system. It is found, how
ever, that much of the code in an operating system that 
virtualizes a computer, such as that found in VM/370-CP, 
either has no security relevance or can be trivially modified 
so that it no longer has any security relevance. Hence, much 
of the existing code which provides functional capabilities 
to the virtual machines is essentially usable as it stands. 

Secondly, it is observed that such code, in fact all of VMI 
370, could be virtualized. The strategy suggested by these 
observations involves designing and verifying a relatively 
small body of code which is just powerful enough to provide 
primitive virtualization and which controls all forms of I/O 
access with respect to the security policy. It is thus concep
tually possible to run numerous copies of V M/370 atop this 
simple kernel, each running in virtual (as opposed to real) 
supervisor state. Since the _kernel is the final arbiter and all 
access to real devices must eventually pass through it (i.e., 
these accesses all require invocation of privileged instruc
tions in real supervisor state), no action of the virtualized 
VM/370-CP can compromise security. The users would run 
their programs atop the untrusted copies of virtualized VMi 

-370. If a virtualized VM/370-CP were to attempt to perform 
actions contrary to the security policy, the kernel would 
prohibit such actions from taking place. These potential 
denials of service could be avoided by deleting the related 
code from the virtualized VM/370-CPs, but it is important 
to observe that these matters have no effect upon the en
forcement of security since (I) the kernel was designed to 
enforce a specific security policy, (2) the kernel was formally 
verified to support the enforcement of that policy, and (3) 
the correctness proof of the kernel made no assumptions 
about any of the virtual machines running atop the kernel, 
particularly none with respect to an NKCP itself. 

In the interest of enhancing the performance of such a 
kernelized system, it might be necessary to give certain 
system modules access to multilevel system data. These are 
the modules which control the sharing of real system re
source among virtual machines at different security levels. 
In order to maintain system security, it is necessary to 
ascertain that such resource management modules properly 
utilize the privileges granted them by the added common 
mechanism. Such modules become trusted processes. 
Where possible and practical, the trusted processes are to 
be given the same formal verification the kernel processes 
receive. 

Where this is not practical or possible ,*':' the trusted pro-

** The semi-trusted processes serve as schedulers and allocators of global 
resources and have the potential to be used as an iIlicit signalling path in 
violation of the confinement condition by modulating the global state variable, 
TIME. There is no known method for formally demonstrating that an algo
rithmica!ly correct. Truj.lIl Hun.c frcc. ~dH:Jult:l Callilul bt: mampulated by 
users in such a way that the users can cause clock time tl) become a signal 
to other users. 

cesses are subject to a thorough audit for the presence of 
errors or Trojan Horses 2 encapsulated into a limited address 
space with restricted reading and writing privileges, and 
restricted so that they operate in real problem state with 
virtual addresses. These latter processes are known as semi
trusted processes. 

SECURITY POLICY 

The KVM/370 kernel is designed to enforce a military 
security policy. This requires the preservation of two se~ 
curity properties, the "security condition," and the "con
finement condition" (also known for historical reasons as 
the ""'-property", pronounced "star property' ').4 These 
properties are described in terms of three types of entities: 
subjects, objects and security levels. Subjects are the active 
elements of the system for which data access must be con
trolled (e.g., users, processes). Objects are the data or data 
containers, access to which must be controlled by the ker
nel. There is a security level associated with each subject or 
object which describes the degree of clearance of the subject 
or sensitivity of the object. A partial order, c·alled dominates, 
is defined on the security levels. Specific interpretations of 
these elements are to follow. 

The security condition requires that no subject may access 
an object for the purpose of reading or updating unless the 
level of the subject dominates that of the object. The con
finement condition demands that a subject may have write 
access to an object (permission to both read and write) only 
if the subject and object are associated with precisely the 
same security level. 

In the main, subjects in KVM/370 are interpreted as the 
individual NKCPs. The kernel provides isolation among the 
NKCPs, but provides little or no additional isolation be
tween VMs under the same NKCP beyond that already 
provided in VM/370. Since all VMs operating under the 
same NKCP act at the same security level, the kernel pro
tects each VM from other VMs at different security levels, 
but not necessarily from VMs at the same level. Global 
processes, which must interface with several NKCPs at 
different levels, are also subjects. 

The objects in KVM/370 are collections of data areas on 
direct access storage devices (DASD), or entire DASD vol
umes, tape volumes, unit record devices, real core pages 
and processes, and VM working environments (control 
blocks, scratch storage registers etc.). 

During 1977, the evolution of United States National Se
curity Policy was studied in an effort to make K VM/370 
more responsive to the modifications that were being made 
to Executive Orders 11652 and 11905. The requirements of 
Executive Order 12065 clearly state that it is essential that 
computer systems not divulge information to unauthorized 
individuals on the one hand, while prohibiting the overclas
sification of data on the other hand. KVM/370 enforces the 
confinement condition to prevent unauthorized declassifi
cation of data, and produces detailed historical collateral 
d<l"lsification information for evcry ncw volume Cl ~ateJ by 
the system in order to justify its classification as a function 
of the classifications of all data to which the virtual machine 



that created it had access. This historical classification in
formation may then be reviewed by a security officer pos
sessing original classification authority for the data. 

OVERALL SYSTEM ARCHITECTURE 

Figure 1 represents the architecture of Ken'lelized VMI 
370 (KVM/370), consisting of the following domains: 

1. The kernel and verified trusted processes, executing in 
real supervisor state (about 6000 lines of JOVIAL); 

2. The audited semi-trusted processes, having access to 
some global system data, executing in real problem 
state, but having access only to virtual addresses 
(about 10,000 lines of assembly language); 

3. The NKCPs, one per security level, having access to 
system data for the supported security level only, ex
ecuting in real problem state, having access only to 
virtual addresses (about 70,000 lines of assembly lan
guage); 

4. The user VMs, each controlled by the appropriate 
NKCP for its security level, executing in real problem 
state. 

It was intended that all kernel code and trusted process 
code would be written in a strongly-typed Pascal-based pro
gramming language such as the EUCLID5language in order 
to facilitate formal verification. 

However, as the time for system implementation drew 
near, it was found that there were no available production 
quality compilers for EUCLID or any other thoroughly
typed Pascal-based programming language that would permit 
efficient system programming on an IBM Systeml370 base 
machine. The requirement that the system programming lan
guage possess the capability of addressing and manipulating 
IBM Systeml370-specific data structures is essential since 
the kernel must analyze, prepare, and maintain numerous 
tables and control blocks whose structure is dictated by the 
hardware. In order to provide for the future verification and 
certification of KVM/370, it is desirable that a maximum of 
detail on the manipUlation of these data structures be ex
pressed in the higher-order language rather than in assembly 
language. Lastly, it was essential that the compiler reliably 
produce highly efficient executable code, lest the perform
ance costs of the system be impractically high. It was also 
necessary that the compiled code not require a run-time 
support package for its execution, since the run-time pack
age could be a possible source of security compromise (e .g., 
Trojan horses, trapdoors, etc.). 

After serious consideration of numerous languages for 
which compilers either existed or were proposed, it was 
decided by ARPA that system efficiency was of sufficient 
importance to permit the use of a programming language 
that was not Pascal-based, providing it satisfied the other 
exigencies for the project. 

The language selected for the implementation of K VMI 
370 was the 13 dialect of the JOVIAL Programming Lan
guage. JOVIAL is a system programming language providing 
direct description of machine-specific data structures, as 
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well as access to the full instruction set of the machine. 
JOVIAL is not a verification-oriented programming lan
guage. Consequently, while the formal specifications of 
K VM/370 will be formally verified against the security policy 
enforcement criteria, the first, implementation will not be 
formally verified. Subsequently, when a production quality 
compiler exists for a verification-oriented systems program
ming language, KVM/370 can be recoded in that language 
and then verified. 

DESIGN TRADEOFFS 

The user's system-use expectations will have an impact 
on the system architecture, size of the kernel and trusted 
processes, overall system performance, and level of effort 
required for implementation and formal verification. Re
source scheduling and management can be performed on 
either a systemLglobal or an NKCP-Iocal basis. If done on 
a system-global basis, the size of the kernel and trusted 
processes is increased, the interface between the NKCPs 
and the global processes becomes more intricate, verifica
tion becomes more difficult and costly, system modification 
becomes less facile, but system performance improves. If 
done on a local basis with most resource management de
cisions performed by the NKCPs and perfunctory reconcil
iations performed by-the kernel, the opposite results hold: 
system design, implementation, verification and interfaces 
are simplified, while system performance may be adversely 
affected. 

In terms of greatest all-around adaptability to applications, 
ease of implementation and verification. and best multilevel 
security, we concluded that: 

• DASD page areas will be global 
• Main page frame management will be based on global 

allocation with global page replacement 
• Multilevel shared reentrant systems will be provided 

with all shared pages locked into core 
• The CPU will be scheduled by the NKCPs. 

KERNEL DESIGN 

The kernel and trusted processes are the only portions of 
K VM/370 whose formal specifications will be formally ver
ified. The system is being designed such that there are no 
"upward" functional dependencies (i.e., at level of abstrac
tion i, no function depends for its correct operation on any 
function from level of abstraction j, if i < j).6,7 In this way, 
it can be demonstrated that no trusted code depends on the 
correctness and non-maliciousness of any untrusted, unver
ified code. Further, the formal proof of correctness of K V MI 
370 will require only (1) the kernel and trusted processes be 
shown to satisfy the requirements of enforcing the security 
policy, and (2) a demonstration of the absence of unauthor
ized signalling capabilities within the semi-trusted processes. 

In the case of the Start I/O request to the kernel, the 
entire channel control programB is copied into a portion of 
the kernel's domain where it is protected from modification 
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by asynchronous attack. 2 Address translation is performed 
on the channel program. Then it is legality-checked by the 
kernel to guarantee that the program performs only valid 
accesses, that all referenced pages are locked into core, and 
that the channel program is not self-modifying and contains 
no puns or other security threats. 6 The I/O scheduler is then 
invoked and control is eventually passed to the dispatcher 
module, simulating a Start I/O Fast Release. S When the I/O 
interrupt finally takes place, the relevant pages are un
locked, and the condition code is passed as an interrupt to 
the appropriate NKCP. 

Each security level has a unique address space for use by 
its NKCP. With the exception of the functions enumerated 
below, no NKCP can communicate outside its and its VMs' 
address spaces. Spool files, virtual channel-to-channel 
adapters (CTCA),S and inter-VM messages are handled by 
the NKCP and consequently cannot violate the kernel's 
enforcement of the security policy. 

The notable exceptions are: 

• Append-up for writing machine error records and ac
counting data which are processed at the highest se
curity level in the system 

• Read-down to obtain access to a DASD whose classi
fication is dominated by the clearance of the user's 
VM. 

For purposes of design simplicity, each NKCP will appear 
to be uninterruptible just as VM/370-CP currently is, i.e., 
the NKCP's critical regions will be preserved. The NKCP 
may, in practice, be interrupted by the kernel, but only if 
no NKCP shared variable (e.g. its set of active page frames 
or real addresses) is modified while it is servicing a user 
request. This constraint on NKCP-shared variables is the 
result of considerable effort in the area of kernel-NKCP 
interaction. The consequences of this design decision, as 
well as the considerations that led to it, are detailed in the 
Appendix. An NKCP terminates a critical region (a locally 
uninterruptible code segment) when it either schedules a 
VM or when it issues an I/O request. 

NKCP DESIGN 

Code is security-relevant if it can influence unmediated II 
o directly through the use of privileged instructions that 
manipulate devices or user domains, or indirectly through 
the use of data structures that either contain security en
forcement data or can be viewed and modified by processes 
operating at different security levels. Data is security-rele
vant if it contains global information which traverses several 
security levels. 

It appears that a considerable amount of CP code is se
curity-relevant because it makes wide use of global system 
tables. Many of these tables could be distributed so that 
each copy contains only data relevant to a unique security 
level. The code manipulating these distributed tables could 
easily be made reentrant so that most of the code could lose 
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its ~ecurity relevance. (Privileged instructions would still be 
security-relevant, however.) 

An alternate approach is driven by identifying non-secu
rity-relevant code in CP and virtualizing it out of the privi
leged execution domain. The remainder, plus additional se
curity enforcement code, becomes the kernel. The more 
code that is virtualized, the less there is to verify. Appar
ently, the efficiency of this system degrades as code is vir
tualized out of the kernel. This is because of the increased 
context switching between the NKCP and Kernel and the 
unavailability of global data required for optimal resource 
scheduling. 

SYSTEM VERIFICATION 

Formal verification of kernel and trusted processes at the 
specification level will be of two kinds. These functions will 
be shown to correctiy impiement the sharing policy between 
subjects and objects in terms of the basic security principle 
and the confin'ement condition. This form of proof involves 
demonstrating that all system state transitions preserve a set 
of security invariants. The proof of correctness will be 
achieved with the assistance of an automated verification 
tool which enhances the credibility of the formal logical 
demonstration. The second phase of the formal verification 
process is formal proof that the trusted state transition func
tions themselves obey the confinement condition with re
spect to the system objects they read and write. The analysis 
techniques required for this verification involve simulated 
symbolic execution of source code. 9•

12 The formal verifica
tion of KVM/370's specification has been postponed until 
after installation of the prototype.· 

POSSIBILITY OF HARDWARE ERRORS 

One of the problems considered by the project was the 
possibility of violations of the security policy occurring be
cause of failure of the hardware security controls. Some 
possibilities considered were: 

• Failure of the privileged operation protection mecha
nism; 

• An error in address translationS or the Translation 
Lookaside Buffer (TLB): 

• Failure of the storage protection mechanism: 
• Misinterpretation of a Channel Command Word (CCW) 

by a channel; 
• An I/O device responding to the wrong device address; 
• Mishandling of a command by an 110 device. 

Errors in the operation of the Central Processing Unit 
CPU and inboard channels are considered unlikely if the 
system receives proper maintenance. In addition, it appears 
to be difficult to guard against this type of failure. For similar 
reasons, we decided to ignore the possibility of an 110 device 
responding to the wrong address because address recogni
tion logic on the S/370 channel is fairly simple. This left us 
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with the possibility of an 110 device mishandling a channel 
command. The most probable case of this type seemed to 
involve seeks on moving head devices: the possibility of a 
mechanical error moving the access arm to the wrong cyl
inder. 

Questions had arisen as to the possibility that certain 
Direct Access Storage Devices (DASDs) were liable to in
correct seeks with a frequency that increased with their age. 
SDC conducted an investigation to establish hard data on 
the reality of these reported threats. Investigation of the 
logic of 3330-type devices showed a vanishingly small prob
ability of a missed seek, inasmuch as the device controller 
counts the tracks electronically as they pass under the head. 
We also forced over 20,000 seeks of 350 cylinders and tested 
for an incorrect home address after each one. We found no 
missed seeks, nor were any seek retries reported in the error 
log for that day. We now believe that the redundancy check
ing built into the 3330 provides sufficient reliability for mul
tilevel security applications. 

Obviously, if a DASD accesses the wrong cylinder on a 
seek command, it is possible for a malicious user to read 
whatever is on the cylinder accessed, or to write incorrect 
information into those records. If the probability of a missed 
seek going undetected by the controller is as high as 0.1 
percent, a user who causes a large number of seeks can 
reasonably expect to gain unauthorized access to data be
longing to other users several times a week. 

The results of the study of the 3330 have obviated the 
necessity of having to limit each DASD volume to a single 
level of security, as had been contemplated prior to the 
experiment. However, some installations may use older or 
other direct access storage devices which may not be as 
reliable as the IBM drives that we tested. As a result, we 
decided to provide a mechanism for protecting against mis
seeks, albeit at some cost. I/O requests are separated into 
paging/spooling requests and all others. 

We note that all modern DASD devices can have an eight
byte key added to each paging block without affecting the 
number of pages which will fit on a cylinder. It was decided 
to write in each key the real cylinder number, track and 
record number, VMid and virtual page number that it con
tains, encrypted by a key that is determined at system start
up and unique for each security level. This would make the 
task of the would-be penetrator hard enough to discourage 
any attempt to use this mechanism. 

For general I/O, it is possible to include a read-home
address CCW after each seek, and to have the kernel vali
date the home address on completion of the channel pro
gram. This would increase the average time required to 
execute a channel program by one-half revolution (about 
eight milliseconds). Since this represents nearly a 100 per
cent overhead in I/O operations, it was decided to partition 
devices into two classes: trusted devices and untrusted ones. 
A device is considered trusted if (l) it has been designated 
by the installation's security officer as trusted, (2) no mis
seeks on that device have gone undetected by the hardware 
(these usually result in unit-check with no-record-found), 
and (3) less than some threshold number of hardward-de
tected mis-seeks have occurred. If any of these conditions 

is not satisfied, the device is regarded as untrusted. Home 
address verification is applied only when (1) the device is 
regarded as untrusted, (2) the I/O is not for paging or spool
ing, and (3) the I/O has been requested by an untrusted 
process (NKCP or scheduler/allocator). 

ELIMINATION OF KNOWN SECURITY FLAWS 

There are about 30 security flaws known in VM/370. A 
hardened version could be produced by fixing these errors, 
but there might be other errors which had not been detected 
and the fixes might themselves introduce new security flaws. 
K VMJ370 goes further and eliminates both known and un
known security flaws. It is instructive, however, to see how 
the presence of a security kernel and the constraints it places 
on the system design eliminate some of these errors. 

Almost every known security flaw in the VM/370 system 
involves the input/output functions. 3 This is because there 
is no address space validation of input/output by the hard
ware other than that performed by the storage protection 
keys. Therefore, VM/370 must check the validity of all chan
nel programs and relocate all virtual addresses. This includes 
both main storage addresses and DASD cylinder addresses 
in seek arguments and home addresses. The same I/O logic 
is repeated for several different requirements: virtual spool
ing support, virtual console support, virtual channel-to
channel adapter support, and a special VM/370 110 interface. 
Each variation of this support means that errors may be 
present. 

These errors occur in the translation of channel programs 
as a result of the complexity of the channel command lan
guage. For example, the same word in a channel program 
might be used as a command or as an operand address 
depending upon the execution sequence of the program. 3 

Since the System/370 architecture allows puns in the channel 
program (a word's interpretation depends on whether it is 
received as the leading or trailing portion of a long com
mand), it is possible to surreptitiously bypass checking by 
these modules, and access DASD records without authori
zation. 3 

Under KVM/370, channel command words are not per
mitted to take on different meanings depending on the se
quence of execution. Primarily, this means that an NKCP 
is not permitted to submit certain channel commands with 
transfers or with certain modifier bits set. This does not 
preclude users (VMs) from constructing such channel pro
grams, it merely requires the NKCP to put them into a 
standard form before submitting them to the kernel. Further, 
these commands will be copied into the kernel's data space 
and translated and modified there, preventing their modifi
cation by an NKCP between the time of translation and time 
of execution. Also, self-modifying channel programs will not 
be permitted, such as those used by the OS/360 Indexed 
Sequential Access Method (lSAM).l 

Certain VM!370 penetrations3 dependent upon simulta
neous input/output and CPU execution are being countered 
by removing from the address space of the requestor all 
pages which are buffering input. This applies to both NKCP 



and user VMs. In the event either an NKCP or a VM needs 
access to such a page, its execution will be delayed until the 
I/O completes and the page is made available. For example, 
under VM/370, careful timing of asynchronous execution 
could be used to exploit a bizarre oversight in condition
code checking to gain a total system penetration (real su
pervisor state). 3 

Although the treatment of storage and timing channels 10,13 

is beyond the scope of a system such as VM/370, they must 
be controlled in a military system such as KVM/370. In this 
respect, we will thoroughly audit all se~i-trusted processes 
for Trojan Horses since they control resources shared be
tween different security levels. Hence, it will not be possible 
to transmit information over a covert communication chan
nel at a high enough bandwidth to make such attempts 
worthwhile. The above discussion deals only with the se
curity flaws that are already known. KVM/370, however, is 
designed around a formally specified security kernel. Once 
the specification is verified, there is good reason to believe 
that no possibility of violations of the security condition or 
overt violations of the confinement condition exist in the 
design. Further, by recoding the security kernel and trusted 
processes in a programming language designed for verifica
tion, a near-certainty of the absence of security flaws could 
be obtained by verifying the code against the already verified 
specification. 

CURRENT STATUS 

The feasibility of performing a VM/370 security retrofit 
was demonstrated during the first year of project activity. 
An informal system design was produced, identifying the 
major security kernel functions. The input and output pa
rameters were defined and their effects on K VM state var
iables were described. 

From this, the security kernel and trusted processes were 
formally specified in the SDC specification language, 
INA JO, a strongly-typed dialect of the first-order predicate 
calculus. After the system data bases were defined, the 
coding of the NKCP and semi-trusted processes was started, 
and the implementation of the kernel and trusted processes 
was begun in the J3 dialect of JOVIAL. 

KVM/370 security policy was re-examined in light of the 
modifications to the National Security Policy as defined in 
Executive Order 12065, 28 June 1978. KVM/370 security 
policy now takes account of both discretionary and non
discretionary aspects of security. 

Integration testing of K VM/370 is in progress as of this 
writing. 

PLANS 

It is expected that system testing and integration will 
conclude by late summer of 1979. At that time, KVM/370 
will be installed in a testing environment within the Defense 
Communications Agency Engineering Center. Here, the 
prototype system will be evaluated on a set of selected 
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benchmark workloads and its performance will be tuned to 
the extent possible within the constraints of the security 
policy. In this way, the first steps can be undertaken toward 
determining the costs of multilevel security on an IBM Sys
tem/370 mainframe. Initially, test cases will be run under 
varying conditions in a periods processing environment. 2 

This will establish a basic scale against which the operation 
of KVM/370 can be judged. These will be followed by se
lected KVM/370 runs that approximate the periods pro
cessing approach: one NKCP (one color); two NKCPs (two 
colors), etc. Various test case workloads wiH be defined and 
specific measurements will be performed. Acceptance of 
KVM/370 will be made by relating dollar costs to run time, 
and by evaluation of the periods' processing approach as it 
impacts user requirements. 

CONCLUSION 

In this paper, we have presented a design strategy for 
performing a retrofit to VM/370 which will provide a mul
tilevel secure operating environment. The strategy is heavily 
based on the principles of least privilege and least common 
mechanism. The research and development activities de
scribed in this paper transpired in the period March 1976 
through January 1979. The implementation of KVM/370 is 
currently in progress- and it is anticipated that a prototype 
version of the sytem will be installed within the Defense 
Communications Agency in the late summer of 1979. 
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APPENDIX A 

A solutio/l to fhe "load real address" prohlem 

Background-During the first year of the KVM/370 project, 
attention was paid to what is known as the "Load Real 
Address" problem. This problem is concerned with the fact 
that an NKCP needs to be able to "locate" certain pages of 
the VMs under its control. This is handled in VM/370-CP 
by the Load Real Address (LRA) instruction. 8 The LRA 
may be used for channel program translation, or to locate 
the operand(s) of a privileged operation that CP is simulat
ing. 

The problem which arises in KVM/370 is that the decision 
to "steal" a page is made by a global process, not under 
control of the N KCP. Consequently. there is no guarantee 
that the page, once "located" by the NKCP. will stay at the 
same real address, or even remain in main storage, long 
enough to be used. In order to avoid frequent and embar
rassing denials of service, it is necessary to guarantee that 
a virtual page stays in the same place from the time the 
NKCP has been given its real (or "real") address, until the 
NKCP is no longer relying on the address given for that 
page. The following discussion expands on the complexities 
of the problem and presents what is believed to be a solution 
to it. 

Related Consideratiol1s-When the problem, arose, several 
points of view were held concerning real addresses. It would 
probably simplify the kernel-NKCP interface if the NKCP 
were allowed to access the real addresses of the pages under 
its control. On the other hand, there are several high band
width data channels involving real page addresses. 13 The 
current design calls for the NKCP to gain access to pages 
containing operands by having them placed in its own ad
dress space. (The kernel inserts their real addresses in the 
N Kep's page table.) This allows the NKCP to read and/or 
modify data for instructions that it simulates for its VMs. 

without knowing the real addresses of the pages. For chan
nel program translation, the NKCP will leave virtual ad
dresses in the Indirect Address Word [IDA W] lists, which 
the Request-I/O handler will translate to real addresses. 8 

In order to simplify the kernel's handling of process 
scheduling, it was decided to treat NKCPs as logically non
interruptable. The kernel will refrain from presenting the 
NKCP with interrupts during its operation Gust as VM/370-
CP is designed to run with interrupts disabled). The kernel 
will also refrain from running any other NKCPs until the 
current one signals the end of its critical region. 

The Solution-The operation of an NKCP is considered as 
a critical region from the time it is entered until it dispatches 
a VM or relinquishes the CPU. Any interrupts taken by the 
kernel during this period will be handled to the extent pos
sible by the kernel and schedulers, but no other NKCPs will 
be dispatched, even if the current NKCP's time-slice ends. 
Interrupts requiring action by any NKCP, including the cur
rent one, will be stacked until the end of the critical region. 
Any pages s~apped in at the NKCP's request or to which 
the NKCP gains, access (by "attach page") will be placed 
under a temporary lock which prevents their page frames 
from being stolen during the critical region. The critical 
region (and temporary lock) will end when the NKCP makes 
either a Dispatch-VM or a Release-CPU kernel call. If an 
NKCP requires that a page be at a fixed address for a longer 
period of time, it must make an explicit Lock-Page call. 

Note that such locks (either temporary or long-term) can
not be attached to a page which is not present or which is 
being used for a conflicting purpose. For example, a page 
that has been stolen and is being swapped out cannot be 
locked unless the requester can reclaim the page (this ability 
is not supported by the current KVM/370 design). A page 
which is being used for the buffering of input cannot be 
locked for CPU usage or output. nor can a page being used 
for the buffering of output be locked as an input buffer. 

This approach has the following consequences: 

1. No page will be stolen from an NKCP or its VMs 
except when the NKCP is running a VM or waiting for 
an interrupt. (The latter case is equivalent to the dis
patcher's loading a wait-state PSW because there is no 
work to do). VM/370-CP always checks page status 
when a new request arrives from a VM by doing a 
LRA and/or calling the real page manager (DMKPTR). 
Similarly, NKCP does not rely on page locations re
maining constant across such operations. so stealing a 
page cannot cause the NKCP to make an erroneous 
assumption. 

2. If VM/370-CP requires that a page keep the same real 
address after a call to the dispatcher, it explicitly re
quests DMKPTR to lock the page. Thus, if the NKCP 
requires a page to stay in main storage across Dispatch
VM or Release-CPU calls, it must explicitly request a 
lock on that page. Otherwise the kernel or Select rou
tine will be permitted to steal the page ifit is the "best'· 
page to steal. 

3. Since the kernel will call other NKCPs (that is. by 



invoking t~e CPU scheduler) only when the current 
process makes a Dispatch-VM or Release-CPU call, 
there can be no "surprise'" loss of the CPU to another 
NKCP. This means that the kernel need not save and 
restore the registers in the KPROCBLOK for each 
process. Instead, a single level of register storage will 
suffice (for General registers and timers only, since 
neither the kernel nor the trusted/semi-trusted process 
will use the Floating registers). Each NKCP must be 
written so that it saves its own registers whenever it 
makes a call that invokes anothe~ process or ends its 
critical region. (This is not directly related to the LRA 
Problem, but simplifies table design.) 

Locks-The kernel provides three types of locks to NKCPs. 

1. A temporary lock is attached to each page which is 
swapped in at the request of an NKCP or to which the 
NKCP is given access as a result of an attach-page 
request. The lifetime of the temporary lock is the 
NKCP's critical region (i.e., until the NKCP releases 
the CPU or dispatches a VM). The temporary lock 
prevents the page from having its frame stolen; the 
NKCP may release the page, however, which cancels 
the temporary lock. 

2. An I/O lock is attached to each page used in an I/O 
request. The page must be in main storage when the 
request-I/O ca1l is made. The lifetime of the lock is 
concurrent with the 110 request (the lock is released 
when the requested 110 operation completes). The I/O 
lock can be cancelled only by cancelling the 110 op
eration. 

3. A long-term lock is attached to a page at the request 
of any NKCP with access to that page. The long-term 
lock is permanent until cancelled by a specific request. 
Only the NKCP which requested the lock can cancel 
it. The kernel calls Lock-Page and Unlock-Page will be 
provided for this purpose. This type of lock can be 
used by an NKCP in response to an operator "LOCK" 
command or while gathering mUltiple pages (e.g. for an 
I/O operation) to insure that pages obtained earlier do 
not get swapped out while obtaining other pages. 

All three types of locks protect the page from being stolen 
until the NKCP is finished with them. The second and third 
types of locks also prevent the NKCP from releasing the 
page until the lock has been cancelled. 

If the SELECT routine (a semi-trusted process) attempts 
to select a page for which a lock exists, it will be re-entered 
to select another page. The kernel will refuse to steal a 
frame from a locked page. If the NKCP attempts to release 
a locked page (via release-page) or to swap out such a page, 
the result depends on the type of lock(s) attached to the 
page. If only a temporary lock is attached to the page, the 
temporary lock will be released and the request honored. If 
an 110 lock or a long-term lock is attached to the page, the 
request will be denied. 
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APPENDIX B 

A gelleral countermeasure for (/l{(}fa-fype leakilge paths 

The allocation of objects from a global pool of finite size 
allows use of that limited size as a communication path for 
covert transmission of data. The sending process repeatedly 
requests resources from the pool until a request is denied. 
At that point the sender knows the pool is exhausted and 
can release the CPU and allow other processes to run. The 
receiver requests a few objects from the pool, then releases 
them. The sender releases a large number of objects into the 
pool to send a one, or exhausts the pool to send a zero. The 
receiver receives a one or zero depending on whether its 
requests are satisfied. Other processes may introduce noise 
by exhausting the pool with legitimate requests or releasing 
objects they nOt longer need. Such noise can be filtered out 
via norma! redundancy techniques. The state of the pool is 
a variable shared between sender and receiver, creating a 
storage channel whose bandwidth is dependent on the fre
quency with which such requests can be made. 

Analysis of the preliminary design of KVM/370 reveals a 
number of such resource pools: 

• Disk Pages (Page Slots) 
• Main Storage Pages (Page Frames) 
• Spool Cylinders 
• Temporary Disk Cylinders 
• Kernel Table Entries 
• Kernel Storage for Dynamic Creation of Tables 

A number of countermeasures have been adopted to con
trol the use of these pools as communication channels .ll] 
Prediction is used on page slots and entries in the K VMT A
BLE and PROCESSLIST. Whenever a user attempts to Log 
In (a relatively infrequent event), a check is made to deter
mine whether the necessary page slots and table entries are 
available. The user is denied access if they are not. l2] 
Temporary disk cylinders are subpooled: each security level 
has a private pool from which it makes allocations. No 
global pooling of TDisk is provided. l3] Requests for main 
storage pages and spool cylinders are never refused. The 
satisfaction of a request for a page frame or spool cylinder 
is reported by an interrupt which may occur immediately or 
after an arbitrary period of time. This converts a potential 
storage channel into a timing channel and lowers the band
width. (A process which exhausts the pool is unable to free 
the entries it has requested until the necessary 110 has been 
performed). 

However, some types of requests for kernel tables cannot 
be predicted, and their satisfaction is not dependent on I/O. 

Further, subpooling kernel storage by security level would 
be extremely wasteful of main storage which is a precious 
resource. The communication channels involving these quo
tas are being tolerated but restricted in bandwidth. When
ever a process request is refused because of exhaustion of 
a kernel table or storage pool, a return code is provided 
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indicating to the process that some quota has been exhausted 
(without specifying which one). After that the process will 
not be permitted to make another such request for a period 
of time. Until that time period is over, any request by that 
process depending on such a quota will be denied without 
checking the resource pool and the return code will indicate 
"too soon." In this way, the communication channel is 

limited to one bit per time period. By setting the time period 
to .1 second, these communication channels are restricted 
to ten bits per second. 

This technique can be used on any system that has a real
time clock and can be used on any resource pool. It can be 
applied instead of or in addition to other countermeasures 
for control of quota-type data channels. 
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INTRODUCTION 

This paper discusses the design of the Department of De
fense (DoD) Kernelized Secure Operating System (KSOS, 
formerly called Secure UNIX). ** KSOS is intended to pro
vide a provably secure operating system for larger minicom
puters. KSOS will provide a system call interface closely 
compatible with the UNIX operating system. The initial 
implementation of KSOS will be on a Digital Equipment 
Corporation PDP-IlnO computer system. A group from Ho
neywell is also proceeding with an implementation for a 
modified version of the Honeywell Level 6 computer sys
tem. 

KSOS will be capable of handling information at various 
security levels (a security level is a combination of a hier
archically-ordered classification category, like SECRET or 
TOP SECRET, and a possibly null set of compartments, 
like "No Foreign Dissemination" or specialized need-to
know compartments). The goal of the system is to provide 
strong assurances that it is impossible for an unprivileged 
user to cause an information compromise. 

At its outer interface, KSOS will appear to be closely 
similar to the UNIX operating system. 13 The only changes 
are to tighten the security checking on some of the operating 
system calls, and to add several new calls which individual 
UNIX sites had previously added to their systems. Existing 
applications programs written for UNIX will run without 
modification or recompilation on KSOS, providing that they 
do not violate the security rules of the system. At last count 
there were several hundred application programs for UNIX, 
ranging from simple utilities through sophisticated compi
lers, data management systems, text processing systems, 
and powerful editors. (This paper was completely prepared 
on a UNIX system, as is all documentation for the KSOS 
project.) All of these programs should run on KSOS without 
modification. 

This UNIX-like interface is provided by a software com
ponent called the UNIX Emulator. The UNIX Emulator 

* The work described in this paper was performed under ARPA Order 3319, 
Contract MDA903-77-C-0333 administered by the Defense Supply Service 
Washington. Various DoD Agencies are funding the work. The conclusions 
presented are those of the author and are not necessarily those of the Gov
ernment or Ford Aerospace. 
*'" UNIX and PWBIUNIX are trademarks of the Bell System. 
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transforms the user's UNIX operating system calls into (se
quences of) calls to the Security Kernel. The Security Ker
nel is the heart of the system. The Kernel implements the 
reference monitor concept. I Briefly, through a combination 
of hardware and software checking, the Kernel monitors 
every access attempt by each user process. The Kernel will 
be shown to make the correct decision on whether to permit 
or deny the access attempt. 

One important distinguishing characteristic of KSOS over 
the prototypes which have preceded it 5 ,S is that it contains 
a full range of support software. Included in this "Non
Kernel System Software" (also called Non-Kernel Security
Related Software) are components which support the day
to-day operational functions of the system: secure spooling 
of line printer output. portions of the interface to a packet
switched computer network, etc. Also included are com
ponents for the continuing maintenance of the system such 
as consistency checks of the file system, and system gen
eration support. Finally, there are components to support 
the administration of the system, such as adding and deleting 
users, changing the security levels that a given user may 
access, and other functions. 

The schedule for KSOS calls for its delivery in the fall of 
1979 after the conclusion of a full series of testing. The 
KSOS development contract specifies that the system shall 
have a full MIL SPEC documentation package. The primary 
documents defining KSOS are detailed "design to" speci
fications which are called" B5 Specifications. ,. 3,6,9 The Ker
nel B5 Specifications 6 include formal, mathematical descrip
tions of the Kernel written in a language developed by SRI 
International called SPECIAL. 15 SPECIAL is a formal, non
procedural language for describing the behavior of systems 
in the manner suggested by Parnas. iO In addition, technicai 
reports have been delivered detailing our plans for verifi
cation of the system' s security properties, 16 for the tools and 
techniques to be used in implementation. 4 and for the long 
term maintenance and support of the system. 7 

The remainder of this paper begins with a discussion of 
the influences on the design. As with any design project, it 
is impossible to identify ail of the factors which cause a 
given course to be taken, so only the strongest influences 
are discussed. Next the design itself is presented. Here the 
emphasis is on the more novel aspects of the design. In 
addition to the usual things expected from an operating 
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system. KSOS provides a number of features that aid in the 
creation of encapsulated secure environments. The paper 
concludes with a few remarks on how KSOS may be used 
effectively. 

INFLUENCES ON THE DESIGN 

External design goals 

The overall design goals for KSOS are: 

I. The system must provide provable security, i.e. its 
design and mechanization must be oriented towards 
the proof of its security properties. 

2. The emulation of the UN IX system call interface must 
be as faithful as possible given the constraints of the 
security model. 

3. The performance of the system should be "good," 
specifically, the performance should be comparable to 
that of a UNIX system. 

4. The Kernel should be usable by itself as a simple, 
secure operating system. 

5. The design should be amenable to implementation on 
other hardware bases. 

The need for provable security had the most profound im
pact on the design. First, it dictated the basic structure of 
the system. A Security Kernel would function as a reference 
monitor. 1 The Kernel would mediate all access attempts in 
the system. Because the Kernel would potentially be proven 
to operate correctly. its behavior would have to be formally 
specified. Further, the size of the Kernel would have to be 
kept to a minimum to make formal specification and eventual 
verification tractable. Although only representative code 
proofs were planned, the Kernel would have to be imple
mented in a language suitable for code proofs. 

Because the UNIX call interface had to be emulated faith
fully and efficiently, the Kernel interface became "UNIX
flavored." However, because non-UNIX applications of the 
Kernel were planned, there was strong pressure to keep 
UNIX-specific structures out of the Kernel. As will be seen 
below, the Kernel has no knowledge of the format, or se
mantics of UN IX-specific constructs such as directories or 
load modules (UNIX a.out files). This knowledge is encap
sulated outside the Kernel. 

It was recognized that a large class of KSOS applications 
would not require the flexibility and added power of the 
UNIX interface. Rather, many of them would be built di
rectly on the Kernel. Thus, the Kernel had to provide all of 
the features commonly found in an operating system. This 
meant that the Kernel would include somewhat more func
tionality than the absolute minimum. 

Hardware limitations 

Although KSOS was intended to be a machine-indepen
dent design, it will be implemented on real machines with 

various hardware limitations. The PDP-IlnO has two sig
nificant limitations. First, process switching is expensive 
because a large number of processor and memory manage
ment registers must be individually saved and restored. 
Thus, architectures which require extensive process switch
ing are to be avoided. 

The PDP-II!70 does not lend itself to the creation of 
virtual machine environments that include direct control of 
single user i/o devices. The problem stems from the granu
larity, of the virtual address to real address mapping, and 
from the logical addressing of i/o registers. In KSOS on the 
PDP-II!70, all devices are managed by the Kernel: no at
tempt is made to provide devices in the user's "virtual 
machine." 

In fairness to the PDP-II design it should be remarked 
that none of these hardware limitations are especially bur
densome; they merely influence the design to take advantage 
of the strengths, and to avoid the weaknesses of the hard
ware base. 

The design methodology 

The design of KSOS is strongly influenced by the design 
methodology used on the project. KSOS is being designed 
and implemented using a blend of the "classical" methods 
with the formalism of the Hierarchical Development Meth
odology (HDM) 14 developed by SRI International. HDM 
emphasizes formalism throughout the project. The system's 
security requirements are formally stated as properties to be 
satisfied by an abstract description of the design, This design 
is described in a mathematical. non-procedural language, 
SPECIAL. 15 The secUljty properties of the design are estab
lished by proving theorems that are derived from the design 
and the mathematical model of the security requirements. 
The implementation language is selected to allow its corre
spondence with the specifications to be proven. All of these 
steps force the designer to be precise and exacting in the 
statement of the system design. They make "kludges" very 
obvious at an early date. The design methodology strongly 
encourages a hierarchical decomposition of the design. 

KSOS DESIGN 

KSOS is composed of three components: 

I. The Security Kernel 
2. The UNIX Emulator 
3. The Non-Kernel System Software 

The relationship of these components is shown in Figure I. 
The Security Kernel's function is to provide a simple 

operating system which can be shown to be secure. The 
Kernel centralizes the control, of all the resources in the 
system. It mediates each access attempt by a user process 
and only permits those accesses which comply with the 
access control policy. The Kernel resides in the most priv
ileged address space of the machine (called "kernel mode" 
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(NKSR: NON-KERNEL SECURITY RELATED SOFTWARE) 
Figure l-KSOS system structure. 

on the PDP-IlnO) where it has access to all of the raw 
hardware and memory management facilities. 

Logically, the UNIX Emulator is a part of each UNIX 
process which on the PDP-IlnO resides in the "supervisor 
mode" address space of the process. Its function is to map 
the user's UNIX system calls into the corresponding Kernel 
call(s). 

The Non-Kernel System Software is a collection of au
tonomous processes performing support services for the sys
tem. Like UNIX, KSOS does not have services like login 
embedded in the operating system. Rather, these services 
are performed by "trusted processes" which reside outside 
of the Kernel. Except for the fact that these processes have 
the privilege to selectively violate the rules of the Kernel, 
they are just like any other process. Because the Emulator 
is "untrusted" and is not intended to be verified, it cannot 
be used by trusted software: rather, such software must use 
the Kernel directly. 

The KSOS Security Kernel 

Viewed as an abstract machine, the Kernel's function is 
to create the objects of its interface (processes, process 
segments, files, devices, and subtypes) from the basic hard
ware resources of the system, and to mediate all access 
attempts to these objects. 

The Kernel enforces three distinct types of access check
ing. The first is the enforcement of 000 security policy. 
This checking is the verification of that fact that the user 
has the proper clearance and need-to-know for reading the 
information (the "simple security property"), and that in
formation cannot be downgraded by writing it to a file at a 
lower security level (the "security *-property"). 

The second type is the enforcement of an integrity policy 
described in Reference 2. Integrity is a mechanism for pro
tecting system data bases, programs, etc. against modifica
tion while allowing them to be read by any process. It is 
formally defined to be the mathematical dual of the security 

model. We have found this integrity model to be overly 
restrictive, as its originator suspected. However, it does 
provide an additional, essential dimension of protection. 
Development of a more effective integrity model would seem 
to be a meaningful.research topic. 

The third type of a<;cess checking performed by the Kernel 
is discretionary access checking. Unlike the first two types 
of checking, the discretionary access checking is completely 
under the control of the user. The user may, at his discre
tion, permit or deny access by other users to the objects he 
owns. KSOS enforces a discretionary access policy similar 
to that of UNIX. For each object there are (logically) nine 
bits that specify read, write, and execute/search access by 
the owner, others in the same group as the object, and all 
others. We recognize that this discretionary access policy 
has limitations when compared to' more sophisticated 
schemes, such as the access control lists used in Multics. 
However, it is simple, and requires a small fraction of the 
support mechanisms needed for access control lists. 

The Kernel supports five different types of objects: 

I. Processes 
2. Process segments 
3. Files 
4. Devices 
5. File SUbtypes 

All Kernel objects have the same type of name called a 
SEID (Secure Entity IDentifier). Further, every object, re
gardless of its type, has a block of information associated 
with it that includes all the information needed by the Kernel 
to mediate access attempts to the object. This block is called 
the "type independent" information. Because objects, re
gardless of the object type, have homogeneous type inde
pendent information, access checking by the Kernel is 
greatly simplified. All that must be checked is that infor
mation may flow from the source to the destination. For 
example, if a process wishes to read a file, the source is the 
file and the destination is the process. In the KSOS Kernel, 
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two functions perform all the access checking (one for se
curity and integrity checking and one for discretionary ac
cess checking). 

Processes 

Processes are the only active agents in the KSOS design. 
To adequately emulate UNIX, KSOS processes must be 
cheap and plentiful. For example, each UNIX command is 
run as a separate process. Processes in KSOS will require 
only modest amounts of Kernel resources. Most of the Ker
nel data for a process will be swapped in and out with the 
process, reducing the amount of locked down Kernel mem
ory space for the process tables. 

Processes may possess privileges ("trusted processes") 
that enable them to perform functions that require reduced 
checking by the Kernel (e.g. changing the classification of 
a file) or which may require that additional checking be 
performed in the process (e.g. logically mounting part of the 
file system). The privileges that may be given to a process 
have been designed following the concept of ' 'least privi
lege." That is, the granularity of the privileges is quite fine, 
and quite specific. Many service processes possess only a 
single privilege, and many privileges are possessed by only 
one process. Thus, the KSOS Kernel is designed to create 
encapsulated environments for critical functions. Privileges 
are obtained from the process image file (load module) from 
which the process was initialized. Two Kernel calls, 
K.-invoke and K_spawn, are used for the controlled invo
cation of privileged software. K~nvoke functions by re
placing the entire process with a user-specified intermediary 
process. For the invocation of trusted software, this inter
mediary is a trusted "bootstrap" that, in turn, replaces itself 
with the requested process image file, and sets the privileges 
of the process from the values in the image file. K_spawn 
performs the same function in a new process created as part 
of the K_spawn function. This mechanism allows knowlege 
of the format and semantics of process image files to be kept 
out of the Kernel. Thus, the bootstrap encapsulates the 
function of initiating trusted software with minimal Kernel 
support. 

In addition to the K_spawn mechanism, new processes 
may be created by the K30rk call, which is similar to the 
UNIX fork call. K30rk creates a "clone" of the caller, a 
new process that is an exact copy of the caller. The only 
difference between the two processes (parent and child) is 
the return value from the K30rk call. Such a mechanism is 
required for the accurate emulation of the UNIX fork call. 

Processes normally run at a single security level. The only 
exception to this is the part of the Non-Kernel System Soft
ware that changes the user's working security level. For 
inherently multi-level applications, the preferred design 
would be to create a trusted multiplex/demultiplex ("mux/ 
demux") process which directs commands and i/o to pro
cesses running at each level needed. This would be prefer
able to having these per-level functions performed within 
one process which changes its level because such a process 

would be larger and more complicated than the mux/demux 
process. Verification of the correctness of a process be
comes significantly more difficult as the process size and 
complexity increase. One example of this preferred archi
tecture is the KSOS network interface. A small trusted proc
ess separates the multi-level data stream from the network 
into several streams. Each stream has data of only one 
security level in it. The mono-level streams from the pro
cesses are similarly combined by the trusted process into a 
single, multi-level stream. 

Standard UNIX is acknowledged to be deficient in the 
area of Inter-Process Communication (lPC). KSOS provides 
significant improvements in this area. The Kernel supports 
both an event IPC mechanism and shared segments. The 
event mechanism allows one process to send a message to 
another process, and (optionally) to cause the receiving 
process to be interrupted analogously to receiving a hard
ware interrupt. The full set to security checks is performed 
for each IPC attempt. That is, information must be able to 
flow from the sender to the recipient, and the recipient must 
have permitted such information flow. Finally, a process 
may enable and disable the pseudo interrupt mechanism, so 
that it will not be interrupted during some critical operation. 
(Shared segment IPC is discussed below.) 

Process segments 

A process segment is a portion of the virtual address space 
of a process. The process segment is not tied to the native 
memory management hardware of a particular machine. The 
KSOS process segment may be of any size from a hardware
limited lower bound up to the entire virtual address space 
of a process. A process may have only some of its segments 
actually mapped into its address space. At its creation the 
segment may be declared to be sharable, in which case other 
processes can "rendezvous" with it and map it into their 
address spaces. This allows for very high bandwidth com
munication between the processes. Naturally, they must 
establish a protocol that guarantees that the segment will 
not be corrupted through un sequenced use. The process 
may elect to have only some of its segments actually mapped 
into its address space. In particular, several segments for 
the same part of the address space could exist. This mech
anism is used by the trusted mux/demux processes discussed 
above. The data segments are shared between the trusted 
mux/demux and the processes servicing each logical stream. 
The mux/demux maps in a particular segment to a well 
known location and puts/extracts the data for that stream 
int%ut of the segment. 

One other use for shared segments is shared text (pro
gram) segments. It is possible to have a pure text segment 
shared between mUltiple processes, thus reducing the overall 
memory requirements for the system. KSOS allows a seg
ment to be locked in memory, or to be retained in the swap 
area for faster accessing. The designer of the KSOS-based 
system is offered considerable latitude in trading space for 
time. 



Files and devices 

The Kernel file structure is flat and uniform. That is, there 
are no Kernel assumptions about the internal structure or 
contents of files. Directories and other higher-level con
structs are mechanized outside the Kernel. The UNIX Em
ulator creates UNIX-like directories by interpreting the con
tents of Kernel files. This allows a designer working directly 
with the Kernel to create a different type of directory struc
ture if desired. Kernel files are accessed by blocks. There 
is no Kernel buffering of file i/o. Ratp.er, the i/o is done 
directly into the requesting user's address space. Kernel i/o 
is asynchronous, that is, the call returns to the user as soon 
as the i/o has been internally queued. An IPC message is 
sent to the user upon i/o completion. (The inclusion of asyn
chronous i/o is a relatively late addition to the KSOS design.) 

Kernel devices are like a special type of file, as in UNIX. 
Terminals have only the lowest level echoing support in the 
Kernel. Higher level functions like erase/kill processing are 
done outside the Kernel. 

KSOS supports removable file volumes. The mechanism 
is similar to the UNIX mount mechanism with some signif
icant additions for protection. Because of the possibility for 
removing a volume, files are limited in size to one volume. 
Presently the design allows for support of at least 300 Mbyte 
disks, with extensibility to 600 and 1200 Mbyte disks pos
sible. These large disks may be partitioned into one or more 
extents, referred to as "mini-disks" which may be inde
pendently utilized as virtual disks. 

Subtypes 

The KSOS subtype mechanism is one of its more novel 
features. The subtype mechanism is designed to allow the 
selective encapsulation of a class of files. Each file is a 
member of a subtype class. For example, "normal" files are 
in the null SUbtype class. Files which are UNIX directories 
are the "UNIX directory" SUbtype class. The accesses to 
files in a given SUbtype class may be restricted. The subtype 
restriction on UNIX directories is that anyone may read a 
directory, but only a process whose effective user ID is the 
Directory Manager may write them. These subtype restric
tions are in addition to the other types of access checking 
(security. integrity and discretionary). The access restric
tions for a given SUbtype apply to all files of that subtype. 

There are many other possibilities for using subtypes. For 
example, they could allow "peaceful coexistence" of two 
separate directory structures as might occur if there were 
two different Emulators, say one for UNIX and one for 
another operating system. SUbtypes could also be used to 
control what could be done to files that mechanized the 
internal structure of a data base management system. Only 
processes that were known to correctly manipulate the 
structure would be allowed to change it. The subtype mech
anism provides the KSOS Kernel with a significant type 
extension feature in that it lets the Kernel support encap-
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sulation and control of objects without having the Kernel be 
cog"nizant of the syntax and semantics of the object. 

Secure terminal interface 

In the secure system it is necessary to have an "unspoof
able" path to trusted services. ("Spoofing" occurs when an 
unprivileged user process pretends to be a privileged proc
ess. For example, a nefarious user starts a process that 
imitates the login sequence, and waits for an unsuspecting 
victim to type in his password.) In KSOS each terminal is 
(logically) two devices, the normal terminal device and the 
secure device. Only privileged Non-Kernel System Software 
is able to use the secure device. When the user types a 
reserved attention character (currently BREAK), the normal 
path is blocked, and the character stream is switched to the 
secure path. Li~tening on the secure path is a service process 
which will cause the desired secure service to be performed. 
Because the normal path is blocked, rather than killing off 
any process using it, it is possible for the user to start doing 
something, temporarily abandon it while requesting some 
secure service, and resume the activity after the secure 
service is completed. This is the mechanism by which the 
user is able to change his working security level. The Secure 
Terminal Interface is illustrated in Figure 2. 

Auditing 

DoD security policy requires that certain security-related 
events be captured for auditing purposes. In KSOS this 
occurs in two ways, as shown in Figure 3. In the first case, 
the Kernel captures the events it knows about and generates 
an IPC message to the Audit Capture process. The second 
mechanism is that the Non-Kernel System Software cap
tures the event. This second case is necessary because the 
Kernel cannot tell that certain significant events, like a user 
login, have occurred. The Audit Capture process does only 
a minimal amount of processing and then simply places the 
event record into an audit log. Although it is not within the 
scope of the current KSOS contract, this audit log could be 
processed to look for suspicious (sequences of) events. 

The UNIX EmuLator 

The UNIX Emulator is almost compieteiy definedby its 
two interfaces. It must transform the system calls of the 
UNIX interface into sequences of Kernel calls. In the design 
of KSOS a serious attempt was made to get a good "imped
ance match" between the Emulator and the Kernel, while 
not having the Kernel be strongly UNIX-dependent. 

Our view of the Emulator has evolved significantly. Ini
tially, the Emulator was viewed as not much more than a 

. set of subroutines that resided in a different address space. 
The functions performed by the Emulator were isolated to 
one process, except for the obvious cases of interaction with 
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other processes via the UNIX pipe mechanism and the 
"ptrace" system call. 

While this view simplifies the Emulator, it is incorrect. At 
the UNIX interface, a process is indirectly aware of the 
presence of other members of its' 'process family" (a proc
ess family consists of all the processes that are descendents 
of the process started at login for a given user). In particular, 
things "like the seek pointers to open files are shared among 
the members of a process family. Our view of the Emulator 
now is that it provides an operating system for the process 
family. The Emulator not only creates the UNIX-level ob
jects from the Kernel-level objects but also provides for 
controlled sharing of these UNIX-level objects. 

It should be remarked that the UNIX interface is perhaps 
not as "clean" as one would like. There are several subtle 
ways in which a great deal of the internal mechanization of 
the system is manifest at the interface. It is debatable 
whether these things are "bugs" or are "features!" 

UNIX directory management 

One of the major functions of the Emulator is the creation 
of the UNIX file system from the more primitive file system 
provided by the Kernel. The Emulator caches the block i/o 
supported by the Kernel to provide the byte stream i/o 
supported by the UNIX interface. The Emulator also is 
where UNIX directories are managed. The final design of 
the UNIX directory management function is the result of a 
long series of (occasionally heated) debates on where direc
tories would be mechanized. Initially they were to be com
pletely managed by the Emulator. However, this was prior 
to the birth of the subtype notion, and there was no way to 
guarantee the integrity of the direciory siruciure. In partic
ular, trusted software could not depend upon the directory 
structure. Then it was proposed to move part or all of the 
directory management function into the Kernel. This seemed 
to solve the integrity problem, but opened a new and more 
serious problem of making the Kernel cognizant of the struc
ture and semantics of directory files, and thereby making 
the Kernel very UNIX-specific. Finally, the subtype idea 
was proposed. The Kernel would know that directories were 
"special:' and would aid in the preservation of their integ
rity. However, the Kernel would not be aware of the internal 
structure or semantics of directories. 

The current design has the Emulator performing all the 
directory interpretation functions (i.e. recursively searching 
for names in directories), but writing directories is only done 
by the Directory Manager. The Directory Manager is a pro
gram that is K_spawned into execution whenever an Emu
lator needs to modify a directory. It starts its life running as 
the user "dir_mgr" who owns the directory subtype. After 
getting permission for write access to directory sUbtyped 
objects, the Directory Manager reverts its identity to that of 
the requesting user. From there on, the Kernel will enforce 
security, integrity and discretionary access checking. Thus, 
the user cannot trick the Directory Manager into modifying 
a directory that the user cannot access. This architecture 
may be criticized as being too slow, since creating a new 
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process via K_spawn is moderately time-consuming. How
ever, measurements on one of our UNIX systems in a soft
ware development environment suggest that modification of 
directories is a fairly infrequent occurrence. 

Computer network support 

The Emulator contains the bulk of the support for the 
computer network interface. Initially, KSOS will "speak" 
Version 4 of the Transmission Control Protocol (TCP)12 in
cluding the Internet Datagram Layer. 11 This protocol ap
pears to be on its way to becoming a future standard within 
DoD. 

Although no networks presently exist that can handle 
mUltiple security levels, this architecture envisages their 
development and is designed to support them. To support 
a multi-level network, the Network Daemon would be 
trusted, so it could handle the multi-level stream to/from the 
network. The remainder of the TCP functions performed by 
the Emulator would be untrusted, since they are at only one 
level. 

The basic structure of the KSOS network interface was 
discussed above, and is illustrated in Figure 4. There is a 
Network Daemon which handles the Internet Datagram pro
tocol, and enough of the TCP to separate the i/o stream from 
the network into separate streams for each connection. In 
each Emulator is the majority of the TCP functionality. All 
of the functions relating to sequence number maintenance, 
window maintenance, acknowledgment, and retransmission 
are in the Emulator. This is possible because these are per 
connection functions, and need not be globally managed. 
These two portions of the TCP function communicate using 
the Kernei-supported IPe mechanisms. The shared segment 
mechanism is used for bulk data passing, and the event 
mechanism is used for synchronization, and for "com
mands" to the TCP Daemon and responses from it. 

The non-Kernel system sojhvare 

The purpose of this component of the KSOS system is to 
provide the software tools to support a KSOS system. The 
Non-Kernel System Software is divided into four groups: 

1. Secure User Services-Software that manipulates the 
security levels of users and files. Also included in this 
class are all functions that require a secure ("unspoof
able") path to the service. 

2. System Operation Serdces-Software that performs 
continuing services for the system, such as the Net
work Daemon, line printer spooling and interuser mail. 

3. System Maintenance Services-Software that per
forms occasional services primarily in the area of 
checking and repairing the consistency of the file sys
tem. Also included are the system generation func
tions. Individual KSOS sites can generate their system 
to suit the hardware configuration available. 

4. System Administratil'e Senices-Software that aids 
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the System Administrator in controlling the sytem. Our 
goal has been that the System Administrator need not 
be a computer expert to perform his functions. 

The Non-Kernel System Software described is a minimally 
complete set. Clearly there are large numbers of additional 
utilities that would be desirable. It is expected that this class 
will be supplemented extensively as KSOS matures. 

KSOS APPLICATION CONSIDERATIONS 

There are two broad classes of KSOS applications, each 
with different considerations. The first is applications that 
utilize the full KSOS system, i.e., applications based upon 
UNIX. KSOS should appear to these applications to be only 
slightly different than a standard UNIX operating system. 
Because KSOS provides a UNIX-like interface, meaningful 
secure applications can be built using the existing software. 
UNIX is one of the best systems in existence for the creation 
of new products by novel combinations of existing packages, 
and KSOS will preserve this flexibility. Such applications 
can, however, be made easier in some cases via the direct 
use of KSOS Kernel calls. 

The second class of applications is those which use the 
Kernel directly without an Emulator. The Kernel provides 
many features that make it an attractive operating system in 
its own right. It otTers excellent i/o performance, a range of 
I PC options, and many features that ease the design of multi
level applications. Because the Kernel is "UNIX-flavored" 
without being heavily UNIX-dependent, it is possible to 
create application environments that are an amalgamation 
of the features provided by different operating systems. 

KSOS facilitates the creation of encapsulated environ
ments that can be used for a variety of purposes. This 

encapsulation allows objects to be manipulated only by soft
ware known to perform correctly. In many cases only a 
small part of a multi-level application actually deals with 
data at different security levels. By encapSUlation of these 
functions in a small trusted process, it is possible to build 
multi-level applications that minimize the amount of trusted 
(and therefore expensive) code. 
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INTRODUCTION 

There has been considerable interest for some time in de
veloping an operating system which could be conclusively 
shown secure, in the sense that the information stored on 
behalf of a heterogeneous user population was safely pro
tected from unauthorized access or modification, even in 
the face of skilled attempts to do so. Early attempts to attain 
this goal consisted largely of auditing an existing system 
through attempts at circumventing the controls, and then 
revising the implementation code to block any successful 
paths that were found. Unfortunately, this approach failed 
to produce a secure system, largely because third generation 
operating systems contain so many errors that "penetration 
audits" followed by patches inevitably led to a system 
whose controls were still easily penetrated. 

However, there was an even more fundamental limitation 
to the early approaches, frequently mentioned; testing 
proves the presence but not the absence of bugs. A more 
strictly constructive method was required, by which it would 
be possible conclusively to demonstrate the correctness of 
the security controls. It was hoped that this goal would 
result in a much superior system in other respects as well. 
The experience to be reported here strongly bears out that 
expectation. 

The UCLA Data Secure Unix operating system is in
tended as a demonstration that verifiable data security with 
general purpose functionality is attainable today in medium 
scale computing systems. More specifically, the UCLA sys
tem has the characteristic that data security, the assurance 
that data can not be directly read or modified without spe
cific permission, is enforced via a limited amount of kernel 
software. High levels of care are being applied to demon
strate that the security properties of that software are cor
rectly implemented. In addition, the system is designed so 
that confinement can be demonstrated by audit of some 
additional, isolated code. 

To achieve these goals, a number of design and imple
mentation principles have been integrated into a single sys
tem. These include a tightly constrained base kernel, a sec
ond-level policy kernel, a well known and accepted 

", This research was supported by the Advanced Research Projects Agency 
of the Department of Defense under Contract MDA 903-77-0211. 
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operating system interface, implementation in the high-level 
language Pascal, and application of formal, semi-automated 
program verification methods to the source code of both 
kernels. 

The system interface is essentially identical to Unix as 
released by Bell Laboratories,9 and the software presently 
runs on DEC PDP-III45s and PDP-II!70s. The kernel struc
tures and verification procedures, together with the choice 
of language, provide a powerful means by which the sys
tern's security and integrity can be demonstrated and as
sessed. Support of the Unix interface illustrates the robust
ness and functionality of the resulting system. 

However, the kernel and verification goals imposed sig
nificant constraints on the size, complexity and general ar
chitecture of the system. The result therefore is quite dif
ferent from what would have been expected otherwise. 
System integrity improvement results from the significant 
reduction in common mechanism operating on behalf of all 
users,-a characteristic that was necessary to make verifica
tion and certification of the system practical. Nevertheless, 
in retrospect, we are unaware of any decision forced by 
these goals which has not also had the effect of simplifying 
the system's structure and improving overall reliability and 
integrity. Significant performance penalties are not expected 
either. The primary cost in obtaining a secure operating 
system appears to be found in the care required during 
design and development. 

In the next sections we outline the UCLA Unix architec
ture, together with explanations for the design choices. Ver
ification and the programming language are also discussed, 
and illustrative examples of the effects of Unix functionality 
on the system's operation are given. 

OVERALL ARCHITECTURE OF UCLA UNIX 

The UCLA Unix architecture contains a number of major 
modules, whose relation to one another is suggested by 
Figure I. The kernel should be thought of as an operating 
system nucleus which provides about a dozen primitive op
erations callable from user processes. That is, the kernel 
implements a number of abstract types and the valid oper
ations on each type. It is the only module in the system 
empowered to execute hardware privileged instructions. 
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One of the abstract types implemented by the kernel is 
process. A process contains two address spaces (supervisor 
and user mode on the large PDP-lIs). An operating system 
interface package resides in one address space. In the other, 
application code is run. When an application program makes 
an operating system call, control passes to the O/S package 
which interprets the call. If necessary, the package issues 
kernel calls or uses kernel facilities to send messages to 
other processes to accomplish the needed action. All such 
calls or messages are controlled by the kernel. Each process 
is a separate protection domain. The access rights of the 
domain are represented by capabilities: a C-list for each 
process is maintained by the kernel. 

There are several processes that are special, in that they 
perform system-related functions. Overall system security 
depends on the correct operation of two of them.** One, 
called the policy manager, is the process capable of altering 
the data upon which protection decisions are made, and is 
thus the site where various security policies may be imple
mented. Type extensions to kernel objects, including file 
systems, typically would also be supported here. In the 
UCLA system, security policy plus suitable primitives for 
the Unix file system to support protection of individual files 
are built in the policy manager process. The second, "dia
loguer," process initially owns all terminals (i.e. has capa
bilities for all of them) and is responsible for user authenti
cation. It tells the policy manager what user is to be 
associated with a given process. 

There is one further process which differs from the typical 

** One might say they are within the "security perimeter.·· Their size is not 
large compared to the kernel described here. It should be emphasized that 
the design is such that only software within this security perimeter must be 
correct to block system penetration. 

processes employed for applications programming. How
ever, this one, a scheduler, is not relevant to data security. 
It contains short-term resource management policy for CPU 
and main memory: process scheduling, page replacemen~t 
strategies and the like. UCLA Unix is a demand paged 
system: when a process page faults, the scheduler is in
formed by the kernel so that an appropriate swap call may 
be issued at some later time by the scheduler. All of its 
security relevant actions are accomplished through kernel 
instructions, however. 

Thus, in normal operation a user first logs into the dialo
guer. That process then sends a message to the policy man
ager, who initializes a process for the user and moves the 
user terminal to the new process by issuing appropriate 
capabilities. Process initialization as well as normal com
putation take place within the domain of the given process. 
Additional resource requirements or file activity is accom
plished through messages to the policy manager. Process 
switching occurs whenever a given process invokes the 
scheduler process, or when an appropriate clock interrupt 
forces such an invoke. The scheduler can then run whatever 
process it wishes. Page faults also force an invoke of the 
scheduler, so that it can initiate appropriate page swapping. 

THE UCLA KERNEL AND ABSTRACT TYPES 

The kernel can alternately be viewed as a basic, stripped 
down operating system or as an implementor of a number 
of abstract types, together with the operations on those 
types. One of its more notable features is the fact that a 
significant number of facilities, normally found in large sys
tems, arc included in it despite its very small size and 
straightforward structure. The basic kernel consists of ap-



proximately 760 lines of Pascal code, not including I/O sup
port. The PDP-II does not have any channels, so that the 
functions of channel programs must be written as CPU code. 
I/O support in the UCLA kernel is composed of two por
tions: a device-independent internal interface of approxi
mately 300 lines, and as many device-dependent drivers as 
are required by devices present on a given machine config
uration. These are quite small, and for the UCLA installa
tion, supporting many peripherals, approximately 300 lines 
of code are required altogether. These numbers are relevant 
because it is intended the entire kernel.be subjected to pro
gram verification procedures. Given current verification ca
pabilities, and well struc~ured code, this goal is attainable. 

The UCLA kernel implements a fixed number of types, 
the four listed below. Type extensibility as illustrated by 
CAL-TSS or Hydra is not provided, although simple exten
sions appear feasible. The implemented types,-together with 
the permitted operations, are discussed below. 

Processes 

The process object is defined to consist only of the usual 
state variables plus one small page. It does not include the 
process virtual memory. As a result, kernel calls such as 
Invoke can be quite simple, merely moving data from tables 
to CPU registers and vice versa. All process relevant kernel 
calls are controlled by capabilities. It is not possible to send 
or receive interprocess communication, for example, unless 
in each case a capability is present in the process' C-list. 

The process abstraction has been carefully developed to 
permit a large number of processes to be alive-500 on a 
PDP-11170 would not be unreasonable. To do so, it is nec
essary that very little locked down memory be required per 
process, despite the fact that there are asynchronous events 
taking place (such as I/O completions and messages from 
other processes) which can occur when all the memory of 
a process is swapped out. The process must be informed of 
these events. However, the obvious solution, kernel queues, 
are undesirable since they increase verification difficulties, 
lead to overflow problems when queue space is exhausted 
and introduce confinement problems. The UCLA kernel 
avoids this problem by a number of methods, including a 
generalized page faulting structure and efforts to keep as 
much per process information as possible in swappable 
pages allocated to the given process. As a result, very little 
main storage must be reserved for an active process. Fur
ther, the compiexities in two ievd process mappings, as 
suggested for Multics are avoided. 

The operations available for objects of type process are 
as follows: 

a. Invoke 
b. Initialize 
.... Zero~relocation-register 

d. Return 
e. Send-interrupt*** 
f. Set-interrupt*** 

*** These operations are available for all objects. 
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Inv~ke moves the state variables of a process into the CPU 
registers, after first saving those of the currently running 
process, mostly into one of that process' pages. Initialize 
clears the state variables of a process and grants those few 
capabilities needed for the process to bootstrap itself. The 
Zero-relocation-register call is used by the process to adjust 
its virtual memory. The process first sets a data structure in 
the page shared between it and the kernel to indicate the 
desired virtual memory page, and then zeroes the associated 
register, so that the subsequent page fault will cause the 
kernel eventually to reload the register with the desired 
value. Return is used by a process to change its current site 
of execution, either giving up control to the scheduler proc
ess, checking to see if any interrupts have arrived, or chang
ing from supervisor to user mode. Set-interrupt and Send
interrupt are used in the system's inter-process communi
cation facility. Both calls give as a parameter the name of 
an object with ~hich the signal is to be labelled. Set-interrupt 
is used by a process to enable its ability to receive signals 
labelled with the named object, and send-interrupt is the 
associated int~r-process signalling mechanism. Send-inter
rupt also passes a small amount of data, and is the means 
by which the system supports very low delay inter-process 
communication (ipc). High bandwidth ipc is done through 
shared pages together with this interrupt mechanism. 

Pages 

Pages are the abstract storage unit supported by the ker
nel. All pages have a fixed home location on secondary 
storage, which is not deallocated when the page is swapped 
into main memory. There are two page sizes in the current 
implementation, with memory frame sizes set at sysgen time 
to minimize kernel complexity. In order to access a page, 
a process must first obtain a capability for the page. Then 
the process indicates where in its virtual address space the 
page specified by the capability is to appear. At that point 
the process can attempt to refer to the page. If it is in core, 
the hardware register will be loaded and the reference will 
succeed. If not, the process will page fault, as will be de
scribed. Since each page is a separate object, controlled 
sharing of individual pages is easily done. 

The only operations on pages are: 

a. Swap-in 
b. Reflect 
c. Free 

.. Swap-in" copies the secondary storage version of a page 
into main memory, changing the name of the object asso
ciated with that destination page frame to the new page. The 
secondary storage copy is preserved. "Reflect" updates the 
secondary storage version to match main memory. Neither 
of these operations gives the caller access to the contents of 
the page, so that the operation can be issued by untrusted 
code. "Free" deletes a page from main store (only permitted 
if the secondary storage version is current. f) 

-;- This (trivial) operation is present only so that pages can be moved from 
place to place in main store. Without "Free." this movement would be more 
difficult. since the swap call nops when issued if the specified page is already 
in main store. 
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To simplify management of physical memory, main mem
ory is divided into two statically allocated regions, one for 
each page size. That is, one contiguous region in main mem
ory is devoted to small page frames, the other to large page 
frames. The portion of main memory allocated for each size 
can be varied at system generation time by changing a com
pile-time constant. 

A similar situation exists for disks, except that the number 
of regions is variable and changeable at kernel system gen
eration time. A given physical disk unit is broken into an 
arbitrary number of smaller logical mini-disks. A mini-disk 
is constrained to contain a fixed number of pages of a given 
size and object type. Mini-disks, however, are not required 
to be of uniform size. Hence one mini-disk might have X 
small pages, while another mini-disk has Y small pages. 
While large and small pages are not allowed to co-exist on 
the same logical mini-disk, they can easily exist on the same 
physical disk. This structure simplifies address calculation 
within the kernel for pages on disk, yet still allows the 
system manager freedom to rearrange the configuration of 
large and small segments on the disk to minimize disk seek 
and transfer times. . 

Pages have a home address on disk, and the name of a 
page can be used to determine this home address in a simple 
way. Main store is simply a disk cache: in-core pages are 
therefore merely copies of disk pages. 

De\'ices 

110 operations to all devices, including terminals, are con
trolled by the same capability mechanism as all other op
erations. However, devices such as terminals are treated as 
two devices-an input part and an output part. Two capa
bilities are therefore required to read and write a terminal, 
but as a result kernel internals are simplified. 

Completion interrupts are handled just like any other 
process notification. All those processes with capabilities to 
receive interrupts from the device, with interrupts enabled, 
and with appropriate access. will receive a notification when 
the device generates it. 

The device operations are as follows: 

a. Start-i/o 
b. Completion-interrupt 
c. Status 

"Start-i/o" initiates all 1I0s except swaps and reflects. The 
"Completion-interrupt'· is the hardware generated call 
which typically signals completion of a previously started II 
O. As an entry point into the kernel, it is little different from 
any other call. "Status" I/O causes no input/output opera
tion. but returns status of the previously started I/O. 

Capabilities 

The capability is the basic kernel representation of pro
tection information-which objects a process is entitled to 

access. Each process has associated with it a C-list contain
ing those capabilities, stored in pages that can be swapped, 
but which are directly accessible only to the kernel.§ 

Each capability consists of four fields. First is the name 
of the object to which this capability refers. Second are the 
access rights provided. Next is a "guess" value which the 
kernel uses to attempt to quickly find the entry in a kernel 
table which maps the object indicated by the capability to 
a physical location. In the case of pages, the guess is the 
index into the kernel page table to the slot where that page 
entry last appeared. It in fact may have been moved by 
subsequent Swaps and Reflects, so if the entry does not 
match, a search of the table is required. That event is rela
tively rare however. The last field in the capability is of no 
relevance to the kernel, but can be set via the Grant call. 
The Policy Manager uses it to record the file descriptor with 
which the page or device is associated. 

The only operation on capabilities is: 

a. Grant/revoke 

It adds a specified capability to a specified slot in a specified 
process' C-list. What processes can issue this call is also 
controlled by capabilities. 

The operations on capabilities are thus quite limited. Re
vocation is accomplished by granting the null capability into 
the C-list slot that contains the capability to be revoked. 
There is no means by which processes can directly pass 
capabilities. While this fact limits what can be done with 
capabilities, it also greatly simplifies many issues and avoid~ 
a number of the criticisms of certain capability systems, 
especially the danger of not knowing how access to an object 
has propagated. As a result, the kernel can more accurately 
be viewed as containing no security policy. All such deci
sions regarding rights transfer, including initial granting of 
rights, are made only by the software running in the process 
which has the ability to issue Grants. The Policy Manager 
is the only such process in UCLA Unix. 

The C-list composes a local name space for the process. 
This name space has two effects. First, through message 
exchanges with the policy manager, the user has complete 
control over which C-list slot contains a given capability, 
thereby permitting local management over the name space. 
Fabry! points out the significant advantages of this facility. 
Second, kernel names are not visible to user code. Instead, 
the capability contains that name. Therefore user code, 
being unaware of the actual object names, cannot use them 
as a means to breach confinement. 

Types and operating systems 

Other authors 11 have noted that the usual views of abstract 
types to be found in programming languages are not quite 
suitable for operating systems because of finite resources 

~ The pnlicy manager i~ given read acce<;<; to capability rages sn that it need 
not keep separate track of which capabilities for pages in a file are outstand
ing. See the discussion of the policy manager for further information. 



and circular dependencies. In Multics, for example, the 
process manager depends on the page abstraction, since the 
manager is contained in pages, while the page manager is a 
process and hence depends on the process manager. In a 
revised design for Multics, abstract types are used in a 
sophisticated, mUltiple layered manner to solve these prob
lems.ll 

However, as noted by Gaines,2 the method required need 
not involve a sophisticated solution at all, and is largely 
composed of static allocations. This is the approach embod
ied in the UCLA kernel. Processes, pages and devices are 
neither created nor destroyed. There are as many pages as 
there is space on secondary storage for them. The number 
of processes is fixed by the size of the kernel process table. 
Devices are added at system generation time. This static 
view is not really a limitation, since the Policy Manager 
reuses process '"bodies" and pages by reinitializing them 
via kernel calls. Many systems include these size limitations 
anyway, although perhaps not so explicitly. As a result, the 
kernel type structure is exceedingly simple, and yet robust 
enough for fairly general operating system activity, as illus
trated in the sixth section on Unix functionality. Further, 
the entire kernel is small enough to be locked down in main 
memory, in space removed from page management, blocking 
circular dependencies. 

Kernel names 

The names for kernel-supported objects were designed to 
maintain several important properties with the minimum of 
mechanisms: a) Unique names for all objects, b) clear 
knowledge of object types at all times, and c) avoidance as 
much as possible of complex name to location mappings, 
which must be maintained by kernel code if object protection 
is to be at all meaningful. Since these names are not visible 
to normal user processes, who see only C-list indexes, con
siderable design freedom was present. Therefore, names 
were chosen to represent the home location of the object: 
a page name consists of the disk device and block number. 
Hence no disk map need be maintained or interrogated by 
the kernel. 

Paging. segmentation and scheduling 

UCLA Unix, unlike standard Unix, is a demand paging 
system. All user disk I/O, including swapping of the process 
virtual memory space and file activity, occurs via the paging 
mechanism.* 

Page faulting is invisible to all processes except the sched
uler, which is invoked by the kernel when a fault occurs, so 
that it can start a swap. There are actually two "faults" 
involved in accessing pages. The most significant, just de
scribed, occurs when a page is not core-resident. The other, 
called a register fault, occurs when the page is resident but 

" A physical disk can alternately be treated as a device. and Start-1I0s issued 
to it. However. a disk treated in this manner cannot also hold pages. 
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the relevant page register is null. This case is handled in a 
highly efficient way-a user map table is checked by the 
kernel to see which capability (and therefore which page) is 
desired. The appropriate value is then placed in the register 
and user execution continues. 

All kernel calls which require swappable pages to be in 
core in order for successful execution first check to see if 
the necessary pages are indeed available. If not, the call 
completely unwinds itself (a trivial act, since no kernel table 
updates are made until all checks complete successfully), 
the process state is reset as described above, and the sched
uler is notified as in any other page fault. Even invoking a 
process, which requires the page that contains the user's 
registers, operates in this manner. Thus page faults involving 
kernel-primitive instructions appear to user processes just 
as page faults involving hardware implemented instructions 
(that is, they are completely transparent). 

The preceding outline suggests how the UCLA system 
provides a complete virtual memory and file system with 
only a simple set of paging primitives in the kernel. This 
simplicity was achieved by two major decisions. First, the 
virtual memory facilities were decomposed into that which 
had to operate correctly in order to maintain the security 
and integrity of the system (Swap, Reflect, and Completion
interrupt) and the rest of the virtual memory mechanism 
(page replacement algorithm, interaction with CPU sched
uling, etc.). This decision had a significant effect on the 
system's resulting simplicity. Second, file activity and proc
ess memory swapping were combined into one mechanism. 
In standard Unix, main memory is broken into two areas
one to hold user process images, and the other for 110 
buffers. Each area is managed separately. The I/O buffers 
are replaced in LRU order, while scheduling of process 
images is handled differently. All disk I/O buffers are the 
same size, while process images vary. The code used to 
handle I/O buffers is in large part different from that used 
to handle the movement of process images, and significant 
parts of both collections of code are important to the sys
tem's security and integrity. 

In UCLA Unix, only one mechanism, paging, exists, and 
much of its support has been moved out into a scheduler 
which can not affect the integrity of the system. As ex
plained earlier in the section on capabilities, the user domain 
also carries some of the responsibility for virtual memory 
management. By placing some of the responsibilities in the 
domain for which the action is being taken, error propaga
tion is further limited. Application code is of course unaware 
of that responsibility, since the OIS interface is performing 
the task. 

Firmware implementation 

The UCLA kernel has been developed to be a candidate 
for firmware implementation. To be practical, it is helpful 
if each call behaves as much as possible as a separate in
struction, with no need to be interrupted in execution, nor 
to issue I/O calls for which the results affect the instruction's 
behavior, since I/O is typically slow relative to micropro-
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gram cycle speeds. These criteria are met by the UCLA 
kernel. Therefore, it differs significantly from architectures 
such as Multics or related work. 6,7 In both of those systems 
all of the operating system, including inner rings in Multics 
2.nd kernel software in the case of MITRE, must be consid
ered as part of the user process. Any process can be sus
pended in the middle of execution in the inner ring or kernel 
mode, respectively. Neither of those systems lend them
selves to firmware considerations, the MITRE work because 
of the architecture, and Multics because of its size and 
architecture. 

Verijication impacts 

Verification of a full scale operating system is a multistep 
process, and the methods employed at UCLA are outlined 
by Popek,8 with more detail available from Kemmerer. 3 The 
effect that the verification and. certification goals had on the 
system architecture was exceedingly positive. Often a design 
choice presented itself. without any clear basis for resolution 
except maximizing verification ease. In retrospect this cri
terion was quite effective in making decisions and avoiding 
design pitfalls. Further, when it became clear subsequent to 
implementation of certain parts of the system that verifica
tion would be difficult, those portions were redeveloped. A 
good example of this case will be outlined in the section on 
110 Interfaces. 

Sequential code 

The current state of verification tools does not permit 
proof of parallel programs. Since semi-automated aids are, 
in our view, essential, this constraint implied a kernel design 
and implementation in which each call ran from start to 
completion without interruption, including the interrupt han
dlers. The UCLA kernel is built in this way, and so most of 
it can be proven by standard verification methods. 

The cost of this design choice results from delayed serv
icing of interrupts which arrive while a kernel call is in 
progress. To minimize this problem, each call is designed to 
run very quickly-approximately one millisecond or less. 
To do so, no kernel call may do 110 of its own while in the 
midst of execution, since virtually all devices respond rather 
slowly relative to this criterion. While millisecond delays in 
interrupt servicing may not be suitable for heavy real time 
activity, it appears quite acceptable for interactive systems, 
which is the nature of Unix. 

1/0 Interface 

The PDP-II does not have any significant channels: in
stead the device registers are wired into physical address 
locations and "channel" functions are executed by CPU 
code. Since all devices address main memory (and second
ary storage) in terms of absolute addresses, I/O management 
is therefore necessarily a kernel responsibility. This is un-

fortunate, for several reasons. First, device semantics are 
quite .complex and difficult to interface with the semantics 
of the programming language in which kernel code is written. 
Next, devices are probably the single largest source of 
changes to the kernel, since as new types of devices are 
added, additional verified kernel code is required to manage 
the device's actions. To minimize the impact of these prob
lems, kernel I/O code was redesigned to provide a device 
independent level of 110 abstraction within the kernel. Code 
above. that level is not concerned with any of the device 
details. Code below it implements device dependent issues, 
including any device dependent protection controls. The 1/ 
o abstraction level appears similar to a channel interface, 
with well defined opcodes and operands. 

This 110 abstraction level is quite important, likely more 
so than the process abstractions mentioned by other authors, 
since at least half of the operating system kernel is con
cerned with 1/0. 11,6 As a result of its use, device semantics 
have been isolated to the low-level drivers. See Walker12 for 
more information. 

THE POLICY MANAGER 

The Policy Manager is the major security relevant process 
in UCLA Unix. It is responsible for implementing a shared 
file system. for maintaining whatever security policy is to 
be supported by the system, and for part of the action of 
process· initialization, which occurs every time a Unix fork 
operation takes place. Each of these issues is discussed 
below. Long term resource allocation can also be imple
mented in this process, but currently is not. 

The file system and protection policy 

User code must see a file structure which is identical to 
the Unix tree of directories. However, one should not im
mediately conclude that the entire directory structure and 
other file support should be implemented in trusted code. In 
fact, one can make the following argument, largely inde
pendent of the security policy to be enforced. 

Most code to be run in the user domain strictly should not 
be trusted to be correct, at least not to the same standards 
as the verified secure kernel and policy manager. However, 
all names, including file names, are either issued, interpreted 
or transmitted through that code. Therefore, it makes little 
sense to verify the directory-naming scheme of a file system 
when significant amounts of unverified code issue the names 
or are in the path leading to the file system. The best one 
can do, it appears, is to provide the user with a reliable 
means to specify a process profile which characterizes the 
categories of files to which the process is to be allowed 
access. Profile specification and alterations, together with 
the association of labels with the file on which categories 
are based, must therefore be done in a guaranteed reliable 
way if the verified protection and integrity of the entire 
operating system is to have any meaning. That necessary 
secure terminal facility will be discussed in the seventh 
section. 



The file protection labels provided in UCLA Unix consist 
of a very large variety of ' 'colors. ,. Each file can be labelled 
with some number of them. Each user (principal in Saltzer's 
terminologylO) has a fixed color list associated with him. It 
is understood that a user potentially can access a file only 
if his color list covers that of the file. The actual profile for 
a running process can be set to any subset of the user's 
color list. There is a separate profile for read and write. 

Since there are a large number of colors, many of the 
usual protection policies can be implemented using them. 
Public files are labelled with the color public and all users 
have that color in their list. Denning has noted that military 
security policy is essentially a lattice, and that the relations 
of sets and subsets provides just the lattice required. Indi
vidual file names are had by assigning a given color to a 
single file. This color system is still evolving as experience 
is gained with the user protection interface, especially in the 
area of control over changes to color lists. Additional detail 
is provided by Urban. 14 

Given the preceding view of file system protection, one 
can profitably decompose its implementation into two parts, 
one a common mechanism relevant to security and integrity, 
the other executable in the domain of the requesting user 
process. The common mechanism can support a simple, flat 
file system. Files are the only significant data type, and a 
color list is one of the attributes of a file. The simple file 
system mechanism must include complete space manage
ment-disk-free lists and maps specifying which pages be
long to which files, together with software to manage these 
data structures. 

Many of the facilities normally thought of as part of the 
file system can be provided by software in the individual 
process domains as part of the O/S interface-directory 
structure, maintenance and searching; end of file indicators 
and other file status information such as usage locks. Direc
tories are then contained in files, and access to directories 
is controlled in the same way as access to any other files. 
Assuming that the common mechanism in the policy man
ager is verified correct, users can affect one another only 
through the use of files to which they share access. Once 
again one expects system integrity to be further enhanced, 
as errors in higher level file system code are confined to the 
domain in which they occur. 

Process initialization and forking 

The policy manager must also be involved when new 
processes are created, since a kernel process body must be 
Initialized and appropriate capabilities need to be granted to 
the new process. As much as possible however, one wishes 
process bootstrapping to take place within the domain of the 
new process. In UCLA Unix, the normal procedure for 
process forking is as follows. The requesting process sends 
a message to the Policy Manager requesting the new process 
as a member of the same user family. The Policy Manager 
records the user to be associated with the new process and 
issues a kernel Initialize call, which zeroes a process body, 
grants two capabilities to that process, and sets the program 
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cou.nter and status to standard values. The capabilities point 
to a standard boot code page and the arg-block page re
spectively. ** A third capability is granted by the policy 
manager upon process request to give the process the ability 
to communicate with its forking parent. From here on, ini
tialization takes place wholly in the domain of the new 
process. The process begins by attempting to execute its 
boot code, which may cause a page fault. These are handled 
normally. Eventually the boot code will load the O/S inter
face and presumably a Unix Shell into its address spaces. 

Other policy manager responsibilities 

In UCLA Unix, the Policy Manager is also responsible 
for control over access to the other kernel-supported objects 
besides pages-processes and devices. Devices appear as 
special files and inter-process communication takes place 
through pages which appear as part of a file. Therefore, 
colors are uniformly employed for access control in these 
cases too. 

An ARPANET connection is provided in UCLA Unix: 
access to it must be controlled and support for initial net
work connection activities is required. Capability based en
cryption is used to protect each connection individually. See 
the section on Secure Computer Networks. 

THE KERNEL INTERFACE SUBSYSTEM 

Since the kernel is an operating system nucleus of mini
mum size and complexity, one can properly expect that it 
is not a convenient base to build on. Traditional systems 
provide a good deal of "extension" for convenience. While 
at first glance the O/S interface has this responsibility, it 
should be noted that a considerable amount of code is writ
ten to run directly on top of the kernel-the O/S interface, 
the network manager, process initialization, and the sched
uler, for example. Each of these need basically the same 
extensions-capability management, inter-process commu
nication support, virtual memory code, and some file system 
interfaces. Therefore we have developed an intermediate 
interface between the O/S interface and the kernel. The 
software which implements it provides a much more con
venient interface to the kernel and is called the Kernel In
terface SubSystem (KISS). As an extension mechanism, the 
KISS manages the entire environment of the process. in 
general, no other code in the process makes kernel calJs, 
sends messages to the scheduler or policy manager, etc. 
Thus this software package has primary responsibility for 
maintaining a convenient "virtual machine" for the user 
process. 

The KISS of course runs as part of the user process 
domain, and is architecturally contained in the same address 

** The boot code is actually the Kernel Interface SubSystem discussed in the 
fifth section. The arg-block page is read/write shared between the process 
and the kernel, and serves as the means for passing arguments and return 
values for kernel calls. 
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space of the process as the O/S interface. The KISS can be 
viewed as an inner ring in the sense of Multics, and if 
appropriate hardware were available, that would be an ef
fective means of implementation. 

THE UNIX INTERFACE 

The operating system interface has the responsibility of 
providing a user program interface which is as much as 
possible identical to standard Unix.*** It handles user sys
tem calls either by performing them itself if possible, or 
making the appropriate kernel calls for service requests to 
the policy manager to get the desired action accomplished. 
Parts of the Unix O/S interface are actually composed of 
code from the standard Unix operating system. Most of the 
changes consist of wholesale deletions of functions, resulting 
from the fact that many of those functions are redundant 
given the available kernel facilities and the fact that the 0/ 
S interface is essentially a single user system. All scheduling 
support could be removed, since scheduling is done in a 
separate process. A more drastic change concerns I/O buff
ering. In standard Unix, buffers contain significant structure 
to aid in multiuser and LRU operation. In UCLA Unix, 
most of that function disappears since it is done by the 
paging mechanism supported by the kernel and scheduler. 
I/O support is replaced in the O/S interface by code that 
requests file opens and relevant page capabilities from the 
Policy Manager, and maps those pages to the interface's 
virtual memory. Then the interface merely tries to reference 
data on the page to move it to the user, and the usual page 
faulting and swapping action takes place. 

New code in the interface largely consists of the KISS, 
changes to the interface/KISS boundary, ipc support, and 
maintenance of the process hierarchy. This last issue will 
now be discussed. 

The file system 

The Unix interface has a significant portion of the re
sponsibility for making the user view of the file system 
equivalent to standard Unix. This task consists of all direc
tory support, including searching, working directory control 
and the like. Once the desired logical file name is found in 
a directory, a file open request of the policy manager can be 
made using that name. t Directory searches are done by first 
opening the containing file, like any other. It is the respon
sibility of the Unix interface to manage its open files in such 
a way as to keep the working directory open most of the 
time to minimize search costs. 

'"*" There are certain actions possible in standard Unix which will be blocked 
by the security policy of the secure system. 
-;- The logical file name is essentially an inode number. (Pointer to file de
s~riptur in the lTnix file sy~tC:11. ~ 

Forking and process hierarchies 

In standard Unix, a given user can have a process family 
active for him. The family is hierarchical in the sense that 
parents have certain rights over children. However, intra
family protection is not really effective, since any member 
of a family can convince any other member to destroy itself, 
and to take other undesirable actions, via standard Unix 
functions. 

Therefore, process hierarchies should not be supported 
by kernel code, and so in UCLA Unix, members of a process 
family cooperate among themselves to effect family behav
ior. Of course, the support for process families is provided 
in the O/S interface, so that user software need not be 
concerned. This design choice simplified the kernel, and in 
light of the observations just made, had little or no effect on 
the actual protection functionality provided. 

In the implementation, each process of a family has a 
capability for a shared page, set up by family members. In 
that page. data structures are maintained bv the OIS inter
face so that intra-family relationships ar~ properly sup
ported. In doing so, the kernel notification facility is used 
to great advantage. Unix typically performs a great deal of 
"one to n" notification-one process issuing a signal in
tended for the rest of the family. The kernel Send-interrupt 
call is designed to support this behavior efficiently, as well 
as to be adaptable for other uses. 

SECURE USER INTERFACE 

In order for any user to have assurance that the protection 
controls of a system are operating in the manner desired, it 
is crucial that he be sure of the values to which protection 
policy data have been set. Further, when login takes place, 
there is an issue of mutual authentication: the user wishes 
to be sure that he is interacting with the secure system 
interface, not some clever user simulation of it which col
lects passwords. For both of these reasons, UCLA Unix 
contains a small dialoguer process to which the user terminal 
can be reliably connected. The user causes his terminal to 
be switched to the dialoguer by typing a predefined sequence 
of break characters.§ The kernel supports the terminal 
switc.h through maintenance of a terminal state. A terminal 
can be thawed or frozen. Capabilities are granted by the 
Policy Manager giving access to terminals only when 
thawed, or only when frozen. When the break sequence is 
detected, or when a line drop occurs, the line is marked 
frozen. The Policy Manager grants frozen access only to the 
dialoguer, thawed access in all other cases. In this way, the 
user can move his terminal to the dialoguer, accomplish 
whatever change is desired, such as changing process pro
files, and then move the terminal back, all without disturbing 
the state of computation of the process at all so that it can 
be continued. 

~ Kernel recognition of the break sequence is not expensive since PDP-II 
:·l.lr.!'.\ J.l <.: 1 ..:yuil c:, .::kll ;.;..;tcr b: • .::1i"'J.l.:t..:i knnin.:il IIlPu[ hamllillg J.n) •• ..ly, 



THE SCHEDULER 

Whenever it is time for a process invocation decision to 
be made, the Scheduler is invoked, either directly by a user 
process (i.e. when it wishes to sleep) or by a clock interrupt. 
The kernel makes available a considerable amount of system 
data through a pseudo device, so that the scheduler can 
make sophisticated resource allocation decisions, about both 
memory and the CPU. Centralizing both classes of resource 
control permits effective coordination of allocation decisions 
and therefore potentially higher performance. A large class 
of scheduling policies can be implemented in this process. 
Some of them have confinement implications but provide 
better performance potential than those which do not. This 
architecture permits the system operator to make the con
finement/performance tradeoff, ~ince there is no kernel ef
fect from scheduling policy changes. 

The one potential drawback of a separate schedulerproc
ess is that it doubles the actual number of process invoca
tions over what is really needed. This overhead is of little 
consequence if context switches are relatively cheap, not 
really the case for UCLA Unix.* 

SECURE COMPUTER NETWORKS 

When security is of concern in a computer network, en
cryption of the lines is generally a necessity, because those 
lines are not considered safe from tapping or spoofing. How
ever, the usual approach is to encrypt and decrypt the data 
external to the central machine and its operating system. 

It should be recognized that the software resident within 
the operating system responsible for managing the network 
is both complex and relevant to security and integrity. In 
standard Unix with an ARPANET Network Control Pro
gram (NCP), the NCP, operating as a common mechanism, 
is of comparable size and complexity to the whole operating 
system. ** Typically, one wishes to protect each network 
connection separately from each other connection, but the 
NCP manages them all, including moving data from user 
buffers through the NCP and out to the network interface 
device. 

Given the availability of a secure operating system, one 
can entertain the idea of extending the "ends" of the en
cryption path deep into the operating system. For example, 
the user process, as it hands data over to the NCP, could be 
forced to cause the data to be encrypted, so the network 
software is treated merely as part of the insecure transmis
sion channel. That data would not be decrypted until the 
receiving NCP handed it over to the destination user. If each 

~ Context switches on the PDP-II are in general fairly slow. Therefore, the 
scheduler is to be changed so that it is not invoked at every process switch. 
but instead periodically gives the kernel advice about which processes are to 
be run. In this way, most of the scheduling algorithms remain out of the 
kernel, but the additional overhead of having two context switches per (de
sired) context switch is eliminated. That work was not done when this paper 
was authored. 
"* The NCP being considered was developed at the University of Illinois. 
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connection were encrypted with a separate key, then NCP 
errors and misdelivery within the host operating system 
would not affect security. If suitable error correction is 
incorporated with the encryption, then integrity problems 
can also be detected. 

The main problem in this approach is the initial connection 
establishment protocol-how to permit users to supply the 
NCP with parameters telling which site and what type of 
connection should be established, without large confinement 
channels in the system. For a discussion of these and related 
issues, see Kline. 4 The method of solution outlined there 
has been implemented in UCLA Unix. The additional kernel 
code to support secure network operation was quite small. 
Further, most of the original NCP was kept unmodified, 
although its lower level was altered to match the kernel 
interface. **:~ 

PROGRAMMING LANGUAGE ISSUES 

The programming language employed in software devel
opment is usually recognized to have a significant effect on 
that effort; however when the goal of development includes 
verification, the effect is heightened. The specific language 
issues break down here into two groups-those concerned 
with systems programming, and those concerned with the 
scale of the verification steps. 

Systems programming issues arise in the same way that 
they occur in most high-level systems programming lan
guages. It is necessary to be able to express details of the 
hardware in the high-level language, such as interrupt vec
tors, hardware device registers, or special instructions. 
These facilities must be available in the programming lan
guage, but in a way that minimizes the effect on the seman
tics of the rest of the language. 

Virtually all the security and integrity relevant code in 
UCLA Unix is written in a slightly altered Pascal. Obvious 
verification problems were removed from the language, such 
as pointers, variant records and various sources of aliasing. 5 

I/O facilities were also deleted, since we were building I/O 
mechanisms, among other functions. The run-time package 
needed to support Pascal I/O would have been useless bag
gage, and since it typically would be written in assembly 
code there would be little chance of ever verifying properties 
of its operation. 

It was also necessary however to add features to Pascal 
to permit systems programming, as remarked above. Very 
few additions were actuaiiy necessary, and were limited to 
the following: 

I. The ability to declare a variable to be stored at a fixed 
physical location (to initialize interrupt vectors, access 
device control registers, etc). 

2. Assembly language procedures (so that special hard
ware instructions could be expressed as a procedure 
call). 

"'** The Illinois NCP "kernel" was rewritten. 
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3. The ability to have procedures which take array param
eters whose length is determined at call time (to remedy 
the most significant limitation of Pascal). 

We also developed an extensive library system to support 
independent compilation of program modules, and yet force 
type integrity across module boundaries. The compiler and 
library system force recompilation of modules when needed 
for compatibility with another module which has been al
tered. This facility is needed since the verification work 
depends on type enforcement. The language, compiler, and 
library system are discussed by Walton. 13 

There are many issues concerned with the scale of the 
verification effort. It is believed that over half of the original 
verification effort could be avoided if the language contained 
more reasonable controls over aspects of program behavior. 
One of the more obvious examples concerns the integrity of 
global variables. An important portion of the assertions to 
be verified state that most of the kernel variables have not 
been altered by the routine being considered. (After all, 
much of the statement of security concerns what is not to 
happen.) These assertions, in the form of a large invariant, 
could be simply handled by scope controls in the language, 
such as the Import/Export lists of Euclid. 5 Then compile 
time enforcement could be employed and the verification 
task correspondingly simplified. UCLA Pascal has been 
modified to provide Import Lists. 

Another example where the verification task can be eased 
concerns array bounds checking. In Pascal, many subscripts 
can easily be out of range, and therefore potentially refer
ence data other than the given array, violating type rules. 
There are four reasonable ways to_deal with this problem
SUbscript checking could be done by hardware, by runtime 
software generated by the compiler, by runtime software 
explicitly inserted by the programmer, or it could be verified 
in many cases that subscripts do not get out of range. The 
PDP-II hardware base does not provide any reasonable way 
to itself check subscript references. t The UCLA Pascal 
compiler does not implement array checking code. There
fore, a combination of the remaining choices were taken. 
The resulting assertions which need to be proven compose 
a significant fraction of the total verification to be done. 
Clearly here is a fertile area for language support or en
hanced verification tools. 

ARCHITECTURAL OBSERVATIONS 

UCLA Unix comprises the first verifiably secure, full 
functionality operating system with a fine grain of protec
tion. The experience gained in its design and development 

-;- The new. upward compatible DEC V AXl780 does. 

led us to several conclusions. Most obvious, secure oper
ating systems are feasible to deVelop, although the devel
opment cost is likely to be considerably greater than if highly 
reliable security and integrity were not such a serious goal. 
However, the result is a system which appears to exhibit 
considerably enhanced reliability and integrity, and because 
of the strict modularity, is easier to modify. Performance 
does not appear to be seriously affected by the architectural 
constraints imposed by the various goals. That is, the net 
result of the security goal seems to be a better system in 
general. 

It should be noted, however, that one of the central ideas 
to the success of the work, kernel-structured architectures, 
requires considerable rethinking of the usual operating sys
tem architecture views if it is to be effectively employed. 
Much of the standard operating system wisdoms must be 
reexamined, or the result will be a "kernel" that is in fact 
overly complex and not suitable for a rigorous demonstra
tion of correct security and integrity enforcement. 

In conclusion, it appears that the goal of obtaining secure 
operating systems, at least for centralized, medium scale 
machines, has been largely reduced to (high quality) engi
neering, with the most significant progress required in pro
gram verification. 
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KSOS-Development methodology for a secure operating 
system* 

by T. A. BERSON and G. L. BARKSDALE, JR. 
Ford Aerospace & Communications Corporation 
Palo Alto, California 

INTRODUCTION 

The goal of the Department of Defense Kernelized Secure 
Operating System (KSOS) project is to design, implement 
and prove a secure operating system. Specifically, it is de
sired that KSOS be designed and proven to enforce a se
curity model, derived from the security practices of the 
Department of Defense, referred to as "multilevel security." 

The proof required for KSOS is rigorous proof in the 
mathematical sense. The necessity of preparing for proof of 
a program so large and complex as an operating system has 
led to the adaptation and, where necessary, development of 
design and implementation methodologies for KSOS which 
are departures from the usual methods of systems program
ming. Specifically, KSOS has required formal specification 
of operation system design, automatic theorem generation, 
automatic theorem proof, selection and use of a verifiable 
programming language, and verification of operating system 
programs. KSOS represents the first industrial application 
of many of these techniques, and is breaking new ground in 
the construction and proof of large scale computer systems. 
This paper describes what methods were chosen for KSOS 
and how they are being applied. 

BACKGROUND-THE MODEL AND THE SYSTEM 
ARCHITECTURE 

The multilevel security model attaches a tag known as an 
access LeveL to every object managed by the system and 
places constraints upon the valid relationships between the 
access levels of interacting objects. 

The design of KSOS has been described in detail else
where. 1-5 A brief description of its architecture provides 
sufficient background for a discussion of the methodology. 
A KSOS system is comprised of 

I. A kernel,2 which performs operating system functions 
and which has the responsibility of enforcing the se-

* The work described in this paper was performed under ARPA Order 3319, 
Contract MDA903-77-C-0333 administered by the Defense Supply Service, 
Washington. The opinions expressed are those of the authors and not nec
essarily those of the Government or Ford Aerospace. 
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curity policy. The object types supported by the KSOS 
Kernel ary processes, process segments, files, devices 
and subtypes. The Kernel is motivated to perform ac
tions upon these objects by sequences of calls to the 
routines 'which the Kernel provides at its interface with 
the rest of the system. An important mechanism for 
enforcing the security policy is provided by compari
sons, made at kernel call time, between the access 
levels of the caller and of the objects the caller seeks 
to manipulate. 

2. An emulator,4 which uses the facilities of the Kernel 
to fabricate an (arbitrary) environment for user pro
grams. The emulator being prepared initially for KSOS 
emulates the UNIX** operating system. 6 The use of 
an emulator is convenient for applications which seek 
to exploit existing software, but is not strictly neces
sary. The KSOS design envisages that certain appli
cations will make direct use of Kernel facilities. 

3. Support software5 to aid in the day-to-day operation of 
the system, (e.g. secure spoolers for line printer output, 
dump/restore programs, portions of the interface to a 
packet-switched communications network, etc). These 
are collectively referred to as "Non-Kernel System 
Software" (NKSS). Because of its varied responsibil
ities, portions of the NKSS must from time-to-time be 
allowed to violate the security model in order to op
erate correctly. These portions are referred to as prh'
ileged NKSS. To a large extent, they represent a mis
match between the idealizations of the multilevel 
security model and the practical needs of a real user 
environment. The design of KSOS allows for these 
violations but seeks to minimize them by providing for 
the economical definition of finely grained privileges 
and mechanism for Kernel security support of user 
defined extended types. 7 

The KSOS components for which proof is required are those 
which are responsible for enforcing the multilevel security 
model, i.e. the Kernel itself and those portions of the priv
ileged NKSS. 

The remainder of this paper is organized around a schema 

** UNIX and PWBIUNIX are trademarks of the Bell System. 
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for the construction of provable systems. Initially only a 
brief overview of the schema is presented. This is followed 
by an elaboration of each step of the schema, first in general 
terms and then in terms of its impact upon KSOS method
ology. 

CONSTRUCTION OF PROVABLE SYSTEMS 

Figure I illustrates a general schema which, in principle, 
can be used to construct proofs that systems conform to 
arbitrary policies. It will be seen that the overall proof is 
constructed from two sub-proofs, namely 

PI-Proof that the system design conforms to the desired 
policy (property). 
P2-Proof that the implementation conforms to the proven 
design. 

From these there follows 

P3-Proof that the implementation conforms to the de
sired policy. 

Successful application of this schema requires that a great 
many careful preparations be made before the proofs are 
attempted. The various methodologies adopted for KSOS 
were chosen to ease the burden of these preparations. These 
methodologies have so far been useful in this role. In addi
tion, the discipline of following rigorous design methodolo
gies has yielded software engineering benefits which were 
unanticipated at the time the methodologies were adopted. 
These will be discussed in more detail below. 

FORMAL STATEMENT OF DESIRED PROPERTY 

Consider first those preparations involving the desired 
property of the design. Generally, there exists some informal 
statement of this property. Informal statements, written in 
natural language, are designed and may be adequate for 
human interpretation. They are however unsuitable as a 
touchstone for mathematical proof as they lack sufficient 
precision and are not in an easily manipulatable form. The 
informal statement of the property must therefore be con-

INFORMAL STATEMENT 
OF 

DESIREO PROPERTY 

INFORMAL 
SPECIFICATION 

OF DESIG N 

FORMAL STATEMENT 
OF 

DESIRED PROPERTY ___ ...... Pl: THAT DESIGN 

CONFORMS TO 
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P2: THAT 
,...-.....,.., IMPlEMENTATIO'l 
.J'----' CONFORMS TO 

DESIGN. 

Pl /I P2 -,. P3: THAT IMPLEMENTATION 
CONFORMS TO DESIRED 
PROPERTY 

Figure I-Schema for the construction of provable systems. 

verted into a suitable formal statement. Great care is re
quired at this stage to ensure that the formal statement 
accurately and adequately represents the intention of the 
informal statement. 

In the case of KSOS, informal statements of the desired 
security property are to be found in regulatory documents. 8,9 

These informal statements embody an intuitive notion of 
military security policy. They are widely applied and well 
understood. A mathematical model approximating this pol
icy was developed by Bell and LaPadula. 10 This model has 
been utilized as a formal policy statement in the design and 
verification of a security kernel 11 during a project which was 
a predecessor to the present KSOS project. Another similar 
model was described by Walter. 12 The formal policy state
ment being used for KSOS was prepared by generalizing 
from these two models and formulating the generalization in 
terms amenable to proof. A informal description of the 
model may be found in a companion paper. 5 Full details of 
the KSOS formal statement are shown in Reference 13. 

FORMAL SPECIFICATION OF SYSTEM DESIGN 

The next step in construction of a provable system is 
expression of the system design in a fashion which is suitable 
for the construction of a proof. Such an expression is re
ferred to as the system's formal specification. A formal 
specification may be viewed as a set of equations which 
describe the possible "states" of the system. 

Viewed this way, the preparation of formal specifications 
is not attractive to system designers. There are two main 
problems. The first is that the sort of state abstraction re
quired to formulate the equation set is not the same sort of 
functional or data abstraction in which the designer is trained 
and which (following tradition) he would otherwise use to 
express his design. The second problem is that adequately 
detailed specification of useful systems requires a large and 
unwieldy set of equations throughout which it is difficult to 
maintain consistency. 

Hierarchical development methodology 

Fortunately both problems may be alleviated by use of 
appropriate computer-based techniques. The techniques 
chosen for use in KSOS are embodied in SRI International's 
Hierarchical Development Methodology (HDM).14-16 HDM 
addresses formal specification problems by providing mech
anization for each of a series of steps required for system 
design and production. These steps are the decomposition 
of a design into a partially ordered hierarchy of modules, 
the specification of each module, the specification of the 
interfaces and mappings between modules and, eventually. 
the proof. All of these functions are performed by an inte
grated collection of supporting programs. 

In HOM as used for KSOS, each module is considered to 
represent an incremental abstract machine. This is imple
mented upon the abstract machines coming below it in the 
hierarchy. Each module is specified in terms of the data 
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types it manipulates, and in terms of functions. There are 
several kinds of functions. Primitive V-functions represent 
the state of the abstract machine. They have a value. De
rived V-functions also have a value which is computed from 
the value(s) of primitive V-functions. O-functions represent 
operations upon the state of the abstract machine by spec
ifying how the machine's state after the operation is related 
to the machine's state before the operation. OV-functions 
combine operation and state. This model of functional de
composition follows roughly from the early ideas of Par
nasY A large reduction in the problems of abstraction is 
due to this model. 

The abstract machines are specified in a nonprocedural 
language called SPECIAL (for SPECIfication and Assertion 
Language). 18 SPECIAL has the advantageous property that 
the effects of a computation may be specified independently 
from that computation's implementation. This is a vital pre
condition to design proof (PI in Figure 1). In addition, this 
property allows the designer to concentrate upon the struc
ture and functionality of his system, and to defer decisions 
about data representation and even algorithm choice until 
implementation. SPECIAL is supported in HDM by a lan
guage processor, called the Specification Checker. This pro
vides a number of largely syntactic tests which aid the de
signer in maintaining consistency of definition within 
individual modules and throughout a hierarchy of modules. 

Formal specification of KSOS 

The externally visible design of the KSOS kernel was 
decomposed and specified using HDM. Twenty modules 
were used to establish and support the functionality of the 
kernel interface. The hierarchy of these modules is shown 
in Figure 2. Each of these modules has been specified in 
sufficient detail to allow all the externally visible effects of 
each kernel call, or of any sequence of kernel calls, to be 
determined by inspection of the specifications. The size of 

LEVEL NAME ABSTRACTIONS 

19 KER kernel call interface 
18 SPF special functions 
17 PRO process operators 
16 IPC interprocess communication 
15 FCA file capabilities, open files 
14 SUB file subtypes. type extension 
13 MFS mountable file systems 
12 PST process state 
11 PVM process virtual memory 
10 SEG segments 
9 FIL file contents 
8 FST file state 
7 SMX security model 
6 PRV privilege control 

DIF device independent functions 
4 TIl object type independent information 

SYL system level 
2 SEN secure entity names, system namespace 

DIF device dependent functions 
0 MAC machine 

Figure 2-KSOS Kernel abstraction hierarchy. 

each module is dependent upon the nature of its abstraction 
and the ease of specifying how that abstraction might be 
produced in terms of functions available from lower level 
abstractions. 

There are 34 KSOS Kernel calls. The specification of the 
kerner s visible actions contains the definition of about 240 
functions, comprised of roughly 3000 lines of SPECIAL. 
The complete formal specifications of the KSOS Kernel 
have been published in Reference 2, and those of the priv
ileged portions of the NKSS in Reference 3. 

A small example (the single function SEGrendezvous) 
taken from the Kernel formal specifications is included as 
Figure 3 to give the reader exposure to the style and content 
of the work. SEGrendezvous is part of the mechanization 
of shared segments. The function is a derived V-function. 
It returns a value computed from the values of other V
functions. It takes three parameters, pSeid, rdvSeid, and da. 
The names "s<tid," "daType," and "RdvType" are user
defined type names. The semantics of SPECIAL call for the 
EXCEPTIONS to be evaluated in turn. If any of them are 
found to be TRUE, its associated label is ·'returned" as an 
error value and no further EXCEPTIONS are checked. If 
all of the EXCEPTIONS are FALSE the return value, 
segSeid, is calculated according to the specification in the 
DERIV ATION section of the function. 

Stated in slightly different terms, the precondition of a 
SPECIAL function is the conditional conjunction of the 
negations of its EXCEPTIONS. The postcondition of a SPE
CIAL function depends upon the type of function being 
considered. In the case of derived V-functions (such as this 
example) the postcondition is the DERIVATION. In the 
case of O-functions, the postcondition is the conjunction of 
the function's EFFECTS. 

Drmvbacks and benefits of formal specifications 

It is unfortunately true that the formal specifications of 
KSOS are difficult to read. This point is amply illustrated 
by Figure 3. Their poor reliability is due in part to the syntax 
of the SPECIAL language, and in part to the specification 
style adopted (style continues to evolve: see Reference \9). 
The specifications are nevertheless popular with KSOS de
signers and implementors. This is because they provide a 
medium in which design decisions can be expressed, dis
cussed and recorded with precision and with assured con
tinuation of design consistency. The designers and imple
mentors communicate effectively in terms of the formal 
specifications. This is certainly a major benefit and it was 
unanticipated when the methodology was adopted. 

Additional unanticipated benefits derive from the con
straint of working with a hierarchical decomposition. We 
have found it extremely difficult to make a clean decom
position and formal specification of a kludge. On several 
occasions during work on KSOS, difficulty in formulating 
a specification for a design has encouraged prompt reex
amination and subsequent simplification of that design. In 
other words, formal specifications help designers to under
stand and evaluate their product. 
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I 
I 
I VFUN SEGrendezvous(seid pSeid,rdvSeid; daType da)->seid segSeid; 
I 
I 
I 
I 
I 
I 
I 
I 
/ 

EXCEPTIONS 
KEsegBadName: -(EXISTS rdvTe x INSET SEGrdvTable() 

x.nameSeid=rdvSeid); 
KEsegBadLevel:-(EXISTS rdvTe x INSET SEGrdvTable() 

x.nameSeid=rdvSeid 
AND SEGshareCheck(pSeid,x.segSeid,da)); 

DERIVATION 
/ LET rdvType x= SOME rdvType y / y INSET SEGrdvTable() 
/. AND y.nameSeid=rdvSeid 
/ AND SEGshareCheck(pSeid,y.segSeid,da) 
/ 

/ 
IN x.segSeid; 

,---------------------------------------------------------------
Figure 3-Formal specification of the function SEGrendevous. 

DESIGN PROOF 

Consider now the next step in the provable system 
schema-the proof that the design conforms to the desired 
property. Slightly more rigorously, we wish to prove that 
the formal specification of the design implies the formal 
statement of the desired property. In practice, this inference 
is not proven directly. Instead, the formal specifications are 
processed to generate formulas relating the states of the 
specified design to the desired property. An attempt is then 
made to prove these formulas. For KSOS, the generated 
formulas are such that, for each specified function, the ac
cess levels of the objects manipulated are related to the 
access level of manipulator in accordance with the formal 
statement of the security policy. The formulas themselves 
take the form of inequalities upon access levels. 

The formula generator has information about the compu
tational model of HDM and about the "semantics" of SPE
CIAL. It also has implicit information about the formal 
model of security. An anticipated generalization of the for
mula generator would accommodate arbitrary formal 
models, perhaps expressed in SPECIAL. 

KSOS exhibits considerable novelty in its use of an au
tomatic design proof environment. During a predecessor 
project,l1 the generation of formulas and their proof as de
sign theorems was done manually. This manual work was 
labor intensive and mind-numbing; it required great vigilance 
against error. In KSOS the cost of proof and the risk of 
error are reduced by utilizing an automatic formula gener
ator coupled to an automatic general-purpose theorem 
prover. 20 To our knowledge, KSOS is the largest program 
for which automatic design proof along the lines sketched 
above has been accomplished. 

Proving the published KSOS design entails the generation 

and proof of about 500 formulas. This is routinely accom
plished in an entirely automatic fashion. The complete proc
ess requires about 10 CPU-minutes on a DEC KL-I0. This 
dramatic reduction in proof cost has made it feasible to 
include a feedback path not shown in Figure 1 wherebY' 
formal specifications giving rise to unprovable theorems are 
modified and the proof then retried. By this mechanism even 
details of the design can be coerced into conformance with 
the desired property. 

IMPLEMENT ATION 

Proof PI, that a formally specified design implies a desired 
policy, is a major milestone in the schema. The next logical 
step is to produce an implementation of that design. For 
this, an implementation language must be chosen. The trans
lation from formal specification to implementation is, in part, 
automable. However, completion of the task requires appli
cation of traditional inspection, review and testing methods. 
As the KSOS implementation effort is only just beginning 
at this writing, we are forced, in this section and the next 
on Program Proof, to discuss our plans, not our results. 

Choice of implementation language 

The peculiar nature of operating system programming pla
ces some well known demands upon programming lan
guages. In addition to these, KSOS places the additional 
requirement that the system implementation be verifiable, 
i.e., P2: proof that the implementation conforms to the spec
ificatinn. 

The following are the requirements for the KSOS pro-
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gramming language: 

a. The language must be well defined and be supported 
by a stable, efficient compiler, which produces efficient 
code. 

b. The language must provide "modem" control struc
tures, data structures, abstract types, type safety and 
machine-dependent scopes. 

c. The language must be compatible with HDM and be 
amenable to axiomatization. 

A short list of likely system implementation languages was 
prepared. These were Euclid, Modula, ILPL, Gypsy, Pas
cal, C and Ada. Of these, the most suitable on technical 
grounds appears to be Euclid. However, difficulties encoun
tered by the implementors of a compiler for Euclid have led 
to our choice of Modula as the KSOS implementation lan
guage. 

Mapping a formal specification into code 

Several levels of documentation and specification have 
been developed for KSOS. First, a system-level specifica
tion was produced. 1 Next, a design specification was devel
oped that included both prose and formal specifications for 
the major components of the system (e.g., Kernel, Emula
tor, NKSS).2-4 And finally, a product specification was de
veloped for each of the major components of KSOS. Each 
of these specifications is more detailed than its predecessor 
and defines the implementation more exactly. In concept, 
each successive specification provides a refinement of the 
ideas presented in earlier, higher-level specifications. 

Care must be taken to avoid the constant danger of in
consistency, both within a given specification level and be
tween levels. To guard against this, we have established the 
primacy of formal specifications in all questions. Thus, each 
of the managers, designers and programmers on the KSOS 
project has at least a reading knowledge of SPECIAL. 

There are some aspects in which any formal specifications 
bind their admissible implementations. Specifications writ
ten in the style used for KSOS bind the structure, function
ality and local assertions of the implementation. In order to 
exploit this binding we plan to create and use a software 
tool which will map from the formal specification domain 
into the implementation domain, producing implementation 
language skeletons for use and refinement by the implemen
tors. 

There is, in principle, no requirement that a given formal 
specification be implementable. Neither is there a require
ment that the structure of an implementation follow that of 
its specification. It seems to us, however, that both of these 
requirements increase the practical utility of incorporating 
formal specifications in a methodology for program devel
opment, and we therefore strive to meet them. We have 
shown how the KSOS formal specifications are used both 
manually and automatically to provide implementation guid
ance. The goal of decomposing the system specification into 
an easily implementable hierarchy was identified early in the 

KSOS project. The effectiveness of this choice will not be 
known until the implementation is complete. 

Implementation environment 

KSOS is being implemented in the environment provided 
by the Programmer's Workbench (PWB/UNIX).21,22 This 
program-development, management, maintenance and test
ing tool provides the facilities needed to carry out the com
plex development and maintenance activities required by 
the KSOS project. 

The development plan for KSOS requires that several 
small programming teams concurrently write and test por
tions of the system. Configuration control will be maintained 
through use of the PWB/UNIX's Source Code Control Sys
tem (SCCS).23 SCCS will be used to control all forms of 
machine-readab)e text (e.g., design notes, formal specifica
tions, implementations, test plans) created in conjunction 
with KSOS irpplementation. Use of SCCS will provide a 
complete audit trail of systems development, the ability to 
reconstruct any version of the evolving system and the basis 
for subsequent maintenance of KSOS. 

Inspection and Revie~v 

The accuracy with which verified formal specifications 
can be implemented has been the subject of much concern 
to the KSOS project. How can one ensure that an imple
mentation will perform exactly the specified function and no 
other? Complete code proofs (i.e. P2) of the implementation 
would perhaps answer this question, but they are not antic
ipated for KSOS. 

The function of ensuring an accurate match between the 
formal specifications and' their implementation is therefore 
assigned to a formal inspection process using the techniques 
described by Fagan.24 Two levels of formal inspection are 
planned. The first, called Design Completion Review, au
thorizes release of module designs for Critical Design Re
view by the KSOS customer. This review takes place when 
the detail design has reached the level that each design 
statement corresponds roughly to ten or fewer statements 
in the implementation language. The second inspection, 
called Code Completion Review, is scheduled after the first 
diagnostic-free compilation of the complete module. 

The focus of each inspection is to ensure conformity of 
the detailed design and implementation to the proven formai 
design specification. Every module must pass these two 
inspections. 

Testing for specification compliance 

The quality assurance efforts for KSOS seek to provide 
a series of convincing demonstrations of the security and 
completeness of the system. Inspection and review are two 
contributors to quality assurance; testing is another. 

The formal specifications are a useful guide to test case 
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selection. In particular. test cases are selected such that 
there is at least one test case for: 

a. The TRUE and FALSE cases of every specified EX
CEPTION condition. 

b. Both x=TRUE and x=FALSE conditions of every 
specified IF (x) THEN ... ELSE. 

c. Every specified (x)= >Q. 
d. Every possible type of x in every specified TYPE

CASE (x) OF .... 

Testing of a function is based on the proven formal design 
specification of that function. Test cases are automatically 
generated from the formal specifications and are then subject 
to an inspection process similar to those used for inspection 
of design and of code. 

IMPLEMENTATION PROOF 

The final step required to complete the schema for pro
duction of proven systems is to prove that the implemen
tation conforms to the proven specification. Hoare has 
shown 25

•
26 how such proofs may be constructed. In practice, 

these proof techniques have been successfully applied to 
isolated algorithms (e .g. Reference 27) and have led to spec
tacular insights about program construction. 28 However, 
there have not been any implementation proofs of operating 
systems. 

All the necessary methodological preparations for a com
plete implementation proof of KSOS are being made. There 
exist, of course, formal specifications. The implementation 
language was chosen to allow the formulation of proof rules. 
A theorem prover (the same one which is used for the design 
proof) is at hand. The KSOS contract calls for axiomatiza
tion of the KSOS implementation language and for creation 
of the necessary verification condition generator. However, 
it requires only "illustrative" code proofs, i;e. only portions 
of the implementation will be proved. 

These proofs will not be sufficient to complete P2, proof 
that the implementation conforms to the design. Nonethe
less, they will serve a very important function. They will 
illuminate the state-of-the-art in automatic program proof, 
providing not only experience in the necessary techniques 
but also quantitative data as to the tractability and econom
ics of proving large programs. There is no doubt that an 
estimate of the effort required to perform a complete imple
mentation proof of KSOS will be made, based upon data 
derived from the illustrative proofs. 

SUMMARY 

The KSOS project is extremely significant in the field of 
program development methodology. It makes initial indus
trial use of a number of techniques which were previously 
used only in academic and research environments. In par
ticular. it is novel in its large-scale use of formal specifica
tion. automatic theorem generation, language axiomatization 

and automatic theorem proof. These new techniques have 
been successfully integrated with more traditional ones such 
as programming teams, inspection and review. Careful uti
lization of these combined methodologies allows construc
tion of a rigorous proof that the KSOS system meets its 
stringent security requirements. More generally, the meth
odology mix and the experience gained in applying them to 
KSOS open the way for routine construction of computer 
systems whose vital properties can be convincingly proven 
concurrently with the development of the system. 
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KSOS-Computer network applications 

by M. A. PADLIPSKY, K. J. BIBA and R. B. NEELY 
Ford Aerospace and Communications Corporation 
Palo Alto. California 

INTRODUCTION 

Background 

The need for multilevel security in computer systems has 
become well known. In the military, lacking such systems 
makes costs higher than they should be because of the need 
either to replicate facilities or perform "color changes" 
(shutting down and purging systems between uses at vary
ing levels) in order to deny less-cleared users access to 
highly-classified information, and desirable functions which 
would require the controlled intermixing of data at different 
security levels are simply not yet done. The Government's 
concern with such matters is amply reflected in Reference 
9. Outside the military, it is clear that most if not all funds 
transfer systems, for example, would benefit from the other 
side of the security coin-that is, although the major military 
threat is compromise of data, the major finanCial threat is 
alteration of data. In both broad areas, a free-standing mul
tilevel secure operating system would be a distinct -asset. 
The Kernelized Secure Operating System is meant to be just 
such a system, and in these terms alone is of considerable 
interest. This paper, though, will address potential applica
tions of KSOS in areas other than as a free-standing system. 

Aside from use as a free-standing system,12 it is essentially 
the case that all other currently-envisioned applications of 
KSOS will involve intercomputer network environments. 
Under current consideration at varying levels of intensity 
are the use of KSOS as a containing operating system for 
communications subnetwork processors ("packet switches") 
themselves, Network Front-Ends, Network "Front Doors" 
(in which case the associated Host plays a "Back-End" 
roie), mini-Hosts (to support users at terminals), and nodes 
for the processing of military messages. Although only the 
last of these has at present been analyzed in considerable 
detail, all are interesting and all will be touched upon in 
some detail. 

KSOS's use in such applications is, as the title suggests, 
the main theme of this paper. However, it should be obvious 
that the mere act of inserting a secure component into a 
network architecture does not mystically make the network 
itself secure. Therefore, another important consideration 
which must be addressed is that the broad issue of just how 
to make a network secure is a complex one, and not nec-
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essarily "known" in any but the abstract sense. Not only 
is there little in the open computer security literature which 
deals with networks per se (as opposed to free-standing, 
single systems), 9ut the two examples with which we are 
most familiar7,14 are by two of the present authors-and each 
has reservation~ about the other's (fortunately, the reser
vations concern form far more than content). Thus, as we 
consider the use of KSOS as containing operating system 
for various network components in forthcoming sections, it 
will be an additional concern to keep track of how these 
components interrelate with the other components of the 
assumed or actual nets in question to effect the security of 
the network as a whole, and in order to do so sensibly we 
feel constrained to begin with what might appear to be a 
digression from the main theme of the paper-a discussion 
of security issues in networking in the abstract. 

Security issues in networking 

The problem 

As will be discussed in more detail below, the use of data 
communications networks in the implementation of infor
mation systems has materially increased the vulnerability of 
data to compromise and unauthorized modification. Sub
stantial efforts have been made to determine the cause of 
these vulnerabilities and remove them. This paper will pres
ent an overview of the techniques used to ensure the security 
of data transiting communications networks. In a sense, the 
point at issue is whether a network can be said to be "se
cure" if (and only if?) each of its components can be said 
to be ··secure." While the prerequisite of adequate proce
dural, personnel, and physicai security measures is acknowl
edged, these issues are not addressed here. Our concern is 
for technical measures that can be taken, within a network, 
to ensure data protection in accordance with an established 
security policy. 

Security definition 

Whether for free-standing systems or for networks, infor
mation system security addresses the problem of ensuring 
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that protected data is accessed in a legitimate manner by 
authorized users. The overall security problem is generally 
decomposed into three related but separable concerns: 

Data security-Ensuring that protected data is not dis
closed to unauthorized users. 

Data integrity-Ensuring that protected data is not mod
ified by unauthorized users or in a pro
scribed manner. 

Denial of service-Ensuring that access to systems is not 
maliciously denied. 

Current security technology has developed effective meas
ures only for the first issue. The problems posed by data 
integrity and denial of service are quite difficult, with no 
currently accepted general solutions available. However, 
the means used to ensure the data security of a computer 
system often greatly increases the system's data integrity 
and service availability likelihoods. The following discussion 
will, though, be limited to explicit discussion of data security 
protection techniques. 

Security threats and vulnerabilities 

The design of secure systems explicitly assumes not only 
the presence of external users that may attempt to penetrate 
the system, but also the existence of malicious software 
embedded within the system that may be used to improperly 
obtain information. Information systems (again, whether 
free-standing or networked) are susceptible to penetration 
threats presented from two sources: 

External threats-Presented from" outside of' the system 
(e.g., by users at terminals or, network
specifically, by "wire-tappers" on the 
transmission medium). 

Internal threats-Presented from software resident within 
the system. 

A second classification dimension considers the means by 
which information is compromised: 

Overt-Transmitted data is directly compromised (e.g., 
packet delivered to an unauthorized user). 

Covert-System control information is used to illicitly 
"leak" information (e.g., network-specifically, 
use of the packet transmission rate as a carrier 
to be modulated with "leaked" information). 

Ample evidence is available as to the ease in which free
standing systems designed without security in mind can be 
penetrated by external means. 4 Further evidence is available 
as to the ease with which trusted individuals (particularly 
software personnel), if subverted, can embed "Trojan 
Horses" within software systems permitting exploitation of 

internal threats. Many current systems permit mechanisms 
that can be exploited by Trojan Horse software to "leak" 
compromised information at terminal speed (l00-1000 b/s) 
and several examples can be shown to permit even higher 
bandwidth. 

Although the state of security kernel technology lends 
credence to the belief that multilevel secure free-standing 
operating systems are near at hand, the computer security 
literature does contain one interesting open problem which 
bears heavily on computer network security. This problem 
is referred to as the "Confinement Problem." Identified by 
Lampson,lo the Confinement Problem deals with the possi
bility that unverified code (say, a compiler) invoked by a 
highly-cleared user might, unknown to the user, have been 
maliciously programmed to release to less cleared individ
uals classified information which it acquires while executing 
with the first user's access privileges. The means of releasing 
the information are called "channels,"which fall into three 
classes. The first class, "storage channels," consists of files, 
registers, memory locations and the like. The second class, 
"legitimate channels," is taken to cover billing information 
and the like. The final, most pernicious class, "covert chan
nels," consists of modulating shared resources such as pro
cessor usage or paging rate in a manner observable by some 
other, less cleared user. As Lipner observes, 11 proper ap
plication of the fairly well known security kernel theoretic 
"*-property" can deal with the first two classes, bu' covert 
channels remain a difficult problem. 

Of course, it is possible to argue that for complete secu-.. 
rity, all code must be verified, but this is precisely the 
exercise which the kernel approach is intended to eliminate. 
We assume it will not be the case that entire operating 
systems will be verified for the foreseeable future (until and 
unless such verification can be highly automated), and in
quire instead into other means of dealing with covert chan
nels. Here we become involved with policy considerations, 
for the examples cited in the literature tend to deal with 
rather slow channels and in some cases conscious decisions 
have been made not to deal with explicit blocking of covert 
channels in order to avoid the attendant inefficiency. Net
works, however, can entail such high speeds that it is at 
least plausible to assume that steps must be taken to prevent 
them from being used as covert channels. (After all, the 
Host's interface to a local terminal is currently usually no 
faster than 1200 bits per second and it "knows" where the 
terminal is physically, whereas the interface even to an 
ARPANET packet switch is in the 100-300,000 bps range 
and the bits are going into another computer which may 
itself contain malicious software.) 

As discussed in more detail elsewhere,15 several covert 
channels may be identified that could permit hostile pro
grams in network Hosts to communicate at military teletype 
speeds with hostile programs in CSNPs even if the contents 
of actual messages are protected by encryption and the 
CSNPs are kernelized. Fundamentally, the channels mod
ulate the observable parameters of transmissions (address, 
length, and timing) to communicate information despite the 
prntectinn nf the data portions of the transmissions. 



Security countermeasures 

To effectively prevent exploitation of these threats a 
threefold approach is required: 

• Determine the security policy to be provided and en
forced by the network. 

• Provide the mechanisms to enforce this policy. 
• Ensure that the mechanisms operate reliably and can

not themselves be subverted. 

Secure systems technology 

The technology for the development of secure systems is 
based upon three components (the first two apply to both 
single systems and networks, the last is network specific): 

• An effective software development methodology, thor
oughly based on the constructive approach to software 
reliability. 6 

• A system architecture that completely identifies the 
software and hardware responsible for security, pro
tects it from tampering, and ensures that it provides a 
compromise-proof execution environment for all other 
software (e.g., Reference 12). 

• Prudent use of encryption for the protection of data 
during transmission through an insecure medium. 

Network security 

A secure network can be considered to be composed of 
two elements: 

• Hosts or subscribers. 
• A data communications subnet. 

The most common architecture for the data communications 
subnet is currently a network of communications switches, 
routing packets of data from sending to receiving Hosts via 
point-to-point communications lines. However, the security 
requirements for the communications subnet are not limited 
to packet switched architectures. Other sub net architectures 
having similar requirements include those using wideband 
satellite channels as a communications backbone and local 
networks based on communications busses or radio. 

We assert without further argument that a network (Host 
and subnet) can be considered secure if: 

• Multilevel network Hosts properly protect data while 
the data is resident within the Host and properly label 
data with its classification when submitted to the com
munications subnet for transmission to another Host. 

• The communications subnet restricts unilevel Hosts to 
receive and transmit only data labelled with the clas
sification each is permitted to process. 

• The communications sub net maintains the integrity of 
transmitted data, particularly its classification label. 
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•. The Confinement Problem is suitably dealt with, either 
by policy decision or by means detailed below. 

• Communications lines are protected from compromise 
or modification (usually through encryption). 

ALTERNATIVE SECURE NETWORK 
ARCHITECTURES 

One more apparent digression from the main theme seems 
relevant: In light of the cost of "verification" of the separate 
components of a network, it is tempting to consider whether 
a· network can safely be partially .verified, in the sense of 
verifying only the Hosts andJor their Network Front Ends 
(NFEs) or only the communications subnetwork processors 
(CSNPs), and not the other logical level. That is, can Hosts/ 
NFEs be prevented from allowing compromise to occur, or 
can CSNPs be eI).listed to block attempts to transfer illicitly
acquired information from compromisable Hosts, in each 
case without th.e active cooperation of the other? 

Host-Only verification 

By "Host-Only" we actually mean a secure network ar
chitecture wherein the CSNP level is not verified. In order 
to be assured that the CSNP cannot "spy" on data or de
liberately misroute it, there must, of course, be an appeal to 
some sort of rather sophisticated encryption hardware. We 
note this fact here and pass on, as a discussion on encryption 
is well beyond the scope of this paper. 

Because networks can in general consist of heterogeneous 
Hosts, we cannot simply assume that all Hosts will be mul
tilevel secure. So, if only the Hosts' logical level of a net
work is to be verified, given that some to-be-netted Hosts 
cannot in principle be verified, it must be assumed that such 
Hosts would be front-ended by verified NFEs and that such 
Hosts have no access to the "outside world" except through 
their NFEs. (Note that from "the network's point of view" 
a front-ended Host is indistinguishable from a conventional 
Host.) The key point is that we want to be able to posit the 
trusted nature of the Network Control Program involved (by 
which we mean the network-related software which inter
prets the Host-Host and Host-Switch Protocols in either the 
Host itself or the NFE) so that we can consider whether the 
Confinement Problem can be dealt with by means of having 
the (trusted) NCP block the channels through which com
promise could occur. 

Taking what appears to be the strongest channei first, ihe 
use of message lengths as codes could basically be blocked 
by a trusted NCP's padding up to packet boundaries with 
null characters, which would then be encrypted and unde
tectable by the presumed confederate code in the CSNP. 
The problem with padding, of course, is that it inflicts a 
throughput penalty on the network in question. Also, it is 
not foolproof, as in networks that ailow multi-packet trans
missions "short" (single packet) and "long" (maximum 
packets) transmissions could be used as "bits." Indeed, the 
number of bits necessary to express that maximum number 
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of packets are essentially usable by a hostile transmitting 
program if throughput is being conserved by only rounding 
up to packet boundaries instead of absorbing the full penalty 
of rounding up to maximum length. 

Blocking the timing channel is also simple in principle, 
but may cost even more dearly when it comes to efficiency. 
That is, the trusted NCP could maintain an effectively-con
stant rate of observable traffic by furnishing dummy traffic 
when it has nothing to transmit and/or by transmitting only 
at fixed time intervals. The impact of such measures would 
have to be carefully assessed for given proposed networks. 

Assuming dummy traffic, the address field channel can at 
least be masked by the expedient of "sending" the dummy 
traffic to random addresses (where it would, of course, have 
to be detected and discarded). This tactic, too, would have 
an unfavorable impact on throughput. Further, close anal
ysis by specialists would be required to determine for given 
circumstances just what rate of illicit communication could 
still be maintained through the "noisy" channel the address 
field would still represent. 

We see, then, that the effects of attempting to block the 
confinement channels when the CSNP is not verified are at 
best conjectural. In circumstances where either the threats 
to the software are deemed to be acceptably low (i.e., where 
the Confinement Problem is dismissed as a matter of policy) 
or the difficulties in verifying the CSNP are unacceptably 
high, however, the Host-only partial verification approach 
would seem to be better than nothing. 

CSNP-only verification 

In the Host-only verification case, we did not have to look 
closely at the nature of the verification because the key 
issue was the effects of attempting to have the NCP block 
the confinement channels which otherwise could be used to 
compromise classified information. In the CSNP-only case, 
however, the nature of the verification is extremely impor
tant, for it has been proposed that a particular kind of CSNP 
verification can lead to a secure network despite the poten
tial presence of confinement channels (cf. Reference 14). 

The reasoning can be expressed as follows: Suppose a 
given Host contains a hostile program attempting to convey 
information to a confederate outside the Host. Suppose fur
ther that its CSNP contains a hostile program which will 
attempt to aid the Host-side program by observing the cited 
confinement channels and, by virtue of being within the 
CSNP, passing the derived information on to a human agent 
at some other Host (presumably an unclassified Host) on the 
net-a Host, that is, which would otherwise be at an inap
propriate level to communicate with the first Host. If it 
could be guaranteed that the second act of communication 
can and will be prevented (i.e., that the presumed hostile 
program in the CSNP cannot "talk to" the agent), then it is 
a matter of indifference whether or not the first communi
cation has taken place (i.e., the Host's and CSNP's hostile 
programs' "talking to" one another). The claim, then, is 
that a properly kernelized switch can indeed prevent just 

such forwarding of information as is necessary to make the 
confinement channels work. 

For Hosts without multilevel security, the CSNP must 
"know" the current level of operation. For Hosts with mul
tilevel security, the Host is trusted to label each transmission 
to the CSNP. In both cases, the code that manages the Host
CSNP interface resides within the CSNP's kernel. Thus, 
any message from the Host to the CSNP will have a label 
representing the security level of its contents indelibly as
sociated with it. Then, by virtue of the *-property, any 
untrusted code elsewhere in the CSNP which deals with a 
given message (the routing algorithm, say) should be de
barred from writing to any destination which has an inap
propriate level (the code that manages the CSNP-to-net
work/communication line interface also being within the 
kernel). So only if there were some means of beating the 
*-property within the CSNP could effective compromise 
occur. Although a purist might argue· that finding such a 
means is not logically impossible, the overall case for basing 
the CSNP on a security kernel seems to be a strong one. 

Interim conclusions 

We see from the previous and somewhat sketchy argu
ments that it would be more desirable, from the viewpoint 
of secure intercomputer network architecture, to have ver
ified comm subnet processors than verified Hosts/Front
Ends if only the one or the other could be obtained. Unfor
tunately, when we return to the main thrust of this paper 
and begin to consider applications for KSOS in networking, 
the a priori case for attempting to use it as the containing 
operating system for a CSNP turns out to be the weakest of 
the cases for networking applications of KSOS currently 
under consideration. However, it should be realized that it 
is only the somewhat esoteric Confinement Problem which 
militates against the desirability in the abstract of the more 
feasible "secure NFE" architecture. 

SECURE CSNP APPLICATION 

The first potential networking application we will address 
in some detail has already been touched upon-What of 
using KSOS as the containing operating system for the· com
munications subnetwork processor (usually, but not neces
sarily, the "packet switch") itself? The motivation for such 
an application is abundantly clear, for the in-principle case 
for overall network security is strongest when a verified 
CSNP is available (with, of course, suitable encryption or 
physical protection of relevant transmission media). 

In practice, however, the following a priori argument 
would have to be disproved or otherwise avoided before a 
KSOS-based CSNP would make sense: The most important 
aspect of CSNP operating systems is that they must be in 
some sense "minimal"; that is, as opposed to general-pur
pose time-sharing operating systems, CSNP operating sys
tems must be able to display the performance characteristics 
of so-called "real-time operating systems" in order to 



achieve the level of throughput necessary for their role in 
the network. KSOS, on the other hand, is specifically in
tended to support a general-purpose time-sharing system in 
its primary design role. Thus, for example, several file-sys
tem-related primitives are included in the KSOS kernel 
which would simply "get in the way" of real-time consid
erations. So there must be considerable caution exercised 
on the fundamental performance issue, simply because of 
the natures of the two sorts of beasts involved. 

A nearly obvious counter-argument suggests itself, of 
course: Why not simply excise those portions of KSOS 
which are superfluous to real-time use? The answer appears 
to be a further question: Would doing so necessitate re
verification of the resultant system (assuming, that is, that 
there are no primitives missing for real-time use)? If so, then 
it is by no means clear that'whatever "leg up" we get from 
the fact that a similar system has already been verified is 
worthwhile in comparison to the verifying of a different 
system which was specifically designed for real-time use. At 
this writing, we know of no concerted efforts to investigate 
these issues. However, as will be seen directly, similar ques
tions arise in the on-going investigation of another potential 
KSOS application, so the situation in regard to CSNPs is 
not purely speculative. Further, it is an interesting theoret
ical problem to consider whether the verification process of 
original KSOS might not be arguably invariant under strict 
subtraction of primitives, in which case appropriate surgery 
could be performed "for free." 

SECURE NETWORK FRONT-END APPLICATION 

By "network front-end," we mean a separate system, 
closely coupled to a Host, which is interposed between the 
Host and a network (or networks) for the primary purpose 
of offloading as much network-related software as possible 
(including the generic Network Control Program at least, 
and process level or applications protocols as feasible) from 
the Host, for reasons of efficiency and/or implementation 
ease. We note that in the present context the attachment 
strategy may be either "rigid" (emulating a device or de
vices "known" to the Host-typically either a common 
device controller or specific terminal(s)) or "flexible" (in
terpreting a compact Host-Front End Protocol in both Host 
and NFE), despite the fact that in the general networking 
arena the flexible approach is theoretically far superior. 

The motivation for a secure NFE (SNFE), then, would 
be the sum of the motivations for a conventionai NFE 
(CNFE) plus whatever assurances of overall network se
curity the SNFE might entail. Clearly, when one wishes to 
attach older operating systems to networks, not only is it 
desirable to avoid consuming limited space and time re
sources by implementing an "inboard" NCP, but it is almost 
inconceivable that such Hosts could be made secure in their 
own right. Thus, a secure NFE seems quite attractive in 
principle. 

Architecturally, the crucial issue is what to do about the 
Confinement Problem. As we have already noted, without 
highly specialized crafting of the CSNPs it is possible that 
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mali.cious software in the Host could establish covert com
munications channels to malicious software in the CSNP. 
Presumably, were the CSNP so crafted as to defeat the 
confinement channels, there would be little point in inter
posing SNFEs anyway, as they would almost surely be less 
throughput-efficient than CNFEs. The implicit security ar
chitecture in which an SNFE makes sense, then, must be 
one involving Host-only partial verification, wherein all 
Hosts not multilevel secure themselves must be mediated 
by SNFEs. Of course, it also makes sense to require a 
SNFE if it is desired to outboard the NCP of a multi-level 
secure Host for either efficiency or flexibility reasons even 
in: a security architecture wherein .the CNSPs are verified. 
Also, as noted earlier, the cost of blocking confinement 
channels is at present conjectural, assuming that the chan
nels are not ruled out of consideration as a policy matter. 

If such provisos are acceptable, the question reduces to 
the appropriateness of KSOS as the containing operating 
system for an SNFE. As in the case of KSOS for a CSNP, 
the major concern is that the demands of the role are essen
tially real-time. It is the case, however, that limited expe
rience with CNFEs suggests that these demands are less 
onerous in the NFE area than in the CSNP area. 

SECURE NETWORK FRONT DOOR APPLICATION 

By "network front door" we mean an NFE-like system 
with a potentially significant difference-rather than offload 
network software for the purpose of doing general network
ing, the Front Door is interposed between Host and net for 
the sole purpose of allowing a given application on the Host 
to be made available to remote users. The primary currently
envisioned application of such a "Back-End" Host would 
be to run a pre-existing data base management system. 

The motivation for a Secure Network Front Door (SNFD) 
is quite apparent: It is axiomatic that "security" cannot be 
retrofitted to existing systems; yet forthcoming networks 
will make it possible for users at various security levels to 
access existing systems which run important applications 
sub-systems, particularly data base management systems 
(DBMSs); so if an SNFD can enable such users to access 
such systems with some degree of confidence that data will 
not be compromised in so doing, it might well be superior 
to doing frequent "color changes" on the relevant Hosts. It 
must be noted, though, that the degree of confidence is 
debatable. The problem is that a sufficiently penetrated 
Back-End Host might "lie" to its SNFD about what output 
is destined for which user, thus achieving direct compromise 
rather than the sort of indirect, Confinement Problem com
promise we've been focusing on. Allowing only one user in 
from the net to the Host at a time might mitigate matters, 
but the potential difficulty remains, and, as with the broad 
Confinement Problem issue, must be dealt with as a policy 
matter. 

Architecturally, the accuracy of the levels of the users 
must be guaranteed, either by verified CSNPs or by a model 
which ensures that all active access to the net is via a Host 
or a mini-Host with multilevel security; the Back-End Hosts 



378 National Computer Conference, 1979 

would be allowed only passive access-in the sense of being 
debarred from initiating logical connections "to" the net. 
Between the passive role of the Back-End Host (which ef
fectively eliminates address modulation), the interactive na
ture of the DBMS application (which suggests transmissions 
will-or can-be kept short so as to minimize the likelihood 
of length modulation), and the consideration that no user
written code would need to be invoked in the Back-End, it 
can be argued that the SNFD, while not in principle leak
proof, at least does not present a particularly high Confine
ment Problem risk. 

As to the applicability of KSOS to the SNFD, a priori 
concern with performance issues is certainly far less than in 
the CSNP and NFE cases, for we envision a user load 
"through" the Front Door comparable to that for free-stand
ing KSOS use. Further, the sort of load presented-which 
we take to be fairly modest interpretation of the query lan
guage traversing the logical connections in order to confirm 
that the user is not directing the Back-End to deal with a 
data base access to which is not appropriate given the level 
of the connection-appears to be no worse than comparable 
to the computational load one might anticipate in the pro
gram development environment. Indeed, unlike the CSNP 
and NFE applications, it is at least plausible to imagine that 
the standard KSOS operating system emulator might also 
be usable for the SNFD application, thus easing implemen
tation even more. 

SECURE NETWORK MINI-HOST APPLICATION 

By "network mini-Host" (NMH), we mean a system es
sentially dedicated to the supporting of terminal users whose 
real computational work is to be performed on the full-scale 
Hosts attached elsewhere on the net. The NMH is a familiar 
concept from existing networks, particularly the ARPA
NET, where the terminal support (but not the packet switch) 
aspects of the "TIP" (Terminal IMP) are almost exactly 
what's implied by the NMH. 

Motivation for a conventional NMH is largely economic. 
It was, after all, much less expensive to sprinkle TIPs around 
the countryside than H6180s, PDPlOs, or whatever the full
scale Host of one's choice is. Similar considerations would 
of course also apply to secure networks; but here there 
would also be a compelling security-architectural principle 
available as well. For, as has already been implied, in situ
ations where the level of the user must be guaranteed to be 
accurate, it is possible to fulfill the goal by forcing all active 
access to the net to come through a multilevel-secure point, 
whether full-scale Host or NMH. (This model would be 
sufficient, but is not, as it happens, necessary, in that given 
a secure comm subnet it is possible-though awkward-to 
reflect "color changes" of unilevel secure Hosts and to 
simply multiply NMHs to the extent necessary to allow 
them to be unilevel too. On the other hand, for environments 
in which it is not feasible to have a secure subnet, it would 
seem that control of all entry points is a very desirable 
attribute. ) 

As with the S N 1-'D. the N MH application would appear 

to place only modest demands upon KSOS, qua operating 
system. In fact, the NMH use for KSOS seems to be the 
most likely of them all to come about, largely because it 
essentially comes "for free." Although some fine-tuning 
might be necessary in order to support the rather large 
numbers of terminals typically associated with this sort of 
application, at this stage it seems likely that simply not 
making compilers available on NMH versions of KSOS 
would liberate enough capacity for doing terminal support 
comparable to that done on similar contemporary systems. 
(Given the full range of utility software, a "midi-Host" could 
also be envisioned.) In terms of additional programming 
effort implied, if the Host-Host Protocol which "comes 
with" KSOS is applicable, only relatively straightforward 
process-level protocols need be done-and at least a pri
mitive virtual terminal protocol will be available at some 
level. 

MILITARY MESSAGE PROCESSING SYSTEM 
APPLICATION 

The foregoing applications were, for various reasons of 
space, time available, and point in time of writing, neces
sarily discussed in rather general terms. We conclude with 
an application the investigation of which has proceeded far 
enough that we can offer a noticeably more specific treat
ment. 

Introduction 

By "Military Message Processing System" (MMP), we 
mean an essentially free-standing system which serves as a 
node on a network of, at least, many such systems (and 
potentially on a general-purpose network), in order to proc
ess prescribed types of text messages in prescribed fashions. 
Thus, the network security architectural points already 
raised come into play here as well. For example, provided 
that they can be constrained to communicate only with one 
another, secure MMPs would be usable on unverified sub
nets (subject to Confinement Problem considerations), and, 
given verified subnets would be still more economical by 
virtue of being multilevel secure-in that they would obviate 
the necessity ofunilevel replication. (We take the motivation 
for MMPs to be self-evident.) 

Under Navy sponsorship, considerable research has gone 
into Military Message Processing, under the collective head
ing of "the Military Message Experiment.' '2,8,16,17,1 Military 
Message Processing systems are fully automated, or "third
stage" (cf. Reference 3, Table 2), message-handling sys
tems. This means that a MMP system must be capable of 
complex message composition, distribution, selection, and 
analysis. To perform such tasks, any MMP implementation 
must rely on fully sophisticated and complete computer sup
port. We believe that the KSOS Kernel provides such sup
port in a way well suited to MMP-style communications. 
Without question. a MMP system could be implemented 
using KSOS itself as the underlying operating system (con-

I 



sider the Mitre implementation under Tenex1
). Indeed, all 

the required functionality, without the extra (not desired) 
functions and structures particular to the UNIX* time-shar
ing system, are available from the Kernel alone. 

MMP requirements and their satisfaction 

U sing several documents generated by the MMP com
munity, we have compiled a number of either mandatory or 
desirable properties of ~nYfP systems. Such properties are 
now presented within the classifications' security, function
ality, and performance. 

Security 

Several documents (Reference 13, p. 6, Reference 1, p. 1, 
Reference 17, pp. 2, 5) establish standard DoD security 
policy as the basis for security controls within MMP. Such 
policy includes the classifications UNCLASSIFIED, CON
FIDENTIAL, SECRET and TOP SECRET; and the concept 
of information compartments such as NATO or NOFORN. 
Each entity within the system is considered to be at a par
ticular security level, which encompasses one classification 
and a set of compartments. The security policy prohibits 
flow of information from a higher classification to a lower 
classification, or from one compartment into another. In 
addition to security controls, MMP systems must provide 
discretionary controls to implement privacy measures (Ref
erence 13, p. 6, Reference 17, p. 2, Reference 16, p. 17). 
These are used to control access to information by individ
uals and groups. 

The security area is clearly satisfied by KSOS. Not only 
is the DoD security policy deeply embedded in the KSOS 
Kernel, but also the Kernel will be verified mathematically, 
using proof tools developed in part by Stanford Research 
Institute (cf. Reference 6), to adhere to the policy. In addi
tion, the Kernel provides UNIX-style discretionary access 
controls on all types of objects. 

Functionality 

Functionality required for MMP systems is discussed in 
this section; where appropriate, the Kernel's satisfaction of 
the requirements will be indicated. First, the more primitive 
support functions of a system are discussed. Then the user 
level functions are discussed, along with their implications 
for system functipnality. 

• Direct-Support functions 

Support of processes. The need for large numbers of pro
cesses (on the order of tens of processes per user), and for 

* UNIX is a trademark of the Bell System. 
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flexiple handling of them, is emphasized in several refer
ences (Reference 1, p. 5, Reference 17, p. 19, Reference 2, 
p. 20). Some references indicate that one or two processes 
are necessary for each security level classific3;tion convo
luted with exact set of compartments, (e.g., Reference 17, 
p. 19). Specifically, the Kernel must be able to: 

a. Support many processes 
b. Allow fast process creation and deletion 
c. Switch between processes with little overhead (most 

processes do small amounts of work at a time) 

While it is difficult to predict the level of performance of the 
Kernel in these aspects of process handling, there is good 
reason to expect it will do well. The ability to provide a 
satisfactory implementation of UNIX would imply at least 
the first two, and possibly the third. Since it is the Kernel, 
and not KSOS, that is under discussion, one can conceive 
of small special-purpose limited-context processes with 
characteristics suited to a MMP system, but not available 
under UNIX. 

Corresponding to the ways messages are traditionally han
dled (Reference 8, p. 12, Reference 2, p. 21), inter-process 
communication must be available in both .. message" mode 
and "interrupt" mode. Message mode communication pla
ces a message in a queue where it stays until explicitly read 
by the receiver. Interrupt mode communication preempts 
the receiver's execution so that the message is handled im
mediately. Both styles of inter-process communication exist 
in the Kernel as currently conceived. 

Support of files and devices. Ames (p. 5) indicates that 
size of information objects should depend on the application 
itself. Ideally, then, the underlying system ought to support 
efficiently objects of greatly varying size. In particular, very 
small objects on secondary storage must be reasonable to 
use. The flexibility of the KSOS kernel provides for such 
objects. 

The actual structure of a file system in a MMP system is 
likely to be quite different from what conventional operating 
systems provide. Thus, another advantage of the Kernel is 
its provision of a fast, simple underlying flat file system out 
of which an appropriate structured file system can be built. 

The major security issue in device handling is providing 
a secure user interface, or secure terminal handling. A sig
nificant choice to be made in this regard (and regarding all 
devices) is whether a terminal is at a single security level at 
any time, or whether it may be used as a multilevel device. 
Also, the security level may be established externally, via 
established lines to limited-access terminals; or internally, 
via user identification. The Kernel allows single-level ter
minals with level established via user identification. Other 
important device uses are hardcopy output (line printers, 
etc.), and archiving and disk save and restore (magtape). 
Complete (level-multiplexed) handling is provided for such 
uses by the Kernel, as well as for secure terminal handling. 
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• Indirect-User-level functions. 
The remarks of this system indicate briefly the nature of 

the user interface of a MMP system. It is not possible to 
show point by point that the Kernel can support the given 
requirement. However, after thorough examination of the 
Kernel design while considering these requirements, we are 
convinced that none of them needs any capability not found 
in the Kernel. 

Message attributes. Messages must be divided into sec
tions (header, address, subject, text, comments), each of 
which possesses an independent security level (Reference 
I, p. 3, Reference 17, p. 7, Reference 8, p. II). A message 
also must possess a priority, or degree of urgency, that 
affects its handling. 

Sending. Sophisticated message composition facilities are 
provided. External documents (files, other messages) may 
be referenced and included in a message without losing 
context. Special handling of composition is provided for 
responding to received messages, including direct reply and 
forwarding. During the composition of a message (any time 
unlil released by the composer), the classification of the 
message may be changed (including being downgraded). Cf. 
Reference 13, p. 2, Reference 17, p. 13, and Reference 8, p. 
36. 

Receiving. Received messages may be displayed and 
printed in various ways. Messages may be moved into user 
files. Messages to be examined may be selected in various 
ways, including order of receipt and by content. Cf. Refer
ence 13, pp. 3, 4; Reference 17, p. 12; and Reference 8, pp. 
12, 15,20. 

Administration. Terminals and users are identified to as
sure proper clearance. A specified minimum of on-line stor
age for messages must be supplied. An archive facility for 
messages exceeding on-line storage is provided. Unusual or 
critical events are logged. Cf. Reference 17, p. 15, Reference 
13, p. 6. 

Performance 

We use "performance" to mean how well the user per
ceives that the system does its job. In other words, given 
the system possesses the required functionality at all levels, 
does the user get comfortably fast responses, is the system's 
interaction with him generally comprehensible. In the user 
environment in which MMP systems must exist, high per
formance in this sense is absolutely necessary. The users do 
not come from computer science backgrounds, and are not 
likely to be tolerant of long waits, low reliability or a large 
amount of training in order to use the system. Of course, 
until KSOS is actually subjected to the test of real usage by 
real users, we can only conjecture about its performance in 
this sense, but we know of no reason to suppose it will be 
other than acceptable. 

Cost/Benefit summary 

A major cause of inefficiency in MMP systems up to now 
has been the mismatch between the external requirements 

and the underlying support facilities. We have shown infor
ma]]y that the KSOS Kernel is we]] matched to the needs of 
MMP, providing in an efficient, flexible manner the essential 
security, functionality, and performance. The Kernel is ob
viously not a MMP system in itself, but the effort to develop 
such a system using the Kernel is likely to be less than that 
experienced in other instances, also because of the suitabil
ity of the Kernel for this application. Little or no modifica
tion of the Kernel (almost surely none requiring reverifica
tion) will be required to enable its use for this application. 

CONCLUSIONS AND FUTURE DIRECTIONS 

In conclusion, we observe that, based on the foregoing, 
there are several networking applications in which KSOS 
may be expected to playa role, either in whole or in part. 
(That is, either a]] of KSOS, Kernel, trusted processes, and 
Emulator, may be employed, or just the Kernel and, per
haps, the trusted network software). Investigations are ac
tively under way in the Front End and Front Door areas, 
and the Military Message area has already been investigated 
to a sufficient extent to engender reasonable confidence in 
KSOS's utility. However, it is fair to say that none of the 
currently-considered application areas is at present a "sure 
thing." Therefore, it would seem that the most important 
future directions for KSOS networking applications to take 
lie in the following realms: the issue of removing superfluous 
primitives must be resolved; other efficiency areas must be 
investigated; closer scrutiny must be given to the overall 
network security implications of interposing verified com
ponents at various points in specific network architectures; 
and, although it was not touched upon in the body of the 
paper, we would be remiss not to mention the overriding 
open issue of secure networking-just what are the right 
sorts of "secure" higher-level protocols to implement in the 
secure components which are becoming available? 
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Considerations in the employment of blind computer 
professionals 

by JAMES A. KUTSCH, JR. and KIMBERLY B. KUTSCH 
West Virginia University 
Morgantown, West Virginia 

INTRODUCTION 

According to sections 503 and 504 of the Rehabilitation Act 
of 1973, employers are required to hire qualified handi
capped persons and, where necessary, to provide reasonable 
accommodations relating to accessibility to their actual job 
station and to work environs-including rest rooms, recre
ation areas, eating facilities, etc. Further, companies holding 
federal contracts are required to have an Affirmative Action 
Program to seek out qualified handicapped individuals as 
potential employees. 

When a person is handicapped, there is a tendency for 
this potentially productive person to be excluded from the 
work force. Yet, given opportunity and ambition, these peo
ple rise just as far as they would under more 'normal' cir
cumstances. Why, then, are they discriminated against? 
Perhaps one reason is lack of understanding of the 
considerations necessary when employing the handicapped. 

In this paper, we will deal with the problems encountered 
by the blind in the field of computer science. 

THE BLIND PROGRAMMER 

It is assumed that we will be dealing with a singularly 
disabled, i.e. blind, reasonably intelligent and trained com
puter professional. The most immediate problem he or she 
will have is in handling the output from the computer. Ob
viously, the input to the computer is no problem, since key 
punches and terminals are keyboard devices. There is only 
a slight inconvenience involved in learning the location of 
the special symbols, as each device differs somewhat. This, 
however, is also an inconvenience to the sighted program
mer. 

Historically, there are many solutions to the problem of 
output. 1-3 The simplest is to have someone read the printed 
material. The drawback, of course, is that this ties up two 
people to do one job. This is, however, an adequate solution 
if two programmers are working side-by-side on the same 
problem, or if the blind programmer is acting in a consult
ant's capacity for a limited time. 

Braille, in which any blind computer professional should 
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be highly skilled, is another common solution. The biggest 
advantage is that it allows the programmer independence. 
Further, sever~l vendors produce a Braille print train, 
which, when installed in a standard printer, will imprint a 
series of raised dots on the paper. Terminal devices with 
Braille output are also available. 4 

Braille can also be produced on a conventional printer, 
using a software conversion program which converts print 
characters to a series of periods and spaces. These are 
printed on a printer which has a soft cushion of some sort 
(usually an elastic band) placed behind the paper. Thus, the 
periods, when printed, make dents in the paper, which when 
read from the reverse side, appear as raised Braille char
acters. The Braille characters are a matrix of dots, two wide 
and three high. Counting horizontal and vertical spacing 
between characters, 40 Braille characters would be 120 
printer positions wide and four lines high when printed using 
this method. The disadvantages with Braille output are bulk 
of listings and expense of hardware print mechanisms (if 
that approach is taken). Further, stock printer paper is not 
as heavy as normal Braille paper and the Braille dots have 
a tendency to be flattened back into the paper, especially in 
very thick and heavy listings. 

Morse code and musical chords have also been examined 
for their usefulness with varying degrees of success. If the 
programmer already knows Morse code and has been using 
it for output, it can be very useful. It requires no additional 
equipment as software drives the computer's alarm bell. 
Learning so complex a skill in order to handle output, how
ever, is an unfair request to put on an employee. Musical 
chords representing letters have even less promise as a so
lution and in effect have never reaBy gotten off the drawing 
board. 

A major contribution to the problem of reading printed 
material was made by Telesensory Systems Inc. (TSI) when 
they began producing the 'OPTICON' (Optical to Tactile 
Converter).5.6 With this system, a small camera is moved 
across a line of print. A tactile image of each character so 
scanned is presented to the reader's finger through a matrix 
of vibrating reeds. The user of the OPTICON can, without 
assistance, read a printed page. However, it takes consid
erable training and a high level of dedication to learn and 
become proficient with the device. 
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READING MACHINES 

The author's own research has led to the development of 
a talking computer terminal. It consists of a keyboard for 
input, a speech synthesizer for output presentation, and a 
microprocessor to drive the synthesizer. 7 The microproces
sor communicates with the host machine via an RS-232 
interface. The terminal can be used on any system in place 
of the conventional hard copy device or CRT. Input from 
the keyboard is sent through the RS-232 interface to the host 
machine. Output from the host machine, which would nor
mally appear on the screen or paper, is processed by the 
software in the microprocessor and sent to the synthesizer 
producing spoken English output. The device can be used 
as a terminal on any computer system which supports asyn
chronous RS-232 communications. 

Through one or all of the above means, the blind computer 
programmer can conquer the problem of computer output. 
It is necessary, for the employer, to discuss what methods 
eac.h particular programmer utilizes and set a clear under
standing of what, if any, equipment this individual will need. 

OTHER CONSIDERATIONS 

A friendly and accessible secretarial staff is a large asset 
to a blind employee. This staff can provide valuable services 
by reading mail and memos, proofreading correspondence, 
etc. The few minutes of time necessary to glance at a memo 
or read the mail can increase the productivity of the pro
grammer immensely. In an environment devoid of secre
taries, a receptionist or keypunch operator could be asked 
to fill this need. 

Another important consideration is the type of environ
ment the blind individual will be working in. Team program
ming and group efforts are ideal atmospheres for very pro
ductive work. There is always someone around with whom 
the project can be discussed. 

Finally, there is the problem of orientation. It will be 
necessary for someone to spend some time helping the new 
employee learn the location of equipment and rooms. This 
should take no more than a few days. Once oriented, a blind 
person can move about safely, freely and independently. 
There may be special problems pertaining to each individual. 
For instance, a Seeing Eye dog may accompany his master. 
In this case, it is necessary to locate an out-of-the-way area 
for the dog to be walked and to acquaint the rest of the staff 
with the animal. These dogs are extremely well trained and 
should not present any problems to fellow workers. 

If the office is located in a building or complex with other 
businesses, it is helpful to be acquainted with the general 
location of these other businesses. This should require only 
a few minutes of additional time. 

CONCLUSION 

Usually, blind computer professionals will have educa
tional backgrounds similar to that of sighted computer 
professionals. However, some may have attended special 
schools for the blind which offer training in data processing. 
While a blind individual may come from a slightly different 
background and may require additional tools for his trade, 
he should be given the same opportunities and trial period 
as a sighted employee. Thus, he can prove his merit (or lack 
of it) based on his abilities and performance regardless of 
blindness. He can be as valuable and productive an em
ployee as any of his fellow staff members; therefore the 
criterion for hiring, promoting and firing should be the same 
for all. 

It is presumptuous to try to offer a "guideline" for hiring 
the blind. Each individual and each job require a different 
set of considerations. As an employer, do not hesitate to 
discuss how the new employee would be expected to func
tion, i.e., how he might handle a batch environment com
pared with an interactive system. 

Housing conditions in the area also bear mention. The 
blind employee will want to live within walking distance, on 
a bus or train route, or where fellow workers car pool to 
work without sacrificing desirability of neighborhood or 
school system which are important to his family. It is not 
necessary to be hesitant to discuss cause of blindness. 
Frankness and openness during the initial interview can 
eliminate misunderstanding or uneasiness later. 

The biggest problem facing a handicapped person who 
trys to enter the professional work force is not his education, 
training. or ability but rather the education an.9 awareness 
of the rest of the world in accepting the handicapped indi
vidual and realizing his potential. 

REFERENCES 

I. Rahima, M. A., and J. B. Eulenberg, "A Computing Environment for the 
Blind," Proc. AFIPS Natl. Camp. Coni, Vol. 43, 1974, pp. 121-124. 

2. Rahima, M. A., and J. B. Eu1enberg, "Modes of Infonnation for the Blind 
Programmer," Proc. Assoc. for Camp. Mach. Annual Coni. 1974. 

3. Cooper, F. S., J. H. Gaitenby, I. G. Mattingly and N. Umeda, "Reading 
Aids for the Blind: A Special Case of Machine to Man Communications," 
IEEE Trans. Audio and Electroacoustics. Vol. AU-17, No.4, December 
1969, pp. 266-269. 

4. Loeber, N. c., "Proposed Braille Computer Tenninal Offers Expanded 
World to the Blind," Proc. AFIPS Fall Joint Camp. Coni. Vol. 39, 1971, 
pp. 79-87. 

5. Bliss, J. C., M. H. Catcher, C. H. Rogers and R.P. Shepard, "Optical
To-Tactile Image Conversion for the Blind," IEEE Trans. Man-Mach. 
Syst., Vol. MMS-ll, March 1970, pp. 58-65. 

6. Bliss, J. c., "A Relatively High-Resolution Reading Aid for the Blind," 
IEEE Trans. Man-Mach. Syst., Vol. MMS-IO, March 1969, pp. 1-9. 

7. Kutsch, J. A., Jr., "A Talking Computer Tenninal," Proc. AFIPS Natl. 
Camp. Coni, Vol. 46, 1977, pp. 357-362. 



Hiring a deaf computer professional* 

by KAREN K. ANDERSON 
Rochester Institute of Technology 
Rochester, New York 

and 

PHILIP W. BRA VIN 
IBM Corporation 
New York, New York 

INTRODUCTION 

The computer industry has a critical need for skilled profes
sionals. Employers are already hard-pressed to find qualified 
workers and look with interest to the growing population of 
technically trained deaf individuals as a new source of com
petent employees. Interest in hiring deaf computer profes
sionals has also been accelerated by employers' growing 
sense of social responsibility and their need to comply with 
government regulations concerning affirmative action in hir
ing and promoting handicapped individuals. This willingness 
to employ deaf professionals must be accompanied, how
ever, by specific guidelines for the actual hiring and accom
modation of such workers. This paper addresses the prac
tical concerns of managers who wish to hire deaf profes
sionals into their organization. 

CHARACTERISTICS OF THE DEAF POPULATION 

There are 13 million people in America who have some 
type of hearing impairment.! About 1.8 million of these are 
considered "deaf," meaning that their hearing is not func
tional for the normal purposes of life. Since deafness is an 
invisible handicap, however, this group and its characteris
tics are relatively unknown to the general population. 

Misleading terms like "deaf and dumb" and "deaf-mute" 
have reinforced common misunderstandings of the deaf pop
ulation's intelligence and communication skills. In fact, IQ 
scores of the deaf follow the same normal distribution as the 
hearing population. Deafness does not, therefore, imply a 
lack of native intelligence. Neither does deafness imply the 
inability to vocalize. Most deaf individuals find that their 
speech· sounds promote successful communication, espe
cially among people who know them; but some individuals 

* The techniques suggested in this paper reflect the collective experience of 
the authors and the community of deaf professionals but in no way represent 
policy of either author's employer. 
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prefer not to use their voices because their speech sounds 
have not proved helpful in communicating with others. 

Most hearing people overestimate the ease with which a 
deaf person can lipread. Actually, lipreading is a difficult 
skill to master. Only 26 percent of all speech is visible on 
the lips. Even the best lipreader cannot lipread everything 
that is said. Familiarity of the speaker is again a significant 
factor in successful lipreading. The challenge of individual 
speech styles and facial characteristics such as flowing mus
taches can be met with practice in repeated meetings. 

One of the most significant results of deafness is unknown 
to the general hearing population. Specifically, early onset 
of deafness can seriously hinder language development. Al
though there are some deaf individuals who can read and 
write very fluenily, oihers have limited reading and writing 
skills that misrepresent their intelligence and understanding. 
The facile assumption that a deaf individual's hearing and 
speech impairments can be easily overcome by reading and 
writing ignores the relationship between hearing and lan
guage development and leads many people to underestimate 
an individual's knowledge and potential. 

"Deafness" is a generic term, since the word describes 
a handicapping condition with many variables such as degree 
of hearing loss, listening skills and lipreading and speech 
abilities. Other factors such as personality, education and 
intelligence have nothing to do with deafness per se. Al
though there is value in knowing the potential impact of 
deafness, it is vital to recognize the uniqueness of each deaf 
individual. 

RECRUITING SOURCES 

There are specialized institutes within the United States 
that are dedicated specifically to the education of the deaf. 
These institutes exist because the education of deaf individ
uals is a challenging task. On the average the educational 
level of the deaf popUlation is well below that of the general 
population. Only 12 percent of the population seek post
secondary education. and only six percent receive baccalau-
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reate degrees. Since most of the college-educated deaf now 
graduate from specialized schools, these schools are signif
icant recruiting sources. 

Currently there are several post-secondary schools with 
significant histories of educating deaf individuals. The oldest 
of these schools is Gallaudet College in Washington, D.C. 
Founded in 1864, Gallaudet is a liberal arts college for deaf 
students only. There is no computer science major per se, 
but degrees are granted in computational mathematics and 
in business with an emphasis on data processing. 2 

In 1969 the National Technical Institute for the Deaf 
(NTID) was established on the campus of the Rochester 
Institute of Technology (RIT) in Rochester, New York. As 
a college of RIT, NTID offers certificates, diplomas and 
associates degrees in data processing. In addition, NTID 
supports deaf students pursuing bachelor's degrees in RIT's 
School of Computer Science. 3,4 

Utah State University, New York University and Califor
nia State University at Northridge have growing programs 
for the deaf in computer science. 5 In addition, special edu
cational services for the deaf are becoming available 
throughout the country in response to Sections 503 and 504 
of the Rehabilitation Act of 1973.6 As access to programs 
opens, the number of qualified deaf graduates grows. 

Employers can recruit these graduates through the place
ment offices of the degree-granting institutions. Deaf bac
calaureate degree students at RIT, for example, are encour
aged to follow the standard procedures of RIT's Central 
Placement Office. Colleges offering special programs for 
deaf individuals, however, usually augment placement ser
vices with additional services tailored specifically to their 
needs. These services can include special assistance during 
the application/interviewing process, orientation activities 
for the managers and co-workers of a new hire and troub
leshooting consultation during the first weeks of employ
ment. NTI D and Gallaudet in particular provide a wealth of 
materials and personnel to assist employers in hiring a deaf 
professional. 

Justifying the commitment required to hire a hearing-im
paired person on a full-time, permanent basis can sometimes 
seem an overwhelming obstacle to employers. This impe
diment is most often an artifact of the imagined needs and 
problems of a deaf individual rather than accurate informa
tion about such a person. Fortunately, the desire of the 
employer to minimize risk with a new hire is complemented 
by the desire of educators of the deaf to maximize the 
experiential learning component of formal education. Thus, 
most special programs for the deaf either require or encour
age work experiences as part of their programs. A summer 
or one or more cooperative work periods provide an excel
lent opportunity for employers to gauge the impact of hiring 
a deaf individual. The spectrum of support services supplied 
for permanent placement is generally available for co-op 
placement, also, and can help make even such short term 
commitments truly enriching experiences. 

INTERVIEWING AND FOLLOW-UP 

The initial contact a deaf person makes with an interested 
employer can occur in a variety of forms such as replying 

to a newspaper advertisement, mailing in a resume, request
ing an application form, or appearing in person at an on
campus recruiting interview. None of these forms of contact 
guarantee that the employer will be forewarned that the 
applicant is deaf and there is no legal requirement to that 
effect. Indeed, the applicant's deafness may only be re
vealed in his communication attempts, whether in writing or 
in person. An employer learning of the applicant's handicap 
in this way may become surprised, confused and hesitant to 
carry out the interviewing and recruiting process. It is im
perative, however, that the employer actively proceed with 
the usual routine of interviewing. 

Communicating with a deaf person at the initial in-person 
interview is, at best, an opportunity for the employer to 
assess the deaf person as a whole and to observe the nature 
of his listening and communication abilities. A good strategy 
for the interviewer is to start speaking slowly and let the 
deaf person monitor or control the pace and mode of the 
interview. The deaf person may indicate his inability to 
lipread and request that the interviewer write everything on 
paper. On the other hand, the deaf person may not need to 
resort to pencil and paper, and the interview can take place 
in the usual manner (i.e. communicating orally). In fact, 
during the course of a day when a deaf person is interviewed 
by several people, the deaf person may use pencil and paper 
with one interviewer and communicate orally with another. 
The interviewers should be aware of the various communi
cation modes that may be employed. Also, it is essential for 
the interviewer not to show any hesitation or displeasure 
when asked by the deaf person to speak slower or use pencil 
and paper. 

Another strategy to consider is the use of a sjgn language 
interpreter at the interview. It should be emphasized that 
the need for such a service should be specified by the deaf 
person, since some deaf persons do not find it necessary to 
have an interpreter while others may need one. If the need 
for an interpreter is stated, the organization should make 
arrangements to obtain one through a local referral or vo
cational rehabilitation agency that serves deaf people. One 
of the reasons why interpreting services are mentioned is 
that there are legal considerations, such as Sections 503 and 
504 of the Rehabilitation Act, which create a mandate for 
employers to make their facilities accessible to the handi
capped in general. In the case of deaf people, communica
tion accessibility is a consideration. 

The variety in the degree of hearing and speech and other 
communication skills must be borne in mind; but, once the 
communication considerations have been dealt with, the 
scope and content of the interview should focus on the usual 
issues such as the qualifications of the prospective em
ployee, his ability to contribute to the overall objectives of 
the company, his ability to get along with his peers and 
managers and other necessary attributes required to make 
him a successful employee. 

Finally, if the organization wants to follow up the inter
view by offering the prospective employee a job, indicating 
to the applicant that the organization could not find a suit
able pusition, or asking for more information, it is important 
that the organization make such efforts directly, in writing 
if possible. Direct contact or writing is preferred because 



the applicant may not have direct access to a telephone. 
Telephone communication through a third party runs the 
risk of misunderstanding because of distorted or abbreviated 
messages. 

ORIENTATION 

In any new job setting the environmental barriers, whether 
they be social, physical, or technical, can be overcome by 
the orientation process. This process is simpiy an educa
tional one in which the new environment is described to the 
new hire to make him comfortable in his new setting. In the 
case of a deaf new hire the orientation process is not radi
cally different from that for a new hire who is hearing. 
Depending on the organization, however, the process can 
differ for the deaf employee's peers and his management, 
since they generally need some orientation in this case also. 
This type of orientation, in both a formal classroom and 
informal social setting, will be described. 

The best approach to making a deaf new hire's peers and 
management feel comfortable and removing the mysterious 
aura surrounding deafness is to make them aware of deaf
ness in general. The more they understand deafness, the 
more receptive they will be to the new hire and the new hire 
to them. This receptivity is essential because the population
at-large tends to have a stereotyping attitude toward a spe
cific population. The process of orientation will assist in the 
removal of the stereotyping factor and help make the view 
of the person towards a new hire more individualized. In the 
process the new hire will blend into the work setting rather 
than stand out on account of his deafness. 

There is a wide range of materials that organizations can 
use in their formal training programs for the new hire's 
management and coworkers. These materials can include 
movies, books, pamphlets and manual alphabet reference 
cards, to list a few. Such materials can be obtained from the 
colleges, institutes and organizations that serve deaf people 
and from appropriate personnel representatives in corpora
tions. Some corporations may have materials they use to 
conduct formal training programs; others may have mate
rials they use on an informal basis. Appendix A lists the 
names and addresses of several sources of orientation in
formation and Appendix B lists the names of several cor
porations with experience in hiring deaf individuals. 

Informal orientation is a process that is best left to the 
new hire, who usually takes the initiative in educating his 
peers about aspects of deafness that are not covered by the 
formal training materials. Informal training may take the 
form of stories and anecdotes that have a deaf theme or 
informal instruction in sign language or the lifestyle of a deaf 
person (e.g. how he "hears" the doorbell, his "telephone"). 
This approach usually is entertaining and goes a long way 
in removing the so-called environmental barriers. 

The orientation process for the deaf new hire may differ 
only in the way information is presented, depending on the 
deaf person's communication skills. It should be emphasized 
that the deaf person should receive the full benefit of ori
entation programs and not be given a half-hearted treatment 
because of his communication limitations. The new hire's 
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communication skills can be inferred from the initial inter
view process. 

As essential as it is for any organization, the orientation 
process may be even more important for situations involving 
a deaf new hire. Its value should not be minimized, for such 
a program implemented correctly and positively goes a long 
way in creating a congenial working atmosphere for the new 
hire, his peers and his management. 

TRAINING 

In any organization heavy emphasis is placed on training 
and education for employees, especially in the computer 
field with its rapidly changing technology. This training gives 
the employee the opportunity to keep pace with technology. 
At the same time the organization maintains a group of 
qualified and educated people to meet its changing needs. 

When a student makes the transition to the business 
world, a great deal of practical material must be digested 
before the student makes himself a useful employee. To 
maintain his usefulness, he must avail himself of professional 
development activities throughout his career. 

The medium through which training is presented to the 
employee has greater impact on a deaf employee than on a 
hearing employee. To give a simple example, an audiotape 
is as useless to a deaf person as a videotape without sound 
is to a blind person. In a classroom setting there are several 
points to consider for a deaf person such as relevancy of the 
subject matter, the size of the class, and the communication 
skills of the deaf individual. In any case the deaf individual 
should make his needs known. They can take the form of 
preferential seating, note takers , or even a sign language 
interpreter. Some deaf people may find that none of these 
aids are necessary, and others may find some or all of them 
necessary. 

There are an increasing number of courses offered in both 
aUdiotape and videotape forms. For a deaf person the au
diotape does create significant problems. The deaf person 
can receive the full benefit of the tapes by having a sign 
language interpreter interpret the tape, by having a secretary 
transcribe the contents, or by getting a copy of the script 
that was used to prepare the tape. The latter methc·d is most 
practical, and such scripts are usually available. Videotape 
has similar ramifications for a deaf employee because it is 
harder to lipread a TV screen than to lipread in person. 
Thus, although the empioyee may benefii as his peers from 
the visual aids that are incorporated in videotape training, 
he will not necessarily do much better with the "talking 
face" type presentation than with an audiotape. Finally, 
voice-over presentations are fundamentally as difficult for 
the deaf person to follow as audiotapes. 

Other media through which courses are offered include 
computer-assisted instruction and programmed instruction 
(self-paced instruction) as well as training in the form of 
reading manuals. These media are ideal for deaf persons. 

If an organization acknowledges the value of training pro
grams, it should be able to guarantee that the deaf employee 
receives the full benefit of these programs. 
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MEETINGS 

Meetings usually provide a forum for people of a given 
organization to share relevant information. Meetings take 
many forms--one-on-one, small groups of three to nine peo
ple, groups of 10 to 20 people, and an assembly type group 
of more than 20 people. The deaf person may require specific 
consideration in each of those settings. It should be empha
sized, however, that there are no universal solutions for a 
deaf person in any setting. Useful strategies vary from one 
deaf person to another, depending on communication and 
listening skills as well as the group of people involved. The 
deaf person's problems are less acute if the group contains 
people who are familiar with the deaf employee. 

In a one-on-one situation the communication process us
ually requires a simple adaptation. In some cases the person 
meeting with the deaf individual may know sufficient sign 
language, may talk at a speed appropriate for him to lipread, 
or may write down everything for him to read. In response 
the deaf person may write, speak, or even use sign language, 
if the person he is communicating with can read sign lan
guage. 

In a small group the communication problems become 
somewhat more complicated since more people are in
volved. At this point written communication may be more 
difficult but can still be used. The deaf person may need to 
depend on one person in the group to follow the conversa
tion, or he may be able to follow everything by lipreading 
alone. If the deaf person is the presenter, the environment 
differs and will depend greatly on his communication skills. 
The deaf person may have sufficient speech skills to conduct 
the meeting. On the other hand he may prepare a text or 
some notes for his co-workers to present for him. Commu
nication in this kind of a setting is usually not a critical 
problem for a deaf person since the group is small enough 
for the deaf person to monitor. 

The problem becomes more acute when the group is big
ger. There are more personal relationships and communi
cation links to take care of. If the deaf person has good 
lipreading skills, he may still run into problems at this type 
of meeting. For example, when one person stops talking, 
the deaf individual must find the next person who is talking. 
By the time he finds the speaker, that person may already 
be half-way through his statement. Similarly, if more than 
one person tries to speak at once or if someone interjects a 
parenthetical remark, the deaf person will not be able to 
follow them. If the meeting contains critical information for 
the deaf person, it may be necessary for the meeting to be 
controlled carefully. For example, it may be necessary for 
each person to raise his hand and be acknowledged before 
speaking. If the deaf person doesn't have adequate lipread
ing skills, he may need to depend on a notetaker or, if one 
is available, a sign language interpreter. In many cases a 
notetaker would suffice and could be a co-worker or sec
retary. 

In an assembly-type setting the deaf person with adequate 
lipreading skills should be seated preferentially or, if he 
prefers, have a notetaker or sign language interpreter seated 
next to him. In any case the importance of the meeting will 

determine whether a sign language interpreter is justifiable. 
The sign language interpreter is usually able to interpret the 
speaker's comments word-for-word, while a notetaker can 
at best give a good abbreviated summary of what has hap
pened. Furthermore, the sign language interpreter can also 
reverse-interpret, i.e., repeat the deafperson's sign language 
statements or questions orally. In a setting of 500 people or 
more lipreading can be impractical, since it ceases to be 
effective when the speaker is more than eight to 10 feet 
away. In such situations a note taker or an interpreter would 
be necessary. 

WORK ASSIGNMENTS 

It is not appropriate to attempt to identify specific work 
assignments that deaf employees can or cannot handle. The 
skills and interests of deaf employees are as varied as those 
of their hearing counterparts. An appropriate match between 
employee and task must be made by considering the training 
and qualifications of the individual. Managers are urged to 
be aware of their own stereotyping tendencies when consid
ering work assignments. Many of their tendencies are ves
tiges of outmoded or changing work environments. For ex
ample, the increasing orientation toward terminals for 
interacting with the computer reduces the number of com
munication barriers between the programmer and the com
puter. In addition, the terminal becomes a handy device for 
aiding communication among deaf and hearing co-workers. 
The recent push for documentation produces real-time 
rather than after-the-fact documentation, and the introduc
tion of efficient, graphical documentation tools such as 
HIPO and data flow graphs also ease communication among 
deaf and hearing. Deaf individuals have worked in essen
tially every capacity within a data processing environment. 
There are deaf data entry personnel, deaf computer opera
tors, deaf programmers, deaf systems analysts, deaf project 
leaders and deaf managers. Sensitivity to the uniqueness of 
each deaf person and willingness to modify the work envi
ronment slightly to accomodate him can permit that person 
to function and grow in accord with his own interest and 
abilities. 

CONCLUSION 

The growing population of college-educated deaf individ
uals provides a new source of skilled workers to satisfy the 
critical need for computer professionals. There are specific, 
cost-justifiable techniques that can be used to overcome the 
communication problems that a deaf employee will face on 
the job. Schools, institutes and organizations serving the 
deaf offer materials and personnel to assist the employer in 
accomodating the deaf worker. Employers are urged to draw 
on this pool of competent professionals. They will find an 
increasing number of graduates who can he significant con
tributors to their organizations. 
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APPENDIX A 

Sources of orientation information: 

Alexander Graham Bell Association for the Deaf 
(AGBAD) 

1537 35th Street 
Washington, D.C. 20007 

Gallaudet College 
7th and Florida Avenues, NE 
Washington, D. C. 20002 
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National Association of the Deaf (NAD) 
814 Thayer 
Silver Spring, MD 20910 

National Technical Institute for the Deaf (NTID) 
Rochester Institute of Technology 
1 Lomb Memorial Drive 
Rochester. NY 14623 

Registry of Interpreters for the Deaf (RID) 
P.O. Box 1339 
Washington, D. C. 200 13 

APPENDIX B 

A partial list of employers of deaf computer professionals: 

American Can 
Anhauser-Bus~h 
Boeing Computer Services 
Bunker-Ramo 
Grumman Data Systems 
IBM 
Kodak 
Lockheed 
McDonnell Douglas 
"Mobil Oil 
Travelers Insurance 
Union Oil 
U.S. Dept. of Housing and Urban Development 
Xerox 





MIS effects on managers' task scope and satisfaction* 

by DANIEL ROBEY 
Florida International University 
Miami, FL 

The impact of computers on organizations has long been a 
topic of special interest to management and organization 
theorists. Opinions vary widely on the nature and impor
tance of information technology's influence on the structure 
and process of organizations. For every ounce of technical 
optimism created by computer scientists, a pound of social 
pessimism is generated by behavioral scientists suspicious 
of technological impacts. Over the past 20 years much dia
logue has raged in emotional and speculative tones without 
substantial progress made in our understanding of the issue. 
The armchair theorists who project less human organiza
tional life because of the computer have generally operated 
without the benefit of research findings. The purpose of this 
paper is to shed some empirical light on one hotly debated 
issue: the impact of management information systems on 
managers' tasks and their evaluation of computer-induced 
changes in tasks. 

Speculative arguments differ in their predictions of task 
impacts. Leavitt and Whisler7 forecasted the removal of 
meaningful content from middle managers' work and the 
resultant alienation of managers from their jobs. They sug
gested that need fulfillment would only be found off the job, 
and drew an analogy between middle management and blue 
collar workers, whose jobs have been affected by mecha
nization to the point of removing craft elements. 

A counter argument by Anshen 1 forecasted enhancement 
of the manager's job because of the computer. He contended 
that the machine would relieve the manager of tedious rou
tine and make more time available for creativity and unstruc
tured problem-solving. The result would be greater job sat
isfaction, not alienation. 

In either of these contrasting arguments, the motivational 
assumptions are not hard to trace. Both positions depend 
implicitly on the same model of Man as first offered by 
humanistic psychologist Abraham Maslow. 9 This model pos
its that man is motivated by a hierarchy of needs. Basic 
physiological. safety, and social needs motivate behavior 
initially, and when they are satisfied the higher-order or ego 
needs motivate behavior. Needs for achievement, recogni
tion, growth, and self-actualization are said to be important 

* This paper is based in part upon research supported by the National Science 
Foundation under Grant No. MCS77-22486. Any opinions, findings. and con
clusions or recommendations expressed in this paper are those of the author 
and do not necessarily reflect the views of the National Science Foundation. 
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motivators for those not driven by hunger or basic survival. 
Through the work of Douglas McGregorlO Maslow's theory 
of motivation has had enormous influence over management 
thought since thr late 1950s. Other theories of work behavior 
with close idealogical links to Masiow's work are Herz
berg's6 Motiv3;tion-Hygiene theory, Likerfs 8 System 4, and 
Argyris' 2 personality-maturity theory. While details of these 
approaches differ, they all project man as motivated by the 
intrinsic satisfactions of meaningful work and as possessor 
of needs for achievement and professional growth. 

The importance of task scope to management motivation 
is clear under these models of work behavior. "Enriched'" 
tasks, which provide challenging problems and opportunities 
for achievement, are more motivating than those devoid of 
challenge or achievement possibilities. Recent work has 
identified tasks with greater variety, autonomy, identity, and 
feedback as ones with greater "motivating potentiaL'";; 
While research support is inconsistent, it is clear that such 
a viewpoint underlies the predictions of computer impact on 
tasks and satisfaction. Briefly, we are led to expect that if 
an information system reduces task scope, managers H-·ill be 
less motivated and satisfied. On the other hand, if a system 
increases task scope, managers should react positively with 
greater motivation and satisfaction. 

It is important that these notions receive empirical testing 
if we are to move away from pure speculation. With this in 
mind a research project was formulated to address this ques
tion and others. The study was conceived as an exploratory 
project because few standard hypotheses or research meth
ods have been generated toward answering questions about 
the computer's impact on organizations. The next section of 
this paper briefly describes the overaJI project and the spe
cific approach to assessing changes in tasks and managers' 
reactions to them. 

THE CISM PROJ ECT 

The project from which this research is drawn is titled 
Computer Information Systems and Management (CISM). 
Over a five-year period research teams in Denmark, Austria, 
England, West Germany and the United States have col
lected data in eight organizations which have recently in
stalled computer-based management information systems. 
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Each of 130 system users spent approximately four hours in 
interviews and questionnaire completion. In addition, un
structured interviews with other managers, systems design
ers and subordinates were conducted in an effort to describe 
the impact of the information systems on managers and their 
organizations. A host of variables were measured, including 
managers' tasks, interpersonal relations and formal struc
ture. The major output of the project is currently being 
assembled and will consist of an examination of different 
themes, each focusing on a particular area of computer im
pact. In addition, each national team is producing detailed 
case reports of the companies they studied. 

Nine questions about the impact of the system on tasks 
were asked of each user. For the sake of analysis these task 
characteristics may be grouped into three categories: 

• Enriching factors-which reflect intrinsically satisfying 
aspects of work. 
I. Degree of complexity in the task 
2. Number of problems recognized within the task 
3. Possibility of developing new ideas or methods 
4. Feedback on decisions 

• Structure factors-which reflect rigidity and routine in 
the task. 
I. Degree of routine of the task 
2. Standardization of codes or terminology in the task 

• Load factors-which reflect work pace and its varia
tions. 
I. Work pace in the task 
2. Variations in work pace in the task 
3. Work load within the task 

Each respondent was asked to indicate whether each item 
had increased, decreased, or remained the same as a result 
of computer introduction. In addition, where changes were 
reported, respondents were asked to evaluate the change as 
an improvement or deterioration in their jobs, or state that 
the change made no difference. 

Most of the questions directed to members of the CISM 
sample sought changes in two managerial tasks. Because 
some managers performed only one primary task, data on 
both tasks were not uniformly available. Furthermore, some 
respondents chose not to complete the section of the ques
tionnaire described above. Nonetheless, data for at least one 
of the two tasks were obtained from 85 respondents, and 
data analysis is based on this group. The sample is hetero
geneous with regard to type of system used, employer, and 
nationality. The common experience among respondents is 
their familiarity with a pre-existing task as well as the new 
computer system for performing their jobs. Our sampling 
thus controls for possible extraneous sources of variance 
and enables a direct assessment of the computer's impact 
on tasks and users' evaluation of those impacts. 

RESULTS AND DISCUSSION 

Changes in the enriching factors are shown in Tahle T, 
where changes are cross-tabulated with evaluations on each 

TABLE I-Changes in Enriching Factors and Managers' Evaluations of 
Them 

Evaluation of Change 
makes no 

Degree of Complexity deteri- differ- improve-
in Task: oration ence ment totals 

increased complexity 2 4 37 43 
no change* 22 22 
decreased complexity 0 19 20 

totals 26 56 85 

Evaluation of Change 
makes no 

Number of Problems deteri- differ- improve-
Recognized: oration ence ment totals 

increased number 8 6 29 43 
no change* 23 23 
decreased number 0 II 12 

totals 9 29 40 78 

Evaluation of Change 
makes no 

Possibility of deteri- differ- improve-
New Ideas or Methods: oration ence ment totals 

increased possibility 0 3 52 55 
no change* 25 25 
decreased possibility 0 0 3 

totals 28 52 83 

Evaluation of Change 
makes no 

deteri- differ- improve-
Feedback on Decisions: oration ence ment totals 

increased feedback 0 54 55 
no change* 25 25 
decreased feedback 0 0 

totals 26 54 81 

* Where "no change" in the task characteristic was reported, the evaluation 
response was automatically coded as "makes no difference." 

item. The total number responding to each question in this 
and following displays fluctuates between 78 and 85 because 
of missing data, but this does not seriously affect the results. 
The frequencies are also reported here without supporting 
chi square statistics because expected frequencies are too 
small in too many cells to make the test statistic useful. 
However, the results come through clearly without statisti
cal testing. A l,:lfge percentage of respondents perceive" in
creases in enriching factors and evaluate these changes as 
improvements. On two dimensions, complexity and number 
of problems, a substantial minority of respondents perceive 
decreases and evaluate them as improvements. On the 
whole, however, increases in these challenging aspects are 
noted and considered to be improvements. 

These findings seem to suggest that predictions from the 
Ma~low theory are correct-that system users react favor
ably to work that increases challenge and opportunity for 
achievement. However, we must also examine changes in 
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task structure. Here the motivation theories predict de
creased satisfaction if task scope is effectively reduced 
through computer changes. 

As Table II shows, respondents overwhelmingly see 
greater routine and standardization in their tasks as a result 
of the computer systems. However, in contrast with our 
expectations, users react positively to these changes. On 
task routine, 50 percent evaluate the change as an improve
ment and almost 50 percent say the change made no differ
ence. Responses are not quite as favorable for the standard
ization aspect, although only ten report that their jobs have 
deteriorated because of increased standardization. 

In explaining results which run contrary to theoretical 
predictions, one often turns to alternative theory. One ex
planation of these results lies in expectancy theories of work 
motivation. 11 A version of expectancy theory for information 
system user is shown in Figure 1.12 It shows the vital role 
that performance and both extrinsic and intrinsic rewards 
play in the motivation process. If an information system 
increases users' ability to perform, perhaps through more 
standard routines, and if rewards follow performance, users 
will be more satisfied and exert more effort. While our data 
do not test this proposition directly, many of our research 
personnel report informal comments from users which in
dicate the benefits of increased rationality in tasks. Stand
ardization and routine remove chaos from the job and permit 
better performance. Therefore, these aspects are evaluated 
as job improvements. 

Our final set of task dimensions involve load factors. Here 

USE OF SYSTEM 

(Effort) 

Source: Robey (1979). 
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TABLE II-Changes in Structure Factors and Managers' Evaluations of 
. Them 

Evaluation of Change 
makes no 

Degree of Routine deteri- differ- improve-
of Task: oration ence ment totals 

increased routine 0 5 35 40 
no change* 31 31 
decreased routine 2 2 5 9 

totals 2 38 40 80 

Evaluation of Change 
makes no 

deteri- differ- improve-
Standardization of Task: oration ence ment totals 

increased 10 15 22 47 
standardization 

no change* 37 37 
decreased 0 0 

standardization 

totals 10 53 22 85 

* Where "no change" in the task characteristic was reported, the evaluation 
response was automatically coded as "makes no difference." 

it is expected that users will evaluate increased load and 
load variations in a negative light. The data in Table III 
show that increases in work load and pace generally out
weigh decreases, and that variations in work pace increase 
substantially. The evaluation of these three changes is not 
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Figure I-Model of user behavior. 
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TABLE III-Changes in Load Factors and Managers' Evaluations of Them 

Evaluation of Change 
makes no 

deteri- differ- improve-
Work Pace in the Task: oration ence ment totals 

increased pace 9 7 24 40 
no change* -32 32 
decreased pace 0 9 10 

totals 9 40 33 82 

Evaluation of Change 
makes no 

Variations in Work deteri- differ- improve-
Pace: oration ence ment totals 

increased variations 19 10 19 48 
no change* 26 26 
decreased variations 3 7 

totals 22 37 22 81 

Evaluation of Change 
makes no 

deteri- differ- improve-
Work Load in the Task: oration ence ment totals 

increased load 9 3 17 29 
no change* 35 35 
decreased load 0 18 19 

totals 10 38 35 83 

* Where "no change" in the task characteristic was reported, the evaluation 
response was automatically coded as "makes no difference." 

terribly negative, although users are most negative about 
variations in work pace. However, a substantial number of 
respondents evaluate increases in work pace and work load 
as task improvements, and this is in contrast with our ex
pectations. 

In explaining the findings on load factors we are led again 
to consider the expectancy model in Figure I. Respondents 
may be responding favorably to increased work load because 
the computer systems permit them to achieve this additional 
work. While performance pressures have increased, users 
now have the tools to reach these higher output standards. 
Both intrinsic and extrinsic rewards may follow and increase 
the satisfaction and subsequent motivation of users. Part of 
the price for this greater productivity may be the increased 
variability of the work pace. In batch systems in particular 
users are forced to accept discontinuities in work pace to 
satisfy data processing schedules and machine availability. 
This aspect may reduce some of the improvements per
ceived to be related to increased output. 

Some further insights into these findings might be gained 
by disaggregating the data. For example, on-line and batch 
users could be compared on the variability issue. Elsewhere, 
we have looked at task uncertainty as an intervening vari
able. 4 These further analyses are beyond the scope of this 
paper, which has attempted to use as large a sample as 
possible to examine basic task effects. Disaggregation re
sults in comparisons between much smaller sUbsamples. and 
we do not have the capacity to do too much sample-splitting 

because our total sample is not large. Future CISM publi
cations will show more detailed data analysis to the extent 
that it is warranted. 

CONCLUSIONS 

Our overall findings may be restated quite directly: infor
mation systems increase the presence of enriching factors, 
task structure and task load. All of these changes are eval
uated favorably by users. An explanation of these results 
requires that we go beyond a Maslow-based motivation the
ory, which predicts only the first result. Satisfaction with 
increases in task structure and task load are better under
stood by adopting an expectancy theory model of user mo
tivation. 

In moving toward the broader implications of these find
ings, it is interesting to note that apparent counteracting 
changes have occurred in the tasks we studied. The com
puter does make organizations more bureaucratic in the 
sense that routine and standardization have increased. But 
it also generates nonbureaucratic changes: it increases task 
complexity, and enables users to apply new ideas and meth
ods to a wider array of task problems. It appears possible 
that both changes can occur simultaneously, which suggests 
that many earlier arguments linking computers to task 
changes were grossly oversimplified. Our results show a 
complex combination of impacts, which serve to enrich as 
well as standardize the job. There is no logical conflict in 
this statement if we assume that jobs are composed of sev
eral independent dimensions. Unfortunately, task research 
has not isolated standard measurable dimensions which 
could be used in research like this.3 It does not appear, 
however, that the computer's impact on tasks can be fully 
understood by employing a simple, one-dimensional concept 
of task. 

Of further interest is the pattern of evaluative responses 
by users. Even where tasks do become more bureaucratic 
(standard and routine), the change is not perceived as de
terioration. The white collar worker is not alienated by the 
introduction of computer systems which increase task rou
tine. Quite to the contrary, the middle manager has enthu
siastically embraced the new technology largely, we feel, 
because it helps him improve his job performance. The com
puter removes guesswork, ambiguity, and structures the 
task so that it can be done more effectively. The user is not 
a loser in this transition, at least not in his own eyes. Very 
few respondents, even in companies with older tenured em
ployees, regard the computer negatively. Nor are they par
ticularly fascinated by it or treat it as a magnificent toy. It 
is simply a tool which permits work to be accomplished 
more effectively than before. To the extent that managers 
share the benefits brought about by better performance, they 
feel that their jobs have improved. 
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Some neglected outcomes of organizational use of 
computing technology-And their implications for 
systems designers 

by M. LYNNE MARKUS 
Case Western Reserve University 
Cleveland, Ohio 

INTRODUCTION 

Twenty-five years after the first commercial application of 
computers, it now seems possible to assess their conse
quences on the basis of user experience. Until recently, 
most assessment was done on the basis of early predictions 
inspired by the technological capabilities of computers. But 
these predictions have missed the mark considerably. Not 
only did the technology of computing fail to stand still, but 
it has been demonstrated time and again that just because 
a capability exists does not mean that it will be used as 
intended. 

The predictions were dramatic: increased centralization, 
reduction in the number of middle managers, decreased per
sonal autonomy on the job. 16 But the research findings were· 
not dramatic: few structural changes occurred in organiza
tions using computers, usually only those reflecting the cre
ation of EDP departments. 23,11 If anything, the findings have 
shown that the effects of computing are "subtle, limited and 
complex in their patterns." 14 

This subtlety and complexity makes computer impact 
research difficult to do. Consequently, not much is done, 
especially inside organizations. One manager of manage
ment systems in a major industrial corporation recently told 
me: "We go through all sorts of gyrations to justify our 
systems development efforts--cost benefit analysis, ROI 
calculations and so forth. But we have yet to go back to see 
whether we achieved the benefits we expected. We know 
that the benefits are too difficult to measure and too difficult 
to trace back to their causes." Academic research has begun 
to fill the gaps in knowledge about computer impact on 
organizations, but the research has sadly neglected some 
important types of outcomes. 

RESEARCH FROM THE IMPLEMENTATION 
SCHOOL 

Two general philosophies pervade the academic literature 
on computing use in organizations. One stream of research 
focuses on the factors contributing to success or failure of 
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computerized information systems. The second focuses on 
computer-induced changes for the individual employee or 
for the organization as a whole. 

A number of researchers have tried to identify what 
factors influence or determine the success of information 
systems and management science projects. To call this 
rather diverse collection of operations researchers, manage
ment scientists and management information systems spe
cialists the "implementation school" may be stretching a 
point. But writers such as Bean, et aI., 3 Schultz and Slevin,22 
Lucas, 17 Gibson,8 Ginzberg 9,10 and Alter1.2 share a common 
focus, first, on individual information systems and, second, 
on a specific type of outcome. 

Both focal points of the implementation school distinguish 
it from the organizational school, to be discussed shortly. 
The first focal point, individual information systems, is a 
significani assei for the implementation school, because re
search has shown that different types of systems applica
tions have different outcomes,23,11 and that there is some
thing in the nature of application types which affects 
organizational outcomes. 10 The organizational school, in 
contrast, tends to lump all types of applications together 
into indices of computerization for an entire organization, 
ignoring the previously-cited research and the fact that some 
parts of an organization may be unaffected by computing. 

Limitations of the implementation school 

The second focal point of the implementation school, 
however, puts significant limitations on the research of this 
school. This is the schoors focus on one particular type of 
outcome, namely, what happens when the systems designer 
turns the system over to the user ready to be converted or 
used. Different researchers in the school have used different 
measures of this outcome: Some have used the success or 
failure of the system to be implemented, others have used 
rates of use, still others have used the satisfaction/accept
ance or dissatisfaction/resistance of users. But almost all 
call their dependent or outcome variable .. success of the 
information system," and almost all measure it at a point in 
time before the users have had a chance to use the system. 
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This focal point of the implementation school has led to 
some serious limitations on its research. The first limitation 
relates to time. The startup of a new or modified information 
system is roughly analogous to the startup of a new plant. 
One does not simply flip a switch and begin to use the new 
technology. There are false starts, glitches and occasional 
trips back to the drawing board. Many systems designers 
and users I have interviewed express the opinion that work
ing the bugs out of a new system takes anywhere from six 
months to two years. One major implication of this is that 
the "permanent'" effects of an information system in an 
organization may not be felt by users or observable by 
researchers until some six to 24 months after the system is 
installed, that is, after users have some experience working 
with it. And, because of its focus on success defined at the 
point in time when the system is installed or turned over to 
the user, the implementation school has not been able to 
examine outcomes of information system use. 

Neglected organizational outcomes 

There is another limitation resulting from the implemen
tation school's focus on "success of the information sys
tern." This is the failure to recognize the organizational 
consequences of information systems. In the effort to con
struct measures of success or failure of computerized sys
tems, defining and redefining "usage," "utilization" and 
"user satisfaction," implementation researchers have left 
the search for organizational outcomes to researchers who 
did not distinguish in form or content between payroll sys
tems and investment analysis programs. Almost totally ig
nored by implementation researchers have been the out
comes which relate to social and political aspects of 
organization functioning. 

One manifestation of this organizational "ignorance" is 
the implementation school's definition of the "user." Sys
tems designers interested in researching the success of their 
systems have typically, and not unreasonably, been most 
concerned about the satisfaction or acceptance of the person 
or group who commissioned the new system and who may 
have also paid for it. Therefore, the client of the systems 
designer is often designated the user of the system. The 
problem comes in when there are other, hidden users of the 
system, maybe those who only supply data to it. Often these 
other users have different perceptions of the success of the 
system, different feelings of satisfaction with it, from the 
client group. Including these might radically alter the re
searchers' measures of system success. 

A financial information system which I have recently stud
ied illustrates this point. This system consolidates financial 
data from the divisions of a large, decentralized corporation. 
In response to my question, . 'Who are the users of the 
system'?" I was told that the main users were members of 
a corporate staff accounting group. Further questions re
vealed that divisional accountants provided the data to the 
system and maintained it. 

"Aren't the divisions also users of the system'?" I asked. 
.. Well. actually. the divisions don't use the system as 

much as they could. We're disappointed that they haven't 
used the variable report writing facility to generate new 
types of financial analyses." 

Interviews with corporate accountants identified a long 
list of benefits with which the new system provided them: 
automatically consolidated financial statements, decreased 
workload, faster month-end closings, standardized input 
from divisions, more and better management information, 
greater flexibility around external reporting, decreased dis
ruption of financial activities caused by internal organiza
tional changes. In contrast, divisional accountants found the 
system to be an obligation with few or no benefits to them: 
"Creating and maintaining the database for this system were 
huge jobs. Our division already had a smooth-running sys
tem for providing this information to Corporate, and it took 
two years to iron all the bugs out of this one. Also, it doesn't 
do a thing for me. The data in it is not at a level of detail 
where I can use it, even if I did have a staff of programmers 
to help me use the report writer. So I need to maintain a 
dual system for my own internal reporting needs." 

This example illustrates that not all users of an information 
system see the system in the same way and if the people in 
this organization had taken a more inclusive view of users 
than just the corporate accounting group, they would have 
seen a distribution of outcomes, of costs and benefits, of 
satisfactions and dissatisfactions, associated with the sys
tem. This distribution is influenced by the social and political 
factors in the organization, factors previously neglected by 
most implementation researchers (with the notable excep
tion of Gibson8), who most often focus on the system itself 
and the psychological attributes of client-users. 

RESEARCH FROM THE ORGANIZATIONAL 
SCHOOL 

The second research stream, which I'll call the organiza
tional school, includes the studies of organizational theorists 
and sociologists like Whisler,24 Hoos,12 Kraut,15 Blau, 4 

Stewart,23 Reif,20 Hofer, 11 Robey21 and Pfeffer. 18 The orga
nizational school examined the effects of computing on a 
full range of variables reflecting psychological and psycho
technical outcomes for individuals. The effects of computing 
on job task, autonomy, stress, satisfaction with work and 
employment patterns are some examples. But early on, the 
organizational school began to concentrate efforts on vari
ables reflecting changes in the organization as a whole. And 
the area of impact which attracted the most attention was 
the effect of computing on power, authority and influence 
in the firm. 

The first published predictions about computer impact on 
organizations had raised this issue. Leavitt and Whisler, 16 
in 1958, saw the potential of computing technology to store, 
process and analyze large quantities of data in a single place. 
They reasoned that access to this information would give 
managers the power centrally to control dispersed business 
activities. Managers had formerly had to delegate some of 
their ~\Ith()rity. heC'Rllse of their limited ability to gather and 
digest information. The increased centralization of control 
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brought about by computer use would, they believed, reduce 
autonomy of middle managers and lower job satisfaction. 
Also, many middle management positions would be elimi
nated, replaced by computer applications. 

The wave of research which followed these predictions 
did not significantly support them, however. Some indus
tries, like insurance and banking, did appear to become more 
centralized, but researchers are still debating the issue. What 
they are debating, though, is how to study it, not whether 
the issue is important. The major contribution of the organ
izational school has been to identify changes in power, in
fluence and control as potential effect-s of computing use 
and to legitimate the area of study. It made this contribution 
in spite of its tendency to focus on outcomes for the orga-

. nization as a whole rather than on the more clearly delimited 
set of organizational outcomes which result from individual 
computerized information systems. 

Outcomes for organizational power and influence 

Recently, research in the area first investigated by the 
organizational researchers has begun to payoff. A number 
of studies, which may represent the beginnings of a third 
major school of research, have appeared in the last several 
years using the focus on individual information systems of 
the implementation school and the focus on outcomes for 
organizational power and influence of the organizational 
school. 

Kling 13 found "that computer-based systems reinforce the 
existing distribution of power in American municipalities. 
They provide differential support to mayors and city man
agers in smaller cities and to departments in the larger 
cities. " 

Bjorn-Andersen and Pedersen5 found that computing use 
in the business organizations they studied contributed to 
shifts in power among affected groups. By changing the 
basis of power of various organizational members, that is, 
by changing aspects like one's position of centrality in the 
flow of work through the organization, one's expert knowl
edge and one's access to up-to-date information, use of 
computing technology has created "winners and losers in 
the fight for influence." 

Incidentally, Bjorn-Andersen and Pedersen noted that the 
early organizational research may have failed to identify 
these subtle changes, because the concept "centralization" 
is "too crude and only covering parts of the very complex 
interpersonai relationships poieniiaiiy to be altered by the 
introduction of computer systems." 5 Pfeffer 19 lends weight 
to their observation. According to Pfeffer, real changes oc
curring in organizational processes of power and influence 
may not be immediately reflected in measures of organiza
tional structure, like degree of centralization. 

CASE ILLUSTRATION-ORGANIZATION AND 
SYSTEM OUTCOMES 

A recently published case study by Conrath and du Roure 6 

illustrates two points I have been making: first, that benefits 

from, and incentives for, using computing technology vary 
across user groups, and second, that the success or failure 
of the information itself is related to and perhaps secondary 
to organizational outcomes, such as changes in power and 
influence among user groups. 

Conrath and du Roure's case describes the implementa
tion of a comprehensive logistics system in a branch of the 
U.S. military. The new system provided on-line access to 
up-to-date status information for all materiel for which the 
branch had responsibility. Unfortunately, the case does not 
tell us who initiated the system, who supported its devel
opment, and who bailed it out with an expensive redesign 
when it was close to failure. We are, however, told the 
outcomes and some details of the organizational arrange
ments into which the new system was introduced. 

Prior to the development of the new system, all data were 
collected into a monthly report for senior officers. On the 
average, the report was a month out of date. Consequently, 
it was not well used in the logistics decisions of the branch. 
Requests for materiel were routed to junior officers, who 
forwarded them up the chain of command to an officer of 
high enough rank to handle the request. Information about 
the requests was obtained by telephoning those believed to 
possess the information. 

The new system collected all relevant information auto
matically and made it available to junior officers through on
line terminals. No telephone calls were required to obtain 
information. Furthermore, the system determined the opti
mal way to transport materiel from one point to another, 
minimizing distance. 

When the new system was first used, "the greatest impact 
was a change in the effective structure of the organization. 
It went from one which had been very hierarchical, very 
vertical, to one which was primarily horizontal. ... The 
chain of command almost seemed to be superfluous." The 
new system ehanced the power base of junior officers by 
giving them access to information. This started to erode the 
power bases of senior officers. 

But then the reaction occurred. "The commanding officer 
(three-star rank) demanded that the old system be continued 
in parallel with the new. The roles of the more senior officers 
were to be maintained. The argument given was that the 
computer-based system was not yet sufficiently reliable. The 
underlying reason, however, was the effect that the infor
mation-communication system had on the perceived value 
of the authority structure. In fact, once the old system was 
reinstituted, the stress on supplying all the required data to 
the new system was relaxed, and the new system did become 
less reliable. The cause-and-effect relationship, however, 
was the reverse of the way it was presented." 

The senior officers had discovered that the new system 
eroded their power base, a trend which, if continued, would 
have undermined their authority. The parallel system al
lowed them to maintain their traditional position. But if the 
dual system had continued very long, the technical advan
tages of the new system would have been lost. Someone 
decided that this should not happen and authorized the rede
sign of the system to include' 'a monitoring system designed 
to provide the perception of participation and control to the 
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more senior officers, but a system which was computer
based and integrated into the original information-commu
nication system." 

CONCLUSION 

The organizational school discovered that changes in 
power and influence are one major class of computing use 
outcomes. Research in this tradition, however, has generally 
failed to consider differential effects of different computer 
applications. The implementation school has had almost the 
reverse set of strengths and weaknesses: a focus on individ
ual applications but a failure to consider power and influ
ence. 

The focus of implementation researchers regards as the 
user the person or group who requested system develop
ment. This, in turn, has encouraged implementation re
searchers to search for black-and-white outcomes, success 
or failure, within a single user group. This paradigm cannot 
distinguish between, for example, a system which failed 
because users did not have the appropriate cognitive style 
to use it and a system which failed because the initiating 
user imposed it upon other users who had sufficient power 
to sabotage it or to get around it in some way. Surely, these 
two causes of system failure would lead to different pre
scriptions for improving the activities of systems designers. 

In the second instance, the organizational outcomes of the 
new system, namely, an undesirable imposed change, had 
a secondary effect on the information system itself, namely 
sabotage. The failure to recognize the interaction between 
consequences for the organization and consequences for the 
information system has been a limitation of implementation 
research that may be hindering the improvement of system 
design practice. 

Sabotage is one kind of interaction between organizational 
outcomes and system outcomes. Maintenance of parallel 
systems is a second. Making changes to the information 
system itself after installation may be a third. Requests for 
changes to already implemented systems sometimes reflect 
user reactions to changes or disruptions in their organiza
tional practices brought about by using a new computerized 
information system. This is clearly what happened in the 
Conrath and du Roure case just cited. 

If the best aspects of both schools are combined, the 
application focus of the implementation school and the 
power and influence outcomes variables of the organiza
tional school, the neglected outcomes are brought into focus. 
It then becomes possible to perform what can be called 
computer/organizational impact analysis. In this type of 
analysis, one traces organizational outcomes of computing 
use back to their causes. Changes in power and influence 
among various user groups can be traced back to the inter
action of new system designs with existing organizational 
arrangements, as in the case by Conrath and duRoure. These 
same organizational outcomes can then be projected forward 
into probable consequences for the success or failure of the 
information svstem itself. 

If systems designers performed computer-organizational 

impact analysis before they designed and installed new sys
tems, they might anticipate information system failures and 
learn to avoid them by manipulating aspects of system de
sign and implementation with a view toward eliminating 
undesirable organizational outcomes. 

Computer/organizational impact analysis might also help 
managers in organizations create desired organizational 
changes. Galbraith 7 and Pfeffer19 have shown that comput
erized information systems can be used to change the struc
tures and processes of organizations. However, the research 
has yet to tell us how to design computerized information 
systems to make these desirable organizational changes pos
sible. Computer/organizational impact analysis may fill this 
gap, by shedding light on some of the neglected outcomes 
of computer use. 
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An academic meets industry
Rethinking computer-based education 
and personalized systems of instruction 

by KENNETH L. MODESITT 
Texas Instruments, Inc. 
Dallas, Texas 

PROLOGUE 

Education is a versatile animal. After belonging exclusively 
in the domain of the home for millenia, public education in 
the United States became institutionalized about 1800. 
Today, the school system in many cultures is often equated 
to "the" educational system. However, industrial institu
tions are also ·becoming acutely aware that education is a 
vital component of their structure, and in some cases, of 
their market. 

I believe that education is vital in all three of the above 
institutions: home, school, and industry. If a role of edu
cation is to help us learn new ways, as well as to understand 
current and past concepts and events, then we are in for a 
great deal of education in the future. It hardly seems possible 
that Tomer's Future Shock is already eight years old, as we 
observe and share in rapidly changing lifestyles and insti
tutions constantly today. 

THE ACADEMIC 

It is my deep conviction that a large part of education can 
occur in a framework other than in a formal classroom 
setting. In such a formal lecture/testing situation, students 
are most often evaluated on a basis of comparison with other 
people who happen to be in the class. The resulting attitudes 
are ones we've all seen or experienced: the confident, bright, 
fast-learning top 10 percent, the slower-learning bottom 10-
20 percent who consider themselves "dumb" or "stupid," 
and the large majority in between-not really understanding 
much, but content to receive a "C" and get out. 

It was attitudes such as these which prompted me several 
years ago to investigate alternative modes of education. 
The alternatives involved evaluating students on the basis 
of mastery of definable objectives, and not on how well or 
poorly or rapidly their classmates performed. I first inves
tigated computer-based education (CBE) over ten years ago, 
became disillusioned with the quality, and left. When 
PLATO became viable in the early 1970s, my interest and 
activity were rekindled. Shortly thereafter, a friend intro-
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duced me to Keller's Personalized System of Instruction 
(PSI). Combining CBE and PSI in a university framework 
proved very useful in eliminating many of the attitudes men
tioned earlier. 13-16 Then, a few years ago, I introduced ex
plicit cooperation into these courses, lest students become 
too isolated!2 The primary cooperative efforts were: study 
partners for PSI units, design of a computerized personal 
data base by a small group, mutual design and use of inter
active programs, use of cooperative exercises and parties. 

Approximately the same time as the last papers were 
published, the personal computer revolution began in ear
nest. The seeds were thus sown for a major professional 
transition: a long-abiding interest in the home, a career in 
higher education, professional training in computer science, 
and the personal computer. After balancing these for a year 
or two while continuing to teach in the university environ
ment (and encouraging all my students to investigate ma
chines for home use ll

), I made the decision to return to the 
computer industry after a 13-year hiatus. 

THE ATTRACTION OF INDUSTRY 

Texas Instruments (TI) is a very natural professional home 
at this time. It has a long-standing interest in the individual 
consumer; it can deliver high-technology personal products 
at affordable prices; mini- and microcomputers are current 
offerings of the company: it has made a commitment to 
using an extremely well structured programming language 
(Pascal); a large educational effort is underway to deliver 
this tool; and most importantly, it actively encourages cre
ative solutions to challenging problems. Consequently, my 
active interests in personal computing and CBE/PSI edu
cational systems could be naturally joined to help deliver a 
useful, fun and challenging tool to homes everywhere. 
"Computing power to the people" became an area where 
contributions were definitely possible. In fact, TI received 
top billing in an excellent recent article on CBE, where the 
author stated: " ... it is not wise to underestimate the in
genuity of the private sector in harnessing mass production 
to perceived consumer needs, whether in the home or in the 
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school. "19 He then goes on to describe the popular Speak 
& Spell (TM) product of TI. 

Texas Instruments has made a substantial effort to im
prove the scope and calibre of on-the-job education for its 
employees. And because of the diversity of employees in 
such a company, it is an ideal site for applying CBE/PSI 
principles developed in academia. Lessons learned in this 
environment can be utilized as TI also actively pursues a 
market beyond its own confines. This market is the general 
populace which can make fantastic creative contributions if 
given a versatile, well-designed home computer capable of 
educating and of becoming "educated" itself. An excellent 
article in a recent issue of Computer is a well balanced 
overview of some of these contributions and how they might 
come about in the 1980s, according to a group of experts. 8 

The ability of machines to become "educable" is my 
requirement for personal computers. They must be able to 
perform many useful and fun tasks. Pick up any copy of 
Creative Computing. Personal Computing. Byte. People's 
Computers, etc. for a vast array of marvelous application 
areas. But the same computers must also be able to be told 
how to do new things-no amount of ROM is adequate here. 
Historically, we have told the machine how to do new things 
by creating a new program for it. I doubt very much if the 
general public will program in the same ways you and I have 
for 20 years, but we must make it possible for them to 
"teach new tricks" to their new helper and game-player. 
Our natural language researchers in artificial intelligence 
should be a big help here. Smalltalk at Xerox P ARC is an 
excellent start. 9 

POTENTIAL CONTRIBUTIONS 

Both CBE and PSI, after a relatively sheltered life in 
academic institutions. hold great promise in other institu
tions, notably the home and industry. Control Data Educa
tion Company and others are deeply involved with CBE in 
industry.5 And it is rumored CDC is even looking at the 
home market. 6 PSI, on the other hand, is almost exclusively 
used in schools. Therefore, one of the potential contribu
tions is to formulate a strategy to maximize the effectiveness 
of both tools in an industrial environment. They have proven 
themselves to be viable in their original settings. Now we 
are in a position to respond to numerous calls for coopera
tion between the university and industry. 4,17 

Upper-level management at TI has decided that the 
widely-recognized superiority of Pascal for many program
ming tasks will be acknowledged within a majority of future 
TI products. Consequently, they have funded the effort to 
produce the first industrial version of Pascal, called TI Pas
cal. The language, in both its sequential and concurrent 
forms, has been formally released. 

Now formulating the (few) extensions to Pascal and im
plementing the associated compilers, interpreters, and run
time support systems is no mean feat. However, the edu
cational effort required for widespread use of this tool is 
also considerahle. The universities hclVe heen a great help 
here as they continue to replace their introductory courses 

oriented to Fortran and assembly language with ones em
phasizing Pascal and associated reliable design techniques. 
A recent issue of Byte contains many readable articles on 
Pascal. 7 Textbooks are also rapidly appearing. 2,3,18 

Within TI then, we are experiencing many of the problems 
associated with university classes: "too many" students for 
only a few instructors, not enough individual attention, time 
conflicts, student travel time, multiple entry levels, etc. In 
addition, there are some unique concerns. In particular, 
student time is worth money! This is a revolutionary concept 
in school, but a vital consideration in industry. Moreover, 
students do not really receive a letter grade. Rather, it is 
assumed that, after they have attended a Pascal course for 
n hours, they know Pascal sufficiently to be able to read and 
write Pascal programs. 

A POSSIBLE SOLUTION 

One of the possibilities under consideration by TI for 
delivering some courses involves both CBE and PSI. The 
following is one option. 

1. Develop CBE materials using off-the-shelf hardware, 
and pieces of courseware, if available. 

2. Use the product for a few classes until the majority of 
the major errors are removed. 

3. Concurrently, develop TI software and hardware de
signed for a well-engineered CBE interface, relying on 
experience gained in the current system by users and 
authors. 

4. Transport currently developed courseware to the new 
distributed TI system permitting interterminal com
munication. 

At this point. students will take a lesson (or course) near 
their site at a TI system. User consultants will be available 
on-line in prime time, with a notes feature used at other 
times. 

The course will usually consist of several units as in PSI, 
where each unit contains an introduction, objectives, sug
gested procedures (involving reading, program writing, tak
ing CBE lessons, etc.), sample exercises and a mUltiple 
version unit test. Unit mastery will be demonstrated by 
passing the unit test at 80-90 percent competency, where 
each question will relate to a unit objective and be catego
rized by Bloom's educational cognitive taxonomy. 1 For 
readers unfamiliar with PSI, the excellent paperback by 
Keller and Sherman is recommended, 10 in addition to earlier 
referenced papers of the author. Briefly. PSI is characterized 
by five attributes: 

l. Mastery-based 
2. Self-pacing 
3. Non-lecture 
4. Written materials 
5. Proctors 

The argument in favor of PSI runs something like this. 



Students can gain in self-respect, and justifiably so, when 
they demonstrate they can master the material (a). But since 
students grasp material at widely varying rates, such mas
tery will occur only if the students are primarily responsible 
for pacing themselves (b). However, if they pace them
selves, there is no way any lecturer could possibly speak to 
all students at their individual points of progress (c). But if 
the information is not transmitted verbally, how can it be 
done? Written material provides a partial answer (d). With 
the widely varying rates of progress through a course, there 
is no way one instructor could manage the evaluation proc
ess for 30 students working on 20 units of material, each 
with its own multi-version unit test. Hence, proctors become 
invaluable (e). They each, including the instructor, take re
sponsibility for about ten students. That is, they go over the 
unit tests, answer questions, suggest resources, etc. 

The first unit test will be graded on-line at the student's 
convenience by an instructor. If competency is not dem
onstrated, suggestions for further study will be given and 
another version of the test taken later. This will continue 
until mastery is achieved, and then the student will start the 
second lesson. For latter units, either the instructor or an
other student who had passed the unit earlier (internal proc
tor) will grade the test and make suggestions. This proctor 
can be at the same site as the student taking the test or at 
another TI site. In either case, the proctor can see the 
student's quiz and carryon a full dialogue. 

Course mastery will be demonstrated by passing all units 
at mastery level. Statistics regarding completion times, num
ber of unit test retries, proctors, comments on lessons taken, 
ill-stated questions or objectives, etc., are easily gathered in 
the proposed system and can be released to authorized per
sonnel. For example, a cost center manager might wish to 
see how much money should be budgeted for students to 
take the TI Pascal course. 

A FUTURE 

I would expect that, should TI decide to try the preceding 
alternative to current course development and delivery, the 
company will also market a similar product eventually. A 
home computer can be utilized for educational lessons with 
dial-up access to instructors or proctors who might become 
widely-scattered friends over time. Components of the les
sons can use the many exciting peripherals forthcoming: 
touch panels, audio output and input, video disks, synthe
sizers, etc. as well as our best and most versatile resource: 
people. If a student has difficulty understanding something, 
cooperation is encouraged! I think we are here to help one 
another, not to compete continuously. 

SUMMARY 

I have suggested that the institutions of home, school, and 
industry have much to gain by cooperation with one another. 
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My. interest in providing computing power at an individual 
level has led me on an odyssey from industry to university 
life, and now back to a computer industry vitally involved 
with personal computing. Lessons learned in the university 
about how students learn better are suggested as viable 
options in the industrial environment. In particular, CBE 
(computer-based education) and PSI (Personalized System 
of Instruction) are conjoined to offer flexible courses inter
nally. And from these efforts, modified ones can be made 
available to the public, permitting learning to occur wher
ever people happen to be, perhaps just finishing up with a 
rousing game of interterminal "Star Trek'" or "Oregon 
Trail!" 
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Recent developments in computers and society 
research and education 

by RICHARD H. AUSTING 
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Norfolk, Virginia 

INTRODUCTION 

Since the advent of computers, there has been concern about 
the impact of computers on various aspects of society. 
Thousands of articles and numerous books have been writ
ten in the general area of computers and society. Computer 
professionals have been instrumental, though perhaps not 
always significantly enough, in the development of policies 
and legislation affecting the use of computers in the public 
domain. Studies have been conducted; courses have been 
introduced, primarily at the college level; seminars directed 
to computer professionals have been held; and public infor
mation programs have been sponsored, mostly on a local 
level. 

While much of this activity is continuing, a number of 
developments during the past few years suggests that new 
(or renewed) emphasis is being placed in certain areas, par
ticularly in research and education. 

RESEARCH 

One indication that research actIVIty in any area is in
creasing is the establishment of a journal or section of a 
journal for publication of results. Research papers in com
puters and society have been appearing regularly in the 
Communications of the ACM since January, 1976 when 
"Social Impacts of Computing" was made a separate Tech
nical Department with its own editor (R. Kling, University 
of California at Irvine). Also, the conference ACM 78 which 
was held in Washington, D. C. in December, 1978 included 
two sessions on research in computers and society. Six 
papers were featured in these sessions. 1 

Books have appeared which give more stress to issues in 
the area of computer impact on society and analytical per
spectives of the subject matter rather than expository treat
ments of applications as found in many works. Examples of 
the former are books by Arbib, Gerberick et al., Gotlieb and 
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Borodin, Hoffman, Mowshowitz, and Weizenbaum. 2
-

H 

These kinds of books are useful for computer professionals 
as well as for upper division or graduate students in a com
puter oriented degree program. 

EDUCATION 

Recent curriculum recommendations from ACM's Curric
ulum Committee on Computer Science (C3S) include an ad
vanced-level course in Computers and Society. The report 
"Curriculum 78: Recommendations for the Undergraduate 
Program in Computer Science" " specifies that the course at 
least be strongly recommended and should be required of 
all computer majors if sufficient material is not included in 
other required courses in the program. This recommendation 
constitutes one of the major differences between the report 
"Curriculum 78" and the same committee's report ten years 
earlier 10 which did not include a course on computers and 
society. 

Another recent development within ACM is also worth 
noting. The Elementary and Secondary Education Curricu
lum Committee, in December, 1978, began work on rec
ommendations for material on computer impact to be taught 
in elementary and secondary schools. It is too soon to com
ment on this development, but the effort itself is significant. 

CERTIFICATION 

The Institute for Certification of Computer Professionals 
(lCCP), established in 1973, has exercised concern over the 
societal responsibilities of computer professionals in a va
riety of ways. In 1977, ICep offered the Certificate in Com
puter Programming (CCP) examination which attempts to 
test minimum knowledge requirements for persons holding 
senior programmer positions. The content outline for the 
examination contains a section on computers and society. 
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ICCP also offers the Certificate in Data Processing (CDP) 
examination which is oriented toward management posi
tions. Anyone who passes these examinations is expected 
to subscribe to codes of ethics and good practice (which 
were developed by ICCP) in order to obtain the certificate. 
Although relatively few (less than 20,000) persons hold the 
CDP and only several hundred hold the CCP, there is active 
discussion on the use of these examinations (and examina
tions for other positions under consideration by ICCP) as 
part of the minimum requirements for appointment or pro
motion to certain positions. This issue is a complex one with 
ramifications that are not subject matter for this paper. How
ever, the institution of such requirements as criteria for 
obtaining a job title or, more importantly, for carrying out 
the duties of a position, will increase the awareness of com
puter professionals of their societal responsibilities. 

For example, consider the development of an automated 
diagnosis program. A number of them have been imple
mented and more sophisticated ones are likely. Some of 
these programs have resulted from the interaction of medical 
personnel who knew relatively litde about computers and 
programming and one or more programmers who knew rel
atively little about medical applications and who may not 
have known as much as one would like about programming. 
data structures, and relevant techniques. Who is to blame 
if a patient suffers because of a wrong diagnosis? Does the 
programmer have any responsibilities in this regard? Should 
a programmer be required to pass an examination such as 
the CCP before being placed in charge of the programming 
project? Certainly, there is no guarantee that persons will 
be more aware of societal responsibilities because they ob
tain a new title, but the intent would be to make them more 
accountable, hence, we hope, more concerned. 

CODES 

Within the last few years, codes of ethics, conduct, or 
good practice have been established by a number of com
puter societies (e.g., ACM, ICCP) which suggests the mem
berships' growing awareness and concern over the impacts 
of computers on society. Members are expected to subscribe 
to the codes, but computer societies have found it difficult 
if not impossible to enforce their codes. In an attempt to 
remedy this problem, the ACM Council at its meeting in 
June, 1978, adopted enforcement procedures for its Code of 
Professional Conduct after extensive discussion both at this 
meeting and at previous ones. The text of the procedures 
was published in the August, 1978 issue of the Communi
cations of the AC M. 11 

NSF GRANT TO ACM 

In 1974. work began on a project of ACM's Education 
Board funded by NSF and entitled "A Study of Computer 
Impact on Society and Computer Literacy Courses and Ma-

terials.·' The project had three basic objectives: 

1. To review and catalog materials related to computer 
and society courses and programs and to provide meth
ods for dissemination of such information. 

2. To identify minimum-knowledge-level requirements for 
computer literacy. 

3. To develop behavioral objectives for various types of 
computer and society courses as well as develop de
cision mechanisms for materials for such courses. 

Bibliography 

The project committee's efforts to achieve the first objec
tive resulted in 1976 in an annotated bibliography of over 
2000 selected entries (dated, for the most part, after 1968) 
which was intended to provide resource material for teach
ers of both computer impact on society and computer lit
eracy courses. A hierarchical information storage and re
trieval system was developed and implemented under 
Charles H. Davidson at the Engineering Computing Labo
ratory, University of Wisconsin-Madison. Entries were 
coded by area, function, approach, level and type. Retrieval 
of all entries satisfying combinations of these categories was 
possible. 

A review of the kinds of material written in the area of 
computers and society, and included in the bibliography, 
can be found in Austing, Cotterman, and Engel. 12 Briefly, 
the review indicates that over 90 percent of the material was 
expository in nature, ranging from the wonderment (e.g., 
computers are superior to humans) and fear (e.g., computers 
will cause vast unemployment) found in earlier literature to 
the more detailed discussions of applications found in later 
material. A very small percentage of the literature contained 
technical perspectives. We hope this percentage is increas
ing as suggested by the examples cited in previous sections. 

While the bibliographic work was underway, the project 
committee participated in panel sessions and held open hear
ings at conferences, in addition to discussing ideas and ex
periences of interested and knowledgeable professionals 
from education, industry, government and selected groups 
from the public-at-Iarge. These efforts provided substantial 
input relative to course content, educational level, minimum 
requirements and objectives of courses in computer impact 
on society and computer literacy. 

The second phase of the project, also funded by NSF, 
began in July, 1977 and will continue into 1979. The follow
ing three activities were specified: 

I. Further develop and refine the bibliography and the 
information storage and retrieval system supporting it. 

2. Organize and conduct a workshop on computer impact 
involving individuals other than computer profession
als. 

3. Develop and disseminate a collection of position state
ments in the area of computer impact by various con
cerned professionals. 



The workshop 

The workshop played a major role in the approach to the 
other two activities. It was held on July 17-19, 1978 in 
Williamsburg, Virginia. The 33 invited participants repre
sented as diverse a group as possible, the only common 
bond being an expressed interest or experience in one or 
more aspects of the societal impact of computers. Austing 
and Engel report on the organization, content and results of 
the workshop.13 Some of the results and recommendations 
lend emphasis to the fact that there are renewed efforts 
lately in the area of education regarding computers and 
society. 

Specifically, a list of topics was developed from which 
course material could be used. This list did not constitute a 
taxonomy, nor was one expected at this stage. However, 
whenever a topic is selected for presentation, it is necessary 
to determine the level (impart knowledge, instill an attitude, 
develop a skill), audience and approach (lecture, discussion, 
examples only, technical aspects, project, etc.). Further, 
when developing material possible emphases must be con
sidered, such as 

1. Skills citizens need for coping with the computer im
pact. 

2. Computer impact on work patterns and relationships 
within organizations. 

3. Degree of high technology comprehensibility of profes
sionals. 

4. Computer impact on the politi'ca1!economic/legal pro
cess. 

5. Inherently socially problematic nature of computer 
technology. 

The growing interest and public support for the computer 
literacy concept was cited as a reason to consider including 
suitable material at the pre-college level. More strongly, the 
workshop participants recommended that all high school 
graduates be computer literate. The rationale focused on the 
necessity to learn about computers before formal schooling 
is completed because computers do (and will continue to) 
permeate our society. To achieve the desired computer lit
eracy, graduates should have knowledge of the following: 

1. Historical perspective of computing. 
2. Computer anatomy (includes parts of a computer, how 

computers work, algorithms, probiem soiving, system 
capabilities) . 

3. Uses of the computer (both types of uses such as in
formation storage. simulation, DP, communications 
and areas such as business, science and technology, 
education, health care). 

4. Social implications (such as careers, organizational 
changes, privacy). 

5. Futuristics (for example, trends in artificial intelligence 
and robotics, innovation and new technology, com
munications ). 
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6. Introductory level skill in algorithm design and pro
gramming (only if adequate access to computers is 
available). 

At the college level, two kinds of courses were specified, 
one for the general education requirement (designed as a 
survey type course) and one for the computer science major 
(designed to help students learn to carefully analyze the 
social settings in which computing is used, to understand 
what socia! and historical forces give rise to different sys
tems uses and designs, and to realize the impacts and value 
conflicts upon users and non-users of computers). The work
shop participants recommended that a Computers and Soci
ety course, or equivalent knowledge, be a part of the edu
cation of every college student. Rationale cited the 
imperativeness for college-educated persons to have more 
than a superficial knowledge of computers and their impact 
because of the technical/information explosion and the cor
responding expansion in computer usage, the need for the 
corresponding expansion in computer usage, the need for 
awareness about computers in consumer life and the need 
for a more informed citizenry in decision making where 
computers are involved. 

Imparting knowledge to computer professionals and 
reaching them are two problems addressed by workshop 
participants. Delivery mechanisms (e.g., courses, profes
sional development seminars, tutorials) must be intensive, 
be appropriate to the job environment and be geared to very 
specific groups. Computer professionals have a difficult 
enough time trying to keep up-to-date in their specific area. 
They will not always find the time to attend courses or 
seminars for the purpose of keeping abreast of the impact 
of computers in such wide-ranging areas such as transborder 
data flow, electronic funds transfer, communications and 
health care. They need a set of principles rather than broad 
knowledge to apply to societal impact issues relevant to 
applications in which they are involved. These principles 
can be developed through a highly-concentrated approach 
to a specific issue, possibly by means of a case study ap
proach or by simulations and role playing. 

The general public needs to be educated about computers 
but effective means are difficult to identify. Every computer 
professional can playa role in educating the public and, by 
so doing, put into action various aspects of social conscious
ness that would otherwise just be words. The public is in
undated by computer applications (e.g., charge accounts, 
graphics on TV, advertisements, electronic games). Com
puter professionals could not only offer continuing education 
courses to transmit correct information to portions of the 
public, but also exert whatever influence they have (possibly 
through computer societies and associations) on business 
and government to promote policies encouraging proper use 
of computers where the public is involved. Workshop par
ticipants identified a number of specific information media 
and suggested uses of media groups for disseminating ma
terial about computers to the public. However, no readily 
available solutions were found. 
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One of the outcomes of the workshop was to broaden the 
base of material in the bibliography developed in the first 
phase of the grant by incorporating references from fields 
other than computer-oriented ones (e.g., philosophy, health 
care). The bibliography was also updated by adding more 
current references and, in some cases, deleting some which 
have been superseded or which were not as good a source 
as another reference. The bibliography now contains over 
3000 entries and is a much more valuable resource to anyone 
intending to offer a course in the computer impact on society 
or computer literacy. After the termination of the grant in 
the spring of 1979, ACM will begin maintaining the bibli
ography. Information concerning its content and use can be 
obtained through ACM. 

CONCLUSION 

The activities previously described indicate the kinds of 
efforts underway in the area of the computer impact on 
society. They are at the level of affecting professional or
ganizations of computer people and having an impact on 
schools, especially elementary and secondary ones. Re
search results are being disseminated more widely than be
fore which, in turn, should encourage more creativity and 
development by people concerned with societal issues. All 
of these are hopeful signs of renewed emphasis on important 
issues in computers and society. 
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Interactive monitoring of computer-based group 
communication* 

by KATHLEEN SPANGLER, HUBERT LIPINSKI and ROBERT PLUMMER 
Institute for the Future 
Menlo Park, California 

INTRODUCTION 

Biofeedback is a procedure for monitoring unconscious or 
involuntary bodily processes and making them perceptible 
to the senses. The objective is to increase consciousness 
and therefore control of the bodily processes as a means of 
improving health. This paper is not about health or biofeed
back, but it does describe a procedure that is perhaps anal
ogous to biofeedback-the interactive monitoring of group 
communication through computers. 

Over the last decade, a number of computer programs 
have been developed to support small-group communica
tion; these include PLANET, EIES, PARTYLINE & DIS
CUSSION,CMI, CONFER, MINTandRIMS.** Since these 
programs act as a kind of gatekeeper for the communication 
process-directing participants to appropriate "activities" 
and ordering their "messages "-they can easily be extended 
to record important features of the group's communication 
patterns. For example, during its development phase, the 
PLANET system included monitor software that collected 
and analyzed information about the time users entered and 
left a PLANET activity, the number of public and private 
messages sent, the number of words in public and private 
messages, the use of commands, the typing time and the 
number of computer resource units used, among other sta
tistics. This information was used to evaluate the impact of 
the medium on group communication and it revealed several 
different styles of computer conferencing among users of 
the system. 2,3,4 

The information from the PLANET monitor software was 
not available to those who were participants in PLANET 
conferences during their discussions. However, there is no 
technical reason why such information could not be made 
available to users of computer conferencing. It could then 
serve as a kind of biofeedback about the group communi-

* This paper results from work supported by the National Science Founda
tion, Division of Mathematical and Computer Sciences under Grant No. 
MCS77-01424. 
** PLANET was developed by the Institute for the Future: EIES by Murray 
Turoffat the New Jersey Institute of Technology: PARTYLINE & DISCUS
SION by Rod Renner and Murray Turoff: CMI by Bell Canada: CONFER 
by University of Michigan: MINT by the Nonmedical Use of Drugs Direc
torate in Canada: and RIMS by Murray Turoff for the Federal Office of 
Preparedness. For a description of these systems, see Reference I. 
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cation process, increasing the group's consciousness of its 
communication patterns and thereby giving them more con
trol over those patterns. 

An interactive monitor would aliow the group to spot 
possible communication barriers-nonparticipants, isolated 
subgroups and poor access to important resources, for ex
ample. The group leader or the group as a whole could then 
determine whether some intervention would reduce these 
barriers. An interactive monitor could also provide insights 
into the efficiency of the group communication process; it 
could display to the group its volume of communication, the 
timeliness of information exchange, and the cost of com
munication. Over a long period of time, such a monitor 
could chart the history of the group, displaying informal 
changes in the group's organization that may suggest the 
need for formal changes. In short, an interactive monitor 
could be used to evaluate and alter the group's communi
cation process. 

IMPLEMENTING THE MONITOR-THE HUB 
SYSTEM 

At the Institute for the Future, we have begun to imple
ment this concept for groups with a specific communication 
purpose-the construction of large-scale policy models. We 
have designed a communication system known as HUB. 
The HUB system, which resides on the Bolt, Beranek and 
Newman PDP-lO computer in Boston, is a four-part com
munication system. The four parts include 

• A computer conferencing facility that uses the 
PLANET program. 

• A graphic communication facility (the "shared visual 
space") that allows users to create graphic images from 
picture primitives and to comment on these images. 

• A "program workspace" that allows users to run a 
variety of computer programs and to discuss them while 
they are being seen or to comment on them later. 

• A "document workspace" that allows a group of users 
to develop a document jointly by making changes on a 
single version and annotating those changes in com
ments. 

A HUB .. switcher"' makes it easy for users to access and 
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Figure I-The HUB system. 
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move among each of these four systems, as illustrated in 
Figure 1. It is in this switcher that the HUB monitor is 
located and it is here that users interact with it. 

IMPLEMENTING THE MONITOR-WHAT TO 
MONITOR 

In designing the monitor. of course. one of the central 
questions is, What should be monitored? To answer this 
question, we began by considering the complex set of vari
ables that combine to shape group communication. One 
useful way of grouping these variables is according to three 
categories: (1) group process, (2) individual communication 
styles and (3) task performance.** These categories suggest 
an outline for identifying the kinds of information that may 
be useful to a team of modelers in the course of a HUB 
conference. 

Consider first the group process variables. One of the 
most important issues for groups of all kinds is participation. 
The level of participation of various group members reflects 
leadership patterns, productivity of the group, and the avail
ability of resources to the group. It can also reveal subgroups 
who may have certain unique communication needs, but 
also unique problems in communicating with the larger 
group. In a HUB conference, we imagine that the following 
information about participation would be useful:*** 

• Volume of communication per day, week. or month for 

** For a review of taxonomies of group communication through electronic 
media. see Reference 5. 
U' Obviously. this list is not cxhau~tivt!; it does. huwevt!!. illduuc the majol 
patterns that can be collected or calculated automatically. 

the entire group (in both comments and words), for the 
entire system and for each part of the system (i.e., 
PLANET, program workspace, etc.). 

• Length of comments in each part. 
• Distribution of participation over time. 
• Distribution of participation within each part and across 

parts of the HUB system. 
• Dominant participants for each part; for the system as 

a whole. 
• Percent synchronous participation for each part. 
• Cost of communication per unit time. 

Each individual in the group will have his or her own 
characteristic style of communication. The monitor should 
be able to provide a profile of this style. Many of the vari
ables in such a profile are similar to those for the group as 
a whole. For example, the profile should probably include 

• The volume of communication generated by the indi
vidual compared to the volume of the group as a whole. 

• The individual's frequency of communication. 
• The changing position of the individual in the distri

bution of participation over time and across parts. 
• His/her use of programs compared to others in the 

group (number of runs initiated in the program work
space). 

• Percent time spent in synchronous interaction. 
• His/her private communication network (in PLANET). 
• The "accessibility" of an individual to others in the 

group.t 
• His/her cost to use the system per unit time, compared 

to the total group. 

The task performance variables are perhaps most specif
ically related to the unique communication problems of mod
eling groups. These problems include a lack of communi
cation between builders and users of models due to 
organizational barriers. perceptual barriers and different lev
els of skill in working with computers and mathematical 
concepts; a tendency for individual members of the modeling 
team to "do their own thing" rather than to work in a 
collaborative style: problems of documentation; and prob
lems of confidence in the model due to difficulties in inter
preting results, in understanding the model structure and in 
recognizing factors that are not considered in the model, all 
of which lead to questions about the validity of the model.§ 

Much of the information that would be useful in diagnos
ing and correcting these problems cannot be easily collected 
by an automatic monitor. * However, since the various parts 
of the HUB system are really designed to facilitate different 

t "Accessibility" in a HUB conference can be measured by the time lag 
between the sending of a message and its receipt by any particular individuals . 
The longer the average time lag. the lower the accessibility. 
§ For a full discussion of communication problems in the modeling process. 
see Reference 6. 
* For example. an indicator of difficulties arising due to perceptual or disci
plinary barriers is the use of specialized jargon by subgroups. A content 
aIlaly~i& uf the tralls~ripl would reveal su~h a pallelil: huwevel. it is IIut dUlle 
easily by an automatic monitor. 



tasks, the usage patterns for each of these parts provide a 
task-related profile of the group's communication. For ex
ample, the volume of activity in each part is likely to change 
as the focus of the project shifts from one task to another. 
These shifts can be monitored over time; individual partic
ipation patterns can be overlaid on these volume patterns. 
Such information would demonstrate who is involved in 
what types of activity at any point in time. 

It will also be useful to collect specific data for each of 
the subparts to clarify issues of task performance. For ex
ample, it will be useful to know 

For the shared visual space: 
• The number of versions of each graphic image. 
• The ratio of comments to graphic commands. 
• The length of time to produce a completed graphic 

image. 
• The frequency of use of graphic commands. 
= The cost to produce a completed graphic image. 

For the program workspace: 
• The number of runs for each program. 
• The number of comments per run. 
• The number of synchronous runs. 
• The number of times each run is reviewed. 
• The number of unique input files. 
• The ratio of program lines to comment lines. 
• The cost of each run. 

For the document workspace: 
• The number of text changes over time. 
• The ratio of text changes to comments. 
• The riumber of times a document is printed in full. 
• The average line length of text changes. 
• The number of synchronous text changes. 
• The number of reviews of text changes. 
• The cost per text change (including and excluding com

ments). 

In addition to this information, the group can evaluate its 
overall task performance by considering some of the data 
about the "time effectiveness" of information exchange in 
various parts of HUB. Thus, the HUB monitor should col
lect statistics on the length of time between any program 
run and its review by any other participant; between any 
graphic change and its review by any other participant; 
between any document change and its review by any other 
participant; and between comments in any of the four parts 
and their review by any other participant. Such measures 
will provide a very dynamic view of the communication 
process. 

Many of the communication variables in these four cate
gories are related; in fact, all of them can be calculated from 
a relatively small number of statistics, which the HUB mon
itor is designed to collect. In addition to these statistics that 
are collected unobtrusively, the monitor files include space 
for two other types of information: (1) hand-coded infor
mation about the message and (2) responses to structured 
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que~tions. Thus, it would be possible, for example, for 
someone to content-analyze a series of messages (e.g., for 
the use of jargon) and hand-code this information into the 
monitor to be displayed with network patterns for the mes
sages. The second feature-responses to structured ques
tions-would allow the conference organizer to poll the 
users' feelings about the group process, which would then 
also be available to supplement the statistics on communi
cation patterns. 

IMPLEMENTING THE MONITOR-HOW TO 
DISPLAY 

The procedures for collecting monitor statistics are quite 
simple. The procedures for displaying them to the group are 

. more complex. First, there are choices about how to rep
resent information about all of the communication variables 
noted above. Some of these can be shown as simple ratios, 
but most of them call for some form of graphic display. 
Some of these, such as network graphs that must be con
structed to show the strength of links, can be quite complex. 
Second are choices about how the users interact with the 
monitor-Do they automatically get a display of 20 or 30 
pre-set graphs and figures or do they specify what they want 
to see? And if they specify what they want to see, how do 
they know what they can display? Closely related is a third 
question about how much control users have over what can 
be displayed. On one hand, there may be only one fixed 
representation for each major variable. On the other, the 
users might be able to manipulate the representation to em
phasize certain aspects of it, or they might even be able to 
combine two or three variables to suggest correlations. Fi
nally, there may be certain variables that are pre-selected 
as significant; in this case the monitor could automatically 
notify the group when this variable reached some critical 
level. 

Because we are still in the process of developing the HUB 
monitor, we have not made all of these choices. However, 
it seems clear that the way in which the variables are dis
played could make a significant difference in the impact of 
the monitor data on the group. Furthermore, it seems clear 
that there are a number of creative ways to display the 
information that might speak directly to problems that pla
gue modelers. For example, labeling people by some label 
other than their names could provide some interesting in
sights. If a graph showing distribution of participation were 
labeled by disciplines rather than names, it might become 
clear, for example, that subgroups are developing along dis
ciplinary lines. The group could then a5sess whether this 
pattern is appropriate for the phase of the activity or whether 
some important insights are being lost due to lack of effec
tive communication between the subgroups. Thus, it seems 
that a primary criterion for decisions about how to display 
the monitor data should be flexibility to design displays that 
do, in fact, address particular problems that the group may 
have. 
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AFTER IMPLEMENTATION-THE IMPACT ON 
COMMUNICATION 

We have suggested that an interactive monitor could have 
an effect on the group communication process that is com
parable to that of biofeedback-namely, that it can increase 
consciousness and therefore control of the group's com
munication patterns. But we can now speculate about some 
more specific impacts-both negative and positive-of the 
type of monitor that we are implementing for the HUB 
system. 

One possible effect is that there will develop a new role 
in the communication process for a group facilitator. We 
have already noted the tendency for such a role to develop 
in PLAN ET conferencing. 3 In a HUB activity, this role 
might include responsibility for checking the monitor regu
larly and interpreting the results for the group. The facilitator 
might use the private message mode to counsel individual 
group members about their participation patterns or might 
use the displays in group sessions to consider the implica
tions of the patterns for complaints or difficulties that the 
group may be experiencing. 

A second likely effect of the monitor would be to encour
age more experimentation with group structures. As the 
group becomes more conscious of its communication pat
terns, it may wish to intervene in these patterns by tinkering 
with roles and responsibilities and then following the mon
itor to observe the effects of the experimentation. 

It seems very likely that such a monitor could and would 
be used to evaluate the group's performances and the per
formances of individual members. Certainly, it would make 
an individual's contribution to the group more apparent: it 
would also provide a reading on the more elusive measures 

of performances, such as ability to get along with one's 
colleagues. Such an evaluation tool may indeed seem at
tractive to someone who is faced with objectively evaluating 
a group of people; however, there are also real dangers here. 
First, there is the possibility that the very existence of the 
monitor will inhibit some communication, and it may ac
tually discourage the participation of some people alto
gether. Also, the monitor may encourage some people to 
"perform" for the monitor, to alter their behavior just to 
show up well in the monitor data. Finally, the use of the 
monitor could encourage evaluation of the wrong aspects of 
performance, particularly if the data that are easily collected 
are not the best data for evaluation. 

The way that the HUB monitor will be used by groups 
and the effects on modeling communication remain to be 
assessed. Our plans call for field tests of HUB over the next 
two years. The role of the monitor will be an important 
focus of this evaluation. 
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The status of women in health science computing 

by LYNN L. PETERSON 
The University of Texas Health Science Center at Dallas 
Dallas, Texas 

The computing profession is now just over 25 years old. 
During this 25-year period, women increased in the labor 
f-Orce from 34 percent of all women ages 16 and over in 1950 
to 46 percent in 1975. 1 Since computing developed during 
the period when females became a larger proportion of the 
work force, the question arises as to whether women are 
equitably represented in this profession. The present decade 
has brought a consciousness-raising with respect to woman's 
role in the professions in general, with an interest in the role 
of women in the computing profession following naturally. 
The health care industries have become an ever more im
portant and visible component of the U. S. Gross National 
Product, resulting in increasing scrutiny of the conduct 
within the health care professions. With this background, 
the question of the status of women in Health Science Com
puting appears to be a logical one to consider. 

The ACM-SIGBIO Symposium on Health Computing Ca
reers was held in June 1977 to provide a broad survey of 
present and future health computing careers. A basic un
derstanding was that Health Science Computing was not just 
computer science practiced and applied in a Health Science 
Center setting, and it was not just medicine utilizing com
puters as one of the many specialized tools at its disposal. 
Health Science Computing was seen as combining capabil
ities of computer science and medicine and emerging as a 
dis~ipline of its own' to address areas of patient care, re
search, education and service. 2 However, if our concern is 
women's role in Health Science Computing, we can gain 
both knowledge and perspective by examining the two major 
components of its root--computer science and medicine. 

COMPUTER SCIENCE AND WHERE WOMEN FIT 

To look at those who are in the process of preparing for 
a career in computer science, we refer to a study done in 
the fall of 1975 by Mamrak and Montanelli. 3•4 Their findings 
show clearly that the number of students enrolled in com
puter science programs has increased dramatically since the 
early 1970s. They also show a small but statistically signif
icant increase in the enrollment of women in computer sci
ence at the bachelor's level during the period from 1971-
1975. But a look at the numbers of students in bachelors, 
masters and doctoral degree programs shows a moderate 
decrease in the percentage of women enrolled and graduat
ing as the degree level increased. It is possible that one of 
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the reasons for this is the lack of role models to encourage 
aspiration to higher-level career attainments. For the 1971-
75 time period, the sex distribution of computer science 
faculty indicates a clear lack of availability of women role 
models in the higher academic ranks.4 

Next, let us look at those who are actually engaged in 
computing as a career. In 1975, women made up 39 percent 
of those in the labor force. 1 At the same time, they com
prised approximately 31 percent of those employed in com
puting at alllevels. 5 In the data entry positions, 99 percent 
were women. In programming and analysis, the percentage 
of women holding these job titles was no higher than 20 
percent. An explanation of this situation could be the one 
offered by Weber and Gilchrist. Approximately 34 percent 
of the baccalaureate degrees awarded by American colleges 
and universities in 1971 went to women. If letters, nursing, 
fine arts, applied arts and home economics are excluded, 
the percentage of women drops to 26 percent. It is possible 
then that not enough women are receiving baccalaureate 
degrees in fields appropriate for entry into the computing 
profession to raise the percentage significantly through the 
mechanism of providing qualified applicants. 

Another view of the role of women in the computing 
profession involved a survey of 425 women (77 percent 
responses) in data processing conducted in 1975 by Asprey 
and Laffan to determine how women felt about their status 
and their potentialities. 6 The survey showed that 68 percent 
felt they had equal status with their colleagues in pay, pro
motions and overall. Some 70 percent of the respondents 
felt they had opportunities to advance to a senior level and 
more than half (actually 56 percent) felt opportunities to 
hold highly responsible management positions were avail
able to them as women. The survey showed that the avail
ability of part-time employment or of work on a contract 
basis made the computing field attractive to women with 
family responsibilities. Betty Maskewitz, now Director of 
BCTIC at the Oak Ridge National Laboratories, is quoted 
as saying '"computing is a wonderful field for women-an 
exciting field for anyone regardless of sex or any other 
stupid qualifier." 

While the computing field received a rather positive sub
jective evaluation by women employed in it, one might won
der if this field of endeavor is then hospitable to all. A recent 
Datamation article; shows that the computing profession is 
clearly not for everyone, that those individuals who are 
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attracted to computing as a career do not represent a cross
section of working professionals. A survey reported in the 
article shows that data processing people show a strong need 
for personal accomplishment, for learning and developing 
beyond where they are, for being stimulated and challenged; 
in short, a high' 'growth need." In fact, of all the professions 
surveyed, computing professionals showed the highest level 
of' 'growth need." At the same time, data processing people 
show a negligible need to interact with others, the lowest 
"social need" of all professions surveyed. In fact, it is felt 
that, if asked, most programmers would probably say that 
they preferred to work alone in a place where they couldn't 
be disturbed by other people. Computing professionals then 
do not merely represent a cross-section of the work force, 
but have some distinctive characteristics. In the absence of 
arguments to the contrary, we can assume that these per
sonality traits are represented in both sexes. 

MEDICINE AND WHERE WOMEN FIT 

A look at medicine, the other major component of the 
root of Health Science Computing, shows that women in 
academic medicine, the area of medicine most likely to be 
in contact with Health Science Computing professionals, do 
not fare as well. Judith Braslow of the AAMC staff stated8 

that of 48,500 faculty members in the nation's medical 
schools, 15 percent were women. Furthermore, of the 38,973 
full-time faculty, 10 percent of the M.D.s and IS percent of 
the Ph .D.s were women. Subjectively, their situation was 
felt to be improving. These women felt freer to move as 
career advancement dictated than was previously the case, 
and many were willing to make the sacrifices involved in 
moving to administrative positions. Many were now being 
asked to serve on committees where the female point of 
view was desired but as a result were being greatly over
committed. However, they felt that in spite of the progress 
made there was still a dearth of women faculty role models. 

MEDICAL COMPUTER SCIENCE 

In order to qualify for many of the positions in the com
puting field, one is required to have the capacity for logical 
thinking instead of a specific preparation. Furthermore, for 
computing people such as data entry personnel, computer 
operators and junior programmers without a defined spe
cialty, training in a specific applications area of computing 
is not required. It is, however, when we address the prep
aration of professionals in the specialty area of Health Sci
ence Computing that we are led to more academic consid
erations. 

The academic training grounds of many Health Science 
Computing professionals are programs called by such names 
as Medical Computer Science. Medical Information Science. 
Medical Informatics or any of a variety of terms. In 1977, 
a survey of existing training programs in .Medical Computer 
Science wao;; c()nOl1cteo t() llrdntf' :1n E'~r!if'r pnhli"hE'ri 
study,9 

An interim report on this survey, 10 presented at the SIG
BIO Symposium on Health Computing Careers, is available 
from, and will be kept current by, The University of Texas 
Health Science Center at Dallas. This survey shows that, 
according to Medical Computer Science practitioners and 
educators, job opportunities in health computing abound for 
adequately trained individuals. This situation shows no signs 
of slackening in the near future. The survey showed there 
were 92 percent as many students enrolled in Medical Com
puter Science programs in 1977 as had graduated since 1970. 
The 358 people enrolled were to be thrust into the job market 
in the succeeding years, each having up-to-date training in 
medical computer science. However, they account for less 
than one-sixth of the projected requirements for biomedical 
computer specialists. 11 Computer applications in medicine 
seem to be on the increase without a commensurate increase 
in the development of programs in Medical Computer Sci
ence to supply the personnel. If the projected need is ac
curate, this situation will have to change or else the bulk of 
the personpower recruited for medical computer science 
positions will have to be trained on the job. Thus, whatever 
route is used to approach jobs in medical computer science, 
job opportunities seem bright whether resulting from the 
growing requirement for accurate information posed by var
ious programs of utilization of health care and assessment 
of the quality of health care, or resulting from the increasing 
clinical applications of the computer. 12 Thus, for the forsee
able future, people with specialized training in Medical In
formation Science or Health Science Computing will have 
every expectation of finding employment which makes good 
use of their background. 

STATUS OF WOMEN IN MEDICAL COMPUTER 
SCIENCE TRAINING PROGRAMS 

In an attempt to investigate the status of women in the 
Medical Computer Science training environment, a pilot' sur
vey was conducted. A complete survey of the Medical 
Computer Science programs with respect to women's role 
is planned as a follow-up to the 1977 survey mentioned 
above. Those Medical Computer Science programs identi
fied in the 1977 survey will be contacted with the intention 
of collecting data on the number of men and women cur
rently enrolled in M.S. programs, in Ph.D. programs, in 
Post-doctoral programs, already graduated from M.S. and! 
or Ph.D. programs and currently serving on the faculty. The 
survey is planned for the spring of 1979 with results to be 
presented at NCC 79. 

Since the number involved in the pilot study was small, 
impressions only from the pilot survey can be given, with 
more objective data to come from the survey itself. It can 
be seen from even this limited sample that, within Medical 
Computer Science departments, the role of women in these 
programs covers a wide spectrum. One program has no 
women faculty; one, representing the other end of the wide 
spectrum, shows a two-to-one male-to-female-faculty ratio. 
Several programs have no female graduate students: one. 
representing the other end of a wide spectrum. estimates 



that its student population has a one-to-one male-to-female 
ratio. In one program, all graduates have been male: in 
another, all have been female. 

From these limited glimpses, it appears that a program's 
openness to women depends heavily on the individual grad
uate program and that generalizations over all Medical Com
puter Science grad~ate programs will not apply. A comment 
from one spokesperson suggests that a program's openness 
to women depends also on whether the individual women 
want to give what it takes to meet the challenge of the 
graduate program. In speaking with representatives of var
ious graduate programs, it was interestIng to find frequent 
mention of a man or men who gave encouragement to a 
number of women during various stages of their academic 
development. Such individuals should obviously be recog
nized and encouraged. While female role models may be 
lacking in many areas, this type of person can serve a role 
model for both sexes. 

ENCOURAGING GROWTH OF WOMEN'S ROLE IN 
HEALTH SCIENCE COMPUTING 

These glimpses of women in computer science and in 
Medical Computer Science Training Programs shed some 
light on what might be done to encourage the growth of 
women's role in Medical Computing. Some positive sugges
tions: 

• Encourage women who are inclined toward an interest 
in fields preparatory to computing to pursue that inter
est and get good high school and undergraduate train
ing. Sex stereotypes which suggest that girls should not 
be good in math, for example, should not be perpetu
ated. 

• If you are a woman in the field of Health Science 
Computing, consciously serve as role model whenever 
possible. Be visible. Talk about the problems and pos
sibilities of women in this field. If you like your work, 
say so. 
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• Finally, be the very best you can in what you do. Don't 
shy away from a challenge-enjoy it! 

By these means, and ones which others will, we hope, 
continue to suggest, we may ensure that qualified, interested 
women are not discouraged and/or prevented from engaging 
in careers in Health Science Computing. 
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Women and minorities in the computer professions 

by HELEN Mo WOOD 

National Bureau of Standards 
Washington, D.C. 

INTRODUCTION 

Generally, while full equity may not have been achieved by 
women and minorities in computer occupations, the belief 
has been that their employment status was better and con
ditions were more favorable for full utilization of skills due 
to the relative youth of the computer field. The federal 
government, in particular, has been involved in computers 
since their beginnings, and in addition has taken a stance in 
support of both equal employment opportunity (EEO) and 
affirmative action. 19 This position has been backed by laws 
(e.g., Civil Rights. Act of 1964) and Executive Orders (e.g., 
E.O. 10590 and E.O. 11375) prohibiting discrimination on 
the basis of race, color, religion, sex, national origin, or age 
in federal employment. Accordingly, it is reasonable to 
assume that women and minorities would have more oppor
tunities within the federal government, especially within the 
federal computer-related professions. 

This report examines available statistics in order to assess 
the status of women and minorities employed in computer
related professions, both in the U.S. labor force, in general, 
and the federal workforce, in particular. The intent is to 
provide "gross" indicators of the current situation and per
haps stimulate additional analyses. The focus is on labor 
market experience (e.g., employment and unemployment 
rates, relative salaries), rather than the utilization of women 
and minorities from a human resources perspective. This 
paper will primarily address labor market-related issues. For 
a report on utilization of women and minorities in science 
and engineering, including an examination of such factors as 
science abilities and the relationship between career plans 
and career outcomes, see Reference 14. Overt or covert 
discrimination and societal. cultural or other causal factors 
which have been addressed elsewhere (e.g., References 7 
and 8) are outside the scope of this report, as is any attempt 
to identify determinants for improvement. 

Due to varying data collection and tabulation techniques, 
tabulated figures contained in this report may not add to 
totals. Likewise, totals may not necessarily agree across 
reports cited. 

U.S. WORKFORCE 

The minority portion of the total 1974 U.S. workforce was 
approximately 11 percent. Women comprised nearly 40 per-
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cent of the workforce. 14 The next section will examine the 
composition of the U.S. scientific and engineering work
force. 

Scientists and engineers 

The NSF studies show that in 1974 the scientific and 
engineering population of the United States was almost two 
million in size, or just under 1 percent of the total U.S. 
population. 13 Of this total, which included individuals not in 
the active labor force (e.g., retired scientists), \,\00,000 
were engineers and 900,000 scientists. Of the total popula
tion of scientists and engineers (S/E), about 1.7 million peo
ple were in the labor force (i.e., employed or seeking em
ployment). Table I describes U.S. S/E employment by sex 
and race. 13 

In 1974, there were approximately 185,000 women trained 
in the S/E fields. Almost one-half of these women (89,000), 
however, were not participants in the labor force. That is, 
they were not employed and were not seeking employment. 
Those women who were in the labor force (about 96,(00), 
represented six percent of the total number of employed 
scientists and engineers in the United States. The large num
ber of women in S/E who were not in the labor force con
trasts sharply with the figures for all male scientists and 
engineers. Only 12 percent (222,000 out of nearly \.8 million) 
of all male scientists and engineers were not in the 1974 
labor force. 13,14 

Of the women not working, 20 percent had retired. The 
others were unemployed due to family responsibilities, ill 
health and "other reasons." Some of those "other reasons " 
including perceived career roadblocks and discriminatio~, 
were among the issues discussed at a 1-977 American As
sociation f~r the Advancement of Science symposium on 
covert discrimination and women in the sciences. 15 Addi
tional insights into factors contributing to low female labor 
force participation may be found in Kreps' report on Amer
ican women in the work force. 7 

In 1974, minorities comprised less than five percent of all 
scientists and engineers (about 87,000). Minority scientists 
and engineers had a higher rate of participation in the labor 
force, however, than their non-minority counterparts. While 
about 15 percent of the non-minority scientists and engineers 
were not in the 1974 labor force, the figure for minorities 
was 8.5 percent. 14 The higher labor force participation rate 
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TABLE I.-Employment of Scientists and Engineers, by Sex and Race: 1974 

Sex 
Total 

Field Total Male Female White Minorities 

Total 1,662,000 1,566,000 96,000 1,583,000 79,000 

Physical scientists 156,000 141,000 14,000 147,000 8,000 
Mathematical scientists 45,000 38,000 7,000 42,000 3,000 
Computer specialists 122,000 101,000 21,000 \16,000 5,000 
Environmental scientists 44,000 42,000 1,800 43,000 1,000 
Engineers 999,000 993,000 5,000 963,000 29,000 
Life scientists 136,000 118,000 18,000 129,000 7,000 
Psychologist 61,000 46,000 15,000 57,000 4,000 
Social scientists 100,000 87,000 13,000 86,000 14,000 

Note: Detail may not add to totals because of rounding. Source: National Science Foundation, Manpower Characteristics 
System. 

for minority group scientists and engineers is somewhat 
surprising since a greater portion of minority scientists and 
engineers were women (one in five) than was the case for 
nonminorities (one in 10). These figures led the NSF to 
suggest that "the high labor force participation rate for mi
norities may reflect more favorable career opportunities for 
minority group scientists and engineers vis-a-vis minorities 
in the general population because of equal employment and 
affirmative action legislation. Also, given historical patterns 
of discrimination, it may reflect a greater commitment to 
gainful employment in science and engineering among mi
nority group scientists and engineers.u,14 However, other 
factors such as the age, expe~ence and reasons for non
participation in the labor force of both the minority and non
minority groups must be considered before any real conclu
sions can be drawn from these figures. 

Now that general employment figures for scientists and 
engineers have been examined, it is meaningful to discuss 
the status of employment in the computer sciences. 

Cornplller specialists 

Recent attention has been accorded the status of women 
and minority computer science faculty and students. 9 ,11 In 
a report on women in the computer industry, 20 Weber and 
Gilchrist examined employment figures for computer man
ufacturers and computer-user industries. The data they pre
sented suggested" ... that women are not receiving equal 
pay for equal work and may not be sharing equally in the 
opportunities for advancement." Some improvement was 
noted. For example, figures indicated that the percentage of 
women employed by manufacturers of electronic computer 
equipment was showing significant improvement, although 
still below the national average. 

The NSF reports on S/E employment found that the sec
ond largest group of scientists in the U.S. t 974 popUlation 
were computer specialists, numbering 125,000. Chemists 
ranked first at 138,000. 13 In the NSF reports the term' 'com
puter specialist'· was used to include 

I. College faculty in the computer sciences 
2. Computer programmers 

3. Computer systems analysts 
4. Computer scientists 
5. Other computer specialists 

In 1974, of the six percent of all employed scientists and 
engineers who were women, the largest proportion (22 per
cent) were categorized as computer specialists. 13,14 Further
more, 88 percent of the female computer specialists in the 
S/E population were employed, compared to, for example, 
53 percent of the life scientists and 23 percent of the total 
scientists. This relatively high ratio between the number of 
female computer specialists in the popUlation and their em
ployment as computer specialists led the NSF to suggest 
that this could indicate more favorable employment oppor
tunities for all computer specialists. This appears likely, as 
the employment figures for men and minorities were both 
approximately 100 percent in this field. The NSF also ob
served that the computer field is relatively new, having 
grown so rapidly that demand frequently exceeds supply. It 
was also speculated that "since traditional barriers to em
ployment tend to fall in the face of a skill shortage, women 
may have found employment as computer specialists be
cause they had the educational background and were avail
able for employment. " 13.14 

The demand for computer professionals is further illus
trated by data on the transition of scientists and engineers 
from school to work,14 which indicates that most of the 
women who planned careers and had degrees in the natural 
sciences and who did not work in those fields worked instead 
in the computer field. 

A recent nationwide NSF survey shows that the numbers 
of men and women, respectively, working at or above the 
systems analyst level in the computer science area were 
138,700 and 33,600 for 1975 and 134,900 and 31,300 for 
1973. 16 The apparent under-representation of women in the 
computer field in general could be attributable in part to a 
shortage of women receiving college degrees in the fields 
required by the computer industry. 20 The same might be true 
for the low representation in the more highly skilled com
puter positions. 

Current figures from the National Center for Educational 
Statistics show the total and proportion of Bachelor·s. \1as-



ter's and doctoral degrees awarded from 1970-1 through 
1975-6. 17 As shown in Table II, the number of degrees 
awarded to women in computer and information sciences 
continues to be fairly light. (Data is available on women and 
minority Ph.Ds and on science and engineering doctorate 
supply and utilization. 6,12 

As indicated by Table III computer specialists were 
'among the scientific fields reporting median ages und~r 30 
years.14 The median age for women computer specialists 
was five years less than for men in the field. In fact, women 
scientists and engineers were in general younger than males 
with a median age of 27 and 38, respectively. 

In Weber and Gilchrist's review of the status of women 
in the computer industry, 20 they concluded that "the avail
able data suggest that women are not receiving equal pay 
for equal work and may not be sharing equally in the op
portunities for advancement." While the annual salary dif
ferential between men and women is actually less for com
puter specialists-a difference of $2,300-than for any other 
S/E field examined in the NSF study, 14 this figure alone is 
not in itself a sufficient indicator that the situation is im
proving. Likewise, the fact that medical scientists had the 
largest salary differential ($5,800) does not necessarily imply 
that greater inequities exist in that particular field. Salary 
differentials should instead be viewed as percentages of 
gross salaries, for clearly a small absolute differential could 

TABLE n.-Total and Proportion of Bachelor's, Master's and Doctoral 
Degrees Awarded to Women 1970-71 Through 1975-76 By Broad Discipline 

Division 

Degrees Awarded 1970-71 to 1975-76 

Bachelor's Master's Ph.D.'s 

Total %W Total %W Total %W 

Agri. & Nat. Resources 94,425 10.6 17,311 9.7 5,965 3.5 
Arch. & Env. Design 44,257 15.2 14,860 17.9 364 11.5 
Area Studies 17,754 53.8 6,245 40.6 984 24.8 

Biological Sciences 272,348 31.7 37,899 31.5 21,157 19.4 
Business & Management 782,654 13.4 200,221 7.0 5,594 4.3 

Communications 95,086 38.5 15,026 38.0 939 19.6 
Computer & Info. Sciences 25,555 16.8 12,856 12.6 1,146 6.6 
Education 1,077,546 73.6 653,509 60.0 43,258 27.0 
Engineering 298,148 1.6 97,128 2.1 20,042 1.4 
Fine & Applied Arts 223,890 60.6 46,653 46.7 3,663 26.5 
Foreign Languages 112,532 75.9 25,056 65.7 5,257 42.4 
Health Professions 233,993 77.5 54,764 60.5 3,327 23.8 

Home Economics 86,905 96.3 10.747 91.4 862 69.1 
Law 2,983 10.5 6,803 7.8 221 2.7 
Letters 393,802 58.9 73,182 57.6 15,342 30.1 
Library Science 6,238 93.0 46,504 79.0 392 40.8 
Mathematics 128,233 40.0 28,473 31.0 6,257 9.4 
Military Science 2,932 0.1 
Physical Science 126,987 16.4 36,333 14.1 23,202 7.1 
Psychology 283,726 49.7 37,093 41.3 13,114 28.7 
Public Affairs & Services 126,511 45.4 74,309 45.9 1,442 24.5 

Social Sciences 890,906 36.9 101,422 29.1 24,463 17.5 
Theology 25,760 27.3 17,661 27.7 4,092 3.6 
Interdisciplinary Studies 137,785 38.0 17,255 44.4 1,177 24.0 

All Disciplines 5,490,974 44.4 1,631,312 42.9 202,260 18.6 

Source: Earned Degrees Conferred, Series 1970-71 - 1975-76, National Center 
for Education Statistics. 
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TABLE I11.-Median Age of Scientists and Engineers 
by Sex: 1974 

Fields Total Men Women 

Total, all fields 36 38 27 

Chemists 38 39 29 
Physicists/astronomers 36 36 28 
Other physical scientists 40 41 32 
Mathematicians 32 32 29 
Statisticians 32 34 28 
Computer specialists 29 31 26 
Earth scientists 37 38 27 
Oceanographers 37 37 (*) 

Atmospheric scientists 45 45 (*) 

Engineers 40 40 28 
Biological scientists 28 28 26 
Agricultural scientists 39 40 35 
Medical scientists 41 41 40 
Psychologists 29 30 29 
Economists 34 35 32 
Sociologist/anthropologists 27 29 25 
Other social scientists 27 28 25 

Source: National Science Foundation. 
* Too few cases to compute a median. 

represent a large percentage of total salary, depending upon 
the average salary for the field. 

Salary differentials reflect many variables, including type 
of employer (e.g., business, government), age (note the dif
ference in median age reported earlier). work activity (e.g., 
R&D, management) and job experience. For example, in the 
U.S. workforce, a greater proportion of men than women 
were engaged in management and administration-the work 
area which typically has the highest salary. This was cer
tainly the case for S/E fields surveyed in 1970, as is shown 
in Table IV. 

Salary surveys made by the College Placement Council 
and cited in Reference 14 reveal an apparent narrowing 
difference in starting salaries for women and minority sci
entists and engineers. For individuals in computer science 
in particular, the national average monthly salary offers 
made to bachelor's degree candidates during the periods 
1973-4 and 1975-6 were $920 and $\.035, respectively, for 
men and $895; $1,045, respectively, for women. 

TABLE IV.-Median Annual Salaries of the 1970 Science/Engineering 
Labor Force, by Field and Work Activity: 1974 

Work Activity 

Management or 
R&D administration Teaching 

Total $18,400 $22,600 $19,200 

Physical scientists 19,000 24,500 19,000 
Mathematical scientists 21,400 24,200 18,000 

Computer specialists 19,100 20,700 18,900 

Environmental scientists 20,100 22,900 \8,900 

Engineers 18,300 22,600 20,400 

Life scientists 17,900 19,000 18,500 

Psychologists 19,500 22,200 18,700 

Social scientists 20,200 23,100 19,800 

Source: National Science Foundation, Manpower Characteristics System. 
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This (at best) elimination or (at worst) reduction of the 
gap in starting salaries, coupled with such factors as the 
relatively small number of women scientists and engineers 
and their younger median age, are likely to result in a re
duction in average salary differential for men and women. 14 

Age and detailed salary information relating to minority 
scientists and engineers was not included in the NSF re
ports. 

FEDERAL WORKFORCE 

Recent Civil Service Commission statistics show that the 
federal government is well ahead in overall employment of 
minorities in professional, administrative, technical and cler
ical jobs. The private sector, however, has higher percent
ages of women and/or specific minority groups in some 
categories. These figures also show some increase in the 
proportion of minorities and women in both middle and 
upper level jobs, although Civil Service Commission Chair
man Alan K. Campbell noted that the rate of progress has 
been slow. 4 

As of November 1977, minorities represented 21.6 percent 
of all full-time federal civilian employes. Women held 30.7 
percent of those positions. Since 1975, minority full-time 
employment has steadily increased by an average of 1.2 
percent per year, in spite of an overall decline of 0.2 percent 
for the full-time federal work force for this period. 5 

Scientists and engineers 

As iJlustrated in Figure I, in 1974 the federal government 
ranked behind business and industry (37 percent) and edu
cational institutions (27 percent), by employing only 12 per
cent of all scientists. Most women engineers were employed 
by business and industry. The federal government, along 
with nonprofit organizations and State and local govern
ments, each accounted for about to percent of the women 
scientists. 

Figures compiled by the U.S. Civil Service Commission 
show that as of 1974 there were few minority and women 
employes in some of the "pure science" occupations. For 
example, the percentages of women and minorities respec
tively were Physics-2.4 and 3.7, Nuclear Engineering-0.6 
and 3.5 and Chemistry-14.3 and 2.4.2 

Computer sciences 

Federally-employed computer professionals are divided 
into several different job classifications (e.g., computer sci
entist, computer specialist, general physical scientist). This 
makes it extremely difficult to collect statistics and to make 
comparisons with the U.S. workforce totals. Consequently, 
this section will present selected figures which should at 
least provide a . 'snapshot" of the current situation in this 
area. 

In 1976, total employment for federal computer specialists 
showed 24,521 full-time permanent. employes. (Full-time 
permanent employes are those federal workers who have 
career-three or more years of continuous service--or ca
reer conditional-less than three years-appointments and 
work a full-time-40 hours per week-work schedule.) Of 
those employed as Computer Specialists, 19.4 percent were 
women and 11.0 percent were minorities. 3 These numbers 
are up from the corresponding 1974 figures of 19.1 and 10.1 
percent. 2 Table V shows average General Schedule (GS) pay 
categories ("grades") and percentage figures for all federal 
employes, women, minorities and non-minorities in several 
scientific occupations. 3 Comparing the statistics for com
puter specialists with corresponding figures for federal 
chemists, a field with a General Schedule employment of 
7,599, we find a somewhat lower percentage representation 
for women (15. 2 percent) and a slightly higher representation 
for minorities (12.8 percent). Average grade for all employes 
in chemistry was 11.63. The average for women and minor
ities was (10.37 and 11.27), respectively.3 

In the computer-related occupations, as well as for many 
other federal scientific fields (e.g., chemistry, physics, me
teorology, metallurgy, astronomy), the average pay grades 
for women and minorities are less than the average for all 
employes. Furthermore, the average grade for women is less 
than that for minorities in each field examined. 3 

As was brought out in the earlier discussion of factors 
affecting salary differentials, more information is needed in 
order for the full implications of these figures to be judged. 
Age, education, availability and job experience, for exam
ple, must be viewed in conjunction with average grade and 
representation. 

SUMMARY AND CONCLUSIONS 

The available data do not provide sufficient information 
to support any surprising conclusions about the current sta
tus of women and minorities in computer-related profes
sions. Meaningful analysis of the data is also hampered by 
the fact that more information was available relating to the 
employment of women than for minorities. Certainly it 
would appear, based upon the previously-cited employment 
rate and other statistics, that the computer field is in general 
a "healthy" field. Accordingly, one can expect to find better 

TABLE V.-1976 Federal White-CoUar Employment-Selected Fields 

A verage Grade 

An Women Minorities % Women % Minorities 

Digital Computer 12.80 10.79 11.88 11% 9.3% 
Administrator 

Computer 11.39 10.58 10.99 19.4% 11.0% 
Specialist 

Chemistry 11.63 10.37 11.27 15.2% 12.8% 
Mathematics 11.69 10.82 11.38 19.1% 11.0% 
General Physical 13.51 11.26 13.16 4.2% 5.0% 

Science 
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SOURCE: NATIONAL SCIENCE FOUNDATION 

Figure I-Scientists and engineers by type of employer: 1974. 
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employment opportunities for alL and hence for minorities 
and women, there than in other scientific and engineering 
occupations. 

Recent reports of the National Science Foundation (NSF) 
on the status of women and minorities in the sciences and 
engineering 13,14 have concluded that there is and has been 
an under-utilization of women in tJ'le sciences and engineer
ing, both in terms of their entry into these fields and their 
utilization within the scientific workforce. For minorities, 
data indicate that Blacks and Hispanics appear not to have 
developed those background skills considered important for 
careers in the sciences to the same extent as other racial 
groups and women. Consequently, it is suggested that this 
may have caused an under-utilization of these minorities in 
science and engineering. Information on utilization of 
women and minorities in the computer field was not cited. 
Further analysis in this area would be useful. 

As noted by the NSF report on women and minorities in 
science and engineering, 14 " ••• available data indicate that 
there are relatively few women scientists and even fewer 
engineers, and considerably fewer minority scientists and 
engineers of either sex." Data gathered also indicate that 
relatively few women and/or minority scientists and engi
neers are unemployed. However, data on labor force partic
ipation and salary differentials show possible problem areas. 
The fact that the labor force participation rate of female 
scientists and engineers is significantly below that for males 
in S/E may reflect actual or perceived lack of job opportun
ities. If one considers the histories of women, both minority 
and non-minority, who are considered "successful" in the 
sciences, then it may be more easily understood how some 
women might become discouraged and '"drop out" or lower 
their expectations. 8 

Many women in the federal government do not feel that 
there is much difficulty in progressing to the top of a career 
ladder once they get into the career series. However, they 
perceive attitudinal barriers preventing them from advancing 
into supervisory and managerial positions. The fact that real 
obstacles to advancement remain is illustrated by a recent 
Civil Service Commission study which reported that women 
with coIJege degrees are one to three grades behind men 
with the same educational level. 10 Recent reports indicate, 
however, that the federal workforce is changing and that 
some progress is being made in the employment of both 
women and minorities. 18 We hope future analyses of em-

ployment and utilization statistics will reflect accomplish
ments of current equal employment opportunity and affirm
ative action programs of both the public and private sectors. 
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Computers in judicial administration 

by CHARLES L. AIRD and BARBli .. R.4 .. H. TODD 
Supreme Court of Virginia 
Richmond, Virginia 

INTRODUCTION 

The number of computer installations in the courts has in
creased rapidly in the past ten years. This trend indicates 
an enthusiasm in the courts to acquire the scientific and 
industrial technology that the business community has suc
cessfully used. The computer is recognized as being a major 
tool of technological development and for its tremendous 
capability for upgrading the quantity and quality of a wide 
variety of functions and services. However, while looking 
in ecstasy at the new horizons of computer technology, we 
must realize the computer's dependency upon man. Com
puters are unlike any other machine. Switch on a water 
pump and water is pumped, but switch on a computer and 
nothing happens unless precise instructions have been pre
pared. 

Today's courts are similar to businesses. They are com
plex organizations which store large amounts of detailed 
information. Court files require precise methods for pro
cessing and retrieving this information. 

Modern computer technology is well suited to the task of 
accomplishing the repetitive job of maintaining accurate up
to-date information that is easily retrievable. The computer 
can also create access to information which was previously 
too costly to assemble. 

The courts now using automation experience improved 
record-keeping efficiency. Computers provide timely and 
effective management information to individual courts as 
well as to the Supreme Court and other criminal justice 
agencies. 

The potential capabilities of systems technology can pro
vide the courts with standardized reports and services. Com
puters can provide this wide range of services in far less 
time than manually possible. The services and reports that 
can be produced for the courts are numerous. 

Basic docketing and indexing services are typical services. 
The docket, listing cases to be heard in specific courts on 
specific dates, can be generated. The computer can retrieve 
cases or records based on a particular piece of data such as 
the name of the defendant, docket number, summons num
ber, type of case, date, or other piece of identifying infor
mation. This permits the court to make direct inquiry into 
case records and to update records by visual display ter
minals located in individual courts. 
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Cases can be listed by judge, by attorney, and by docket 
number to keep track of case and schedule conflicts. Partic
ular cases which require follow up or review for specific 
reasons are listed as exceptions. Notices are automatically 
prepared as required by the court. These capabilities im
prove case flow management and reduce the amount of 
paperwork needed to maintain records and administrative 
activity. Periodic statistical reports are generated on case
load and courtroom activities for individual courts. 

Improved statewide caseload information can be provided 
to judges, clerks and the Supreme Court on a regular basis. 
Information on caseload, case age, pending cases, hearings, 
dispositions and workload forecasting are by-products of 
computerized record-keeping. This, too, can be used for 
effective judicial management. 

Successful implementation requires careful study by local 
courts and the Supreme Court. Implementation depends 
upon long-term cooperation during the necessary trial-and
error process in the initiai stages of development. 

CONTRIBUTIONS AND PROBLEMS 

The trend toward computers is due to the increased work
load of the court. Traditionally, the measure of judicial 
workload has been filings. As filings increase, the complex
ity of the court and clerk's office operations increases. Com
puters were solicited to cure inefficiencies. The computer is 
solving major problems by reducing backlog and delay, im
proving scheduling and reducing redundant tasks. 

Computers will continue to make substantial contributions 
to court administration. However, automation is not a total 
panacea. Technology can do little to reduce backlogs and 
delays stemming from strategy, not procedure. It will not 
expedite courtroom proceedings established by due process. 
The computer is an aid to management but is not a substitute 
for such things as judicial selection, discipline and sentenc
ing. 

Even though there are many admirable automated judicial 
systems throughout the country, judicial computerization on 
the national, state and local levels faces difficulty. Several 
reasons exist which indicate the depth of the problem. Ven
dors have oversold their products. Sales techniques have 
been more successful than applications. The judges who run 
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the courts are not businessmen. They are easily influenced 
by a smooth sales pitch. However, once stung by an expen
sive, inefficient application, they will not be sold again. 

Funding has been a major problem also. Computerization 
costs money and budgets are usually controlled by the ex
ecutive branch at all levels of government. The judiciary is 
sensitive to invasion by the other government branches and 
may not pursue funding. The most popular solution is to 
share the expertise and hardware of the executive branch. 
Court processing is not easily understandable. Lack of com
munication and scheduling priority conflicts often doom 
joint projects. The judicial branch is very sensitive with 
respect to privacy and security.· 

If these problems are resolved, and actual design of a 
system begins, the lack of in-house expertise becomes a 
hurdle. More failures than successes were produced in early 
judicial data processing projects. This was due to inadequate 
planning, poor scheduling and insufficient testing. Projects 
were generally too big and not implemented in stages. 

Even with growing caseloads, the computer is not nec
essarily the solution. Most courts have not reached the point 
where adding more people does not solve the problem. Only 
the urban courts are overburdened. The practical solution 
to increased caseload may be better manual techniques, 
forms design, specialization of tasks, elimination of dupli
cation and word-processing equipment. 

The final problem encountered in the courts has been 
resistance to change. The courts are the most conservative 
of the three branches of government. Many courts use the 
same record-keeping procedures implemented in the English 
courts and imported to the colonies. 

CATEGORIES OF AUTOMATION 

Considering the problems. it is surprising that the courts 
have considered any automation. Tn many instances, the 

courts have not had a choice. Caseload in urban-centered 
courts has reached overwhelming proportions and so has 
the paperwork. Therefore, three categories of systems at 
two levels have been developed. The three categories are 
administrative systems, case record and trial systems and 
legal research systems. The two levels are at the court and 
the administrative. 

Administrative systems are payroll, personnel, budget, 
inventory and financial record systems, that is, the routine 
business systems. Statistical systems allow for caseflow 
management of the courts. Case record and trial systems 
deal with case tracking, docketing, indexing, case schedul
ing, jury selection and management and information systems 
exchange with other criminal justice agencies. Some systems 
are useful at only one level. Others perform at both and still 
others serve as a means of communication between the two 
levels. 

VIRGINIA'S SYSTEMS 

In reviewing Virginia's computerized systems, it is ben
eficial to keep in mind the structure of the judicial system. 
The District Courts were unified under the state in 1973. 
Prior to that time, they were municipal courts and inde
pendent. These are the lowest level courts and have the 
greatest volume, most cases and the need for computeriza
tion. The Circuit Court clerk's offices are local and totally 
independent. There is no standardization and low volume. 
The average number of commenced cases per circuit judge 
in 1977 was 1,100 or approximately one case every two 
hours. The Supreme Court stands at the top of the judicial 
branch. There are numerous computer applications at the 
District Court and Supreme Court. Only one Circuit Court 
currently has or is developing a system. 

The Office of the Executive Secretary (OES) of the Vir-

FUND 114 01 001 

DISTRICT Ie 

FINANCIAL ANALYSIS AS OF AUGUST I, II." 

CHARLOTTESVILLE GENERAL DISTRICT COURT 

1.111.17. 
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'\\'hite-Commencement 
Pin1c-Termination 
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13. o Case was Pre-tried 

14. o Other Offenses 

14. Date Terminated 

15. o Case was Pre-tried 14. o Dismissed } TERMINATION 
Cla~k 

15. o Not Contested ~: 15. Date Terminated 
16. o Dismissed 16. o Contested Court 16. o Dismissed 
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MAINE SUPERIOR COURT CRIMINAL STATISTICS REPORTING FORM 

1. Region _________ _ L Coun~ ________________ _ 3. County No. ______ _ 

4. Case No. _________ 5. No. of Oefendants _____ _ 6. Date Filed: 

A. TYPE OF CASE 
N~w Filings 
1. 0 Bail Review 
2. 0 Transfer 
3. 0 Appea! 

4. 0 Boundover 
5. 0 Indictment 
6. 0 Information 
7. 0 Juvenile Appeal 

a 0 Other 

C. ACfION INFORMATION 
1. Date of First Superior Court 

Appearance 

2. Date Capias Issued 

3. Court Appointed Counsel 
4. Date Trial Began 
5. No. of Trial Days 
6. Jury 
7. Jury Waived Trial 
8. Date Plead Guilty 

Refi/ings 

1. 0 Revocation 
2. 0 New Trial 
3. Date ReWed 

Defendant 
#1 

0 

0 
0 

D. DISPOSITION INFORMATION 
1. District Court Bail Revised 0 
2. District Court Bail Affirmed 0 
3. Dismissed by Court 0 
4. Dismissed by D.A. R. 48 (a) 0 
5. Filed Case 0 
6. Juvenile Appeal Denied 0 
7. Juvenile Appeal Affirmed 0 
8. Juvenile Appeal. New Sentence 0 
9. Not Guilty, Reason of Insanity 0 

10. No Bill 0 
11. Probation Revoked 0 
12. Convicted 0 
13. Acquitted 0 
14; Mistrial 0 
15. Date Disposed 
16. Justice Initials 

E. SENTENCE AND COMMITTMENT INFORMA nON 
1. PrOb.tion 0 
X-Correctional Center 0 
3 .. Youth Center 0 
4. State Prison 0 
5. County Jail 0 
6. Uncondition.1 Discharge 0 
7. Fine 0 
8. Ment.1 Health Commitment 0 
9. Partially Suspended Sentence 0 

10. Suspended Sentence 0 ,,. Date Sentenced I 
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(CODE 6) 
(Coa:: 9) 

(CODES 0-9) 

( 'NEW' CIRCLED) 
( 'CONT' CIRQED) 

______ (f\EW + CONT) 

_______ ( ,., COOED) 

_______ (CODE 7) 

_______ (CODE 8) 

(Coce 9) 

, 
_______ (SlFF I X D) 

_______ (SlFFI X G) 

(SlFFIX U) 
_______ (SUFF! X 0) 

(CODES 7-9) 

('NEW' ClRO...ED) 

( • CONT' CI RCLED) 

(NEW + CONT) 

('.' CODED) 

CRIMINAL + TRAFFIC + CIVIL. 
WARRANTS WRITTEN D-Eo<S WRI TTEN 
APPEALS PROCESSED 

RECEIPTS WRITTEN 

tENT AL CrnMITMENT HEARl NGS 

HELD BUT NOT DOCKETED 

Exhibit 6 
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ginia Supreme Court handles the administration of the Gen
eral District and Supreme Courts in total and the Circuit 
Court Judges. The OES is also responsible for 426 magis
trates. Personnel and payroll systems are centrally handled 
by the 0 ES. The budgets of each court with revenues and 
expenditures are tracked by an automated budget tracking 
system (ABTS). The ABTS prod_uces a financial analysis 
statement for each court on a monthly basis, generates a 
summary of state and local revenues and state expenditures, 
and provides the basis, justification, and documentation for 
the judicial budget (Exhibit 1). 

Certain individual courts keep automated financial rec
ords. These are the earliest and most successful applica
tions. These courts track fine payments, support arrears, 
support check writing and support accounting. 

The OES maintains statistical systems. These systems 

summarize caseload and measure judicial workload. The 
results are used to obtain federal funding from the Law 
Enforcement Assistance Administration (LEAA), determine 
the number of judgeships and personnel for individual courts 
and to justify budgets. 

There are two schools of thought concerning statistical 
systems. One school supports case-by-case statistics. This 
involves the collection of all critical information on a partic
ular case plus any decision points and change of status. All 
statistics needed are generated from the data bank. Such a 
system is very flexible and produces many results; exception 
reporting, sentencing disparities, continuance studies, and 
case tracking. These are balanced against the negative con
sequences of tremendous amounts of paperwork, time con
sumption for clerical personnel, very large computer files, 
and great expense. The developmental cost is several million 
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'foUl 'fiae Reported 
for 

DIVORCE CASES -,. 

\t 

EXAIRE OF CAlCUlATING 
CASE WEIG1T 

DIVORCE 
DISPOSITIONS 

4014 

DIVORCE AVERAGE x 
DIVORCE 
FILINGS Cone circuit. 

12.4 .inutes 341 

IL--_~_I 
~ 

JUDICIAL WORKlOAD 
(DlVORC£ CASES) 

4399 .inutes 

REPEAT FOR EACH CASE TYPE AND TOTAL 

Exhibit 8 

dollars plus operational maintenance costs of $500,000 an
nually. 

The second method is to collect summary statistics. The 
design incorporates what is needed and is collected on a 
summary basis from the courts. The advantage of summary 
systems is the reduction in paperwork and expense. A sum
mary statistical system can be developed for $150,000 and 
operated for $25,000 per year. Neither approach is success
ful unless a strong and supportive Chief Justice and Court 
Administrator control the Courts. The capture of the data 
elements rhust be an integral function of the clerk's office. 
Exhibits 2, 3, 4, and 5 give an indication of the large amount 
of data that must be included for case by case statistics. 

Virginia has three caseload reporting systems: 

1. Uniform Docketing & Caseload Reporting System
District Courts. 

2. Circuit Court Caseload Reporting and Judicial Work
load Systems. 

3. Magistrate Statistical System. 

These are batch-operated systems. They are programmed 
in COBOL and run on an IBM 3701158 (2) system under OS
VS2 with 1024k storage_ 

The Uniform Docketing System is divided into two sub
systems. The first part is used in the clerk's office to stand
ardize case scheduling and indexing in the District Courts. 
The second part of the system has three purposes: to count 
basic cases, to determine judicial workload and to indicate 
clerical workload. Monthly summary reports (Exhibit 6) are 
completed using the tearoff from the Uniform Docket (Ex
hibit 7). 

Counts of cases are not enough to determine workload. 
The different types of cases do not take equal amounts of 
time to process or hear in the courtroom. There is a need to 
weight cases depending upon their complexity. The bench 
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minutes for each case type are sampled. Using a statewide 
average time for each category of cases multiplied by the 
number of cases for a particular court, the amount of judicial 
work is calculated for that court (Exhibits 8 & 9). The 
"normal judge year" is administratively determined and 
used to calculate the number of judges needed to staff the 
court. Clerical workload uses a similar procedure. Weights 
are determined by spot-checking the time spent on case
related work. 

The Circuit Court Caseload Reporting and Judicial Work
load System is also a case~weighting system. The basic ca
seload summary gives the categories of civil and criminal 
cases. Also included are jury data and case aging information 
(Exhibits 10 & II). The basic caseload counts of filings and 
dispositions will be weighted based on the average judicial 
time per case. Judges are timed to determine the amount of 
time each of the generaf categories of cases takes for dis
position. Exhibits 12 and 13 are the forms used for sampling 
workload. Weights are based on both bench time and case
related chambers time (Exhibit 14). 

CASE RECORD AND TRIAL SYSTEMS 

Case record and trial information systems at the court 
level aid clerical staff with redundant clerical efforts. Such 
systems increase the accessibility of records and provide the 
most complete records possible. These systems have certain 
common characteristics. Each case is one record including 
basic case and individual information and status. Multiple 
indices are established which are typically manual, single 
directional. Automated indices expand the court index to 
systems similar to those in a library. The number, name, 
attorney, judge, status, offense, or disposition may be used 

'fotal 'fi_ Reported 
per 

T 
I 

+ 

ESTABLISHING CASE-WEIGHTS 

CASELOAD 
x 

JUDICIAL WORK! O~D 
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r] II (-j I I 
Circuit 1.0. Number 
1 

Month Year 
7 

Cases on Docket 

Cases Commenced During Month By: 

1. Initial Filing 

2. Supplemental Petition 

3. Other 

4. Total Cases Commenced During Month 

Cases Tenninated During Month By: 

5. Settlement/Voluntary Dismissal Prior to Trial 

6. Default Judgment 

7. Trial - JUDGE (with witnesses) 

8. - Decree on Depositions 

9. - Recommendation by Commissioner 

10. Trial- JURY 

Purged per Virginia Code Section 8-154 

11. - after two years 

12. - after five years 

13. Other 

14. Total Cases Terminated During Month 

• 101 

121 

221 

241 

261 

281 

MONTHLY CASELOAD REPORT 

~ 
13 

CIVIL CASES 
STATISTICS FOR THE MONTH OF: 

City/County of: 
~-~ 

For Office Use Only 

501 

Cases Set For Trial 

15. During Month, Number of Cases Assigned Trial Dates 

16. Of the Cases Reported in Line 15 above, the Number of 
Cases Set Ninety (90) Days or More From Date of Setting 

Jury Trial Days 

17. Number of Days Spent in Jury Trials During Month 

History of C6 ~ o~ 
~ ~ 0 a ~~~~~~ Terminated Cases ~ ~ ~ ~. C). 

Number of cases terminated 
\ '\ ~~ .. \ '\ I 

during month which were filed: 

18. This Year 
361 

19. One Year Ago I 

381 

20. Two Years Ago 
401 

21. Three Years Ago 
421 

22. Four Years Ago 441 
I 

23. Five or More Years Ago 
461 

24. TOTAL - The Sum of these should equal 
the sum of Line 14. 481 

Date 

Circuit Court Clerk Report Preparer 
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MONTHL V CASE LOAD REPORT 

1211 II Il CRIMINAL CASES For Office Use Only' o r I r I l l City /Couniy of: 1 
-- STATISTICS FOR THE MONTH OF: [ It Circuit I D. Number I Month I Year I 13 

1 7 621 

~~\\%~~ \\\\ Cases on Docket 
~~ ~ '% "'0 (~ 

Cases Set For Trial ~,... ~ ~ ~ <J> 

%. CfI'~ % \ ~~.% ~ ~ 
~ ~ ~ ~ 

u. 'I)~ 

Cues Commenced Durina Month By: 18. During Month, Number of Cases Assigned Trial Dates 
361 

1. Indictment/presentment/lnformation 
21 

19. Of Those Cases Reported in Line 18 above, the Number of 
Cases Not Set for Trial During Present Term 381 

2. Appealed from General District Court 
49 Jury Trial Days '~~"~J . ,." . :~;; . 

-:~ ... ~ .:~. .. ~ .. ;'; 

3. Appealed from J&DR Court 
81 

4. Reinstatement 
20. Number of Days Spent in Jury Trials During Month 

"01 
81 

S. Other 
101 

6. Total Cases Commenced During Month 
121 

~\~~~ Cases Tenninated During Month By: 
History of Terminated 

Ca$es ~ ;p ~ ~ ot. 
~,... ~ ~ ~o 

7. Withdrawal Prior to Trial Number of cases terminated during %. 'fP ~ \ ~\ 
1451 month which were filed: ~ %. 9.. ~~ ., 

8. Dismissed by Court Without Trial 
181 21. This Term 

"21 

9. Nolle Prosequi by Commonwealth Attorney 
181 22. Prior to This Tt'1rm, but not more than Five 

10. Guilty Plea 
Months Ago 

""1 
201 

23. From Five to N::pe Months Ago 
"81 11. Trial-JUDGE (with witnesses) 

221 

12. Trial-JURY 
24. More Than Nine Months Ago 

.1 

2"1 
25. TOTAL - The Sum of these should equal the 

13. Other 281 Sum of Line 14. 1501 

14. Total Cases Tenninated During Month 
281 

15. Number of Fugitives Apprehended During Month 
301 Date 

16. Number of Fugitives Added During Month 
321 

17. Total Cases in Abeyance at End of Month 
3411 L----- .. __ ------ - --- - - --- --- - -~ 

Circuit Court Clerk Report Preparer 
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r----

>----. ACTIVITY CODE 

DAILY COURTROOM ACTIVITY SHEET CIVIL CASES 7. Docket Day 12. Trial-Jury 

1. Default Judgment 13. Other 

2. Trial-Judge (w/witnesses) 
CRIMINAL CASES, 

14. Pre·tri.11 eVidentiary Hearings 

3. Trial-Jury 8. Dismissed by Court w/o TriJI 15. All Other Pre· Trial Hearings 

4. Other 9. Nolle Prosequi By CorrvnorrM'!alth Attorne,t 16. Sentencing Hearings 

5. Pre·Trial Hearings 10. Guilty Plea 17. All Other Post·Conviction Hearings L i l-,~,J ~ c:h: + o!y Y~d 
1 Circuit I.D. Number 9 6. Post·Trial/Judgment Hearings 11. Trial-Judge (w/witnesses) 18. Docket Day 

-

\ CIVIL \ CRIMINAL \ ~ ~~ ~\ (! "V ~ ~~ -t-. ~~ ~"V".,A 
~ <"( (!"V -<'C; ~~, ~ iJI.,A (9<" "V"C- ~~ ",,-L 

COURTROOM CLOCK TIME o~ "V-?o, o~ <?.'o ~.:o ~0"V~ '<'o(O.,A <:)~ "'{U'(! ~~~ %:0 \~.L. 
1~30.00,W.OO~.'~3a 10~.W4L'.~ ~ ~ ~ 
15 20 25'1- A C ':t. C D E F G H '1- I 26 -27 28 29 30-32 

~~~r~14 0 I 81:13 I 0 I Q:;] to 11 1 21:13 1 0 1 [!J;J J J 3 115 

I I 1:1. I CEJ to I I 1:1 I CEJ 
I I 1:1 I CEJ to I I 1:1 I CEJ 
I • 1:1 I CEJ to I I 1:1 I CEJ 
I • 1:1 I CEJ to I • 1:1 I CEJ 
I I 1:1 I CEJ to I 

• 
1:1 I CGJ 

I I 1:1 I CEJ to I I 1:1 I I CEJ 
I . 1:1. I CGJ to I I 1:1 CEJ I 

I I 1:1 I CEJ to I I 1:1 I CEJ 
I • 1:1 • CEJ to I I 1:1 CEJ I 

I I 1:1 I CEJ to I I 1:1 I CGJ 
I I 1:1 I CEJ to I I 1:1 I CEJ 
I I 1:1 I [EJ to I I 1:1 CEJ I --

I I 1:1 I [EJ to I I 1:1 I CEJ 
I I 1:1 I [EJ to I I 1:1 I CGJ -------= _____ _ _____ L--- ____ '- ___ --- - ---- '---_ .. _----_ .. _ ... _--
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ACTIVITY CODE 

DAILY CHAMBERS ACTIVITY SHEET 
101. Hearing Motions 

102. Pretrial Conferences 

103. Researching/Writing Opinions 

104. Other Case-Related Work 

105. All Other Work 121 , 1 1:-1 ~ I -I-~ I I 
Month Day Year 

Circuit 1.0. Number 7 9 106. Travel Time 

\ CIVIL \ CRIMINAL \ ~ ~~ ~ '\ 1>. -S- .,>. c;.. r. 11(1 
'0 "'<- ~ U' "1. 1-:. ~~ \ .,>. 

CHAMBERS CLOCK TIME: %~ 11.0 <0.,>. <?. q.1-< ~'<'11Ul ~;«o ~~ ~'o~~1S\ 11~\ ~:~ ~.,>.J.. 
\ 1- ~ '0 111-:. 0.,>. ~ U' ~ ~ ~ ~ c ~ ~ 11.,>.~ . ~ 

~._~,~~~~,O~~~'~O.'~OO.'~~ ~ ~~ ~ 
16 20 25'1- A B ~ C 0 E F G H 9t. 1 26-27 28-29 iJ' 30-32 

10,81:131011~ to ~~GI;] j 3 1 101 

I I 1:1 I CliJ to c:=lI=:=J c:=GJ 
I 1:1 I CliJ to c:=lI=:=J c:=GJ 
I 1:1 I c:=GJ tp c=:g==:J c:=GJ 
I 1:1 I c:=GJ to I I I:I~ c:=GJ 
I 1:1 I CliJ to 1 I: 1--:-1 c:=GJ 
I 1:1 I CliJ to CJ]==:J CGJ 

I I 1:1 I eEl to I I:I~ [E] 
1 I 1:1 I [E] to CJ]=:J c:=GJ 
I I 1:1 I [E] to I I 1:1 liCE 
I I 1:1 I [E] to I 1:1-:1 CE 
1 I 1:1 I [E] to I 1:1 I c:=GJ 
I I 1:1 I [E] to 1 I 1:1 liCE 
1 I 1:1 I c:=GJ to I I 1:1' I I c:=GJ 
I I 1:1 I [E] to I I I:~ [E] 
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COURT OR C I RCUI T 

2~TH CIRCUIT 
CONOEM- OTHER CIVIL , CRIMINAL 

-- CIVIL ----------- NATIONS APPEALS LAW DIVORCE CHANCERY TOTAL TOTALS 

COMMENCED 10 ~ 99 204 125 442 779 
CONCLUDED I 3 85 190 103 382 676 
PENDING 32 22 314 174 472 1014 1643 
_COMMENCED/CONCLUDED 10.00 1.33 1.16 1.07 1.21 
WEI$iT 30 1 8 4 8 
WEIGHTED COMMENCED 300 4 792 816 1000 2912 4345 
WEIGHTED CONCLUDED 30 3 680 760 824 2297 3567 

1 , 2 OTtER HAS.CORP. 
-- CRIMINAL -------- FELONY FELONY MISD POST-CONV TOTAL 

COMMENCED 20 188 127 2 337 _JUDGES 4 
CONCLUDED II 167 108 294 ~UDICIAL STANDARD 1000 
PENDING 114 183 331 629 WGHT. COMMENCED / 
_COMMENCED/CONCLUDED I ~ II 1.13 1.18 2.00 JUD. STANDARD 4.35 
WEIGHT II 5 I 3 WGHT. CONCLUDED / 
WEIGHTED COMMENCED 360 940 127 6 1433 .JUD. STANDARD 3.6 
WEIGHTED CONCLUDED 324 135 108 3 1270 

Exhibit 14 

to find the case records. These systems feed statistical sys
tems and transmit data to other agencies. 

The TRACER system in the Norfolk Court is an excellent 
system. It is an on-line criminal justice information system 
functioning for mUltiple agencies including Police, Jail, Com
monwealth Attorney and Probation/Parole Department, as 
well as the District and Circuit Courts. The components of 
the system are a person master file, arrest/offense trailer 
records, and the index accessible by name, alias, social 
security number, Police 1.0., etc. The reports generated by 
this system are docket, custody status, jail history, arrest 
record, and court caseload statistics (Exhibits 15 & 16). 
Other court information systems are in Fairfax County for 
all courts, Portsmouth-an automated traffic system, and 
Richmond-arrest system and juvenile records. The Juve
nile Justice Information System, a time-sharing system, was 
a failure in the Tidewater region. Richmond Juvenile and 
Domestic Relations Court has installed a minicomputer 
which tracks support cases and performs docketing tasks. 
Frederick, Winchester, Roanoke, Portsmouth and Virginia 
Beach have implemented systems to automate some func
tions of the clerk's office and at the circuit court level to 
provide for juror management. Juror management includes 
selection, notification, and payment of trial juries. 

CRIMINAL JUSTICE INFORMATION SYSTEMS 

LEAA has established its Comprehensive Data Systems 
(CDS) Program to coordinate and accelerate the develop
ment of comprehensive state criminal justice information 
systems. Two components of the CDS are Computerized 
Criminal History (CCH) files and Offender-Based Transac
tion Statistics System (OBTS). The CCH files form a central 
report source for the important events in the cases of indi
viduals charged with serious crimes. Vir,!!inia has developed 

the Central Criminal Records Exchange (CCRE) for the 
state-level reporting. The CCRE is maintained by the State 
Police. Courts contribute disposition information, but al
though extensive files exist, little is done with the informa
tion except for police use (Exhibit 17). Since 1973, the OBTS 
has been in the development stage under the Secretary of 
Public Safety. 

Many states are in a similar position to Virginia's. Partial 
systems are underway, yet none are fully satisfactory. There 
are three primary reasons. While the cost of development 
is funded by LEAA, operating costs are not. The annual 
running costs of such systems may amount to several million 
dollars. For the same cost, there may be alternatives which 
are more flexible and less risky. The second problem is that 
the more comprehensive a system, the more the quantity 
and quality of data input. This takes large amounts of time. 
Current laws also prohibit the replacement of the manual 
systems now in existence. If the manual systems are not 
replaced, the workload is significantly increased. 

LEGAL RESEARCH 

Legal research systems are under development or have 
been implemented by several commercial vendors. Basically 
these systems involve computer-assisted text look-up using 
keyword search and text selection algorithms. The LEAA
sponsored organization, SEARCH Group, Inc., has evalu
ated the practicality of computerized legal research for mul
tiple criminal justice agencies and the three systems cur
rently on the market. SEARCH is a non-profit consortium 
of states involved in criminal justice research and' 'dedi
cated to improving the administration of justice in the U. S. 
by applying advanced technology to justice systems." The 
projects include development of national standards and goals 
for crimin(l\ jll"tice <1gt:'ncies. state judicial information sys 
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terns (recently transferred to the National Center for State 
Courts), strategy for implementing privacy and security reg
ulations, etc. 

The three legal research systems studied were LEXIS, 
WESTLAW, and JURIS. LEXIS was developed by Mead 

Oat,a Corporation, WESTLAW by West Publishing Com
pany, and JURIS by the U. S. Justice Department. JURIS 
was evaluated in Virginia for a six-month period. It was not 
successful since it contained federal cases not directly ap
plicable to state law. 

ACTION: TRN: 
T 

NEXT 
R ACE R 
FUNCTION: 

PERSONS INFORMATION PACE: 

NAME: SEX: RAe: DOB: HCT: WCT: 
ORI: HAl: EYE: SKN: POB: STATE: 
ALIAS: SEX: RAC: DOB: HCT: weT: 
ORI: H~I: 

RES ADD -: , DIR:· 
OR!: STAtE: 
EMPLOYER NAME: 
ORI: ADDRESS: 
RELATIONS NAME: 
ORI: ADDRESS: 
IDENTIFIERS: ORI: 
$ID: FBI: 

EYE: 
NAME: 
ZIP: 

SKN: POB: 

PHONE8: ( 
OCC: 

STYPE: 
) 

CITY: 

RELATIONSHIP: 

LOCAL ID8: S~T: 
SOC: OLS: OLN: 

STATE: 

LIC: LIS: LlY: MIL BRANCH: STATUS: MARITAL STATUS: 
JAIL ID8: J&D COURT8: EDUCATION: YEARS DEPENDENTS: 
COMMENT: 
ORI: CAUTION IND: 
NCIC FPC: HENRY FPC: 
OR!: 

T R ACE R PERSONS INFORMATION PAGE: 
ACTION: TRN: 60000001 NEXT FUNCTION: 
NAME: JONES,MIKE SEX: M RAC: W DOB: 030454 
ORI: HAl: BLK EYE: BLU SKN: FAR POB: LITTLETOWN 

HGT: 510 WGT: i50 
STATE: PA 

ALIAS: CRAZY JOE SEX: RAC: DOB: HGT: WGT: 
ORI: HAl: EYE: SKN: POB: STATE: 
RES ADD 8: 124 DIR: S NAME: SONNY STYPE: ST CITY: NORFOLK 
OR!: STATE: VA ZIP: 12345 PHONE·: ( 803 ) 345 - 1122 
EMPLOYER NAME: ACME BRICK CO OCC: BRICKLAYER 
ORI~ ADDRESS: WATERFRONT DR 
RELATIONS NAME: JONES/JACK RELATIONSHIP: FATHER 
OR!: ADDRESS: 235 S MISSION RD NORFOLK 
IDENTIFIERS: ORI: LOCAL ID*: 33444433 SMT: SCR L HND 
SID: VA9886777 FBI: 66677G SOC: 345872344 OLS: VA OLN: 9978877666 
L!e: AXD347 LIS: VA LIY: 76 MIL ~RANCH: ARMY STATUS: R MARITAL STATUS: S 
JAIL ID8: 977778 J&D COURT8: EDUCATION: 10 YEARS DEPENDENTS: e 
COMMENT: KNOWN TO RESIST ARREST 
ORI: CAUTION IND: X 
NeIC FPC: AATTAA12TT7865PI?OTT HENRY FPC: 
ORI: 

Exhibit 15 
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FUTURE DEVELOPMENT The Virginia State Bar has developed a data base of Vir
ginia Supreme Court decisions and Attorney General opin
ions to be used for legal research. The project has missed 
many deadlines and has cost overruns. The funding agency 
recently recommended discontinuance. 

In 1979, the Supreme Court of Virginia will begin the 
study, .. Computer Options of the Virginia Judicial System.·· 
The objective of the study is to provide a comprehensive 

T R A C E R - ARREST INFORMATION PACE: 
ACTION: ARREST REPORT • TRN.: FeT: ORI: 
NAME: SEX: RAe: DOB: 
ADDR: 
POA: ADDRESS: CITY: 
DOA: TIME= AOF: AOF.: PCT: D/STN: SQUAD: 
ASSISTING OFFICER 1: 2: PHOTO*: 
GENERAL COMMENT: 

CHARGE CIT: CIS: M/F: AON: Gac: WRNT*: 
DOD: TIME: ST*: DIR: NAME: STYPE: 
WRNT BY: COMPLNT: COURT DATE: DOCKET: 
CIR: 

CHARGE CIT: CIS: M/F: AON: GOC: WRNT*: 
DOD: TIME: ST-: DIR: NAME: 
WRNT BY: COMPLNT: COURT DATE: 

STYPE: 
DOCKET: 

CIR: 

AMOUNT OF BONDS: BOND TYPE: DATE: TIME: MAGISTRATE: 
MORE CHARGES: Y 

T RAe E R - ARREST INFORMATION PAGE: 
ACTION: ADD ARREST REPORT. TRN*: 00000001 FCT: ORI: VA1170000 
NAME: SEX: RAe: DOB: 
ADDR: 
POA: ADDRESS: 132 E TIDEWATER DR CITY: NORFOLK VA 
DOA: 010176 TIME: 1800 AOF: RANDOLPH,ADAM AOF*: 1234 peT: 1 D/STN: SQUAD: 
ASSISTING OFFICER 1: 2: PHOTO.: 12345 
GENERAL COMMENT: 

CHARGE CIT: 16.2-50 CIS: S M/F: F AON: 0900 GOC: WRNT*: 123456644F 
DOD: 010176 TIME: 1300 ST*: 132 DIR: S NAME: BOSTON STYPE: Rl 
WRNT BY: PLG COMPLNT: SMITH,MIKE COURT DATE: 010276 DOCKET: CF 
CIR: DEFENDANT ASSAULTED 2 PERSONS RESULTING IN THE DEA1H OF MIKE 

SMITH BY STABBING 
CHARGE CIT: 18.2-51 CIS: S M/F: F AON: 1300 GOC: WRNT*: 877655555F 

STYPE: DOD: TIME: ST*: DIR: NAME: 
WRNT BY: COMPLNT: JONES/PAUL COURT DATE: DOCKET: 
CIR: DEFENDANT WOUNDED PAU~ JONES BY STABBING 

AMOUNT OF BONDS: 0005000 BOND TYPE: DATE: T!ME: MAGISTRATE: PLI 

MORE \:.HARGES: N 
Exhibit 16 
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Exhibit 17 

plan to identify the areas in which computer development 
should be achieved. The plan will consider what systems 
currently exist, what functions of the court can be effectively 
automated, hardware needs of the judicial system, and the 
cost/benefits and feasibility of a statewide judicial computer 
network. 

New court computerization will result from continual bal
ancing between the ideal system and the practical con
straints of the judicial branch of government. Each system 
will be carefully weighted and subjected to critical analysis 
in light of decreased federal funding. Contending needs will 
be addressed-needs for increased quality of and improved 
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information, simplicity and usability of systems, considera
tion of the judiciary's independent status, and flexibility to 
accommodate future needs. New systems must meet enun
ciated goals. They must have a sound basis on which more 

complex systems can be built. Constant review and evalu
ation during development, implementation and operation 
will be required to ensure that the needs of the Courts are 
met. 



Police and computer technology-The expectations and the 
results 

by KENT W. COLTON 
Brigham Young University 
Provo. Utah 

THE EXPECTATIONS-THE CHALLENGE OF THE 
PRESIDENT'S CRIME COMMISSION 

In July, 1965, in the face of dramatic rises in reported crime 
and delinquency rates, the President's Commission on Law 
Enforcement and the Administration of Justice (sometimes 
called the Crime Commission) was created. One area se
lected for special attention in the Commission's final report 
was the potential contribution of science and technology in 
the generally labor-intensive field of law enforcement. Be
cause criminal justice agencies must process enormous 
quantities of data, the use of computer technology-elec
tronic computers and new techniques such as systems anal
ysis, operations research and computer modeling-seemed 
particularly promising, and the use of computer technology 
by the police has expanded significantly since the mid-1960s. 

A variety of factors have fueled this growth. The first was 
the report of the Crime Commission. The recommendations 
of such a distinctive group drew instant attention and out
lined high expectations: .. Modern technology can provide 
many new devices to improve the operations of criminal 
justice agencies, and particularly to help the police to deter 
crime and apprehend criminals." 1 The Commission's rec
ommendations were fortified by the addition of large-scale 
federal resources to the police area through the Law En
forcement Assistance Administration (LEAA). The pressure 
from vendors to sell their product-enhanced as the Viet
namese War was ending and technology-oriented industries 
sought to increase their domestic market-also contributed 
to the expansion of the computer-related innovations. Ac
cording to one study, $143 million, or 11.5 percent of the 
total LEAA block grant budget, was spent for law enforce
ment telecommunications during the three-and-one-half 
years between July 1, 1971 and January 1, 1975, and this 
figure did not include matching money from the states. 2 

The Crime Commission report was filled with enthusiasm 
and raised high expectations about the possibilities of such 
innovations. Advocates felt that computer technology would 
allow for the rapid processing of information, expand police 
capabilities and improve law enforcement services, for ex
ample by reducing response time. Some hypothesized that 
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aspects of the technology might even improve apprehension 
rates, thus deterring criminal activity and reducing crime 
rates. 

The use of computer technology by the police has ex
panded rapidly since the mid-1960s, undoubtedly aided by 
the Crime Commis'sion's report and federal funding. How
ever, there is disagreement as to the utility of such computer 
use. Whereas proponents seek for the benefits noted above, 
critics claim that much of the money has been wasted, that 
such innovations have not increased the efficiency or effec
tiveness of crime control, that the proliferation of such sys
tems represents a potential infringement on civil liberties, 
and that the money could be better utilized on less technical 
approaches to the crime problem. 3 

Although there has been a lot of dialogue regarding the 
purchase and application of computer technology in law 
enforcement, there has been relatively little research or eval
uation since the Crime Commission concerning the actual 
uses, difficulties, and diffusion of computer technology by 
the police. Despite prestigious recommendations, the proc
ess of introducing change requires more than directives from 
the top. Important behavioral and power relationships are 
involved in the actual implementation of the technology. A 
decade has passed since the Crime Commission selected 
computer technology as an area of potential significance. 
The purpose of this paper, then, is to begin to evaluate what 
we have learned since the mid-1960s and to address the 
consequences and diffusion of innovation. 

The paper is based on the results of research efforts which 
have transpired over a period of six years. The research has 
included two national surveys of U.S. police departments in . 
1971 and 1974 (designed by the author and administered by 
the International City Management Association lICMAD 
and a series of seven case studies in different police depart
ments around the country. 4 The four sections which follow 
will 1) review the results of "routine" and "non-routine" 
applications of police computer technology, 2) discuss some 
of the lessons we have learned and the reasons for the 
disappointments and problems that have arisen. 3) outline 
a new focus for the diffusion and application of police com
puter technology, and 4) discuss the change in expectations 
for the future. 
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THE RESULTS-THE EXPERIENCE OF THE PAST 
DECADE 

The use and evaluation of police computer technology 

The first real-time police computer system in the U.S. 
was installed in the St. Louis Police Department in the mid-
1960s. Since then the growth of computer technology within 
police departments has been widespread. However, the sur
veys conducted as a part of this study in 1971 and 1974 
revealed that implementation has been slower than ex
pected. The 1975 survey was mailed to all U.S. police de
partments in cities with populations over 50,000. Of the 326 
(80 percent) that responded, 193 (56 percent) were using 
computers. Although this was an increase of 12 percent over 
1971 responses, it was only about half the growth predicted 
by the earlier survey. 5 

Some of the difference may be explained by a slight var
iation in response rate between the two studies and by vary
ing interpretations of survey questions. But, more impor
tant, estimates of future growth tend to be overly optimistic. 
The slower rate may also indicate that some police depart
ments are taking a more careful and sophisticated approach 
to computer use. 

When surveyed, police departments with computers were 
asked to identify which of 24 applications they were using. 
The 24 applications were grouped into eight areas: police 
patrol and inquiry, traffic, police administration, crime sta
tistical files, miscellaneous operations, resource allocations, 
criminal investigation and command and control. 

In evaluating use and impact. it has been useful to draw 
a distinction between "routine" and "non-routine" appli
cations of computer technology. 6 Routine applications in
volve the relatively straightforward, repetitive manipulation 
and inquiry of prescribed data, often by means of a definite 
procedure. The same manipulation was usually done by 
hand before the advent of the computer. Technology simply 
makes the process quicker and easier. For example, al
though police patrol and inquiry applications were techni
cally advanced and provide rapid retrieval of information to 
the field officer, such inquiry systems are relatively straight
forward and the tasks can be labelled routine. Other routine 
application areas comprise traffic files, crime statistical files, 
police administration and miscellaneous operations. 

In non-routine applications the machine becomes a tool 
for decision-making, strategic planning, and person-tech
nology interaction. There are no absolute methods for han
dling problems, either because the area is complex or be
cause they require custom-tailored treatment. The human 
decision-maker plays a vital role in judgment, evaluation 
and insight. Non-routine application areas in law enforce
ment include resource allocation, investigation of crime, and 
command and control-including computer-aided dispatch 
and automatic vehicle monitoring. (See Figure 1.) 

Rather than view routine and non-routine categories as 
sharply distinct classifications, though, they should be re
garded as delimiting the two ends of a continuum. As ap
plications move toward the non-routine end of the contin
uum, systems design becomes more intricate. and 

behavioral, personality and organizational considerations 
become more significant. Several applications fall between 
the two extremes. The best example is crime statistical files, 
which though generally routine in collection and processing, 
provide the basic data for a number of non-routine activities, 
such as resource allocation. Command and control appli
cations also have both routine and non-routine dimensions. 

As the use of computer technology has evolved since 1960, 
successful implementation has often been limited to the 
routine areas. Traffic, police administration, and crime sta
tistical files have all remained important; and the expansion 
of police patrol and inquiry records-especially in the late 
1960s and early 1970s-has been almost phenomenal. 7 In the 
non-routine areas, though, results have been far more dis
appointing. For example, in the previously referenced 1971 
survey, 61 departments predicted they would implement a 
computer-aided dispatch system. However, only 15 such 
systems had been installed by 1974-less than one percent 
of the computer applications reported in the 1974 survey. 

Resource allocation has been the only non-routine com
puter use where the number of applications actually imple
mented has exceeded expectations. The 1971 survey results 
indicated that in three years 12 percent of all computer 
allocations would be in the resource allocation area: the 
actual percentage was 16. An additional question in both the 
1971 and 1974 surveys asked police departments to rank the 
.relative importance of different computer allocations. There 
was little shift between the two years, and in both 1971 and 
1974, resource allocation applications were ranked first. 

Although the actual level of implementation has been 
below earlier expectations in a number of areas, the com
puter, with all its interesting implications and problems, has 
unquestionably become a permanent part of law enforce
ment technology after a decade and a half of use. The issue 
now is not will computers be used, but how and with what 
impact? 

Computer impacts 

The impact of routine applications. Although experiences 
vary from city to city, there is evidence that routine com
puter applications provide a number of benefits, particularly 
when benefits are defined in a narrow, technical sense. For 
instance, numerous police patrol and inquiry applications 
and crime statistical files are working around the country 
today. Seven-second retrieval of information to the officer 
in the street has been a reality in Kansas City, Los Angeles, 
and other police departments for a number of years. In terms 
of "technical impacts"-benefits resulting from improve
ments in the input, processing, and output of information
the technology has provided a number of positive advan
tages. In at least some departments, extensive amounts of 
new or better information are available more rapidly for 
broader distribution, although results again vary among po
lice agencies. Further, if one views the service delivery 
impact of such routine applications from a more narrow 
"process"-oriented perspective, a number of routine appli
cations have improved service to the public and have been 



Routine 

Police patrol and inquiry (including --~ 
warrant, stolen property, and 
vehicle registration files)b 

Traffic applications (including -------1 
traffic accident, citation, 
and parking violation files) 

Miscellaneous operations (including ---~ 
intelligence compilation and 
jail arrest records) 
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~on-Routine 

t--- Command and control (including 
computer aided dispatch and 
automatic vehicle monitoring) 

f--- Criminal investigation (including 
automated field interrogation 
reports, modus operandi and 
automated fingerprint files) 

Crime statistical files 
(including crime offense, 
criminal arrest, juvenile 
criminal activity, and 
offender based files) 

Police administration (including 
budget analysis and fore
casting, inventory control, 
vehicle fleet maintenance, 
payroll preparation, and 
personnel records) 

------t I ~-- Resource allocation (including 
police patrol allocation and 
distribution, police service 
analysis, and traffic patrol 
allocation and distribution) 

Figure I-Routine and non-routine uses of police computer technology. ", The terms "structured" and "unstructured" have also been used to draw a similar 
distinction. See, for example, G. Anthony Gorry and Michael S. S. Morton, "Management Decision Systems: A Framework for Management Information 
Systems," Working Paper No. 458-70, Alfred P. Sloan School of Management, MIT, April 1970. Also, Herbert A. Simon originally used the terms "programmed" 
and "unprogrammed" to make a related characterization. See Herbert A. Simon, The Science of Mana/?ement Decisions. New York, Harper & Row, 1970, p. 
6. 

* The dotted arrows reflect the fact that routine and non-routine categories are not sharply defined classifications. Rather, they should be regarded as converging 
from opposite ends of a continuum. 

shown to be cost-effective, though full-scale analysis of 
costs and benefits were not covered in this project. For 
example, in Tulsa, Oklahoma, an additional $180,000 in es
timated revenue was returned after the first year's operation 
of a new automated traffic citation system. In Long Beach, 
California, membership in an automated want/warrant sys
tem in the Los Angeles area increased the number of 1970 
warrant arrests 31.5 percent over 1969 figures. s In Kansas 
City, Missouri, the ALERT (Automated Law Enforcement 
Response Team) system was installed in 1969, and the num-

ber of monthly inquiries per police officer concerning stolen 
cars or wanted persons rose from 36 in January to 90 in May 
1971, and in 1975 police officers were averaging 250 inquiries 
per officer per month. In Oakland, California, after digital 
computer terminals were installed in half the patrol cars in 
1971 and 1972, units with terminals in their cars made more 
than seven times as many information requests, received 
more than three times as many . 'possible hits," and were 
three times as productive in warrant arrests and vehicle 
recoveries as nonequipped units. 9 
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However, when one examines the actual service results 
or outcomes of such routine applications the benefits of the 
technology are more uncertain and unexpected impacts and 
influences begin to emerge. For example, a former Kansas 
City Chief of Police reported that after installing their 
ALERT system, one of the most advanced police patrol and 
inquiry systems in the country, the police department ex
perienced an overload of police officers making stolen car 
checks, thereby creating a potential manpower drain and 
shifting concentration from other vital police tasks such as 
preventive crime patrol. 10 

Further, as far as service impacts are concerned, it seems 
that routine computer uses by the police have almost entirely 
been devoted to the crime control and law enforcement 
functions of the police. 11 By over emphasizing the applica
tion of technology to crime control, law enforcement agen
cies may neglect possible applications to social service ac
tivities; for example, computer files to assist with referral 
information, medical assistance, or listings of agencies and 
names of people who might provide social service assist
ance. 

Finally, large resources from the LEAA have in some 
cases served as a . 'seductive stimulant" for police depart
ments to get involved with computer technology in the ab
sence of an instrinsic desire for understanding. As one police 
data processing manager put it, .. Millions of dollars have 
been spent, but there's still an awful lot of garbage coming 
out of police computer systems." Although no one knows 
how much waste and misuse exists, police computer hard
ware has undoubtedly been sold to police departments that 
don't know how to use it, or for nonessential applications. 

The impact of non-routine applications. Although the ser
vice and power shifts of routine computer applications raise 
certain questions and concerns, overall a number of routine 
applications have been successful, especially in terms of 
operational performance and technical impacts. However, 
non-routine uses of computer technology bring greater com
plexity both in terms of implementation and evaluation. In 
this study, case studies have been conducted in two areas 
of non-routine use-resource allocation and command and 
control. Each will be discussed. 

As noted above, in surveys in both 1971 and 1974, police 
departments considered resource allocatioJ1s to be their 
most important areas of computer use. Resource allocation 
was also the only area in which the number of applications 
reported in the 1974 survey actually exceeded 1971 predic
tions. All police departments must make deployment deci
sions and the interest in the use of technology to aid in this 
allocation process is growing. However. the interest in au
tomated police deployment should be placed in the context 
of a realistic understanding of the law enforcement environ
ment. The resource allocation applications noted in surveys 
generally refer to using tabulations of crime statistics to 
determine deployment. not to more sophisticated models. ll 

Even where modeling work has been tried. many of the 
efforts have met with only limited success as the three cases 
examined as a part of this study indicate.!:l 

In St. Louis the use of a computer model that was imple
mented in the late 1960s is purely optional as of 1977. and 

district captains no longer request computer-generated re
ports. The command staff and the Board of Police Commis
sioners are essentially doing nothing to encourage use of the 
system by other commanders. In Boston, efforts were made 
to implement a computer simulation model in the early 1970s 
but the proposed deployment techniques were dropped en
tirely in 1973, and questions have even been raised within 
the police department concerning the manual resource al
location procedures that were implemented in 1974. 

Of the three cases reviewed in this paper, the Los Angeles 
Police Department (LAPD) has the only resource allocation 
system utilizing computer technology which is actually op
erating and established as a part of its deployment process. 
The first level of evaluation-having a working system-has 
been met. However, even there, the objectives of the re
source allocation project were substantially modified. The 
original LEMRAS/ADAM deployment modeP4 was dropped 
in 1974 to be replaced by the ADAM historical reporting 
system which was implemented in June, 1975. The current 
ADAM package no longer includes forecasts offuture needs. 
and deployment recommendations are based on manual cal
culations using computer-generated reports of historical 
data. The LAPD has achieved technical benefits in terms of 
reducing the manpower required to analyze workload and 
to calculate deployment plans, but many of the service im
pacts are still unclear. For example, conflicts arose between 
the strategy for allocation implicit in the deployment model 
and team policing, an alternative strategy for police work. 
Finally, one of the original service objectives of the initial 
allocation system, improved crime prevention, has been vir
tually abandoned as one of the factors considered in the 
current ADAM historical reporting system. 

Efforts in police departments to utilize computer technol
ogy in resource allocation go far beyond the St. Louis. 
Boston, and Los Angeles case studies. The modeling tech
niques used in these three cases are now outdated. and 
improved models have been developed. For instance, a 
number of projects are currently underway to implement 
two more recent modeling efforts: the Patrol Car Allocation 
Model (PCAM) and the Hypercube Model. 15 These models 
allow the user to identify a wide range of performance meas
ures-i.e. mean travel times to various locations, workload 
balances, response to call-for-service and other dispatching 
strategies-and based on the relative importance of these 
various measures, alternative deployment strategies are pro
vided. As a consequence, some of the objections in St. 
Louis and Los Angeles-that those modeling efforts did not 
consider enough of the relevant factors-have been over
come. The actual results of most of these efforts still must 
be evaluated. though. Further, the implementation problems 
encountered in the three cases discussed in this paper do 
not seem to be isolated instances. Rather, there is strong 
evidence that such difficulties are commonplace. 

According to a 1975 report by the RAN D Corporation 
that examined a number of attempts to implement computer 
models in the criminal justice area: . 'Through a series of 
interviews with model builders and personnel in agencies 
that attempted to implement models. a picture of the imple
mentation process was obtained. In general. criminal justice 



models have failed to achieve any notable level of use for 
policy decisions. 16 

The potential for automating aspects of police command 
and control were first pointed out by the Crime Commission 
in 1967. Computer-aided dispatch (CAD) systems provide 
the framework fOF bringing together many of these new tools 
through the partial automation of the call-answering and 
dispatch process. Other command and control technological 
changes that have been considered or tried include mobile 
and portable digital terminals to allow officers in the street 
to communicate digitally with headquarters, automatic ve
hicle monitoring (A VM) systems to keep track of the loca
tion and monitor the status of police units, and 911 emer
gency telephone services. A CAD system may include an 
A VM system, 911 telephone service, or mobile digital ter
minals. 17 Some of these innovations in command and control 
are routine: the te(:hnology basicaUy replaces a previously 
manual activity such as with digital terminals or the auto
mated transfer of informaiion from the telephone operator 
to the dispatcher. However, CAD also provides the frame
work for a number of non-routine activities, such as tracking 
and monitoring vehicle location, automatically timing the 
lengths of calls and raising a "flag" if a call takes over a 
specified time (say 30 minutes), or providing new informa
tion to be used for management. Command and control as 
discussed in this report, then, relates not only to dispatch 
deployment, but to the ability of police administrators to 
control and modify the manner in which police operations 
are conducted. 

In the study providing the basis for this study, three cases 
were examined in the command and control area, and in 
San Diego and New York City working systems have been 
developed,. although in Boston the problems of introducing 
the new technology have been more significant. 18 The suc
cess and failures of these three cases provide certain insights 
for the future. First, it is possible to establish ongoing, 
operational CAD systems. The SPRINT system in New 
York City has been working since 1970, and the CAD system 
in San Diego has been operating since 1975. Both cities have 
achieved technical benefits from CAD such as the availa
bility of new and better information, rapidity in matching 
addresses with geographic location, the effective transfer 
and recording of data in the dispatch process, and the re
trieval of data from the dispatch process. 

Secondly, both cities have experienced positive service 
impacts in terms of process-orientated measures. Some of 
these process service benefits include: telephone calls are 
answered and serviced more rapidly (telephone talk time in 
San Diego has dropped from three minutes to 77 seconds. 
and the average time required to answer the telephone is 2.5 
seconds): standards can be set for communications and field 
backlogs (New York City has met its standard of answering 
98 percent of telephone calls within 30 seconds, and radio 
airtime and field backlogs are monitored and recorded daily): 
and the workload has been more evenly distributed within 
communications divisions. 

Thirdly, when it comes to measuring the actual service 
"results" attributed to CAD. the findings are inconclusive. 
In the New York City and San Diego police departments 
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there is a general feeling that dispatch time has been re
duced, but the data are inadequate to prove or disprove such 
a hypothesis. In fact, to the extent that data exist, they seem 
to show that the impact on response time has generally been 
negligible or modest at best. 19 Further, the police depart
ments have essentially not analyzed the influence of the 
CAD systems in such areas as improving police productivity 
by enabling patrol officers to respond to more calls per shift 
or providing a better match between police service needs 
and available resources. 

The question remains, then, as to whether the benefits of 
CAD justify the costs. Although the expenses of much of 
this technology seem high, when placed in the overall con
text of the costs of police operations, the comparative mag
nitude of the dollars seems to diminish. In New York City. 
for example, the annualized costs for developing and oper
ating the SPRINT system are aoout $2.7 million. Because 
the 1975 police budget in New York City was approximately 

, $625 million, only 0.4 percent of the annual budget was 
devoted to the C.AD system. Stated in another way, the 
costs of operating SPRINT are roughly equivalent to main
taining 10 police patrol units on an annual basis. 

In both New York City and San Diego, technical and 
service benefits have been achieved to help offset such 
costs, and it seems highly likely that the use of CAD systems 
will continue to expand. Whether their full potential is 
achieved, though, will depend on the skills of the manage
ment personnel. Both New York City and San Diego provide 
a wide range of new information for managers. However. 
police chiefs have seldom considered themselves as man
agers in the past: rather, their responsibility has been to 
balance pressures within and without the city and to promote 
the need for law enforcement and police resources. Conse
quently, it is still unclear as to whether they or their assist
ants will be able to channel the potential technological tal
ents of the computer to do more than simply perform routine 
operations. 

THE CRIME COMMISSION REVISITED (OR SOME 
OF THE REASONS WHY THE RESULTS OF 
POLICE COMPUTER TECHNOLOGY HAVE BEEN 
MIXED) 

When the Crime Commission issued its report in I %7 it 
was optimistic about the use of science and technology in 
law enforcement. It set forth a far-ranging program of ap
plication and experimentation. Some of these experiments 
have worked, but a number of others have failed. and 
whether explicitly or implicitly, the Commission oversold 
the potential impact of such innovations un reducing crime 
and increasing arrests. It also seemed to assume that inno
vation would occur automatically from the top down. that 
little attention was required for the diffusion process, that 
the only motives for implementation would be altruistic, and 
that vendors of technology would be neutral and pressure
free in their "unbiased advocacy." Finally, they recom
mended so many possible experiments that it was difficult 
to select and focus priorities and to follow through. What 
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have we learned from our experience over the past decade 
and what recommendations can be made for the next few 
years'? 

Firstly, it should be clear that it is extremely difficult to 
measure the effectiveness of technological innovations in 
confronting crime. In a number of cases, particularly as 
reported in the overall study report, allocation and command 
and control projects failed to demonstrate clear improve
ments in a department's patrol performance, particularly in 
the area of crime control. Perhaps the greater failure was 
the original expectations which were built in the 1960s that 
we might be able to establish such linkages. Criminal activ
ities are based on a wide range of factors only a small portion 
of which are influenced by police activity. Changes in de
ployment patterns or response rates may have some modest 
influence, but criminal statistics are far too imprecise to 
measure these differences or to isolate the portion of the 
change attributed to police allocation or technology as op
posed to changes, for example, in the weather or the un
employment rate. 

Secondly, it should be apparent that a number of the 
original specific objectives of the Crime Commission will 
not be met, and expectations for the future must be altered. 
The best illustration of this is related to response time. 
Based on the evidence to date it would be a mistake to 
maintain hope that response time benefits will justify com
mand and control and resource allocation technological in
novations. As noted earlier in this report, the CAD system 
did not achieve response time benefits. Further, in St. Louis 
tests of a Phase I A VM system, it was found that A VM did 
not bring the expected reduction in response time. In fact, 
although the question will be examined again closely in a 
Phase II experiment, current findings lack any evidence to 
suggest that travel time reductions due solely to A VM will 
significantly improve police operations or reduce costs.:!ll 
The entire response time system includes a number of com
ponents, not the least of which is the time it takes the victim 
to call the police after a crime has occurred. In the past, 
excessive attention has been focused on the elements of the 
response system which can be influenced by technology. In 
fact it seems after reviewing the evidence of this report that 
response time is primarily a personnel and human issue 
rather than a technical problem. If response time is to be 
improved, people who have been victimized will need to call 
the police more rapidly, or a department will need to reor
ganize both the flow of the technology and the flow of people 
related to their communications system. Technology alone 
will make little difference. 

Thirdly, the experience of police departments in using 
computer technology to date has forcefully demonstrated 
the importance for performance guidelines in the diffusion 
of such innovation. The relationship between the user and 
the vendor must be clearly defined and performance guide
lines specified. In San Diego there was a very clear set of 
vendor specifications in their request for proposal for the 
CAD system, and this was invaluable in achieving the de
sired product. The Boston proposal for CAD lacked the 
same clarity, and misundcrstandings inevitably dcveloped. 
In the long run, both the police and the vendors of technol-

ogy will benefit from a clear framework and set of standards 
and specifications. In fact, it is the conclusion of this report 
that effective implementation necessitates such standards, 
and the Law Enforcement Assistance Administration, or its 
sequel, should playa central role in developing such guide
lines. 

Finally, it seems that at least one of the major reasons 
for the disappointment of the Crime Commission was its 
failure to recognize many of the complexities and motiva
tions concerning the implementation of technology and the 
interaction between the context and nature of police work 
and the technology. Police organizations have a number of 
characteristics that are quite different from those of other 
public and private institutions. In most industrial organiza
tions and public bureaucracies, movement to higher levels 
of power and status is accompanied by greater discretion or 
freedom of choice in decision-making. Complexity of task 
increases with responsibility. By contrast in police bureau
cracies, the lowest-ranking officer-the patrol officer-is 
often given the greatest discretion, being forced to contin
ually make decisions without direction from superiors, and 
consequently the administrator's ability to control and influ
ence police behavior is severely limited. 

A further complication in understanding the police is the 
local and fragmented nature of law enforcement and the fact 
that police departments have a variety of different tasks and 
styles of operation. The popular conception of police work, 
often supported both by news media and by movies and 
television, is one which assumes that the bulk of a police
man's time is devoted to the exciting and dangerous job of 
crime-fighting. In fact, a comparatively small part of a po
liceman's time is devoted to crime control and law enforce
ment. Instead, service activities and order maintenance oc
cupy the largest portion of police time,21 and different police 
departments have different styles of operation depending on 
whether their orientation is, for example, legalistic (identi
fied by strict interpretation and enforcement of the law and 
strong centralized authority), watchman (characterized by 
a more traditional approach, greater discretion and weaker 
centralized authority) or service-oriented. 22 

In summary, then, the eventual influence and impact of 
technology in policing will not come from the technology 
per se, but from an interaction between police work, the 
nature of a particular department, and any specific innova
tion. When the Crime Commission set forth its recommen
dations in 1967, it apparently assumed, at least in part. that 
police administrators would have strong centralized control 
and that the diffusion of innovation in the form of computer 
(and other) technology would be primarily an act initiated 
from above with effective communication from higher to 
lower echelons of the police department providing the lin
kage for implementation. The primary problem recognized 
by the Commission was monetary, 23 and in failing to more 
specifically address the diffusion of technology. many of the 
obstacles such innovations have met over the past decade 
were overlooked. Given such factors as the fragmented na
ture of police work and the variety of police departments 
around the C0untry. the USe of technology may have an 
important influence on power and prominence within orga-



nizations. Behavioral factors have proved essential in 
achieving acceptance and success, and the nature of inno
vation and change is a long-term and deeply-rooted process. 
With this in mind, the next section of this paper will examine 
a new focus for the diffusion of police computer technology. 

THE DIFFUSION OF POLICE COMPUTER 
TECHNOLOGY-SOME DIRECTIONS FOR THE 
FUTURE. 

There is a human tendency to seek direct solutions and to 
try to classify actions as either failures or successes. When 
it comes to the diffusion of technological innovation there 
seems to be no single prescription that will guarantee suc
cess. It is possible, though, to identify what not to do, 
particularly with the benefit of hindsight. Based on such 
hindsight and the analysis of the cases noted above, a series 
of "necessary-but-not-sufficient" conditions in the imple
mentation process have been identified. The factors can be 
divided into two categories-those related to the nature of 
the environment of the innovation, and those related to the 
project management of the innovation. In essence, they are 
built upon and serve to summarize many of the common 
themes which have emerged from the case studies: the need 
for understanding' the environment and motivations for 
change, the long term nature of innovation, vendor pressures 
and the temptation to oversell or overestimate a project's 
potential, the necessity of setting priorities and outlining 
clear performance guidelines in advance and the importance 
of human and behavioral considerations such as the conti
nuity of personnel and the involvement of police officers at 
all levels to the extent possible. Listed in Figure 2, they 
serve as a "check list" for future consideration-not as a 
magic formula for success. 

Obviously, it is impossible to expect that all of the factors 
relating to the nature, environment and project management 
of change can be achieved whenever computer technology 
is implemented. There is no simple answer to assure suc
cess. It is clear, though, that in the past we have failed to 
devote adequate attention to the implementation and diffu
sion of innovation not only in law enforcement but in almost 
all areas of urban service delivery. While trying not to raise 
our expectations beyond reach, it should be possible to 
concentrate our efforts at more effective evaluation and 
transfer, where appropriate. 

The diffusion of innovation basically involves four steps: 24 

Inventing-The creating of ideas, technologies, 
models, etc. 

Informing-Publicizing the technology and educating 
the law enforcement community concern
ing the technology and its possible advan
tages and disadvantages. 

I mplementing-Introducing the technology into a law en
forcement agency. 

Integrating-The overall social and economic accept
ance and adjustment to the innovation by 
the agency. 
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In developing a more realistic and productive outlook and 
dire'ction for the diffusion of law enforcement technology, 
and for that matter, diffusion related to all urban services. 
all four deserve consideration. 

Inventing-The need for better technology 

Although this report has neither the space nor the capacity 
to be too specific, "beUer iechnoiogy" improvements can 
and should be made in the quality of law enforcement com
puter applications. For example, in the modeling area we 
must build better models. Over the last decade, progress 
has been made. The Hypercube and PCAM Models offer 
better options to police users than those available six or 
seven years ago. Further, it may be possible, within the 
professional community of computer technology, engineer
ing and operations research, to establish high standards and 
criteria by which inappropriate innovations can be weeded 
out. 

Informing-The need for "truth in technology" 

One of the greatest failings related to computer technology 
in the past decade is the tendency to overpromise. Expec
tations have been raised only to be dashed, due to a whole 
range of technical and behavioral factors. The primary 
change agents in law enforcement technology are vendors. 
However, they have a vested interest in selling their product 
and this interest has sometimes tended to focus sales liter
ature on the advantages of technoiogy as compared io ihe 
drawbacks. As noted earlier, the time is ripe to develop 
realistic performance guidelines and to try to assure that in 
the informing and educating process that the costs of tech
nology, as well as the benefits, receive ample publicity. 

Implementing-The need for' 'policy management'· 

The implementation process is not simply a matter of 
policy choice, but a process of conflict resolution requiring 
the understanding and management of different values and 
perspectives. It has become apparent in analyzing the im
plementation of law enforcement technoiogy, thai a new 
breed of police officers is emerging. These are officers who 
have "come up through the ranks" and have, therefore, 
. 'paid their dues" and are respected within the policy com
munity. At the same time, they have had some experience 
with both the advantages and limitations of new technology 
and may be helpful in this process of conflict resolution. 
Rather than try to teach outisde engineers about police 
work, it may be profitable to cultivate this inside set of 
"police technology experts." As long as they maintain this 
independence they could become a "pool of resources" to 
aid in the diffusion process. 
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1. Conditions related to the nature and environment of the innovation: 

A clear .and realistic understanding at the outset of the project of 
the policy issues involved. Multiple, even conflicting objectives are 
often involved. For example, when Los Angeles first began the LEMRAS 
project, they failed to appreciate the policy conflict between the model 
and team policing. 

A perceived need for change among those influenced by the innovation 
-- both police administrators and officers in the street. Effective 
change must usually build from within an organization. If innovation 
becomes an "idea in good currency," its chances for success will rise 
significantly. One of the indicators of this perceived support is a 
wi 11 i ngness to pay for change. Both San Di ego and Ne\,1 York Ci ty "used 
their own money," when installing CAD systems. Although projects funded 
from t he outs i de may still succeed, often there is 1 ess commi tment and 
support than in self-funded efforts. 

Effective timing and system design so as to meet user needs and resist the 
temptation to oversell and therefore build impossible expectations. The 
first attempt at CAD in San Diego failed miserably because those involved 
in the design failed to identify the needs of users. The second effort 
focused special attention on user concerns and was implemented at a time 
when change seemed essential. The outcome was far more successful. 

The proper selection of priorities in implementing computer technology. 
The most important formula seems to be to start with routine innovations 
that assist the officer in the street; more nonroutine innovations can 
be developed later to serve a more narrow range of officer needs. Also, 
the focus has been on crime and law enforcement activities. Perhaps if 
greater attention were devoted to service or order maintenance objectives, 
acceptance would increase. 

2. Factors related to the project management of innovation: 

Establishment of a clear set of performance guidelines at the beginning 
of a project. Such guidelines serve as a framework for clear understanding 
between the vendor and user. They were invaluable, for example, in San Diego, 
and their absence in other cities has been at the root of many difficulties. 

A long-term framework and perspective. Eight years were spent in the 
implementation of the ADAM historical reporting system in Los Angeles, and 
the New York City SPRINT CAD system has evolved significantly within a seven 
year period. Such projects inevitably take longer than initially planned, 
and if an adequate time-frame is not allowed, frustration and rejection will 
ensue. 

Emphasis placed on human-computer interaction. There is sometimes a ten
dency to consider computer technology as a replacement for people. This is 
both unrealistic and inefficient. One of the most critical variables for 
the efficient operation of any computer system is the development of the 
proper balance in the interaction between people and machines. 

Figure 2 
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Effective training, education, and information dissemination. The process 
of communication is often at the heart of effective innovation. Carefully 
designed training programs provide an important link in such communica
tion. However, innovators must be careful not to oversell and be pre
pared to listen to feedback. The dialogue process must be two way. 

Continuity of personnel. Experience has shown that, as advocates for 
technological innovation move, the innovation often dies. Change in 
personnel is inevitable, but at the same time, a certain degree of con
tinuity must be maintained. 

Involvement and quality of top-level leadership. Police departments tend 
to be fairly rigid organizations with well established chains of command. 
Understanding, involvement and support from the top is essential if tech
nological innovations are to be implemented and used. More than support 
from the Chief is required, though. In addition, a core of agency leaders 
is necessary if commitment is to be maintained over time. 

Involvement of other police personnel. Besides the top commanders, police 
at the operating level must be involved in the design and development of 
computer technology. One reason the resource allocation system faltered in 
St. Louis was because the field officers strongly resisted a shift of only 
one hour in their daily schedules because it would have required them to 
commute to work during the normal rush hour traffic. 

Caliber of computer systems and technical staff. Individuals are required 
who have both technical skills as well as a broad perspective which will 
allow them to see beyond computer technology to 1 aw enforcement needs and to 
communicate successfully with the police department. In order to attract 
such individuals, cities must be willing to pay competitive wages. 

Unbiased evaluation. A careful (and, if possible, independent) evaluation 
should be an integral part of any implementation effort. 

Figure 2 (continued) 

Integrating-The need for the internal motivation and 
integrity of change 

One of the most critical elements for implementation suc
cess is that the desire for change must come from within, 
not without. Better evaluation and guidelines for perform
ance can help educate police departments as to the advan
tages and limitations of technology, and . 'pools of re
sources" from within and without the law enforcement 
community might establish a two-way communication to 
facilitate diffusion. Still, the final desire for change and the 
specific design and implementation of alternatives must 
come from within the police department involved. Openness 
and meaningful communication are required, and although 
it is difficult to maintain such behavior constantly, it is 
essential in helping to bring about effective innovation. 25 

CONCLUSIONS-CHANGING EXPECTATIONS FOR 
THE FUTURE 

There are a range of views about the use of computers 
and technology in our society. At one extreme are those 
who see the increasing movement towards a technological 
society as dangerous, a movement that will take us away 
from the "good life." Scientific rationality and technological 
progress may have questionable results and set up a chain 
reaction which we may not be able to reverse. At the other 
extreme are the technologists and the vendors who sell their 
products. They argue that the benefits of technology out
weigh the costs and tend to oversell their products and to 
promise more than they can deliver. It is the opinion of this 
author that the truth lies somewhere in between. On the one 
hand computer technology has become a part of law enforce-
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ment activity. Given this reality, the most useful orientation 
is to realistically evaluate current needs and progress and to 
promote change where it is appropriate. On the other hand, 
we must admit that many of our efforts at technological 
innovation have failed. Promises have been overextended, 
expectations have not been met, and resources have been 
wasted. The answer to our problems does not lie in hard
ware; it lies in basic value judgments and in people. In 
talking about a computer application in his police depart
ment, one police sergeant astutely remarked: 

"The computer terminal in the car is an effort by the 
police department to professionalize from a hardware ap
proach. This is O.K., but the more we concentrate on 
hardware, the farther we move from the basic people 
issues. The real police problems don't have technical so
lutions. Instead, it's the people who are screwed up, and 
we need more people-to-people type efforts in police de
partments, such as improvements in communication, im
proved motivation, productivity modifications, better in
terpersonal relations, etc. In short, instead of hardware 
solutions, we need policy resolutions of the basic issues 
of the police force. The result of the computer may be to 
take our minds off what are the more important issues." 26 

In summary, most arguments against the computer are 
made on the grounds that too much money is currently being 
spent on law enforcement technology, particularly when it 
is not clear that the benefits of such technology justify the 
costs. However, this study has found that in many routine 
applications the benefits can justify the costs, particularly 
if benefits are defined in narrow, process-oriented terms. 
Further, this efficiency may continue to develop with time 
as computer technology becomes more sophisticated and 
police departments get better at handling the organizational 
and behavioral problems which often accompany the intro
duction of technology and the implementation of change. 

More importantly, though, there are other issues sur
rounding the use of the computer that have greater signifi
cance than questions of costs and benefits. The use of com
puter technology by the police must be placed in 
perspective. Although many aspects of computer technology 
in law enforcement are well established and expanding, it 
would be a mistake to think such innovations will play a 
major role (at least in the short run) in revolutionizing the 
police or many of the issues they face. Police work, to a 
large extent, is determined by the conditions of our society 
and its people. Crime and law enforcement have a momen
tum of their own. Computer technology may have a marginal 
role in influencing and shifting relationships, but the major 
law enforcement issues must be resolved in the context of 
society as a whole. For example, some of the most pressing 
law enforcement questions at this time are to define the 
basic task of the police, to identify how the officer's time is 
really being spent, to determine the correct alloction of 
resources and to determine if current recruiting and training 
practices complement the basic needs and priorities of the 
police. The computer (along with proper analysis) may help 
in a small way to resolve these sorts of issues. but until such 

questions are addressed the implementation of the computer 
may also serve to reinforce the status quo, to lock in and 
substantiate our present approach, and to indirectly coun
termand other innovation. 

The greatest strengths of computer technology seem 
closely related to its greatest weaknesses. Computers have 
the potential to aid in criminal justice activities through rapid 
communication, accurate and complete information, and 
perhaps a more rational approach to decision-making. We 
must realize that there are limits to this technology, though, 
and not overestimate the potential. These very benefits, if 
not properly controlled or planned, may result in misuse, 
unintended consequences, wasted resources and frustra
tions. Expanded computer use by the police is at a crucial 
point and now is the time to point to a new direction, one 
slanting toward attention to evaluation and implementation, 
stressing performance standards and transfer, and realizing 
that police playa broader role in society than simply fighting 
crime. Such a new direction requires careful consideration 
so that the strengths of technology can be judiciously mar
shalled and the weaknesses and potential risks prudently 
forstalled. 
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INTRODUCTION 

In the search for speed and computing power, many re
searchers in computer science have turned to networks of 
computers as a possible solution.1,5,8,14,9 These networks 
consist of minicomputers connected by links across which 
communication between processors occurs. In homogene
ous networks, the computer at each node is identical to the 
others, with the possible exception of peripherals. Each 
processor has its own local memory, does not share memory 
with any other processor, and communicates with other 
processors via message passing. In order to fully utilize the 
speed and power inherent in a network, emphasis must be 
placed on the development of parallel (as opposed to se
quentiai) algorithms. 

In this paper, we will investigate concurrent algorithms 
designed to impose a logical structure on top of the physical 
computer network, such as a pairing of the processors along 
communication lines. These algorithms are interesting not 
only for their relationship to parallel algorithms in general, 
but also because the resulting structure may be used as a 
basis for writing other parallel algorithms. We restrict our 
attention to algorithms that have the following properties: 

1. Initially, each processor knows only of its neighboring 
processors in the network. 

2. All processors have the same program to execute. 
3. Messages sent between neighbors may take an arbi

trarily long amount of time to arrive. 
4. Messages between any two connected processors will 

always arrive in order. 
S. No assumptions are made about the physical intercon

nection pattern except that it is connected. 

The algorithms we will discuss form three types of struc
tures on the network. These three problems have been cho
sen because their results are dependent upon the physical 

* This research was supported in part by United States Army under contract 
:# DAAG29-75-C-0024. 
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network configuration and because they apply to the solu
tion of other netwQrk problems. Pairing algorithms match 
each node of the network with a direct neighbor. Since a 
pairing is not always possible, as in the case of an odd 
number of nodes, a good solution should leave a minimum 
number of "single" processors at the end of the algorithm. 
Spanning tree algorithms impose a tree on the network so 
that a unique path exists between any two processors in the 
network. The last problem considered is that of forming 
hierarchies of processors. One step in developing a hier
archy is the formation of processor cliques. Each clique 
should be of a certain size and one processor in each clique 
is designated as the "leader.·' A good solution should try to 
minimize the average radius of each clique. 

The assumptions made earlier about the behavior of mes
sages and about the program each processor runs give rise 
to several problems. The problem of agreement is that each 
processor must make consistent decisions with regard to the 
rest of the network, possibly based on widely differing local 
information. (For example, in the pairing algorithm, two 
nodes should not simultaneously believe they are paired to 
the same third node. In particular, the final state of the 
computation must not exhibit this behavior.) Each processor 
makes independent decisions about its future role in the 
resulting structure. Therefore, any decisions a processor 
makes that might affect its neighbors' decisions must even
tually be communicated to those neighboring processors. 

Synchronizatio/1 is the problem each processor encounters 
when it is about to finish a phase of the aigorithm. Since 
information about the rest of the network is usually incom
plete at each node, the algorithm must be designed so that 
each processor can make its own decisions based on little 
information. (For instance, in the pairing algorithm, a pro
cessor should not decide to halt its active participation and 
assume that a neighbor is its mate unless it knows that the 
neighbor wiii agree.j In particular, it is hard to decide 
whether a current local state is final or not. In part, this 
problem results from the assumption that messages between 
processors may take a long time to arrive. A processor 
cannot stop participating unless it knows that no later mes-
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sage can force a change in its state. Although messages 
never get lost, they may arrive quite late, and provisions for 
handling or preventing these messages must be made. 

The above two problems just mentioned have an easy 
solution if we allow ourselves the luxury of a central con
trolJing processor. Such a central control would, however, 
become a bottleneck as the size of the network grows. We 
feel that more general solutions can be derived by avoiding 
this central control. Certainly, any known methods for se
quential solution of these problems could be carried out by 
the central control. 

In developing these algorithms, we have totally ignored 
low-level aspects of message passing. Low-level protocols 
and the problems of lost or garbled messages are the re
sponsibility of the underlying network implementation. 
Some research has already been invested into these prob
lems. 7.10 It is our intent, however, to study the fundamental 
problems of parallel algorithms themselves. 

We have examined the performance of these algorithms 
by simulating a network in order to obtain sample results. 
Different network configurations were used, and compara
tive performance between different configurations varied, 
but the relative performance of each algorithm remained the 
same for each configuration. The configuration used most 
often was a square grid of varying sizes. We schedule the 
time of the receipt of a message on a time line, and assume 
that the computation at each node takes negligible time. The 
time for a message to be delivered is selected from an ex
ponential distribution with mean ], truncated to lie between 
0.50 and 1.50 time units. In this way, many actions may 
occur "simultaneously" in simulation. The programs were 
written in Pascal 6 and executed on a PDP 11/40 and a PDP 
11/45. 

Each of the following algorithms operates in the following 
manner: Upon receipt of a message, a processor executes 
a program segment that depends upon the processor's state 
and the message received. In this program segment, the 
processor may save whatever information it wants from the 
message, send out new messages, and change its internal 
state. 

PAIRING ALGORITHMS 

To achieve a pairing, each processor must agree either to 
become paired with a neighbor or to become single. A cor
rect solution is one in which a paired procesor and its mate 
agree that they are paired, and no neighboring processors 
are both single. An optimal solution is one in which there 
are a minimum number of single processors, which may 
require some analysis of the network configuration to derive. 

We will start with a simple algorithm, called Algorithm A, 
and then suggest improvements. The basic pairing algorithm 
has four states. A processor in the idle state has not yet 
started the algorithm. When it is waiting. a processor ex
pects a reply from its chosen mate. Paired means the pro
cessor considers itself paired, and single means it considers 
itself single. There arc five messages"··{lll'a/,('. \\ hich starts 
an idle processor: q[{ery. which indicates that the sender 

wishes to pair with the recipient; agree, which tells a waiting 
processor that the sender agrees to become paired with it; 
disagree, which indicates that a processor's chosen mate is 
itself awaiting an answer from its own intended mate; and 
refuse, which indicates that a processor's intended mate is 
already paired with another processor. 

At the start, each processor is idle, and one awake mes
sage has been sent to it. (It is not important to this discussion 
how awake messages are generated.) Initially, all direct 
neighbors are potential mates. If the processor receives the 
awake message in its idle state, it chooses a random neighbor 
from its list of potential mates as its intended mate, sends 
it a query and changes state to waiting. This query may 
reach the neighbor before any awake message. In this case, 
the recipient chooses to become paired with the sender and 
returns an agree message. This case, when the recipient of 
a query is in its idle state, is the only one in which an agree 
message is sent. Since agree, disagree and refuse messages 
are sent out only in response to a query, and queries are not 
sent out by idle processors, we only have to consider these 
two cases when the processor is idle. 

If a processor is in its waiting state, many different actions 
may occur. Any processor in the waiting state must already 
have seen the one awake message directed to it. If a query 
is received, a disagree is sent back if the query is not from 
the intended mate; otherwise, the processor becomes paired. 
No agree need be sent in the latter case; since the sender of 
the message is this processor's intended mate, a query was 
sent to it and the mate will take the same action. If an agree 
is received from the intended mate, then the processor also 
becomes paired. If a disagree is received from the mate, 
then the processor chooses a new intended mate, sends it 
a query and remains in its waiting state. The new intended 
mate may be the same as the first one. If the processor 
receives a refuse from its chosen mate, it removes the sender 
from its list of potential mates, chooses a new intended mate 
and sends it a query. If there are no more potential mates, 
the processor becomes single. A single processor should not 
receive any messages at all, since no query is outstanding 
and all neighbors have refused, implying that they are 
paired. Finally, if the processor is paired, it can receive 
either a query, in which case it sends back a refuse, or an 
awake, which it ignores. 

If we examine Algorithm A, we see that once all of the 
processors are started, a processor and its intended mate 
must choose to query each other before they can become 
paired. Many false starts may happen before this pairing 
actually occurs. In an effort to reduce contention, Algorithm 
B begins by sending only one processor an initial awake 
message. If an idle processor receives an awake or query 
message, it sends out awake messages to all of its neighbors 
except the sender of the received message. Simulations 
show that the number of singles left remains about the same 
for Algorithm B as for A regardless of the network structure, 
and the elapsed time (simulated time, not running time) 
becomes progressively worse as the size of the network 
increases. This behavior implies that contention is not really 
time-consuming. Also, the time needed to activate the pro
cessors across the network from the originally started pro-



cessor begins to override any extra time that contention 
might produce. Concurrency, it seems, has definite, al
though not dramatic, time advantages. 

Algorithm C is a modification to Algorithm A designed to 
provide each processor with earlier information concerning 
the state of its neighbors so that it can make a better choice 
of intended mate. Since the refuse message indicates that 
the sending neighbor is already paired, queries can be fo
restalled by broadcasting refuse messages to all direct neigh
bors (except the mate and those neighbors known to be 
already paired) as soon as a processor becomes paired. This 
modification has three parts. First. whenever a processor 
becomes paired, it must send out refuse messages to the 
appropriate neighbors. Second, if a processor receives a 
refuse from a processor other than its intended mate, it 
removes the sender from its potential mate list. Finally, a 
paired processor that receives a query need not respond, 
since it has already sent out a refuse. The observed saving 
in elapsed time is quite dramatic, and the number of singles 
left also seems to decrease. The amount of information avail
able, then, appears to make a considerable difference in 
performance. 

Since concurrency and early information both improve 
the speed of the algorithm, we tried Algorithm C, activating 
all of the processors at the same "time." The previous 
algorithm sent the broadcast awake message to all proces
sors at the same time, but that message arrived according 
to our message-delay distribution. Again, the elapsed time 
performance improves, but no real conclusions can be made 
concerning the number of singles left. In fact, the number 
of singles may increase for larger networks. 

Of the two, more information makes a greater improve
ment in the performance of the algorithm than concurrency. 
In order to follow this idea further, Algorithm D provides 
an individual processor with still more information about its 
neighbors. A new message, neighbor-list, is introduced. This 
message contains the size of the potential mate list of the 

-sender. These neighbor-list messages are sent out to all 
potential mates upon receipt of a refuse message, which 
changes this number. When a processor receives a neighbor
list message, it enters the new data in a table. When it comes 
time to choose a mate, each processor picks a random neigh
bor from among those with the fewest potential mates. One 
expects that the number of singles will decrease, because 
better choices can be made. For the smaller networks, the 
new approach seems to make no difference, but for the 
larger networks; significantly fewer singles result. Algorithm 
D also performs faster than Algorithm C for all network 
sizes. 

Perhaps we could do better with a different choice of a 
neighbor to query. Instead of choosing a neighbor with the 
fewest potential mates, Algorithm E chooses a neighbor with 
the most. The results justify the intuition that choosing the 
neighbor with the fewest potential mates leaves fewer sin
gles. Surprisingly, however, Algorithm E is still an improve
ment over Algorithm C, in which an intended mate is ran
domly chosen, both in elapsed time and number of singles. 
Again, increased information creates an algorithm that per
forms better. 
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Since none of these algorithms guarantees an optimal so
lution (that is, one in which the number of singles is mini
mal), we introduce a second phase to the basic algorithm 
during which singles migrate, eventually to meet and pair. 
All the previous algorithms have the property that each 
processor knows when its active participation in the algo
rithm is over. In the subsequent pairing algorithms, termi-· 
nation is not locally discernable. 

Algorithm F introduces a break message that is sent out 
by a single to a randomly chosen neighbor. This neighbor, 
if still paired, will then send back an agree, send an eioped 
message to its old mate to indicate that they are no longer 
paired, and become paired with the single that sent the break 
message. The recipient of a break message may be waiting 
or single, though, since processors can now become paired 
and unpaired an arbitrary number of times. If the recipient 
is waiting or single, and its intended mate is not the sender 
of the break message, it then sends back a disagree. Oth
erwise, the recipient becomes paired, much as in the pre
vious case when two processors send queries to each other. 
If a disagree message is received by a single processor, then 
the sender of the disagree is added to the potential mate list, 
the processor enters the waiting state and a new query is 
sent out. When a single processor receives an agree, query 
or break message from its intended mate, it becomes paired. 
Eloped messages are ignored if they do not come from one's 
mate, since the message can be late, but must be handled 
otherwise. They are treated as a refuse in response to a 
query, which means that the receiving processor must now 
become single or waiting, depending upon the state of its 
potential mate list. An appropriate message (break or query, 
respectively) is also sent. The algorithm has halted (in sim
ulation) when all of the processors have become paired, or 
the minimum number of singles is left for the given network. 

The simulated time to execute phase two is much higher 
than that for phase one, and varies widely in different test 
runs. Of course, this phase allows little concurrency, since 
only those processors near singles are involved. Moreover, 
networks that cannot be completely paired fare better during 
phase two than networks of similar size that can be paired, 
since more singles are migrating throughout the network. 
We tried Algorithm F in conjunction with both Algorithms 
A and C, that is, with refusals both broadcast and not broad
cast. The results were a bit puzzling at first-Phase Two 
time increases when refusals are broadcast. The cause is 
probably that the potential mate list becomes more of a 
hindrance than an aid in the second phase, since it restricts 
the choices a processor can query before it must become 
single. In addition, the average path length, or number of 
break messages per single at the end of Phase One, also 
increases when refusals are broadcast. 

In an effort to reduce the time spent by singles that migrate 
randomly throughout the network, Algorithm G includes a 
homing signal for the singles so that they might find each 
other more easily and directly. Whenever a processor be
comes single, instead of immediately breaking a random 
neighbor's pairing, it broadcasts a homing signal containing 
some random number. This message is passed on by every 
proces;or until some other single receives the signal. This 
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single will then break the pairing of the neighbor who relayed 
the signal. In this way, one hopes that single processors will 
meet and pair much sooner, since they can move toward 
each other directly. One also hopes that the signal broadcast 
messages will not seriously affect performance. 

Unfortunately, the phase two performance of Algorithm 
G turns out to be seriously worse than random migration. 
First, broadcast messages take up some time, since every 
processor must receive each signal twice before the message 
is squelched. More importantly, breaking the pairing of a 
neighbor in the direction of another single does not neces
sarily place the new single any closer to the originator of 
the signal. In a square matrix configuration, for example, 
there is a two-out-of-three chance that the new single would 
be just as far away, as shown in Figure 1. Only a better 
understanding of the configuration of the network at each 
processor will allow a more intelligent break message to be 
sent after a processor becomes single. 

The pairing algorithm is an excellent medium for studying 
parallel structure-producing algorithms. We discovered that 
concurrency, even if it does increase contlict among the 
processors, decreases the elapsed time of the algorithm 
without seriously affecting other aspects of performance. 
Also, gathering greater amounts of information leads to 
faster and more accurate results. Finally, the network con
figuration cannot be totally ignored in the development of 
an algorithm; an algorithm that ignores configuration infor
mation will do worse than one which incorporates the data 
into its "solution." 

As a passing note, we also tried our algorithms on different 
connection patterns for the network. The algorithms perform 
consistently better on square matrix configurations than on 
any of the "flake" configurations of similar sizes with re
spect to the number of singles. (See Reference 3 for a defi
nition of "flake" network configurations.) 
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Figure I-SI is a single generating a homing signal detected by S2 and relayed 
by PI' which is paired to P2• In each case. S2 will pair with PI' and P2 will 
become a single. Only in the first case is the resulting single closer to SI than 
before. 

SPANNING TREE ALGORITHMS 

A spanning tree is a subset of the physical links of the 
network such that there exists a unique path along the se
lected links from any given processor to any other processor 
in the network. An algorithm to produce a spanning tree 
should select appropriate links in such a way that each node 
agrees with its direct neighbors as to which of the connecting 
links are in the tree. A useful algorithm by-product is a 
routing table at each node associating destinations with lo
cally-selected links. We wiU examine two algorithms for this 
problem. 

In Algorithm H, each processor can be in one of three 
states-idle, working or done. Awake and known-nodes are 
the only messages. Awake starts an idle receiving processor. 
Each known-nodes message contains a list of those nodes 
the sender knows it can reach through selected links other 
than the one on which the message is sent. Each processor 
associates each direct neighbor with those nodes it thinks 
that neighbor can reach, according to the most recent infor
mation passed to it via known-nodes messages. A list of 
selected links is also kept. 

Upon starting, each processor tells its direct neighbors 
that it can reach itself. When a processor receives a known
nodes message, if the connecting link is currently selected, 
and nodes newly reachable through it could be reached 
through other links in the spanning tree, then the link to the 
sending neighbor is de-selected. If the newly reachable 
nodes do not conflict with any current information, then the 
link to the sending processor remains in the tree. On the 
other hand, if the connecting link is not currently selected, 
and if the reachability set the neighbor has sent does not 
conflict with the current set of reachable nodes, then the 
connecting link is selected. Whenever a known-nodes mes
sage arrives, it may show that some links have been removed 
from the spanning tree, so the receiving processor also 
checks if any of the other connecting links can now be 
selected. Finally, the new information about its status of 
reachable nodes is sent to all of the receiving processor's 
direct neighbors, unless no new information is to be reported 
(the last message sent to each neighbor is saved to facilitate 
this decision). A processor can determine when its role in 
the algorithm is finished when it chooses not to send any 
messages to its neighbors, and all nodes in the network are 
reachable through selected links. In order to perform this 
test, each processor must know the names (but not the 
locations) of all nodes in the network, which can be supplied 
in the awake message. 

It is easy to prove that this method will produce a correct 
solution. First, if a link is selected by a given processor 
when it has terminated, then the set of nodes reachable 
through that link is the complement of the nodes reachable 
through the other selected links, by the termination condi
tion. If the neighbor on the other side of the link has not 
selected the link, and has also finished, then it must think 
it can reach the first processor through another selected 
link. If this is the case. it would have told the first processor 
so. The 1il"~t PW~t!SSOl ~uuh.l nut lhen have selecied that 



link, because it causes a conflict (a processor can always 
reach itself without going through any links). So the neighbor 
must also have selected that link. Second, the sets of nodes 
reachable through each of the selected links will be disjoint, 
so any path along the tree will be unique. Finally, all of the 
processors are in tl].e tree when the algorithm halts. A major 
drawback to Algorithm H, however, is that the computing 
time required for each action and the amount of space re
quired to maintain the appropriate information at each node 
are both large. 

A second method, Algorithm I, sacryfices some concur
rency for ease of computation. The idea is based on the 
pairing algorithm. During the algorithm, every processor 
belongs to a partial spanning tree, and each tree is controlled 
by one of the member processors. Partial trees merge using 
a version of the pairing algorithm, with the controlling pro
cessors representing the trees. 

At the start, each processor starts as its own spanning 
tree. Partial trees are built by repeatedly asking other pro
cessors to join. Each controlling processor keeps track of 
which nodes are in its tree, and asks only those nodes not 
in the tree. If the controlling processors of both trees agree 
(i.e., the "trees" have queried each other as in the pairing 
algorithm), a combined tree is formed, and one of the two 
controlling processors is chosen as the new controller. Each 
controlling processor has an associated random number; 
whichever has the higher one becomes the controller for the 
combined tree. Processors that no longer control a tree relay 
messages to their controlling processor. As soon as one 
transaction is complete, the surviving controller initiates the 
next one, until the set of neighbors not in the current tree 
is empty. This algorithm does not require any advance 
knowledge. of which processors are in the network, since 
the set of tree neighbors can be calculated from the set of 
nodes in the tree and the set of neighbors of nodes in the 
tree. When the set of nodes neighboring those that are in 
the tree is a subset of the nodes in the tree, the entire tree 
has been formed. 

Algorithm I can be sped up in two ways, resulting in 
Algorith J. First, when one controlling processor becomes 
chosen by another, it informs all of the nodes in its tree 
which processor is now controlling the tree, so that mes
sages can be relayed directly. The second idea provides a 
major improvement, because it increases the concurrency 
of transactions. When a controlling processor, a, receives 
a query from another controller, f3, that has a smaller as
sociated random number, and a is also waiting for an answer 
from a third tree, "Y, then a sends an acceptance, not a 
disagreement, to f3. Processor f3 is destined to lose its po
sition as controller in any case. Update messages are now 
required, however, since the controller "Y may be the sur
viving controller of the transaction between a and "Y. That 
controller will not be aware immediately that other nodes 
have joined a's tree in the interim, since such information 
is normally passed along with the queries and 'Y may there
fore generate an indirect query to itself, delayed by some 
relays. Update messages enable this processor to rectify 
such a situation. 
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These two improvements together decrease the elapsed 
time of Algorithm J until it is comparable to the time of 
Algorithm H. In addition, it seems that the simulated time 
increases more slowly with the size of the network for Al
gorithm J than for Algorithm H. 

It is obvious, however, that Algorithm H is much cleaner 
and that it derives its speed from its inherent concurrency. 
In Algorithm J, all chosen processors are idle except when 
relaying messages, and the speed is derived primarily from 
the lack of conflict. If Algorithm J could be changed to 
distribute the decision process, then perhaps it could be
come a more powerful solution. On the other hand, the 
number of messages sent in Algorithm H grows significantly 
faster with the size of the network that in Algorithm J. 
Therefore, for larger networks, Algorithm H may prove 
impractical since message passing may become a bottleneck. 
In general, though, it is much better because it does not rely 
on random numbers or shortcuts to derive its speed, al
though a good way to terminate the algorithm may be harder 
to develop. 

The previously-mentioned algorithms were developed 
solely under the assumption that more than one processor 
can begin within a short amount of time (much shorter than 
that required to complete the algorithm). If only one pro
cessor is started, then Algorithm K, a much simpler method, 
may be used: When a processor receives an awake or query 
message and it is idle, it selects the link over which the 
message came and responds with agreement. It then sends 
out its own queries along the other links. It only selects 
those links across which agreements are received. In order 
to allow each node to determine termination, disagreements 
can be sent to all subsequent requestors. When all neighbors 
are accounted for, the node is finished. This procedure is 
clean and simple, but requires that exactly one processor be 
started. Running time is directly proportional to the diameter 
of the network and to the maximum degree of the nodes. 

HIERARCHY ALGORITHMS 

The final class of algorithms investigated are those de
signed to form a hierarchy of processors. The major step is 
to form cliques of processors, with one processor chosen as 
the head of the clique. The hierarchy can then be built by 
repeating the clique-forming algorithm on the heads of the 
cliques formed in the previous step. Therefore, we shall only 
look at algorithms that form cliques. A correct solution is 
one in which each ciique is weii formed-there is exactly 
one head, and all of the processors in the clique agree that 
they are in the clique. An optimal solution is one in which 
the average radius, as measured from the head of the clique 
in message links. is minimal. A constraint is the acceptable 
range of sizes (number of nodes) per clique. 

We will discuss two algorithms. The first assumes that all 
the processors are siarted within a short time of each other, 
whereas the second assumes that a central controller directs 
the algorithm. In Algorithm L, each processor is in one of 
two stages-head and chosen. Each processor begins as a 
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head and tries to form its own clique. It keeps asking pro
cessors not in the clique to join. Each head also keeps track 
of how close it is to its goal. Chosen processors are those 
that think that they are members of some clique. When a 
chosen processor receives a query from another clique's 
head, it relays the request to its own head. The head either 
denies the request or tells the processor to switch allegiance 
to the other head. The chosen processor then sends back a 
disagree or an agree, respectively, to the requesting head. 
If a head is itself queried, it decides either to abdicate or to 
disagree. If it abdicates, the head tells its chosen processors 
to start all over and sends an agree to the requestor; oth
erwise it sends a disagree. The head stops asking new pro
cessors to join its clique when it feels that the clique is of 
the correct size. In order to minimize the average radius of 
each clique, the head prefers to query those processors that 
are closer. This algorithm requires decision algorithms for 
selecting potential members, freeing current members and 
abdication. We could not produce very good hierarchies 
with Algorithm L with the various decision algorithms tried. 

Algorithm M is a variant of one developed by Larry Wit
tie. 13 In this method, one clique at a time is formed, and a 
central control is needed to ensure that the algorithm ter
minates. The algorithm operates in two stages, the first of 
which informs each processor of all the other nodes in the 
network and their distances in message links. This prepa
ration can be done by a straightforward modification of 
Algorithm H. 

The second stage of Algorithm M forms the cliques. The 
central control sends a message to an arbitrary processor in 
the network ordering it to form a clique. This processor 
chooses and queries the right number of nodes, sending 
along the calculated radius of its proposed clique. If one or 
more of these chosen processors can form its own clique 
with a smaller radius, it responds to that effect. Otherwise, 
the chosen processor sends back an agree. If, when all of 
the chosen processors have replied, at least one has sent 
back a better radius for its proposed clique, the querying 
processor chooses one from among those with the best ra
dius for a proposed clique, and tells it to try and make a 
clique. If all processors respond with agreements, then the 
querying processor becomes the head of the clique and sends 
messages to the chosen processors indicating that they are 
now members of the clique. It then chooses some processor 
not in any clique and tells it to form its own clique from 
among the other processors that are not in any clique. When 
as many cliques as possible are formed, the algorithm halts. 
Algorithm M is not very concurrent, but does produce fairly 
good hierarchies. It is also possible to devise a network for 
which this algorithm cannot produce an optimal solution, 
since the algorithm uses local hill climbing. If concurrency 
could be added, this algorithm would be very powerful in
deed. 

It appears to be more difficult to design good distributed 
algorithms for forming processor cliques. Either some heu
ristics are needed so that the different cliques forming si
multaneously do not interfere with each other, or concur
rency needs to be sacrificed. Some further studv into the 

basic nature of the problem appears to be required in order 
to find a good, concurrent clique-forming algorithm. 

CONCLUSION 

We set out to develop parallel algorithms for globally 
structuring networks of processors. We discovered that al
though concurrency is an important aspect of the perform
ance of these algorithms, the amount of information about 
the problem available at each processor plays an essential 
role. We also found that the nature of the particular problem 
has to be examined for sources of concurrency. 

In future research, we hope to examine not only other 
problems and algorithms for concurrent solutions, but also 
problems for which the associated solutions will use the 
imposed network structures produced by the algorithms in 
this paper. Since processor networks appear to be emerging 
as an important computing resource, it is essential that re
search into the design of distributed algorithms be continued 
and expanded. 
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INTRODUCTION 

Contemporary front-end processors, such as the IBM 3705,1 
Memorex 1380,2 Burroughs Data Communications Proces
sor3 and the MERIT Communications Controller, 4 share the 
same general architecture depicted in Figure 1. Communi
cation !ines are associated on a one-on-one basis with line 
adapters. These are connected in small groups (clusters) to 
the local processor, and perhaps to the local memory, 
through line interface bases. In a similar manner, the host 
system input/output channels are associated on a one-on
one basis with channel adapters which are connected to the 
local processor and memory. The architecture can be 
thought of as a minicomputer system in which the channel 
adapters and line interface base/line adapter subsystems are 
input/output devices. In fact, many front-end processors are 
configured in precisely this fashion. 

There are many design parameters which can be varied to 
affect the maximum aggregate data rate, cost, and services
rendered characteristics of front-end processors. The num
ber of line adapters per line interface base and their relative 
complexities are an example. The line interface bases might 
interrupt the processor for every character or transfer entire 
records by means of direct memory accesses. The channel 
adapters might connect directly to the host system channels 
or through some other standard interface such as a channel
to-channel adapter or high-speed communication line. Gen
erally channel adapters utilize direct memory access features 
because of the high aggregate data rates they sustain. 

All of the intelligence of a typical front-end processor is 
iocated in the single local uni-processor. This uni-processor 
must handle all the interrupts from the line and channel 
adapters. In effect it is multiprogrammed across all of the 
data streams to provide front-end services such as line ed
iting, character code translation, and message formatting. 
Saturation of the local processor limits the kinds of services 
that can be provided and the aggregate data rate that can be 
sustained. 

We describe here a front-end processor architecture in 
which the single local uni-processor, memory, line interface 
bases and line adapters are replaced with a network of mi
croprocessor systems as depicted in Figure 2. The network 
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is tree-structured with the root microprocessor system con
nected to the channel adapters and local direct access stor
age devices (DASD). At the same time the leaf micropro
cessor systems repJace the line interface bases and line 
adapters. The low cost of microprocessor systems makes 
such a network economically feasible. Each communication 
line has a dedicated microprocessor and the computational 
power of the network easily exceeds that of the local uni
processor in the traditional front-end processor configura
tion. It is reasonable to expect that more sophisticated ser
vices might be provided or that higher aggregate data rates 
might be sustained. Data movement between the commu
nication lines and the host system channels is accomplished 
by store and forward message routing through the tree of 
microprocessors. The tree-structure network organization 
was chosen because it correlates well with the hierarchical 
organization of the hardware system. 

The remainder of this paper begins by describing the net
work topology and the configuration of the nodes in abstract 
terms. Next, a description of'the prototype configuration is 
given followed by a description of the proposed production 
configuration. The cost of a typical production configuration 
is established and compared to that of a similar configuration 
using a commercially available front-end processor. Finally, 
arguments are given supporting the advantages of a tree
structured distributed network architecture for a front-end 
processor. 

NETWORK TOPOLOGY 

As briefly described earlier, the topology of our front-end 
processor is a distributed network of microprocessor sys
tems arranged as a tree-structure depicted in Figure 2. Each 
node (microprocessor system) of the tree is loosely coupled 
only to those nodes to which it is connected by edges. The 
network is a loosely-coupled microprocessor system-the 
interconnections consist of loose input/output couplings 
rather than tight couplings such as shared busses. 

There are three functional types of nodes. The leaf nodes 
connect on a one-on-one basis to the communication lines. 
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Figure I-Front-end processor general architecture. 

These are the nodes which take over the function of the line 
adapters. A leaf node provides the front-end services-ren
dered to the associated communications line. To the user, 
the leaf node appears to be a microprocessor system located 
within the communication link between his terminal and the 
host system and dedicated to his personal use. For this 
reason it is called the personal processing link (P2L) and the 
entire front-end processor is called the Personal Processing 

DASD 
Root 

Node 

Front-end Processor (P2FEP). The root node connects to 
the host system channel adapters and local DASD. It gives 
the network its voice to the host system and maintains a 
local database. Each of the intermediate nodes connects the 
subtree below it to the next level closer to the root. The 
intermediate nodes function as store and forward message 
handlers. The term link control (LC) refers to a node which 
is either the root node or an intermediate node. 

Channel 

Adapters 

Intermediate 

LeveIC,) 

Communication 

Lin e s 
Figure 2-Personal processing front-end processor. 



Leaf node (P2L) architecture 

Each P2L consists of a microprocessor system with four 
interfaces as depicted in Figure 3. The communication line 
interface connects the P2L to the communication line asso
ciated with the leaf. Generally this is a serial interface fol
lowing either RS-232-C6 or 20 rna current 100p7 conventions. 
Adequate support of modems on the dialable telephone net
work implies a careful adherence to the full RS-232-C set of 
conventions. The break/disconnect monitor (BDM) interface 
allows the adjacent link control to monitor the communi
cation line for break and disconnect status-. This interface is 
necessary to assure system integrity if users are allowed to 
execute arbitrary programs in their personal processing 
links. Most microprocessor systems contain protection 
mechanisms insufficient to prevent arbitrary programs from 
capturing the p2L. Furthermore, an original design goal was 
to allow the user of a P2L to execute any code that could be 
executed on a comparable microprocessor system under the 
complete control of the user at his/her local site. This in
cludes being able to completely "wipe out" one's local 
program and then recover by a local "reset." The BDM 
interface provides the ability to perform the "reset" even 
though the P2L is, obviously, not local to the user's site. 

The non-maskable interrupt (NMI) control line allows the 
adjacent link control to interrupt the P2L into its ROM pro
gram nucleus even in the presence of a non-cooperating user 
program. This together with the BDM interrace assures the 
integrity of the p2L. 

Finally, the data interface allows data to be shared be
tween the P2L and its adjacent link control. The data inter
face could be either serial or parallel depending upon the 
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Figure 3-Leaf node (P2L). 
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manufacturer's standard card configurations. A full duplex 
data interface allows simultaneous data movement in both 
directions and reduces the complexity of message protocols. 

Link control (LC) architecture 

Each link control node (intermediate node or root node) 
consists of a microprocessor system with a varying number 
of interfaces as depicted in Figure 4. The precise configu
rations of interfaces depend upon whether the link control 
functions as the root node, intermediate node, or interme
diate node adjacent to the P2Ls. In small configurations 
more than one function can be supported by a single node. 

Each link control connects to all of the nodes immediately 
below it on its branches. There are two types of interface 
bundles, depending upon whether these branch nodes are 
leaf nodes or other link controls. If the link control in ques
tion connects to P2Ls, then each interface bundle consists 
of the BDM, NMI, and data interfaces described above. If 
the link control connects to other link controls, then each 
interface bundle consists of NMI and data interfaces similar 
to the interfaces of the same name described for the P2Ls. 
In either case, there are as many inteiface bundles as 
branches from the node in question. 

Each link control (other than the root node) connects to 
one link control in the next level closer to the root. This 
connection is made through a NMI interface and data inter
face. The NMI interface is used to propagate gross system 
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events such as resets. The data interface is used to move 
messages comprising the data streams one level between the 
P2Ls or root node. 

The root node interfaces to local DASD and the channel 
adapter instead of a link control at the next level. The root 
node replaces the NMI and data interface bundle with in
terfaces to the channel adapters and local DASD. The chan
nel adapter interface connects the root node to the host 
system channels thus giving the front-end processor a voice 
to the host system. The DASD interface gives the front-end 
processor and indirectly its users a local file system inde
pendent of the host system. 

PROTOTYPE SYSTEM 

The prototype system consists of two P2Ls and one link 
control node. The link control node serves both as the root 
node and the intermediate node adjacent to the P2Ls. The 
prototype is constructed from standard Zilog cards. MCB, 
RMB, SIB, and lOB cards are used. 

Zilog MCB cards consist of a Z-80 CPU, a serial universal 
synchronous/asynchronous receiver/transmitter (USART) 
with both RS-232-C and 20ma current loop interfaces, a 
parallel interface supporting 16 bi-directional lines, and a 
combination of ROM and RAM memory.s Zilog RMB cards 
supplement the ROM/RAM on the MCB card to provide up 
to 64K bytes of memory.9 Up to 16K bytes may be non
volatile ROM, PROM, or EPROM components. Zilog SIB 
cards provide four serial USART components with RS-232-
C interfaces. 1o Zilog lOB cards provide four parallel inter
faces, each supporting 16 bi-directionallines.u 

Each p2L of the prototype system consists of two cards
one MCB and one RMB. The total memory configuration is 
64K bytes with 8K bytes non-volatile. The USART supports 
the communication line interface. The data interface is sup
ported by the parallel lines, with eight lines in each direction 
to provide full duplex transmission. 

The root node of the prototype system consists of four 
cards-an MCB, RMB, SIB, and lOB. The USART of the 
MCB connects to the host system through a high-speed RS-
232-C interface. (This interface was chosen to remove the 
need for a channel interface hardware design). The data 
interfaces from the P2Ls are supported by 32 parallel lines 
of the lOB card. The NMI interfaces of the P2Ls are each 
driven by a parallel line from the lOB card. The BDM 
interface from the p2Ls are supported by two USART com
ponents from the SIB card. The prototype system contains 
no direct access storage in its original configuration. It is 
wired to accept the Zilog floppy disk controller card (MDC). 

The prototype system consists of eight cards assembled 
in a Zilog unwired 9-slot card cage. Each card contains a 
122-pin edge which plugs in the backplane. All pertinent 
interface signals are available on the backplane. The back
plane is wired as three independent systems-the root node 
and the two P2Ls. For example, there are three independent 
address busses, each interconnecting the cards of the re
spective systems. All loose couplings between systems are 
likewise implemented through backplane wiring. External 

Figure 5---Prototype P2FEP card arrangement. 

interfaces (three RS-232-C interfaces and the disc controller 
interface) are accomplished by wiring from the individual 
card pins to interface areas along the periphery of the cage. 
Ribbon cables with 100 mil spacing pin connectors at one 
end and standard RS-232-C connectors on the other effect 
the interface. Figure 5 depicts the cards of the prototype 
system in the card cage. 

PROPOSED PRODUCTION SYSTEM 

At the time of this writing the production system config
uration is not yet frozen. Factors such as the recent an
nouncement of new card configurations with improved com
ponent mixes and the anticipated availability of Z8000 
components and cards in the near future account for this 
indecision. We shall describe here the general design phi
losophy, using the subsystems of the prototype configura
tion as building blocks. 

The production system will be structured around 18-s10t 
unwired rack mountable card cages. Since rack mounted 
modems are also available. one can anticipate a system in 
which the front-end processor card cages and modems are 
mounted in the same rack as in Figure 6. This configuration 
minimizes the wiring between modems and personal pro
cessing links. 

One 18-slot card cage can hold a link control (six cards) 
and six P2Ls. The P2Ls are configured as in the prototype 
system. The link control is augmented with another SIB 
card to handle the BDM interfaces and another lOB card to 
handle the data and NMI interfaces of the six P2Ls. The 
link control nodes, in turn, are connected to either the root 
node or intermediate nodes through 17-IIne parallel interface 
(full duplex data and NMI). 

The root node (or intermediate link control node, depend
ing upon total configuration size), is housed in a separate 
card cage within the cabinet. It must have sufficient lOB 
cards to support the 17-line parallel interfaces of its 
branches. If it is an intermediate link control, it must have 
an additional 16-line parallel interface to the next level link 
control. However, the root node requires interfaces to the 
local DASD and the host system channel adapters. 

COST ANALYSIS 

To estimate typical system costs, let us assume a config
uration supporting 96 low-speed asynchronous lines. As
sume that rack mountable moderns are packaged 16 modems 
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Figure 6---Typical production J>2FEP cabinet. 

per rack panel. It makes sense to package one modem panel, 
three personal processing link panels, and one link control 
panel per cabinet. (This kaves two personal processing links 
without modems-p2Ls without modems can be assigned to 
monitor an interactive line under program control when a 
user disconnects. This provides a very powerful extension 
of the VM/370-CP disconnect hold command12 in which au
tomatic responses can be generated under P2L control.) 
Ninety-six lines are housed in six cabinets. A seventh cab
inet (or extra space in the original six) houses the root node, 
channel adapters and DASD storage and controllers. 

The configuration just described is a tree containing four 
levels. The root (Level 1) is connected to each of the link 
control panels in the six cabinets (Level 2), which are con
nected to the link control systems in each personai pro
cessing link panel (Level 3), which are connected to the 
personal processors of the panel (Level 4). 

The system contains 25 card cages, 133 MCB cards, 133 
RMB cards, 44 lOB cards, and 36 SIB cards. The system 
cost is estimated to be approximately $350,000. 

Memory is the most expensive component of the given 
configuration-each of the 133 microprocessor systems has 
64k bytes of memory, giving a system-wide total of over 
eight megabytes. Halving each system memory size to 32k 
bytes reduces the system cost to approximately $225,000. 
Quartering each memory size to 16k bytes removes the need 
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for the RMB cards altogether and reduces system costs to 
approximately $150,000. (For comparison, a 96 asynchron
ous line IBM 370511 lists at approximately $150,000). A mix 
of memory sizes would have a system cost somewhere be
tween the two extremes and would have unusual processing 
services available to its users. 

ADVANTAGES 

The Personal Processing Front-end Processor offers sev
eral advantages over traditional front-end processors. These 
generally accrue from the compute power inherent in the 
multi-processor network, the network architecture, and the 
properties of the components. Each advantage is as follows: 

Host system offloading 

One advantage offered by all front-end processors is off
loading of the host system. Generally offloading is in the 
areas of code translation, record editing (e.g., backspace 
interpretation), recovery from transmission errors, and re
cord formatting. Offloading with the P2FEP is expected to be 
significantly higher due to the additional services provided 
by the P2L including file editing, input/output record filter
ing, source program compilation for some languages, and 
execution or interpretation of programs. 

It is quite clear that a significant load can be removed 
from the host facility when one considers the following facts: 

1. The density function of the CPU requirements over all 
interactive user service requests shows a typical ex
ponential decay curve .13 This indicates that a signifi
cant amount of CPU time is expended to satisfy small 
requests for a large number of users. 

2. The frequency of use of host system components such 
as the context editor and BASIC, which are strong 
potential candidates for offloading to the P2Ls, is quite 
high-indicating that a significant CPU load could be 
in fact offloaded. 

3. A significant amount of CPU time is expended pro
cessing each input or output record between the host 
system and the interactive terminals-this CPU time 
vanishes when the user is conversing with a program 
resident in his p2L. 

Offioading of whole interactive conversations has a 
greater beneficial effect than just the cumulative processor 
time required for the offloaded computations. Input/output 
record transfers between the host system and the front-end 
processor are eliminated which also eliminates the many 
trips through the host system interrupt handlers that would 
have been necessary otherwise. This causes the operating 
system overhead to be reduced, Since interrupts have a 
deleterious ·effect on hardware instruction lookahead algo
rithms, host system performance may increase with sophis
ticated host hardware possessing this feature. 

Time-sharing systems incorporate short quanta times in 
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their CPU scheduling algorithms to reduce the average re
sponse times to requests requiring low CPU requirements. 
This biases system response time to favor requests requiring 
low CPU requirements. Since many such requests are proc
essed in the P2L rather than the host system, it may be 
reasonable to increase the length of the quanta used in 
scheduling the host system. This further reduces the number 
of trips through the host system interrupt handlers. 

Cost reductions 

Programs offloaded onto a personal processor cost less to 
use than their counterparts on the host system. It is appro
priate to charge users for connect time to the personal pro
cessor regardless of the work performed. These connect 
charges, since they need only recoup the front-end processor 
acquisition and operating costs, are relatively low. 

Uniform short response times 

Response time to user interactions with offloaded pro
grams will not depend upon total system load and should be 
significantly less than response time with equivalent host
system programs under heavily loaded conditions. Again, 
the offloading of the processing of trivial requests from the 
host system ought to improve the responsiveness of the host 
system to those requests that are not filtered out by the 
P2Ls. 

Increased availability 

The P2FEP may be available even when the host system 
is unavailable. At these times users can still accomplish 
useful work provided it can all be done by the p2L. Examples 
include local file editing, local language program develop
ment and execution and the staging of host system jobs for 
automatic submission when the host system becomes avail
able. 

Microprocessor program development 

As the usage of microprocessors increases, the user com
munity will need to develop programs for eventual execution 
upon offline microprocessor systems (e.g., in laboratory ap
paratus). If the microprocessor hardware systems are com
patible, it is possible for users to develop these programs 
utilizing services provided by the P2FEP and perhaps even 
unit tests program modules in the P2Ls. 

General communication protocols 

The LSI devices which microprocessor manufacturers 
market for driving data communication equipment are very 
general. These drivers generally adapt to synchronous and 
aSYIH:hrunous protocols; switched lines, leased lines. or di-

rect attachment of equipment: a variety of character or mes
sage formating conventions; and any practical rate of trans
mission under program control. It is possible with these 
devices to dynamically determine the proper communication 
parameters at the time the user initiates his session with the 
system. Many commercially available front end processors 
do not possess this flexibility. 

Input/Output filtering 

It is possible for the user to inteIject a program in his P2L 
between the host system and his terminal. This program can 
then function as a data filter. A general macro-processor is 
an example of such a program. This is reminiscent of the 
chained processes concept in UNIX.14 

Job staging 

The local DASD and editor can be. used to prepare jobs 
or portions of jobs for submission to the host system. This 
can be done whether or not the host system is available at 
that moment. With this feature the P2FEP can act as a 
programmers' workbench. 15 

Maintainability 

The P2FEP is easy to maintain on a card replacement 
basis. It is reasonable to stock replacement cards on-site 
because of its construction from a few card types, each 
occurring in large quantities. 

Hard faults are relatively easy to isolate because of the 
inherent tree structure. By sending echo requests and timing 
responses, the root node can isolate a fault to a single node. 
In a similar manner a F2L can isolate a fault on its path to 
the root to a single node. Once a fault is isolated to a single 
node, a complete card swap of that node can be performed 
to put the P2FEP back in operating condition. The faulty 
cards can be tested later in a standalone configuration. 

CONCERNS 

There are three concerns due to the tree-structured ar
chitecture of the system. One is that the aggregate data rate 
increases as one moves toward the root node. The second 
is that the fraction of the system affected by an error in
creases as one moves toward the root node. The third is 
that the amount of work that must be performed by the root 
node might saturate it. 

The potential increase in aggregate data rate poses no 
problem. Offloading, since it eliminates the movement of 
data between the P2L and the host system, reduces the 
aggregate data rate. Furthermore, the maximum aggregate 
data rate of contemporary front-end processors such as the 
IBM 3705 (500,000 bytes/sec) and the Memorex 1380 (100,-
000 bytes/sec) is within the carHlhiJitie" of miC'rnproce'ssor 
systems. 



A failure in a P2L affects only the single user serviced by 
the failing p2L. A failure in a LC affects all nodes in the 
subtree beneath the failing LC. The fraction of the system 
affected by a failure increases the closer the failure is to the 
root node. The only effect of a LC failure is to sever com
munications between the nodes in the subtree beneath it and 
the root node. Message timeouts can be used to detect a 
failure in a node along the path to the root. The previous 
section outlined the maintenance strategy for the P2FEP, 
which is to isolate the failure to a single node quickly, then 
repair immediately with a complete card replacement of the 
node. We anticipate that this policy will yield acceptable 
reliability. If this should prove not to be the case, it is readily 
possible to provide redundancy distributed throughout the 
tree structure to obtain the necessary "fail-soft" character
istics. 

The root node is obligated to provide service for high 
levels of activity. Besides performing store and forward 
message processing between the host system and its 
branches, the root node maintains the local data base. It is 
possible that the level of activity might saturate a single Z80 
in larger configurations. There are, fortunately, at least two 
alternatives. One is to use faster components such as the 
Z8000 in the root node. Another is to distribute the workload 
of the root node across more than one loosely-coupled mi
croprocessor system. The division of effort might be along 
functional lines. For example, the root node might be struc
tured as three systems, one communicating with the other 
nodes of the P2FEP, the second servicing the channel adapt
ers connecting the P2FEP to the host system, the third main
taining the local database. 

AL TERNATIVES 

An alternative to the P2FEP described here is a number 
of decentralized microprocessor systems, each with local 
DASD and terminals, and perhaps a communication link to 
the host system. Decentralized systems of this sort might be 
user-programmable or supported by the manufacturer for a 
special purpose, such as word-processing. Many vendors, 
including Sykes, Wang, and Vydec, for example, market 
such products. There are good justifications for a centralized 
FEP rather than a number of decentralized systems. These 
are as follows: 

1. Higher utilization. The P2FEP naturally experiences a 
higher utilization because it is shared among all the 
host system users. Decentralized systems are generally 
associated with a single individual or group of individ
uals. The' 'macro cost" is lower for the P2FEP because 
a smaller number of units are required to satisfy peak 
demands. The cost to individual users is decreased 
because a simple connect-time charge replaces the sig
nificant cost of a personal system. 

2. Economy of scale. The P2FEP with its large number of 
loosely-coupled microprocessors located in close prox
imity to one another leads to certain economies, such 
as rack-mounted systems, shared power supplies, and 
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quantity discounts. These tend to make the single large 
system cost significantly less than the equivalent num
ber of smaller systems. 

3. Sharing of peripherals. The close proximity of the in
dividual P2L systems allows peripherals such as DASD 
to be shared among all the P2L systems. This again 
results in a more economical system. It also may lead 
to the use of larger, more reliable devices than those 
normally used with microprocessor systems. 

4. Centralized software responsibility. Just as their larger 
cousins, microprocessor systems require expensive 
nurturing by a competent systems programming staff. 
Centralized hardware also makes it possible to cen
tralize the software responsibility effectively. In con
trast, a decentralized set of (possibly incompatible) 
microprocessor systems will lead to competition for 
the available systems programming expertise to the 
detriment of all. 

S. Franchise. The P2FEP is available to all host system 
users, even theugh budgetary limitations might prevent 
them from securing their own microprocessor systems. 
(It is a fact of life that decentralized systems are often 
budgeted by the local unit.) 

CONCLUSIONS 

The tree-structured distributed network front-end proces
sor architecture appears to offer several intriguing advan
tages and few significant disadvantages. It may provide a 
most reasonable method for realizing the advantage of dis
tributed logic or intelligence to a large number of users 
without incurring the significant disadvantages of distributed 
maintenance and software development costs. The proto
type module is nearing the system test phase and the results 
of these tests should prove to be most interesting. If suc
cessful, it may be possible to provide very low cost, trans
parent access to a hierarchy of increasingly powerful com
puting resources for a very large number of users in a novel 
and highly reliable way. The results of these tests will be 
reported later. 
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Analysis of real-time control systems by the 
model of packet nets 

by MOHAMED GAWDAT GOUDA 
Honeywell Corporate Technology Center 
Minneapolis, Minnesota 

INTRODUCTION 

During the planning stages of a real-time control system, the 
planning team is more concerned about the global aspects 
of the system rather than the details of its different com
ponents. The first questions that have to be resolved are, 
What are the basic processes (or modules, or tasks) in the 
system? What are the data flow rates between these pro
cesses? and What are the memory and processing rate re
quirements of each process? Also of prime concern is how 
to select a suitable computer architecture to host the system 
and how to decompose the system on a selected distributed 
architecture. 

In order to be able to address these questions in a system
atic and formal way, we introduce a model, called Packet 
Nets, for real-time control systems. The model is based on 
the concepts of data flOW;4,12,1l,3 but unlike other data flow 
models, this model focusses on the global system charac
teristics and hides the details which are not needed during 
system planning. The model is intended as a tool to represent 
real-time control systems in an implementation-independent 
fashion. Moreover, it can be used in estimating the values 
of some basic system parameters such as data flow rates 
between system components and the processing rate re
quirement of each system component. 

The model of packet nets is introduced in the next section 
following the introduction. In the third section, we present 
a systematic method to compute data flow rates between 
the different processes in a packet net. Then in the fourth 
section, a technique to estimate the processing rate require
ment of each process in the net is outlined. In the fifth 
section, the memory requirements of packet nets are dis
cussed. In the final section, we discuss some issues con
cerning the decomposition of packet nets on distributed 
computer architectures. 

PACKET NETS 

A process in a real-time control system performs three 
basic operations in a cyclic fashion-receiving (or input op
eration), execution and sending (or output operation). The 
process first receives a "packet" of data from another proc-
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ess in the system or from the external world (e.g., sensor 
data coming from a sensor). Then the process executes some 
internal functions on the received data and finally it sends 
the results as a data packet to the next process in the system 
or to the external world; then the cycle repeats. The process 
is halted temporarily if its input queue is empty during a 
receiving operation, or if its output queue is full during a 
sending operation. 

Graphically, a process can be presented as a directed 
cycle (Figure la) with three types of nodes-a receiving 
node, an execution node and a sending node. Attached to 
the receiving node is an input queue via which the incoming 
data packets are received. Similarly, an output queue is 
attached to the sending node to send the result packets to 
the next process. The internal memory of the process is 
represented as a data node attached to the execution node. 
Using a short-hand notation, a process can be also repre
sented as a single node (Figure Ib) with input and output 
queues. 

The model in Figure 1 is restrictive as each process can 
receive data packets from only one process and can send 
data packets to only one process. To remove these restric
tions, we extend the model such that a process can have 
more than one input and one output queue. As shown in 
Figure 2, the different input queues of a process' are con
trolled by an OR-receiving operation or by an AND-receiv
ing operation. Similarly, the different output queues are 
controlled by an OR-sending or an AND-sending operation. 
These four sending/receiving operations are defined (infor
mally) as follows. 

To execute the OR-receiving operation, the process waits 
until one of its input queues has at least one packet. Then, 
the process removes one packet from this input queue and 
proceeds to process it. To execute the AND-receiving op
eration, the process waits until there is at least one packet 
in each input queue. Then, the process removes one packet 
from each input queue and proceeds to process them. 

To execute the OR-sending operation, exactly one of the 
associated output queues is selected (arbitrarily) to put the 
sent data packet in it. To execute the AND-sending opera
tion, one data packet is put in each output queue. The sent 
packets are not necessarily identical. 

A process with an OR-receiving operation and an AND-
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Figure 3-Different classes of processes in a packet net. 

sending operation is called OR-AND process. Similarly, OR
OR, AND-AND and AND-OR processes can be defined. A 
short-hand notation for the different classes of processes in 
a packet net is shown in Figure 3. Observe that if a process 
has a single input queue, then an OR-receiving operation 
becomes equivalent to an AND-receiving operation. There
fore, we use the convention that if a process has a single 
input (or a single output) queue, then it has an OR-receiving 
(or OR-sending respectively) operation. 

To give an example of a real-time control system and its 
packet net, consider a radar scheduling system. 6 The system 
receives requests to use the radar. It orders these requests 
based on some priority scheme, then delivers the ordered 
sequence (called frame) of requests to the radar to serve 
them in order. But since the radar cannot accept any frame 
unless it satisfies some constraints, the system has also to 
examine the generated frame against all the constraints (im
posed by the radar) before delivering the frame to the radar. 

Figure 4a shows the outline of a radar scheduling system. 
Arriving requests are of three different classes. Each request 
has its own local priority such that requests of the same 
class are ordered according to their local priorities. The 
partially sorted requests are sent to the framing process to 
be ordered in a time frame based on some global priority. 
The frame is then sent via a frame modification process to 
a number of checking processes. Each checking process 
examines (in parallel with other checking processes) whether 
or not the frame meets some radar constraint. The individual 
decisions for the frame are then sent to a final decision 
process to decide whether the frame is accepted or rejected. 
Accepted frames are sent to the radar, while rejected frames 
are sent back to the frame modification process to be cor
rected before being examined once more. The packet net for 
this system i~ shown in Figure 4b. 
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PACKET FLOW RATES 

Part of the analysis of a real-time system is to compute 
the rates with which the data flow between the different 
system components. In the packet net model, this corre
sponds to compute the packet flow rate in each queue in the 
net. To make this computation, the flow rate (in packets/ 
sec.) in each external input queue should be estimated from 
the application (e.g., the rate with which the sensor data 
arrive to the system). If an input flow rate changes with 
time, an upper bound for its value should be estimated. 
Also, the probabilities with which each OR-sending opera
tion distributes the output packets among its output queues 
should be estimated from the application. 

As an example, consider the packet net in Figure 5. The 
external input flow rate to the net is estimated to be 10 
packets/second. The output queues of OR-OR Process 1 are 
labelled with the probabilities .2, .1 and .7, while the output 
queues of OR-OR Process 2 are labelled with the probabil
ities .5 and .5. The variables t, U, • • ., and z are associated 

with the different queues in the net; each variable is defined 
to be the packet flow rate in its associated queue. The 
problem, now, is to evaluate these variables. Next, we pres
ent the equations to evaluate the packet flow rates in any 
well formed packet net. 

Consider the OR-OR process shown in Figure 6a. The 
input packet flow rate to that process equals L ~I x j • This 
flow is distributed among the n output queues acJc-ording to 
their associated probabilities. Thus, the packet flow rate Yi 
in the ith output queue is evaluated as follows: 

m 

Yi=PiLXj ;=1, ... , n 
j=1 

Similarly, the packet flow rate Yi in the ith output queue of 
an OR-AND process (Figure 6b) is evaluated as follows: 

;=1, ... , n 

Consider the AND-OR process shown in Figure 6c. Be-
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cause of the AND-receiving operation in this process, the 
flow rates in all input queues should be equal. Assume that 
the flow rate in any input queue equals x. This flow is 
distributed among the n output queues according to their 
associated probabilities. Thus, the packet flow rate Yt in the 
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Figure 6-Data flow rates in the output queues of a process. 

ith output queue is evaluated as follows: 

i=l, ... , n 

Similarly, the packet flow rate Yi in the ith output queue of 
an AND-AND process (Figure 6d) is evaluated as follows: 

Yt=X i=l, ... , n 

For any packet net, we can write the flow equations using 
the general forms just discussed. By solving these equations 
simultaneously, the packet flow rates in each queue in the 
net can be determined. For example, the flow rate equations 
for the net in Figure 5 can be written as follows: 

t=.5 u 
u=.2 (t+l0) 
v =.1 (t+ 10) 
w=.7 (t+1O) 
x=.5u 
y=w 
z=x=v 

Thus, the flow rates can be determined: t= v=x=z= 1.11, 
u=2.22, w= y=7 .78. All dimensions are in packets/second. 
If the packet sizes (in bits/packet) for each queue can be 
estimated, then the flow rates can be computed in bits/sec
onds. 

For many packet nets, the flow equations are inconsistent~ 
thus produce no solution. For example, if the output prob
abilities of Process 2 in the packet net in Figure 5 are 



changed from .5 and .5 to .4 and .6, we get the following 
flow equations: 

t=.4 u 
u=.2 (t+IO) 
v=.1 (t+IO) 
w=.7 (t+lO) 
x=.6 u=.12 (t+lO) 
y=w 
z=x 

From the third and fifth equations, we have 

V=FX 

This contradicts the requirement that v and x should be 
equal since they are AND inputs to Process 4 in the net. 

A packet net is said to be well formed only if its flow 
equations are consistent and produce a single soiution to the 
flow rates in the net. Obviously, the packet net in Figure 5 
is well formed; but if we change the output probabilities of 
Process 2, the resulting net is not well formed. 

The consistency of flow equations for a packet net de
pends on the net structure, and the estimated output prob
abilities for the processes in the net. Therefore, inconsistent 
flow equations imply that either the net "structure" is in
trinsically inconsistent, or that our estimation of the output 
probabilities is inconsistent. In the previously-mentioned 
example, we illustrated how an inconsistent estimation of 
the output probabilities can lead to an inconsistent set of 
flow equations. Next, we give some examples of intrinsically 
inconsistent packet nets. 

Figure 7a shows a part of a packet which consists of a 
cycle with n OR-AND processes. The n flow equations for 
such cycle are as follows: 

Xl =Xn + 1 
X2=X1 

From these equations, we get xn=xn+/(which can be true 
iff 1=0). Thus, in Case 1=#0, this cycle is intrinsically in
consistent. 

As another example, consider a cycle of n AND-OR pro
cesses (Figure 7b). The flow equations for this cycle are as 
follows: 

Xn=1 
X1=P1Xn 
~=P2PI Xn 

which can be satisfied iff PI = P2 = ... = Pn = I; i.e., each 
process should have exactly one output queue. If any proc
ess has more than one output queue, then the cycle is in
trinsically inconsistent. 

From these examples it is clear that a packet net should 
not contain a cycle whose nodes are all OR-AND processes, 
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or whose nodes are all AND-OR processes. It is also clear 
that flow equations are useful in designing well formed 
packet nets. 

EXECUTION RATES 

Another part of the analysis of a real-time system is to 
compute the execution rates (in inst./sec.) for all the pro
cesses in the system. In order to make this computation, the 
number of instructions in the main cycle of each process 
(see Figures la and 2) in the net should be estimated. 

Assume that the input packet flow rate to a process P is 
~~l Xj packets/second. Therefore, the cycle of P should be 
executed ~~1 Xj times per second. If the cycle of process P 
has r instructions, then the required execution rate of Pis 
r ~~1 Xj inst./sec. Observe that the above computation does 
not depend on the process type (e.g. OR-OR, OR
AND, ... ). 

The required execution rate of a process can be reduced 
by adding extra copies of the same process to the packet 
net. For instance, Figure 8a shows an arrangement of two 
processes P and Q connected by a queue (from P to Q). 
Assume that the input packet flow rates to P and Q are x 
and y respectively. Thus, the required execution rates for 
P and Q are ux and v y, where u and v are the number of 
instructions in the main cycles of P and Q respectively. 
Assume that an extra copy Q' of process Q is added to this 
arrangement, as shown in Figure 8b. This requires that proc
ess P becomes responsible for equally distributing its output 
packets to both Q and Q'. In other words, P becomes an 
OR-OR process with output probabilities of .5 and .5. The 

input packet flow rate to Q (or to Q') becomes y /2; and the 
execution rate of Q (or 0') becomes vy/2 half the original 
amount. On the other hand, process P has more responsi
bilities: and the number of instructions in its cycle increases 
with the amount of 8. Hence, its execution rate will increase -
to become (u+ 8)x inst./sec. 

In the previous example, the distribution of data packets 
between the process copies is handled by an already existing 
process in the net. In some cases, however, a new process 
is added to the net to perform this distribution function. We 
call such a process a distributor. Figure 9 shows how (k-l) 
additional copies of one process and a distributor are added 
to a packet net to reduce the process execution rate by a 
factor of 1/ k. Observe that the distributor execution rate 8y 
is "small" since there is a "small" number of instructions 
(namely 8) in its cycle. 

Another advantage of adding extra copies of the same 
process to a packet net is to increase the overall system 
reliability and availability. At any rate, whether the extra 
process copies are added to decrease the execution rate 
requirements or to increase the system reliability, the im
plied assumption is that no two (or more) copies of the same 
process should be assigned to the same processor in the host 
hardware. The problem of assigning processes to processors 
is discussed in more detail later on in the sixth section: but 
first we need to discuss the memory requirements of packet 
nets. 

MEMORY REQUIREMENTS 

Memory is required for a packet net to store its processes 
and its queues. The required memory to host one process 



Analysis of Real-Time Control Systems 475 

y 

DISTRIBUTOR 5y y 

OR 

PROCESS vy 
.L y 

k k 

PROCESS 1 vy ••• vy PROCESS k 
-k- -k-

a ••• b 

a b 

••• 

Figure 9-Adding an extra(k-l) copies of a process to decrease its execution rate by a factor of 1! k. 

in the net depends on the control and data structure of that 
process; i.e., it depends on the size of its program and its 
data file(s), if any. An upper bound for the required memory 
of each process should be estimated from the application so 
that the total memory requirements can be calculated. 

The req~ired memory to host the queues of a packet net 
depends primarily on how this memory is organized and 
how it is managed. We next describe one scheme for the 
organization and management of such a memory. Other at
tractive schemes are not discussed in this paper because of 
the space limitation. For convenience, we define an OR 
process to be either an OR-OR process or an OR-AND 
process, i.e., it is a process with an OR-receiving operation. 
Also, we define an AND process to be either an AND-OR 
process or an AND-AND process. 

Consider an OR process P with m inputs (Figure lOa). To 
allow both P and its input processes to proceed concur
rently, the input queues of P should be implemented as one 
packet pool which can hold up to m+ 1 packets (Figure lOa). 
When one input process (say, Q) finishes the assembly of 
a new packet (say, Pl) in the packet pool, and P finishes 
the processing of an old packet (say, P2) from the packet 
pool, then P initiates a packet interchange with Q. Thus, Q 
starts to assemble a new packet in place of P2, while P 
starts to process the packet Pl. 

Similarly, if P is an AND process with m inputs, then the 
packet pool between P and its input processes should hold 
up to 2m packets (Figure lOb). When each input process 
finishes the assembly of a new packet, and P finishes the 
processing of the m old packets, then P initiates a packet 
interchange which causes P to get the m new packets and 
assigns each input process a space for one packet. 

In this static memory allocation scheme, the storage ca
pacity of any cycle in the packet net is fixed. Thus, it is 
possible that packets may continue to flow into some cycle 
in the net until the cycle is completely full. At this instant, 
the cycle processing stops and a deadlock situation arises. 
The remainder of this section examines such deadlocks in 
more detail. In particular, we introduce some sufficient con
ditions for deadlock avoidance. 
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Figure lO--Queue requirements in packet nets. 
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Deadlocks arise in a packet net whenever one or more 
cycles in the net become full of packets. But, because AND 
processes can never increase the number of packets in any 
cycle (as illustrated in Figure 11), they can never contribute 
to deadlock situations. Therefore, we need only to consider 
OR processes. In general, if a cycle contains one or more 
OR processes in a packet net, the OR processes can fill the 
cycle with packets causing a deadlock. In order to avoid 
such a deadlock, we need sufficient conditions to prevent 
the OR process from filling their cycles with packets. Next 
we present such a set of conditions; but first we need to 
define "cycle queues." A cycle queue is a queue which 
exists in one or more cycles in the packet net. 

The following three conditions on the structure and op
eration of OR processes are sufficient to avoid deadlocks in 
packet nets: 

cond I-Each OR process has at most one input cycle 
queue (F:igure 12a). A packet which arrives to the 
OR-process via the input cycle queue is called a 
cycle packet; otherwise it is a non-cycle packet. 

cond2-If there are one cycle packet PI and one space P2 
for a new packet in the packet pool of an OR 
process P, then P initiates a packet interchange 
such that P2 is assigned to the input cycle queue 
to assemble a new cycle packet, and PI is assigned 
to P to be processed. However, the processing of 

- ...... 
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\ AND 
\ 
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AND 
I 
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,/ ...... / 

...... --."., ......_- ". 

PI will not start until there is one packet space in 
each output queue of P. 

cand3-1f there are one non-cycle packet PI and one space 
P2 for a new packet in the packet pool of an OR
process P, and if there is one packet space in 
each output of P, then P initiates a packet inter
change such that P2 is assigned to the input non
cycle queue (via which PI has arrived), and PI is 
assigned to P for processing. The processing of 
PI can start immediately after the packet inter
change. 

Observe that both cond2 and cand3 do not restrict the 
structure of packet nets in any way; they merely enforce 
some order on the packet processing by the OR processes. 
On the other hand, although cand] does restrict the structure 
of packet nets, we feel that the restriction is not severe; the 
packet net in Figure 4b satisfies cand I. 

The processing of cycle packets can never increase the 
number of packets in any cycle in the net: thus. it can never 
lead to a deadlock. For this reason, cand2 implies that the 
processing of cycle packets should proceed whenever pos
sible (Figure 12b). 

The processing of one non-cycle packet by an OR process 
can generate at most one extra packet in every cycle which 
contains the OR process. Therefore, the third condition 
cand3 implies that the processing of one non-cycle packet 
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Figure 12-A voiding deadlocks in packet nets with OR-processes. 

shouldn't start unless the OR process "sees" two available 
packet spaces in each cycle which contains the OR process. 
This is the case when the OR process has one packet space 
in its input pool, and has one packet space in any of its 
output pools. Under this condition, the processing of non
cycle packets can never make any cycle full of packets. 

Because of the space limitation, the discussion in this 
section has been limited to static memory allocation where 
each queue has been assigned a fixed memory size. We 
acknowledge, however, that static memory allocation can 
be unaffordable in some applications. The solution for these 
applications lies in dynamic memory allocation where 
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queues can grow and shrink in size as their needs change 
with time. 

DISTRIBUTED COMPUTER SYSTEMS FOR REAL
TIME CONTROL 

In this section, we investigate some of the problems as
sociated with designing distributed computer systems for 
real-time control. Our bias toward distributed computer sys
tems stems from our conviction that these systems provide 
high degrees of extensibility, integrity and performancelO 

which are most needed in real-time environments. 
In the previous sections, we have discussed how to cal

culate the following quantities: 

1. The data flow rates (in packets/second, or equivalently 
in bits/second) between the net processes. 

2. The execution rate (in instructions/second) of each 
process in the packet net. 

3. The memory requirements (in words) of each process 
in the net. 

These quantities are needed for the design of a distributed 
computer system to host a packet net (i.e., a real-time ap
plication). For that reason, these quantities are recorded on 
a graph, called the system graph of the packet net. The 
nodes in the system graph correspond to bi-directional com
munication between processes in the packet net. As an ex
ample, Figure 13b shows the system graph for the packet 
net in Figure 13a. 

Each node i in the system graph is labelled with two 
quantities (ef, 1'11i), where ei (in instruction/second) is the 
execution rate of the corresponding process, while mi (in 
words) is the memory requirement for the corresponding 
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DR 
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Figure 13-The relationship between a packet net and its system graph. 
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process and its input buffer. Each edge (i, j) in the system 
graph is labelled with a quantity Cj,j (in bits/second) which 
is the sum of the data flow rate from process i to process j 
and the data flow rate from process j to process i. 

The system graph of a packet net contains all the needed 
information to design an "optimum" distributed computer 
system to host the packet net. In Reference 7 we outline a 
design methodology of distributed computer systems based 
on the model of system graphs. In this methodology, a 
system graph is used to generate a set of possible distributed 
architectures which can host the packet net. Then, from 
these generated architectures, an "optimum" architecture 
is chosen based on cost and reliability considerations. This 
approach still needs more research and more design auto
mation support before it can be utilized in a practical way. 

A more practical approach is to begin with a ready-made 
distributed computer system which can host the packet net. 
Then, find the "optimum" assignment of the packet net 
processes to the system processors. 2,5,8,9 This optimization 
problem can be expressed and solved in terms of system 
graphs as illustrated by the following example. 

Consider the shared bus system shown in Figure 14. It 
consists of some processors; each of them has its own pri
vate memory and its own Bus Interface Unit (BIU). The 
processors communicate only by sending and receiving mes
sages via the global bus which they control in a decentralized 
fashion. In this architecture, the global bus is the limiting 
resource.] Thus, on assigning processes to processors in this 
architecture, the object should be to minimize the bus traffic. 

Assume that a shared bus system with , processors is to 
host a packet net. The optimum process assignment can be 
reached by finding at most ,-1 minimum cuts for the system 
graph of the packet net. These cuts should satisfy the fol
lowing two conditions: 

condl-The cuts partition the nodes in the system graph 
into at most , partitions such that for each parti
tion: 

I ei:5E 
partition 

I ~:5M 
partition 

REST OF SYSTEM GRAPH 

L. ___________ -' 

PROCESSOR MEMORY PROCESSOR MEMORY 

••• 
BIU BIU 

GLOBAL BUS 

Figure I4-A shared bus system. 

where E is the processing rate which can be de
voted to the application by one processor in the 
system, and M is the memory which can be de
voted to the application by one processor in the 
system. 

cond2- ICi,j is minimum 
i in one partition, 
j in another partition 

Finding these minimum cuts may require, in general, an 
exhaustive search among all possible cuts. 

It has been mentioned in the fourth section that for reli
ability reasons, different copies of the same process should 
be assigned to different processors. To make sure that the 
minimum cuts technique will produce this assignment, we 
add an edge to the system graph between any two nodes 
which correspond to copies of the same process. These 
edges will be labelled with - 00, as in Figure 15; thus, the 
minimum cuts must cut through all of them. 

Sometimes it is required (e.g., for input/output consider
ations) to assign some processes to specific processors. To 
make sure that the minimum cuts technique will produce 
these assignments, the following additions should be made 
to the system graph: 

I.-A node labelled (0,0) should be added for each pro
cessor which needs to host specific process(es). 

2.-An edge labeled -00 should be added between any 
two processor nodes. 

3.-An edge labelled 00 should be added between a pro
cessor node and a process node iff it is required to 
assign the process to the processor. 

An example is shown in Figure 16. 

REST OF SYSTEM GRAPH 
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Figure I5-Assigning two copies i and j of same process to different processors. 
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Figure 1 &-Assigning process i to processor A, and process j to processor B. 

CONCLUSIONS 

A simple model to represent a wide class of real-time 
control systems is introduced. The model can be used in the 
early stage's of system planning to represent the system in 
a gross form while hiding the fine details till later stages. 
The model can be also used to compute the values of dif
ferent parameters which are critical to the planning of real
time systems. The required computations are simple and 
can be constructed and executed in a systematic way. The 
model is also useful in planning the computer system to host 
the application. 

It is conceivable that for specific applications, more fea
tures (or restrictions) can be added to (or imposed on) the 
model to "tune" it to that particular application. In this 
presentation, however, we have only discussed those fea
tures that seem common to a wide class of applications. 
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Performance and economy of a fault-tolerant 
multiprocessor * 
by JAYNARAYAN H. LA LA and CHARLES J. SMITH 
The Charles Stark Draper Laboratory, Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

The FfMP (Fault-Tolerant Multiprocessor) is one of two 
central aircraft fault-tolerant architectures now in the pro
totype phase under NASA Langley Research Center spon
sorship. 1,2 The intended application of the computer includes 
such critical real-time tasks as "fly-by-wire" active control 
and completely automatic Category III landings (zero visi
bility and zero ceiling) of commercial aircraft. The life-crit
ical nature of these tasks and the profit-oriented attitude of 
airlines translate into some very challenging and sometimes 
contradictory computer requirements. For example, a can
didate computer should be able to execute tasks on time, 
without significant delays, be extremely reliable, and yet be 
cost-effective. At a first glance these requirements seem to 
be in conflict with each other. After all, to meet the per
formance criteria some sort of parallelism such as multipro
cessing capability would be in order. Second, to meet the 
reliability and safety requirements it would be necessary to 
use redundancy since no simplex computer could possibly 
meet the "extremely improbable" failure criterion of the 
Federal Aviation Administration. The result is a computer 
that could be very expensive. Yet it may still be cost-effec
tive. The reason is that it is the balance between the benefits 
and costs that determines the cost-effectiveness of a prod
uct; cost alone is not a pertinent criterion. In this paper we 
intend to show that the FfMP architecture is a viable so
lution to the multi-faceted problems of safety, speed, and 
cost. 

The next section briefly describes the FTMP architecture. 
The third section is devoted to the performance analysis. 
Three job dispatch strategies are described, and their results 
with respect to job-starting delays are presented. The first 
strategy is a simple First-Come-First-Serve (FCFS) job dis
patch executive. The results of FCFS were obtained by 
running a representative job-mix on a multiprocessor and 
through Markov modeling techniques. The other two sched
ulers are an adaptive FCFS and an interrupt driven sched
uler. The results of these schedulers were obtained by a 

* This work was supported by the NASA Langley Research Center under 
contract NASl-13782 and National Science Foundation Grants GJ-36255 and 
DCR74-24116. 
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GPSS simulation of a representative job-mix. The fourth 
section briefly discusses the impact of FTMP involvement 
on aircraft safety and its survival probability in the face of 
random hard failures. The fifth section outlines the benefits 
to airframe manufacturers and airlines of using a fault-tol
erant computer, and estimates the life-cycle-cost to airlines 
of operating the FTMP. A comparison is also made on a 
flight-hour basis to the life-cycle-cost of operating a civil 
transport aircraft. 

The emphasis in this paper is on results rather than means 
of getting those results. Simulation, analytical techniques, 
and empirical formulas are some of the methods and tech
niques used to arrive at these results. However, the methods 
have not been dealt with here so that more attention can be 
devoted to the results and their implications. 

FAULT-TOLERANT MULTIPROCESSOR 
DESCRIPTION 

The FTMP is to be constructed of ten identical line re
placeable units (LRUs). Each LRU contains one processor/ 
cache module, one mass memory module, one I/O port, one 
clock generator, and related peripheral support and control 
circuitry. Each LRU will be packaged in one one-half-ATR
long box (approximately 19.6"x4.9"x7.6"). The processor/ 
cache modules operate in groups of three called triads. Pro
cessor triads are formed by assigning any three modules to 
work together in tight synchronism. A triad functions as if 
it were a single processor. The failure of a module within a 
triad does not impact the correct execution of its instruction 
stream because voting is used to mask the effects of the 
failed module. A spare module, if available, can be used to 
replace the failed element. Otherwise, the damaged triad is 
retired from service with the surviving elements being turned 
into spares. Memory triads are formed in much the same 
way as processor triads, with the three memory modules of 
a triad assigned to work together in tight synchronism. All 
elements of the multiprocessor operate using a common time 
reference. This time base is provided by four clock generator 
modules operating together and phase-locked to each other. 
Figure 1 illustrates the functioning of this system from a 
software viewpoint. Three processor triads function as the 



482 National Computer Conference, 1979 

I . , 
I I 
I 

Y I Z X I I 
I , Clock Generat or 
J l 

~ 

Mass Memory 

I 
Mass I Memory Bus L 

l J 1J 
A B C 

Processors 

Internal I/O Bus 

External I/O Bus 

I/O • 
Port 

~ 

Figure I-System architecture-Programmer's view. 

logical equivalent of three simple processors with shared 
access to a single mass memory and a common logical 110 
bus. The actual redundancy underlying the system is invis
ible to the programmer. The system is completely symmetric 
and non-discriminatory in that all processor triads operate 
at the same level. There are no master or slave processors 
or triads. Each triad is capable of performing every task in 
the system, be it the executive programs or applications 
programs, and does indeed perform every task in turn. The 
system executive whose performance is to be analyzed in 
the next section may thus be called a floating executive. 

MULTIPROCESSOR PERFORMANCE IN AN 
AIRCRAFT ENVIRONMENT 

The mission of a central computer in an aircraft can be 
described as the compensation and closure of a number of 
simultaneous sampled data control loops. Typical examples 
include navigation, guidance and control, load alleviation 

and flutter control. The loop control jobs must be invoked 
at specified times or by specified events. Several studies of 
workload expected in an aircraft environment3,4 show that 
such a job-mix can be closely approximated by a number of 
purely periodic jobs, with execution frequencies ranging 
from several times per second to as much as a hundred 
times per second. In addition to the workload imposed by 
the applications programs there are a number of housekeep
ing tasks that must be carried out in a fault-tolerant multi
processor, specifically in the FTMP. These tasks range from 
routine diagnostic programs to system configuration control 
and other internal redundancy management and -system 
management programs. All of these jobs are also periodic in 
nature, and can be handled in a fashion identical to the 
handling of the applications programs. Such a treatment of 
system and applications tasks removes most of the burden 
and complexity from the central or the core executive. The 
only important function left to the executive is to dispatch 
jobs at appropriate times and monitor their progress to com
pletion. In essence, the core executive is just a job sched-
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uler. In conventional data processing applications, it is com
mon to find complex operating systems in which the 
objective is to support a variety of simultaneous demands 
for resources. In this application, by contrast, we desire to 
have a simple, straightforward job dispatch process that is 
reliable, error free and easily verifiable, so that the resultant 
software is of a quality commensurate with the hardware 
reliability. 

Several philosophies exist for implementing such a job 
scheduler, For. example, the periodic jobs may be com
pletely pre scheduled with each job occupying a certain time 
slot in the schedule. This is the synchronous job scheduler. 
Its advantages include the on-time execution of jobs with 
practically no delays, while at the same time keeping a rather 
high load factor. However the overwhelming disadvantage 
of such an algorithm is the total inflexibility and the com
plexity of preassigning jobs to processors in a three-unit 
multiprocessor. In addition, a degradation in system capac
ity, to two processors, for example, or changes in job pa
rameters such as iteration rates, may require a totally new 
schedule. The synchronous . scheduler is therefore not con
sidered here. 

Another scheduling strategy is the First-Come-First-Serve 
(FCFS) executive. All jobs are simply arranged in a waitlist 
ordered by their starting times. Each processor triad that is 
idle examines this list and picks up a job that is due next. 
Such an executive is simple, straightforward, and easy to 
implement. However, it is not obvious what the impact of 
this job dispatch strategy on system performance would be. 
One of the important performance criteria in our application 
is the job-starting delay. The next section details the results 
of a simulation of the FCFS executive carried out on a 
breadboard mUltiprocessor. 5 As shall be seen in that section, 
although the multiprocessor's performance may be quite 
satisfactory using the FCFS executive and its minor varia
tions for most real-time applications, no guarantees can be 
made regarding maximum job-start delays. Therefore an in
terrupt-driven job scheduler was also evaluated. A major 
advantage of this scheduler is that the more important jobs 
can be given higher priority by interrupting the execution of 
the less important jobs. A later section describes this sched
uler and the simulation results. 

FCFS scheduler results 

The results of the FCFS scheduler were obtained by run
ning a representative workload of 25 periodic jobs under a 
FCFS scheduler on a three-processor bus centered multi
processor which emulated the FfMP architecture from the 
software viewpoint. To discuss the results it is convenient 
at this point to define a few parameters for this section. First 
of all, the percent system load is defined as (l00 minus 
percent idle). In other words, the percent load includes the' 
percent of time a processor is running a job step or the 
scheduler, waiting for the scheduler or memory access, and 
fetching instructions/data from the shared memory. At the 
saturation point there is no idle time, and the load equals 
100 percent. Another important parameter for this section 

is the ratio, R, of the mean job step length to the mean 
executive/scheduler run time. This is a normalized measure 
of job starting delay. We define normalized delay as the 
delay measured in units of mean job step length. 

The importance of job-starting delay as a performance 
criterion in a real-time system cannot be overemphasized. 
Extensive measurements regarding the probability distribu
tion of the delay were made in the simulation experiments. 
Figure 2 shows the normalized mean job starting delay as a 
function of the load. The normalized delay decreases as the 
ratio of the mean job step-length to executive running time 
is increased. This is due to the fact that the higher the ratio 
R, the lower is the probability of executive access conflict 
between processors. For each value of R the mean delay 
function increases without bound as the load approaches 
saturation. In some real-time applications the important per
formance criterion may be the absolute rather than the nor
malized measure of mean starting delay. Figure 3 shows the 
mean delay, measured in milliseconds, as a function of the 
mean job step length for three values of the system load. It 
is seen that a linear relationship exists between these two 
parameters, with the slope of the function increasing rapidly 
with the system load. 

Figures 4 and 5 show the probability distribution function 
(PDF) of the delay for R = J and 50 respectively. For low 
system loads the delay distribution can be described as a 
monotonically-decreasing function with a very sharp initial 

>-
c::( 
.....I 
W 
Cl 

C!l 
z: 
....... 
l-
e::: 
c::( 
l-
V> 

co 
a 
'J 

z 
c::( 
w 
::E 

Cl 
W 
N ....... 
.....I 

~ 
0: 
a 
z: 

3~ 

2 

r=l 

PER CENT LOAD 
NORf1ALIZED DELAY VS LOAD 

Figure 2 

R=lO 

R=50 



484 National Computer Conference, 1979 

150 LOAD 907~ 

100 

50 

50% 

25% 

0 50 100 150 200 250 

MEAN JOB STEP LENGTH, MSEC. 
Figure 3 

decline, indicating that a large percentage of jobs start with
out an appreciable delay. These characteristics are mostly 
retained for loads approaching 90 percent. Beyond that, 
however, the function shape changes considerably and for 
99 percent load the probability function, in fact, increases 
slightly before gradually decreasing with a long tail. A mon
otonically-decreasing function implies that the probability of 
a job starting without a delay is higher than with any other 
value of delay. The distribution function for R =50 is slightly 
more complex as shown in Figure 5. The high load curves 
have three distinct phases; a rapid initial decline followed 
by a plateau and then a final asymptotic descent. 

Let us turn our attention now to results regarding maxi
mum job-starting delay. In principle, the probability of any 
delay, no matter how large, occurring in practice is non
zero. That is, maximum delay is always infinite. However, 
it is instructive to take a look at various percentiles of delay. 
Figure 6, for example, shows for R=I the 80 percentile 
delay as a function of the system load. That is, 80 percent 
of all delays fall below this fmiction. This function has the 
same characteristics as the mean delay of Figure 2. The 80 
percentile delay doubles, for example, as the load is in
creased from 50 to 75 percent. The 99 percentile curve, 
however, has a slightly different nature. It is seen that the 
same increase in the load factor results only in a 50 percent 

increase in the 99 percentile delay. This has some important 
consequences. For example, the penalty to be paid in going 
from a low to a high load factor operating point is not as 
great as the mean delay function implies. Figure 6 also shows 
points corresponding to the 99.99 percentile curve. The scat
tering of points is due to the small number of samples ob
tained. At any rate, the function tends to show a linear 
behavior in the 5 to 95% load range. In other words, cost 
incurred in terms of worst case delays increases only linearly 
with the system load. This has also been found to be true 
for the higher values of R. 

Figure 7 shows the probability of the job-starting delay 
exceeding a given value as a function of the system load for 
R = I. It is seen that this probability approaches a linear 
function for zero delay. That is, the percent of jobs that start 
right on time decreases linearly with the load. This figure 
indicates that large system loads may be quite acceptable in 
real-time systems if moderate delays are permitted. Notice, 
for example, that if a 51 msec starting delay is permissible, 
then a system load of 85 percent wi1l produce delays in 
excess of 51 msec only one percent of the time. 

The results discussed so far have been obtained with the 
First -Come-First-Serve job dispatch strategy. It can be 
shown with the help of an example that by using the shortest
job-first strategy the mean delay can be reduced, while the 
spread of the delay is widened. 5 Simulation results shown 
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in Figures 8 and 9 confirm this. Figure 8 compares the 
normalized mean job starting delay for R=J for the two 
strategies as a function of the system load while Figure 9 
shows the PDF for 50 percent load for the same value of R. 
It is seen that the delay for some jobs is reduced, thereby 
increasing the probability of short delays. However, this is 
done at the expense of the longer jobs, thereby increasing 
the probability of longer delays. The range of delays is 
increased considerably while the mean delay is reduced only 
slightly. Also for R=J the processor time devoted to the 
executive is up to two percent more for SJF than for FCFS. 

One other variation of the FCFS strategy is the adaptive 
FCFS algorithm. In this case the starting times of jobs are 
adjusted dynamically based on past performance measured 
in terms of job start delay. The idea is to find a time slot 
that best suits each job and creates the least amount of 
interference with the other jobs. This strategy shows some 
improvement over the FCFS strategy. However, in appli
cations such as ours where it may be necessary to certify 
that a certain subgroup of jobs will never be delayed more 
than a given amount, neither the FCFS nor the adaptive 
FCFS scheduler are particularly good candidates. Therefore 
an interrupt driven scheduler was also simulated. The next 
section describes the results of adaptive and interrupt driven 
schedulers which were evaluated using simulation. 

60 
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Figure 6 

FCFS scheduler ("B" scheduler) 

80 100 

The B scheduler algorithm is an impiementation of a FCFS 
within-priority-class method for determining which task a 
triad is to select. The set of all eligible tasks is divided into 
four priority classes, according to the criticality of the func-
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tion to be performed by the task. The criticality of the task 
determines its dispatching priority. The adaptive model uses 
delay information feedback in order to minimize job-starting 
delays. The result of this feedback is a modification of the 
next scheduled arrival time of the previously delayed task. 
If the starting delay for the previous iteration of a task 
exceeds a certain minimum value, the next iteration is de
layed by a fraction of the inter-arrival time. The adaptive 
technique as implemented was stable, and led to significant 
reductions in mean starting delays for all tasks. However, 
because of the lack of pre-emptability , all tasks must execute 
for only a short period of time, or high iterati9n rate jobs 
will not be executed often enough. This and other weak
nesses of the algorithm would preclude its use, even if the 
delay and jitter could be controlled. 

Preemptive scheduler ("X" scheduler) 

This model incorporates a preemptive interrupt-driven 
scheduling algorithm. Interrupts are periodically generated 
to cause activation of high-priority tasks and suspension of 
low-priority tasks. All tasks are assumed to be periodic. 
executing at rates of 5, 20, or 40 iterations per second. The 

high iteration rate tasks are of higher priority than the lower
rate tasks, and intra-group dispatching constraints can be 
specified. 

Results 

In this section, results of three experiments are presented. 
In each experiment, the architectural parameters were held 
constant and the job mix used in each experiment was also 
identical. The experiments consisted of executing 1000 
tasks, using the following test configurations: 

1. The basic B model, not adaptive . 
2. The adaptive B model. 
3. The preemptive (X) model. 

The 1000 job simulation corresponded to approximately 
3.25 seconds of FTMP execution time. Based on an analysis 
of the time history output it appears that the system reached 
a steady-state condition within this time period. 

The statistics of primary interest in this simulation are 
related to the job-starting delays. Because the jobs are used 
to implement a sampled data control system, the jitter is a 
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Figure 10-Adaptive FCFS scheduler, autopilot task. 

critical parameter with respect to the overall system per
formance. The measurement of jitter in these models is the 
standard deviation of the job-starting delay. A relatively 
long delay which is constant between iterations is preferable 
to a large deviation between iterations. The absolute delay 
will not affect the performance of the control system as long 
as it is con,stant between update loops. 
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A time history of delay for sample jobs is presented in 
Figures to-B. The delay, normalized by interarrival time, 
is plotted versus time. These plots represent the envelope 
of the set of discrete delay data points, and illustrate the 
changes in delay from one iteration to the next for a partic
ular job. 

Figure to is the delay plot for an example job, dispatched 
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Figure 12-Adaptive FCFS scheduler, NAV and guidance task 

by the adaptive FCFS scheduler. Up until approximately 
1.25 seconds, there is a relatively large variance in the delay 
between iterations. This phase corresponds to the time pe
riod in which the delay feedback mechanism is active. After 
this initial phase, the feedback cannot provide any further 
improvements, and the delay reaches a steady-state value. 
For this task. the jitter is reduced to near zero. For other 
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tasks, however, a periodic change in delay is observed, 
because there is no interference-free time slot that can be 
found for each and every task. 

Figure 11 is the delay plot for the same sample job, but 
dispatched by the preemptive scheduler. The delay is rela
tively constant throughout the simulation, but at a higher 
level than the FCFS delay. For this particular task, the 
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adaptive FCFS model yields better performance than the 
preemptive model. 

Figures 12 and 13 are the delay plots for another job, 
using the adaptive FCFS and preemptive schedulers. In this 
case, the preemptive model yields less jitter, both in the 
initial phase and in the steady-state phase of the simulation. 

The three strategies have been compared with respect to 
performance of individual jobs. Table I lists the mean delay 
and jitter for each task for each of the three strategies. The 
following results were obtained with respect to aggregate 
performance. 

The non-adaptive B model had a mean delay of 6.2 milli
seconds, and the adaptive B model had a mean delay of only 
1.5 milliseconds. However, the mean jitter was approxi
mately 6.9 milliseconds in the adaptive model and was only 
2.4 milliseconds in the non-adaptive model. Thus, the -delay 
information feedback scheme used in the adaptive scheduler 
reduced the mean delay, but at the expense of the jitter. 

In the adaptive experiment, the average jitter is approxi
mately 6.9 milliseconds; in the preemptive experiment, it 
was approximately 1.2 milliseconds. Therefore, with respect 
to jitter, the preemptive model yields better performance on 
an aggregate basis. 

Performance conclusions 

Three major scheduling strategies viz., FCFS, adaptive 
FCFS and preemptive schedulers have been evaluated. Each 
has certain advantages, and a selection must be made de
pending on the applicable performance criteria for the in
tended application. The FCFS strategy is a simple, straight
forward algorithm that is suitable for most real-time 
appiicaiions. With this scheduler, high load factors can be 
maintained without making maximum jobstart delays inor
dinately high. The adaptive version of this algorithm can 
decrease the average delays, at the expense of being slightly 
more complex to implement. FCFS and adaptive FCFS 
schedulers can be used in those applications where the max
imum delay can be allowed to exceed a certain value, say, 
only 10 percent of the time. Neither algorithm, however,' 

guarantees that the maximum start delay for a job will never 
exceed a given value. In those applications, such as ours, 
where this performance guarantee is of paramount impor
tance, one must give up the simplicity and ease of verifia
bility in favor of guaranteed performance. In light of these 
requirements, the interrupt driven preemptive scheduling 
philosophy has been selected for the FTMP. 

MULTIPROCESSOR RELIABILITY 

The likelihood of a catastrophic failure of a central com
puter in a civil transport aircraft is required by the Federal 
Aviation Administration to be "extremely improbable." 
This requirement has been interpreted to mean a failure 
probability of the order of magnitude of 10-9 per hour. There 
are a number of ways in which random failures can result 
in a catastrophic failure of the FTMP. :<'or the sake of anal
ysis, these have been grouped under three categories as 
follows. 

Lack of perfect coverage 

In the FTMP some time is required to detect, isolate and 
recover from any failure. Depending upon the subtlety of 
the failure this time may range upward from several milli
seconds. During this time the system is exposed to a second 
failure which may arrive in such a place as to be catas
trophic. It may be mentioned here that by design there is 
no single point failure mechanism in the system. It takes 
two or more failures to bring the system down. Given that 
there is one fault in the system, the probability of success
fully recovering from the failure is not 100 percent. This lack 
of unity coverage is the first failure mode. 

Exhaustion of Spares 

When a failure is detected in a module, that unit is re
placed by a spare, if one is available. A succession of failures 

TABLE I-Job Starting Delay Statistics 

FCFS FCFS ADAPTIVE PREEMPTIVE 
JOB PRIORITY MEAN STDDEV MEAN STD DEV MEAN STD DEV 
NO. (GROUP) (~sec) (~sec) (~sec) (~sec) (~sec) (~sec) 

01 005 i7,160 401 8,963 2,478 36,844 771 
02 005 26,371 3,476 4,308 8,448 35,633 809 
03 005 31,777 460 9,102 7,040 32,617 1,108 
04 005 33,271 1,318 10,940 7,628 22,236 553 
05 005 36,382 803 8,154 10,265 20,115 397 
06 020 4,904 212 675 803 18,087 568 
07 020 6,355 337 1,143 1,019 8,519 307 
08 020 9,250 194 1,948 1,382 7,244 499 
09 020 15,029 616 1,715 2,440 5,390 226 
10 040 375 250 480 588 4,908 297 
11 040 758 491 647 892 3,188 201 
12 040 1,133 689 692 716 1,227 69 
13 040 4,030 342 757 6CJ7 889 56 
14 040 4,577 534 698 760 601 42 
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can cause the system to degrade to a point where it cannot 
keep up with the minimum workload critical to the safety of 
the flight. This second failure mode is the result of a lack of 
throughput and/or memory capacity. 

BGU enable mode failures 

In the FTMP, there are two Bus Guardian Units (BGU) 
in each LRU that allow each processor, memory, and os
cillator within that LR U to transmit on the memory and 110 
buses. Both BOUs must be in agreement before any module 
may transmit on a bus. When a module fails, the BGUs can 
be commanded to disable the failed module from transmit
ting on the bus. It is evident that if the two BGUs fail to 
perform their duty when a module in their LRU fails, a 
number of buses may be rendered useless, thereby causing 
a system catastrophe. This is the third failure mode. 

Figure 14 shows the system failure probability as a func
tion of time due to each of the three failure modes described 
above. 1,4 Figure 15 shows the composite failure probability 
of the FTMP due to all random failures. The following con
clusions can be drawn from these two figures: 

I. During a typical commercial flight of one-to-ten hours, 
the most likely threat of the FTMP failure is due to an 
arrival of two failures so close that system reconfigur
ation is not possible. The probability of this event, 
however, is acceptably low (about 3x to-10 per hour) 
because of high component MTBFs and fast reconfi
guration times. 

2. There is very little chance that the FTMP computer 
will run out of spares during a ten-hour flight, assuming 
that the system initially has all ten LRUs fully opera
tional. In longer flights, however, failure would be 
quite possible, as evidenced by the sharply rising fail
ure probability curve after 50 hours. 

3. Finally, the system failure rate due to BGU enable 
mode failures is substantially lower than other system 
failure modes. Therefore, it does not contribute signif
icantly to the overall system failure probability. 
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FTMP ECONOMICS 

The viability of the FTMP depends not only on its tech
nical merits but also on its cost effectiveness. For the FTMP 
to be economically attractive to the airframe builders and 
airlines, the direct and indirect benefits such as fuel savings 
and improved safety should be shown to be commensurate 
with its cost of ownership. The next two subsections explore 
these two facets of the FTMP economics. 

Life-eye Ie-cos t s 

The cost of ownership of the FTMP can be measured 
effectively in terms of its life-cycle-cost (LCC). The LCC 
includes all the cost items associated with the computer over 
its total life time. It can be broken down into the following 
four major categories: (1) acquisition cost, (2) maintenance 
cost, (3) spares inventory cost and (4) added fuel cost. 

Each of these is self-explanatory except for the last item. 
The added fuel cost is the cost of extra fuel that must be 
burned to carry the computer on-board. Each of these cost 
items is determined by a number of different variables. For 
example, one of the variables that affects the acquisition 
cost is the initial purchase price, which in turn is determined 
by hardware cost, software development cost, certification 
cost, company profit, etc. The number of variables deter
mining LCC is increased even further when normalized costs 
such as per flight-hour cost or per passenger-mile cost are 
considered. The normalized costs can be directly compared 
to airlines' present operating costs since all the data reported 
to the Civil Aeronautics Board by the airlines is normalized 
by flight-hours, block-hours or passenger-miles. Using the 
empirical formulas developed by the Boeing Commercial 
Airplane Company6 for cost estimation, and with a reason
able estimate of input variables, the FTMP absolute and 
normalized costs were computed. These costs are summa
rized in Tables II and III, respectively. According to these 
figures, it would cost $138,500 to acquire one FTMP unit 
and each spare LRU would cost about $13,000. An airline 
with a fleet of tOO airplanes. each equippt'o with two 
FTMPs. would need to maintain a spare inventory of 112 
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TABLE II-FfMP Absolute Cost Summary 
($) 

LRU Cost 
Unit Hardware Cost 
Software Development Cost 
Unit Software Cost 
FfMP Cost 
Spare Inventory 

12,960 
135,861 

1,340,000 
2,680 

138,541 
112 

LRUs. The reason for having two FTMPs (connected 
through an I/O node network) per aircraft is to 'be able to 
survive localized physical damage to either computer. 7 The 
normalized cost of operating two FTMPs is found to be $37 
per flight-hour. Most of this is about evenly split between 
acquisition ($17) and maintenance ($16) costs. The normal
ized costs of carrying the added weight and maintaining the 
spare LRU inventory are found to be negligible in compar
ison to the other two components. 

To put these numbers into proper perspective, the cost of 
operating a jetliner as reported to the Civil Aeronautics 
Board is itemized in Table IV. The numbers shown are the 
flight-hour costs (1974 dollars) of operating a Boeing 747, 
averaged over all the U.S. carriers operating such an air
craft. The total cost is $2708 per flight-hour or $2415 per 
block-hour. The largest single component of this is the fuel 
and oil at $795. By comparison, the additional cost of op
erating two FTMPs would be $37 per hour. This is about 
five percent of fuel expense or 1.5 percent of the overall 747 
cost. Thus, if the FfMP can help make the aircraft just five 
percent more fuel efficient it can pay for itself. This and 
other FTMP benefits are discussed in the next section. 

As stated earlier, a large number of variables are involved 
in this study. Uncertainties in the estimation of values of 
these variables can lead to erroneous cost figures. However, 
not all the variables are equally important in that the FTMP 
cost is not equally sensitive to all the parameters. Variations 
in some parameter values have direct impact on daily op
erating costs of the FTMP, while others have none. A sen
sitivity analysis found that only four items have important 
bearing on the FTMP cost. Table V lists the percent change 
in the hourly operating cost of the FTMP due to a 100-
percent change in each of the four variables. Not surpris
ingly, the LRU reliability and repair time have a direct 
impact on the maintenance cost, which is one of the recur
ring cost items. The parts and labor cost to build the FTMP 
are the major factors in determining the FTMP acquisition 
cost. Lastiy, the FTMP Hfe-time is important because it is 
used to normalize all the fixed costs to obtain the hourly 
operating cost. The effect of all other factors is five percent 

TABLE III-FfMP Flight-hour Cost 
Summary ($/hr) 

Total Cost 
Acquisition Cost 
Spare Inventory Cost 
Added Weight Cost 
Maintenance Cost 

37 
17 
1 
3 

16 

T ABLE IV-Boeing 747 Operating Cost 
(1974) 

($/Block-Hour) 

Flying Operations 1183 
Crew 363 
Fuel and Oil 795 
Insurance 25 

Maintenance 570 
Depreciation and Rental 662 
Total/Block-hour 2415 
Total/Flight-hour 2708 

or less. As an example of this, if the software development 
cost $2.7 million rather than the $1.35 million assumed, the 
hourly operating cost of the FTMP would be increased from 
$37 to only $39. On the other hand, if the LRU mean time 
between failure (MTBF) turned out to be only 925 hours 
rather than 1850 hours assumed, the hourly cost would in
crease from $37 to $46. 

FTMP benefits 

As pointed out in the previous section. the hourly oper
ating cost of two FTMPs is less than five percent of just the 
cost of fuel burned per hour by a Boeing 747. The potential 
of the FTMP to make future aircraft fuel efficient is enor
mous. The performance advantages of statically-unstable 
aircraft where the tail shares the wing load, rather than 
opposing it, are well known. Similarly, load alleviation can 
be used to build a lighter wing structure. All of these appli
cations, however, require some form of active controls, the 
failure of which can have financial and/or fatal conse
quences. Lockheed is already flight testing an advanced 
version of the L-I 0 11 Tristar with increased wingspan sup
ported by active wing tip ailerons. The wing fatigue life in 
the absence of active controls would be only 40 hours, 
compared to 30,000 hours or more for a conventional wing. 
The economic penalty of the control system failure would 
be catastrophic in this case. These are some of the areas 
where airframe builders can use a central fault-tolerant com
puter to advantage. 

The next generation of jet aircraft will be making extensive 
use of digital computer technology. The Boeing 767, for 
example, will employ more than six different digital com
puters, ranging in functions from air data to flight control. 8 

By consolidating guidance, navigation, control and other 
functions into one singie computer, there are obvious sav
ings to be obtained in terms of commonality of design, im
plementation, spares, and maintenance overheads. 

TABLE V-Effect on Flight·hour Cost 

FfMP Life-time 
LRU and FTMP 

Parts Cost & Assembly/Test Time 
LRU MTBF 
LR U Repair Time 
All Others 

24% 

43% 
24% 
33% 
:55% 
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There are other recurring benefits of the FTMP to the 
airlines, such as fewer false removals of LRUs, which pres
ently run at about 50 percent. A fault in the FTMP can be 
traced to the LRU level quickly and with almost 100 percent 
certainty. The FTMP can also extend the aircraft flight en
velope by giving the airlines an all weather operational ca
pability, such as Category III operations. There also are 
some intangible benefits such as increased safety. The gen
eral increase in automation can reduce the crew workload, 
which indirectly contributes to safety. 

CONCLUSIONS 

From the results presented in this paper, it can be pre
dicted that the FTMP can do the job for which it is designed, 
and do it reliably and economically. Using the interrupt 
driven job scheduling strategy, it can respond to critical job 
requests promptly. It has a very low failure probability, and 
at the same time the hourly cost of operating two FTMPs in 
a transport aircraft can be as little as one-to-two percent of 
the total flight-hour cost of the aircraft. The benefits of the 
FTMP, in any case, far outweigh its costs. It is our conten-

tion, therefore, that the FTMP will be a viable and compet
itive option for the future generation of transport aircraft. 
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Serviceability features of the HP 300 small business 
computer 

by CURTIS R. GOWAN 
Hewlett-Packard 
Santa Clara, California 

INTRODUCTION 

As computing system prices go down due to technological 
advances in hardware, more emphasis is being placed on the 
overall cost of ownership. To meet this challenge, service
ability features are designed into the HP 300-intertwined 
throughout the system hardware and software. 

THE HP 300 

The HP 300 is a broad-capability system for dedicated 
business data processing applications. It includes general
purpose features found on much larger systems, yet it is 
designed for direct use in daily business activity. 

A typical HP 300 configuration consists of the System 
U nit (Figure 1), a printer and several application terminals. 

The System Unit 

The central element in every HP 300 system is the HP 300 
Mainframe, or "System Unit." The System Unit combines 
the HP 300's processing, storage and control functions into 
a single compact package: 

Integrated Display System-A keyboard and display 
screen form the Integrated Display System, or IDS. The 
display can be broken into multiple windows, each of 
which is directly attached to a data file. Eight "softkeys" 
bordering the right side of the IDS Screen provide a push
button choice capability. 
Processor-The HP 300 is based on a Silicon-on-Sapphire 
(CMOS/SOS) LSI processor. The processor has a stack 
architecture and provides hardware support for virtual 
memory operation. 
Main storage-A standard HP 300 system includes 256 
KBytes of semiconductor memory expandable to 1024 
KBytes in 128 KByte increments. 
Flexible disc drive-The HP 300 System Unit includes a 
flexible disc drive for omine storage and data exchange 
with other HP 300 systems. 
Online disc storage-A fixed disc provides 12 million bytes 
of storage for system and user programs and data. It is 
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also used as secondary storage for virtual memory oper
ation. In larger configurations, the fixed disc can be re
placed by a stand-alone disc drive. 

The 25-s10t carli cage in the System Unit contains not 
only the CPU, memory and I/O boards but also circuit 
boards for the console (IDS), flexible disc and 12 MByte 
integrated system disc. Except for the circuitry which must 
be near either the display tube, the disc mechanisms, or the 
power supply, every mainframe PC board is in the System 
Unit card cage-with all configuration switches accessible 
on the board edges. This simplifies diagnosis by making it 
very easy to check the mainframe's hardware configuration 
for human error. 

Amigo/300 operating system 

The HP 300's operating system, Amigo/300, is an ad
vanced virtual memory operating system, with extensive 
data management and online processing facilities. In dedi
cated, terminal-oriented applications, Amigo/3oo supports 
terminal response and interactive processing in addition to 
concurrent non-interactive jobs. 

Some of the key features include: 

• Multiprogramming 
• Multitasking 
• Large addressing space-A potential addressing space 

of over 260 million bytes for each program. 

CLASSES OF SERVICEABILITY FEATURES 

Serviceability features exist either to contain faults or to 
diagnose them. 

• Fault containment features correct or detect faults to 
minimize their effect on the system. The next section 
covers these features in detail. 

The diagnosis features can be split into two sets-Moni
toring tools and stimulus-response tools. 

• Monitoring tools (fourth Section) allow you to see what 
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Figure I-HP 300 system unit. 

is happening or what has just happened leading up to 
an error. The tools must disturb the system as little as 
possible. 

• Stimulus-response tools, on the other hand, by their 
nature perturb the system under test by providing sim
pie, controlled, repeatable stimuli instead of the com
plex stimuli provided by normal operation. These are 
covered in the fifth section. 

FAULT CONTAINMENT FEATURES 

The HP 300 hardware and software have built-in provi
sions which correct or detect certain faults when they occur. 
Whether the result of hardware failure or human error, these 
faults are of the type that cause multiple, obscure (and often 
delayed) system faults. 

Error-correcting memory 

The memory subsystem corrects all single-bit memory 
errors; plus, it detects all double-bit and the vast majority 
of multi-bit errors. Each memory word consists of 16 data 
bits plus five Hamming-encoded correction/detection bits 
and a parity bit. 

Privileged mode instructions 

Programs may execute in one of two modes-privileged 
or user. In user mode, a program is confined to its own code 
and data areas and is prevented from destroying the opera
ting system or directly performing 110. 

Instruction bounds checking 

The CMOS/SOS LSI processor performs bounds checking 
on memory reference instructions, in both user and privi
leged code, via hardware limit registers. The executing user 
code segment is kept separate and distinct from the data 
segments. 

Error-detecting disc subsystems 

The disc subsystems record cyclic-redundancy error-de
tecting codes with the data: the controller and driver auto
matically retry if the data read fails the CRC check. 

MONITORING TOOLS 

Monitoring tools show what is happening-the current 
state-or what just happened-a state history. The key to 
the design of monitoring tools for diagnosis is that they be 
as non-invasive as possible, i.e., the tool should not affect 
the circuit under test. 

The first group of monitoring tools are intrinsic to the HP 
300-they ate always present, monitoring the system during 
normal operation. The last two monitoring tools are extrin
sic-they are external instruments connected to the system 
when a fault is suspected. 

Trace-LEDs-HP-manufactured light-emitting diode ar
rays (with integrated current-limiting resistors) are built 
into most boards. All of these LEDs are observable by 
opening the rear door. They provide non-invasive moni
toring of normal activity-to check certain key nodes 
without tools. The Trace-LEDs are, in effect, a low-cost 
built-in maintenance panel. For example, one LED is con
nected to the last stage of the CRT timing chain; its once
per-second blink shows that the chain is working. Another 
LED is connected to the system power-fail-warning line; 
this circuit is checked by turning the system on and off 
while watching the LED. 
System Error Log-The error logging facility records er
rors, both user-transparent and fatal, as time-stamped en
tries in a disc file. The number of 110 requests and errors 
are tallied for each device, then regularly recorded on the 
disc. Fault trends may be detected by analyzing this data. 
System Trace Table-The operating system keeps a list 
of the most recent events in a circular table in memory. 
The data can be dumped via the System Debug facility. 
Console Log-A list of the most recent console commands 
is kept in a disc file so that one can check the sequence 
of commands which led up to some event. 



System Debug-Running under the operating system, 
System Debug provides to Specialist CEs interactive con
trol, examination and modification of both code and data. 

There are two key external tools which Customer Engi
neers use in monitoring-the Processor Maintenance Panel 
and state analysis instrumentation. 

Processor Maintenance Panel-The Processor Mainte
nance Panel (PMP) is used by Specialist CEs for detailed 
tracing of HP 300 microcode and macrocode. The PMP 
consists of a printed circuit board which plugs into a 
reserved slot in the system card cage and an HP 9825 
Calculator which provides a user interface independent of 
the system under test. The PMP provides non-invasive 
breakpoints plus micro-level and macro-level manipula
tion of the system hardware. 
State Analysis Instruments-HP 300 Customer Engineers 
are trained in the use of the HP 1602A Logic State Ana
lyzer and the HP 1640A Serial Data Analyzer-both 
standard portable instruments-to trace I/O transactions 
on the system busses and data communication ports. 

STIMULUS-RESPONSE TOOLS 

The key to the design of stimulus-response diagnosis tools 
is that they not only identify that a problem exists but also 
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isolate it to a replaceable module. To do this, tools must: 

• Depend as little as possible on portions of the system 
other than the portion under test. 

• Build outward from a small kernel, layer by layer, using 
already-tested circut blocks to test additional circuitry. 

Figure 2 gives a block diagram of the system hardware. 
This diagram is then annotated to show the outward pro
gression of the stimulus-response tools. The layer-by-layer 
sequence of tests starts at the processor, directly attacking 
the diagnostics-won't-load problem. 

CPU Self-Test 

The CPU Self-Test is a ROM-resident microdiagnostic 
which is invoked on power-on or by depressing a switch on 
the edge of the CPU Bus Interface board. Its purpose is to 
check the hardware required to cold-load the system. CPU 
Self-Test results are displayed on two five-LED arrays next 
to the CPU TEST switch. The test may be set up to loop 
continuously, either halting on the first failure or continuing 
regardless of failure. 

The CPU Self-Test first performs a thorough test of the 
processor, including checksum tests on each of the micro
code ROMs. It then tests the Inter-Module Bus handshake 
lines, checks communication with the Memory Controller 

Inter-Module Bus 

Processor 

Processor 

Memory 
Controller 
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• Modules 

• • • • 

Memory 

General 
I/O Channel ••• 
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Figure 2-HP 300 logical hardware organization. 
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and tests the lowest memory module for stuck bits. The 
General I/O Channel (GIC) is tested-first proving that the 
CPU can communicate with the OIC, then looping data 
completely through the board to the output of the LSI de
vice-bus interface chip and back to the memory via DMA. 

The device to test is selected by the Control Panel switch 
used to select the load/dump device. The CPU Self-Test 
sends a data pattern through the channel to the device con
troller's memory, commands the device to return the data, 
and then checks for correctness. 

When the Control Panel is set up for a cold-load, the CPU 
Self-Test checks and diagnoses the entire data path from 
disc to CPU. By changing the Control Panel switches, the 
loopback process is also used to check out the links to the 
Interactive Display System, printers and other peripherals. 
See Figure 3. 

Fixed Disc Self-Test 

The built-in 12 MByte fixed disc has its own independent 
Self-Test. Actuated by a switch on the disc Controller board, 
it loops and displays errors in the same manner as the CPU 
Self-Test. 

Key steps include a processor test, ROM checksums, 
device-bus interface chip loopback, actuator arm motion 
tests and extensive writing/reading on a reserved track. 

Interactive Display System Sdf-Test 

An independent self-test is also provided in the Interactive 
Display System (IDS). It checks for ROM checksums, de
vice-bus interface chip loopback, keyboard scanning and 
stuck keys, character ROMs in wrong sockets, horizontal 
oscillator, and correct dot emission to the sweep circuitry. 
The operator checks the displayed fonts on the display 
screen. 

Flexible Disc Unit Self-Test 

A similar Self-Test is provided for the flexible disc unit 
(FDU). If a flexible disc is present, reading will be tested; 
if an additional switch is depressed at the start of FDU Self
Test, write/read testing is performed. 

At this point in the stimulus-response test sequence, the 
kernel of the system has been tested by microcode (Figure 
4). One can now load and run macrocode test programs. 

Diagnostic/Utility System 

A memory-based operating system, the Diagnostic/Utility 
System (DUS), provides file management of test and utility 
programs on a flexible disc. DUS provides a simple and 
deterministic base for software testing of the hardware. 

: ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Inter-Module Bu • __ 
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Figure 4--System kernel. 

DUS is easily used by a CE or trained user to check 
system hardware. There is a HELP capability which lists 
the directory and commands; a program is invoked by sim
ply typing its name. 

Processor test program 

This program checks certain software-related CPU func
tions not tested in the CPU Self-Test. 

I/O map program 

The IOMAP program uses hardware self-identification 
features to display the type and address of each channel and 
device in the system. Any number of Identify, Loopback, 
or Self-Test commands may be sent to any device-for ex
ample, a printer's self-test can be invoked to check out both 
the 110 path and the device. 

Device diagnostic and test programs 

There is a diagnostic or test program for each device. 
These are easily used by a CE or trained user-each has 
step-by-step prompt messages and a default mode which 
consists of a fast, non-destructive subset of the overall test 
sequence. If the user suspects a disc problem, for example, 

the default mode of the disc diagnostic program runs a subset 
of the test menu which will give a good confidence check of 
the disc drive without damage to the user's data base. 

Users with more time and knowledge can run these tools 
at the CE level-this is particularly valuable to OEMs and 
software houses incorporating the HP 300 into their own 
products. 

SUMMARY 

The HP 300 has been described in an overview. The prod
uct's serviceability features are broken into three groups
fault containment features, monitoring tools and stimulus
response tools. Each specific feature has been described in 
detail sufficient to show its role in reaching the overall goal
low cost of ownership for a small commercial system. 

* * * 
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INTRODUCTION 

One of the most important unsolved problems in the design 
of a computer system is the automatic optimization or tuning 
of the computer architecture to better suit the problem under 
consideration. In particular, it is very important to make an 
effective mapping of the structure of the problem to be 
solved to the structure of the computer being used. 

The best approach to this problem is to automate the 
tuning procedure of the computer architecture by the com
puter itself, in which the computer evaluates its performance 
and thereby achieves better performance. This seems to be 
the best approach because the existing computer systems 
have become too large and too complicated to be handled 
by manual tuning techniques. It should be noted that tuning 
iteration is carried out automatically at the Instruction Set 
Processor (ISP) level utilizing the inherent characteristics of 
dynamic microprogramming. 

The purpose of this paper is to present a detailed algorithm 
for an automatic tuning of computer architectures using dy
namic microprogramming techniques and to show the effec
tiveness of the proposed ideas by describing the results of 
some experiments. We have been doing research on this 
problem since the late 1960s. 1 Very little research has been 
conducted with regard to the automatic tuning of computer 
architectures. 2 - 5 

PRINCIPLES AND IMPLEMENTATION 
MECHANISMS 

Basic principles 

A simplified model of a mechanism for automatic tuning 
of a computer architecture at the ISP level is shown in 
Figure 1. The basic functions required for the optimization 
of the architecture or tuning are as follows: 
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Monitoring of programs 

Detailed information regarding the dynamic characteris
tics of both the computer and the program to be solved is 
necessary to perform the optimization processes. This in
formation must include the relative frequencies of machine 
instructions, the relative frequencies of sequences of in
structions, that is serial dependencies, and the relative fre
quencies of address and data values. A monitor implemented 
in hardware, software or firmware collects this information. 

Analysis of data 

The information obtained from the monitor is processed 
by an analyzer which may be an independent computer. The 
function of the analyzer is to identify all possible candidates 
for instruction patterns that can be tuned up in order to 
create new instructions to save execution time and storage 
space. This is performed by a thorough analysis of the ap
plication program and its execution profile. 

Feedback to computer 

New instructions, that were synthesized by the analyzer, 
are converted into new microprograms which occupy less 
storage space and have faster execution time than the orig
inal instructions. The synthesized microprograms are loaded 
into the writable control storage (WCS) in the computer 
through the feedback path during the program execution to 
form a new enhanced architecture. This results in dynamic 
modification of the computer architecture and in better per
formance. It should be noticed that dynamic microprogram
ming techniques are very effective to realize this dynamic 
modification. 
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Figure I-Model of an automatic tuning mechanism. 

Learning of tuning behavior 

A special feature of our method is the fact that a data base 
is provided in the analyzer. The above-mentioned tuning 
processes are usually repeated until the desired performance 
improvement has been achieved. Therefore, the analyzer 
keeps tra.ck of the tuning behavior in the data base whenever 
tuning occurs. The analyzer can refer to the contents of the 
data base so that the number of tuning iterations will be 
minimized. 

Definition of terms 

The terms used in the next two sections are defined as 
follows: 

Machine 

Each intermediate language (lML) instruction set defines 
a corresponding machine, Mi , which has an IML instruction 
set IML;. IML; is a set of instructions represented as fol
lows: 

where Ik is an instruction which is a microroutine consisting 
of a sequence of microinstructions. 

Program 

A program is a sequence of IML instructions. 

Block 

In order to define a block, IML instructions have to be 
divided into the following two types: 

1. Branch type~Instructions whose next instruction to 
be executed is not necessarily next one in sequence. 

2. Sequential type-Instructions whose next instruction 
to be executed is always the next one in sequence. 

A block is a static sequence of instructions which satisfies 
the following conditions: 

1. Its entry point is restricted only to the top instruction. 
2. The last instruction is of branch type. 

Length of block 

The length y(B) of a block B is the number of instructions 
contained in that block. 

Instruction pattern 

An instruction pattern (P) is a continuous sequence of 
instructions in a block. The number of different instruction 
patterns in a block is not greater than ~y(B)·(y(B)-l). 

Length of pattern 

Let the bit length of pattern p consisting of y be y(p). 

Weight of a pattern 

The weight of a pattern p, g(p) is defined as follows: 

g(p)= i T(p)xf(p, i) 
i Toxy(p) 

T(p) ~ f( i)= T(p)xf(p) 
Toxy(p) f p, Toxy(p) 

where 

T(p): Execution time of pattern p 
f(p, i): Number of times that pattern p is executed in the 

block i. 
f(p): Number of times that pattern p is executed in all 

blocks. 
To: Total program execution time 

y(p): Length of pattern p. 

Improvement ratio 

The capacity of writable control storage required to con
vert a pattern p into a microprogram may be thought of as 
the overhead of the tuning. It is represented by O(p). Fur-



thermore, the improvement ratio (J.L(p )), indicating how 
much improvement of the execution speed has been 
achieved by tuning, is defined by the following equation: 

() 
T (p ) - t (p ) 

J.Lp= 
To 

= T(p)xf(p) _ T/(p)xf(p) = T(p)-T/(p) f(p) 

To To To 

where 

T(p): Total execution time of pattern p 
t(p): Total execution time of pattern p after tuning 
T(p): One execution time of pattern p 

T / (p): One execution time of pattern p after tuning 
To: Total program execution time 

f(p): Execution frequency of pattern p in all blocks 

Optimum design of an intermediate Language based on 
dynamic computer behavior 

It is well known that better execution efficiency may be 
achieved through description of the problem in a lower-level 
language. For instance, better performance can be expected 
when the problem is written in machine instructions rather 
than in high-level languages, and much better performance 
can be expected when the problem is written in microin
structions rather than in machine instructions. 

The direct description of a problem in microinstructions 
is called "Firmware," and this results in the creation of new 
instructions suitable for the problem to be solved. The im
provement of the execution efficiency is carried out at the 
ISP level, and this procedure is calied ,. Architecture Tun
ing. " 

To achieve optimal efficiency, it is clearly desirable to 
implement all the programs in firmware. However, more 
than 80 percent of the execution weight is concentrated on 
at most four to five percent of the total number of program 
steps.6 Therefore, the best performance cost ratio is not 
achieved by making all the programs into firmware. Parts of 
the program should be implemented in firmware considering 
the dynamic behavior of the program execution. In this case, 
the best strategy is to apply microprogramming to those 
parts of the program, which are most frequently executed. 
In order to automatically detect the parts to be tuned up, 
the program is divided into blocks based on the proposed 
algorithm described in the next section. Next, the execution 
weight is measured to decide the blocks that have to be 
implemented in firmware starting from the block with the 
highest execution weight. 

An algorithm for tuning of I ML instruction patterns 

An important consideration is that detailed information 
about the characteristics of programs is necessary to per
form the tuning processes. Since the use of each IML in
struction is not always uniform at the moment of program 
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execution, the relative frequencies of both machine instruc
tions and sequences of instructions, that is, serial depend
encies, must be included in this information. The sequences 
of pairs or multiplets of instructions, that create new instruc
tions are called "Instruction Patterns." Thus, the programs 
can be expressed in terms of a finite number of instruction 
patterns by static analysis described below. 

Weighting of the instruction patterns 

In order to give a weight to each of the instruction pat
terns, the frequencies of sequences of instructions should 
be measured. In this case, no branch instruction should be 
contained in the instruction patterns. The program is divided 
into blocks separated from each other by branch instruc
tions. The. frequencies of the blocks are measured by a 
hardware or firmware monitor. The weight of the corre
sponding instruction patterns can be calculated from the 
measured frequencies of the blocks. 

Selection of the instruction patterns to be tuned up 

Many strategies have been considered to select the in
struction patterns to be tuned up. We propose the following 
two methods: 

1. Method to achieve maximum execution efficiency. 
U sing the equation for estimating the tuning effect, 

which will be described in the next section, we can 
estimate the performance improvement ([L) by means 
of the previously found instruction patterns. 

First, we select the instruction patterns with the 
maximum value of [L. It turns out that the weight of 
the other instruction patterns may be changed, since 
some of the instruction patterns may be overlapping 
each other and some instruction patterns contain other 
instruction patterns. 

Next, we carry out the static analysis again to weigh 
the instruction patterns. The value of [L is recomputed 
to select new instruction patterns. The above steps are 
repeated until the sum of all the [L' s exceeds a certain 
percentage which has been determined through some 
experiments. 

2. Method to achieve maximum economical effect. 
This method is similar to the method described 

above, but now we use [LI iJ instead of [L. Here, iJ 
represents the estimated value of the capacity needed 
for the WCS, which is necessary for the translation 
into firmware of the instruction patterns. It is also 
derived from the equations for estimating the tuning 
effect. Tuning is executed until the following condition 
is satisfied: 

[L>a or o>a / . 
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Synthesis of new instructions 

We make a selected instruction pattern into a new instruc
tion. Each sequence of instructions is implemented in a 
single microprogram, which occupies less space and has a 
faster execution time than the original instructions. The tun
ing is based on the existing microprogram optimization tech
niques 7 which bring about reduction in the number of mem
ory references, efficient use of internal resources and the 
possibility of parallel processing. 

Feedback 

The synthesized instructions are stored into the WCS and 
also registered in the code generation part of the compiler. 
The codes being compiled are translated into corresponding 
new codes by applying an editing operation at the machine 
code level. 

Estimation of tuning effects 

If no limitation is imposed on the capacity of the WCS, 
then optimal tuning may be achieved by synthesizing new 
instructions corresponding to the instruction patterns de
tected during the program execution. However, the capacity 
of the WCS is directly related to the cost of the system. It 
is also necessary to save time and effort in writing the 
microprograms. 

It is difficult to give a quantitative evaluation of this effort. 
However, if we assume that the amount of work spent on 
microprogramming is proportional to the number of the mi
croprogrammed steps, then the amount of labor will be pro
portional to the capacity of the WCS. Therefore, it is desir
able to select instruction patterns which may combine 
maximal efficiency with minimal capacity of the WCS. To 
accomplish this, a simple method to estimate the firmware 
effect, that is the ratio of the execution efficiency improve
ment to the increase of the capacity of the WCS, when 
instruction patterns are implemented in firmware, must be 
developed. If such an estimation is possible, the selection 
of instruction patterns can be done based on the overhead 
of the tuning. 

Here, we assume that the efficiency improvement result
ing from the implementation of a microprogrammed new 
instruction (IL) is a function of the weight of the instruction 
pattern implemented in firmware (g) and the increase of the 
capacity of the WCS (0), that is, 

(1) 

Further, we assume that 0 is a function of the length of 
the instruction pattern (y), i.e. 

O=g( y). (2) 

We determined the function f and g, experimentally. 
In order to determine f, we determined log(p../orn) as a 

function of log ~. The result is shown in Figure 2. indicating 
an approximately linear relation. From Figure 2. we ob-

-1 

-2 

.§' -3 

-4 

HP-2100 PASCAL Machine 

-5 ~----~------~----~----~~----~ 
-5 -4 -3 -2 -1 

log ~ 

Figure 2-Relationship between log {and 10g(,u8m). 

tained 

(3) 

hence; 

(4) 

where a, A, m and n are constants determined by the IML 
instruction set under consideration. 

Similarly, we obtained the relationship between 0 and y, 
which is indicated in Figure 3. The relation is given by a 
linear expression: 

O=by+c, (5) 

where band c are constants determined by the IML instruc
tion set. 

Equation 4 includes that firmware effect can be estimated 
from the weight of an instruction pattern and the total steps 
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Figure 3-Relationship between "y and 8. 
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MaximUlll efficiency 
improvement 

v'hat strategy do we 
choose? Maximum 
efficiency improvement or 
Maximum economical effect. 

Maximum economical 
effect 

Divide program into 
blocks at IML instruction 
level. Assign a number 
to each block. 

B(l), B(2), ••• , B(n)" 

Extract possible 
instruction patterns 
from each block. 
Assign a number to each 
pa ttern : P (p), where 
p is pattern number. 
If pep) = P(p'), then 
p = p'. 

Measure execution 
frequencies of each 
block f (B) • 

Select candidates for 
instruction patterns to 
be· implemented in firmware 
as described below. 

Calculate ~ from 
Equation (4). 

Calculate II ( = II ) from 
f and 1:' obtained from 
the tuning data base. 
Give priority to the 
candidates. 

Select pattern with the 
maximum value of ~. 

Select patterns in data 
base as candidates, then 
select the pattern with 
the maximum value of D/8. 

Once more perform static analysis of the program 
to check the change in execution frequencies of the 
patterns, provided that new instructions are 
synthesized from the selected patterns. 

I 

Implement the selected 
patterns i which are not 
registered in the tuning 
data base, in firmware. 

I 
Recompile the program 
after the selected 
patterns are defined as 
new IML instructions. 

I 
Measure the efficiency 
improvement by means of 
the new IML instructions. 

Register the patterns 
corresponding to the new· 
IML instructions in the 
tuning data base. 

I 
Update the tuning curve 
based on the information 
obtained above. 

I 
( End 

Figure ~implified flowchart of the tuning algorithm. 
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required for the corresponding microprogram. Therefore, 
this relationship is called the "tuning curve." 

Obviously, the constants a, A, m and n are positive and 
the larger the weight g and the increase of capacity of the 
WCS (J become, the greater the efficiency improvement will 
be. 

A simplified flowchart of the algorithm just discussed is 
shown in Figure 4. 

Implementation 

It should be noticed that the tuning procedure just de
scribed can be performed automatically. The following im
plementation mechanisms are required: 

1. Either hardware or firmware monitor is used to deter
mine the weight of the instruction blocks. 

2. A dynamic microprogramming technique is employed 
to modify the contents of the WCS. 

3. The compilers for high-level languages should be able 
to expand the IML instruction codes. A technique used 
for incremental compilers can be adopted for this pur
pose. 

4. The mechanism for the synthesis of new instructions 
can be implemented on a minicomputer or microcom
puter. 

I 
Tuning Data Base 

, , 
I 

I I I e : lJ, e, T' 1/)1 9 Il, 

EXPERIMENTAL SYSTEMS 

We call the tuning mechanism consisting of a Monitor, an 
Analyzer and a Synthesizer the ., Automatic Performance 
Evaluator (APE)." We developed two simple APE mecha
nisms to prove the effectiveness of the principles described 
in the previous chapters. 

Experimental System-Ion a HP-2100 and hardware 
monitors 

The process flow of tuning and learning in the experimen
tal system is shown in Figure 5. We used a HP-2100 com
puter as the host computer to be tuned up. The HP-2100 
computer is a 16-bit microprogram mabIe minicomputer. 8 

Since the machine instructions are incorporated in HP-2100, 
we can utilize two accumulators, while six other registers 
can be used with the micro-instructions. 

The control storage consists of a ROM board with a ca
pability of 256 24-bit words in which the microprogram that 
has to interpret the machine instructions is stored, and three 
WCS boards for user microprograms. Each WCS board has 
the same as the ROM. 

We employed a DYNAPROBE 7900+8000 hardware 
monitor of COMPRESS Co. as the APE monitor. We used 

I Note 

I 
_ Tuning loop 

~ A, m, n, b, c 
.. --- Lerning loop 

Calculate Il to .§: 
Select Obtain 0 and e. which are the ..... 1 

improve the gl 9 patterns Il • estimated values of Il and e 
constants used in .... 

..... , to be r-- respectively, from the 
the equa tions 1/), 

implemented equations for efficiency 
for efficiency .~ : 

in firmware 
estimation ~I estimation 

<Il' :;,:1 

i e, 
, 

! f ~ T' : y I 

Static Calculate Measure execution 
Synthesis of new instructions analysiS of f--- the weight of .... ~ frequencies of 

patterns T each pattern f the tuning blocks 

PDP-ll V03 DYNAPROBE 

Reconfiguration Supplement of inter-
of compiler pretive routines 

II HP-2100 

- H~ Compilation ~ Execution ~ Problem Result 

Figure 5-Process flow of tuning and learning in the experimental system. 



a PDP-II V03 system to analyze or synthesize the output 
derived from the hardware monitor and further a D7916 
count/time type hardware monitor and a D8028 map/store 
type hardware monitor to accumulate periods of time during 
which certain events have happened. 

Figure 6 shows the block diagram of the experimental 
system. The program to be measured is executed on the HP-
2100 host computer. The D79I6 and D8028 hardware mon
itors collect signals generated from the host computer 
through probes in order to measure the weight of the instruc
tion patterns. 

The signals collected by the hardware monitors are di
rectly supplied to the PDP-II V03 on which tuning analysis 
is carried out, the LSI bus of the PDP-II V03 is connected 
to the I/O bus of the HP-2100 through the I/O interface in 
order to make a feedback loop. 

The LSI-ii is used for the analysis of instruction patterns, 
the reconfiguration of the IML instruction set and the or
ganization of the data base in the tuning phase. To form a 
new IML instruction set, the microprograms for the synthe
sized instructions are stored into the WCS, that is incorpo
rated in the HP-2Ioo through the I/O interface. 

One of the main features of this system lies in the fact that 
there is no overhead in the monitoring function at all, since 
high-speed hardware monitors are used, and since the LSI-

DEC-HP 
Bus Interface 

POP-ll V03 
CPU 

o 

HP-2100 I/O Bus 

LSI BUS 
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II is exclusively used for tuning analysis. Figure 7 shows 
several equipments of the experimental system. 

Experimental System-2 on a Burroughs B-1700 

The Burroughs B-I726 is a microprogrammable computer 
with a data length of 24 bits.9 It provides many internal 
resources, such as four general registers and thirty two 
scratchpad registers. It can perform bit addressing and it 
has access to any sub-field of the registers. The capacity of 
the WCS which stores microprograms expressed by 16-bit 
words is 4K words. 

We developed several S-code interpreters in which a firm
ware monitor was implemented. To measure frequencies of 
instruction patterns, a firmware monitor was incorporated 
in the microinstruction fetch routine in the S-code inter
preter. Therefore, apart from the B-1700 computer no spe
cial hardware is necessary. Hereby, the monitoring over
head becomes larger and the time required for the instruction 
fetch is approximately twice as long as that in the original 
computer. 

However, the tuning operation does not occur very often, 
and if it occurs, the microprogram for the monitor is re
moved and the S-code interpreter is reconstructed so that 
the total overhead does not become very large. 

Bus Interface 

0-8041 
Interface 

0-7916 
Count/Time Type 

Monitor 

0-7720 
Address 

Comparator 

~---------
I 
I 
I 

l w C S 
l __________ _ 

HP-2100 

0-8028 
Map/Store 

Type Monitor 

Min;probes 

Figure 6-Functional configuration of the experimental system. 
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hardware monitor ~\\ HP2l00 console POPll console 
08028 hardware monitor 

"-..,-.-+-_ MT 

disk 

PTP 

Figure 7-APE experimental system. 

IMLs used for the expcrirnents 

For the IMLs to be tuned up, we chose the following two 
languages: 

I. The IML for PASCALlo which incorporates 60 instruc
tions and is emulated on both the HP-21oo and B-17oo 
computers. 

2. The FORTRAN IML for the HP-21oo, i.e. sequences 
of machine instructions interpreted on the HP-21oo 
computer. 

RESULTS OF THE EXPERIMENTS 

Tuning results 

Some tuning results are shown in Figure 8-Figure 11. 
Figure 8 indicates the tuning results when a sorting program 
is executed on the PASCAL machine emulated by the HP-
2100. For the tuning procedure on the B-1700 PASCAL 
machine, see the Appendix. 

Tf the stmtegy 'SeJected i~ maximum execution efficiency, 
it turns out that the execution efficiency is twice as high as 

that of its corresponding non-tuned version, while the re
quired capacity of the WCS is increased by 210 words when 
seven instruction patterns are selected. Further, the amount 
of the object code is reduced from 392 bytes to 284 bytes. 
This indicates that an effective code compaction is carried 
out during the static analysis of the program. 

If the strategy selected is maximum economical effect, the 
capacity of the WCS is increased by 130 words, while the 
overall execution time of the program is reduced by 30 
percent. 

These results prove the effectiveness of the principles that 
we propose for automatic tuning of the computer architec
ture. 

Frequently generated instruction patterns 

Table I is a list of the instructions frequently generated in 
maximum execution efficiency strategy as well as in maxi
mum economical effect strategy. The detected instruction 
patterns in the former strategy consist of more machine 
instructions than those in the latter strategy. 

The meaning of mo'St of the long instnJction patterns i'S 
indicated in the table. For instance, the instruction pattern. 
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Figure 8--Tuning results (bubble sort problem on the HP-2100 PASCAL 
machine). 

Figure 9-Tuning results (bubble sort problem on the B-1700 PASCAL 
machine). 

Maximum execution efficiency 

Table ~ - List of the Instruction Frequently Generated 
(Bubble. Sort Problem on the HP-2l00 PASCAL Machine) 

No. Pattern No. Instruction Patterns Meanings 

1 88 LAO LDO CHK DEC IXA IND Load the contents of array elements 

13 LDO LOD LEQ FJP Compare two values. If one is less 

40 LDO INC SRO UJP Increase value by q and jump. 

4 70 LDO SRO Trivial. 

41 LAO LDO CHK DEC IXA Calculate addresses of array. 

6 19 LDO STO Trivial. 

6 SRO LDC STR Trivial. 

Maximum economical effect 

No. Pattern No. Instruction Patterns Meanings 

17 DEC IXA Trivial. 

15 LDO CHK Trivial. 

8 LDO LOD Trivial. 

31 LDO INC SRO Trivial. 

10 LEQ FJP Trivial. 

6 70 LDO SRO Trivial. 

73 IND SRO Trivial. 

into stack. 

than other, then do not jump. 
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Figure to-Tuning results (matrix mUltiplication problem on the B-t700 
PASCAL machine). 

e.g. the loading of the contents of array elements into a 
register, is reflected in the environment of the problem to 
be solved. The characteristics of these instruction patterns 
will play a very important role in the design of ISP archi
tecture for high-level language oriented computers in the 
future. On the other hand, the short instruction patterns 
detected in maximum economical effect strategy do not have 
any significance. 

IML structures and computer organization 

The best way to emulate an IML instruction set depends 
on the structure of the computer, which has a subtle influ
ence on the tuning effect. For instance, the tuning results 
on the HP-2100 machine instruction is shown in Figure 11, 
indicating that the tuning effect is not great if we do not take 
the address patterns as well as the instruction patterns into 
consideration. This is because the machine instruction and 
its corresponding operand are simultaneously fetched by a 
hardware mechanism on the HP-2100, while it is impossible 
to fetch the microinstruction and its operand simultaneously 
in user microprogramming. 

There are two methods to solve this problem: 

1. If the tuning is performed using only instruction pat
terns. the structure of the HP-2100 has some disadvan-

tages, since the possibility of handling mUltiple oper
ands is not taken into account. It is desirable to make 
it possible to expand the operand field at the micro
programming level. The microprogrammable bit ad
dressing function incorporated in the B-1700 and the 
machine instructions concerning the manipulation of 
multiple operands provided in the PDP V AX-I1I7S011 
make this problem easier to handle. 

2. If the tuning is performed using both instruction pat
terns and their corresponding address patterns, a better 
tuning effect is achieved. For instance, the broken line 
in Figure II indicates the tuning results using both the 
instruction patterns and the address patterns. This re
sult was obtained by a manual procedure. However, it 
is possible to automate the tuning procedure using ad
dress patterns by modifying the proposed algorithm. 

IMLs and host computers 

We arbitrarily selected two IMLs, namely the PASCAL 
and HP-2100 machine instructions. Nevertheless, significant 
performance improvement is achieved. Therefore, if we 
would use an IML instruction set which is more suitable for 
tuning procedure, an even better performance achievement 
is to be expected. 

The HP-2100is intentionally designed for the machine 
instructions. Therefore, it does not have effective features 
for tuning. Although the B-1700 is an emulation-oriented 
computer, it seems to us that its microprogram capability is 
designed to integrate the hardware and software on the Mas
ter Control Program. Therefore, some of the well organized 
mechanisms were not utilized in the automatic tuning pro
cedure. 

We think an automatic tuning oriented computer should 
be developed in the future. 

Tuning curve and learning 

The tuning curve is shown in Figures 12 and 13. The 
experimental results confirm that the methods to estimate 
the tuning effect are useful for the proposed algorithm. 
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Figure 12-Tuning curves (HP-2100 PASCAL machine). 

As shown in Table I, the frequently generated instruction 
patterns are significant. These patterns may often be gen
erated in other application programs. This proves that the 
proposed method is very effective to improve IMLs for a 
wide variety of applications. 

CONCLUSION 

Development of a computer architecture that is adaptable 
to the problems to be solved is an important area of research. 
In this paper, we consider an automatic tuning of computer 
architectures at the ISP level using dynamic microprogram
ming techniques. After a brief explanation of the principles 
of the automatic tuning mechanisms, a detailed algorithm 
for the tuning procedure is described. 

The basic processes of the proposed automatic tuning 
algorithm are: 

1. Monitoring of the dynamic characteristics of the pro
gram to be solved. 

2. Analysis of the monitored information to create new 
instructions. 

3. Feedback of corresponding microprogrammed instruc
tions to the WCS in the computer to form a new en
riched architecture. 

10 
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Figure 13-Tuning curves (B-1700 PASCAL machine). 
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4. A learning process with regard to the tuning behavior 
to guarantee faster achievement of performance im
provement. 

The first three processes are automatically carried out until 
the desired performance improvement is achieved . 

In order to prove the effectiveness of the proposal algo
rithm, we carried out some experiments on a HP-2100 and 
a Burroughs B-1700 computer. Our experiments show that 
tuned programs are executed in 30-60 percent less time than 
the origina! programs. 

It should be noted that dynamic microprogramming tech
niques are very effective to dynamically modify the com
puter architectures during the program execution. Our ex
periments proved that a computer can change dynamically 
so as to function optimally depending on the status of the 
problems to be solved, and that the learning effect is signif
icant. We hope that the results of this research will contrib
ute to the future development of adaptive computer systems 
and learning machines. 
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APPENDIX 

An example of the tuning procedure on the B-1700 
PASCAL machine 

The following steps should be referred to the tuning al
gorithm shown in Figure 4. 
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1. Original PASCAL Program 

? SORT AN ARRAY OF INTEGER ? 
CONST N=25; 
VAR I,J,K,M: INTEGER; 

A: ARRAY [l..N] OF INTEGER; 
BEGIN FOR 1:=1 TO N DO A[l]:=I; 

FOR 1:=1 TO N-l DO 

END. 

BEGIN K: =1; M: =A[I]; 
FOR J:=I+l TO N DO 
IF A[I]>M THEN 

BEGIN K:=J; 
M: =A[J] 

END; 
A[K]: =A[l]; A[l]: =M 

END 

2. Divide program into biocks at IML instruction 
level. 

MST 
. CUP 

STP 

SORT ENT 
LDCI 
SRO 
LDCI 

.L01 LDO 
LOD 
LEQI 
FJP 

LAO 
LDO 
CHK 
DEC 
IXA 
LDO 
STO 
LDO 
INC 
SRO 
UJP 

o 
SORT 

36 
I 
I 
. WKI 

.WKI 

.L02 

A 
I 

I 
I 
.101 

Block I 

Block 2 

Block 3 

Block 4 

3. Extract possible instruction patterns from each 
block. 

Pattern No. 
I MST 
2 LDC 
3 SRO 
4 LDC 
5 LDC 
6 SRO 
7 ENT 
8 LDO 

CUP 
SRO 
LDC 
STR 
SRO 
LDC 
LDC 
LOD 

Pattern 

LDC 
STR 
SRO LDC STR 

9 LOD LEQ 
10 LEQ FJP 
11 LDO LOD LEQ 
12 LOD LEQ FJP 
13 LDO LOD LEQ FJP 
14 LAO LDO 
15 LDO CHK 
16 CHK DEC 
17 DEC IXA 

Integral patterns of each block 

Block No. 
1 
2 
3 
4 

5 
6 

Pattern No. 
1 
2 3 4 5 6 7 
8 9 10 11 12 13 

14 15 16 17 18 19 20 21 
24 25 26 27 28 29 30 31 
34 35 36 37 38 39 40 41 
44 45 46 47 48 49 50 51 
54 55 56 57 58 59 60 6] 
64 65 66 67 68 
2 3 5 69 
8 9 10 11 12 I3 

22 23 
32 33 
42 43 
52 53 
62 63 

4. Calculate the length and the execution time of each 
pattern . 

Length of 
Pattern No. Pattern [y] 

1 2 
2 2 
3 2 
4 2 
5 3 
6 3 
7 5 
8 2 
9 2 

10 2 

Execution Time 
of Pattern [T] 

25.1 
21.5 
21.5 
22.7 
30.2 
35.6 
50.0 
25.7 
27.5 
22.5 

Hardware Monitor 
or 

Firmware Monitor 
-l} 

5. Measure execution frequencies of each block. 

Block No. Frequency [f] 
1 1 
2 1 
3 26 
4 25 
5 
6 25 
7 24 
8 324 



9 300 
10 156 
11 300 
12 24 

6. For each pattern, calculate execution frequencies 
then calculate weight. 

Pattern No. Frequency [f] Weight [g] 
1 1 1.02 X 10-4 

2 2 1. 75 :><10-4 

3 26 2.28x 10-3 

4 
5 
6 
7 
8 
9 

25 
2 

25 

10 

1 
375 
375 
375 

2.31 X 10-2 

1.64 x 10-4 

2.42 x 10-3 

8.14x 10-5 

3.93 x 10-2 

4.21 X 10-2 

3.44x 10-2 

Note: T(p) 
g(p)= Tox y(p) 

T(p)=T(p)xf(p) 
To=T( 1) + T(7) + T( 13) + T(40) + T(68) 

+ T( 69) + T(95) + T(96) + T(97) + T(98) 
= 1.23 x lOS /-Ls 

7. Calculate 0, {L and {LIO from Equations 4 and 5. In 
the case that none of the candidates is in the tuning 
data base, but the coefficients for Equations 4 and 
5 are registered. 

A=Oo69 b=4.6 
m=1.14 c=14.7 
n=0.61 

Pattern No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

[OJ 
24.1 
24.1 
24.1 
24.1 
28.7 
28.7 
37.9 
24.1 
24.1 
24.1 

O(p)=bxy(p)+c 
{L(p)= A x O(p)m X g(p)n 

[{L] 
0.1 
0.1 
0.6 
0.6 
0.2 
0.8 
0.1 
3.6 
3.8 
3.3 

[{LIO] 
0.004 
0.006 
0.03 
0.03 
0.005 
0.03 
0.004 
0.15 
0.16 
0.14 

8a. Strategy I-Maximum efficiency improvement 

Sorting result of patterns in descending order of {L. 
No. Pattern No. [{L] [0] 

1 88 10.6 42.5 
2 
3 
4 
5 

4i 
84 
97 
34 

9.9 
9.7 
9.6 
9.3 

37.9 
37.9 
56.3 
33.3 

The rest is omitted but same as in Strategy 2. 
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8b. Strategy 2-Maximum economical effect 

Sorting result of patterns in descending order 

No. 
1 
2 
3 
4 
5 

Pattern No. 
17 
72 
26 
76 
34 

of {LIO. 
[{LIO] 
0.33 
0.31 
0.30 
0.28 
0.28 

[{L] 
7.9 
7.5 
8.5 
8.1 
9.3 

[0] 
24.1 
24.1 
28.7 
28.7 
33.3 

Pattern with the maximum value of {LIO. 
17 DEC IXA 

9. Once more perform static analYSIS of the program to 
check the change in execution frequencies of the 
pattern, provided that new instructions are synthe
sized from the selected patterns. 

SORT 

.L01 

MST 
CUP 
STP 

ENT 
LDCI 
SRO 
LOCI 

LOO 
LOD 
LEQI 
FJP 

o 
SORT 

36 

.WKI 

.WKI 

.L02 

LAO A 
LDO I 
CHK 
DEC ~SYN01 

IXA 

Block I 

Block 2 

Block 3 

LDO Block 4 
STO 
LDO 
INC I 
SRO I 
UJP .L01 

.L02 LDCI 
SRO 
LDCI 
LOCI 
SBI 
STR 

25 

.WKI J 
Block 5 

10. If the total sum of {L for the candidates of patterns 
exceeds the value of 5 or if the total sum of iJ for the 
candidates of patterns exceeds the value of IS then 
go to 11, else go to 6. 

11. Original PASCAL IML interpreter written in Bur
roughs B-1700 MIL.12 
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% IML FETCH AND DECODE 
CLEAR BASE.REG 
MOVE 24 TO CP 

FETCH 

DEC 

IXA 

IXA.l 

MOVE A TO FETCH.ADDRESS 
%A=ACTUAL ADDRESS OF 
FETCH 

MOVE FETCH.ADDRESS TO TAS 
MOVE PC TO T 
SHIFT T LEFT BY 5 BITS TO X 
SHIFT T LEFT BY 4 BITS TO Y 
MOVE SUM TO FA 
ADD BASE.REG TO FA 
F A.POINTS TO IML 
READ DL(OP)+DL(P) BITS TO T 

PT.FA Q 
READ DL(Q) BITS TO X 
MOVE X TO Q.FIELD 
EXTRACT DL(OP) BITS FROM T(10) 

TOY 
MOVE PC TO L 
COUNT L UP BY 1 
MOVE LTO PC 
MOVE Y TO M 
JUMP FORWARD 

GO TO LOD 
GO TO LDO 

CALL POP.UP.BREG.l 
MOVE Q.FIELD TO Y 
MOVE DIFF TO BREG.l 
GO TO PUSH.DOWN.BREG.l 

CALL POP.UP.BREG.l 
MOVE Q.FIELD TO AREG.1 

CALL SET .SIGN .AND.ABS 
MOVE AREG.l TO Y 
MOVE BREG.l TO FA 
CALL I.MULTIPLY 
IF SIGNS.ARE.DIFFERENT THEN 

BEGIN 
CLEAR X 
MOVE DIFF TO Y 
END 

MOVE Y TO TAS 
CALL POP.UP.BREG.1 
MOVE TAS TO Y 

MOVE SUM TO BREG.l 
GO TO PUSH.DOWN.BREG.I 

12. Implement the selected pattern in firmware. 

SYN01 % DEC QI-IXA Q2 
% 
% + - - - --+ - -----+ 
% I SYN01 I I 
% +- - - --+ - - - ---+ 
% I Q 1 I 
% +- - -- - - - - - ---+ 
% I Q 2 I 
% +---- - -- - - ---+ 
% I DUMMY I 
% +------------+ 
% 
BUMP(PC,l) 
READ 24 BITS TO X 
MOVE X TO AREG.l 
CALL POP.UP.BREG.l 
MOVE Q.FIELD TO Y 
MOVE DIFF TO BREG.l 
% BREG.l =TOP OF STACK 
% AREG.l=Q2 
GO TO IXA.l 

13. Measure the efficiency improvement by means of 
the new IML instructions then register the patterns 
corresponding to the new IML instructions in the 
tuning data base, and update the tuning curve. 

Tuning result for Pattern 17 
Routine Name Cycle 

FETCH 25 
DEC 48 
FETCH 25 
IXA 265 

Total 363 

Routine Name 
FETCH 
SYN01 

Cycle 
25 

276 

Total 301 

Execution Time [7'] 60.4 ILs Execution Time [1"] 50.3 

ILS 
Required WCS [0] 9 words 

1L(l7)= (T(17)-7"(l7»xf(l7) x 100% 
To 

=4.8% 
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APPROACHES TO GROWTH IN COMPUTER USAGE 

With the price of computer hardware decreasing steadily 
and the scope of data processing applications ever rising, 
the problem of upgrading a computer system is omnipresent. 
The myriad of potential pitfalls includes losing an investment 
in purchased hardware and software, reprogramming appli
cations, reformatting data files, retraining personnel, oper
ating two different systems in parallel during the conversion 
period and reoptimizing finely tuned applications. 

Computer series 

Most computer vendors attempt to ease the pain of up
grades by offering an entire series of similar computers span
ning a wide range of price and performance. Such series 
(e.g., IBM 3601,10,28 and its successors, and PDP-118,S) us
ually consist of a relatively constant machine architecture 
with different underlying implementations which yield faster 
and faster central processing units (cpus) and memories (see 
Reference 7, Part 6, "Computer Families"). 

Unfortunately, re-implementation of an architecture may 
result in forced changes at the user level; for example, a 
program or even the operating system may run on one im
plementation and not another. At the least, re-implementa
tion is cosiiy in terms of the additional design and manufac
turing efforts required. 

In addition, minimal configurations of cpus, memories, 
and peripherals are designed with the typical user in mind. 
Thus, it is common for a user requiring much central pro
cessing power but little I/O to be forced into a configuration 
sporting many unneeded data channels in order to get a 
powerful enough cpu. 

.. Currently at Systems Control, Inc., Palo Alto, California. 
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Modular multiprocessor 

An alternative to the typical computer series with multiple 
implementations is a multiprocessor architecture which of
fers systems of one to many identical cpus, memories and 
data channels, thereby spanning the desired price and per
formance range. Cpus, memories and channels can be added 
independently to meet a particular processing need and with
out changes to user programs. 

It costs less to design a simple cpu once and replicate it 
within an elegant mUltiprocessor architecture than to design 
many different, possibly very complicated cpus. Increased 
reliability because of redundant resources is an additional 
benefit of such a modular approach. Indeed, we feel that 
computer systems of the future should not have to depend 
upon the availability of a single cpu. 

BACKGROUND ON MULTIPROCESSING 

There has been much interest in mUltiprocessing computer 
systems since the first, the Burroughs D 825,3 appeared in 
1962. A multiprocessor system has more than one cpu, each 
with its own stream of instructions operating on its own data 
stream. Such an architecture is often termed "MIMD" for 
these "multiple instruction, multiple data" streams. 19 

Homogeneity of resources 

There are many possible ways to classify MIMD archi
tectures (Figure 1, after Reference 16). Perhaps the most 
useful is by their degree of homogeneity, or the degree to 
which resources of the system (processors, main memory, 
and peripheral units) can be shared indistinguishably (Ref
erence 18, pages 104-105). This has also been defined as the 
quality that all resources of a particular type appear sym
metric to the rest of the system. 17 
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Full Homogeneity? 
Main Operating System 

Computer Cpu Memory Peripherals & User Programs Purpose Cpu-Memory Interconnection 

BTl 8000 Yes Yes Yes Yes General Purpose Timesharing Timeshared Common Bus 
D 825 Yes Yes Yes Yes Command & Control Crossbar 
CLC Yes Yes Yes Yes Command & Control Multiported Memory 
U 1108 Yes Yes Yes Yes General Purpose Multiported Memory 
PLURIBUS Yes Partial Yes Yes Packet Switching MUltiple Buses 
C.mmp Yes Partial No Yes Realtime Artificial Intelligence Crossbar 
PRIME Yes No Yes No Timesharing Multiported Memory 
T 16 Yes No Partial No Transaction Processing None 
ARC No No Partial No Timesharing None 
IBM 370 ASP No No No No General Purpose None 
AP-120B No No No No Scientific None 

Figure I-Multiprocessing aspects of some computers. 

Adding capabilities to an existing system is straightfor
ward when it is composed of homogeneous modules. The 
more homogeneous a system is, the more robust (i.e., less 
prone to catastrophic failure), because other equivalent re
sources are still available when one fails. Using only one 
basic design in each part of a multiprocessor also keeps 
design, manufacturing and programming costs to a mini
mum. And homogeneity allows more efficient utilization of 
resources, since each member of a particular resource pool 
is unrestricted as to what tasks it can do. 

Most multiprocessors of the past have lacked homogene
ity in at least one respect. The concept of homogeneous 
cpus, for instance, breaks down if a system has one general 
purpose processor and one or more special purpose proces
sors, e.g., the fast floating point AP-120B array processor 
by Floating Point Systems. 30 In this case, programming for 
each type of cpu is obviously different and must be done 
explicitly. (Not to be considered a multiprocessor at all in 
this discussion is the typical computer with one general
purpose cpu and one or more special-purpose I/O proces
sors, Reference 7, Part 5, Section 2, "Computers with One 
Central Processor and Multiple Input/Output Processors.") 

Ideally, all cpus would have access to all of memory to 
make the sharing of programs and data simpler and more 
efficient, and thus cpus would not have local private mem
ories (other than perhaps a small transparent cache for per
formance improvement). This type of cpu is often termed 
"closely coupled." The Tandem Computers T 16 NonStop 
computer,21 which has non shared memory for each cpu, 
must be regarded as a network of computers (each consisting 
of a cpu, I/O processor and memory) with partial sharing of 
peripherals. Similarly, the Datapoint Attached Resource 
Computer (ARC) and IBM's loosely coupled attached sup
port processor (ASP) (Reference 7, page 506) are networks 
(Figure 2). The Carnegie-Mellon University C.mmp (based 
on Digital Equipment PDP-II CpUS)31,24 and the Bolt Beranek 
and Newman PLURIBUS (based on Lockheed SUEs)2o,26,4 
are hybrids, having both shared memory and memory pri
vate to each cpu. 

The sharing of all 110 capabilities is the next aspect of 
homogeneity, one which is lacking in C.mmp, for example, 
because an I/O device must be attached to the Unibus of 

one of its PDP-II s and is restricted to communicating with 
a local memory there. This is undesirable because the loss 
of either the cpu or its local memory isolates the 110 device 
from the rest of the system. 

A final aspect of homogeneity concerns software, includ
ing both the operating system and user programs. Ideally, 
for efficient use of processor and memory resources there 
should be only one copy of one operating system which can 
be run on any of the cpus; this is the case with C.mmp. In 
practice, however, the typical multiprocessor system has 
resorted to having either separate copies of the same oper
ating system running on each cpu or one copy restricted to 
always running on the same cpu (the common master-slave 
mode of many dual processor systems). 

For reliability and efficiency it should be possible for any 
user program to run on any processor. Too often, applica
tions are segregated to run on dedicated cpus. When seg
regation is done by entire classes of programs (e.g., inter
active, batch, data base management), it may be a 
consequence of the lack of homogeneity in 110. A common 
example of this is the restriction of interactive terminals to 
one cpu. 

~ 
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Figure 2-Architecture of a computer network. 
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Purpose 

Another dimension of multiprocessors is their purpose. 
Most successful multiprocessors have not been designed for 
the general purpose commercial computing environment. 
The D 825 and the Bell Telephone Laboratories CLC (part 
of the SAFEGUARD ABM system)25 were designed for real
time military command and control applications in which 
maximizing both overall throughput and reliability was par
amount. The T 16 was designed for transaction processing 
applications in industries, such as banking and airlines, in 
which continuous system availability is required. PLURI
BUS was designed as a packet-switching node for the AR
PAnet. One-of-a-kind research prototypes have included 
C.mmp and the University of California at Berkeley 
PRIME,5 designed for real-time artificial intelligence appli
cations and timesharing, respectively. 

Many computer manufacturers have introduced multipro
cessing to extend the high-end capabiiities of a computer 
line. Examples are the Sperry Rand Univac 1108,27 IBM 370 
MP,23.15 and DECsystem-109 dual processors. These archi
tectures were not designed from the start with a mUltipro
cessor in mind. So we often observe systems which could 
theoretically support a number of processors, but in practice 
never have more than two. 

Closely related to the purpose of a multiprocessor is the 
way in which user programs are expected to take advantage 
of its multiprocessing capability. There are two basic phi
losophies. 

The first is most useful for special-purpose multiproces
sors (e.g., C.mmp, PLURIBUS, CLC) dedicated to running 
a small number of large, known programs. In this case the 
user must explicitly segment an application into a number 
of independent programs. These programs, called processes, 
are designed so that they may run concurrently, thus taking 
advantage of the multiple cpus available. Segmenting a pro
gram currently must be done by hand by the programmer or 
analyst and is not a simple task. 

The alternative used in general purpose multiprocessors, 
especially in time-sharing, is to rely upon the job mix of a 
multiprogramming environment to provide enough pro
cesses (one per job) to keep all cpus busy. This avoids the 
programmer headaches of program segmentation and also 
avoids the system overhead resulting from the interprocess 
communication needed to coordinate processes. Of course, 
it is desirable to allow such coordination, while not requiring 
it. 

Processor-memory interconnection schemes 

Probably the most critical design decision in a multipro
cessor architecture is selection of the method by which main 
memory is interconnected to the cpus and peripheral pro
cessors (channels). The bandwidth of this interconnection 
switch provides an upper bound on the number of processors 
which can be handled, and thus on the throughput of the 
entire system. 

Four basic schemes have been used. In decreasing order 

of complexity and potential throughput, they are 

1. A crossbar switch or matrix connecting each memory 
unit with each processor. 

2. Multiported memory, in which each memory provides 
a port for a connection from each processor. 

3. Multiple buses, each of which connects some cpus, 
memories and other buses (which may in tum connect 
to other cpus, memories and buses). 

4. One common time-shared bus, over which all data 
traffic must pass. 

Although the first three alternatives provide concurrent 
transfers between more than one processor-memory pair 
(Figure 3), analogous to a telephone switching exchange in 
which more than one conversation can occur simultane
ously, they are also relatively expensive and typically only 
used in large systems. The D 825 and C.mmp used crossbar 
schemes, while the dual processor IBM 370 MP systems, 
Univac 11 08, and DECsystem-l0 (along with most other 
multiprocessors) rely on mUltiported memory. 

The complexity (and hence cost) of a switch is propor
tional to the number of hardware switching elements it has, 
which in tum depends on the number of unique intercon
nections allowed between processors and memories. If each 
of p processors is to be capable of "talking" to each of m 
memories in parallel, then there must be p Xm unique inter
connections. If, on the other hand, each processor and mem
ory need only be able to talk to a single common bus, then 
the number of interconnections is reduced to just p +m. For 
systems with more than two cpus and two independent 
memories, the difference in the complexity of the two 
schemes becomes immense. 

Until now, no one has developed a bus fast enough to 
make a multiprocessor using a single timeshared bus feasible 
(Figure 4), analogous to a telephone exchange in which all 
subscribers are on a single party line. For example, limited 
by buses with 200-nanosecond data transfer rates, a PLU
RIBUS system requires multiple buses, each bus connecting 
up to two processors and two memories. Up to seven of 
these buses may then be connected to shared memory and 
peripherals by still other buses. 

CENTRAL 
PROCESSOR, 

MAIN 
MEMORY, 

CENTRAL 
PROCESSOR2 

MAIN 
MEMORY2 

••• 

••• 

CENTRAL I 
PROCESSORp 

SWITCHING 
MATRIX 

MAIN 
MEMORYm 

Figure 3-Architecture of a multiprocessor with parallel buses. 
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BUS 

I I I I I I 
CENTRAL CENTRAL CENTRAL MAIN MAIN MAIN 

PROCESSOR, PROCESSOR2 • • • PROCESSORp MEMORY, MEMORY2 ••• MEMORYm 

Figure 4-Architecture of a multiprocessor with a single common time-shared 
bus. 

ARCHITECTURE OF THE BTl 8000 

The BTl 8000 computer system was designed to be a 
general-purpose system featuring inexpensive, modular re
sources for easy upgrading and high reliability, interactive 
time-sharing, an easy-to-use and constant virtual machine 
for the user and high-level programming languages. 11 

In light of these goals, the BTl 8000 was designed from 
the beginning with fully homogeneous, general-purpose mul
tiprocessing as an objective. To our knowledge it is the first 
system to meet this goal, while also being the first general 
purpose multiprocessing minicomputer. The BTl 8000 is ho
mogeneous with respect to cpus, memory, peripherals, op
erating system and user programs. 

A BTl 8000 system (Figure 5) is based on 32-bit words 
and consists of a number of modular resource units. 

1. Computational processing units (CPUs). (This paper 
denotes a computational processing unit of a BTl 8000 
by "CPU" and an arbitrary central processor by 
"cpu. ") 

2. Memory control units (MCUs) and associated memory. 
3. Peripheral processing units (PPUs) and associated 110 

peripherals. 
4. System services unit (SSU). 

Up to 16 of these resource units (each of which is actually 
a microprogrammed processor) communicate via a single 

,------------------------UPT016SY~EMRESOURCEMOOULES--------------------

t 
COMPUTATION: 

1 TO BCPU'S 

MEMORY 
128KB 

t 

MEMORY 
128 KB 
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32·BIT, 67 NANOSECOND BUS 

DISK 
CONTROLLER 

MASS STORAGE: 
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OR 263MB 
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TAPE 

CONTROLLER 

INPUT/OUTPUT: 
4T032 

CONTROLLER 
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••• 

ASVNC. 
COMM. 

LINE 
PRINTER 

CONTROLLER CONTROLLER 

USER 
COMMUNICATIONS: 

BT0512 
USER PORTS. 

EACH AT UP TO 
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SV~EM SERVICES: 
AUTO SYSGEN, 

REMOTE 
DIAGNOSTICS, 

SYSTEM CLOCK, ETC. 

Figure 5-Block diagram of the BTl 8000 architecture. 
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32-bit-wide directly connected common (or ""global" 2) time
shared (or functionally and physically "non-dedicated" 29) 

bus. Its speed is the key to the success of the 8000 as a 
mUltiprocessor. The bus can transfer one 32-bit word every 
66.7 nanoseconds, or 15 million words (60 million bytes) per 
second. This speed is possible because the passive, syn
chronous bus relies upon distributed (or .. decentralized" 29) 
control logic for fast resolution of the bus contention arising 
from simultaneous, independent bus requests from two or 
more resource units. 

The hardware modularity (along with an operating system 
which requires no reprogramming to handle hardware re
configuration) makes possible both easy system enhance
ment and graceful degradation. A small user may start out 
with the minimum system configuration, comprising one 
each CPU, MCU, PPU, and SSU and corresponding to a 
medium speed minicomputer. As system requirements in
crease, additional resource units can be added, resulting in 
a system which has a throughput rivaling that of many main
frames, but which is much more cost effective. For example, 
an additional CPU costs a fraction of the price of a complete 
system and consists of one 20-inch-by-23-inch printed circuit 
board ready to be plugged into the bus (Photograph 1). A 
typical large 8000 configuration might consist of six CPUs, 
six MCUs, three PPUs, and one SSU. 

Because all CPUs must communicate via the same bus to 
the same homogeneous memory, the question arises, how 
badly will bus and memory contention degrade performance 
in a system with more than one CPU? In many multiported 
memory multiprocessors, for example, more than two cpus 
are impractical because the cpus are faster than memory 
and not enough memory ports are provided. In contrast, the 
number of CPUs and MCUs in a BTl 8000 can be flexibly 
chosen based upon the relative speeds of each type of re
source. And the bus is fast enough so that contention for it 
is minor. 

Simulation studies of various configurations of CPU s, 
MCUs and PPUs have been run assuming typical memory 
accesses for each type of processing unit. An 8000 system 
with six CPUs, six MCUs, and two PPUs should have the 
throughput of approximately five separate 8000 systems, 
each having one CPU, one MCU and one PPU (Figures 6, 
7). Each of these five systems would, of course, require its 
own SSU, bus, and peripherals. So for equivalent through
put, the multiprocessor configuration requires one additional 
CPU and MCU, but eliminates the redundant three PPUs 
four SSUs, four buses, four sets of peripherals, four sets of 
power supplies, four system cabinets, etc. The multiproces
sor will become even more attractive as the cost of CPUs 
and MCUs continues to drop with respect to the cost of 
other system components. 

Bus protocoLs 

The common bus is a number of parallel lines which may 
be grouped into 

1. Four lines identifying the bus slot to which the current 
message on the bus is being routed. 

Typical Multiported Memory Multiprocessor 

Cpus 

2 
3 
4 
5 
6 
7 

Throughput 
(cpu equivalents) 

1.0 
1.7 
2.1 

* =not practical 

BTl 8000 

Throughput 
CPUs,MCUs,PPUs (CPU Equivalents) 

1,1,1 1.0 
2,2,2 1.9 
3,3,2 2.7 
4,4,2 3.5 
5,5,2 4.3 
6,6,2 4.9 
7,7,2 5.5 

Additional Throughput 
from Additional Cpu 

.7 

.4 

Additional Throughput 
from Additional CPU 

.9 

.8 

.8 

.8 
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Figure 6--Throughput of multiprocessors. 

2. Two lines identifying the type of message currently on 
the bus. 

3. 32 data lines containing the message. 
4. A number of control lines which allow the resource 

units to resolve bus contention. 

All traffic on the bus takes place in terms of messages 
between a source and a destination resource unit. Further
more, all resource units use the same types of messages. 

There are three message types--command, data and ab
normal data. A command message is a request from one 
resource unit to another to carry out a specified function. A 
data message has 32 bits of data on the· data lines (e.g., a 
word read out of memory by an MCU and being sent to a 
CPU). An abnormal data message is sent instead of a data 
message if an error occurs in trying to provide data. In this 
case the data lines contain error information. 

A command message has a type code on the four high
order data lines, has an address or request code on the lower 
22 lines, and leaves the other six lines unused. There are 
five command types-information request (known as "who 
are you"), read, write, read/modify/write, and self test 
(which starts microcode diagnostics). 

Depending upon the request code, an information request 
can ask a resource unit to return a data message identifying 
its resource unit type, interrupt status, bus error status, 
error count, etc. This could then be used, for instance, by 
the SSU to determine the system configuration upon reload 
(e.g., how many CPUs are now on-line and occupying which 
bus slots). 

A read command specifies the 22-bit address of the re
quested word to the destination resource unit. The desti
nation responds with either a data message containing the 



518 National Computer Conference, 1979 

l·: 

~"";: 
~. ,,,""""'''' -."-'1:~ · 

'-., .. , \ 

Photograph I-BTl 8000 CPU board and chassis for up to 16 resource units. 
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Figure 7-Throughput graph for multiprocessors. 

contents of the requested word or an abnormal data message 
containing error information. 

A write command specifies the 22-bit address to be stored 
into the destination unit. This is followed by a data message 
containing the word to be stored. 

A read/modify/write command is only sent to an MCU. 
The MCU returns the contents of the addressed word in 
memory in a data message and then waits for the source 
resource unit to send another word to be written back into 
the same location. In the interim the MCU denies other 
access to that memory location. This is the hardware feature 
which makes process interlock mechanisms possible on the 
8000. 

Computational processing unit 

Because the system relies upon multiple CPU s working 
concurrently to achieve high throughput, the CPU design 
was purposefully kept straightforward and inexpensive. 
Each CPU is an identical microprogrammed processor with 

a program state described by eight 32-bit general-purpose 
registers, a 17-bit program counter, a 17-bit current console 
area register, a 15-bit process status register, a 32-bit mon
itor status register and a page map of 256 20-bit words. 

The current console area register points to the 10-word 
block of memory which stores the user's program state 
during an interrupt. This register, instructions which load 
and store the entire console area, and interrupt firmware 
which stores the area automatically all enhance the speed of 
context switching. 

The process status register contains flags for arithmetic 
faults and condition bits set by compare operations. 

The monitor status register contains information accessi
ble only to the monitor, such as the processor number (i.e., 
the bus slot the processor is plugged into), interrupt enabling 
flags and paging control flags. 

Every virtual memory address is transformed into a phys
ical address by a calculation involving the page map. The 
page map is divided into two 128-word halves, one for the 
monitor and the other for the current user. Which half is 
used is controlled by bits in the monitor status register. 
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Memory is divided into pages of 1024 words. Of a 17-bit 
virtual address, the upper seven bits select a word in the 
page map and the lower 10 bits a word within the physical 
page. The physical page is determined by the selected word 
of the page map. Of this 20-bit word, 12 bits determine the 
physical page and four bits the bus slot. This scheme allows 
for many MCUs, each containing 222 (22= 12+ 10) words of 
memory, and means that PPU sand MCU s are addressed 
identically. The remaining four bits in the page map word 
determine the legal types of access to this page (e.g., execute 
only, read only, read/write) and note whether the page has 
been read or written. 

Memory control unit 

An MCU is a "slave" resource unit in that it operates 
only in response to commands from other units, i.e., it does 
not originate commands itself. Its microprocessor selects 
one of two memory devices, handles error conditions oc
curring in memory and locks out other references to the 
MCU during a read/modify/write cycle (discussed under 
"Bus Protocols'.'). The data paths within an MCU are 32 
bits wide. 

Peripheral processing unit 

A PPU handles up to four I/O controllers, two for high
speed devices (disk or high-speed tape drives) and two for 
slow devices (e.g., low-speed tape drives, line printers, and 
interactive terminals). Data transfers between a PPU and its 
controllers occur in eight-bit bytes and are buffered by FIFO 
queues. 

A CPU initiates I/O by writing control information into 
the appropriate PPU. Some of this information is passed on 
to the controller being addressed. Other information (e.g., 
the MCU memory starting address for a block transfer) is 
stored in the local RAM of the PPU's microprocessor. Once 
a DMA (direct memory access) transfer is begun between 
the MCU and PPU, the originating CPU is free to do other 
tasks until completion of the transfer. 

The disk and communications controllers are also micro
processor-based. 

System services unit 

The SSU performs a number of functions which need only 
be done in one place in the 8000. Among these are (1) 
providing the system-wide clock for synchronizing bus op
erations, (2) providing a real-time clock readable by other 
resource units, (3) sensing abnormal environmental condi
tions (e.g., temperature, humidity), (4) providing a local 
system status and reload capability via an extremely simple 
front panel and (5) providing remote diagnostic and preven
tive maintenance capabilities for BTl personnel via a dial
up communications port. 

INSTRUCTION SET ARCHITECTURE 

The instruction set processor of the CPU was designed to 
(1) keep bus traffic due to instruction fetches to a minimum 
and (2) to enhance the efficiency of the operating system, 
system utilities, compilers and compiler-generated code. 
These two goals have led to a rather high-powered instruc
tion repertoire-there are 10 data types, approximately 200 
different operation codes, and about 50 addressing modes. 12 

Data types 

Data types supported include 32- and 64-bit fixed point 
numbers, 64-bit floating point numbers, eight-bit ASCII 
characters, one-bit Boolean values, 32-bit pointers, one- to 
32-bit bytes, arrays of all of the preceding types, linked lists 
and pushdown stacks. Arithmetic is two's complement. 
There is a special "undefined number" value (a leftmost 
one bit followed by 31 or 63 zero bits) which may cause an 
error trap when used. A byte may cross the boundary be
tween two words. 

Instruction set 

All instructions comprise one 32-bit word in which the 
leftmost 10 bits define the operation code, sometimes spec
ifying a general register to be used, and the rightmost 22 bits 
specify the operand. The instruction set is fairly complete, 
providing most useful variants of each instruction, e.g., re
verse subtract and reverse divide. 

As a precautionary measure to prevent runaway pro
grams, operation codes which arise in common data words 
are illegal. These include words containing all zeros or all 
ones, containing the undefined number, or starting with an 
ASCII space. 

Arithmetic, Boolean, and compare instructions all have 
both register-to-register and register-to-memory modes. 
Also, certain arithmetic operations store the result into both 
a register and memory. Arithmetic reverse subtraction and 
division, as well as Boolean subtraction and reverse sub
traction, are provided. 

To support process synchronization, a number of instruc
tions can read and write a word of memory in one indivisible 
step. In this class of instructions are the four Boolean op
erations to memory, the set and test operation, an operation 
which exchanges a register with a word in memory, and the 
seven single-word fixed point add and subtract to memory 
instructions. 

Instructions to enhance systems software 

A number of instructions simplify common tasks done by 
systems software. Two instructions jump based on the value 
of a particular bit of a register. Other instructions store in 
memory useful constants such as O. 1. -1. and the "unde-
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fined" value. One instruction jumps to itself without requir
ing any subsequent instruction fetches from memory, effec
tively causing the CPU to do nothing until interrupted. 

The permutation operation computes the exclusive OR of 
those words in a contiguous 32-word block of memory which 
are indicated by a one in the corresponding bit position of 
a register. Thus, the bits in a register may be permuted 
according to a pattern defined in the 32-word block of mem
ory. A checksum of a block of memory is computed by 
initializing the controlling register to all ones. By loading the 
register with a data word and memory with 32 words con
taining the integer 1, the parity of the' register is computed. 

Operations on linked lists 

Linked lists are supported by instructions which advance 
to the next element of a list, testing for the end of the list. 
Both one-way and two-way lists may be used. 

A one-way list consists of a number of list elements, or 
blocks of memory of arbitrary size. The address field (right
most 17 bits) of the first word of each element contains the 
address of the successor element in the list, or zero if there 
is none. A pointer to the current place in the list is kept in 
a register. If a list is to be left unmodified, this is all the 
information necessary to traverse it. If, however, elements 
are to be inserted' or deleted, an optional pointer to the 
predecessor of the current element is maintained in an ad
jacent register. 

In place of the address of its successor, an element of a 
two-way list has the exclusive OR of the addresses of its left 
and right neighbors.22 Call this /tBr. An important property 
of exclusive OR is that (/tBr)tB[=r and ([tBr)tBr=l. Thus, 
given the addresses of an element and one neighbor, the 
address of the other neighbor can be calculated. So the 
instruction to move ahead in a two-way linked list requires 
that pointers to both the current and previous elements be 
in adjacent registers. An example Exclusive OR Link and 
Jump on Non-Zero Address instruction is 

HERE: XLJNA i THERE 

The effect of executing this instruction is defined by the 
following program, and is shown graphically in Figure 8. 

temp~registeri+l ; 
registeri+l ~egisteri; 
registerj ~temptJJcontents (registeri+l); 
if registerj=l-O then pc~THERE; 

Also, an instruction is available which searches a one-way 
linked list for an element containing a specified key. The 
key may be a word, character, or byte which is offset a 
fixed amount from the first word of the list element, as 
specified in the instruction. One register is loaded with a 
pointer to the first element to be examined. After a suc
cessful search, it points to the desired element. Another 
register holds the key being searched for. 

Subroutine linkage instructions 

A group of 27 instructions is provided for subroutine lin
kage, including parameter passing and type checking and 
ensuring that a legitimate subroutine is called. The following 
example shows a typical pair of calling and entering se
quences: 

C: CALL S S: ENTR REG7 
PAR At STP Fi 
PAR A2 STPV F2 
PAR2 A3 STP2 F3 
PARV A4 STPV F4 
PARL A5 STPL F5 

C+6: [subroutine body] 
LEAVE REG7 

Here the main program on the left calls subroutine S, 
passing it five actual parameters, Al through A5. After type 
checking and storing the parameters into local locations F 1 
through F5, the body of the subroutine is executed, and then 
control is returned to the main program at C+6. 

These instructions use general registers RO for passing 
single-word parameters, RO and Rl for double-word param
eters and R7 for holding the next address and parameter 
specifications. 

The CALL Subroutine instruction ensures that the in
struction located at S is some type of Enter Subroutine 
(ENTR being the simplest of these), saves the contents of 
R7 in memory location REG7 and puts S + 1 in R7. 

The PARameter instruction at C + 1 stores its type (in this 
case, single-word call by reference) along with C+2 in R7, 
ioads RO with the address AI, and jumps to the address 
previously in R7 (S+ 1). 

The STP Store Parameter instruction at S + 1 ensures that 
its desired type is the same as that of the actual parameter, 
as defined in R7 (it is). Then the contents of RO (A 1) are 
stored in FI, S+2 put in R7, and control returned to C+2. 

The rest of the corresponding Parameter and Store Param
eter instructions are executed in interleaved order until a 
Store Parameter Last (STPL) is encountered. This instruc
tion marks the last parameter, so control passes into the 
body of the subroutine instead of returning to C+6 for more 
parameters. 

At the end of subroutine execution, the LEAVE Subrou
tine instruction returns to C+6 (assumed to still be in R7) 
after restoring R7 from REG7. 

Suffixes "2" and "V," singly or together, on PAR and 
STP operation codes define double word and call by value 
types. For example, PARV2 A6 will load the 64-bit value 
located at A6 and A6+ 1 into RO and Rl. There are three 
other type bits available to distinguish, e.g., fixed and float
ing point operands. 

Some type coercion is possible. The PAR at C+2 is call 
by reference, while the corresponding STPV at S+2 speci
fies call by value. The STPV is smart enough to load indirect 
through RO to get the value stored at A2. 
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Figure 8-Registers and memory snapshots of "Exclusive OR Link and Jump 
on Non-Zero Address" instruction. 

Instructions for compiled code 

To improve compiler efficiency, an instruction exists to 
load an effective address. It performs the address calculation 
done for a load, but loads a register with this computed 
address in.,tead of the vallie contained there. 

Four instructions trap if an array index is out of prescribed 

bounds. The instructions handle single word integer, double 
word integer and floating point indices. 

Addressing modes 

Much of the power of the BTl 8000 instructjuH set arises 
from its wealth of ways to address data. As discussed in the 
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previous section, each 32-bit instruction has its operation 
code in the upper 10 bits. This leaves 22 bits to define the 
way in which the operand, operands and/or the location to 
store the result will be determined. Two instruction classes 
don't use the addressing modes. Jump instructions use the 
lower 22 bits as a five-bit number defining which bit to test 
and a 17-bit jump address. Character instructions have a 
five-bit extended operation code, and the Character Fill 
instruction also has an eight-bit immediate operand. 

Completely separating designation of the operation codes 
from the address modes implies that any operation may 
utilize any address mode which is well defined for that 
operation. For example, in a single instruction one could 

ADDRESSING MODES 

(A) IMMEDIATE 
RIGHT JUSTIFY, ZERO FI LL 
RIGHT JUSTIFY, ONE FILL 
LEFT JUSTIFY, ZERO FILL 

MEMORY 
DIRECT 
INDIRECT 

10 

MODE 

add to a register an integer which is stored as a three-bit 
byte, split across the boundary of two words of memory. 
For a 32-bit add, the three-bit byte would be right justified 
and padded with 29 zero bits; for a 64-bit add, an additional 
word of padding would be provided. Conversely, storing a 
register into such a three-bit byte location in memory would 
only use the rightmost three bits of the register. 

Addressing mode formats 

There are six different formats for addressing modes (Fig
ure 9). The format, as well as the specific address calculation 

FORMAT 

14 15 31 

ADDRESS/IMMEDIATE VALUE 

10 11 12 14 15 31 
(B) INDEXED MEMORY 

DIRECT 
INDIRECT ADDRESS 

10 14 15 17 18 21 22 
(C) BASE REGISTER I I I 

31 

OFFSET REGISTER ('"REGiSTER TO REGiSTER"j I MODE I BASE 
REGISTER INDIRECT REGISTER I SUBMODE 
WORD ARRAY _ _ 
CHARACTER ARRAY ~----------~------~--------~----------------------~ 
FORMAL PARAMETER 
STACK 

(D) INDEXED BASE REGISTER 
REGISTER INDIRECT 
WORD ARRAY 
CHARACTER ARRAY 
FORMAL PARAMETER 

(E) TYPE CONVERSION 

IF) BYTE 
REGISTER ("CIRCULAR") 
ARRAY ("ZIGZAG") 

10 14 15 17 18 20 21 22 31 

MODE BASE INDEX 
REGISTER REGISTER 
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MODE REGISTER SUBMODE 

10 14 15 17 18 

MODE BIT 

Figure 9--Instruction addressing modes and formats. 
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to be done, is determined by the mode field of the instruc
tion. 

Address mode format A is the simplest one. It is used for 
direct and indirect access of the memory word specified in 
the address field. In addition, the address field may be used 
as an immediate operand in three ways-right-justified with 
zero fill, right-justified with one fill, and left-justified with 
zero fill. 

Format B specifies a register to be used to index the result 
of a direct or indirect address calculation. For instructions 
dealing with 64-bit operands and results, the index register 
is added twice. 

Format C specifies a base register and a constant index 
or offset. Depending on the submode, six calculations are 
possible. The simplest of these uses the specified register 
directly, adding the offset to the contents of the register to 
form an operand. When addressing a result, the offset is 
subtracted from the result before the result is stored in the 
register. The second submode uses the register as an indirect 
pointer. The next three submodes use the register to point 
to the base of an array and the offset to specify the desired 
array element. The array can be of words, characters, or 
formal parameters, which are indir,ect pointers to the actual 
parameters of a procedure. The sixth submode uses the 
register as a pointer to the top of a stack (pushdown list) 
growing downward from high memory addresses to low. 
The register is decremented by the offset prior to storing a 
result, thus pushing the stack. After fetching an operand 
from the top of the stack, the register is incremented by the 
offset to pop the stack. For an instruction which loads an 
operand and stores a result, the stack is both popped and 
pushed. 

Format D has four calculations analogous to format C, 
but with the added capability of indexing with a register the 
final address calculated. An extra mode is used because the 
submode field is limited to one bit to accommodate the index 
register field. 

Format E specifies type conversion to be done upon load
ing or storing one or two consecutive registers. For loading 
an operand from the register(s), three sub modes specify 
converting either a 32- or 64-bit integer into either a 64-bit 
integer or floating point quantity. The register(s) are un
changed. When storing a result into the register(s), the in
verse conversion is done. The type field has bits specifying 
whether integers are considered signed or unsigned and 
whether to round or truncate upon conversion. 

Format F is used for two byte-accessing modes which 
allow the 8000 to omit shift instructions. In the first the 

012 4 5 9 10 14 15 

BIT BYTE MODE LENGTH 
... 

" CHARACTER 

register is considered to be a circular list of bits, and a byte 
is referenced starting at the specified bit and extending for 
the specified length. The offset is unused in this mode. The 
second mode uses the register as the bit address of a bit 
array. The desired byte in this array starts with the bit 
indexed by 32 times the offset plus the bit field. The size of 
the byte is specified by the byte length field. The byte may 
cross a word boundary, hence the name "zigzag byte" for 
this addressing mode. 

Format of pointer words 

Words used as pointers to fields in memory use the format 
shown in Figure 10. A base or index register for a word 
array uses only the address field. A base or index register 
for a character array in addition uses the character field to 
select a particular character of the word addressed. The 
base register for a bit array also uses the bit field to specify 
a bit within the character. 

The mode field is used in pointer words in a register or 
memory which are specified by instructions in an indirect 
addressing mode. Four of the pointer's own modes specify 
direct addressing and three forms of immediate operands, as 
discussed earlier under address mode format A. In these 
modes the character, bit and byte length fields are unused. 
The fifth pointer mode uses the character field to select a 
character in the word addressed. The sixth pointer mode 
references a word of memory and a zigzag byte within that 
word. The byte starts at the bit specified by the bit field 
within the character specified by the character field. Index
ing a pointer in zigzag byte mode causes the index register 
to be multiplied by the length field before being added in, 
thus allowing indexing of an array with elements of arbitrary 
byte size (not greater than 32 bits). 

IMPLEMENTATION 

Little has been said about the implementation of the 8000. 
This has been deliberate. Because memory and logic circuits 
are continuing their well established trend toward smaller 
size, lower cost and higher performance, the design philos
ophy has been to separate specific implementation decisions 
from the system architecture as much as possible. Thus, a 
future implementation of a system component should be 
able to take advantage of advances in integrated circuit 
technology. 

31 

ADDRESS/IMMEDIATE VALUE 

Figure H)-Format of pointer words. 
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SYSTEM BUS 

CONTROL LOGIC 

Figure II-Computational processing unit. 

Especially important in this regard was the decision to 
make every resource unit be a microprogram mabie com
puter with its own internal microprocessor, memories, data 
paths and I/O connections (current architecture shown in 
Figures 11-14). From the viewpoint of the resource unit, 
these I/O connections include the common system bus plus 
main memory (in the case of an MCU), standard I/O con
trollers (in the case of a PPU) and special devices such as 
a thermometer (in the case of the SSU). Each of these 
computers may now be treated as possessing a flexible ar-

chitecture, easily changed when desirable, as long as the 
I/O characteristics of each computer do not change. 

SYSTEMS SOFTWARE 

A user of the BTl 8000 is presented with a virtual machine 
which is independent of a particular physical configura
tion. 13,14 For example, if an additional CPU is required to 
meet increasing system load, it is merely plugged into the 
bus and the operating system is reioaded at the push of a 
single button. The system automatically recognizes the hard
ware reconfiguration; no user reprogramming is required. In 
fact, a user never knows-and need not care-on which 
CPU his program was run. Similarly, a failing CPU in a 
multiprocessor configuration is merely unplugged from the 
bus, followed by the same reload. The only difference no
ticed by a user may be a degradation of response time. 
Because of virtual memory mapping, physical memory can 
be similarly reconfigured without affecting the user's access 
to 131,072 (l28K) words (512K bytes) per user process. 

The 8000 is designed to facilitate the use of high-level 
languages, including PASCAL, FORTRAN, BASIC, 
COBOL and RPG. The use of vendor-supported PASCAL 
is promoted because of its applicability to structured pro
gramming and the specification of concurrent processes. 
Unlike uniprocessor systems, a software process on the BTl 
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Figure 14-System services unit. 

8000 may actually be run concurrently, communicating via 
shared synchronization regions which are kept in main mem
ory. To promote the use of advanced high-level languages, 
the PASCAL compiler is the only one bundled with the 
hardware. By contrast, the assembler is available only to 
educational institutions for instructional purposes. 

POTENTIAL PROBLEMS 

The high reliability and availability of the BTl 8000 depend 
strongly on the unique elements of the system. For example, 
each system has only one active SSU, which includes the 

system clock. However, a spare SSU can be kept ready to 
go online if the primary SSU fails. 

There is only one bus, the failure of which would be 
catastrophic. By distributing all of its active logic to each of 
the connected resource units, most of the potential for such 
a failure is alleviated. However, distributing the bus logic to 
resource units means that each such device is more compli
cated. 

Software complexity is usually higher on mUltiprocessors 
than uniprocessors. Most of the added compiexity has been 
handled in the 8000 instruction set and operating system. 
The issue will be further ameliorated by the availability 
within high-level languages of a capability for writing con
current processes. 
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A final problem is the continual desire for larger and larger 
contiguous addressing spaces for user programs. Because 
each machine instruction takes one 32-bit word and many 
bits were allocated to the operation codes and addressing 
modes of the 8000, virtual addresses are 17 bits. Thus, 128K 
words (512K bytes) are directly addressable by each user 
process. While this is actually a rather large address space 
for a minicomputer, it may be extended even further in the 
future. In addition, user tasks can be divided into a large 
number of communicating concurrent processes, each of 
128K. 
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INTRODUCTION 

This is a survey of a variety of interconnection networks 
for reconfigurable parallel processing systems that have 
appeared in the literature. A system is reconfigurable if it 
may assume several architectural configurations, each of 
which is characterized by its own topology of activated 
interconnections between modules. 1s The systems whose 
networks will be examined include multiple-SIMD and 
MIMD systems, as well as both fixed and dynamic word 
size systems. This paper is restricted to networks for geo
graphically-localized parallel processing systems using 12 
or more processors in a reconfigurable manner. Related 
survey papers include References 1, 3, 10, 19, 20, 45-47. 

The next section defines parameters that will be used to 
describe and evaluate networks. The later sections will 
discuss the interconnection networks, grouped by their 
overall structure-multistage swi!ching networks, dedicated 
path networks, and shared path networks. 

PARAMETERS 

A variety of parameters which can be used to describe 
interconnection networks are briefly presented. Their pur
pose is to provide a common set of terms to use as a basis 
for the examination of the different networks; however, all 
parameters will not be applicable to all networks. It is 
assumed that a system has N processors and, if N is a 
power of two, n=log~. 

Anderson and Jensen 1 define a path as "the medium by 
which a message is transferred between the other system 
elements" (e.g., wires or buses), and a switching element 
as "an entity which may be thought of as an 'intervening 
intelligence' between the sender and receiver of a mes
sage." Networks may be described by the type of switching 
elements used and the paths between switching elements. 
One classification is by the way the switching elements are 

* This work was supported in part by the Air Force Office of Scientific 
Research, Air Force Systems Command, USAF, under Grant No. AFOSR-
78-3581. The United States Government is authorized to reproduce and 
distribute reprints for Government purposes notwithstanding any copyright 
notation hereon. 
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physically located with respect to the system processors. 
Two types are distributed and centralized. Networks may 
be used to connect processors and memories (processor-to
memory) or to connect processing elements (PEs) to other 
processing elements (pE-to-PE), where a PE is a processor
memory pair. 

Reconfiguration method is the method used to reconfi
gure the network, i.e., to change the way in which subma
chines are organized. The communications setup method is 
the method used to establish an interprocessor communi
cations path within an already existing submachine. Delay 
is the time it takes a network to transfer one data item from 
a source to the desired destination. The ease of use of a 
network is the degree to which connections are automati
cally established. The cost of a network is the asymptotic 
complexity of its implementation. 

The partitionability of a network is its ability to divide 
the system into independent subsystems of different sizes. 
Partitionable systems may be characterized by any limita
tion on the subset of processors which may belong to a 
partition. Furthermore, a system may be logically parti
tioned_ using software techniques or physically partitioned 
using hardware switches within the network control struc
ture. A network is homogeneous if it treats all processors 
similarly. Modularity is the ability of a network to be 
constructed from a small set of basic modules. LSI com
patibility is the suitability of a module to be implemented 
as an LSI chip, i.e., high-circuit complexity and low exter
nal connection requirements. The extensibility of a network 
is its ability to be extended to a larger size, i.e., the amount 
of modification needed to make the network function for a 
larger number of inputs/outputs. Fault tolerance will be 
discussed in terms of a system's features which would 
allow the system to remain operational with faulty compo
nents (with possible degradation). 

Let m be the number of processors which can transfer 
data simultaneously using the interconnection network. 
Then the degree of simuLtaneity supported by the intercon
nection network is S = miN , l:5m:5N. Permutations are 
one-to-one connections in which all processors participate. 
For networks with N inputs, N outputs, and S= 1, let r be 
the number of permutations possible in a single pass 
through an interconnection network. Then the connectivity 
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'of the network is C=r/(N!), l:::;r:5N!. The ability of a 
processor attached to the network to broadcast a single 
data item to all other processors can be measured by the 
broadcast scope. Let b be the maximum number of other 
processors which can receive data simultaneously from a 
given processor after one pass through the interconnection 
network. Then the broadcast scope is B = bieN -1). The 
broadcast delay is the number of transfers required for a 
complete broadcast. The range of a network can be meas
ured by R =X/(N -1), where x is the order of the set of 
processors (i.e., the number of processors) from which a 
single processor can choose to send data to in one pass 
through the network. The range can be further characterized 
by specifying the set of processors which can be sent data. 
Similarly the domain of a network can be measured by 
D = x/eN -1), where x is the order of the set of processors a 
single processor can receive data from in one pass through 
the network, and can be further characterized by specifying 
the set of processors which can send the data. The net
works discussed support SIMD, MSIMD, MIMD, or PSM 
parallelism. Furthermore, some support dynamic word 
sizes. 

An SIMD (single instruction stream-multiple data 
stream) machine 14 typically consists of a set of N proces
sors, N memories, an interconnection network, and a con
trol unit (e.g., Illiac IVB). The control unit broadcasts 
instructions to the processors and all active ("turned on") 
processors execute the same instruction at the same time. 
Each processor executes instructions using data taken from 
a memory to which only it is connected. The interconnec
tion network allows interprocessor communication. An 
MSIMD (multiple-SIMD) system is a parallel processing 
system which can be structured as two or more independ
ent SIMD machines (e.g. MAp23). An MIMD (multiple 
instruction stream -multiple data stream) machine 14 typi
cally consists of N processors and N memories, where each 
processor may follow an independent instruction stream 
(e.g. C.mmp50). As with SIMD architectures, there is a 
mUltiple data stream and an interconnection network. A 
PSM (partitionable SIMD/MIMD) system 32 is a parallel 
processing system which can be structured as two or more 
independent SIMD and/or MIMD machines (e.g., 
PASM35-3B). 

There are two methods of achieving variable word sizes. 
The first method, intraprocessor dynamic word size, uses 
processors with long data words which can be split up to 
form several independent smaller data words (e.g. Illiac 
IVB). The second method, interprocessor dynamic word 
size, combines two or more processors with small data 
words to form a single processor with a long data word 
(e.g. Dynamic Computer1B). 

MULTISTAGE SWITCHING NETWORKS 

Introduction 

A Multistage Sl1'if('hing Network ('151 V) is an intercon
nection network consisting of many (usually n) stages of 

switches. Each stage is connected to the next by at least N 
paths. Each switch can choose from two or more input 
paths to connect to an output path. The multistage net
works discussed in this section are all physically centralized 
and have simultaneity, range and domain S=R=D= 1. All 
have a cost of O(nN) and a transfer delay proportional to 
their number of stages. The switch elements are modular, 
but not complex enough for LSI. These MSN s are capable 
of exploiting pipelining to pass data through the network. 
For example, stage i could contain N w-bit registers, where 
w is the width of the network, and act as the i-th stage of 
the pipe 31l,39. If a switch element fails, the network cannot 
perform completely without significant revision of data 
routing strategies and algorithms. Three parameters which 
are used to describe different multistage switching networks 
are topology, switch and control structure. 34 

The topology of a multistage network is t~e actual inter
connection patterns that are used to connect the stages of 
the network. 34 Interconnection functions specify these pat
terns. An interconnection function 30 is a bijection (permu
tation) on the set of input/output addresses, which consists 
of the integers from 0 to N -1. The interconnection function 
f connects input i to output f(i), O:::;i <N. There are n Cube
type interconnection functions: 

where Pn-l" .PIPO is the binary representation of P, 
O:::;P<N, and 0:5i<n. 28 There are 2n PM2I (Plus-Minus 2i)_ 
type interconnection functions: 

PM2+i(x)=x+2i modulo N, PM2_i(x)=x-2i modulo N, 

where O:::;x <N and O:::;i <no 28 The Shuffle interconnection 
function is: 

Shuffie(Pn_l' . ·PIPo)=Pn-2· . 'PIPOPn-l 

where O:::;P<N. 40 The Shuffie is usually used with Cubeo, 
also called the Exchange. Various properties of these inter
connections are discussed in References 28-31, 33, 39, 40. 

Cube-type networks 

Cube-type mUltistage networks are composed of stages 
of N/2 switch elements, where each switch element may be 
viewed as an interchange box, a two-input, two-output 
device. Let the upper input and output lines be labeled i 
and the lower input and output lines be labeled j. The four 
legitimate states of an interchange box are: (1) straight
input i to output i, input j to output j; (2) exchange-input 
i to output j, input j to output i; (3) lower broadcast-input 
j to outputs i and j; and (4) upper broadcast-input i to 
outputs i and j. 21 . 

The control structure of a network sets the states of the 
interchange boxes. Individual stage control uses the same 
control signal to set the state of all the interchange boxes 
in a stage, i.e., all the boxes in a given stage must be in the 
same state. Individual box control uses a separate control 
signal to set the statt: uf each interchange box. Partial stage 
control uses i + 1 control signals to control stage i, O:5i <no 34 



Interconnection Methods for Reconfigurable Parallel Processing Systems 531 

The STARAN flip network 6 with flip control, shown in 
Figures 1a and 1b, consist of n stages and employs individ
ual stage control. It is used in the ST ARAN SIMD ma
chine5,9,12 for processor-to-memory and processor-to-pro
cessor connections. This network may also be operated 
using shift control, a partial stage control scheme as shown 
in Figure lc. The interchange boxes may be set to either 
exchange or straight. In stage i, boxes set to exchange are 
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Figure I--STARAN network for N=8, (a) with flip control, (b) "a" redrawn, 
and (c) with shift control (OA, lA, etc. are the control signals).34 

performing the Cubei interconnection function on their 
inputs, O:5i <no With flip control, the network has connec
tivity C=2n/N! (each stage is either "straight" or "ex
change") and, with shift control C=2s/N!, where 
s = 1+2 + ... +n = n(n + 1)/2 (each control signal is either 
"straight" or "exchange"). The network is homogeneous 
under flip control, where all inputs are treated equally. 
Under shift control, it is not homogeneous. The network 
broadcast scope B= lI(N -1), and a broadcast requires n 
passes. Due to the limited control schemes, it is not capable 
of being partitioned. The network can be expanded by 
factors of two. To double the size, from N to 2N, connect 
two size N networks with a "Cuben " n-th stage. 

This network, using only flip control, supports STARAN's 
multidimensional access (MDA) memory, 7 which makes 
ST ARAN an interprocessor dynamic word size system. 
The MDA memory consists of 256 physical words, each of 
which is 256 bits long. Each of the system's 256 processing 
elements operates on one bit. This allows the system to 
operate on 2i consecutive bit logical words, where the 
logical words are from physical words 2i apart, O:5i:5n. The 
two extremes are a word-slice (an entire physical word) 
and a bit-slice (the jth bit of all physical words). A total of 
N2 different formations are possible. 

The indirect binary n-cube network 26 is basically identical 
to the flip network (Figure lb), except that individual box 
control is used. It is a PE-to-PE SIMD network. The 
connectivity C=2 n:\/2/N!, since each box may be either 
"straight" or "exchange." As with the flip network, B= 1/ 
(N -1), broadcast delay is n passes, and the network can 
be expanded. Due to the individual box control, all inputs 
may be treated in the same way, so the network is homo
geneous. 

It was proposed 26 that the individual box control be 
implemented by a single microprocessor for each stage. If 
this implementation is employed, the use of this network in 
MSIMD mode is limited. However, the network topology, 
interchange box and control structure do support partition
ing for MSIMD mode, where the only restrictions are that 
the number of processors in each submachine is a power of 
two and the addresses of the processors agree in certain bit 
positions, as specified in References 34 and 39. For exam
ple, the system may be divided into independent partitions, 
the odd numbered PEs and the even, by physically setting 
all of stage 0 to straight. 

The Omega networPl shown in Figure 2a, is a processor
to-memory network for SIMD machines, which can be 
adapted for MSIMD systems. The interchange boxes may 
assume any of the four legitimate states. Without the broad
cast states, each stage of the network is a Shuffle intercon
nection function, followed by possible Exchange function. 
The network may be redrawn, as in Figure 2b, where the i
th stage corresponds to a possible Cubei interconnection 
function. Thus, the Omega is identical to indirect binary n
cube and has the same parameter values, except the stages 
are in reversed order and the Omega has the capability to 
broadcast from any input to all outputs in one pass (B= 1).34 
Its use of n-bit destination tags to control the straight/ 
exchange states make it easy to use and well suited to 
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MSIMD mode, with the same restrictions as the n-cube. 34,39 

The Phoenix Project 11 is an SIMD system consisting of 
1024 PEs with hierarchical control. The PEs are divided up 
into 16 sextants of 64 PEs each. Each sextant has a control 
unit, and there is a central control unit which broadcasts 
instructions to the sextant control units. A block diagram is 
shown in Figure 3a. Communication between PEs is han
dled by a 2n -1 = 19 stage network, where stage i performs 
the Cube! function for O::s;;i::s;;9 and stage i performs the· 
Cubel!H function for lO::s;;i:::;tS. The network, whose inter
change boxes can assume any of the four legitimate states 
under individual box control, is shown in Figure 3b. The 
algorithms used to calculate the switch settings are inher
ently serial and require O(nN) time. Switch settings can be 
precomputed for commonly used connections. 

The network is homogeneous and may be partitioned. 
The array can only be partitioned into subarrays of equal 
size (powers of two) all following the same instruction 

stream which is broadcast by the central control unit. Thus, 
the system is not MSIMD, since the SIMD submachines 
are not independent. The network size is halved by setting 
the middle stage and the one before it (or after it) to all 
straight. The network can perform any permutation in one 
pass (C= 1) and any processor can broadcast data to all 
other processors in one pass (B=l). The network can only 
be extended by doubling the number of processors (from N 
to 2N) and adding two stages (a new Cuben-l and a Cube n) 
immediately prior to the old Cuben-l stage. Each sextant of 
the Phoenix has a spare processor. This spare processor 
can be swapped in by the "self-repair network" when a 
faulty processor is detected. This allows the Phoenix to run 
unaffected even after a processor has failed. Sextants which 
have failed can be ignored. 

Central Control Unit 
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Figure 3-Phoenix. (a) Block diagram overview. (b) Programmable switching 

network. 11 
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Banyan networks 

The class of banyan networks is formally defined in 16. 
In particular, the SW-banyan with "f=s=2" is used in the 
PSM ReconfigurabLe Varistructured Array Processor 
(RVAP), 22 as shown in Figure 4. This SW-banyan is topo
logically equivalent to the Omega, ST ARAN, and n-cube 
networks. It differs from these Cube networks in its switch 
ele.ments and the way in which it is used. 

The RVAP network is homogeneous and connects pro
cessors with memories or processors. The network includes 
lines for carry propagate and generate signals to support 

(a) 

(b) 

Figure 4-SW-banyan network, (a) data trees and (b) instruction tree. 22 

interprocessor dynamic word size. Figure 4a shows how 
processors can be linked to separate memories and I/O 
devices for data transfers and Figure 4b shows how proces
sors can be linked to a single memory to receive instruc
tions in SIMD mode. A data or instruction tree can be 
established by having each leaf send a signal to all potential 
roots. Exactly one of the potential roots· which receives a 
signal from all of the leaves is selected to be the root by a 
priority circuit. The root broadcasts a signal downward and 
each leaf broadcasts a signal upwards. All paths receiving 
both upward and downward signals are connected to form 
the tree. Thus, it takes p+2 steps to, for ex~mple, connect 
p processors to a single memory. It is stated that this 
method may be converted into a one step algorithm. 22 

Measurements in 15 indicate that on the order of 10 per
cent of the possible interconnection structures are not 
connectable, therefore there are many ways to partition the 
system. In the area of fault tolerance, this system differs 
from the other networks in this section in that a faulty 
switch is treated as a busy switch and is not a special case. 
Thus, depending on how many and which switches are 
"busy" the network may be successively reconfigured, 
interrupting, but not modifying, the algorithms being exe
cuted. It is possible to broadcast data by using a dummy 
memory node, thus the broadcast scope is B= 1. The broad
cast delay is two passes through the network. This network 
can be extended as in the ST ARAN network. A prototype 
system using a more complex SW-banyan ("f=3, s=2") is 
currently being constructed. 

PM2I-type networks 

The Augmented Data Alanipulator (ADA1) networkM ,39 is 
used in the PSM machine called PASM (PArtitionable 
SIMD/MIMD.32,35-38 Figure 5a is a block diagram of PASM, 
a system being designed for image processing and pattern 
recognition at Purdue University. The heart of P ASM is the 
Parallel Computation Unit (PCU), which contains N pro
cessors, N memory modules, and the interconnection net
work. The PCU processors are microprocessors that per
form the actual SIMD and MIMD computations. The PCU 
memory modules are used by the PCU processors for data 
storage in SIMD mode and both data and instruction stor
age in MIMD mode. The PE-to-PE ADM network, shown 
in Figure 5b, is composed of n stages, where each stage 
consists of N independently-controlled switch elements 
(cells). It is based on Peng's data manipulator, which uses 
a less flexible control scheme. 13 At stage x, cell j can be 
connected to any or all of the following cells at stage x-I: 
j, j+2x modulo N, and j-2X modulo N, where OS;x<n. 
Thus, stage x is analogous to PM2+x and PM2-x . Various 
schemes for controlling the network, including destination 
tags, are being studied. 

The network may be partitioned into independent subnet
works of varying sizes, with the constraints that the size 
(number of inputs/outputs) is a power of two and that the 
input addresses of a subnetwork all agree in their low order 
bit positions. For example, the system may be partitioned 
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(a) 

STAGE 0 STAGE I STAGE 2 

(b) 
Figure 5-PASM. (a) Block diagram overview. (b) Augmented data manipu

lator. for N=8. 38 

into two independent groups, the odd numbered PEs and 
the even, by setting all of stage 0 to straight (j to j, O:5j<N). 
The network can be expanded by factors of two. A size 2N 
network may be constructed by . 'interleaving" the cells of 
two size N networks, combining the two old stage xs into 
the new stage x + 1, and adding a new 2N size stage 0 (the 
PM2+o, PM2-o, and straight connections). This is the "in
verse" of the partitioning method. 

The Micro Controllers (MCs) are a set of microproces
sors which act as the control unit for the PCV processors 
in a virtual SIMD machine and orchestrate the activities of 
the PCV processors in a virtual MIMD machine. There are 
Q=2q MCs, physically addressed (numbered) from 0 to 
Q-l. Each MC controls N/Q PCV processors, in particu
lar, MC i controls the N/Q processors whose low-order q 
address bits equal i. There is an MC memory module for 
each MC. A virtual SIMD machine of size MN/Q, where 
M=2m and O:sm:sq, is obtained by loading M MC memory 
modules with the same instructions simultaneously. Simi
larly, a virtual MIMD machine of size MN/Q is obtained by 
comhining the effort of the PCV processors of M MCs. Tn 
both cases, the physical addresses of these M MCs must 

have the same low-order q-m bits since the physical ad
dresses of all PCV processors in a partition must agree in 
their low-order bits. Thus, each partition contains at least 
N/Q PEs and the number of partitions is at most Q. 

It can be shown that the interconnection capabilities of 
the ADM are a superset of those of the Omega network,34 
i.e., it can do all the connections the Omega can and some 
the Omega can not (e.g. Shuffle). Thus, the ADM can 
perform more than the Omega's 2n.';/2 distinct permutations, 
however, it can not perform all N! permutations (e.g. 
inverse Shuffle). It can broadcast data from any PE in one 
pass through the network (B= 1). The cost of the ADM 
network is O(nN) and it treats all PEs equally so it is 
homogeneous. 

DEDICATED PATH NETWORKS 

Introduction 

Dedicated Path Networks (DPNs) are characterized by 
communication links (usually bidirectional) which connect 
exactly two processors. All of the DPNs in the following 
two subsections are physically distributed. DPNs are di
vided into two classes by their control structures: central
ized or distributed. 

DPNs with centralized control 

The Illiac IV discussed here is the original design rather 
than the machine which was actually built. The liliac IV 4 is 
an MSIMD system composed of four quadrants, each of 
which has 64 PEs and a control unit. Each PE consists of 
a 64-bit processor and a memory. Each quadrant can oper
ate independently, or in conjunction with other quadrants 
by having either two or four control units broadcast the 
same instruction stream. Thus, the partitioning of Illiac is 
limited to three states: four partitions each with 64 proces
sors, two partitions each with 128 processors, or one parti
tion with 256 processors. The PEs in a partition are num- • 
bered (addressed) from 0 to M-l. The network connects PE 
i with PE i + I, i-I, i +8, and i -8, modulo M. The processor 
to network interface is part of each PE and the cost of the 
network is O(N). 

Each Illiac processor supports intraprocessor dynamic 
word size and can be partitioned to operate on one 64-bit 
word, two 32-bit words, or eight 8-bit words. The system is 
restricted such that each processor must perform the same 
operation on all the fields of its partitioned word. If a PE 
fails, its quadrant can be ignored. 

The degree of simultaneity of the Illiac network is S= 1. 
The Illiac network has no special provisions for broadcast
ing a data item from one PE to the other PEs (B= l/(N -1». 
However, the Control Vnit may broadcast a data item from 
one PE to all PEs.41 The range and domain are R=D=4/M, 
where M is the number of processors in the partition. The 
worst del(lY using 2)6 PEs is 19 transfers (e.g. PE 0 to PE 
124), The network is homogeneous and its control is cen-
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tralized. The network can be extended, but the worst case 
delay would make significant increases in the number of 
PEs undesirable. 

U sing permutation group theory, 30 it can be shown that 
for an M PE system the number of permutations possible 
in one pass is 3+2*28=3+29. There are eight cycles which 
can be in either the +8 state or the inactive state (the 28 

factor). The same eight cycles couid also be in either the 
-8 state or the inactive state (the 2* factor). In addition 
there is one cycle which can be in either the + 1 state, the 
-1 state, or the inactive state (the 3+ term). Hence the 
connectivity is C=(3+29)/M!. 

The overall architecture of A Novel Multiprocessor Array 
(ANMA)24 is SIMD. ANMA has a host computer, a control 
unit, and 16 eight-bit processors. The PE-to-PE DPN of 
ANMA is made up of two parts: the Variable Word Length 
(VWL) structure and the Logarithmically Structured Trans
fer (LSD· 

The VWL is used to connect a processor with its left or 
right neighbor to form longer data words, i.e., the VWL 
supports interprocessor dynamic word size. The VWL is 
controlled by an N-l bit register where N is the number of 
processors in the system. Bit number i determines whether 
or not processor i is connected to processor i+l, OsisN-2. 
The VWL structure is made up of the carry, shift, VWL 
shift rotate and Partially Selectable Microinstruction con
trol lines. These lines allow the communication necessary 
to link processors together to form longer data words. The 
cost is O(N). 

The LST is a set of bidirectional serial links between 
processors, as shown in Figure 6. If the processors are 
numbered (addressed) from 0 to 15, then the links are 
between processor i and processor i + 2i , for non-negative 
integers i andj, such that i+2i sI5. This network is a subset 
of the PM2I containing connections i to i + 2\ where 
i+2 j sI5, and i to i-2i, where i-2i~O, Osisl5, Osjs3. 
Thus, the network may be easily extended by factors of 
two. The cost is O(nN). 

The degree of simultaneity for the VWL structure is 
S = 1. Assuming the LST can be used in only one direction 
at a time, then S=Y2; Note that the VWL structure only 
supports combining left or right neighbors to form longer 
data words. Faulty processors would create word parti
tions. 

• 

-'--"'-'--"'-'-.-/--'--../-~-~-'--"
Figure 6-The LST network for ANMA, N=8. 24 

For the LST, the broadcast scope B = 1/(N -1), but a 
processor can broadcast a value to all processors through 
the Control Unit. The delay of the LST is n transfers. The 
range and domain of the LST for "middle" processors 
(i.e., processors 7 and 8) is R=D=(2n-1)/(N -1)=7/15. For 
"end" processors (i.e., processors 0 and 15), R=D=n/ 
(N -1) =4115. However, for the VWL structure the range 
and domain for middle processors are R=D=2/15, and for 
end processors R=D= 1/15. For both networks, Rand D 
vary for different processors, so neither is homogeneous. 
Furthermore, the network interfaces can not be made of 
identical modules, unless some outputs are not used. 

DPNs with distributed control 

The Columbia Homogeneous Parallel Processor (CHoPP) 
MIMD system42 is made up of modular nodes, each of 
which consists of an application processor, a communica
tions processor, and a memory. The CHoPP processor-to
memory network is based on the Cube interconnection 
functions described earlier. Assuming the nodes are num
bered (addressed) from 0 to N-l, each node can communi
cate directly with any node whose address differs with its 
address in only one bit position. To communicate with a 
node which has an address which differs in more than one 
bit, the information must travel through intermediate nodes. 
Thus, there may be a delay of n transfers. As with the 
indirect binary n-cube, CHoPP may logically be partitioned 
into subsystems. Arbitrary subsystems may be constructed, 
but this may involve the use of communications processors 
not in the s!lbsystem. Faulty nodes may be ignored. 

The network control is distributed, based on destination 
tags. Each communication processor examines the tag and 
determines where to send the message. The network is 
homogeneous and the degree of simultaneity of CHoPP is 
S= 1. The range and domain are R=D=n/(N -1). The 
broadcast scope is B=n/(N -1), and a complete broadcast 
requires n transfers, i.e., the broadcast delay is n. The cost 
of the network is O(nN). The system can be extended by 
factors of two. 

The variable topology multicomputer (VTM)25 is an 
MIMD system composed of nodes similar to those of the 
CHoPP system. Each node of the VTM contains a proces
sor, an inter-computer message handler, and a memory. 
The VTM network is made up of unidirectional serial 
communication lines. The topology of the network may be 
changed by adding or deleting lines by physically rewiring 
the network, e.g., via a patch panel. However, once a 
topology is chosen, communication links are formed under 
software control. 

The message routing is done by two methods: message 
switching and circuit switching. When operating in the 
message switching mode, the inter-computer message han
dler examines the message to determine its destination and 
sends the message out on the proper link. In the circuit 
switching mode of operation, the inter-computer message 
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handler effectively shorts an input link to an output link, 
i.e., the node is bypassed. When a link is used for circuit 
switching, it can no longer be used by the node being 
bypassed. 

Because this system allows rewiring, it is difficult to 
apply the parameters that depend on the topology. The 
degree of simultaneity is S = ], provided every node has at 
least one output link. By using the circuit switching capa
bilities a direct link between any pair of processors can be 
set up for partitioning the system, provided there are a 
sufficient number of links. The network is physically dis
tributed and new nodes may be added to increase the 
system size. 

SHARED PATH NETWORKS 

Introduction 

A shared path netl1'ork is defined recursively as a com
munications path which may be used by more than two 
processors, or a set of shared path networks which may be 
interconnected by switch elements that can either make or 
break a connection between these paths. A shared path 
net:work can be distinguished from the multistage switching 
networks discussed previously based on the complexity of 
the switch element and the number of path segments. In a 
multistage switching network, there are at least N paths 
connecting one stage to the next, and there are at least n 
stages. Furthermore, each stage contains switch elements 
with the capability of choosing which of two or more input 
and output lines to connect, if any. A shared path network 
connects paths using simple connect/disconnect nodes or 
processors. In addition, there are typically fewer than 
O(nN) bus segments. 

Two buses are said to be similar if they (1) have the 
same width; (2) have the same delay (on the average), 
including that incurred by passing through controllers or 
arbiters; (3) are connected to the same class of sender/ 
receivers; and (4) the priority of the data they carry, as 
assigned by the respective sender/receivers, is independent 
of the bus on which they arrive. If a shared path network 
contains only one bus, or contains several buses which are 
similar, it can be classified as linear. If there are multiple 
buses which are dissimilar, it is classified as hierarchical. 

Linear shared path networks 

The Minerva Multi-Microprocessor 48 is an MIMD system 
which connects eight 8080 and four 3000 Intel processors 
to a single demand-multiplexed bus called IDBUS (Inter
Device Bus) and to the IDBUS ARBITER. Use of the bus 
is controlled by the IDBUS ARBITER. The bus is used to 
gain access to public memory which is the means proces
sors use to communicate with each other. Thus the IDBUS 
is used as a processor-to-memory structure. Processors use 
the IDBUS one at a time, so S=1/N. Any arbitrary group 
of processors can communicate with each other. and the 

subset of processors that constitute a group can vary arbi
trarily with time. Thus, the IDBUS fully supports system 
reconfiguration and submachines containing up to eight 
8080 and four 3000 microprocessors may be formed to work 
toward a common goal. 

The single shared bus does not permit one-to-many com
munication, so the broadcast scope B= 1/(N -1). To send 
the same data item to all other processors takes O(N) time. 
The IDBUS interfaces are physically distributed and the 
ARBITER is physically centralized. Each IDBUS interface 
is part of a processor module and is LSI compatible. 

The IDBUS is readily expandable at the cost of a slight 
increase in arbitration time, however, expansion is limited 
by contention problems that grow worse with each addi
tional processor, since there is only one bus. While the 
IDBUS and ARBITER are not fault tolerant, it is possible 
for them to support the fault tolerance of the system as a 
whole, i.e., a defective processor may be ignored. Since 
the ARBITER handles all bus use automatically, control of 
the network from the user's point of view is simple. The 
number of elements used to construct the network is O(N), 
which leads to a low cost, but the delay incurred while 
waiting for use of the bus is significant. The range and 
domain of each processor are R=D= I, since processor 
communications are through memory and any processor 
can read from memory. Finally, all processors view the bus 
in the same way, so it is homogeneous. 

The Dynamic Computer (DC) described by Reference 18 
is a multicomputer system which contains a reconfigurable 
bus and "carry" links, as shown in Figure 7. Software 
controllable switches (MSs) placed between each adjacent 
pair of processors allow 2N- 1 different system configura
tions to be formed, via the reconfigurable bus, by linking 
subsets of the computer elements (CEs) together. This bus 
is 16 bits wide and is used only for broadcasting instruc
tions to other CEs within a given group. The bus is used in 
the PE-to-PE interconnection mode. The "carry" links 
between adjacent CEs allow "carry" information to be 
passed along efficiently, with S= 1. 

The V monitor is responsible for initiating changes in the 
bus configuration and arbitrating conflicting requests for a 
change (made by concurrent programs). Changing any con
figuration includes writing new control words to each pro
cessor and sending new switch settings to the MS units. 
The reconfigurability of the bus and the interprocessor 

Figure 7-Dynamic computer group of size four, 18 
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carry connections allow the system to be partitioned into 
independent computers whose word size may vary. The 
processors in a partition are called a DC group. The only 
constraint that determines which CEs may be in a group is 
that they must be adjacent. Because the bus structure each 
CE . sees' is dependent upon where that CE is physically 
~ocated (i.e., each CE has a different number of CEs on its 
left and right than the others), the network is not homoge
neous. 

The MS units are physically distributed, modular and 
complex (the latter being the result of their construction 
from microprocessors). These characteristics allow the net
work to exploit LSI technology. The cost of this network 
and the carry links is O(N). Expansion is incremental and 
is limited only by the V monitor. The bus is fault tolerant, 
however, for each MS unit that becomes defective, the 
number of possible bus configurations is halved. The bus 
supports the fault tolerance of the system as a whole, 
permitting continued operation with reduced overall per
formance. Control of the bus configuration is completely 
automatic and thus presents no hindrance to the user. Data 
words may be passed between processors. by shifting them 
serially through the carry links. All processors have a range 
and domain of 2/(N -1) except those on the ends, whose 
range and domain are lI(N -1). 

The DC may be viewed as an' MIMD multicomputer 
system, where carry links are used for intercomputer data 
transfers instead of "carry" information. Thus, the broad
cast scope B= 1/(N -1). Since data transfers are serial, the 
broadcast delay is O(Pw) , where P is the number of DC 
groups and w is the number of bits in the word to be 
broadcast. It may also be viewed as an MSIMD system, 
where each DC group operating as an SIMD machine 
establishes a multi-array mode in which a number of com
puters execute the same instruction stream broadcast by a 
computer supervisor. One way this may be accomplished is 
to enable all MSs between the processors that form the 
array for instruction broadcastirig, but disable the carries 
at word boundaries. Since different parts of the system 
may operate in MIMD and MSIMD mode simultaneously, 
the Dynamic Computer may be categorized as a PSM 
computer with the ability to vary the word width at each 
"processing element." 

The Restructurable Computer System (RCS)21 is com
posed of 64 Functional Units (FUs), and 24 Bus Units 
(BUs), as shown in Figure 8. Sixteen BUs are responsible 
for processing the communications needs of at most four 
functional units each, while six are reserved for operand 
streams from memory and two for streams into memory. 
Thus, the buses are used both as a processor-to-memory 
and a processor-to-processor connection structure. The 
data words are 48 bits wide and each bus is ten words 
wide. 

By properly loading registers in the BUs, any of the BUs 
can be assigned to any of the FUs, making the system 
restructurable. Arbitrary pipelined structures as well as 
SIMD array structures may be formed. Thus, the RCS is 
partitionable with each partition consisting of the FU s that 
form a single pipe or array. There are no restrictions on the 
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Figure 8-Restructurable computei:' system. 27 

subset of FU s that may belong to a partition. Software 
associated wtth the system provides for conversion from a 
logical description of a desired configilration to the specific 
register values to be loaded. 

The BUs are physically distributed, identical and thus 
modular units. In spite of their modularity and high com
plexity, the pin requirements prohibit implementation as 
LSI chips using current technology. The cost of the net
work is O(N), but the coefficient of N may be large due to 
the very high bandwidth of the buses and the high complex
ity of the BUs. The worst case delay for an interprocessor 
data transfer is four bus cycles, however, in time, critical 
applications more than one BU can be assigned to a FU. 

Each FU contains a bus unit scanning station (BUSS) 
that can look for input from any of four BUs, thus the 
domain is D=4/(N -1). Similarly the BUs can send data to 
only four other BUs so the range is R=4/(N -1). Structur
ally, the network of BUs looks the same to all FUs so the 
network is homogeneous. Since there are 16 independent 
buses which may be transferring data simultaneously, the 
degree of simultaneity S= 16164. One FU can send data to 
only four other FU s at the same time, so the broadcast 
scope B=4/63. 

Reddi and Feustel point out that fault tolerance may be 
acquired by forming three identical pipes and routing their 
output to a FU that performs a voting function. Any bad 
units could be tagged and avoided by the operating system. 
The network itself is fault tolerant in the sense that multi
ple, identical units are used for communications, and the 
system can operate without all BUs functioning. To expand 
the RCS it would be necessary to increase the size of 
several registers in each BU that identify the FUs assigned 
to it. As the number of FUs increases, the ratio of BUs to 
FUs decreases, degrading the total throughput of the sys
tem. Thus, it is desirable to add BUs to maintain system 
performance, which would require increasing the size of 
certain identification registers in each BUSS. 
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Hierarchical shared path networks 

The Cm* 17,43,44 shown in Figure 9, is an MIMD system 
composed of a large number of computer modules that are 
grouped into clusters and connected by a hierarchy of 
buses. Communications are processor-to-memory. All 
buses are physically 16 bits wide, however local buses use 
an address space of ,16 bits, Map Buses (intra-cluster buses) 
use an address space of 22 bits, and Inter-cluster (Ie) Buses 
use an address space of 28 bits. Address translation and 
data routing are performed by local switches called S .locals 
and mapping controllers called K.maps, both considered 
switching elements. At most 14 computer modules may 
belong to the same cluster. If all clusters are filled, in the 
best case the degree of simultaneity S= 1114, where it is 
assumed all communications are intra-cluster, i.e., they 
take place on Map Buses. If all communication requires 
use of IC buses, neither S nor the delay can be determined 
since the topology of IC buses is not specified. There are 
no facilities for broadcasting data, so B= l/(N -1). The 
broadcast delay is O(n), since a recursive doubling algo
rithm could be used to transfer a given data item to all 
processors. 

There is no hardware in Cm* that is designed to partition 
the computer modules. There is, however, firmware (i.e. 
microcode) built into the address translation units that 
supports logical partitioning. Capability lists are associated 
with each computer module that specify those areas of 
memory to which it may have access. The network is 
homogeneous, since it treats all processors equally. The 
switching elements (S.locals and K.maps) are physically 
distributed and modular. It appears that they could be 
implemented by a small set of LSI chips, due to their 
complexity and reasonable pin requirements. The cost of 
the network is O(N + N/14)=0(N). 

Cm* is readily expanded by attaching more switching 
elements to the appropriate buses, with the limiting factor 
being the maximum amount of memory that can be ad
dressed (228 words). Each computer module can access any 
word in memory and so can communicate directly with any 
other computer module in its cluster, making the range and 
domain R=D= 13/(N -1). Intercluster communications can 
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Figure 9-A simple three cluster Cm;' system. 43 

expand the range and domain, but this is dependent on the 
unspecified IC bus system topology. All address translation 
is transparent to the user, so the network is very easy to 
use. Two-way communication is employed and status of 
the progress of a message is kept, making it possible to 
identify a bad computer module and avoid using it. There 
is, however, no specific fault tolerance built into the net
work. 

A network for message routing in a Mega-Micra-Com
puter (M MC)49 is shown in Figure 10. Buses connecting 
computers logically subdivide the toroidally continuous 
physical space into nested square groups of 16, 162, 163, 

... , 16(J+l) computers. Spanning, but not leaving, each 
16(k+1) group are level-i buses (i-buses), each connected 
once in each inner 16i group, O:::s;i::;k. Each computer is 
connected to one O-bus and one higher-level bus, thus, the 
network is not homogeneous since all computers are not 
connected to buses of equal "distance" capability. The 
computers in Figure 1 0 are signified by numbers indicating 
the higher-level bus to which they are attached. The "X" 
is for buses of level> 4. The computers shown are con
nected to 24 different O-buses, 16 I-buses, 64 2-buses, 48 3-
buses, and 34 4-buses. However, only one I-bus, one O-bus 
and parts of a 2-bus and another I-bus are explicitly shown. 
Each bus is connected to only 16 computers and is used in 
the PE-to-PE configuration. 

Since each processor is connected to two buses and there 
are 16 processors per bus, in one bus cycle a given proces
sor can communicate with any of 30 other processors, thus 
R=D=30/(N -1). No particular hardware features are de
scribed that could be used to partition the system. It is also 
not designed to broadcast data, so B= 1/(N -1). Using a 
recursive doubling algorithm, data can be passed to all 
processors with broadcast delay O(n). 

The mechanisms that move data from bus to bus are built 
into the computers, thus the network is physically distrib
uted as well as modular. If bus widths are kept reasonable, 
itappears the system is LSI compatible. The cost is O(N). 
Routing in the network is automatically performed by com-

PART nF A 2-lms 
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Figure 10 .. Logical groups of computers showing bus sharing in a Mega· 
Micro-Computer network. 49 
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paring a destination tag to a local address, making it nec
essary only for a user to specify the desired destination. 
Since there are a large number of routing choices, it is a 
simple matter to bypass faulty computers. If A is the 
absolute difference between the addresses of the sender 
and receiver, the delay is O(lOg2A). If the maximum level is 
i and there are 16 i+1 computers, then the number of buses 

i 

in the system is b= L 16 i/2 j
• Since all buses may be in use 

j=O 

simultaneously, S=b/16i+l. For example, for i=4, S=O.12. 
The Hierarchical Restructurable Multi-Microprocessor 

(H R M M) 2 architecture employs multiple control buses 
called Control Groups (CGs) and a circulating data bus. 
Switching elements, called Block Short Modules (BSMs), 
segment the control group buses between adjacent pairs of 
processors, as shown in Figure 11. A CG consists of three 
buses-( 1) the CMD bus that carries commands to proces
sors; (2) the ACK/NAK bus with which a processor recog
nizing a command can acknowledge its acceptance or rejec
tion (due to a full queue); and (3) the DONE bus where a 
command processor can acknowledge the completion of a 
required task. When a command is received by a processor, 
it is placed into a queue and cannot be executed until the 
data associated with it arrives on the data bus, conse
quently all processors execute instructions independently 
as an MIMD machine. Each CG is given a fixed priority, 
thus enabling establishment of a hierarchy for communica
tion. 

While the buses that form a CG are of the conventional 
type, the data bus is of the circulating loop (or Pierce 
Loop) type where data packets are moved a fixed distance 
and direction in each unit of time. Both buses are used in 
the PE-to-PE configuration. The simultaneitv of the data 
bus is S = 1, since the bus may be viewed as ~ parallel shift 
register and each processor may place one data packet on 
the bus at one time. "Carries" and synchronization infor
mation are provided between processors by the sync/carry 
loop (see Figure 11). Thus, there is interprocessor dynamic 
word size. Changing the settings of the BSMs changes the 
structure of HRMM and is accomplished by issuing com
mands on the Master CG CMD bus. The structure of the 
system may be viewed as a tree. The broadcast scope B= 1/ 

Figure II-Hierarchical, restructurable multi-microprocessor architecture. 2 

(N -1), but broadcasting is possible on the data bus in N - 1 
bus cycles by placing a "don't care" in the destination 
address. 

The data bus and CG buses are physically distributed 
and modular. CG and data bus widths and complexity are 
not completely specified so LSI compatibility cannot be 
established. The cost of the CGs is O(mN) and the cost of 
the data bus is O(N), where m is the number of CGs. The 
delay through the CG buses is one control bus cycle. The 
worst case delay through the data bus is N -1 data bus 
cycles, where a bus cycle is on the order of 50 ns.49 The 
range and domain of the data bus are R=D= 1/(N -1) be
cause of its unconventional structure. Since data packets 
move from one processor to the next in a fixed amount of 
time (i.e., one bus cycle), one processor can only send data 
to or receive data from one other processor each bus cycle. 
The range and domain of the CG buses are a function of 
the BSM settings with a best case of R=D= 1. The HRMM 
is readily expandable by adding more processors to either 
end. All processors are treated equally by the data bus, 
thus it is homogeneous. 

The data bus is easy to use, whereas the CG buses are 
more complex due to their flexibility. The CGs are fault 
tolerant; however, the flexibility to configure them is re
duced by varying degrees, depending on which BSMs fail. 
The data bus is not fault tolerant since a break in the loop 
makes it virtually unusable. 

Crossbar switches 

Crossbar switch (CBS) networks are shared bus networks 
in which p nodes can be connected to q nodes. Such a CBS 
is called a pXq CBS. The cost of a pXq CBS is O(pq), and 
the delay of a CBS is constant. CBSs can be extended 
incrementally, the difficulty of which is implementation 
dependent. CBSs are modular in design, and may be appro
priate for LSI, depending on the complexity of the cross
points (e.g. queues). 

C.mmp 50 is an MIMD system consisting of p processors, 
one large shared memory with m memory modules, and k 
I/O buses, as shown in Figure 12. The system contains two 
CBSs. One, the Skp, is a kXp CBS which connects the k 1/ 
o buses with the p processors. The other, the Smp, con
nects the m memory modules with the p processors and is 
a mXp CBS. Each processor is a self-contained PDP-ll. 
The simultaneity is S=min(k,p)/p for the Skp and 
S=min(m,p)/p for the Smp. Both the CBSs are homogene
ous and physically centralized. However, the (software) 
control is distributed. A memory address is translated by 
hardware into a setting for the CBS. This makes the CBS 
transparent to the user. There are hardware switches which 
can force the CBSs into a given state. The connectivity, 
range and domain are C = R = D = 1, since any processor can 
be connected directly to any memory; however, processor
to-processor communications are limited to using a memory 
as an intermediate node. The broadcast scope is B = 1/ 
(N -1) and the broadcast delay is O(n), using a recursive 
doubling scheme. 
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Figure 12-Block diagram of C.mmp which shows both CBSs.50 

The C.mmp is completely partitionable, i.e., it can be 
reconfigured so that any set of processors can work to
gether by sharing a memory. However, there may be some 
interference. As for fault tolerance, if a memory module or 
I/O bus fails, the hardware switches can be set to isolate 
the bad hardware from the rest of the system. Similarly, if 
a processor fails the switches can be set so that it cannot 
access any memory modules or I/O buses. However, a 
failure in either of the CBSs could force the entire system 
to stop. 

The Multi Associative Processor (MAP)23 is an MSIMD 
system consisting of eight control units and 1024 PEs. The 
PEs are grouped together into 16 sectors of 64 PEs each. 
All of the PEs in a sector are connected via a bus. The bus 
of each sector can be connected to anyone of the eight 
control units via a 16x8 CBS, as shown in Figure 13. 
Having eight control units allows up to eight independent 
SIMD programs to be executed simultaneously. Any num
ber of processors can be dynamically allocated to anyone 
of the eight control units; however, the most efficient 
partitions will be those which put all of the processors of a 
given sector into the same partition. 

The CBS of MAP is physically centralized. Each control 
unit makes its own requests, and there is a control unit 
supervisor which arbitrates conflicts. 

The ~imultaneity i~ S= 1611024 for intra-sector PE-to-PE 
communications and 8/1024 for inter-sector communica-

tions. Since each processor is treated equally, the network 
is homogeneous. Any processor can broadcast a data item 
to all of the processors via the CBS, and can send data to, 
or receive data from, any other processor, so B=R=D= 1. 

If a processor fails, it can be removed from the list of 
available processors. This means it can never be assigned 
to a program. If a sector fails, all of the processors in the 
sector can be removed from the list of available processors. 
A control unit failure means one less SIMD program can 
be run simultaneously; however the rest of the system can 
run unaffected. 

CONCLUSIONS 

Summaries of a wide variety of methods for providing 
interprocessor communications in reconfigurable large
scale parallel processing systems have been presented. A 
set of parameters for describing the features of these net
works were defined. These parameters were used in the 
descriptions of the net works to provide a common basis for 
comparison. The rest of this section discusses future re
search directions in network design for a reconfigurable 
system. 

Reconfigurable large-scale parallel processing systems 
are becoming more prevalent as hardware costs decrease 
and the knowledge about exploiting parallelism in tasks 
increases. The interconnection networks for these systems 
should be restructurable under software control. In appli
cations where it is possible, parallel programs, including 
interprocessor communications, should be generated auto
matically, with the explicit parallelism hidden from the 
user. In applications where this is not possible, or for those 
who wish to have direct command over the parallel system 

PE 

~ 
~ 

Figure 13-Diagram of the CBS for the MAP system. 23 
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for efficiency or research, the network control must be 
accessible. For ease of use, each programmer dealing with 
a partition or submachine of size M should write network 
commands based on a logical numbering of the processors, 
from 0 to M -1. Furthermore; the user should specify 
communication paths in terms of destination tags, and let 
the processors or the network hardware itself compute the 
data paths, such as is done with the Omega network. 21 

There should also be machine instructions for specifying 
particular network connections, e.g., a method to specify 
"+ 1 modulo M" on the Illiac. 4 Since these systems and 
their networks will have a large number of components, 
fault tolerance is very important. Networks should have 
the ability to work around faulty switch elements, as in the 
SW-banyan network. 22 Efficient methods for detecting 
faults in a network must be devised. 

As the size of systems increases, the interest in SI-MD 
machines will shift to MSIMD architectures, such as 
MAP.23 To increase the range of applications these systems 
can handle, networks should be able to (1) allow all proces
sors to transfer data simultaneously, (2) prevent independ
ent users' submachines from communicating with each 
other, (3) allow a single user's submachines to communi
cate when desired, (4) allow submachines to be of different 
sizes, and (5) allow e-ach submachine to control its network 
independently (as the ADM network can34,35)., MSIMD sys
tems with such communication abilities will have some 
fault tolerance in that a faulty component need only shut
down the smallest size partition (e.g. an MC group in 
PASM35). Furthermore, in SIMD applications that require 
high reliability, the task may be run simultaneously in 
several different partitions. Then the partitions can com
municate with each other to confirm the validity of their 
results. (This assumes a suitable backup scheme for opera
tingwithout or replacing the "master" controller in case of 
its failure.) 

MIMD system networks should be able to support a high 
degree of simultaneity so that independent subsystems can 
communicate with minimum interference. Crossbar switches 
are too costly for large systems. Multiple bus systems such 
as those in CHoPP42 and MMC49 appear to be a promising 
approach. Ways to implement these networks, the use of 
packet switching, and techniques for evaluating MIMD 
networks need to be examined. 

PSM systems have all of the advantages of MSIMD and 
MIMD systems. Furthermore, they allow a single system 
to be built, and then have its processors operate in any 
combination of either mode (MSIMD or MIMD), depending 
on the users' needs. Thus, for example, a system may 
simultaneously behave as four independent SIMD machines 
and two independent MIMD machines, all of different 
sizes. In addition, a group of PEs may, for example, do 
preprocessing for a pattern recognition task in SIMD mode 
and then the same set of PEs may continue the task in 
MIMD mode. How well proposed PSM networks such as 
the ADM and SW-banyan can support such activities must 
be evaluated, and new approaches must be explored. 

Systems capable of varying their word size will also be 
more prevalent. Machines such as RVAp22 and DC18 will 

provide flexible systems, capable of functioning as PSM 
computers, where each "composite processor" operates on 
a user designated word size. The "carry" lines portion of 
the network should be easily reconfigured, as with the 
.. carry" network in DC. The inter-" composite processor" 
network should have the range and domain of a network 
like the SW-banyan, if operating on tasks which use a large 
number of "composite processors" that must communicate 
often. As in the PSM network area, network evaluation 
techniques and new schemes must be investigated. 

Ways in which networks can exploit LSI technology 
must be studied. Physically distributed networks, such as 
those in DC 18 and CHoPP42, can be incorporated with other 
system components and take advantage of LSI. Most pro
posed and existing physically centralized networks do not 
take advantage of LSI, due to low complexity/pin count 
ratio. Fut-ure networks may make use of LSI by becoming 
more "intelligent." For example, architects could design 
switch elements capable of supporting features such as 
pipelining, conflict (switch contention) resolution, fault de
tection, fault tolerance, and destination tag-based routing. 

Finally, network designers must not forget the user. 
Architects must remember that the networks they design 
must function efficiently for user problems. Therefore, net
works should not be designed without considering the in
tended applications of the system the network is support
ing. Work needs to be done in defining descriptive 
parameters for both networks and the communication needs 
of users' problems. By establishing a relation between 
these two sets of parameters, a problem could be analyzed 
to find its "communication needs parameters," and then 
the appropriate "network parameters" necessary to solve 
the problem efficiently could be determined. 
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INTRODUCTION 

The main characteristic of most powerful parallel systems 
is that their architecture is oriented towards specific types 
of problems to be computed. Such an orientation limits the 
range of tasks that can be effectively solved. As a result, 
systems are produced in small quantities which must bear 
all the costs of software and hardware development, and 
which are, as a result, very expensive. This slows down the 
computerization of many other complex problems just be
cause they require that new high cost parallel systems be 
manufactured for their computation. 

That is why it is timely to develop parallel systems that 
can change their architecture via software and thus can be 
oriented towards whatever problem is currently being com
puted. Such systems provide a programmer with an essen
tially new option-during the run-time of a single task he 
can perform mUltiple variations in the system architecture, 
each time selecting those sytem structures that speed up 
computation. 

In general the architectures which change via software 
their structure to adapt to that of a program are sometimes 
called adaptable architectures. Now we may distinguish 
three ciasses of adaptable architectures--microprogram
mable, reconfigurable and dynamic. 

Consider historic evolution of adaptable architectures. 
The first computers had a static architecture which com
pletely precluded any variation in the interconnections be
tween their devices or functional units. With the advent of 
microprogrammable computers, a programmer was allowed 
to reconfigure interconnections between different devices 
such as registers, adders, counters, etc. This resulted in 
software-controlled variation of an instruction's micropro
gram. Consequently, computation was speeded up by the 
expedience of selecting microoperations which were more 
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task-oriented. Therefore, first adaptable architectures ap
peared in microprogrammable computers. 

The next stage of adaptation had been achieved by intro
ducing reconfigurable interconnections between various 
functional units, such as processors, memories, I/Os. Such 
architectures began to be called reconfigurable architec
tures. One of the first systems of this type was described by 
Estrin. 1,2 His restructurable system could change into a va
riety of problem-oriented special purpose configurations 
which speeded up computations for several classes of ap
plications. 

In the beginning of the 60s there appeared reconfigurable 
array parallel systems in which there was the option to 
change the number of and interconnections between proc
essors working in the array. 3,4 Further development of array 
processors proceeded in the direction of establishing new 
patterns of configurations between various processors and 
in changing the processors' sizes. Subsequently, reconfigur
ation was used in other types of systems-pipeline, multi
processing, multicomputer, etc. 

In all, reconfigurable architectures provide the following 
performance gains: 

1. In array systems an augmented vector parallelism is 
achieved by enlarging the dimension of a data vector 
processed wit_h a single instruction. 5-11 

2. In pipelined systems the number of dummy-time inter
vals in the pipeline is minimized, caused by the dis
parity between program and pipeline structures. 12- 17 

3. In muitiprocessing systems an additionai program par
allelism is created by minimizing idle time of processor 
resource. 18-26 

4. In multicomputer systems computations are speeded 
up by allowing a closer match between the multicom-
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puter network topology and that of a complex com
puted task. 27- 29 

5. System reliability may be improved by deactivating 
faulty modules which may then be replaced with 
spares. 30-38 

Further evolution in adaptable architectures was marked 
by appearance of LSI modules with high throughput. Con
sequently, it became possible to achieve a higher degree of 
reconfiguration by activating not only interunit but also in
termodule connections. As a result, the available hardware 
resources could be partitioned via software into a variable 
number of computers with variable sizes. This allowed one 
to accomplish the architectural adaptation to the number of 
available program streams by switching the architecture into 
the matching number of independent computers. 39- 52 Such 
architectures were named dynamic. 53 

Although the basic feature of dynamic architectures which 
distinguishes them from other adaptable architectures is the 
adaptation to the number of parallel program streams, they 
may accomplish other adaptations, such as: 

a. The instruction set adaptation when the control unit 
may activate selectively not a single but tens of differ
ent instruction sets, each of which is oriented towards 
a separate class of dedicated applications. For in
stance, one set is dedicated to handling trigonometrical 
functions, another one to array processing, a third one 
handles FFf occurring in signal processing, etc. 

b. Pipeline adaptation means adaptation to parallel pro
gram streams when the architecture assumes different 
states characterized by the number of concurrent pipe
lines and the number of stages in each pipeline: or 
adaptation of the number of pipeline stages when the 
instruction activates the number of consecutive stages 
in the pipeline which matches the number of operations 
it realizes: or adaptation to operation time in each stage 
when each stage of a pipeline changes the time of 
operation; or adaptation on conditional branch, etc. 

c. Array adaptation means software formation of an ar
chitecture suitable for array processing. Furthermore, 
since different size computers are possible for a single 
state, array processing may be performed over differ
ent sizes of data words. When a dynamic architecture 
is switched to a state characterized by the array mode 
of operation, one of the computers assumes the func
tion of a computer supervisor and broadcasts instruc
tions and data addresses to all the other computers of 
the array, etc. 

Finally, dynamic architectures require that each program 
be preprocessed by a so-called adaptation system in order 
to find the best architectural states to be assumed by an 
architecture in execution of a given set of concurrent pro
grams. 

In all, modern modular architectures may accomplish all 
three classes of adaptations mentioned previously-micro
programmable, reconfigurable and dynamic. For instance, 
the architecture may reconfigure interconnections on a mi-

crolevel (registers, adders, conditional flip-flops) and thus 
accomplish a microprogrammable adaptation. Or, it may 
reconfigure on the level of separate functional units and 
perform a reconfigurable adaptation. Or, it may reconfigur~ 
on the level of separate modules and perform a dynamic 
adaptation. Thus one obtains microprogrammable, reconfig
urable and dynamic properties implemented in a single 
modular architecture. 

Given paper is focused on adaptations to executed pro
grams performed by dynamic architectures. Degrees of such 
adaptations will be characterized by so-called adaptation 
parameters the paper introduces. These are easily computed 
objective measures of evaluations expressed either in terms 
of time and/or in terms of hardware complexities. The paper 
also outlines general ideas of Dynamic Pipeline organization. 

ADAPTATION PARAMETERS FOR DYNAMIC 
ARCHITECTURES 

Introduction of adaptation parameters is caused by the 
following reasons: 

a. They allow evaluation of different dynamic architec
tures from the viewpoint of how well they take into 
account computational specificities of programs. 

b. They may improve the work of an operating system. 
Indeed, an operating system must preprocess each pro
gram in order to find the best architectural states to be 
assumed by the dynamic architecture in its execution. 
Since several alternatives may be obtained, each of 
them must be evaluated using the adaptation parame
ters. 

Let us show what adaptation parameters may be used to 
characterize major adaptation properties of dynamic archi
tectures: 

Bit size adaptation 

Dynamic architecture must be capable of forming variable 
size computers from the available hardware. Each new par
titioning of the resource into a new set of concurrent com
puters is performed during the architectural switch from one 
state to another. 41,42 The time of such a switch will be called 
the speed of bit size adaptation (SBA). The SBA may vary 
depending on the concrete hardware organization. Since 
during this time execution of some programs may be halted, 
the SBA should be minimized. 

Example. As shown in Reference 41, for a DC group, 
an architectural transition from one state to another is per
formed by a special arcQitectural switch instruction whose 
duration is 2mto + 12to, where m' to specifies memory speed, 
and to is the clock period equal to the time of eight-bit 
addition. For to=200 nsec and m= 1, SBA=400+2400=2.8 
fLsec .• 

The correct selection of computer size is another factor 
in executional speed-up. Since not only different programs 
but also different portions of the same program may handle 



variable size data words, one program may be computed by 
a sequence of different size computers so that each task of 
this program is computed by a minimal size computer. This 
achieves executional speedup for all processor-dependent 
operations. This speedup depends on how accurately a com
puter's size matches that of the data words. Indeed, as an 
ideal computer, one may consider a computer which for 
each instruction assumes the maximal size of the data word 
used in its execution. However, this may lead to a rate of 
variation in computer sizes which coincides with the instruc
tion rate, i.e., for a program made of N instructions, the 
overhead caused by reconfiguration will be SBA x N. 

Therefore, programs should be partitioned into tasks, so 
that each task is assigned an individual computer size. Each 
task may contain hundreds of instructions. For this case 
there will be some processor operations in each task which 
handle data words of smaller size than that of the computer 
selection. Execution of each such operation will be delayed 
by the time Ilt, and the delay in execution of the entire task 
will be characterized by its precision of bit size adaptation 
(PBA). Clearly, PBA= 2:: ilit, where fis the number of 

1=1 
processor-dependent operations requiring a smaller com-
puter size. 

There is another factor which leads toward an increase in 
the PBA. Since the processor is assembled from h-bit mod
ules, computer size is obtained in h-bit increments. Pres
ently h=4 or 8. However, technological advances leading 
toward a growth in the chip size will also lead toward an 
increase in h, but this will increase the PBA and therefore 
slow down computer processing. 

Example. Let the program containing 800 instructions be 
partitioned into four tasks (Figure 1). For the first task, 
computed by a 48 bit computer, one constructs a diagram 
of bit sizes required by each processor operation in this 
task. 54 For the ith operation, delay in execution is defined 
as ilti =T(48)-1j, where 1(48) is the time of 48-bit addition. 
The time 1(48) depends on the organization of carry prop
agation in the processor. Let the adder be equipped with 
four-bit group carry propagation, and suppose that the CLA 
circuit introduces a 2 td delay, where td is the time to switch 

11------\1 

48 bits -.I.... 32 bits-J.-'6 bits..l.--32 bits 

'---'·00--20-0 -~300--40"'O--500--"60-0--700--.L..-.. Operations 

Figure I-Partitioning of the program into tasks computed respectively by . 
48-, 32-, 16-, 32-bit computers. 
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Figure 2-Diagram of bit sizes for processor dependent operations in 48-bit 
task. 

one gate. Since 48-bit addition requires 12 CLA groups, 
T(48) = 12·2ftt=24ftt. In this task, the first operation handles 
40-bit words (Figure 2) and its time T1 =2k 1O=20td. There
fore ilt1 = T(48)- T1 =4td. The second operation handles 32-
bit words and T2 = 16td and ilt2 =8td, etc. By having found 
times ilti for all processor dependent operations and assum
ing that td= 10 nsec, we find that PBA=827 td=8.27 J-Lsec. • 

Adaptation to program streams 

Dynamic architectures allow one to achieve a trade-off 
between computer sizes and parallelism, i.e., by reducing 
bit sizes one may augment the number of concurrent com
puters formed from the same equipment. Such an architec
tural feature allows one to maximize the number of program 
streams computed by the same equipment. As shown in 
Reference 54, the assignment of independent programs to 
computers working in different architectural states is per
formed by the operating system. The effectiveness of this 
assignment may be evaluated with a so called resource uti
lizationfactor (RUF) found for each architectural state, N a , 

as follows. Assume that for a state, N a , a complete utili
zation of the resource is achieved if all its concurrent com
puters work continuously during the entire time, Ta , the 
state Na exists. However, for the real case, some of the 
computers of state Na may work only part of the time, so 
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that if Na is characterized by d computers with sizes h·k1 , 

h·~, ... , h·kd, working during times TI , T2, ... , 7d 
respectively, then the RUF for state Na is found as follows: 

h·kI · TI +h'~' T2+"'+h'~' Td 
RUF(Na )= h I (k k k ) ,100% 

• a' 1+ 2+"'+ d 

Since k)+k2+"'+kd=n, where n is the number of computer 
elements,53 then 

k . T + k . To + ... + kd· Id R U F (N ) = 1 ) 2 2 • tOO%; 
a no Ta 

Note, that if an h·k1-computer does not work in the state 
Nil' then the time T;=O. 

Example. For state N s , let a DC group with n=4 computer 
elements and h= 16 form two 16-bit computers CI(l) and 
C2(l) and one 32-bit computer C 3(2). Let this state be es
tablished for 32 min, but C1(1) works during TI =24 min, 
C2(l) works during T2 =27 min and C3(2) works for T3=32 
min. For C l (l), kl = I: for C2(l), k2= I, for C3(2), k3=2. 
Thus 

= 1·24+ 1·27+2·32 '1Nln1' =89 8M • 
RUF 4.32 vVYO. YO 

Adaptation to prograrn structures 

A significant executional speed-up may be achieved by 
introducing special instructions which take into account spe
cifics of the computed programs. Such instructions may 
activate execution of complex sequences of operations, such 

A2-B2 
as -- . D or (A + B- ('2). (A - C), etc. Each such instruc-

C 
tion is equivalent to several conventional instructions, so its 
use results in a minimization of the number of memory 
access operations. However, introduction into an instruction 
set of a large number of dedicated instructions narrows the 
area of application for a parallel system. To offset this prob
lem one has to augment the size of the instruction set. 
However, such an augmentation is accompanied by an in
crease in the op-code size. It then follows that the word 
size, h, ofa memory element, ME, also increases. However, 
as was shown above, it is unreasonable to increase h be
cause it leads to a corresponding increase in the size of each 
computer element. For instance if one increases h from 16 
to 24 bits, then the dynamic architecture may form computer 
sizes in 24-bit increments, i.e., it forms 24-, 48-, 72-bit com
puters, etc. Therefore, architectural adaptation to program 
streams and bit sizes will decrease, leading to a worsening 
of the PBA and RUF factors introduced above. As a result, 
the architecture reduces the number of parallel program 
streams which may be formed on the existing equipment. It 
will likewise increase delays in execution of processor de
pendent operations. That is why the expansion of an instruc
tion set must be accompanied by no consequential increase 
in the size of the op-code. 

Let us introduce one technique named dynamic adapta
tion of an im.tm('finn set which accomplishes this objective. 
The idea of this technique consists of the following. The 

control unit may activate selectively not a single but tens of 
different instruction sets each of which is oriented towards 
a separate class of dedicated applications. For instance, one 
set is dedicated to handling trigonometrical functions, an
other one to array processing, a third one handles FFTs 
occurring in signal processing, etc. Each set contains for 
instance 256 instructions partitioned into two categories
dedicated and general-purpose. The difference between sets 
is in the dedicated instructions. A computed program acti
vates the instruction set which most closely matches its 
computational algorithm. Such selective activation is made 
via software by writing a special control code 'Y;. 

Consider now how one may organize the dynamic adap
tation of an instruction set. The control unit contains a 
special unit which implements the Dynamic Instruction Set, 
DIS unit. This unit contains p states, lSI, IS2, ... , ISp , 

each of which is identified with one instruction set. Acti
vation of set lSi is performed by the writing of a special 
code 'Yi' Transition of the DIS unit from one instruction set, 
IS;, to the next instruction set, 15.;, is performed by writing 
another code 'Yj corresponding to lSi' When the Dynamic 
Instruction Set unit establishes state lSi> the computer ex
ecutes instructions from instruction set IS;. This is recog
nized by the op-code D so that if w is the bit size of op
code D, each lSi contains 2W different instructions. There
fore, the same op-code corresponds to p different instruc
tions belonging to lSI, I S2' . . . , I Sp respectively. It follows 
that D and 'Y; together recognize a unique instruction from 
the instruction set IS;. Thus this organization allows one to 
implement a Dynamic Instruction Set without any conse
quential increase in the size of code D. Before the compu
tation of a program or task one has to write to the control 
unit only one code, 'Y;, and the computer begins to activate 
instructions belonging to the instruction set IS;. 

Selection of the instruction set IS; which most closely 
matches the structure of a given program is performed by 
the assignment subsystem of the operating system that also 
defines the computer sizes for consecutive tasks of a com
puted program. 54 To this end, the same program graph is 
used for analysis that was constructed for finding computer 
sizes. For each graph node, the operating system specifies 
all the sequences of consecutive operations that this node 
executes. For instance, if node b executes formula 
[(A 2 - B2) X C]/ D, then. the sequence of operations which is 
found is (x ,x, - ,x ,+). Next, for each sequence ofoperations 
constructed in the node, the operating system finds the fre
quency, N, of its appearance in the program. The number 
N will be used in the future for determining the executional 
speed-up gained from using this sequence as a dedicated 
instruction. Consider now how the operating sytem may 
select the most appropriate instruction set. This is done by 
finding, for each instruction set IS;, the executional speed
up SPA; (speed-up on program adaptation) prompted by the 
use of IS; in the computation of a given program. Indeed, 
an operation sequence composed of d consecutive opera
tions is executed by a conventional microprogram mabIe 
computer as a subroutine made of d instructions where each 
instruction executes one operation. (We exduue from con
sideration all instructions fetching data for the d operations, 



because it is assumed that the number of such instructions 
is the same for a complex dedicated instruction and for a 
subroutine, and thus depends solely on the way storage of 
the data words required for the operation is organized.) Each 
instruction in such a subroutine takes time tm for instruction 
fetch and the time top for operation execution. It then follows 
that if one operation sequence containing d operations is 
organized as one dedicated instruction, the resulting speed
up, SIAj, prompted by instruction adaptation is 
SIAj=tm·(d-l). 

Therefore, the procedure for finding the speed-up by pro
gram adaptation, SPA;, for instruction set IS;, consists of 
the following: For each sequence of operations formed in 
the program, the operating system finds whether or not such 
a sequence may be implemented as a single dedicated in
struction, Ij, from instruction set, IS;. If it does, then the 
operating sequence finds the overall speed-up 
SIAj'Nj=tmCdj-l)'Nj where N j is the frequency with 
which this sequence appears in the program. If it does not, 
then SIAj • N j =0 and the next sequence is analyzed. Having 
found all SIAj ' N j speed-ups, the operating system finds the 
total SPA; for the instruction set lSi: 

t 

SPA i = L SIAj·Nj 
j=l 

where t is the number of operation sequences constructed 
for the program. Of the p times, SPAl, SPA2, ... , SPA/) 
found for the p instruction sets I S1, I S2, . . . , I Sp respec
tively, the maximum, SPA*, is selected. The respective IS* 
provides the best adaptation to the program structure. 

Example. Let t m be 200 nsec and the operation sequence 
A· B- (C+ A) be repeated in the program 43 times (N 1 =23). 
Since this sequence has three operations, 
SIAl =200·(3-1)=400 nsec. A second operation sequence 
(A - B)·C has N 2=35 and SIA 2=200 nsec. The third se-
quence (A-B+C)/C-D+C has N3=72 and 
SIA3=200'4=800 nsec; the fourth sequence 
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(A2-B2)x(C2-D2)/A+Bhas N-t=46 and SIA-t=200'8=1600 
nsec. Let instruction set I S1 have dedicated instructions 1, 
2, 4 and I S2 have dedicated instructions I, 2, 3. Find S P Al 
and SPA 2: 

SPA 1 =400,43+200,35+ 1600'46=97 .8ILsec. 

SPA2=400·43+200·35+800·72=71.8ILsec . 

Therefore I Sl achieves a better adaptation to the program 
structure. -

Array adaptation 

Dynamic architecture may form an architecture suitable 
for array computations. Furthermore, since different size 
computers are possible for a single state, array processing 
may be performed over different sizes of data words. When 
dynamic architecture is switched to a state characterized by 
the array mode of operation, one of the computers assumes 
the function of a computer supervisor and broadcasts in
structions and data addresses to all the other computers of 
the array. This transfer is done not through the 
I/O devices but by using the memory-processor intercon
nection bus which connects memory modules to processor 
modules. Note that introduction of different size computers 
requires that the computer supervisor broadcast instructions 
at the processing rate of the largest computer. Such syn
chronization in array processing may be accomplished if the 
largest computer sends a completion signal the moment it 
completes execution of the present instruction. This signal 
is sent through a special line of dynamic signals 41 which 
connects all PEs. 

Example. Let the hardware resource containing n=6 com
puter elements (Figure 3) be switched into an array structure 
containing three computers C1 (1), C2 (2), C4 (3). Assume that 
C1(1) is the computer supervisor, so its M £1 stores all in
structions which are broadcasted to all PEs. The same data 

PE4 PE5 PES, 

! ! 1 
i i .~ 

ME4 ME5 ME6 

•• -------- 48 bits 

Figure 3-Array adaptation of dynamic architectures. 
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address generated by PEl is sent to all six M Es, causing 
concurrent fetch of a data vector composed of a 32-bit and 
a 48-bit operand handled by C2(2) and C4(3) respectively. 
The rate of instruction broadcast is limited by the speed of 
the 48-bit computer. -

Note: The option of forming various size computers for 
array computations may lead toward an increase in the di
mension of a data vector computed with a single instruction, 
i.e., the number of operands computed in parallel may in
crease. This may be accomplished by selecting the minimal 
computer size for each operand. 

Therefore, the array mode of operation may be charac
terized by the arra.v adaptation of equipment (AAE) which 
shows the percentage of redundant equipment left in each 
computer by selecting a computer size exceeding that of an 
operand. Namely, in the array made of r data streams, for an 
ith data stream (i= I, ... , r), one finds the maximal data 
word size, W S . If the ith stream is computed by a computer 
of size CSt, then for the ith stream, AAEi= (1- WSd 
CSi)·IOO% and the overall AAE shows the percent of unused 
equipment in the entire array: 

Example. Let a program requmng array computations 
have four data streams with WSl =20 bits, WS2 =28 bits, 
WS3=22 bits and WS4 =32 bits. Let this program be com
puted by two dynamic architectures. The first one forms 
computer sizes in eight-bit increments, i.e., h=8, and the 
second one has h = 16. Find the AAE for both architectures. 
The first architecture forms the following computer sizes in 
the array: CSl =24 bits, CS2 =32 bits, CS3=24 bits and 
CS4 =32 bits. Therefore, 

( 
20+28+22+32) 

AAE(l)= 1- 24+32+24+32 ·100% 

= (1-0.91 )·100% =9% 

The second one has CSl =32, CS2 =32, CS3=32, CS4 =32. 

AAE(JI)= (1- 20+2~;'!2+32).100% 

=20.3% -

Pipeline adaptation 

Dynamic architectures must be capable of switching into 
configurations specif:c for pipeline computations. They will 
then be called dynamic pipeline architectures (DPA). Con
sider the properties a DPA should possess in order to 
achieve adaptation to an executed program. 

Adaptation to parallel streams 

Since a computed program may be decomposed into sev
eral pipelined streams, DPA must be capable of assuming 
different architectural states where each state is specified 
by the number of concurrent pipelines and the number of 

stages in each pipeline. A transition from one state to an
other should be performed via software, during the time of 
program computation. This allows the performing of dy
namic redistribution of the resource by selecting pipelines 
which take into account the specificity of the computed 
programs. 

Example. Let a DPA be equipped with S architectural 
states , No, Nt, . . . , Ns- t. Then for state No, the entire 
resource goes into the formation of, say, three pipelines 
each containing five stages, i.e., No=(3x5). For another 
state, Nb it is formed into two pipelines with four stages 
each and two pipelines with three stages each, Nt =(2 x4, 
2 x3). For the third state N 2 , it forms three pipelines with 
six, five, and four stages respectively, i.e., N 2=(1 x6, 1 x5, 
1 x4). -

Adpatation on operation sequences 

As was just shown, effective adaptation to a program may 
be achieved if the computer architecture is equipped with 
dedicated instructions each of which realizes a complex 
sequence of operations. When such an instruction is exe
cuted by the pipeline, each state of the pipeline must be 
assigned to one operation in the sequence. It then follows 
that each stage must be capable of executing any operation. 
This may be achieved if each pipeline stage is implemented 
as an h·k-bit computer capable of executing any operation 
provided by an instruction. 

Example. A single pipeline must be capable of imple
menting different sequences of operations such as ( -, +, x, 
+) in arithmetic expression [(A-B)x(C+D)]/E, or (x, -, 
+, +) in (AxB-C)/D+E, etc. -

Adaptation on the number of pipeline stages 

One of the basic problems of modern pipelined systems 
is their inability to quickly vary the number of stages con
tained in a single pipeline. Indeed, existing techniques SS

-
s7 

provide that instructions bypass the unneeded stages. But 
this may involve conflicts when one instruction, as a result 
of such bypassing, jumps to the operands prepared for pre
ceding instructions. On the other hand, if no such bypassing 
is implemented, the pipeline contains a permanent number 
of stages specified by the instruction containing the maximal 
sequence of operations. All other instructions which imple
ment shorter sequences are slowed down because they have 
to pass through all stages. To alleviate this problem, each 
instruction must activate the number of consecutive stages 
in the pipeline which m.atches the number of consecutive 
operations it realizes. Consequently, the duration of each 
instruction will depend only on the number of its consecutive 
operations. 

Example. In a pipeline made of five stages the instruction 
which implements the formula (A + B)X C- D containing 
three operations ( 1 , X ) must be executed only in the first 
three stages, i.e., the computational result should be output 



by the third stage and be prevented from going to the fourth 
and ftfth stages .• 

Adaptation to operation time in each stage 

Each stage of a pipeline may speed up execution if it 
changes the time of operation. As was shown in References 
41 and 42, such a variation may be accomplished if each 
h·k-bit computer, implemented as a stage, is equipped with 
modular control organization, which can change the time of 
operation with a special control code p, where p is the 
number of minor clock periods, to, a processor-dependent 
operation requires to execute in a given size computer. As 
was shown in Reference 42, this code p may also reconftg
ure the processor into a minimal size. Therefore, if each 
pipeline instruction stores its own code p, then each pipeline 
stage will be able to reconftgure into the minimal size com
puter and generate the minimal time interval for a processor 
dependent operation. As for processor-independent opera
tions (Boolean, shifts, conditional branches on =, '*, tests 
of flip-flops; etc.), the modular control organization may 
speed up their executions as well. The reason for this is that 
for any size computer the same clock period, to, the time of 
eight-bit addition, is used. That is, a processor-independent 
operation may be executed during one to rather than during 
the longer time of a processor-dependent operation. 

Therefore, if each stage is realized as an h· k-bit computer, 
then the time of operation in this stage may range from one 
to to to·k. For instance, in a 64-bit computer with no CLA 
circuits, h=8, k=8 and the time of operation may range 
from one to to 8to• If CLA circuits are used, a p<8 is 
selected. It then follows that if the time of an operation 
executed in the ith stage is also adaptable, one obtains 
additional executional speed-up in the pipeline. 

However, the problem which must be overcome is the 
problem of so-called pipeline races. Indeed, variation of 
operation times in pipeline stages may lead to a situation in 
which an instruction containing a shorter operation executed 
in the ith stage may beat the preceding instruction which 
executes a longer operation in the (i+ I)th stage. Thus, the 
result of the ith stage will be routed to the (i+ 1) stage before 
the (i+ I) stage finishes its operation. As will be shown in 
the fourth section pipeline races can be easily solved in 
dynamic pipeline architectures by introducing synchronous 
movement of instructions from stage to stage. For this case, 
the pipeline rate is governed by the same traffic rules which 
are applicable to a highway traffic when a police car appears. 
Assume that from the viewpoint of a pipeline, a police car 
has a long operation time. Thus all cars (instructions) which 
follow a police car within the county limits (pipeline) move 
with the speed of this car. On the other hand, preceding 
cars may move with higher speed, i.e., for preceding instruc
tions with shorter operations, the pipeline rate may increase. 
Therefore, the rate of both a highway and a pipeline may 
increase if the highway has no police car and the pipeline 
contains no instructions with long operations. 

Example. Let us compare two types of pipeline: Pt 

with permanent rate and P2 with changeable rate. Assume 
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that Pl and P2 have pipeline stages implemented as 64-bit 
computers so that Pt'S rate is that of a 64-bit addition 
whereas P2's rate depends on the sizes of data words and 
operation types. Let the time of 64-bit addition, 1l:64)=400 
nsec, and the time of 32-bit addition be 1l:32)=200 
nsec. Find the times, T(Pt ) and T(P2 ), required by both 
pipelines for execution of the same operation sequence 
«AAB)+C-F»K corresponding to a conditional branch 
instruction where A, B, C, F, K are 32-bit operands. Since 
the first pipeline has the same time for each stage and the 
operation sequence (/\, +, -, -) takes four operations, 
T(Pt )=400+400+400+400= 1600 nsec. As for the second 
pipeline, it executes 32-bit addition for t(32)=200 nsec and 
logical multiplication for t 0= 100 nsec. Therefore it executes 
instruction «A/\B) + C - F) > K during the time 
T(P2) = 100+200+200+200=700 nsec. Thus, implementation 
of changeable rn.t-es in pipelines is a source of additional 
speed-up .• 

Adaptation on conditional branch 

As was shown in Reference 55, a general weakness of 
pipeline architectures is pipeline drains due to conditional 
branching. Indeed, a pipeline architecture may have dummy
time intervals when no processing is performed if, as a result 
of a conditional test, the program switches to another in
struction sequence which was not already being processed 
by the pipeline stages. The problem of conditional branch 
may be solved if the architecture switches into architectural 
states containing several independent pipelines, of which 
one is selected as the main and others are subsidiary. For 
this case true (incremental) and false (specified with jump 
address) program sequences maybe computed respeciiveiy 
by two independent pipelines, main and subsidiary, where 
a subsidiary pipeline is switched into operation only during 
the respective conditional branch instruction, i.e., its in
struction memory replicates the entire program. If the con
ditional branch is made to the instruction sequence com
puted in the subsidiary pipeline, then it transfers all 
computational results necessary for further computations to 
the main pipeline and stops computation. 

Note, if several subsidiary pipelines are available, the 
architecture may effectively organize multiport branching, 
minimizing the number of dummy-time intervals. Since DPA 
may form several concurrent pipelines for a single architec
tural state, it may effectively solve the problem of adaptation 
on conditional branch. 

Example. Let the conditional branch instruction It re
quiring execution of the conditional test (A - B)2 / K + C> W 
store jump address AF • Since decision on selection of either 
true or false program sequences is made only at the fifth 
stage of the basic pipeline, it begins execution of instructions 
I2T and I3T , which immediately succeed It in the true se
quence, before it completes the conditional test. However, 
before entering the basic pipeline, instruction 11 transfers 
the jump address AF to the subsidiary pipeline, which begins 
execution of the false instruction sequence I 2F , /3F, etc. If 
the fifth stage of the basic pipeline transfers control to the 
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false sequence executed in the subsidiary pipeline, then each 
ith stage of the subsidiary pipeline (i= 1, ... , 4) broadcasts 
its computational result to the i+ 1 stage of the basic pipe
line. Therefore, the basic pipeline continues computation as 
if it had contained the false sequence .• 

Adaptation to program compatibility 

As was noted above, a dynamic architecture may orga
nize execution of a program with a sequence of computers 
which are different in size. Such organization speeds up 
computations and augments program parallelism using the 
same resource. However, a real performance improvement 
may be realized only if during a transition from one com
puter size to another, the program undergoes only insignif
icant changes in the instruction fields. Therefore an impor
tant characteristic of dynamic architecture is how well it 
adapts to execution of a program by a sequence of com
puters with variable sizes. Ideal was the case when complete 
universality of executed programs was achieved. 41.42 

This was the case requiring no modifications in instruction 
fields when a program was computed by different sizes com
puters. The following architectural solutions implemented 
such program universality: 

1. Modular control organization,42,58 which eliminated 
from instructions all codes which changed their mean
ings when computer size changed. Instead, it provided 
that all such codes be stored in every LSI module of 
an h·k-bit computer. 

2. A new memory allocation technique, called parallel
serial exchange. which provided (a) a unique instruc
tion size (h-bits); (b) storage of instructions consecu
tively in a single memory element having the same 
width (h-bits); and (c) storage of an h·k-bit data word 
in a single parallel cell of k memory elements, all spec
ified by the same relative address. Such a storage tech
nique maintained the sizes of data and program arrays 
when they were moved from one computer to another. 
As a result, no modifications of addresses (operand or 
jump) stored in the instruction field were required. 
However such universality was achieved only for DC 
group computers. 41,42 

Therefore, any dynamic architecture must be character
ized by the time a computed program adapts, before it may 
be executed. This time is called the Time of Program Ad
aptation (TPA), 

N 

TPA= 2: tk 
k=1 

where tk is the time to modify a kth program instruction, IV 
is the overall number of instructions which should be mod
ified. 

The use of adaptation parameters in operating systems 

The adaptation parameters introduced above should be 
used by the operating system in order to specify what states 
a dynamic architecture should assume in order to enhance 
performance. A program written in a high-level language is 
preprocessed by the operating system, which consists of 
three subsystems-adaptation, assignment and monitor. 

The adaptation system finds a dedicated instruction set lSi 
to be activated by each user program in Dynamic Instruc
tion Set unit. 
The assignment system assigns the available hardware re
sources between user programs and constructs a flow 
chart of architectural states assumed by a dynamic archi
tecture in executing a given set of concurrent programs. 
The monitor system supervises correct execution of the 
flow chart constructed by the assignment system. 54 

Let us briefly describe each of the subsystems. 
The adaptation system analyzes a program written in a 

high-level language in order to define a set of complex ded
icated instructions which speeds up computation of this pro
gram. Since during such analysis one may obtain several 
sets of dedicated instructions, the adaptation system has to 
evaluate each such set from the viewpoint of the executional 
speed-up it gives. To this end it finds the speed-up on pro
gram adaptation, SPA j , for each dedicated instruction set 
and selects that instruction set which gives a maximal SPA. 

In case that program should be partitioned into tasks each 
requiring its own dedicated instruction set, I Sj, the adapta
tion system assigns to each task the most appropriate in
struction set and specifies the sequence of different instruc
tion sets required to execute this program. Transition from 
instruction set lSi to I Sj is performed by a special program 
instruction which stores code ')'j. 

Note that the adaptation subsystem should also prepro
cess programs which are computed by a dynamic pipeline 
architecture. For this case a program is partitioned into a 
sequence of tasks, TAl, T A 2 , ••• , T Ako in which T Ai is 
characterized by the maximal length F; of the pipeline re
quired. Each instruction belonging to task T Ai activates 
only w consecutive stages in this pipeline where w (w::;; F;) 
is the number of its operations, each of which is executed 
by one pipeline stage. The number F; is identified by the 
assignment subsystem considered below. 

The assignment system may have two modifications de
pendent on the type of computations performed by dynamic 
architecture-conventional and pipelined. Basic features of 
the conventional assignment system are considered in Ref
erence 54. As for a pipelined system, their development is 
one of the objectives of current research performed by these 
authors. 

For conventional computations, the assignment subsys
tem specifies a sequence of minimal size computers which 
may execute every user program. Reference 54 describes 
techniques for partitioning a program into tasks where each 
task is computed by a permanent size computer. Since there 



are different alternatives in this partitioning, each has to be 
evaluated using the precision of bit size adaptation criteria, 
PBA, considered above. Since each PBA characterizes the 
delay in execution of a single task introduced by selecting 
an inaccurate computer size, then the partitioning should be 
performed which gives the minimal delay in execution of all 
tasks. 

Next, the available hardware resources have to be as
signed among concurrent user programs, each of which is 
executed by a sequence of the minimal size computers found 
earlier. Since the assignment system may find several alter
natives for assigning programs to computers, for each alter
native it has to compute the resource utilization factor, 
RUF, which shows the percentage of the equipment use 
achieved with this alternative. Thus, it selects the option 
characterized by the highest RUF. 

For pipeline computations, each program is first prepro
cessed by the assignment subsystem and then by the adap
tation system. The reason for this is as follows. In the 
execution of a set of concurrent problems, a dynamic pipe
line architecture executes a system flow chart. Each state 
of this flowchart is specified by the number and lengths of 
concurrent pipelines. It then follows that construction of a 
flowchart establishes the length (number of stages) of each 
pipeline in each architectural state. Thus a sequence of op
erations assigned to one pipeline cannot exceed its length. 
If one sequence exceeds the length of the pipeline where it 
is computed, then it has to be split into several sequences, 
each of which has to be assigned to a separate pipeline 
instruction. Therefore, for each program one may find a 
dedicated instruction set only after construction of the sys
tem flow chart, because each architectural state of the flow
chart establishes the limit on the number w of consecutive 
operations to be assigned to a single dedicated instruction. 
As was shown, w:$ F, if this instruction is assigned to a 
pipeline with F stages. The basic features of the monitor 
system for conventional computations were described in 
References 41 and 42. 

For pipelined computations they are yet to be developed. 

DYNAMIC PIPELINE ARCHITECTURE 

Earlier we established the properties needed by a dynamic 
pipeline architecture (DPA) in order to be effectively 
adapted to executed programs. Let us show that all these 
properties may be implemented in a DPA assembled from 
DC groups described in Reference 42. 

Consider now how one may organize one pipeline. Its 
hardware resource may be formed into a single computer 
supervisor, Co, and several h·k-bit computers, C1 , C2 , 

... , Cp , forming consecutive pipeline stages. Computer Co 
stores instructions in memory Mo and fetches them to pro
cessor Po (Figure 4). The Co computer's size matches that 
of one instruction. Each pipeline computer C; has memory 
Mi for storing data, processor Ph and general register set 
mj, which stores temporary results required by the Pi pro-
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cessor. These are either computed by Pi or by other pro
cessors. 

Two consecutive pipeline stages Ci and C;+1 are separated 
by the connecting element MSE;, which may assume two 
modes of operation: 

a. Right transfer-it receives the pipelined instruction and 
sends it to the next stage C;-i-1 with a delay of one 
interval. 

b. No transfer-the instruction it receives is not trans
ferred to the next Ci+l' 

Connecting elements ASE1 , ••• , ASEp , are connected 
into a shifting sequence, and transfer several addresses. 
Each time a pipeline stage C receives an operand and ex
ecutes the operation assigned to it by the program instruc
tion, the connecting element ASEi , with the same position 
i, receives a word shifted from ASEi - 1 • It then follows that 
ASEj is synchronized by state C; and stores a word received 
from ASEj - 1 during the time C executes operation. If the 
result of this operation should be written to some general 
register set mj, the ASEj sends the address for that set to 
state C. Thus the number of MSE and ASE connecting 
elements is the same and matches F, the number of pipeline 
stages. Both an MSE and ASE may be implemented on a 
universal LSI module equipped with the modular control 
organization. 42.58 

Each instruction fetched from Mo to Po includes two por
tions-the pipeline portion, PI, and the address portion, AI. 
By passing through the bus made of MSE connecting ele
ments, the pipeline portion, PI, propagates through consec
utive pipeline stages with a delay of one interval, causing 
execution of an operation assigned to each stage. Copcur
rently, the address portion, AI, of the instruction propagates 
through the bus made of ASE connecting elements and spec
ifies a pipeline stage, C;, which should output the result, 
and a general register set m i' which should receive this 
result. 

We introduce now a format for the portions PI and AI of 
the instruction. 

PI instruction 

In order to adapt to the operation, it is necessary that 
each PI store its own op-code D. However, when the same 
D propagates through the pipeline stages, it will activate the 
same operation in each stage. In order that each stage, C;, 
execute an individual operation, C; should store a position 
code, i, which shows its position within the pipeline. These 
two codes, D and i, achieve the selective activation of an 
operation assigned to stage Cj by instruction PI. The number 
of bits in code Dis /Og2 # (IS), where # (IS) is the size of 
an instruction set. 

Adaptation to the length of the pipeline is performed with 
another code, w, which shows the number of consecutive 
pipeline stages which execute instruction PI. Clearly w 
matches the number of consecutive operations which are 
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Figure 4-Dynamic pipeline architecture. 

realized in PI. By propagating through each connecting ele
ment, M S Ej, containing position code i, w is compared with 
i. If i<w, MSE; propagates this PI instruction to the next 
stage with delay of one time interval. If i~w, MSI j blocks 
further instruction propagation, ending the execution of in
struction PI. Therefore, by writing a code w into the instruc
tion field, one may select the number of pipeline stages 
required by a single instruction. 

This technique allows one to perform a simple adaptation 
of the number of pipeline stages that requires no bypassing 
of unneeded stages and no conflict resolution associated 
with such bypassing. The entire problem is solved by the 
code w with size w= log F bits, where F is the maximal 
length of the pipeline, which can be formed by Dynamic 
Pipeline Architecture. 

Adaptation of each stage to operation time is performed 
with another code, p, stored in the PI instruction. Since 
each LSI module of processor Pj is equipped with the same 
modular control organization,42,58 this allows one to orga
nize variable time intervals for any processor dependent 
operation. To this end a special sequencer, CAD-M, is ac
tivated. It ra~ses through a loop containing p states where 
each state lasts one clock period. to' For p=2. CAD-\1 

passes through a two-state loop, giving Top =210; for p=3, 
top =3to, etc. 

For pipelines however, the modular control organization 
is slightly modified as compared to conventional DC groups. 
Indeed, in a DC-group a new meaning of code p is written 
to each LSI module during each architectural transition. 
Thus all the LSI modules contained in a computer store the 
same p during the time this computer exists. For pipelines, 
the time of operation required by stage C j depends on the 
PI instruction. A new meaning of code p must therefore be 
brought to C j with each PI instruction. The size of p is 
/Og2 n where h· n is the maximal computer size which may 
be formed by DPA. 

Therefore three codes, D, w, and p, effect a pipeline's 
adaptation to the operation, to the length of the pipeline, 
and to the time of operation executed by each pipeline stage. 

In addition to adaptation codes, each PIinstruction stores 
the relative address, A p , of Mi memories where each mem
ory M i stores a word required by the C i stage. The cell 
accessed by address Ap may store either an operand used 
for execution in the stage C i , or an rp-address of the general 
register set Ill;. Using this address, a second operand is 
fetched to C; from mi' A special tag bit, e, in the cell 



accessed by Ap address recognizes whether the second op
erand is stored in Mi or mi' 

In order not to have any limitations on the height of 
memory M i and not to increase the bit size of PI, it is 
assumed that Ap is a relative eight-bit address. The effective 
address E (24 bits) is formed from a concatenation of the 
base address B (16 bits) and address Ap (eight bits). Base 
address B is fed continuously to all Mi memories during the 
execution of one task. It is changed when data words have 
to be fetched from a new page. Such organization provides 
that each Mi memory may contain 224 words. The overall 
size of instruction PI is: 

PI=iog2 # (IS)+iog2 F+log2 n+8 

For a DPA with #(IS)=255, F=16, n=8, h=8 

PI=8+4+3+8=23 bits. 

(This means that this DPA has 255 instructions, it forms 
pipelines not exceeding 16 stages, each stage has no more 
than 64 bits.) 

Therefore, in spite of its insignificant bit size, instruction 
P I not only brings to each pipeline stage all the necessary 
information about operands and operations, but it also per
forms effective on-line adaptation of the pipeline in order to 
match the sequence of operations activated by this PI. In 
addition, the relatively small size of PI allows one to imple
ment each MSE connecting unit using a single universal LSI 
module with 64 pins. 

AI instruction 

This instruction stores the following codes: position code 
j of the Cj stage which should fan-out its result to a general 
register set mb, position code b of the register set mb which 
should receive this result, and the address rp of the desti
nation register in mb where the result should be written into. 
Thus the AI bit size is: 

AI=21og2 F+log 2 K; 

where F is the maximal length of a pipeline and K is the 
number of registers in each mj' Therefore, for F= 16, 
K=256, AI=2'4+8= 16 bits. 

Thus the AI instruction allows each pipeline stage (not 
just the last one) to send its computational result and permits 
each general register set to receive this result. Such an on
line organization of providing the stages with temporary 
results they might need for future computations eliminates 
the alternative waiting time associated with sorting and 
sending temporary results to stages which require them. 

Variable time intervals 

Each pipeline computer C is equipped with the control 
organization required by a dynamic instruction set. How
ever, in order to organize a pipelined mode of operation this 
control organization has to be modified. 
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In computers with a dynamic instruction set, the DIS unit 
of one computer contains two sequencers, CAD-I and CAD
M. ,The CAD-I sequencer activates a sequence of operations 
which corresponds to one instruction, whereas the CAD-M 
sequencer specifies the time of each operation. For instance, 
if an instruction activates the sequence ((A + B)-C» K, 
then the first state of CAD-I fetches the instruction, the 
second state executes A + B, the third state performs 
(A + B)- C, and the fourth state executes the comparison 
(A+B-C»K. 

In a pipeline, however, all these operations are distributed 
among separate computers, so that computer Co fetches the 
instruction, computer C1 executes A + B, computer C2 ex
ecutes (A+B)-C, and computer C3 executes 
((A + B) - C» K. Therefore, each pipeline computer exe
cutes only one operation out of the whole sequence. Furth
ermore, two consecutive pipeline computers, C i and CHI' 
may simultaneously execute operations activated by two 
instructions, PIj and Plj+l' Therefore, for each pipeline 
computer Ci , its CAD-I sequencer has to establish its state 
only for the time interval it keeps instruction PI; at the next 
time interval, when the new instruction Plj+1 is written, 
CAD-I has to establish another state which corresponds to 
that instruction. 

It then follows that for non-iterative operations (addition, 
subtraction, Boolean) the CAD-I functions as a decoder, and 
for iterative operations (multiplication, division, etc.) it 
works as a sequencer. The CAD-I functioning is controlled 
with the following codes: the op-code D it receives with the 
PI instruction, position signal i produced locally by the 
position code i, and code 'Yi which distinguishes instruction 
set ISj • 

Consider now how one may organize a variable time of 
operation, T, executed in stage C of the pipeline: T is 
variable, i.e., T= to' b, where to is the time of h-bit addition 
in one LSI module, and b depends on codes p and D stored 
in instruction PI. For a processor dependent operation (ad
dition, subtraction), that has to last T= p. to, the output of 
decoder CAD-I initiates the CAD-M sequencer which exe
cutes a loop having p states. During this time CAD-I main
tains output continuously, and activates operation in the 
processor. When CAD-M completes its loop, this terminates 
the CAD-I output. If the operation is independent of the 
processor size (Boolean, shift, etc.), then it is activated by 
the CAD-I decoder only, Namely, CAD-M is not initiated 
and the operation takes to, the time of one minor clock
period. If stage C executes an iterative operation, CAD-I 
executes a sequence containing several states. If a state in 
this sequence has to last time p·to , CAD-I initiates CAD-M 
and performs a transition to the next state only after the 
completion signal issued by CAD-M. 

Routing algorithm for PI and AI instructions 

Consider movement of instructions PI and AI within the 
pipeline. Let the computer supervisor, Co, fetch instruction 
1* from Mo to Po. At the first interval, its PI* portion is 
written to stage C I and connecting element M S E1 • Since 
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P 1* stores relative address Ap and the base address B is 
continuously fed by Po to all M j memories, memory M I , 

receiving effective address E=B+ Ap , retrieves either an 
operand for stage C I (bit e=O) or address rp of the register 
set ml (e= 1). This address connects the respective register 
contained in the ml register set to the adder input in pro
cessor Pl' At the same time processor Po sends instruction 
AI* to ASEI and fetches the next instruction, which follows 
1*, from the memory Mo. 

For the next interval the following actions are executed 
in the pipeline in parallel: (Assume that for one 1* instruc
tion, its PI* portion is stored in Pi and M SEj, and its AI* 
portion is stored in ASE j .) 

a. The p code stored in instruction Pb activates a new 
processor size in Pi and new durations of processor
dependent operations. 

b. The Pj processor (i= 1, ... , w) which received P 1* 
during previous interval executes the operation pro

. vided by the PI* instruction for the ith stage, and 
receives a new PI which immediately succeeds PI*. 

c. The MSE j connecting element compares the code w 

stored in the P 1* instruction with its own position code 
i. 
• If i<w, it sends the PI* instruction to the next stage 

C;+ I and connecting element M S EH 1> respectively. 
• If i~w, then PI* instruction ends its execution. 
• If instruction P 1* passes to the next stage CHI' a 

word is fetched from memory M j +1 . Its effective 
address is E= B+ AI) where A,) is stored in instruc
tion Pf*. 

d. The connecting element ASEi compares its own po
sition code i with position code b stored in instruction 
Af* which shows that pipeline stage Cb should send its 
result to a general register set. 
• If i=b, the AI* is sent to processor Pj. At the next 

interval, Pi will send the result of the computation 
it executes during the present interval to a destina
tion address stored in Af*. 

• If i=l=b, then AI* is sent to the next ASEj+1 • 

e . Po sends new instruction PI to stage C 1 and connecting 
element MSE 1, and it sends new instruction AI to 
connecting element ASE]. 

f. The next instruction is fetched from M 0 to Po. 

Consider now the organization of vector computation 
when the same instruction, 1*, handles data arrays each 
having z words. Then the P 1* and AI* portions propagate 
through the pipeline z times, and Co stops fetching of other 
instructions from Mo until the vector computation ends. 
After each interval, the Po processor increments the current 
address Al' stored in PI* with some constant, a. stored in 
1*, so that the new address equal to A p + a, is written back 
to P 1*. Thus, during each interval, the C i stage receives 
PI* with a modified relative address. In addition, if the 1* 
instruction provides that address rp , stored in instruction 
AI*, also be changed, then during each time interval, Po 
computes a new address, r" + b, in a destination register set 
and writes it back to AI* so that connecting element AS El 
also receives instruction Af* with a modified address. 

It then follows that for vector computations, in addition 
to the AI* and PI* portions, each 1* instruction should also 
store the constants a and b for modification of addresses Ap 
and rp and a constant z showing the dimension of the data 
arrays in memories Mi' 

Advantages of dynamic pipeline architectures 

Dynamic pipeline architecture (DPA) eliminates most of 
those drawbacks associated with disparity between program 
and pipeline structures. Indeed: 

a. For existing pipelines, if a sequence of operations met 
in the program does not correspond to a sequence of 
operational units connected into the pipeline, the pipe
line is switched into a new configuration in order to 
form a new sequence that matches the one encountered 
in the program. This introduces an additional delay 
associated with such a reconfiguration. 

In the DPA no such delay is introduced because each 
pipeline stage is capable of executing any operation. Thus, 
a pipeline with F stages may execute any sequence of w 
operations if w-:s.F. 

b. In conventional pipelines a disparity between the num
ber of consecutive operations in the instruction and the 
number of pipeline stages in the pipeline which pro
cesses this instruction creates additional delays 
(dummy-time intervals) associated either with instruc
tion propagation through unneeded stages or with con
flict resolution when the instruction bypasses the un
needed stages and encounters operands prepared for 
some of its predecessors. 

In the DPA no such delays occur because the number of 
stages the instruction propagates through is defined by the 
w code it stores. Consequently, on passing through w stages 
the instruction completes its execution. 

c. In existing pipelines the time for non-iterative proces
sor dependent operations (addition, subtraction, >, 
etc.) is permanent and does not depend on operand 
sizes. However, selection of a permanent operation 
time in each stage requires that it be selected as the 
time of the longest operation (addition handling maxi
mal word sizes). It then follows that all faster opera
tions (processor dependent operations handling smaller 
word sizes or Boolean operations, shift operations, 
etc.) are slowed down because they are executed dur
ing the time of the longest processor dependent oper
ation. 

In DPA, however, no such slowdown occurs because each 
stage is provided with a variable time interval. It then fol
lows that each stage is capable of generating a minimal 
operCltion time. Therefore. in DPA a pipeline is capable of 
working at a variable rate. Ifit is filled with short operations, 



it fans out results much faster, at the maximal rate of the 
short operation. 

d. In existing pipelines, additional waiting time occurs 
when the computational result obtained for one in
struction in one stage is required as an operand for 
another instruction in another stage. For instance, if 
the instmction executes (A - B)2+ D· K, the temporary 
result (A - B)2 cannot be used on-line as an operand of 
some other pipeline stage. 

For DPA, however, a proposed addressing procedure al
lows each stage Cj to receive on-line a temporary result 
produced by another stage Ci in its general register set mj' 

Thus the waiting time associated with feeding temporary 
results to the pipeline stages that need them may be elimi-

. nated. 

e. All existing pipeline systems cannot partition the avail
able resources into a variable number of parallel pipe
lines, each of which is provided with a changeable 
number of stages. As a result, the number of parallel 
program streams is permanent and cannot be changed. 
Likewise, selection of pipelines with a permanent num
ber of stages delays execution of instructions requiring 
a smaller number of stages. 

On the other hand, DPA may perform multiple on-line 
switching of the resource into different states. This maxi
mizes the number of program streams computed by the same 
equipment. 

f. It has been noted previously that the ability of DPA to 
form different states is convenient for handling condi
tional branching, for then no time is lost due to selec
tion of the program sequence which currently does not 
fill in the pipeline. Also, switching a DPA into states 
with multiple pipelines allows one to organize multiport 
branching. 

CONCLUSIONS 

A modem dynamic architecture allows redistribution of 
the hardware resource forming a variable number of con
currently operating computers. This means that a parallel 
system may increase the number of parallel program streams 
executed on the same equipment by changing the number of 
computers it has. However, a dynamic architecture may 
provide the system with other powerful sources of through
put increase: 

a. It may form its resource into different types of archi
tectures. This means that the system may tum from a 
multicomputer system to, say a pipeline or array sys
tem, and vice versa. Or the system may have all three 
types of architecture co-resident at the same time
namely, part of the resource functions as a multicom
puter system. Another part behaves as a pipeline and! 
or array subsystems. This feature will allow to perform 
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multicomputer, multiprocessing, pipeline and array 
computations using the same hardware instead of im
plementation of separate dedicated subsystems. 

b. The system will be able to change via software an 
activated instruction set. This may be done either 
within a single program or on the level of several pro
grams forming a queue. 

Therefore, a merger of dynamic, reconfigurable and mi
croprogrammable adaptations into a single adaptable archi
tecture will allow one to create compiex paraliei systems 
with high throughput. 
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INTRODUCTION 

During the past decade the use of computers in the on-line 
environment has steadily increased. In particular, there has 
been a drastic growth of on-line systems for business-ori
ented applications. We see a shift of interest in computers 
from their mere computational power to their data manage
ment capability, especially in these applications. User de
mand for the growth of on-line storage capacity in this en
vironment is said to be much larger than the demand for the 
growth of computational power. We expect the business
oriented computer system to become an information utility 
in the future. 

We have been generally using disks as our on-line storage, 
but the ever-growing demand for file storage capacity forced 
us to use more inexpensive magnetic tapes, though they are 
more difficult to handle in the on-line environment. Now 
it is quite common to see libraries of several thousand tape 
reels storing tens of billions of bytes of data at large com
puter installations. Some government data processing in-· 
stallations actually possess nearly 100,000 tape reels in their 
tape libraries. The handling of these tape reels require many 
operators to mount these reels manually on tape units as 
well as a large floor space for the tape units and the tape 
library. Furthermore, the traditional tape handling is by na
ture prone to various human errors. 

Several mass storage systems (MSS) were developed to 
solve these problems of traditional magnetic tapes by auto
mating the tape handling process. 1-4 These systems have 
not yet spread widely because of their high cost, but they 
seem to be steadily gaining popularity. We believe that these 
systems will gradually repiace most traditionai tape iibraries 
and become essential to large information utilities in the 
years to come. 

NEC has been engaged in the product planning and de
velopment of an MSS. We have studied the existing MSSs 
in light of the essential requirements of these systems and 
derived an MSS architecture which is believed to relax the 
iimitations of the existing systems. As the name of mass 
storage systems has been historically applied to disks in 
NEC, we decided to call our newly-developed mass storage 
system the NEC mass data file subsystem or the MDF 
subsystem. The present paper describes the major architec-
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tural considerations of the MDF subsystem in relation to the 
requirements of mass storage systems in general. 

REQUIREMENTS OF MASS STORAGE SYSTEMS 

Before describing the architectural considerations of the 
NEC MDF subsystem, we must explain the background of 
our architectural decisions, i.e., the judgment criteria with 
which we designed our MSS architecture. The following 
gives the MSS requirements, arranged in (more or less) 
descending order of importance. 

Large Storage Capacity-An MSS must have a storage ca
pacity of up to several hundred billion bytes, equivalent of 
more than one hundred thousand traditional half-inch tape 
reels. 
Inexpensive Storage-The cost of an MSS must be compa
rable to that of a traditional tape library on a cost-per-unit
capacity basis. 
Automatic Management of Storage Media-Access to stor
age media should not require human interventions such as 
tape selection and tape mounting by human operators. 
Smaller Entry Cost-The increase of the total system cost 
for migrating to one of the entry MSS models should be as 
small as possible. 
Flexibility of MSS Configuration-Various MSS configura
tions must be possible to meet the needs of many installa
tions and must allow easy future expansion. 
Continued System Operation Through Graceful Degrada
tion-An MSS must be able to automatically reconfigure 
itself to allow continued system operation in the event of 
component faiiure, perhaps with degraded performance, and 
must allow concurrent repair of the failed component. 
Smaller Floor Space-The floor space needed by an MSS 
must be considerably smaller than that of the conventional 
tape library. 
Easy Conversion to an MSS-Changes required in JCL 
statements and application programs must be none or min
imaL Conversion of existing fiies on magnetic tapes and 
disks must be as simple as possible. 
Absorption of Tape-Oriented Applications-An MSS must 
be capable of accommodating the existing tape applications, 
and hopefully make new applications possible. 5 
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Support of Variolls File Organizations-All important file 
organizations currently available on magnetic tapes and 
disks should be available for MSS files. 
Multiple Access Modes-It is desirable that multiple access 
modes are available to application programs in accessing 
MSS files. These should include the staging mode and the 
direct access mode. 
High Performance-The performance of an MSS must be 
sufficiently high so that it is usable as on-line storage. 
Efficient Utilization of Storage Capacity-The effective ca
pacity of the MSS storage media as well as that of disk 
storage used for staging must be efficiently usable. 
Use of an MSS in the Multidimensional Processing Envi
ronment-An MSS must allow simultaneous use by coex
isting local/remote batch processing jobs, time-sharing ter
minal-oriented jobs, and on-line database jobs. 
Shared Use of an MSS by Multiple Computer Systems-An 
MSS must allow the shared use by a set of loosely-coupled 
mUltiple computers as well as by multiple computers con
nected via a communication network. 
RASIS Considerations-An MSS must have a high degree 
of reliability, availability, serviceability, integrity, and se
curity. 
High Potential for the Future-An MSS must have a high 
potential for supporting the very large data utility of the 
future. 

In general, it is not easy to satisfy all these requirements 
fully, but we feel that none of these requirements can be 
sacrificed in favor of the others. 

MAJOR ARCHITECTURAL FEATURES 

Several MSSs developed so far, notably the IBM 3850, 
the CDC 38500 and the Ampex Terabit Memory, represent 
serious attempts to satisfy the above requirements of a large 
file storage. 1 - 4 In the early stages of our MSS design, we 
examined the architectural features of these systems. 5 We 
felt that each of these systems is satisfactory in several 
requirements but not in all. We spent a substantial amount 
of time in deciding the kind of architectural features which 
could meet the requirements under the constraints of our 
development resources. 

At the end of the conceptual design stage, we came to a 
conclusion that our MSS should support the following three 
major architectural features on an IBM-3850-like storage 
device: 2 

1. Use of the virtual file concept. 
2. Device independence for staging disks. 
3. Support of the direct access mode as well as the staging 

mode. 

The CDC 38500 has similar features,4 but a combination of 
the above features and our IBM-3850-like storage device 
would create a system with characteristics very different 
from either system. We decided to develop our storage de
vice with specifications similar to those of IBM 3851 mass 

storage facility, a set of new operating system components 
and service utility programs to support MSS functions, and 
a storage device controller capable of interfacing between 
these host software components and the storage device. We 
believe that this design would make up for certain limitations 
of the IBM 3850 architecture, as will be described later. 

The virtual file concept allows users to access all the MSS 
files uniformly by the associated cataloged names in the 
staging access mode without having to know whether these 
files are still on the mass storage device or have been already 
staged to the staging disks. When an MSS file that is still on 
the mass storage device is accessed the entire file is staged 
to one of the staging disks. As a matter of fact, a user can 
access all MSS files as if they were ordinary disk files. This 
virtual file concept is our counterpart of the IBM 3850's 
virtual disk concept in implementing virtual file storage. The 
virtual file and virtual disk concepts correspond respectively 
to the segmentation and paging concepts of virtual memory 
implementation for executable programs. It follows that 
many comments on segmentation and paging in virtual mem
ory apply equally to the virtual file and virtual disk concepts 
of virtual file storage. 6 However, we have observed here 
that an implementation of virtual file storage by the virtual 
file approach tends to provide more efficient operation than 
that by the virtual disk approach because of the relatively 
slow operating speed of MSSs. This point will be discussed 
in detail later. 

Now let us describe how the NEC MDF subsystem gen
erally works using Figure 1 to explain the architecture of 
our system. As this figure shows, the MDF subsystem with 
the mass storage device and controllers is configured to be 
independent of the disk subsystem which is used for storing 
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Figure I-Structure of the ~EC mass data file system. 



staged MSS files as well as ordinary disk files. When an 
MSS file is accessed by a user job in the staging mode of 
operation, the operating system components residing on the 
host subsystem (CPU, I/O processor, memory, etc.) re
serve an appropriate amount of space for the file in the 
disk subsystem and requests the file from the MDF subsys
tem. As the file is received part-by-part in the host buffer, 
it is piecemeal staged into the reserved space of the disk 
subsystem. Thus, these two subsystems do not have any 
direct data transfer path like the one seen in the IBM 3850 
architecture. 2,3 Tight coupling of a mass storage device and 
a disk controller by a direct path in this architecture requires 
matching of the mass storage device and particular disks 
controlled by the disk controller at a complicated physical 
level. This would not only make this disk subsystem signif
icantly different from the ordinary disk subsystem, but also 
tends to limit the types of disk units usable for staging. Our 
independent subsystem architecture is, however, flexible 
enough to allow various types of disk units for staging, e.g., 
100, 200, and 317 megabyte disk units and our future larger 
capacity units, in an arbitrary combination. 

The third architectural feature of our system is support of 
two access modes: the staging mode and the direct access 
mode for reading and writing an MSS file. The staging mode 
can be widely used for accessing an MSS file with arbitrary 
file organization, but this mode of operation becomes inef
ficient if the file to be staged is very large like some se
quential files. Then, it is recommended to use the direct
access mode which allows direct access to sequential files 
without staging like a traditional magnetic tape unit. The 
important difference, however, is the fact that a data car
tridge used as the mass storage media allows a partial data 
modification to any of many MSS files stored on its cartridge 
tape, but the traditional half-inch tape does not. Our system 
is designed to support the compatibility of the above two 
access modes for sequential files; a user may dynamically 
specify his choice of access mode in reading or writing a 
sequential file by a JCL parameter. Support of these com
plementary access modes is expected to provide wider usage 
of MSS in actual computer applications. 

Finally, some comments are in order about the influence 
of these architectural features upon satisfaction of the above 
MSS requirements. First, the choice of an IBM-3850-like 
device with its advanced recording technology and 50 me
gabyte data cartridges was made especially to satisfy the 
first, second, and seventh requirements. It is generally ad
vantageous to use larger capacity cartridges in satisfying 
these requirements. The adoption of the virtual file concept 
is mainly based on the eighth and twelfth requirements and 
other considerations such as security, recovery, and ac
counting. Our decision to support the device independence 
for staging disks using ordinary disk units aims to satisfy the 
fourth, fifth, seventh, and thirteenth requirements. Besides, 
this decision allowed us to avoid the development of a disk 
subsystem dedicated to MSS. Lastly, support of two com
plementary access modes is intended for the ninth, eleventh 
and twelfth requirements. We will discuss this aspect of the 
MDF subsystem further from the viewpoint of system per
formance. 
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A PERFORMANCE COMPARISON OF THE VIRTUAL 
DISK AND VIRTUAL FILE APPROACHES 

It was stated earlier in this paper that the virtual file 
approach tends to be more efficient than the virtual disk 
approach. This section proceeds to evaluate the perform
ance characteristics of these two approaches. We begin by 
noting that decisions on file allocation to various types of 
file storage devices are usually based on the following file 
attributes: 

• File size 
• Access frequency 
• File organization 

The average size of files allocated to t;ach type of file storage 
devices after the migration of selected tape and disk files to 
an MSS is typically found to be in the following range: 

• Disk files 
• MSS files 

0.2-1 MB 
-3 MB 

• Tape files 4 -6 MB 

We will mainly evaluate the performance of the staging 
mode operation of these two approaches where MSS files 
are staged in their entirety. It will be shown that the per
formance of the virtual file approach is relatively high in the 
file size range of 0-3 megabytes. We will also briefly com
ment on the performance of the staging mode operation of 
the virtual disk approach allowing cylinder faults, and the 
performance of the direct access mode operation of the 
virtual file approach. The analysis given below aims to clar
ify the performance characteristics inherent in the above 
two approaches, and is not intended to describe the actual 
performance of a product such as the IBM 3850 MSS or the 
NEC MDF subsystem. However, the analysis will help the 
reader gain a good perspective of the performance of MSSs 
in general. 

System operation 

The virtual disk approach allows a job step to access an 
MSS file in the following manner. 2 First, a data cartridge is 
selected from the cell-structured cartridge library by an ac
cessor and physically moved to an appropriate data record
ing device (DRD) at the beginning of the job step, for the 
purpose of mounting the MSS volume containing the MSS 
file on a virtual disk unit. The cartridge is loaded into the 
DRD and the VTOC (volume table of contents) information 
recorded at the beginning of the cartridge tape is staged to 
a staging disk. This staging operation completes mounting 
of the MSS volume; the operating system can now locate 
the MSS file within the cartridge by reading the staged 
VTOC information from the disk just like locating an ordi
nary disk file. The cartridge is then unloaded from the DRD 
and returned to the cartridge librar.y by an accessor. The 
duration of time starting from the accessor movement to 
select a cartridge and ending with the accessor movement 
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to return the cartridge roughly corresponds to the period of 
time during which a particular DRD is exclusively allocated 
to this cartridge. For this reason, we call this duration of 
time a DRD cycle in this paper. When the MSS file is 
OPENed during the execution of the job step, the second 
DRD cycle is required. The cartridge containing the MSS 
file is selected by an accessor to load it into an appropriate 
DRD. After the cartridge loading is complete, the DRD 
locates the MSS file and stages the entire file into an appro
priate space of a staging disk. The cartridge is then unloaded 
and returned to the library by an accessor again. When the 
job step terminates eventually, the third DRD cycle is re
quired to destage the MSS file to the original data cartridge 
in demounting the MSS volume. Only the modified cylinders 
of the MSS file are actually de staged this time. 

On the other hand" the virtual file approach requires a 
total of only two DRD cycles. The first DRD cycle is re
quired at the beginning of a job step. The data cartridge 
containing a desired MSS file is selected and loaded into an 
appropriate DRD. The DRD then reads the file label infor
mation, the counterpart of the VTOC information, in the 
direct access mode, in order to find the location of the MSS 
file. The located file is staged to a staging disk and the 
cartridge is unloaded and returned to the library. Thus, it is 
clear that the first DRD cycle of this approach actually 
corresponds to the first and second DRD cycles of the virtual 
disk approach. Finally, the second DRD cycle is required at 
the end of the job step to destage the entire MSS file. 

Re.\pollse time characteristics 

Some more details of a DRD cycle must be explained in 
order to discuss the response time characteristics of the 
previous two approaches. By definition, a DRD cycle is a 
sequence of the following events. 

• Accessor movement (Iibrary~ DRD) 
• Cartridge loading 
• Winding for data 
• Data transfer (stagingldestaging) 
• Rewinding for tape head 
• Cartridge unloading 
• Accessor movement (DR~library) 

ta seconds 
tt seconds 
tw seconds 
nts seconds 
tr seconds 
til seconds 
ta seconds 

The length of the DRD cycle is called a DRD cycle time in 
this paper. Some components of the DRD cycle time just 
shown probably need explanations. The length of time re
quired by "winding for data" is the one needed by an DRD 
to wind the tape from the tape head position to the data 
position where recording of particular data starts. Similarly, 
the length of time required by "rewinding for tape head" is 
the one needed by the DRD to rewind the tape from the data 
position to the tape head position. The length of data transfer 
time needed by staging or destaging is proportional to the 
amount of data. Letting ts be the length of time required to 
transfer a 250 kilobyte cylinder of data. the "data tnmsfe.r" 

time of n cylinder data is nls seconds. A typical numerical 
example is shown below. 

la=4, t 1 =lu=5, t8=1 

tw=tr= {-O (VTOC) 
4 (MSS file) (seconds) 

The choice of different values of tw or tr for the VTOC 
information and an MSS file is based on the fact that the 
VTOC information is recorded at the beginning of the tape 
while an MSS file may be recorded anywhere on the tape. 
It shotlld be noted that a DRD cycle time thus defined is the 
ideal one; an actual DRD cycle time measured in a real 
situation is prolonged by randomly inserted queueing delays. 

N ow we proceed to evaluate the task delay time incurred 
in making an MSS file ready for processing on disk in the 
virtual disk and virtual file approaches. 3 This delay time is 
the MSS's counterpart of a manual mount time of the tra
ditional half-inch tapes. The task delay time (Tl'd) of the 
virtual disk approach is obtained as follows: 

Tl'd =(the DRD cycle time for mounting a virtual disk) 

+(the first half of the DRD cycle time for staging) 

=(2ta+2tt +ts )+(ta+tl +tw+nts) 

=3ta + 3t1 + tw + (n+ l)ts 

Similarly, the task delay time (T
"
,) of the virtual file ap

proach is 

T,,/=(the first half of the DRD cycle time for staging) 

Figure 2 shows how T,'Cl and T,., compare as a function of 
the file size. Considering that the value of T,'d or T,'f can 
easil y increase by a factor of two because of various internal 
queueing delays associated with allocations of an accessor, 
a DRD, and a data transfer path in a real situation, an actual 
task delay time of the virtual disk approach would be roughly 
comparable to a human tape mount time of traditional half
inch tapes while that of the virtual file approach would be 
about half of the human tape mount time. 

We had an assumption until now that an MSS file was 
staged in a burst in its entirety. Next, let us briefly consider 
what happens if an MSS file is staged on demand cylinder 
by cylinder. The length of time required to process a cylinder 
fault (Tc) is calculated as 

Tc=(the first half of the DRD cycle time 
for cylinder staging) 

Noting again that the value of Tc can easily increase by a 
factor of two because of internal queueing delays on an 
actual system, we observe from this result that a single 
cylinder fault would typically cost a task as much as 30 
seconds of lost real time. Thus, if a job encounters many 
cylinder faults, the turnaround time of this job would be 
intoll;'f::lhly prolonged. 
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Throu/?hput characteristics 

We proceed to evaluate the throughput characteristics of 
the virtual disk and virtual file approaches. The following 
assumptions are made about user jobs to simplify the anal
ysis. 

1. Each user job reqUirIng access to an MSS accesses 
only one MSS file in a job step. The type of processing 
for this file includes modifications to this file. 

2. Virtual Disk Approach-The MSS volume is mounted 
on a virtual disk unit at the initiation time of ajob step. 
The MSS file is staged in its entirety at the file OPEN 
time and only the modified cylinders of this MSS file 
are destaged at the termination time of the job step. 

3. Virtual File Approach-The access mode to be used is 
the staging mode (not the direct access mode) where 
the entire file is staged at the job step initiation time 
and is de staged at the job step termination time. 

An actual job environment is much more complicated, but 
the result of the following analysis can be modified to reflect 
such complications. 

We now derive the total amount (T/,VD) of MSS services 
required during a job step execution period of the virtual 
disk approach. Noting that a total of three ORO cycles are 
required by a job step, we have 

Tt.vD=(the ORO cycle time for mounting a virtual disk) 

+(the ORD cycle time for staging an MSS file) 

+(the ORO cycle time for destaging the MSS file) 

={2ta+2t t +ts )+(2ta+2t 1 +2tu·+ nts) 

+(2ta+2t 1 +2tu·+ n p ts) 

=6ta+6t 1 +4tU'+ (n+np+ Ots 

where p is the probability that some portion of file data 
stored in a disk cylinder is modified on a staging disk. Sim
ilarly, the total amount (T/, VF ) of MSS services required by 
a job step of the virtual file approach is 

Tt,VF =(the ORO cycle time for staging an MSS file) 

+(the ORD cycle time for destaging the MSS file) 

= (2ta +2tl +2tw + nts)+ (2t a+2t1 +2tw + nts) 

=41a +411 +41w +2n1s 

Table I shows how the above total amount of MSS service 
requirement by a job step breaks down into the amount of 
particular services by accessors, ORDs and data transfer 
paths. Each of these values actually represents the total 
amount of particular service requirement by a single MSS 
file. 

The throughput of an MSS can be measured by the num
ber of MSS files staged per hour. We assume that we have 
four MSS models which differ in storage capacity and in the 
numher of major MSS components, as shown in Table TI. 
Then, the throughput of accessors, DRDs, or data transfer 

TABLE I-:-Service Requirement for Major MSS Components in the Total 
MSS Service Requirement by a Job Step 

Virtual Disk Approach 

(I) Accessors 6ta 4ta 

Virtual File 
Approach 

(2) DRDs 3ta+6tt+4tu-+(n+np+l)t.2ta+4tl+4t.,,+2nt. 
(3) Data transfer paths 4tw+(n+np+l)t. 4t",+2nt. 
Total MSS service 6ta +6t 1+4t",+(n+np+l)t. 4ta+4tl+4tlC+2nt. 

requirement 

paths Is obtained by dividing the total available time by each 
particular service requirement of an MSS file shown in Table 
1. For example, the throughput of Model 1 DRDs of the 
virtual disk approach is 

2 x 3600/[3ta +611 +41w + (n+ np+ 1)ls] files/hour 

A tight upper bound for the throughput of each MSS model 
can then be given as the minimum of the throughput values 
calculated for accessors, DRDs, and data transfer paths. 
The final result thus obtained is depicted in Figure 3. 

We have the following observations from this figure. 

1. The virtual file approach attains considerably higher 
throughput in the important file size range of 0-3 me
gabytes. 

2. The virtual disk approach attains somewhat higher 
throughput for the file size greater than 3 megabytes. 

The first point is due to the throughput limitation of the 
virtual disk approach caused by the additional uses of ac
cessors and DRDs in the ORD cycles for mounting virtual 
disks. This limitation of the virtual disk approach becomes 
serious if many small files must be staged on a larger MSS 
such as Model 3 or 4. On the other hand, the second point 
is based on the fact that unmodified cylinders of data need 
not be destaged in the virtual disk approach. 

Comments on direct access 10 MSS 

Finally, this section describes the performance character
istics of the direct-access mode which is supposed to be 
useful in processing large sequential files. Because of the 
limitation of space in this paper, we will only briefly touch 
upon the point. The idea of including the direct-access mode 
in our MSS architecture originated from the well known fact 
that traditional tape units are much more efficient in pro
cessing sequential files than disk units. In particular, the 
direct-access mode of the NEC MOF subsystem has the 
following performance advantages: 

TABLE II-Description of Four MSS Models 

Model I Model 2 Model 3 Model 4 

No. of active accessors 
No.ofDRDs 
No. of data transfer paths 
Storage capacity (Gigabytes) 

I 
2 
I 

35 

4 
2 

102 

2 
6 
3 

169 

2 
8 
4 

236 
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1. All the overhead time associated with file staging is 
avoided. 

2. The access time of a data cartridge is somewhat shorter 
than that of a disk storage in sequential file processing. 

An examination of file organization usage in actual user 
environments reveals that the overwhelming majority (e.g., 
more than 80-90 percent) of MSS files are sequentially or
ganized. For this reason alone, sequential files might deserve 
a special attention by the direct access mode with the above 
performance advantages. It should, however, be noted that 
one or more DRDs is exclusively allocated to a job for the 
entire duration of its execution in this mode. The operating 
system must carefully allow jobs to use this access mode so 
as to avoid DRD request conflicts among jobs. 

CONCLUSION 

This paper has described the implications of major archi
tectural features of the NEe mass data file subsystem. These 
architectural features include the use of the virtual file con
cept, device independence for staging disks, and support of 
two complementary access modes for MSS files, as well as 
the adoption of an IBM-3850-like mass storage device. This 
MSS architecture attempts to satisfy the MSS requirements 
stated in this paper to the utmost extent feasible in the 
current state of MSS technology. It was specifically found 
to relax the limitations of the existing MSSs on storage 
capacity, system cost as well as MSS entry cost, floor space, 
performance, and applications among other things. This 
paper examined the performance aspect of our MSS archi
tecture particularly in detail. The analysis on response time 
and throughput characteristics of the staging mode operation 
of MSS shows that the virtual file approach of the NEC 
MDF subsystem has significant performance advantages 
over the virtual disk approach taken by the IBM 3850 MSS. 
Our observation is that the virtual file approach attains con
siderably higher throughput in staging small to medium MSS 
files than the virtual disk approach. On the other hand, the 
direct access mode of the MDF subsystem gives high per
formance in processing large sequential files. On-demand 
staging of the virtual disk approach was found to be ineffi
cient in that ajob's turnaround time is likely to be intolerably 
prolonged by a series of slow cylinder fault handlings. 

As stated earlier, the MDF subsystem is independent of 
the disk subsystem. This implies that the data transfer op
erations for staging and destaging between these two sub-

systems require services by the host subsystem. The current 
implementation of MSS functions on the host subsystem 
ordinarily requires 0-5 percent of CPU time for the data 
transfer services. We plan to offload this service from CPUs 
to input/output processors in our distributed-function archi
tecture of NEC ACOS 800 and 900 computers. In analyzing 
the performance characteristics of the virtual disk and vir
tual file approaches in this paper, we chose to use a set of 
parameter values common to these two approaches because 
of our interest in the impact of architectural differences upon 
the performance. Our recent experiences, however, indicate 
that the independent subsystem architecture actually incurs 
smaller amount of contentions in staging and de staging files 
than the tightly-coupled subsystem architecture. Hence, the 
actual performance of the MDF subsystem is generally 
higher than suggested in this paper using a common set of 
parameter values. 

The MSS device technology is still young and has ample 
room for future improvement. In particular, we may expect 
considerable improvement in data recording density and in 
data transfer rate. So long as mass storage systems satisfy 
the MSS requirements, they will evolve into much more 
easy-to-use large on-line storage as the MSS technology ma
tures. MSS is just beginning to play an essential role in the 
data utility type computers. 
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Error-oriented architecture testing* 

by LARRY K\l/OK~WOON LA! 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ARCHITECTURE VALIDATION 

Motivation 

Architecture validation is becoming more and more impor
tant as diverging cost/performance criteria and competition 
cause the number of models within a computer family to 
proliferate. Some popular architectures are now being man
ufactured by many different companies and the chances of 
a company inexperienced with the architecture making mis
takes is very high. Not only will errors in an implementation 
cause software incompatibility, the costs of fixing them are 
usually prohibitively high once there are a large number of 
defective machines in the field. Excellent evidence demon
strating the inadequacies of present testing techniques is 
implementation errors discovered in the field for many major 
computer families. This study was initiated in the hope that 
an error-oriented approach to architecture testing may pro
vide a better detection of implementation errors. 

In this paper, the term architecture refers to the time
independent functional appearance of a computer system to 
its users. An implementation of an architecture is an ensem
ble of hardware/fIrmware/software that provides all the func
tions as defined in the architecture. 

Architecture validation 

Architecture validation is the process of validating that a 
given machine indeed implements a specified architecture. 
There are three basic approaches: 

1. Verification-prove the correctness of the design of an 
implementation using formal mathematical techniques. 

2. Simulation-based on models of the physical building 
blocks and a description of the design, simulate the 
implementation to see if it behaves as expected. 

3. Testing-establish a certain level of confidence in an 

* This research was sponsored by the Defense Advanced Research Projects 
Agency (DoD), ARPA Order No. 3597, and monitored by the Air Force 
Avionics Laboratory under Contract F33615-78-C-1l51. The views and con
clusions contained in this document are those of the author and should not 
be interpreted as representing the official policies, either expressed or im
plied. of the Defense Advanced Research Projects Agency or the U.S. gov
ernment. 

565 

implementation by running test programs on a proto
type machine. 

The first two approaches are most useful when the imple
mentation is still being designed or when architecture spec
ifications are still being formulated. Once a machine is built, 
however, the only way to find out whether it actually works 
is to run programs on it-i.e. through testing. 

Before one can set out to validate any implementation, 
one needs to have a specification of the target architecture. 
There are two basic ways to specify/describe an architec
ture: (0 using a formal language, e.g. ISPS,1 VDLlAPL;2 
and (ii) using a natural language, e.g .. Principles of Opera
tion,15 Processor handbook. 5 The latter is often the most 
important because many architectures do not have a formal 
specification while a natural language description is almost 
always available, is more readable, and hence is read by 
users and implementors alike. ** For verification and simu
lation, a complete and consistent formal description is 
needed. For testing, a natural language description is usually 
adequate for the test programmer, although any ambiguities 
in the description must be resolved before tests can be 
derived for the parts affected. 

Before we move on to architecture testing, we will briefly 
review the work that has been done in verification and 
simulation. 

Verification 

Verification seeks to confirm absolutely, on paper, that a 
given implementation does meet its specifications. Two im
plementation-specific ways of architecture verification are 
microprogram verification and hardware verification. 

The microprogram verification approach 16,18,42 can be 
summarized as follows: given the formal specifications of 
the target machine and the description of the underlying 
microengine, the formal verification system looks at a mi
croprogram written for the microengine and aUempts to 
prove that the microprogram running on the microengine 
would emulate (i.e. implement) the target machine. So far 
this approach has only been applied to very simple ma
chines. 

** For a detailed exposition on architecture specification, see Reference 17. 
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Hardware verification 24,13 deals with methods to prove 
the correctness of hardware designs. In this approach, de
scriptions of low level components and a description of how 
they are interconnected are taken as input. The goal is to 
verify that the given interconnection satisfies some higher 
level specification. 

Both microprogram verification and hardware verification 
can only verify paper designs. Some test programs are still 
needed to check out the actual hardware. They must also 
develop accurate models of low level components which are 
changing rapidly with technology. 

Simulation 

Simulation has the advantage that it is easier to do than 
verification. Simulating computer hardware using software, 
however, usually results in a speed penalty ranging from a 
thousand to one up to a million to one. Hence it is usually 
impractical to test a design using simulation beyond running 
some very short tests that check some internal workings and 
critical paths. Besides the severe speed penalty, simulation 
also faces the problem of developing good models for rapidly 
advancing components and technology. 

Testing 

Testing has the strong appeal that it deals directly with 
the physical implementation, which is what one really wants 
to validate, rather than some abstract description of the 
implementation. Testing is also much easier to do than ver
ification or simulation. One can start writing a test program 
with nothing more than a natural language specification 
whereas verification and simulation both require modeling, 
formal description of the architecture and of the particular 
design, and a software system that can carry out the veri
fication and simulation. These advantages make testing the 
most practical, though not totally satisfying, way to validate 
an implementation. 

The drawback of testing is that it cannot give complete 
assurance-in practice it often gives less than satisfactory 
assurance. The former is a direct result of the affirmative 
nature of testing and of the complexity of a computer
because exhaustive testing, which is the only way to give 
complete assurance, is impractical for even a simple com
puter. The latter, however, is usually caused by the lack of 
good test methodologies and test programmers. It can be 
drastically improved if the object to be tested can be ana
lyzed in detail before test programs using the analysis as 
guidelines are written. 

The viability of testing as a validation tool lies in the 
empirical fact that implementations usually have regular 
structures and therefore the errors made in designing them 
are not totally random. To illustrate this, let us consider 
testing the ADD instruction of a computer. In almost all 
cases, only a tiny fraction of the 2nx2 n (where n is the word 
length) possibilities would be tested and then one would 
declare with confidence that the adder »'orks, and indeed it 
usually does! The reason for this is that the tests usually 

cover most of the probable errors: experience shows that 
the chances of having errors that could not be discovered 
by the tests is pretty small. If errors are truly random, 
however, and one is asked to test a black box whose internal 
structure one does not know about, then one cannot hope 
to achieve any high level of confidence by testing only a 
tiny fraction of the input possibilities. Needless to say, test
ing all the possibilities is out of the question-e.g. 
232x232=264> 1019• The question then is: amongst a sea of 
possible errors, how do we pick out the most probable ones 
and test for them? The error-analysis techniques developed 
later in this paper attempt to answer this question. 

ARCHITECTURE TESTING 

Architecture testing defined 

Architecture testing is functional testing aimed at validat
ing implementations of an architecture. An architecture test
ing program is designed to be a tool for certifying different 
machines claimed to implement a specific architecture. 
.. Functional testing" means that the tests primarily aim at 
finding design and logical errors rather than problems in 
realization (e.g. repeatability and bit dependencies) or hard
ware failures. The level of confidence an architecture testing 
program can provide depends on the probability of having 
errors undetected by its tests. 

Considerations in writing an architecture testing program 

The most crucial constraint for an architecture testing 
program is time. Any testing that can be done within a 
reasonable amount of time is but a tiny fraction of all pos
sible tests. The critical issue in writing an architecture test
ing program is therefore how to select the most profitable 
tests and test data for a given time constraint. 

Unlike diagnostics which often must locate faults rapidly 
in the field, architecture testing programs can have run time 
in the order of days. But that is still only a fraction of the 
test cycles one would like to have. Fortunately the tests in 
an architecture testing program do not depend on the results 
of each other and therefore different parts of the program 
can be run simultaneously on many prototypes in parallel to 
obtain more test cycles. Program size should not be a con
straint since only one test needs to be in core at anyone 
time (can simply use overlays). Because the total program 
is likely to be huge, however, a good testing methodology 
should allow automatic generation of test data and test pro
grams to avoid the tedious task of test programming. 

Ideally we would like an architecture testing program to 
be as implementation-independent as possible. However, as 
we have pointed out before, the only way to get high con
fidence in testing "black boxes" is exhaustive testing. 
Therefore any practical architecture testing program must 
necessarily make certain assumptions about the implemen
tations it is going to he mn on in order to cut down the test 
space. In other words, an architecture testing program must 



be written with certain classes of implementations*** in 
mind. Within the target classes, the program should be non
implementation-specific in that it should be designed to ef
fectively test all implementations within the classes. This is 
a case of tradeoff between generality and efficiency-one 
wants to have a program that can effectively validate as 
many kinds of implementations as possible while there are 
practical limitations as to how much resources the program 
can consume. 

Recent developments and related work 

Two current developments have contributed to the recent 
interest in architecture testing. One is standardization efforts 
like the MCF project3 which need independent validations 
of prototypes submitted by various contract bidders. The 
second development is the spread of microprocessors and 
LSI components. Many microprocessor and LSI parts are 
now manufactured by a half-dozen companies representing 
almost as many different implementations. The need for 
assurance of compatibility, together with pin limitation, have 
generated considerable interest in functional testing. 19 

Some research in the field of program testing2o,21,11 is of 
considerable interest to architecture testing. The work that 
is closest to architecture testing is that of compiler valida
tion. 12,14 An area of special interest is test data selection 
techniques 7- 9-one can represent a function in an architec
ture by a canonical procedure written in a hardwar~ descrip
tion language like ISPS and then use the selection techniques 
to choose test data. Architecture testing and program testing 
bear many similarities, and research done in one area is 
likely to benefit the other. 

ERRORS IN IMPLEMENTING AN ARCHITECTURE 

Why do people make errors? What errors do people and 
design systems make? If one knows why people make er
rors, one can try to prevent them in the first place, thereby 
getting at the root of the problem. If one knows what kind 
of errors are likely to occur in a particular environment, one 
can orient one's testing effort accordingly to maximize re
turn on the effort. It is wasteful to test for errors that are 
almost certain not to occur while more likely errors are not 
tested for. The kind of errors that people make varies with 
their task environments. In implementing a computer archi
tecture, the likelihood of different types of errors varies with 
technology, design tools used, experience and training of 
the design group, available history of previous implemen
tation errors (designers are usually more aware of them), 
project management etc .. 

We began with the conjecture that although every imple-

*** An example of an implementation class is the family of 16 bit adders 
implemented by n bit full adder slices (O<n<16) with carry look ahead. 
Another example is mUltiplication implemented by repeated additions, 
whether it is implemented in hardware, frrmware, or software. Multiplication 
implemented by table lookup is in a different class because it requires a 
totally different test strategy. 
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mentation effort has its own error probability distribution, 
overall the errors are likely to fall into several general cat
egories. Identifying these categories would give some insight 
into the nature of implementation errors as well as providing 
guidance for the writing of architecture testing programs. 
Instead of grouping known implementation errors into cat
egories like what some people have done with errors in 
programming, 10,7,25 the approach of first conjecturing error 
categories and then calibrating them was adopted. This ap
proach was chosen because (i) we wanted to explore imple
mentation errors from an implementor's viewpoint, and (ii) 
very few error histories were publicly available. t 

Design of the experiment 

There are four phases in our experiment: preliminary 
study, conjecture, case study and calibration of conjecture. 
Each phase is explained in detail below. 

Preliminary Study-To find out why people make errors 
and what the sources of errors are, the following studies 
were conducted: 

1. Architecture specifications (mainly those of the PDP-
11 §) were studied for error-prone spots. 

2. Experienced programmers of the PDP-II were inter
viewed. They were asked to recall "errors" they have 
made in learning to use the architecture. The "errors" 
include: wrong assumptions, unclear specifications, 
confusions caused by counter-intuitive features etc. 

3. Existing classifications of errors in programming were 
used as food for thought. 7,10,25 

Conjecture-Based on the information gathered in the 
preliminary study, the author proposed several categories 
as likely sources of errors. 

Case Study-Using the proposed categories as a guide, a 
""likely error analysis" of the PDP-II computer architecture 
was made. The analysis was aimed at revealing the error
prone spots in the written specifications and the architecture 
itself. The idea is to simulate an actual architecture test 
programmer using the categories as guidelines for testing. 
Based on the results of the analysis, specific tests are rec
ommended so that the effectiveness of the methodology can 
be calibrated later on. 

Caiibralion-The above three phases were completed 
without knowledge of the actual implementations errors that 
have actually occurred. To see how well the methodology 
had done, the specific tests were compared against lists of 
real implementation errors which were only made known to 
the author after the tests had been developed. 

t Complete error histories are rarely published. In fact, some manufacturers 
try their best to conceal errors they have made in the past. 
§ The PDP-II 04/05/10/35/40/45 Processor Handbook published in 1975 by 
Digital Equipment Corporation is used throughout this study. For those who 
are unfamiliar with the PDP-II, see Appendix A for a brief description of the 
addressing modes and instructions. 
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Errors in implementing an architecture 

The preliminary study revealed eight likely sources of 
errors. They are: 

]. Incomplete and imprecise specification 
2. Interdependent side-effects 
3. Asymmetry Inonuniformity 
4. Logical complexity 
5. Boundary values 
6. Counter-intuitive and unusual features 
7. Inconsistencies in nomenclature and style 
8. Missing functions 

Each of these categories is explained in detail in the follow
ing subsections. Real-life examples, mostly from the PDP
II, are given whenever appropriate. Since the categories 
overlap with one another, some examples have been some
what arbitrarily classified. 

Incomplete and Imprecise Specification 

Whether the incompleteness in an architecture specifica
tion is intentional or accidental, the hardware of any imple
mentation does something for the unspecified operations. 
Users are often tempted to use those peculiar "features" in 
their programs. If later models do not have the same "fea
tures," there is a software incompatibility problem. An in
complete specification may cause implementors to use an 
incompatible scheme in implementing the unspecified op
erations. 

A specification which appears precise to its writer may be 
imprecise or ambiguous for others because of nontrivial 
implicit assumptions made by the former. Following is an 
example from the PDP-]] handbook: 

• The overflow and carry condition code settings for the 
subtract (SUB) and compare (CMP) instructions are 
described in the processor handbook as follows: 
V: set if there was arithmetic overflow as a result of 
the operation, that is if ope~ands were of opposite signs 
and the sign of the source was the same as the sign of 
the result; cleared otherwise. 
C: cleared if there was a carry from the most significant 
bit of the result; set otherwise. 
One must have a good knowledge of two's complement 
arithmetic to be able to understand this. The setting of 
the carry condition code even presumes a particular 
way of implementing the subtract operation-comple
ment and add. In fact, the borrow generated by a hard
ware subtractor would be the exact opposite of the 
carry generated by the presumed method. In any case, 
the operations should have been precisely defined to 
avoid any misunderstanding. 

Interdependent side-effects 

Instructions which have multiple side-effects are error
prone, especially if the outcome of the instruction depends 
on the order in which the side-effects are carried out. Some
times ambiguities can occur at the interfaces of architectural 
features which are individually well-defined. An instruction 
consisting of mUltiple operations is inherently ambiguous if 
the order of the operations is not clearly specified and the 
effect of the instruction depends on this order. Most often 
this arises when there are multiple operations on the same 
register or memory location within an instruction and the 
order of operations is not explicitly stated in the specifica
tion. 

Asymmetry/nonuniformity 

Asymmetry/nonuniformity often causes additional com
plexity in programming and in implementation. Asymmet
rical/nonuniform side effects, notably condition code set
tings, are usually counter-intuitive as well. 

• The instruction MUL Rn,SRC will cause Rn to contain 
the low order part of the result if R is an odd-numbered 
register and cause Rn to contain the high order part of 
the result if Rn is an even-numbered register. This 
asymmetry would not have occurred if the mUltiply 
instruction is defined such that the low order part of 
the result, which is what is needed most of the time, is 
always stored into Rn, and not Rnv1 ' 

• The automatic sign extension that occurs in moving a 
byte to a register with the MOVB instruction often 
catches programmers off guard. One would expect a 
byte instruction to operate on a byte and yield a one 
byte result. This nonuniformity is actually caused by 
the more fundamental nonuniformity* that registers are 
not byte addressable while all memory locations are. 

Logical complexity 

Some instructions are error-prone due to their sheer com
plexity. The human mind does not efficiently handle com
plexities beyond a certain threshold. Complex interactions 
that change a lot of processor states (trace traps, interrupts 
etc.) are conceptually hard to understand as well as difficult 
to implement, especially- if multiple activities can occur at 
the same time. Extra testing is required to ensure the cor
rectness of complex instructions. 

* We are not saying that this nonuniformity was a bad design decision: in 
fact it was probably a good one. We just want to point out that any nonuni
formity is a likely source of error"-



Boundary values 

Boundary values for an instruction are input values that 
are at the boundaries of different decision regions in the 
input domain of the instruction. This concept is analogous 
to decision branches inside a program which compare input 
or computed values against some test values in order to 
determine the execution paths that the program should fol
low. In fact, the inclusion of this category is inspired by the 
freq uent occurrence of boundary' value errors in program
ming. The most prevalent kinds of errors in this category 
are missing boundaries and offby-one errors. Missing 
boundaries are situations in which one or more of the bound
aries between decision regions are missing. Off-by-one er
rors are errors in which a boundary is off a distance of one 
(for some appropriate definition of distance) away from 
where it should be. 

Counter-intuitive and unusual features 

Features that deviate from or behave just opposite to what 
one would normally expect or find in other architectures are 
error-prone. They also considerably slow down program
mers who have to deal with them. Similarly, inappropriate 
or non-mnemonic names for instructions invite errors. With
out proper explanation and motivation, even a useful feature 
may create confusion. 

• Some condition code settings in the PDP-II are 
counter-intuitive. For example, the increment and de
crement instructions do not affect the carry. 23 

Inconsistencies in nomenclature and style 

Inconsistencies and exceptions are often introduced due 
to carelessness or ignorance. It is often penny-wise and 
pound-foolish to foul up an otherwise uniform and clean 
style just to squeeze an extra bit of performance out of an 
architecture. 

• In PDP-II instruction nomenclature, instructions that 
end with a B are supposed to be byte instructions. The 
SW AB instruction, despite having a B as the iast char
acter of its name, is actually a word instruction-it 
takes a word operand and generates a word result. It 
would probably be better to call it SWAP. 

• The multiply and divide instructions store the high
order word of their two-word results in Rn and the low 
order word in Rn v 1, which is just opposite to the 
practice of storing a high byte at the higher address 
within a word. The same comment applies to the 
scheme of storing the high part of a floating number in 
the lower word. 
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Missing features 

This is not really a source of error, but it is put here as a 
reminder that a good test program should at least test for 
the existence (not necessarily the complete correctness) of 
every feature. It is not uncommon that relatively simple 
features are left out of an implementation due to the over
sight or lack of experience of its designers. To illustrate 
what I mean by features in an architecture, the major fea
tures of two typical instructions are presented below. 

ADD: 
• Add source operand to destination operand and store 

result in destination. 
• If there is a carry out, set the carry bit, clear it other

wise. 
• If the result is zero, set the zero indicator, clear it 

otherwise. 
• If the result is negative, set the negative indicator, clear 

it otherwise. 
• If the addition results in an overflow/underflow, set the 

corresponding indicator. 
HALT: 

• If in user mode, causes an "illegal user instruction" 
trap. 

• If in supervisor mode, stop all operations: 

1. All flags are left untouched, 

2. The program counter points to the next instruction 
following the HALT. 

A major feature can often be broken down further into 
several minor features, depending on the complexity of the 
instruction. To guard against leaving some major features 
untouched, a comprehensive checklist for features of each 
instruction should be used. Each entry on the checklist 
roughly corresponds to a leaf on the decision tree of the 
instruction. 

More likely than not, most features would have been 
exercised by tests written for other categories, thus it will 
only be necessary to write special tests for the items that 
are left untouched by other tests. In order to reduce the test 
space to a practical size, often only the existence, and not 
the correct functioning, of features can be established by 
such tests. 

A CASE STUDY OF THE PDP-1I ARCHITECTURE 

The architecture testing philosophy advocated in this 
paper is rather straightforward: given the amount of re
sources one is willing to spend in testing, try to minimize 
the probability that an error is undetected. This implies that 
one should test for the most likely errors first. In fact, these 
are often the only errors that one can afford to test for. The 
crucial question here is: what are the most likely errors? 
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This section presents a "likely error analysis" of the basic 
PDP-II architecture** as specified in PDP-II processor 
handbooks 5. The likely errors are identified and classified 
using the proposed criteria. It must be pointed out here that 
what "likely errors" are depends on when in the develop
ment of an implementation the tests are made. We have 
been assuming all along that we will test prototypes that 
have most instructions "working" and that we are looking 
for the obscure errors. The PDP-II is selected for case study 
because (i) it is a major computer family having numerous 
implementations; (ii) the history of its implementation errors 
is readily accessible to allow evaluation of the proposed 
testing strategy; and (iii) the basic architecture is simple 
enough for a thorough study of this sort. 

The analysis is intended to be illustrative rather than com
plete-someone who is willing to spend the energy needed 
to analyze an architecture for likely errors can probably tum 
up more potential bugs. A list of recommended tests is given 
at the end of each section. As a whole the recommended 
tests should be viewed as "hole-plugging" tests to be added 
on top of any testing scheme that covers basic and obvious 
functions. 

Incomplete or imprecise specification 

The handling of hardware error conditions is only briefly 
mentioned in the processor handbook. There is no well
defined priority scheme for handling multiple, simultaneous 
processor trap conditions. The handbook also does not spec
ify clearly what happens if a trap occurs in the middle of an 
instruction. 

Other problems in the specification: 

• The specification of the overflow V bit setting is wrong 
for the subtract carry (SBC) instruction. It is stated as 
follows in the manual: 
V: set if (dst) was 100000; cleared otherwise 
It should instead be 
V: set if (dst) was 100000 and C was I; cleared other
wise 

• The specification of the carry condition code settings 
in the SUB and CMP(B) instructions presume particular 
implementation schemes (see Incomplete and Impre
cise Specification). 

Tests recommended: 

• Trap priority-special hardware is probably required to 
carry out this test. 

• Handling of multiple trap conditions caused by a single 
instruction. 

• Test the V bit setting of the SBC and SBCB instruc
tions. 

• Test the C bit setting of SUB and CMP(B) instructions. 

** Fnr the pllrpo~e of thi., study, FrS, FrS, meTTlory management. floating 
point instructions are not considered part of the basic PDP-II architecture. 

Interdependent side-effects 

In the PDP-II, many instructions having interdependent 
side-effects are also inherently ambiguous because the ar
chitecture specification often does not specify the orders of 
execution for mUltiple side-effects. 

Multiple, explicit operations on the same register 

A double operand instruction is inherently ambiguous if 
(i) its source addressing mode uses Rn and its destination 
addressing mode is one of (Rn)+, @(Rn)+, -(Rn), and 
@(Rn); or if (ii) its source mode is one of (Rn) +, @(Rn)+, 
-(Rn), and @-(Rn) and its destination mode uses Rn. For 
example: 

• OPR Rn,(Rn)+-if the second operand is fetched from 
memory (the first operand needs no fetching) and au
toincrement is performed befi}/"c? carrying out the op
eration, the incremented Rn will be used as the source 
operand. But if the operands (including register oper
ands) are first stored into temporary registers as they 
are fetched, the original value of Rn would be used as 
the source operand. The latter is more intuitive, but the 
processor handbook makes no statement about this am
biguity. 

Test recommended: 

• For all double operand instructions, test all the 64 com
binations of addressing modes that are ambiguous. Of 
course, we would need to define how the combinations 
should behave before we can test them. 

Multiple, explicit and implicit operations on the same 
register 

PC (register 7) is automatically incremented each time it 
is used to fetch a word from memory. It is used implicitly 
in some addressing modes while SP (register 6) and some 
memory locations (notably those reserved for trap vectors) 
are used implicitly by several instructions. Instructions that 
operate on these registers or memory locations explicitly as 
well as use them implicitly at the same time deserve special 
attention. 

• A double operand instruction that uses the PC is am
biguous if (i) its source is PC and its destination is one 
of(PC)+, @(PC)+,-(PC),@(PC),X(R), and @X(R); or 
if (ii) its source is one of the list just given and the 
destination is PC. 

Tests recommended: 

• Test an the 12 amhiguo\l'i; comhinations of PC ad
dressing modes. 



Modification and decision on the same operand 

If an instruction both modifies its operand(s) and uses it 
for a decision (branch, setting of condition codes etc.), then 
the relative order of the modification and the decision be
comes critical. 

Tests recommended: 

• Test JMP (Rn)+ and JSR Rm,(Rn)+ which are both 
ambiguous. 

Asymmetry Inonuniformity 

Fundamental asymmetries/nonuniformities 

• Registers are not byte addressable while all the memory 
locations are. 

• Highest page of main memory is reserved for the I/O 
page. 

• Some memory locations are special (e.g. processor sta
tus word, stack limit etc.). 

• Some memory locations are not writable (e.g. some 
status registers). 

• Some instructions implicitly use special memory loca
tions (EMT, TRAP, BPT, and lOT). 

Tests recommended: 

• Make sure that the I/O page is in the right place. 
• Make sure that all the special memory locations are 

there. For instructions that use special memory loca
tions, make sure that they access the correct special 
locations when executed. 

Other asymmetries/non uniformities 

• Logical instructions COM(B), BIT(B), BIC(B), and 
XOR have different condition code setting conventions. 
In COM(B), the V bit is cleared but the C bit is not 
changed. 

• The auto increment deferred addressing mode @(Rn)+ 
always increments Rn by 2, even for byte instructions, 
whereas (Rn)+ increments Rn only by ! for byte in
structions. Similarly, @-(Rn) always decrements Rn 
by 2, even for byte instructions, whereas -(Rn) decre
ments Rn only by I for byte instructions. 

• Automatic sign extension in MOYB - ,Rn (see Asym 
metryINonuniformity). 

• MUL & DIV instructions store low order part of result 
into R v 1 (see .4symmetryINonuniformity). 

Tests recommended: 

• Test COM(B) for the correct setting of the C bit. 
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• Test @(Rn)+ and @-(Rn) for incrementing/decre
menting Rn by two. 

• Test sign extension in MOVB - ,Rn. 

Logical complexity 

There are not many complex instructions or features on 
the basic PDP-II. The MARK instruction and trace trap are 
probably the most complex features and the trap instructions 
(EMT, TRAP, BPT, lOT, RTI, RTT), SOB, JSR, and RTS 
instructions deserve some extra testing effort. 

Tests recommended: 

• Test the previous instructions/features to make sure 
that the right sequences of operations are performed 
when they are invoked. 

Boundary values 

It is straightforward to figure out the boundary values for 
logical instructions-just test all four combinations for each 
bit position. It is often the case for arithmetic instructions, 
however, that there are too many boundary values and sub
sets must be chosen among them. Without going into de
tailed arguments, we assert that testing just a few key points 
on a boundary is almost as good as testing all the points on 
the boundary. This approach is illustrated below through a 
'"boundary value analysis" of the ADD instruction. 

The input domain is partitioned into different decision 
regions*** for each of the four condition codes N,Z,V, and 
C (which stand for Negative, Zero, oVerflow, and Carry 
respectively). For example, one region would consist of all 
input values that generate results which are le~s than zero 
and will therefore set the N bit while the complement of this 
region would consist of those input values that generate 
results which are not less than zero. There are well-defined 
boundaries between the partitions (see Figure 1). For ex
ample, the boundary values lying on the two sides of the· 
longest N bit boundary are given by y+z=i and y+x=O 
respectively (Figure 2). Note that the partitioning is sym
metrical with respect to the line y =x because ADD is a 
commutative operation and that the partitions for different 
condition codes often have common boundary values. Be
sides correct setting of condition codes, one may also want 
to test for the following: the correct operation of each output 
bitt, correct generation and propagation of carry from each 

*** A region may not appear contiguous on a two-dimensional graph. The 
input domain actually wraps around. For example, 215.1 (011111 8) 
and-21~I()()()()()8) are neighboring points. "Neighboring" means that the dis
tance between the two points is one for some distance measure. In this case, 
the distance is measured by numerical difference. In other cases, we may 
want to use the geometric code distance measure in which neighboring points 
are those points that differ from the original point by one bit-hence there 
are n neighboring points for each point (where n is the word length). 
t In the case ofthe ADD instruction, adding 00 ... 00 & II ... 11,01 ... 01 
& 10 ... 10, to ... 10 & 01 ... 01, II ... II & 00 ... 00, and II ... II 
& II . . . II can test each output bit individually. 



572 National Computer Conference, 1979 

y (deltination oper.nd) 

x 

Region in which the C (Carry) bit should be set 

Region in which the N (Negative) bit shoufd be set 

Region in which the V (oVerflow) bit should be set 

Boundaries: 

N: y+x IS 0 & y+x - -1; y+x a t 5 
-1 & y+x - 2

15
; y+x. _215 & y+x • _(i5 +1) 

Z: y+)( a 0 & y+)( .. -1 & y+x • 1; 

V: y+x == _215 & y+x - _(2 15+1); y+x. 215_1 & y+X • 21~ 

c: y +)C • 0 & y +)C • -11 y • -1, )C ~ 0 & y • 0, )( ~ 01 )( • -1, y ~ 0 & )( • 0, y 2: 0, 
Figure l-Boundary values for condition code settings of the ADD 

instruction. 

(source 
operand) 

Number of 
pOints on the 
boundaries 

2
18 

3x2 16 

217 

218 



0-2,2 • .2,2 

.1,1 

0 1,-1. 

N bit should be 
cleared on 
this side 

-2,-2 1,-2 fli 0 2,-2 

01 boundary 
values 

6.-J 

N bit should be set Boundary 
on this side 

Figure 2-A close look at the N bit boundary. 

position . . . Each of these have their own set of boundary 
values that need to be tested. In general, one first determines 
the things (actions) that one wants to check out, then par
titions the input domain into decision regions for each par
ticular action and finally picks out the boundary values as 
test data. 

Ideally all boundary values of an instruction should be 
included as test points in testing the instruction. If one 
cannot afford to test all of them (e.g. in a 32 bit machine), 
a subset of "key points" could be chosen for testing. The 
minimum set of test points recommended are those values 
that are either at the "corners" of boundaries or ~t extreme 
points of the input domain. The existence of a boundary can 
be tested by crossing it from one boundary value to a neigh
boring value on the other side of the boundary. The process 
of selecting the key points is illustrated in Figure 3. 

Tests recommended: 

• Verify the operation (condition code settings, etc.) of 
each logical and arithmetical instruction for all its 

(-2,-2) 

N bit 

Legend: o 

(2,2) 

Z bit 

the origin (0,0) 

boundary values chosen 
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boundary values. If this is not practical, pick a subset 
of "key points." For logical instructions, the simplest 
test is to assume independence among different bits in 
a word and apply the input pairs of 000000 & 000000, 
000000 & 177777, 177777 & 000000, and 177777 & 
177777.§ 

Counter-intuitive and unusual features 

• Complement (COM), a logical instruction, sets the C 
bit instead of leaving it untouched. 

• The increment (INC) and decrement (DEC) instructions 
do not affect the carry. 

Tests Recommended: 

• Test the C bit setting of the COM(B) instruction. 
• Test that the carry bit is truly unaffected by INC(B) 

and DEC(B) instructions. 

Inconsistencies in nomenclature and style 

• The usage of the "contents of' notation, ( ... ), is in
consistent. 

• The notation used to represent a register is also incon
sistent. 

Test recommended: 

• None. In this case none of the inconsistencies is very 
serious. If one is writing a complete test program, how
eVer, then it would be worthwhile to pay special atten
tion to even minor inconsistencies, 

§ A better test is to apply some algorithmic patterns (like walking O's and 
l's) to systematically check for cross-coupling between bits. 

C bit 

the liM •• ,ment, 

I .nd - illultr,t, the boundary ero.line" 

Figure 3-Three examples showing the selection of test data based on 
boundary crossings. 
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Missing features 

A good test program should try to test for the existence 
(not necessarily the complete correctness) of as many fea
tures as possible. 

Tests recommended: 

• The existence of all major features should always be 
checked out. 

• As our resources permit, test for the existence of as 
many minor features as possible. 

RESULTS AND CONCLUSIONS 

The eight error categories are conjectures established 
based on their potential of causing implementation errors. 
To examine how well they capture actual errors, the tests 
recommended in the previous section were calibrated 
against two error histories. The first one is a list of incom
patibilities among models of the PDP-II and the second one 
is a list of errors found in an ISP "implementation." In both 
cases, only errors in implementing the basic architecture* 
are considered. 

Comparison with published incompatibilities among 
various models 

This error history is published by DEC itselfG and it lists 
known differences among five implementations of the PDP
II architecture (see Appendix B). These are usually obscure 
errors that have slipped through the conventional validation 
tests. Among the 14 implementation errors, eight would 
definitely be caught by the recommended tests, three would 
probably be caught and the remaining three would likely slip 
through. All. however, fall into five of the eight categories 
and hence would likely be caught by more detailed tests 
(which requires a more detailed analysis of the PDP-II ar
chitecture than what was done). 

Comparison with errors found in the PDP-II ISP 

The ISP description of a computer architecture can be 
considered an implementation of that architecture through 
emulation on the "Register Transfer Machine." 1 A PDP-II 
ISP description was recently written and debugged. ** A 
rather complete history of the errors that have been discov
ered in the description has been kept. The comparison (see 
Appendix C) revealed that eight of the 13 errors would 
definitely be caught by the recommended tests. Two would 
probably be caught and the remaining three would likely slip 

* Errors in features like user/supervisor/kernel modes, memory management, 
and floating point instructions are not considered. 
** ()riginally writt("n hy nan SiewiClfeK- at ('Me, f<:Of detail., see Reference 
22. 

through. All, however. fall into the error categories and 
would conceivably be detected by more detailed tests. 

Discussion 

The above comparisons suggest the following: 

I. An error-oriented architecture testing program written 
with the proposed categories as primary test targets 
can augment existing test schemes. In the first case, 
the recommended tests caught a significant percentage 
of obscure errors that have slipped through conven
tional tests. More encouraging is that all the imple
mentation errors in both cases fall into the eight cate
gories. Hence if someone devotes enough time 
(perhaps months, a reasonable investment for a major 
computer family) to develop an architecture testing 
program using the proposed methodology, most of 
these errors can conceivably be caught by the detailed 
tests. 

2. Exercises like the "likely error analysis" presented 
can help architects to improve their specifications and 
reduce implementation errors caused by problems in 
the specification. Such exercises are also useful in 
spotting error-prone areas, which often cause difficulty 
in implementation as well as programming, in the ar
chitecture itself. 

In retrospect, other than a few categories like boundary 
values which can conceivably be rigorously defined, most 
of the proposed categories have rather "soft" criteria and 
require human judgment in applying them. A lot more work 
is still needed to make them more specific and more ame
nable to automation. In addition. difficult areas such as 
floating point instructions have not been dealt with. We 
nevertheless hope that the proposed categories can serve as 
helpful guidelines for those who are going to write architec
ture testing programs. Analyzing an architecture specifica
tion to identify potential errors is a very time-consuming 
process, however, and the usefulness of any testing meth
odology ultimately depends on automation. Toward this end, 
research should continue on analysis techniques and the 
automatic generation of test data and test programs. 
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APPENDIX A 

A brief description of PDP-II addressing modes and 
ins true tions 

Single operand instructions have the format OPR desti
nation and usually perform d ~ op d. 

Double operand instructions have the format OPR source, 
destination and usually perform d ~ s op d. Each operand 
can be accessed using one of eight addressing modes, giving 
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a cross-product of 64 ways 
double operand instruction. 
Addressing Modes 

of addressing operands in a 

Modes Symbolic 
o R 
I (R) 
2 (R)+ 

3 

4 

5 

6 
7 

APPENDIX B 

@(R)+ 

-(R) 

@-(R) 

X(R) 
@X(R) 

Description 
(R) is operand 
(R) is address 
(R) is adr., increment Rafter 

fetching 
(R) is adr of adr., incr. Rafter 

fetching 
decrement R before fetching, 

(R) is adr. 
decr. R before fetching, (R) is 

adr. of adr. 
indexing, (R)+X is adr. 
(R)+X is adr. ofadr. 

Architectural incompatibilities among five implementations 
of the PDP-II 

The incompatibilities listed below are compiled from a list 
in Microcomputer Handbook published by Digital Equip
ment Corporation in 1976. The list, entitled "LSI-II, PDP
II Programming/Hardware Difference List," listed the 
known differences among five implementations of the PDP- . 
11 architecture: LSI-II, PDP-II 05/10, 15/20, 35/40, 45. In 
compiling the following, differences among features that are 
not part of the basic PDP-I 1 architecture are not considered. 
N ext to each of the architectural incompatibilities is listed 
the error category that the incompatibility belongs to and an 
indication of whether it would have been caught by the tests 
that we have recommended. 

Incompatability in 
1. OPR R,(R) + or OPR 

R,-(R) 
2. OPR R,@(R)+ or 

OPR R,@-(R) 
3. OPR PC,X(R) or 

OPR PC,@X(R) 
4. JMP (R)+, JSR 

Rm,(Rn)+ 
5. JMP R, JSR Rm,Rn 

(both illegal 
instructions) trap 
differently 

6; "SWAB does not 
change V in some 
models 

7. Bus addresses of the 
registers are special 

Category 
Ambiguity in 

Sequence 
ditto 

ditto 

ditto 

N onuniformity 

Missing 
Functions 

N onuniformity 

Would It Be 
Caught 
With the 
Tests? 
yes 

yes 

yes 

yes 

yes 

yes 

yes 
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8. Power fail trap has Incomplete no each of the errors is listed the category that the error belongs 
different priority Spec. to and an indication of whether it would have been caught 
w.r.t. RESET by one of the tests that we have recommended. 
instruction 

9. RTT instruction not <deliberate Would It Be 
implemented omission- Error Category Caught? 

doesn't I. DEC did not set V boundary yes 
count> bit when destination value 

10. RTI behaves Logical probably was 100000. 
differently with the T complexity 2. MOVB did not sign asymmetry yes 
bit set extend byte moved 

II. Priority between Incomplete yes to register. 
trace trap and spec. 3. SBC did not set the missing fn. yes 
interrupt is different V condition code 

12. Trace trap will ditto probably 4. SWAB did not missing fn. yes 
sequence out of assign the result of 
WAIT instruction on the SWAB back to 
some models memory 

13. Direct access to N onuniformity yes 5. Byte instruction nonuniformity no 
Program Status using indexed 
Register (a special deferred addressing 
memory location) mode didn't work 
can change the T bit correctly. 
in some models 6. MARK instruction logical yes 

14. Odd address/non- Incomplete no reset the stack complexity 
existent traps using spec. pointer wrong 
the stack pointer 7. PSW did not have nonuniformity yes 

15. Guaranteed Incomplete no bus address 177776. or missing 
execution of the first spec. fn. 
instruction in an 8. SOB dropped asymmetry no 
interrupt routine highest bit of offset 

16. Odd address trap <deliberate 9. ASRB instruction missing fn. yes 
not implemented on omission> operates on wrong 
the LSI-II field that is off by 

17. Effect of bus errors <part of error handling, one bit. 
on PC/register whether this is part of the 10. ASHC & ASH: C incomplete no 
modification architecture is arguable> and V bits are not spec. 

set correctly (spec. 
not clear). 

II. MUL stores peculiar to ISP. would probably 
APPENDIX C intermediate result in be caught by boundary value 

a 17 bit register tests. 
Errors found in the PDP-/ / ISP instead of a 16 bit 

register 
The errors to be listed are compiled from a collection of 12. DIV; when source incomplete probably 

memos documenting the errors that have been found in the register addr. is odd spec.! 
PDP-II ISP after it has been released by its author. The garbage is produced. inconsist-
original PDP-II {SP was written by Dan Siewiorek at Car- ency in 
negie-Mellon University and has been maintained by Alan style 
Parker of NRL. For the purpose of this paper, we have left 13. DIV: divide by missing fn. yes 
out errors concerning user/supervisor/kernel modes, mem- zero did not set 
ory management. floating point instructions, and those er- condition codes and 
rors peculiar to ISP as a programming language. Next to abort. 
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INTRODUCTION 

As digit~l circuits grow in complexity, and as they are used 
in more and more critical applications, their reliability be
comes an important consideration. This directs the attention 
of researchers involved in this field to two basic questions
first, how to design more reliable systems; second, how can 
something be said about the reliability of a particular sys
tem? 

Causes leading to permanent failures can easily be ex
amined. A class of faults called permanent or solid faults 
was identified and it has been extensively studied. Some 
solid faults in some lines in digital systems behave as if they 
are permanently connected to a logic 0 or a logic 1. They 
are called stuck at 0 or stuck at 1 faults. Significant analytical 
results are available to handle such faults. 

Another class of faults, called intermittent or transient 
faults, are responsible for a very significant number of fail
ures. The effects of such faults appear and disappear ran
domly. It has been noticed that an overwhelming proportion 
(up to 90 percent) of faults can be estimated to be intermit
tent. As these faults are more difficult to isolate and fix, 
they account for most of the field maintenance costs. Ball 
and Hardyl in their study found that, while the test and 
maintenance costs due to the permanent faults tend to de
crease drastically with time, the costs incurred per unit time 
due to intermittent faults change very little. McConnel and 
Siewiorek2 report that in an LSI-II system with 24k words 
of dynamic MOS memory, one would expect a transient 
failure every 100 hours, whereas a solid failure can be ex
pected in every 7700 hours. Needless to say, the problems 
of intermittent failures are very significa,nt. 

In this paper, a brief survey of the significant results 
available today is presented. These aspects of intermittent 
faults will be considered. First, physical reasons for inter
mittent faults will be considered. Second, various suggested 
models for intermittent faults will be examined along with 
the basic assumptions. Testing and reliability analysis are 
considered next. Finally, design methods are examined 
which take intermittent faults into consideration. 

* This work is supported by the Division of Mathematical and Computer 
Science of the National Science Foundation under grant No. MCS78-24323. 
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APPROACH 

Some have suggested that a distinction between transient 
faults and intermittent faults be made on a quantitative basis. 
We will, however, refer to the entire class of such faults as 
intermittent faults or transient faults interchangeably. We 
distinguish between an intermittent fault being present and 
being active. When an intermittent fault is present, it can 
either be inactive without affecting the correct operation; or 
it can be active, and can cause the system to operate incor
rectly. The activity of signal-independent faults does not 
depend on the inputs or the present state of sytems. These 
are easier to handle, much as the analyses done so far 
assume only signal-independent faults. The activity of sig
nal-dependent faults may depend on the logical values pres
ent in the system. An intermittent fault is said to be well 
behaved, if it behaves as a permanent (stuck-at) fault when
ever it is active. 

As the activity of intermittent faults is random, it is not 
easy to characterize them. The randomness makes it nec
essary to use probabilistic methods. The activity can be 
characterized by a set of parameters, which may be esti
mated by using statistical methods. These parameters would 
be utilized in arriving at various analytical results. Proba
bilistic methods have been successfully used to model ran
dom occurrences of permanent faults in digital systems, and 
related parameters have been estimated. Such parameters 
have been empirically correlated with system complexity 
(gate and pin count for example).3,4 While the intermittent 
faults behave in a more complex fashion, the use of proba
bilistic methods should be expected to yield practically us
able results. Often expected reliability measures5 are given 
in a design specification which implies use of probabilistic 
and statistical methods. 

PHYSICAL CAUSES OF INTERMITTENT FAULTS 

Physical causes of intermittent failures could be external 
to the system, like temperature, or internal like loose con
nections. A combination of the two types can be suspected 
in several cases. 

Yen6 has reported that in four-phase MOS circuits, some 
nodes in some circumstances may have voltages lower than 
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normal, making them very susceptible to noise. Noise can 
be suspected to be a significant cause of intermittent faults. 
All electrical devices are inherently noisy; noise generated 
by a device can sometimes be correlated with the tempera
ture and the electrical characteristics. 7 Additional noise 
could also result because of strong electromagnetic fields in 
the area, which often accompanies switching of large cur
rents. s Switching in the same system can cause noise. It has 
been noticed that significant amounts of noise can be gen
erated due to refresh operation or instruction execution.9 

One of the suggested models, for intermittent faults, char
acterizes noise on a bus. 10 

Loose or poor electrical connections can cause intermit
tent failures; such faults may be activated by either electrical 
or mechanical causes. Faults on the semiconductor chips 
are known to cause signal-dependent types of intermittent 
faults. Because of coupling between physically adjacent cells 
or faulty decoders, some patterns in a semiconductor mem
ory may cause faults. 11 Some microprocessor chips have 
been found to possess instruction sensitivity. 12 Such faults 
will exhibit themselves intermittently. Some parts of an in
tegrated circuit chip may get heated after some time period 
of use, and may display intermittently faulty behavior. 

Temperature and radiation (especially in outer space) are 
examples of external causes. Proper operation of semicon
ductor devices is defined only in small ranges of these, and 
if they exceed the specified limits, or stay at the limiting 
value for a prolonged duration, components may behave 
erratically. Variations in the power supply can also cause 
intermittent failures. Airborne computing systems might en
counter atmospheric electric discharges. 

Usually causes of intermittent failures are not known. The 
only choice is to regard them as random processes. In a 
particular environment, their effect can be characterized by 
a specific set of parameters, which can be determined sta
tistically or using empirical methods. 

MODELING 

Breuer13 suggested a two-state discrete-parameter model, 
using the assumption that the activity of the fault can be 
represented by a Markov process. His model provides a 
good starting point for studying the modeling of intermittent 
faults. If the outcome of a Markov process is known at an 
instant t, then for the duration following t, the history of the 
process before t is immaterial. If an intermittent fault is 
present, then the system can either be in state fault-not
active (FN) or in state fault-active (FA). As shown in Figure 
1, two transitions for a state can be defined. Let the state 
of the system be described after every at seconds (called 
time-step). Then the parameters indicated in Figure 1 denote 
the probability of the appropriate transition in time at. If 
Po(q) and Pl(q) are the probabilities of being in states FN 
and FA at time t q respectively, then 

(PI(q+l), Po(q+l)=(Pl(q), Po(q» [: i] 
Clearly the estimated values of both rand s depend on the 

r 

Figure I-Two-state discrete parameter. 

time-step chosen, and they have to be re-estimated if the 
time step is changed. The same problem is encountered if 
one uses Spillman's approach, 14 as he uses the same discrete 
parameters as Breuer for his analysis and numerical com
parison. This is restrictive, as the time-step is not an attrib
ute of the fault, rather it is chosen to correspond to a par
ticular clock-rate. This model, like all others to follow, 
assumes signal-independent intermittent faults. 

A zero-order Markov model, which is simpler to use, has 
been utilized by Kamal and Page l5 to find procedures for 
fault-detection when a digital circuit may have a multiple 
number of faults. In their model, the behavior of the fault 
is fixed at all times. They define a conditional probability of 
malfunction (ei), for each intermittent fault Ii, which is the 
probability of the fault being active, given its being present. 
This model has been used by Kamal,16 Koren and Kohavi, 17 
and Shedletsky. 18 

Merryman and Avizienis19 use a model which character
ized intermittent faults by an arrival rate, 7", which is as
sumed to be constant over the life of the system, and the 
transient duration (in which faults remain active) D T • The 
transient duration DT is random, with a density function 
fDr' This density function was assumed by them to be 

(2) 

where 'Y is a parameter. 
This is a lucky assumption, as it will allow us to correlate 

this model with the next one. This model has been used by 
Ng.20 

A continuous-parameter Markov model has been used by 
Su, Koren and Malaiya. 21 The model is based on these causal 
considerations. If the system is in a fault-not-active (FN) 
state at a certain time, then the probability that it will be 
found in fault-active (FA) state after a short time at, should 
be proportional to the duration at. If a constant of propor
tionality X is assumed, then Pr{system will be in FA at 
t+atlit was in FN at t}=xat. Similarly, for a reverse tran
sition, 

Pr{system will be in FN at t 
Tatlit was in FA at t}=JLat (3) 

These two assumptions generate a continuous parameter 
Markov model shown in Figure 2. This model has several 
desirable characteristics. It is easily conceived, amenable to 
mathematical analysis and poses fewest restrictions. Later, 
this model will be used to correlate different models. 

A continuous-parameter Markov model can be repre
sented by a pair of differential equations. If poet) and PI (t) 



Figure 2-Continuous-parameter Markov model. 

are the probabilities that the system is in state FN and FA 
at time t, respectively, then22 

(4) 
A. 

Pt (t)= PI (to)e-o .. +/L)t + A. + J-t (1- e-<A+IL)t) 

Occasionally, transitional probabilities PiAt) are more con
venient to use; PiAt) is the probability of being in state i at 
time to' It should be noted here that 1/ J-t is the average 
duration the fault remains active continuously and 1/A. is the 
average duration it is inactive. 

Siewiorek, Canepa and Clark10 have used a model in 
which faults take the form of noise signals added to the bus 
signals. It is characterized by two parameters, F, which is 
the probability that a receiving device will read the bus line 
incorrectly in the presence of a fault; and N, the duration 
fault remains active (in bus cycles). These parameters were 
used to compute a reliability measure for a fault-tolerant 
multiprocessor. 

An adaptation of Breuer's model is used by Lala and 
Hopkins.23 They have used parameters ex: and 8, which are 
called frequencies of transition, to characterize the transi
tions between the two states. The ratio ex:/8 is referred to as 
the latency factor; the higher it is, the higher the percent of 
time fault is inactive and hence invisible. 

These models can be correlated by using the continuous
parameter Markov model. 24 Breuer's discrete-parameter 
model will approach this model as the time-step becomes 
small. The parameters then can be compared when the time
step is assumed to be sufficiently small. 

Using Equation 4 it can be seen that if t~oo, then Po(t)~J-t/ 
(A.+J-t) and Pl(t)~A.I(A.+J-t), i.e., the probabilities will as
sume "steady-state" values. If the state of the system is 
examined only after long durations (i.e., e-<HU)t=O) , then 
the probabilities associated with the two states could be 
regarded as constant, and the model will reduce to Kamal 
and Page's model. 

In Merryman and Avizienis' model, the parameter arrival 
rate 'T corresponds to A. in the continuous-parameter model. 
However as 'T is constant, a fault may' 'arrive," even though 
the fault which had arrived before had not disappeared. 
Clearly, for a correlation it must be assumed that the fault 
duration is small. Their parameter 'Y corresponds to J-t. 

Parameters F and N used by Siewiorek, Canepa and Clark 
can also be correlated to the continuous-parameter model. 
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The correspondence is, however, not as simple as in pre
vious cases. The model employed by Lala and Hopkins is 
equivalent to the continuous-parameter model. These cor
respondences are summarized in Table I. 

Varshney35 has suggested some models which incorporate 
some memory in the fault behavior. One way memory can 
be incorporated is to describe the system by a multistate 
Markov model, in which some states correspond to faulty 
behavior and the rest to fault-free behavior. Other methods 
suggested by him use conditional probabilities p(m/ n); 
which is the probability that a fault-free duration is of length 
m given the preceding fault-free duration was of length n. 

MODELS FOR RELIABILITY CALCULATIONS 

The continuous-parameter Markov model just discussed 
assumes that the intermittent fault is present all the time. 
Sometimes an intermittent fault may become present only 
after a duration of time. This can be modeled by providing 
another state in which the fault is not present, and then 
providing the appropriate transition. 

Koren and SU25 have suggested the model shown in Figure 
3. The fault is not present in state FNP, it is present but not 
active in state FN and it is both present and active in state 
FA. A somewhat more general model shown in Figure 4 is 
suggested by Malaiya and SU26 in which transition is also 
allowed from state FNP to FA. This model is a result of 
merging two concurrent Markov processes.24 

The model of Figure 3 reduces into the well known model 
for permanent faults by letting J-t~O and A.~x. The same 
can be achieved by using the model of Figure 4, by simply 
letting J-t=O. 

In a somewhat similar model, Lala and Hopkins23 allow 
a transition from FNP to FA. Transitions from FNP to FN 
are not allowed. This restricts their model, as the transition 
from FNP to FN should be possible. 

Recovery is a commonly used way to counter-act for 

TABLE I.-Relationships between Existing Models and the Continuous 
Parameter Model 

Correspondence Correspondence 
Model Parameter Symbol to valid when 

Breuer Transition AAt time step At is 
probability p,At very small 

Kamal & Conditional e A time between 
Page probability of p,+A two 

malfunction successive 
samplings is 
large 

Merryman Average arrival T A fault duration is 
& rate extremely 
Avizienis Average D, l!y lip, small 

duration 
Siewiorek, Probability of A(I-e-(HI-')(e) applicable to 

Canepa & incorrect read F .~+J1 faults on the 
Clark operation bus-line 

Duration N 1/ p,tc 
tc=clock period 

Lala& Frequencies of p, apparently 
Hopkins transition 8 A equivalent 
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Figure 3-Model suggested by Koren and Suo 

intermittent faults.27 In processors, recovery is initiated after 
an intermittent fault is detected. Merryman and Avizienisl9 

assume that Td • the time between fault occurrence and fault 
detection is random, probably governed by an exponential 
distribution law. IT> the time between fauit-detection and 
the end of the recovery is assumed to be constant. They 
have also used these parameters. 

C1.£.Pr {recovery from transient I transient occurs} 
1 ~Pr {transient fault is interpreted as permanent} 

Lala and Hopkins23 have used a parameter governing the 
transition from state fault-active (FA) to the state fault-not
present (FNP). This parameter can be called recovery rate. 
Therefore, their model remains Markovian even after inclu
sion of the recovery process. Ng20 has also assumed that the 
overall process can be modelled by a Markovian process, 
as the recovery time can be assumed to be short. These 
assumptions are, however, open to question. 

Modeling a mUltiple number of intermittent faults in the 
same system can be complicated. For Kamal and Page's 
model this does not pose much of a problem, as behavior is 
assumed to be independent of time. Su, Koren and Malaiya21 

have assumed that only one of the possible intermittent 
faults can be present in the circuit. Malaiya24 has modelled 
a multiple number of independent faults by independent 
Markov processes. 

One important question that needs to be asked is "Given 
a model, how are the parameters to be estimated?" Some 
preliminary statistical methods have been considered in Ref
erence 24. Parameters could be dependent on the kind of 
environment the system operates in: therefore, experiments 

]..1' 

A + ]..1 

A A' 
~ + II 

Figure 4-Model suggested by Malaiya and Su 

for parameter estimation must take place in a real or closely 
simulated environment. If any kind of empirical relation
ships exist between the parameters and the environmental 
attributes (like temperature), they could be used to predict 
the parameters in a certain environment, also they could be 
used for "accelerated testing." 

Most models can be used to model the behavior at a 
certain node, as well as the behavior at the output port. 24 If 
a model is used to characterize the output-port behavior, 
the parameters will be dependent on not only the physical 
behavior of the fault: but also the inputs and the state of the 
system. 

TESTING INTERMITTENT FAULTS 

The integrated circuits must always be tested if they are 
to be used in a reliable system. Most types of IC testing is 
done for permanent faults only. The importance of testing 
intermittent faults is apparent, as was stated by Yen.6 How
ever, one problem for testing intermittent faults is that the 
faults may not be active when the test is applied. Therefore, 
to be reasonably sure that an intermittent fault is not present 
in the circuit, the test would have to be repeated a number 
of times. The repeated testing would be terminated after 
either the fault has been detected or a pre specified time has 
been spent for testing. How often a test is to be repeated 
has been of significant concern, as the total testing time 
available is always limited. 

Breuerl3 defined a confidence level CL, which is the prob
ability that a test would detect the presence of an intermit
tent fault. He then derived the number of times that the test 
has to be repeated. He has also suggested how tests can be 
generated to detect a particular intermittent fault. 

Kamal and Pagel5 have considered detection procedures 
for combinational circuits which could be used for circuits 
with several possible intermittent faults; however, it is as
sumed that at most one intermittent fault can be actually 
present. It is also assumed that the faults are well behaved 
and signal-independent: these assumptions have been used 
by others, who have considered testing strategies for inter
mittent faults. They have suggested that the total number of 
times a fault is to be tested can be found using one of the 
two decision rules. One decision rule is to stop when the 
a-posteriori probability (i.e., the probability after testing) of 
an intermittent fault being present in the circuit, drops below 
a specified number, say, 10-6 • The other decision rule is to 
stop when a ratio of probabilities, called a likelihood ratio, 
becomes less than a small number called the threshold. 

They have extended the" results for the general case. Con
sidering a set of intermittent faults (ft,h, ... ,in), and a 
set of tests (t1,t2, ... ,tm)' a fault matrix A= (au) can be 
defined such that 

1 if tj tests for fi 
aij= 

o if tj does not test for fi 

Using this matrix, and an appropriate decision rule, an 
integer programming problem can be set up. The solution of 



this integer programming problem would give the required 
number of repetitions of each test, so that the total number 
of repetitions is minimum. 

The method is further developed by KamaJ.16 He has 
suggested a procedure to identify the intermittent faults. 
After an intermittent fault is detected, a fault identification 
procedure is initiated. This is done by sequentially ruling 
out the possibility of having a particular set of intermittent 
faults. Finally only one fault is left as a possible candidate 
and is thus identified. He has shown that the total number 
of tests is finite; therefore, the identification procedure will 
eventually terminate. 

Savir28 has considered random testing for intermittent 
faults in irredundant (nonredundant) combinational circuits. 
Testing is random in the sense that the sequence of tests is 
random. The tests chosen for random testing are members 
of an "optimal generating set." To get an optimal generating 
set, one starts with the set of all possible tests. From this 
set a test is deleted, if another test can be found which 
detects the same faults or additional ones. Deletion is carried 
on until none of the remaining tests can be deleted, giving 
the optimal generating set. A non-linear optimization prob
lem then can be set up. This will maximize the probability 
that a fault will be detected, given that the circuit is faulty. 
The optimization problem will then generate the relative 
frequency of various tests in the optimal generating tests. 
Finally the total number of tests required can be found by 
considering a pre-specified '"escape probability," which is 
the probability that the circuit will be declared fault-free 
after testing, even though it is faulty. 

Koren and Kohavj17 have considered the problem of locat
ing intermittent faults in combinational networks. They have 
defined a cost function, which equals the number of distin
guishing tests required to locate a fault. A procedure using 
dynamic programming is given, which generates a sequential 
decision tree minimizing the cost function. The sequential 
decision tree gives the order in which tests are repeatedly 
applied. They have suggested another method in which only 
. 'reasonably minimum" decision trees are generated, how
ever, computation time is considerably saved. 

Su, Koren and Malaiya21 have suggested that signal-in
dependent faults in combinational circuits can be tested 
more efficiently by continuous testing. In continuous testing, 
tests are applied continuously for a duration of time, and 
outputs are monitored continuously (asynchronously). For 
both continuous testing and repetitive testing (which can be 
used for both combinational and sequential circuits), a du
ration of testing time is calculated, so that the probability of 
missing the faults is below a specified number. They have 
considered the optimum fault-detection experiment for the 
general case when a set of tests is available, each test de
tecting one or more faults. They have assumed that only 
one of the possible faults is present at a time; however, this 
restriction can be removed as shown in Reference 24. 

RELIABILITY ANALYSIS 

The objective of reliability analysis is to be able to predict 
the performance of a system with respect to time. If only 
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permanent faults are considered, one reliability measure is 
usually enough. 

R(t)=Pr{a system will operate correctly at time t} (5) 

If intermittent faults are also considered, then several 
reliability measures can be defined. A somewhat stricter 
reliability measure, which can be called durational reliabil
ity, can be defined as 

Rd(t)=Pr{system operates correctly during Cto,to+t)}. 
(6) 

This measure is suitable for critical systems, in which fail
ures of short duration would render them useless. An ex
ample of such systems could be the navigational system of 
a missile, designed to hit very selectively. 

In other cases instantaneous reliability define{} below 
could be a more suitable measure. 

R;(t)=Pr{system operates correctly at r}. (7) 

Instantaneous reliability is also referred to as availability. 31 
This could be a more useful reliability measure, for example, 
for the communication control system of an artificial satel
lite. 

The two reliability measures will be the same if only 
permanent faults are considered. When intermittent faults 
are· also considered, they are different; in fact, no general 
relation to compute one directly from the other can be found. 
As one will expect, 

Rd(t)=Ri(t) for t=to 

Rd(t)<R i(t) for t>to 
(8) 

As permanent faults are a special case of intermittent faults, 
the existing results for permanent faults can be used to check 
the results for intermittent faults. 

If the definition of durational reliability is modified as 
shown below, the resulting measure is called "survivabil-:
ity. " 19 

S(t)£Pr {no fatal failure in duration (O,t)} 

This definition allows for successful recovery operations. 
Sometimes a reliability measure can be specified in terms 

of mission time. 31 The mission time is the duration in which 
a reliability measure is above a given number, say 0.90. The 
mission time, thus is the expected duration, in which a 
system will operate reliably. 

A scan of literature regarding the reliability of systems 
with permanent faults will reveal that there are several tech
niques in existence. Sometimes, parameters for individual 
components are the starting point,4 sometimes parameters 
chosen characterize a whole system.31 In the following dis
cussion, it is assumed that the parameters are estimated at 
the output ports of the individual subsystems. 

The reliability of hardware redundancy systems has been 
considered by Koren and SU25 and Malaiya and Su. 24.26 No 
repair or recovery is assumed. The different modules are 
assumed to be completely shielded from each other. 

In Reference 25, the model of Figure 3 is used. Using this 
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model, analytical results are presented which enable one to 
compute the duration reliability of a simple Triple-Modular
Redundancy (TMR) system when each module may poten
tially possess some faults from a set of all possible faults. 
By assuming a set of parameters, substantial improvement 
in reliability by using a TMR system was found. Results are 
extended to N-module redundancy systems. 

The slightly more general model of Figure 4 was used in 
References 24 and 25. Using this model, several hardware 
redundancy schemes have been examined to evaluate their 
reliability. It should be remembered that it is the methods 
to compute reliability which are more interesting; the nu
merical results hold good for only a specific set of values of 
parameters. They have examined the well known Triple
Modular-Redundancy (TMR) and N-Modular-Redundancy 
(NMR) schemes, the NMRlBipurge scheme (called by Ng20 
as NMRlSimplex), the NMRlUnipurge scheme (self-purg
ing,32 called NMRlS by Ng20), hybrid redundancy scheme 
and the reconfiguration scheme.37 In the NMRlUnipurge 
system only the faulty module is purged out. In NMRlBi
purge system, two modules (one good, one bad) are purged 
in order to maintain an odd number of active modules. 

An expression for instantaneous reliability in most cases 
can be found in a straightforward way. The analytical results 
are presented in Table II. It can be easily verified that in 
each case if JL is set equal to zero, results reduce to the well 
known results for systems with only permanent faults. 

Durational reliability is harder to compute. One can take 
either one of two possible approaches-one involves solving 
a system of differential equations iteratively, the other uses 
a closed form general expression to get an approximate 
figure. As the system of differential equations may be 
"stiff:' i.e., solutions may become unbounded if the proper 
step-size is not used and the approximate value can be used 
to check if the solution is bounded. If it is not within the 
bound, step-size may be reduced, and computations re
started from the previous step. 

The basic model of Figure 4 can be used to graphically 
represent a fault-tolerant scheme, which can be described 
by an equivalent system of equations. Figure 5, for example 
represents a simple 5MR scheme. Only one possible fault in 
any module is assumed. Each state in Figure 5 is labelled 
by the numbers, the first gives the total number of modules 
with an intermittent fault present in it, the second is the 
number of modules with the fault active in it. The system 
leaves a state (i,j) in one of four ways. 

I. Fault in one module with fault active may become 
inactive. In this case state (i,j-l) will be reached. 

2. Fault in one module with fault inactive, may become 
active, state (i,j+ 1) will be reached. 

3. Fault in one module may become present, but remain 
inactive, state (i+ I,j) will be reached. 

4. Fault in one module may become present and active at 
the same instant, state (i+ 1, j+ 1) will be reached. 

Notice that the instant any three modules have the fault 
adive in them, the system lands in the failed slale, which 
is labelled F in Figure 5. As durational reliability definition 

TABLE n.-Instantaneous Reliability of Various Schemes 

Scheme 

Single Module 

TMR 

NMR 

NMRiBipurge 

NMRiUnipurge 

Hybrid 

Reconfiguration 

" n [exp (- vjt)+p.'{l-exp(-vjt)}] 
1=1 

302 -203 

N-I 
-2-

L (N) OV-k(1- G)k 
k=O k 

N-I 
-2-
L {N(N-2) . .. ; ~ (N-2(k-1)~(1_ G'2)k' G 'N-2k} 
k=1 k.2 

+(1-G'2)(G')N 

:~: {(~)(1- G')k(G')N-k} 

+ d(~)(1-G')N-1(G') 

0:sd:s1.0 

± {( N+S) (1- G,>,-q(G')N+q} 
q=. N+q 

+ ~: {( Z~~)(1-G')k+'(G')N-k} 

+ 3( N;3)G'(1-G')2(1-G'>,+N-3 

G=Pr{a module is operating correctly at time t} 
= n.l'=1 [exp (-vlt)+P-i'!-exp (-Vlt)] 

G' = Pr{a module operates correctly in duration [0, tn 
= nl'=1 [exp( -vjt)+[VIP./!(Aj-Vj)](exp( -vjt)-exp( - h;t»] 

n=number of intermittent faults 
N=number of modules 
s=number of spares 
k=number of faulty modules 
q=number of good spares 

Figure 5-Model of a 5MR system with a single fault. 



requires continuous correct operation, transitions back from 
the failed state need not be considered. The durational re
liability of the system is given by the probability of the 
system being in a state other than the failed state. The reli
abilities of various schemes are compared in Figure 6. Ex
cept for the case of the single module, all the schemes 
employ five modules. 

From Figure 6 it should not be interpreted that the simple 
NMR scheme is always superior. For very different values 
of the parameters, some other schemes might be superior 
than the simple NMR scheme. 24 In the general case, there 
might be many possible intermittent and permanent faults 
with different parameters, then the best scheme for that 
value of parameters can be chosen by comparing curves for 
different schemes. 

An algorithm has been presented26 which would compute 
the reliability of various hardware redundancy schemes in 

R(t)t 
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the general case when a mixture of permanent and intermit
tent faults are possible in a module. 

Merryman and Avizienis19 have considered a recovery 
process in enhanced TMR systems. They have calculated 
the probability that a system will fail within the mission 
time. This probability is the sum of the probabilities of these 
two events (i) two modules become faulty at the same time 
(ii) with one faulty module, recovery in another fails. Re
covery may fail if recovery is initiated before the fault be
comes inactive, or if the recovery process is imperfect. They 
have presented results of numerical computation showing 
improvement in survivability in TMR systems if recovery is 
also used in addition to the ma~ :;ive redundancy. 

Lala and Hopkins23 have also considered the recovery 
process in a triple redundant system. They have modeled 
recovery as a transition, considering the overall process still 
to be Markovian. The same assumption is used by Ng.20 

I 

II 

reconfiguration 
scheme 

100 
t + 

Figure 6-Comparison between various schemes. 
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Effects of this assumption. however, need to be investi
gated. 

DESIGN CONSIDERATIONS 

In a processor, an intermittent fault can become active 
and inactive again, however, its effect might not disappear 
immediately. If it effects the control part of the system, the 
system will be desynchronized and will continue to operate 
incorrectly until it gets synchronized again. In a fault-tol
erant multiprocessor Cvmp2 desynchronization is reported 
to occur 25 percent of the times. Desynchtonization is the 
most undesirable affect of intermittent faults. It should 
greatly improve reliability, if systems could be designed 
which are desynchronization-resistant and/or easily resyn
chronizable. Desynchronization-resistant designs may in
corporate redundancy in the control part of the systems. 
Wakerly34 has considered easily resynchronizable designs. 
Sequential circuits may be designed without global feed
back, which possess special characteristics; such circuits can 
be resynchronized only by applying two successive vectors. 
Synchronization can also be easily achieved if extra reset 
inputs are provided. Such systems can then use TMR voting 
to keep them in synchronization. 

Diagnosability of systems with interconnected units, 
which are capable of testing each other has been considered 
for permanent faults. Diagnosis capability may be an im
portant consideration in a system design. For systems with 
permanent faults two measures of diagnosability are defined: 
a system is t ,,-fault diagnosable without (with) repair if one 
test routine is sufficient to identify all (at least one) of the 
permanently faulty units, provided the number of such faulty 
units does not exceed t p' Mallela and Mason36 have defined 
a measure for intermittent fault diagnosability. A system is 
t j-fault diagnosable when it is such that if no more than t i 
units are intermittently faulty then a fault-free unit will never 
be diagnosed as faulty. Two different measures for inter
mittent fault diagnosability similar to permanent fault case 
can be defined, both of them, however, can be shown equal 
to the measure previously defined. 36 Mallela and Mason 
have also established least upper and greatest lower bounds 
for t j in terms of t 1" A two-part procedure is given for 
determining t i, which avoids exhaustive search. 

FUTURE DIRECTIONS 

We have only begun to know how to approach the prob
lem of intermittent faults. While much of this area remains 
unexplored, one should expect to see results for the prob
lems mentioned below. 

Modeling and testing methods are suited for only signal 
independent faults. It can be safely said that a significant 
number of intermittent faults are signal-dependent. To ob
tain generalized modeling and testing methods is an unsolved 
problem. We need more insight into the physical nature of 
faults. specially when they are induced hy noi~e, 

Techniques to model burst type (faults which become 

active and inactive many times in a short duration) and 
harbinger type (intermittent faults which eventually tum into 
permanent faults) are to be developed. In most analyses it 
is assumed that redundant modules are independent. How
ever, the study at Camegie-Mellon2 has revealed that about 
10 percent of all transient errors are simultaneous in different 
modules. This small fraction becomes significant when one 
considers the fact that such errors will cause failure in a 
simple TMR system. Probabilistic methods to handle such 
coupling between modules need to be developed. Methods 
to compute reliability, should be extended to include the 
possibility of simultaneous errors. 

Methodology to estimate parameters in all cases have to 
be developed. The methods to estimate parameters can also 
be extended to check validity of the associated model, and 
will provide a means to correct a model if needed. 

Suitable generalized hardware redundancy methods are 
needed, which will optimize the reliability performance 
when a set of intermittent as well as permanent faults are 
considered. Design methodology is needed to design easily 
synchronizable and/or desynchronization resistant systems. 
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Architectural and design perspectives in a modular multi
microprocessor, the DPS-l 

by KELLS A. ELMQUIST 
InterSystems Inc. 
Ithaca, New York 

INTRODUCTION 

For the last decade, one of the most active and exciting 
areas in computer architecture is the interconnection of 
computers to form parallel or concurrent systems. These 
systems are generally called "multiprocessors" or "distrib
uted processors" and may range in organization from pro
cessors sharing a common memory to geographically iso
lated computer installations connected as a network. The 
low cost and ease of implementation of LSI microprocessors 
make them extremely attractive design possibilities for the 
implementation of general-purpose multiprocessor systems. 
Furthermore, the MOS technology used to implement the 
majority of microprocessors limits the instruction execution 
rates such that many applications are compute bound rather 
than limited by other system bandwidths. This indicates that 
a number of microprocessors may be effectively intercon
nected to increase the general system performance. 

In this paper we will discuss the general system charac
teristics of all multiprocessor systems and attempt to derive 
a set of design requirements for a modular, microprocessor
based multiprocessor. Given this set of characteristics and 
design requirements, we will discuss two general intercon
nection schemes, the Global Bus and the Dual Port Memory, 
and analyze their suitability. The architecture and imple
mentation of the DPS-1 modular multiprocessor will then be 
described and modeled in terms of limitations on system 
throughput and optimum cost-effectiveness. 

MULTIPROCESSOR SYSTEM CHARACTERISTICS 

Anderson and Jensen! have given a generai taxonomy of 
computer interconnection structures which may be briefly 
summarized as follows: The basic element of communication 
between processors is the message. No distinction is made 
between different types of messages such as requests for 
service, data blocks, etc. The most basic taxonomic decision 
to be made in the design of a multiprocessor is whether 
messages win be transmitted directiy from the source to the 
destination, or whether they are transmitted indirectly, re
quiring the intervention of some process which routes the 
message to a number of alternate destinations. The next 
decision to be made is whether messages will be transmitted 
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over paths which are dedicated or shared. A dedicated path 
is defined as one which is accessible from only two points, 
while a shared path may be accessed by an arbitrary number 
of points. 

From these basic taxonomic decisions, we may classify 
the sundry multiprocessor architectures and analyze them 
in terms of certain system characteristics: 

Modularity, the cost of making incremental changes in 
system capability. Modularity is most severely impacted by 
the choice between shared or dedicated message paths. Note 
that if all messages travel over dedicated paths, the cost of 
adding the nth processor requires the addition of n-J inter
connection paths, whereas if all messages share the same 
path the cost is merely that of the processor. 

Fault-tolerance, the system costs of different failures, the 
costs of their detection, and the costs of system reconfigur
ation to allow operation in degraded mode. 

Bottlenecks, the performance limitations inherent in dif
ferent message communication structures. 
To these we may add: 

Degree of coupling, the message transfer delay from 
sender to receiver. 

Cost/performance ratio, impacted mostly by the costs of 
the interconnection paths. . 

DESIGN REQUIREMENTS 

Given these system characteristics and their mutual op
timization as criteria, we may postulate a set of design re
quirements suitable for implementation in LSI components 
either available now or available over the next few years: 

1. The system must have low cost-modularity. The cost 
of adding one processing unit to the system should 
not greatly exceed the cost of the processing unit 
itself. 

2. Each processing unit should have a local failure detect 
mechanism that would detect a local failure and sus
pend local operation before the processing module 
gained system access. Further, the system should be 
signaled of this condition. 

3. The system should have a large address space, at least 
1 megabyte but preferably 16 megabytes. 
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4. All data transfer protocols should accommodate both 
byte and word parallel transfers, to accommodate new 
16 bit processors and peripherals. 

5. System interrupt response should be optimized since 
real- time applications will be common. 

6. All processors should be able to access all other pro
cessors and all resources global to the system. 

7. Both direct and indirect message communication stra
tegies should be allowed by the architecture. A great 
deal of research and experimentation is currently 
being conducted in the design of multiprocessor op
erating systems using both these communication 
methods, and the hardware architecture should not 
limit the installation of either type. 

8. All contenders for shared paths should be capable of 
receiving dynamic priority allocation from the oper
ating system. 

9. Care must be taken to minimize loading on all shared 
paths. 

10. Cost of the total system must be somewhat commen
surate with the cost of its components. ($1000 worth 
of processor modules and $20,000 worth of intercon
nection would not be considered commensurate.) 

ARCHITECTURE 

For reasons of cost-modularity and general cost/perform
ance (ratio considerations) with low bandwidth processors, 
complete interconnection via dedicated paths has been re
jected. It can be seen that the cost of the interconnection 
scheme rapidly obscures the cost/benefits of micro proces
sors, and that addition of one processor requires extensive 
system modification, and expense. Also, if we are to meet 
our design requirement that both direct and indirect message 
strategies be allowed, we must reject star configurations, 
since they do not allow direct message transfer. This leaves 
two major interconnection schemes, the time shared com
mon bus and the multi-port memory. 

The time-shared common bus has a number of cost ad
vantages and meets a number of our design requirements. 
It has the lowest overall system hardware cost, and the least 
logical complexity of interconnection. The modularity of the 
common bus is excellent, both in terms of the cost of adding 
additional processor modules, and in terms of the homoge
nous/non-homogenous nature of the modules. This allows 
modules with special, dedicated functions to be added with 
the same ease as a general purpose modules, and its allows 
the system designer to increase performance only where it 
is needed, relieving a bottleneck by modularly adding intel
ligence. In this case it becomes the responsibility of the 
system designer to partition the system requirements in such 
a way that a specialized processor justifies its cost, rather 
than being an under-utilized feature, or conversely, its ab
sence an inherent limitation in a general purpose system. 

If we dedicate one processor on the bus as a message 
switch, and all messages are routed through this processor, 
then we have configured the system for indirect message 
transfer. If, on the other hand, we treat all processors 

equally, the system may be used with direct transfer stra
tegies and no hardware reconfiguration is necessary. Note 
also that, in a common bus system, large messages may be 
communicated very quickly by the passing of address point
ers. 

The drawbacks to a common bus system are obvious. 
First, the bandwidth of the common bus is the upper limit 
on total system throughput; each processor's throughput 
must degrade every time a new processor is added to the 
system. Second, while the failure reconfiguration cost of 
common bus systems is very low and failure-effect with 
respect to processors is also very good, the failure-effect 
with respect to the common bus is usually catastrophic. 
Anderson and Jensen l make two comments pertaining to 
these drawbacks of common bus systems: First, that the 
common bus is not likely to saturate from communications 
alone, that is, if processors run programs in private or local 
memory, system bandwidth becomes very large before the 
common bus reaches saturation. And second, the low logical 
complexity tends to mediate somewhat the failure-effect in 
central message switching systems. 

In order that processing modules be capable of running 
programs from local memory, and that we meet our design 
requirement that all processors be capable of accessing all 
memory, let us summarize the characteristics of a dual-port 
memory. A dual-port memory is a memory unit which may 
accept memory requests both from a local processor without 
creating a system bus access, and from the system bus, to 
which it appears as a normal single-port memory unit. Such 
a configuration has a number of advantages for a common 
bus multiprocessor. First, since programs may be run from 
local memory and the system bus may be reserved from 
global references or message transfer, there is the potential 
for a very high total system transfer rate. The bandwidth of 
the system bus is still the limiting factor in total throughput, 
but an order of magnitude increase in throughput is ob
served. Indeed, experience with the CM* 2 multiprocessor 
indicates that between 82 and 99 percent of all memory 
references are to local memory. The marginal cost of con
figuring memory units in this way, while being small to begin 
with, is far outweighed by the increase in performance. 
Second, the modularity of the common bus system, with all 
its advantages, is preserved. And third, since the memory 
is accessible to the whole system, the local processor need 
not become involved in transferring data to and from local 
memory. This is especially important in the transfer of long 
messages, where the message may be switched by simply 
passing an address pointer. 

The DPS-I multiprocessor uses a combination of both the 
common, time-shared system bus and the dual-port memory 
to achieve the majority of-the design requirements. 

INTERR UPTS IN MULTIPROCESSOR SYSTEMS 

The parallel nature of mUltiprocessors makes their appli
cation to real-time computing problems very attractive. If 
this application is to be effective. however. the interrupt 
response of the system, that is, the worst case response time 



to asynchronous service requests, and the ease with which 
the system may be reconfigured to provide service, must be 
optimized. Jaswa3 has determined four independent levels 
of interrupt applications in a real time multiprocessor, each 
level of which should be optimized. They are: 

1. Intra-processor communication and control. This in
terrupt level responds to events which occur during an 
instruction execution by a local processor. An interrupt 
generated on this level generally informs the local pro
cessor that some unacceptabie error condition has oc
curred, (illegal system bus reference, parity error, il
legal memory reference, attempted write to protected 
memory, etc.) and that the processor should discon
tinue program execution and notify the operating sys
tem. 

2. Intra-system communication and control. This inter
rupt level responds to service requests from system 
peripherals, whether they are local to the processor or 
global system peripherals. Optimization on this level 
involves such considerations as dynamic priority as
signment, masking options, and processor selection for 
interrupt servicing. 

CONTROL 
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3. System executive control. At this level the system 
executive (whether it is centralized or decentralized) 
may interrupt any local processor. The basic executive 
controls are (1) receive message atj, (2) execute task 
atj (3) pause. 

4. Interprocessor communication. This level is used to 
initiate status and data transfers between processors. 
This level is only important in direct message transfer 
systems, in indirect systems it is contained in (3). 

Mutual optimization of these interrupt levels indicates that 
a number of interrupt levels be available at each processing 
module, the highest priorities dedicated to error response 
and recovery, the next priorities dedicated to system exec
utive control, and the remaining levels to peripheral re
quests, both on the local and global levels. If the shared 
system bus, however, has a number of interrupt vectoring 
levels, and if each processor is to be capable of responding 
to any level, then the number of priority levels at each 
processor module becomes unwieldly. Further, if every pro
cessor in the system is to be capable of responding to any 
system interrupt, either the interrupt service routines must 
be duplicated in each processor's local memory, or they 

TERMINAL 

Figure l-DPS-l Distributed Processing System. 
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Figure 2-Distributed processing unit. 

must be kept in global memory and run via the shared system 
bus, degrading total system throughput. Another problem 
with decentralized interrupt response is that it becomes 
cumbersome for the system executive to control the rela
tionship between task priority and interrupt priority. 

One common solution to these problems with decentral
ized interrupts is to assign one processor in the system as 
an interrupt processor. While this approach solves most of 
the problem noted above, it places two important restric
tions on system interrupt response time. The first is that 
two processors become involved in handling a single inter
rupt, first the interrupt processor and then the processor 
whose task is concerned with the information. The second 
is that simultaneous servicing of two or more interrupts is 
no longer possible, since only one processor may respond 
to system interrupts. These two factors combine to seriously 
degrade the total interrupt response time of the system. 

Our solution in the DPS-l multiprocessor has been to 
implement a partially decentralized interrupt response strat
egy. There is an interrupt processor in the system capable 
of responding to all system vectored and system error in
terrupts, masking, rotating priorities, etc. Also, on each 
local processor a number of interrupt vectors are imple
mented. These respond to local error conditions, system 
executive interrupts, local peripheral service requests, and 
one vector level may be mUltiplexed among the global in
terrupt vectors under software control, or masked out al
together. By combining these strategies we thus provide the 

flexibility of assigning any system interrupt to any processor 
for fast response, of simultaneous interrupt servicing, and 
also the simplicity of central interrupt servicing for all non
time-critical interrupts. 

Further. we have specified two distinct types of interrupt 
response vectoring. In the first of these, locally vectored 
interrupts, an LSI interrupt controller supplies the response 
vector to the processor. This type of interrupt response does 
not require a global bus access for vectoring. In the second 
response mode, globally vectored interrupts, the responding 
processor accesses the system bus, placing the accepted 
vector level on the address bus, and the interrupting device 
places its response vector on the data bus. This mode is 
extremely useful when implementing newer LSI device con
trollers in interrupt driven systems. These chips have many 
internal conditions which may cause an interrupt, but with
out a globally-vectored response mode, the exact condition 
cannot be determined. 

DISTRIBUTED PROCESSING SYSTEM ONE
IMPLEMENTATION OVERVIEW 

The system (see Figure 1) is composed of up to 16 pro
cessing modules connected to a common, time-shared bus. 
The common bus is specified for a large (16-megabyte) ad
dress space. and both byte and word (1 fl-bit) parallel trans
fers are specified such that both 8 and 16 bit masters and 



slaves may co-exist in the same system. Bus Arbitration is 
performed in a parallel encoded format capable of very fast 
priority resolution (less than 100 nsec.) and proceeds on a 
single cycle basis unless a bus lock function is imposed by 
the processor currently in possession of the bus. Global 
memory units and global input/output devices may also be 
connected to the common bus. 

Each processing module consists of a Distributed Pro
cessing Unit (DPU) which may contain an 8- or 16-bit CPU, 
a dual-port memory (DPM), and may be connected to a 
number of input/output devices. The dual-port local memory 
may be of any size up to 64 K bytes, and each processing 
module is assigned one 64 K page of total system memory. 
This memory unit, while normally accessed by its local 
processor, may be accessed by any processor in the system 
via the global bus, temporarily suspending the operation of 
the local processor. The memory unit is designed such that 
it is capable of both byte and word transfers, not only with 
respect to the globai system bus, but also with respect to 
the local processor's bus. Note that this memory unit may 
be used as a two-port buffer between the global bus and a 
high speed data collection device (video frame grabber, 
etc.). Memory cycle times down to 70 nsec. may be attained. 

A Modular Multi-Microprocessor, the DPS-l 591 

Each processing module may be assigned its bus arbitra
tion priority dynamically by the operating system. This is 
extremely important in real time systems, since any number 
of asynchronous events may alter the system-wise priority of 
running tasks. If priority were not dynamically allocated, 
tasks would have to be switched to another processing mod
ule, whose task may again be displaced, etc. It is estimated 
that the decrease in task switching overhead will improve 
the real time response of the system nearly an order of 
magnitude. 

Eight levels of vectored interrupts are defined for the 
global bus, as well as two error interrupts, parity error and 
illegal memory reference. The interrupt processor may re
spond to all of these interrupts, as well as interrupts from 
local timers, or it may mask them and assign them to indi
vidual processing modules. Each processing module has 
eight levels of interrupts local to it. Two of these are as
signed to local error conditions, an illegal system bus access 
and a local parity error. Three are assigned to interrupts 
from the system executive. Two are assigned to local pe
ripheral service requests, and one may be software multi
plexed to respond to one of the eight global interrupt vec
tors. 

WAIT GRANT 

Wait 

Generator 
GO 

START 

Buffers ENABLE 

Figure 3-Bus cycle generator. 

Bus 

Transfer 



592 National Computer Conference, 1979 

DPUI80 

The distributed processing unit (see Figure 2) is based 
around the Zilog Z-SO microprocessor. Sockets for up to S 
K bytes of ROM are provided to hold an initialization pro
cedure, a self-testlinterface-test procedure, interrupt service 
routines, and a message communication kernel, for message 
transfers to the system executive. A power-on or reset jump 
to the first byte of the ROM is provided for system initiali
zation. An LSI interrupt controller is dedicated to handling 
the local interrupts described above, and is interfaced di
rectly to the local system bus. A control port, accessible via 
the system bus, is used to assign priority to the bus arbitrator 
and to gage system executive interrupts to the interrupt 
controller. A locking mechanism is provided such that either 
the global system bus or the dual-port memory can be 
locked, allowing implementation of indivisible test and set 
operations. Three elements in the design have been imple
mented in proprietary integrated circuits, these are: the bus 
arbitrator, the dual-port controller and the control signal 
timing generator. 

Extended address management is accomplished for the Z
SO's short (l6-bit) address bus by dedicating a segment of 
local address space as a mapping area. This map is divided 
into two segments, and extension bit registers are provided 
for each segment, providing two bus access "windows." On 
the DPU/SO SK of local address space is dedicated as a map, 
giving two 4K bus windows. A local access to this area 
generates a bus request and places the local processor in a 
wait state. When the system bus becomes available, the bus 
arbitrator performs an arbitration with other requestors and 
if it has the highest priority, receives a bus grant. A bus 
transfer, under the control of the bus transfer timing unit 
(Figure 3) conducts the transfer of the bus to the processing 
module, starts the control signal timing, and releases the 
processor from the wait state. Note that the location of the 
mapping area, the location of the ROM and the location of 
the memory are all independently selectable, and that the 
bus address and the local address of the ROM are not re
lated. 

SYSTEM BUS SATURATION 

The determination of total system throughput as a function 
of the number of processors in the system is of prime im
portance. System throughput is a function of the number of 
processors in the system, the throughput of each processor, 
and the amount of bus interference that exists with respect 
to contention for the common system bus. It is clear that 
saturation of the system bus will impose the upper limit on 
system bandwidth. 

The maximum throughput of the system occurs when 
there is no contention for the shared system bus, and may 
be written 

T=nP 

where T is the total system throughput, n is the number of 

processors in the system, and P is the throughput of each 
individual processor. 

The amount of bus interference in the system is a function 
of the bus utilization requirements of the individual proces
sors. To model this we must define a utilization parameter, 
b, as the fraction of available bus cycles required by each 
individual processor. If there were no local memory in the 
system, b would be very close to I, and the bus would 
saturate very quickly. Experience with the Cm* multipro
cessor2 indicates that b ranges from .2 to .01 depending on 
the application, and averages about .1. Clearly the worst 
case for system throughput would be if all processors ac
cessing the bus had to wait (n -I) bus cycles before being 
granted access to the bus. This minimum throughput has 
been shown by Reyling4 to be: 

T= nP 
I+b(n-l) 

This relation is illustrated in Figure 4 for values of b =.5 and 
b=.1. 

Average throughput is derived by considering all possible 
states, the probability of each, and the probability of a tran
sition from one state to the next. Ravindran and Thomas5 
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have shown this to be: 

n n 

Ta1'e=P L j L PiAU,j) 
;=1 i=1 

where Pi is the probability of i processors requesting the 
bus, and A(i,j) is the probability of a transition from state 
i to state j. This is also illustrated in Figure 4. 

CONCLUSION 

The implementation and architectural implications for the 
design of a cost-effective, microprocessor-based, modular 
multiprocessor, the DPS-l, have been discussed and illus
trated. The design has been shown to be cost effective for 
both small and larger multiprocessor systems. A number of 
features have been included not found on other multipro
cessors, such as dynamic priority allocation, wide address 
bus, co-existence of 8 and 16 bit masters in the same system, 
and a versatile, partially decentralized interrupt scheme. 
The system has excellent cost modularity, and may be con
figured for many levels of performance. 
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Work flow view of a distributed application 

by j. R. HAMSTRA 
Sperry Univac 
Roseville, Minnesota 

INTRODUCTION 

Work Flow Management is a unified set of concepts for the 
definition, implementation and operation of Application Sys
tems. A companion paperl to this one provides a more 
general treatment of the requirements motivating Work Flow 
Management. An Application System is a major function of 
the work of a computer system as perceived by the cus
tomer. Thus Application Systems often mirror the structure 
or work of the customer enterprise. In this paper we shall 
consider a credit card processing application, forming a 
major function of the work of the hypothetical Masterkey 
Credit Corporation (MCC). The portion of this application 
performed on the MCC distributed computer system is 
called the Credit-Cards Application System. MCC also uses 
its computer system for other applications, including per
sonnel and payroll, financial information, and the develop
ment and maintenance of applications. 

People relate to an Application System in various roles, 
including end user, systems analyst, programmer and op
erator/administrator. Figure 1 illustrates these relationships. 
Work Flow Management attempts to facilitate communica
tion among these various parties including the Application 
System, by supporting high-level descriptions expressed in 
the Work Flow Definition Language. 

Within an Application System certain kinds of work are 
performed repeatedly. This is called recurring work, as op
posed to ad hoc work performed once. Recurring work, the 
primary concern of Work Flow Management, may be par
allel (e.g. charge slips are processed concurrently in each of 
10 regional data centers, and may indeed be processed con
currently within a single center) or cyclic (e.g., customers 
are billed monthly based in part on their previous state
ments) or both. Recurring work is more easily described by 
defining the underlying structure of the work, than by ex
plicitly enumerating or generating the instances. 

In general, a schema (pattern, diagram, schematic) pro
vides a structured "template" of information for generating 
and controlling instances of complex entities, A Work Flow 
Schema is the description of an Application System ex
pressed in the Work Flow Definition Language. It describes 
the structure of the recurring work of an Application Sys
tem, with provision for the dynamic introduction of modi
fications and ad hoc work. 

A Work Flow Schema is compiled into an internal form 
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interpreted by the run-time system. This produces, in effect, 
a customized applications executive providing a complete 
simulated environment, including facilities for production 
work, as well as application modification, testing and train
ing, and auditing and recovery. Thus the Work Flow Defi
nition Language can be classified as a simulation language, 
albeit a special purpose one since the classes of simulated 
entities are predetermined (see Figure 2). 

In the remainder of this paper we will develop the basic 
Work Flow concepts and show how they are represented in 
the Work Flow Definition Language. Being an overview, 
this paper must omit some components, and the descriptions 
of those presented are necessarily simplified. Nevertheless, 
it is intended to give the reader some insight into the scope, 
style and power of both Work Flow Management and the 
Work Flow Definition Language. 

WORK FLOW CONCEPTS 

Functional distribution 

As previously suggested, the work of the Credit-Cards 
Application System proceeds simultaneously in 10 regional 
data centers. These centers are logical processing environ
ments perceived by Work Flow Management as Applica
tions Environments called Regional-Data-Centers. The por
tion of the work of Credit-Cards performed within each 
Regional Data Center is called a Regional-Operations Sub
Application System. 

Figure 4 illustrates these relationships, using the structure 
notation defined in Figure 3 and the symbols for Sub-Ap
plication System and Sub-Applications Environment shown 
in Figure 2. Note that the relationship between Regional
Data-Center and Regional Operations is transient, since the 
logical work of one Regional-Operations may be moved to 
a different actual Regional-Data-Center if some untoward 
event, such as a flood, renders the first Regional-Data-Cen
ter unavailable. 

We have considered the first-level decomposition of the 
Credit-Cards Application System. At this level, it comprises 
similar functions (Regional-Operations) distributed among 
similar processing environments (Regional-Data-Center) in 
a pre-determined yet alterable manner. Work Flow Manage
ment encourages and supports the functional decomposition 
of Application Systems and the controlled distribution of the 
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functional components. This contrasts with the emphasis on 
load-sharing or data base distribution found in many other 
approaches to distributed processing, although Work Flow 
Management does not preclude either of these. Indeed, it 
requires certain forms of data distribution. MCC distributes 
its work by dividing the United States into 10 regions and 
keying both credit card and merchant identification to these 
regions. 

Considering the requirements of credit card processing 
within a Regional-Operations Sub-Application System, it is 
reasonable to decompose them into functions associated 
with the cardholders serviced by that region, called Card
holder-Operations, and functions associated with the mer
chants serviced by that region, called Merchant-Operations. 
MCC derives revenue from both Cardholder-Operations 
(membership fees and interest) and Merchant-Operations 
(service charges and discounts). Considering that each Re
gional-Operations is a separate profit center, while card
holders may use their cards anywhere in the country (MCC 
has no direct international operations), we conclude that 
management will desire, and accountants and auditors re
quire, separate control of inter-regional financial transac-
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tions. These functions are provided by an Inter-Regional
Operations Sub-Application System within each Regional
Operations. Figure 5 illustrates the structure of Regional 
Operations. 

Although further decomposition of Credit-Cards into Sub
Application Systems is possible, it is not essential to this 
presentation and will not be pursued. 

Dataflow 

Information processing is the work of transforming and 
communicating data. Availability of the data is both a nec
essary precondition and a major stimulus for performing this 
work. Thus information processing systems (organic and 
mechanical) are largely driven either implicitly or explicitly 
by data flow. Work Flow Management relies heavily on data 
flow to control the Application System. In the remainder of 
this section we consider the flow of charge information from 
the merchants to the cardholder accounts. This example will 
illustrate the key Work Flow concepts of Transaction 
Groups, Tasks and Queuing Points. 

Merchants participating in the MCC system accumulate 
batches of charge slips. Each slip contains merchant and 
cardholder identification encoded in a suitable optical-char
acter-recognition (OCR) font. A merchant will periodically 
deliver these batches to his MCC Regional-Data-Center, 
either directly or via his bank. The merchant is reimbursed 
for the total amount of these charges, less a computed dis
count. The amounts on each slip are OCR-encoded, then 
the batches are read into the computer system via an OCR-

RDC 
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CC - Credit-Cards 

RDC - Regional-Data Center 
RO - Regional-Operations 
Figure 4--Credit Cards structure. 
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CO - Cardholder-Operations 
MO - Merchant-Operations 

IRO - Inter-Regional-Operations 

Figure 5-Regional-Operations structure. 

reader. This is the first operation perceived by the Appli
cation System. 

The internal form of a batch of charge slips is a Trans
action Group called Sales-Inputs. A Transaction Group can 
be thought of as a bundle of transactions to be route~ and 
processed together; however, its actual internal structure is 
considerably more complex than this, to satisfy the com
bined requirements of program data access and the Work 
Flow integrity/recovery architecture. A Transaction Group 
need not represent an external entity such as a batch of 
charge slips. Transaction Groups are the units of data flow 
within an Application System. 

Sales-Inputs Transaction Groups are generated within the 
computer system by the operation of OCR-readers. Within 
a Merchant-Operations Sub-Application System this is rep
resented by Optical-Character-Reader Tasks. A Task is a 
basic instance of work within an Application System. Tasks 
are the users of data, i.e., they produce, utilize and/or con
sume Transaction Groups. In addition to Optical-Character
Reader Tasks, the flow of Sales-Inputs Transaction Groups 
involves two other kinds of Tasks. The first is the crediting 
of the merchant accounts within Merchant-Operations, 
called Update-Merchant-Accounts Tasks; the second is the 
debiting of the cardholder accounts within Cardholder-Op
erations, called Update-Cardholder-Accounts Tasks. 

Figure 6 illustrates the complete flow of Sales-Inputs 
Transaction Groups within the Application System, using 
the schematic structure notation. In addition, the arrows on 
the horizontal line show the direction of flow; more specif
ically they represent the sequence of transitions of the Sales
Inputs flow control state. After Update-Cardholder-Ac
counts the Sales-Inputs Transaction Groups are no longer 
necessary and they cease to be active entities within the 
Application System. although they are retained as archival 
entities for auditing and recovery purposes. We conclude 
this topic by noting that a Work Flow Schema contains a 
complete producer/consumer model of data flow within the 
Application System. 

Commitment control 

The foregoing treatment of the flow of charge information 
would be satisfactory were cardholders not permitted to 
make purchases outside their home regions. The absence of 
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this restriction poses complications not readily resolved 
even if Update-Cardholder-Accounts has access to a global 
cardholder data base distributed among the ten Regional
Data-Centers. First, all Regional-Data-Centers may not al
ways be available, a fact that should not hinder local pro
cessing at other centers and one that we wish not to expose 
to the individual Tasks running elsewhere. Second, each 
Regional-Operations is a separate profit center requiring a 
separate reckoning of inter-regional financial transactions, 
which would be hidden in a single distributed data base. 
Third, we do not wish to submit transactions to a remote 
region until we have some degree of confidence in the results 
of the processing that produced them, nor do we wish to 
post transactions from a remote region without similar con
trol. We will now address these problems. 

The first part of the support for remote purchases is the 
introduction of Remote-Purchases Transaction Groups to 
effect the flow of this data among the various Regional
Operations as shown in Figure 7. Each Update-Cardholder
Accounts Task can optionally produce one Remote-Pur
chases Transaction Group for each of the nine Regional
Operations other than its own. This is called data flow fan
out. A new kind of Task called Remote-Cardholder-Updates 
accepts Remote-Purchases Transaction Groups from one or 
more other Regional-Operations and debits the local card
holder accounts accordingly. This is called data flow fan-in. 
Figure 7b illustrates this arrangement for three Regional
Operations. 

We now consider the support for inter-regional financial 
accounting of Remote-Purchases Transaction Groups. This 
consists of two kinds of Tasks within the Inter-Regional
Operations Sub-Application Systems, Outbound-Remote
Balancing to post outgoing Transaction Groups and In
bound-Remote-Balancing to post incoming Transaction 
Groups. Figure 7c illustrates the general flow of Remote
Purchases Transaction Groups. 

Our treatment has regarded data flow as essentially par-

MO - Y.erchant-Operations 

I 
~w 

CO - Cardholder-Operations 
OCR - Optical-Character-Reader 
UXI.. - Update-Merchant Accounts 
UCA - Update-Cardholder-Accounts 

SI - Sales-Inputs 
Figure 6-Flow of Sales-Inputs. 
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allel and asynchronous. However, application integrity and 
recovery control require that certain phases in processing 
be synchronized. This requirement was first explicitly ap
plied to the flow of Remote-Purchases Transaction Groups 
among Regional-Operations, but we have in fact relied on 
it throughout this presentation. Furthermore, the fact that 
work will proceed at different rates and with different levels 
of actual concurrency in different parts of the system and at 
different times imposes additional requirements on the syn
chronization of data flow. These requirements are subsumed 
under the general notion of controlled commitment. 

Commitment (consigning, binding over for use) occurs 
whenever data produced by one Task is made available for 
use by other Tasks. This may occur when data in a shared 
data base is unlocked; however commitment in this manner 
is not very amenable to higher-level control. being neces-

sarily synchronized to the internal operations of the Task. 
Transaction Groups make the flow of data between Tasks 
explicit. This explicit flow can best be utilized for Applica
tion control if an external agency is interposed between the 
relinquishing of control of a Transaction Group by one Task 
and the acquisition of control by another. This agency is a 
Queuing Point. 

Queuing Points are mail boxes for Transaction Groups. 
They serve as brokers to acquire and dispose of Transaction 
Groups for Tasks, the actual users of data. Thus they serve 
to decouple individual Tasks from what, when and where 
other Tasks exist. The availability of data at a Queuing Point 
may be the stimulus for scheduling work, or the data may 
be held at Queuing Points pending some other stimulus such 
as time or administrator action. 

We can satisfy the remaining requirements for control of 
the flow of Remote-Purchases Transaction Groups with ap
propriate Queuing Points. Within the Inter-Regional-Oper
ations Sub-Application System of each Regional-Operations 
Sub-Application System we establish one Remote-Region 
Queuing Point for each other Regional-Operations. The Re
mote-Region Queuing Points accumulate Transaction 
Groups bound for the other Regional-Operations. Upon a 
suitable administrator command, Outbound-Remote-Bal
ancing removes each Transaction Group from the selected 
Remote-Region Queuing Point, posts appropriate informa
tion to the Inter-Regional-Operations database, and for
wards the Transaction Group to Inter-Regional-Operations 
within the remote Regional-Operations. 

Each Inter-Regional-Operations accumulates incoming 
Transaction Groups at a single Inter-Regional-Transactions 
Queuing Point. Upon a suitable administrator command, 
Inbound-Remote-Balancing removes each Transaction 
Group from the Inter-Regional-Transactions Queuing Point, 
posts appropriate information to the Inter-Regional-Opera
tions data base, and forwards the Transaction Group to the 
appropriate place within this Regional-Operations. In the 
case of Remote-Purchases Transaction Groups, this is Re
mote-Cardholder-Updates. 

Figure 8 illustrates the complete flow of charge informa
tion into the appropriate accounts, applying the principle 
that all Tasks are decoupled by Queuing Points. This figure 
shows the power of the schematic definition concept. It 
shows the flow of work through the Application System in 
an inherently parallel manner, yet it admits of the necessary 
synchronization and control. The Queuing Points provide 
for the unification of a network communications model (data 
flow) with a hierarchical processing model (data transfor
mation). 

The names of the entities in Figure 8 are actually names 
of types of entities within the classes of entities denoted by 
the shapes in Figure 2. At any given time there exist mUltiple 
occurrences of entities of each named type, e.g., mUltiple 
Tasks of type Update-Cardholder-Accounts and mUltiple 
Queuing Points of type Remote-Region. Note that there 
might even exist multiple Application Systems of type 
Credit-Cards, e.g. for testing within MCC, or because a 
soft ware house has applied this application to companies 
other than MCC. Much of the power of the Work Flow 
Definition Language derives from its ability to define com-



plex application structures in terms of the underlying types 
of entities, while associating enough information with these 
named types to adequately control the actual occurrences. 
In the next section we will show how this is done. 

WORK FLOW DEFINITION LANGUAGE 

Global structure 

We have presented the structure of an Application System 
as a schematic diagram, and we will now examine its expres
sion in the Work Flow Definition Language. The following 
prose description of the language is presented to explain the 
appendices, which are intended to convey a better under
standing of the language. Appendix A summarizes the con
ceptual structure of the Work Flow Definition Language. 
The language is basically block-structured with recursive 
nesting of the higher-level constructs, i.e., Sub-Application 
Systems and Sub-Applications Environments. The represen
tation is free-form with punctuation and indentation op
tional. 
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(Sub)-Application Systems comprise application-blocks 
delimited by terminal constructs. Application-blocks de
scribe nested spheres of control of work within an Appli
cation System. Application-blocks may contain, in addition 
to nested higher-level constructs, the declarations of types 
of lower-level entities of the categories internal, external 
and environmental. These will be described further in sub
sequent sections. 

(Sub)-Applications Environments comprise environment
blocks delimited by terminal constructs. Environment
blocks describe processing environments which do not di
rectly perform any work, although they may contain Sub
Application Systems which do perform work. Environment
blocks may contain a subset of the entities contained in 
application-blocks, internal and external entities being ex
cluded. 

Appendix B is a sample Work Flow Schema for the por
tion of the Credit-Cards Application System described in the 
second section. While this schema conforms to the structure 
shown in Appendix A, it contains assertions more detailed 
than shown in Appendix A. It is the assertions appearing as 
rules or policies associated with the structural entities, that 

I 
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DCA - Update-Cardholder-Accounts 
RCU - Remote-Cardholder-Updates 
RR - Remote-Rogion 
ORB - Outbound-Remote-Balancing 
IRE - Inbound-Remote-Balancing 
IRT - Inter-Regional-Transactions 
SI - Sales-Inputs 

IRQ - Inter-P.a€;ional-Operations 
OCR - Optical-Character-Reader 
m·1A, - Update-Merchant-Accounts RP - Remote-Purchases 

Figure 8-Complete flow of charge information. 
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give much of the meaning to the schema. These assertions 
apply generalJy or by default within the scope of the decla
rations containing them. Many more kinds of assertions can 
be made than are illustrated in the sample schema; however, 
the sample should illustrate the concept. 

Internal entities 

The classes of internal entity types in a Work Flow 
Schema are Transaction Groups, Application Modules, 
Queuing Points, Clocks and Calendars. These define the 
work performed internal to, and under complete control of, 
the Application System. 

As previously stated, Transaction Groups have extensive 
internal structure, although this has been deliberately omit
ted from the example in the interest of clarity. This structure 
may be partly described in the Work Flow Schema, but is 
usualJy completely defined in a data schema. An extensive 
repertoire of control functions exists for Transaction 
Groups, and a few examples are given. Initiate creates a 
Transaction Group and attaches it to a Task. Terminate is 
the inverse of Initiate. Export transfers control of a Trans
action Group from a Task to a Queuing Point. Import is the 
inverse of Export. Pass is an Import/process/Export se
quence. 

An Application Module is a program and related control 
information defining a type of Task. Tasks may be scheduled 
explicitly, or implicitly on data arrival. Assertions associated 
with the Application Module define the local data environ
ment for the Task. These assertions may also generate a 
Queuing Point type of the same name. 

Queuing Points are usually generated from Application 
Module declarations; however, they may be explicitly de
clared when specific routing and control functions are de
sired. These functions include, e.g., Hold, which inhibits 
the Import of data from the held Queuing Point, and Release, 
which is the inverse of Hold. Normally one occurrence of 
the named type of QueUing Point will be generated for each 
occurrence of the containing or generating type of entity, 
e.g., Application Module, Sub-Application System or Ter
minal Group. The occurs-clause in the Remote-Region dec
laration specifically controls the generation of occurrences 
of Remote-Region Queuing Points. 

Multiple named Clocks and Calendars may exist within a 
Sub-Application System. Clocks and Calendars are entirely 
synthetic. While they may represent real-world time, they 
may, on the other hand, represent nothing more than logical 
state in some ·abstract event space. Further discussion of 
Clocks and Calendars is beyond the scope of this paper. 

External entities 

The classes of external entity types in a Work Flow 
Schema are Terminal Groups, User Groups, Conversations 
and Workstations. These define the work performed at the 
interfaces to, and under partial control of, the Application 
System. Terminal Groups are types of external interfaces to 
an Application System. They manifest themselves as types 

of Tasks within the Application System. Queuing Points 
may also be generated for them. The information provided 
in the Work Flow Schema, in conjunction with communi
cations configuration information, can be thought of as con
trolling a "daemon module" which defines the Task. These 
functions are provided by the implementor of the computer 
system, since it is generally unrealistic and undesirable to 
expect the customer to implement them. 

User Groups and Conversations represent, respectively, 
types of external users of, and types of their interactions 
with, the Application System. External users may actually 
be organic (human), mechanical, or other Sub-Application 
Systems. They manifest themselves as types of Tasks and 
Queuing Points within the Application System, controlled 
as with Terminal Groups. Conversations manifest them
selves as Transaction Group types within the Application 
System. Further discussion of User Groups and Conversa
tions is beyond the scope of this paper. 

Workstations represent locations for tracking data flow 
external to the computer system, and have utility primarily 
for external production control. Further discussion of Work
stations is beyond the scope of this paper. 

Environmental entities 

The classes of environmental entity types in a Work Flow 
Schema are Data Bases, Scheduling Classes, Resource 
Budgets and Control Points. These exist primarily to resolve 
the mapping of the work of an Application System onto the 
supporting processing environments. Thus the actual nature 
of the named entity types is largely resolved beyond the 
scope of the schema. 

Data Bases are identical to Transaction Groups except 
that their existence is controlled external to the Application 
System. The possibility that they may be shared with other 
(Sub)-Application Systems is also presumed. The internal 
structure of Data Bases is identical to that of Transaction 
Groups. 

Scheduling Classes and Resource Budgets represent, re
spectively, the quality of service (e.g., priority, response 
time) and the quantity of service (e.g., resource consump
tion) provided for various units of work within an Applica
tion System. Further discussion of Scheduling Classes and 
Resource Budgets is beyond the scope of this paper. 

Control Points are the means of exchanging Application 
System control information among interested parties. Fur
ther discussion of Control Points is beyond the scope of this 
paper. 

CONCLUSION 

Summary 

In this paper we have introduced the general notions of 
schemas and Application Systems. We have presented the 
basic concepts of Work Flow Management, including func
tional distribution, data flow and commitment control. We 
have shown how they apply to a hypothetical credit card 



processing application. Then we have presented the Work 
Flow Definition Language, considering the global structure 
of the language and its external, internal and environmental 
component entities. Finally, we have described a portion of 
the credit card processing application in this language, illus
trating many of these constructs. 

Any introductory presentation of a subject must omit cer
tain components. Chief among those omitted here are: 

I 

1. Overall application control, including events, condi
tions, Clocks, Calendars and Work Flow Procedures. 
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2. The administrators' and programmers views of the 
system, insofar as they extend beyond that of the sys
tems analysts as reflected in the schema. 

3. The end users' view of the system, including interac
tive conversation control and display management. 

4. Production control, including work performed accord
ing to a schedule rather than on demand, and the cor
relation of internal data flow with external data flow. 

5. Integrity control, including auditing, security and re
covery. 

6. Appiicaiion deveiopmeni, testing and training. 

Figure 9 illustrates the overall structure of a running Work 
Flow Management system and its relationship to other parts 
of a computer system. While not all components shown are 
part of Work Flow Management, they are all essential to a 
useful computer system. Work Flow Management brings 
these components together to provide a unified set of tools 
for the support of cusiomer appiicaiions. 
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APPENDIX B 

"This is a sample Work Flow Schema for the Credit Card scenario, as presented by J. R. Hamstra at the 
"National Computer Conference on 6 June 1979 . 

. 'The following conventions are used in this preparation: 

i. Key words are written entirely in capital letters. 
" 2. Name words are written with their first letters capitalized. 
" 3. Hyphenated words are denoted by -. 
.. 4. Compound names are separated by .. 
" 5. Comments are delimited by .. "; end of line also terminates comments. 
.. 6. Optional constructs are delimited by [ ]. 
.. 7. Any other use of punctuation is optional. 
APPLICATION [SYSTEM] Credit-Cards 
[APPLICATIONS] ENVIRONMENT Regional-Data-Center 

" Each Regional-Data-Center is controlled external to the Application System. 
The names enumerated here are externally resolved references. 

OCCURS IN New-York, 
Philadelphia, 
Atlanta, 
Chicago, 
St-Louis, 
Dallas, 
Denver, 
Los-Angeles, 
San-Francisco, 
Seattle 

SUB-APPLICATION [SYSTEM] Regional-Operations 
DAT ABASE Cardholder-Information END 
DATABASE Merchant-Information END 
DATABASE Inter-Regional-Information END 
.. Databases are distinguished from Transaction Groups only by the fact that 

their existence is controlled external to the Application System. Their 
names are externally resolved references. 

TRANSACTION GROUP Sales-Inputs END 
TRANSACTION GROUP Remote-Purchases END 

etc 
SUB-APPLICATION [SYSTEM] Cardholder-Operations 

USE Cardholder-Information 
SUB-APPLICATION [SYSTEM] Cardholder-Services 

.. etc 
END [Cardholder-Services] 
SUB-APPLICATION [SYSTEM] Credit-Management 

.. etc 
END [Credit-Management] 
SUB-APPLICATION [SYSTEM] Cardholder-Accounts 

[APPLICATION] MODULE Update-Cardholder-Accounts 
.. These declarations will generate an implicit Update-Cardholder-Accounts 

Queuing Point, in addition to the Application Module. 
IMPORT AND TERMINATE EACH Sales-Inputs 
INITIATE AND EXPORT OPTIONAL Remote-Purchases TO EACH Remote-Region 
.. Inter-Regional-Operations contains the Remote-Region Queuing Points. 
END [Update-Cardholder-Accounts] 

[APPLICATION] MODULE Remote-Cardholder-Updates 
.. These declarations will generate an implicit Remote-Cardholder-Updates 

Queuing Point, in addition to the Application Module. 
IMPORT AND TERMINATE EACH Remote-Purchases 
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END [Remote-Cardholder-Updates] 
" etc 

END [Cardholder-Accounts] 
END [Cardholder-Operations] 
SUB-APPLICATION [SYSTEM] Merchant-Operations 

USE Merchant-Information 
SUB-APPLICATION [SYSTEM] Merchant-Services 

.. etc 
END [Merchant-Services] 
SUB-APPLICATION [SYSTEM] Merchant-Accounts 

TERMINAL GROUP Optical-Character-Reader 
INITIATE AND EXPORT Sales-Inputs TO Update-Merchant-Accounts 

END [Optical-Character-Reader] 
[APPLICATION] MODULE Update-Merchant-Accounts 

.. These declarations will generate an implicit Update-Merchant-Accounts 
Queuing Point, in addition to the Application Module. 

PASS EACH Sales-Inputs TO Update-Cardholder-Accounts 
END [Update-Merchant-Accounts] 
.. etc 

END [Merchant-Accounts] 
END [Merchant-Operations] 
SUB-APPLICATION [SYSTEM] Inter-Regional-Operations 

USE Inter-Regional-Information 
ON INITIATE HOLD Inter-Regional-Transactions AND EACH Remote-Region 
QUEUING POINT Remote-Region 

OCCURS IN CURRENT Regional-Operations FOR EACH OTHER Regional-Operations 
ON RELEASE SCHEDULE Outbound-Remote-Balancing 

END [Remote-Region] 
[APPLICATION] MODULE Outbound-Remote-Balancing 

PASS EACH Remote-Purchases FROM Remote-Region 
TO Inter-Regional-Transactions, 
THEN HOLD Remote-Region 

END [Outbound-Remote-Balancing] 
QUEUING POINT Inter-Regional-Transactions 

ON RELEASE SCHEDULE Inbound-Remote-Balancing 
END [Inter-Regional-Transactions] 
[APPLICATION] MODULE Inbound-Remote-Balancing 

PASS EACH Remote-Purchases FROM Inter-Regional-Transactions 
TO Remote-Cardholder-Updates, 
THEN HOLD Inter-Regional-Transactions 

END [Inbound-Remote-Balancing] 
.. etc 

END [Inter-Regional-Operations] 
END [Regional-Operations] 
END [Regional-Data-Center] 
END [Credit-Cards] 

I 



The use of self-inverse program primitives in system 
evaluation 

by JOHN E. MACDONALD, JR. 
International Business Machines Corporation 
Poughkeepsie, New York 

INTRODUCTION 

Performance comparisons among two or more central. pro
cessors of a computer system usually involve the execution 
of special, rather arbitrary test programs called benchmarks. 
A fundamental difficulty arises when more than one such 
benchmark is used in the comparison process, namely the 
absence of any common measure of the power or complexity 
of the contending benchmarks. 

This paper defines such a common measure and shows 
how to use it. Essentially, we place additional conditions on 
the benchmark program which force it into the realm of 
information theory and allow us to apply the theoretical 
arsenal of results due to Shannon 1 and those who followed 
in his footsteps. 

Our approach is different from that of Hellerman. 2 Briefly, 
Hellerman defines the work of a computational process as 
the information content, in the sense of Shannon, of the 
table-lookup implementation of the process. In making his 
definition, Hellerman further assumes that all possible inputs 
to the process have the same relative frequency. A critique 
of Hellerman's approach and Hellerman's response are 
found in References 3 and 4, respectively. Other efforts to 
assign a work and/or complexity measure to computations 
have been made by Savage 5 and Johnson. 6 

Shannon's measure of the information content of a source 
depends only on the relative frequencies of the letters used 
by the source. In the simplest case, namely the zero-memory 
case, these relative frequencies are independent of any past 
output of the source. For a source alphabet of N letters we 
then have 

N 

H2 = - ~ Pi X/Og 2Pi (bits/letter) (1) 
i=l 

where Pi is the relative frequency of the ith letter, and H2 
is the average information content of the source. The sub
script on H corresponds to the choice of the base of the 
logarithm function. Base 2 is by far the most popular choice, 
but any base wouid do. Note that a source with exactly two 
letters each used with relative frequency 0.5 would yield a 
value of 1.0 for H 2 • It is convenient to think of this as a 
standard source. The value of H2 has a specific implication 
for the possible one-to-one coding of strings of source letters 
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into strings of standard binary symbols. Consider the follow
ing example. 

Example i-A source has two letters with 

Pr(A)=0.9 
Pr(B)=O.1 

Then 

H2 = - (0.9xlog 20.9)- (0.1 xlog 2 0.1) 

= 0.469 bits/source letter 

Huffman 7 has given an explicit method of encoding se
quences of S source letters one-to-one into variable length 
sequences of binary symbols in such a way that the average 
number of binary symbols per source letter approaches H2 
as S increases. Huffman's technique yields in Example 1 the 
following: 

Average Number of Binary 
S Symbols per Source Letter 
1 1.000 
2 0.645 
3 0.533 

The actual codes produced by Huffman's method are 
given in the Appendix. 

Example 2-A source has 3 letters with 

Pr(A)=1/3 
Pr(B)=1/3 
Pr(C)=1/3 

H2 = _1/3 xlog2 1/3 -1/3xlog2 1/3 _1/3 xlog2 1/3 
= log2 3 
= 1.586 

Average Number of Binary 
S Symbols per Source Letter 

2 
3 
4 
5 

1.667 
1.611 
1.605 
1.605 
1.589 
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It is convenient to think of a standard channel as a device 
capable of transmitting one symbol per second when trans
mitting sequences generated by the previously defined 
standard source. The mappings from sequences of source 
letters into sequences of symbols for the standard binary 
channel is then one-to-one and hence invertible. To illus
trate, consider the Huffman code for Example 1 with S equal 
to 3. 

Source Sequence 
AAA 
AAB 
ABA 
BAA 
ABB 
BAB 
BBA 
BBB 

Channel Sequence 
o 
100 
101 
110 
11100 
11101 
11110 
11111 

The invertibility of such codes is guaranteed by the prefix 
property. The prefix property guarantees that no complete 
channel code is also the front end of another complete chan
nel code when the code is read from left to right. 

K = 0.707 ... 

a .... --.. c 

b K 

11K 

Storase Contents 

Consider a tandem arrangement of source, source-se
quence-to-channel-sequence encoder, channel, channel-se
quence-to-source-sequence decoder, and sink. Suppose we 
had a long sequence of source symbols from Example 1 to 
transmit to a remote point and a binary channel with a 
capability of 10 standard channel symbols per second. If we 
choose S equal to 3, we can say that we are transmitting 
information at a rate 

JO (standard binary symbols)/second 
0.533 (standard binary symbols)/source letter 

= 18.76 (source letters)/second 

We have tacitly assumed that any delay due to encoding and 
decoding has been made negligible through some buffering 
scheme. 

If we want a theoretical upper bound on source letter 
transmission rate in the above calculation, we would sub
stitute H 2 for 0.533, obtaining 

c 

!< 

JO (standard binary symbols)/second 
0.469 (standard binary symbols)/source letter 

= 21.32 (source letters)/second 

c = a x b 

a 

b 

11K 

Initial After SteE 1 After SteE 2 After SteE 3 After SteE 4 

a [axb] K c [axb]K a 

b [a/b]K [alb] K [a/b]K b 

11K 11K K 11K 11K 
Figure I-Network for Example 4. 



L3: b 
[b x c] K 

L4: c 

L7: 11K .J 

L9: 1/K-------J 

L10: 0 

L11: 2 
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K = 0.707 ... y = a2 + [b x c] - [e x f] 

K x [b x c - e x f] 
bxc 

f1 --- 0.5xy 
I---...L---II..I 

p 2 

L 12: 11K ____________________________ ---l 

~ Step 1 - ......... , .... 1--- Step 2 .1. Step 3 .,.. Step 4 -"""'"~~I.---- Step 5 -I. Step6~ 

Figure 2-Direct network for Example 5. 

Conversely, suppose we had access only to the source 
and sink. It would be possible first of all to compute H 2 for 
the source by means of Equation 1. Then, for any given 
implementation or implementations we could measure the 
average time to transmit source letters from source to sink. 
The reciprocal of this figure is the average transmission rate 
in source letters per second. If we then assume an internal 
mechanism in the implementation which produces ideal en
coding (very large S), we can compute the internal channel 
rate as a figure of merit for a particular source and a partic
ular implementation. It is very important to recognize that 
changing the source or the implementation or both will in 
general change the figure of merit value. This is crucial to 
our soon-to-be-rnade assertion that we can compare different 
benchmarks on the same computer system and/or the same 
benchmark on different computer systems and/or different 
benchmarks on different computer systems. 

Thus, if we compute the H2 for Example 1 as 0.469 and 
then measure an implementation for transmitting this alpha
bet at 21.32 source letters per second, the figure of merit 
would be 

0.469 x21.32 = 10 (standard binary symbols)/second 

= 10 bits/second 

CREATION OF INVERTIBLE BENCHMARKS 

A key requirement for the method described in the intro
duction is that the end-to-end system implement a one-to
one mapping from source letters into sink letters. Usually 
this mapping is the identity function in data transmission 
applications. When we attempt to apply the idea directly to 
a data processing benchmark, an unexpected difficulty pre
sents itself. Namely, data processing is almost never a one
to-one mapping. Consider a two-input modulo 3 adder as a 
simple example. 

Example 3 -c =( a +b )mod3 

c: 

b 0 
a 0 2 

0 0 2 H 2(a,b)= -
1 I 2 0 
2 2 0 1 

2 2 

LL Pa,b X 10 g2 Pa,b 
a=O b=O 

H2 (c) = - (Po.o + /J2,1 + Pl,2) X log2 (170.0 + P2.1 + Pt,2) 

- (pl,O + Po,l + Pl,,2) X log2 (Pl,O + Po,l + Pl,,2 ) 

- (Pl"o + Pl,l + PO,2) X /Og2 (Pl"o + Pl,l + PO,2) 
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K = 0.707 ... 

L b x c [b x c] j ~ 
yK f1 - f2 

Y.... 0.5 x y f3 11K 
~ - r-- ~ ~ ~ 

f3 f2 - f1 
~ 11K .1......~ ---.. ~ -

L3: m 

L5: 

L 12: 

L 11: q 

K x a2 

L 1: p ex f_ ~ 
K f3 

------
f2 ~ L8: 

L7: j 

L4: 9 

h a2 
a2K 

~ -L6: 
f1 f2 n ~ f3 11K 

~ -- -. --.. ~ L 10: 

L2: i 

L9: 
, 

Step 3 --·~I"'--- Step 4 • I_ Step 5 -I- Step 6--.J 

Figure 3-Inverse network for Example 5. 

It is easy to show (see Appendix) that 

-(P:r+Py) X log (P:r+Py)< -(P:r x ~og P:r)-(pyx log py) 

It follows that 

H2 (c )<H2 (a,b) 

We have thus illustrated a situation which has some of the 
elements of a paradox. To wit, data processing usually re
duces information content. In the sense of Shannon, this is 
actually true. What is missing is the notion that the knowl
edge of (a +h) is more valuable than the knowledge of (a ,b). 
Shannon's theory contains no concept of the value of infor
mation. 

The seeming paradox is resolved if we insist that (a +b) 
be computed in such a way that (a,b) can be recovered from 
(a +b) plus auxiliary information. Then the entire end-to-end 
operation will be the identity operation and hence one-to
one, while at the same time the process produces the orig
inally desired result (a +b) as a sort of intermediate output. 
We know that (a.b) can be computed from (a+b,a) or 

(a +b,b) or (a +b,a -b) or endless other possibilities. Our 
choice is a set of primitive invertible programs (PIPs) which 
implement addition, subtraction, mUltiplication, division, 
exponentiation, and reciprocation. 

Ordinarily, it would be a very difficult task to implement 
a benchmark in such a way as to guarantee invertibility 
while simultaneously computing a desired output. This task 
is rendered trivial by designing the PIPs in such a way that 
they are self-inverse. More specificallY, each PIP has two 
inputs and two outputs, and implements 

f(f(a,b »=(a,b) (2) 

Thus any network of PIPs, however complex, has a simple 
mirror-image as its inverse network. 

An obvious response to our requirements in the example 
above is to begin with (a,b) and produce (a,b,a +b). We 
have rejected this approach because the required storage 
grows with the complexity of the computation. The PIPs 
which we present in the next section require a constant 
amount of storage during the entire benchmark computation. 



SELF-INVERSE PRIMITIVE INVERTIBLE 
PROGRAMS 

In all that follows, let K represent the reciprocal of the 
square root of 2. That is, 

K=().707 . ... (3) 

The complete set of primitive invertible programs is given 
by 

h(a;b)=(KX(a+b); KX(a-b» 
h(a,b)=((axb)K, (a/b)K) 
h (a, b) = ab

, 1/ b) 

(4) 
(5) 
(6) 

Straightforward calculation shows that fl' f2' and f3 each 
exhibit the self-inverse property of Equation 2. 

EXAMPLES OF INVERTIBLE BENCHMARKS 

Example 4-Use PIPs to implement c=a xb. 

A network using two PIPs is shown in Figure 1 which 
yields the required result. The network requires three stor-
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age locations. Figure 1 is drawn in such a way as to empha
size the mirror image property of the inverse network. 

Example 5-Use PIPs to implement y=a 2+(b xc) -(e xfl. 

A network employing 11 PIPs is shown in Figure 2. This 
solution requires 12 storage locations and six time steps. 
The PIPs associated with a given time step can be executed 
in any order or even simultaneously if the hardware permits. 
A trace of the storage location contents is shown in Figure 
3. If the intermediate results are incidental to the required 
result, they have been given arbitrary names such as g, 'h, 
i . . . , p, q in Figure 2 and Table I. The inverse of the 
network of Figure 2 is illustrated in Figure 3. A trace of the 
time steps associated with the inverse network is shown in 
Table II. 

APPLICATION AND DISCUSSION 

In the practical world of computer system selection, a few 
systems are candidates, each with its supporters. Similarly, 
a modest number of benchmarks are usually proposed. 

TABLE I.-Direct network for Example 5. 

Storage Contents 

After Step 
Storage 
Location Initial 1 2 3 4 S 6 

L1 K'a 2 2 11K 
P P P a a a 

::..2 i i i i i i a 

L3 m m m m b'c [b, c] K b 

L4 9 9 9 9 9 9 c 

LS K O,S'Y Ko [b·c-e.f] eof [e. f] K Y Y e 

L6 h h h h h h f 

L7 j j j j j 11K 11K 

L8 K K K K K 11K 11K 

L9 1 1 1 1 1 11K 11K 

L10 n n n n 0 0 0 

L11 q q 2 2 2 2 2 

L12 K 11K 11K 11K 11K 11K 11K 

K 0.707 •••. 
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TABLE n.-Inverse network for Example 5 

storage contents 

Storage 
Location Initial 1 2 

L1 a a 11K 2 a 

L2 a i i 

L3 b [b.c]K b·c 

L4 c g g 

LS e [e. f] K e·f 

L6 f h h 

L7 11K 11K j 

L8 11K 11K K 

L9 11K 11K 1 

L10 0 0 0 

L11 2 2 2 

L12 11K 11K 11K 

K = 0.707 •.•• 

It has been difficult in the past to put a common measure 
on the benchmarks. Thus, a standoff results when System 
A is faster on Benchmark 1 while System B is faster on 
Benchmark 2. It appears that the use of the techniques of 
this paper can help to resolve such a situation. For example, 
an aggregate benchmark could be constructed by weighting 
Benchmark I and Benchmark 2 according to some estimate 
of their relative frequency of execution in the actual job 
mix. For each benchmark an information content, H 2 , can 
be computed. Then for any given system the figure of merit 
in bits-per-second can be computed from measurements on 
the average number of source symbols transmitted per sec
ond by an invertible benchmark. A figure of merit for each 
competing system can then be computed by weighting in
dividual benchmark figures of merit in accord with the rel
ative frequency of execution. It seems reasonable to assign 
the implementation of the three PIPs for a particular system 
to the proponent or proponents of that system. 

It is clear from our discussion that there are many PIP 
network implementations of any given benchmark. It may 
be pO\il'\ihle in the future to find a sy'\tematic way of discov
ering the best implementation. However, any acceptable 

After Step 

3 4 5 6 

K·a 2 p p p 

i i i i 

m m m m 

g g g g 

K· [b.c-e·f] O.S·Y 
K 

Y Y 

h h h h 

j j j j 

K K K K 

1 1 1 1 

n n n n 

2 2 q q 

11K 11K 11K K 

definition of best should recognize the potential for trading 
speed for storage requirements. The PIP network approach 
exposes both of these factors to view and also allows us to 
count the necessary PIPs of each type. 

Finally, it is possible that the idea of invertible bench
marks can be exploited in the direction of assisting in the 
development of checkpoint, rollback and restart properties 
for ordinary programs. Note that an invertible program can 
be suspended indefinitely after any step and resumed at 
leisure. This can be important to a system which encounters 
emergency shutdowns and also to a system which features 
a priority interrupt scheme. 
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APPENDIX 

TABLE IlL-Huffman Codes for Example 1 

S=1 
Prob. Input Seg. Channel Code Length Prob. x Length 

0.9 
0.1 

1.0 

Prob. 

0.81 
0.09 
0.09 
0.01 

1.00 

Prob. 

0.729 
0.081 
0.081 
0.081 
0.009 
0.009 
0.009 
0.001 

1.000 

A 
B 

Input Seg. 

AA 
AB 
BA 
BB 

Input Seg. 

AAA 
AAB 
ABA 
BAA 
ABB 
BAB 
BBA 
BBB 

o 0.9 
0.1 

1.0 bin.sym./source seq. 
1.011 = 1.0 bin.symJsource letter 

S=2 
Channel Code Length Prob. x Length 

0 1 0.81 
11 2 0.18 
100 3 0.27 
101 3 0.03 

1.29 bin.sym.isource seq. 
1.29/2=0.645 bin.sym.isource letter 

S=3 
Channel Code Length Prob. x Length 

0 1 0.729 
100 3 0.243 
101 3 0.243 
110 3 0.045 
11100 0.045 
11101 5 0.045 
11110 5 0.005 
11111 5 

1.598 bin.sym./source seq. 
1.598/3=0.533 bin.sym.lsource letter 
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PROOF OF 

Assume 

Then 

1 1 
-:::;-
Pb Pa 

and 

So 

[~ra.[~]Pb :::;[~JPa.[~]Pa 

[~ ra

+
Pb 

:::;[~a]pa.[~]Pa 

But 

1 1 ---<-Pa+ Pb Pb 
so 

Combining (7) with (5) gives 

Taking logarithms in (8) completes the proof. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 





A loosely-coupled applicative multi-processing system* 

by ROBERT M. KELLER, GARY LINDSTROM and SUHAS PATIL 
University of Utah 
Salt Lake City, Utah 

INTRODUCTION 

The architecture of highly-parallel machines has received 
increased attention from researchers over the past decade. 
At first, because of the machines' novelty, workers were 
content with proposing elaborate machine architectures 
without giving due consideration to how such machines 
would ultimately be programmed to exploit their available 
computational power. Experience with Illiac IV, Star-l00, 
etc. has shown this to be a mistake. Indications are that 
programming languages deserve consideration at the earliest 
stages of architectural conception. Included in such consid
erations are issues such as storage and task management. 

This paper describes a proposed machine, AMPS (Appli
cative Multi-Processing System). It features a loosely-cou
pled architecture, incorporating a large number (say 1 (00) 
of processors functioning independently to a large extent, 
but effectively interacting when necessary. Furthermore, 
the programs supported are not tied to the structure of the 
machine, thereby facilitating expandability. Such expanda
bility is further enhanced by the particular physical organi
zation to be described. The architecture of AMPS attempts 
to bring costs of communication among processing units to 
a manageable level by taking advantage of locality of ref
erence. 

Our architecture is currently in the development stage. 
We present in this paper some of our major philosophical 
considerations, along with an execution model for a subset 
of the machine language. 

LANGUAGE ISSUES 

Heretofore, research on highly-parallel machines has pre
dominantly emphasized statically-structured, usually nu
merical, computation. We are orienting our design toward 
dynamically-structured, often symbolic, computations. Al
though we do not exclude numerical applications from 
AMPS, we are designing it to provide direct support for 

* This work was supported in part by grants OCR-74-21822, MCS-n-09269 
and MCS-78-03832 from the National Science Foundation. 
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languages such as Lisp which have been invented for sym
bolic computation. In fact, the machine language for AMPS 
itself resembles a dialect of Lisp. By retaining a close rela
tionship between a higher-level language and its supporting 
machine language, debugging is facilitated. Furthermore, the 
applicative (i.e. based onfunction application) nature of our 
machine language obviates many pre-processing transfor
mations of the type used to extract parallelism. Such trans
formations are really just means of extracting functional 
dependencies which are easily determined from an applica
tive program. 

To further clarify, consider the task of counting the leaves 
of a binary tree. Figure la presents an applicative program 
for this task, whereas Figure Ib presents a corresponding 
non-applicative program employing a stack. Clearly, Figure 
la is easier to understand and its inherent parallelism is 
easier to detect than that of Figure lb. 

Lisp, with some minor extensions, such as lenient cons 
discussed in the seventh section (cf References 9 and 12) 
seems to include all opportunities for exploitation of con
currency that proposed data flow languages do, and more. 
It provides concurrent operations on tree or graph data 
structures during their creation, and natural ways for dealing 
with conceptually infinite structures. By supporting such a 
language at the machine level, we also provide a natural 
means of communication between processes and their en
vironment, e.g. file systems and I/O devices. Space limita
tions preclude discussing these issues here, but related ideas 
may be found in References 10 and 22. It is also worth 
mentioning that our machine language can directly support 
other languages which deal with infinite structures such as 
those in References 5, 2 and 13. 

BASIC ARCHITECTURE 

The physical arrangement of components in AMPS is a 
tree structure with two types of nodes. The scaled-down 
version in Figure 2 is merely meant to be suggestive, as we 
envision trees with 1000 or more nodes as being feasible in 
the next decade. Combined processor/memory units are at
tached as leaf nodes. The internal nodes of the tree structure 
are combined communication and load-balancing units. 
Other more specialized units might also be present, attached 
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a. App 1 i cati ve Program 

leafaount (t) = if atom( t) 

then 1 

else Zeafaount(l-eft(t» + leafaount(right(t» 

b. Non-Applicative Program 

leafaount ~ 0; 

staak ~ it}; 

while non-empty(staak) do begin 

pop T from staak; 

if atom(T) 

end 

then Zeafaount - Zeafaount + 1 

else begin 

push left (t) on staak; 

push right(t) on staak 

end 

Figure I-Applicative and non-applicative versions of leafcount. 

closer to the root node for enhanced accessibility and utili
zation, but we do not further discuss this possibility here. 

This paper makes the assumption of a binary tree for 
simplicity, although technology considerations suggest that 
a 4-ary or 8-ary tree might be more appropriate. For expe
dited communication, we may eventually include additional 
links laterally connecting the tree, possibly as suggested in 
Reference 8. 

A processing unit in AMPS is roughly the size of a con
ventional micro-computer, but its architecture is substan
tially different. It is able to carry out local computation, 
particularly with respect to assembly and dissemination of 
information, and to initiate actions for fetching information 
from other nodes of the tree. It is able to execute program 
tasks sequentially or in an overlapped mode, and to allocate 
storage in response to the execution of invoke instructions. 
Invoke instructions create tasks which are then executed 
either in the local processing unit or in another processing 
unit, as system loading dictates (see the eighth and ninth 
sections). 

The primary memory of the system is distributed among 
the processing units. Each processing unit has direct access 
to that segment (e.g. 64K words) of memory located within 
it. It also has access, through the communication network, 
to the segments of memory located at other processing units. 
Even though the memory is distributed among the pro
cessing units, there is only one unified address space. Given 
the address of a datum, any node in AMPS is able to logically 
access it without address translation. Such addresses do not 
appear at the assembly language level, as they are generated 
by the system dynamically. The internal nodes of the com
munication network are responsible for any required routing 
of data. Access to auxiliary memory and other forms of 

external communication takes place through special-purpose 
leaf processors, which will not be discussed here. 

COMMUNICATION NETWORK 

The communication network in AMPS is designed to take 
advantage of locality of information flow, thereby reducing 
communication costs. Information first travels up the tree 
towards the root node until it encounters a node which spans 
the destination leaf, whence it proceeds down the tree until 
it finally reaches the desired destination. Thus, for sending 
or receiving information from neighboring leaves, it is not 
necessary for the information to travel the entire depth of 
the tree. Relatively local data flow therefore takes less time 
and the overall communication cost of the computation is 
thereby improved. 

A second function of the communication network is to 
provide a reasonably balanced distribution of the computing 
load. Such a function is useful since the machine allocates 
tasks dynamically. Each node of our communication net
work periodically obtains load monitoring signals from its 
subordinates, which indicate their current degrees of utili
zation. When such signals indicate a sufficiently unbalanced 
state, the node can cause the transfer of uninitiated tasks 
from one subtree to the other (see the section on Load 
Balancing) . 

LOCALITY 

One of the most important concepts of our architecture is 
an attempt to improve performance by exploiting locality of 
information flow. Locality is an established phenomenon in 
program execution, which should therefore be exploitable 
within applicative programs. Locality will be enhanced by 
the fact that functions are naturally apt to confine their 
references to certain portions of data structures. Secondly, 
repeated global references to the same data will become 
localized by a caching effect incorporated in the referencing 
scheme of AMPS. Note that the read-only nature of data in 
applicative systems greatly simplifies the implementation of 
such caches. 

If computations which interact heavily with one another 
are allocated space in leaves that are a short average dis
tance apart in the communication network, the overall time 
spent in information flow will be reduced. It is important to 
note that even if it is not possible to allocate space for a new 
computation in the storage space at the invoking leaf, the 
correctness of the overall computation will be maintained, 
even though the speed of the computation may be decreased. 
This is aided by the uniformly acceptable address space and 
the deferred binding of program blocks to physical ad
dresses. Moreover, such locality should tend to cause traffic 
flow to decrease with node level, thereby balancing band
width with demand. 

In designing a highly-parallel machine, care must be taken 
that costs associated with creating new tasks and commu
nicating with them do not outweigh the speed advantage 
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LEGEND: C: ColOOlUnicatioo/load-balancing node 0: Processing unit, including memory 

Figure 2-Physical form of AMPS. 

gained from overlapped execution of these tasks. Conse
quently, our design prescribes that computation is divided 
into blocks in such a way that all computation local to a 
block (i.e. exclusive of communication with other blocks) 
will be done within one processing unit. Since such blocks 
are identical with the code blocks of the program (see the 
eighth section), locality is further enhanced by the clustering 
of connected operators within blocks. The global structure 
does not seek gains from parallelism on the level of, say, a 
simple arithmetic expression. Instead, this effect is achieved 
within the processing unit itself. 

Another anticipated effect which will contribute to locality 
might be called the seeding effect. When a task A in exe
cution creates a second task B, the latter may be allocated 
its storage in any of the processing units in which there is 
sufficient space. Since B may cause the creation of other 
tasks Ct, C2, ... , Cn, locality is enhanced if the storage 
for the latter is allocated in processing units near to that of 
B in the tree. Hence even if B is a long distance from A, 
thus incurring non-trivial communication cost between the 
two, this cost may be balanced out by the lower costs of 
communicating between Band Ct, C2, ... , Cn. 

The seeding effect creates a tradeoff in resolving a choice 
of how far away a created task should be placed. It also 

demonstrates the possibility of a certain amount of natural 
re-localization in recovering from bad task-placement deci
sions by the system. For example, even if B were placed in 
a congested area, the storage from completing tasks near B 
could eventually be reclaimed to provide more space for C 1 , 
C2, ... , Cn. Although such a scheme will not always work 
with optimal efficiency, it will work until all space is in use. 

INFORMATION FLOW 

The characterization of information flow within the ma
chine is dependent on the conceptual ievei being considered. 
For example, at the task level, we are concerned with the 
flow of operands among tasks, which we implement in a 
demand driven fashion. In the demand-driven scheme a 
task may actively seek additional pieces of data after its 
initiation. In contrast, most proposed data flow machines 
are primarily data-driven, in that an instruction never asks 
for data to be sent to it. Instead, it waits to receive data 
itself, and when all necessary operands have been received, 
it initiates the computation, the result of which is then sent 
to all other designated instructions. 

At the communication netu.'ork level, we find the infor-



616 National Computer Conference, 1979 

mati on flow separated into the flow of tasks (which at this 
level are always invoke instructions), operands (single data 
words), and blocks (multiple data words), and requests for 
the latter two. All such pieces of information are accompan
ied by a destination address. All information transmitted 
through the communication network is handled by packet 
switching (i.e. store-and-forward). Line-switching is not 
used because ofthe potential congestion caused by tying up 
long paths through the network. 

A node of the communication network communicates to 
its parent through a form of handshaking. For block trans
fers, a burst mode of communication is used in which the 
handshaking occurs only before and after the entire block 
has been transferred, thus drastically reducing the associ
ated overhead. 

MACHINE LANGUAGE 

As its language, AMPS executes a compiled dialect of 
Lisp called FGL, for Flow-Graph Lisp, or FuncTion Graph 
Language. Although FGL programs are stored as blocks of 
compiled code, we prefer to present them using function 
graphs, as described in Reference 15. FGL allows us to 
display clearly the data flow between operators and thus the 
potential concurrency within programs. 

A program in FGL consists of a main function graph, 
together with productions for programmer-defined func
tions. These productions specify how a node containing a 
function name (the antecedent of the production) is to be 
replaced by a function graph (the consequent of the produc
tion). FGL provides a repertoire of basic operators (e.g. the 
primitive functions of Lisp) that may be used in constructing 
function graphs. 

For the sake of this presentation, let us suppose that data 
structures are trees. with integers and nil as atoms. Condi
tional evaluation is obtained through the use of the function 
condo which causes the evaluation of its second or third 
argument, depending on whether its first argument is non
nil or nil. respectively. 

Trees are built using the cons operator, which forms trees 
from atoms or other trees by connecting its arguments as 
subtrees of a common root. The selector functions car and 
cdr extract the left and right subtrees respectively of a tree 
built by cons. The cons of FGL is in fact lenient cons, which 
allows the machine to exploit concurrency which it could 
not with conventional strict cons. 9 More precisely, FGL 
semantics provide that the identities car(cons(x,y) )=x and 
cdr(cons(x,y»=y hold independent of whether x and yare 
convergent. 

For simplicity, we do not discuss input of trees. Rather, 
we assume them to be resident at the beginning of the com
putation, built by an appropriate graph of cons operators 
and atoms. Conceptually, trees flow on the arcs of an FGL 
graph. In actual implementation, however, the flow of a 
non-atomic tree is represented by the flow of a pair of 
pointers to its subtrees. For the current presentation, iter
ation is implemented by recursion. in the manner of Refer
ence 19. This can be shown to give automatically the same 

concurrency-detection effect of "look-ahead" processors, 
which "unfold" iterations to achieve concurrency.l4 

To cause a result to be printed, a demand is generated at 
some print node in the function graph. This causes propa
gation of the demand to the operator feeding the print. When 
that operator ultimately produces a value, it will then be 
printed. 

Evaluation consists of a combination of transmutations to 
the graph and the application of basic operators. In this 
sense, AMPS is a reduction machine, 4 executing a reduction 
language. 3 By exploiting the richer connectivity of graphs, 
we can avoid much of the combinatorial explosion which 
takes place in purely string-oriented reduction machines. 

Figures 3 through 7 give examples of programs in FGL. 
Figure 3 presents a production for the function of Figure la, 
which counts the leaves of a tree. This example uses the 
strict operator (i.e. one which demands both of its argu
ments) add to cause the creation of instances of operators 
which can be evaluated concurrently. Figure 4 shows a 
possible snapshot of the program during its application to a 
specific tree. Several concurrent sub-computations are vis
ible. 

In Figure 5a, we present a main program which calls a 
recursively-defined function NATNUMS, the graph of 
which is presented in Figure 5b. Intuitively, NATNUMS(n) 
"computes" the infinite sequence {n, n + 1, ... } by con
structing its representation in the form of a tree as shown. 
In the context of the main program, the value printed is the 
second element of the sequence where n=2, i.e. 
car(cdr(NATNUMS(2»). Adjoined to the graphs in Figure 
5 are listings of their FGL assembly code, the meaning of 
which is explained in the next section. The parenthetic labels 
on the graph indicate the correspondence between the graph 
and the code. 

Figure 6 presents a program which employs the function 
NATNUMS to generate the prime numbers in increasing 
order. The reader may wish to refer to the similar examples 
in References 2 and 13. 

Figure 3-FGL production for the Jeafcount function. 
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a. 

Figure 4-0ne possible snapshot of the program of Figure 3 during its com
putation on a tree. Unlabeled leaves are those of the original tree. The 

ultimate result will be the number 256. 

(1) 

/\ DEF MAIN RESUL T: 

2/\ ( 2) PRINT 

3/\ CAR 

4/\ (3) CDR 
5 

INVOKE NATNUMS 5 
~ 
conceptua 11 y- (4) NUMB 
infinite stream 
value as a tree 

(5) 

b. 

DEF NATNtJlS 

PARAMETER 

CONS 

ADDl 

INVOKE 

RESULT: 2 

1 4 

NATNUHS 

Figure 5-Sample FGL main-program (a) and production for defined-function 
NATNUMS (b) with assembly-language listings. 

Figure 6-FGL program for printing prime numbers in increasing order. The 
production for NATNUMS is given in Figure 5. The primitive function divides 
yields nil unless its second argument evenly divides its first. The primitive 

seq causes its arguments to be evaluated in sequence. 

It can be proved that every well formed interconnection 
of FGL operators computes a unique function (cf. Reference 
16), even an interconnection involving cycles. Cycles pro
vide one means of efficiently implementing bi-directional 
communication between two functions. Such an example is 
shown in Figure 7, which illustrates a program for the 
breadth-first production of all atoms in a tree. Detailed de
scription of the recursively-defined functions PASSATOM, 
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BREADTHFIRST => 

. + leaves of lnput ---<:I:> 
tree in breadth-first 
order ~----~----~ 

PASSATOM 

input tree 

PASSNONATOM 

streams W 
as slender 
trees 

SPLIT 

Figure 7-Production defining a function which produces the leaves of a tree 
in breadth-first order. Productions defining PASSATOM, PASSNONATOM, 

and SPLIT are not shown. 

PASSNONATOM and SPLIT are not presented here. It 
should be noted that FGL employs fan-out of arcs to effec
tively avoid recomputation of the same value, an effect 
which must be obtained by recognition of common sub
expressions in some applicative languages. 

In the next sections we describe, in more detail, program 
storage, task execution, typical operators, and production 
application via the special operator invoke. We do not dis
cuss storage reclamation here, for lack of space. 

PROGRAM STORAGE AND EXECUTION 

All storage is allocated in blocks. The use of blocks makes 
storage management more efficient, and is consistent with 
trying to keep the locality of a computation contained within 
one processing unit. A block is either a data block or a code 
bl(Jck The contents of a code block form a linear represen
tation of an FGL graph. which is copied as the source of 

initial code to be stored in a newly allocated data block. 
This copying may be viewed as the application of an FGL 
production, i.e. replacing the antecedent node with its con
sequent graph. Each word in a data block is initially a code 
word or a literal value. A code word may get changed to a 
literal value during execution. The ready bit distinguishes 
whether the word is a value or a code word. 

A code word in a data block corresponds to a node in an 
FGL graph. A value corresponds to what eventually appears 
on the output arc of that node. The code word contains the 
local addresses of words corresponding to nodes at the op
posite end of its input arcs, i.e. the sources of its operands. 
Local addresses are relative to the start of a block. We 
assume here for simplicity that each operator has only one 
output arc, although such arcs may fan out as necessary. 

In addition to specifying the input arcs of its operands, an 
instruction word may include notifiers, which are local ad
dresses of operators which have this operator's output arc 
as one of their input arcs. These are usually set dynamically 
as demands occur, although it is possib1e to have them pre
set in the initial code. 

In addition to an operation code, the following fields may 
or may not be present, depending on the nature of the 
particular operation: 

1. Local addresses of arguments of the operator. 
2. No tifiers , i.e. local addresses of notifiee code words, 

which are instructions which have demanded this in
struction's value. 

3. A single global address, used to provide linkage across 
blocks, and for specifying the code block in the case 
of an invoke instruction. 

The invoke instruction, when demanded, causes the allo
cation of storage for a data block and the copying of a code 
block into that storage. The demand driven approach thus 
provides a natural means of deciding whether and when to 
trigger the invocation of a defined function, which requires 
the allocation of a storage block. An invoke instruction also 
initializes various linkage instructions which provide an in
terface between the nodes of the graph containing the an
tecedent of the production and those of the consequent, 
since local addresses cannot be used to provide this linkage. 
Details on these linkage instructions may be found in Ref- . 
erence 18. Linkage instructions are not shown in the code 
blocks in Figure 5, as they are supplied automatically by the 
assembler. 

Regarding efficiency, the use of local addresses achieves 
economy in code word storage, and avoids relocation in 
copying. The copying of code blocks may be contrasted with 
approaches such as that in Reference 21, which interpret a 
pure code block without copying. The approach taken here 
is more effective in keeping references local to a processing 
unit. It also eliminates separate fetching of code and data 
words for each task. Due to the use of a burst mode, blocks 
are copied more efficiently than the same number of words 
individually. 
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TASK EVALUATION 

Although code words may be conceptualized as repre
senting functions, we must describe how these words are 
interpreted by the machine to cause values to be produced. 
The loosely-coupled aspect of task evaluation is achieved in 
AMPS through a task list organization, which allows many 
processors to partake in the evaluation of tasks, i.e. partic
ular instances of operators with their associated data. The 
task list is decomposed into two separate lists which may 
be served independently. These are: 

demand list-Contains addresses of operators for which 
evaluation is to be attempted. 

result list-Contains addresses of operators, along with 
their corresponding values after evaluation. 

The invoke tasks on the demand list are distributed to indi
vidual processing units by the communication network, 
which takes into account the current processor load profile. 
Only such tasks are considered for distribution, since it is 
only these which might profitably be executed in another 
processing unit, due to the communication costs incurred in 
their transmittal. Hence, each processing unit has its own 
invoke list, a sublist of the demand list containing only in
voke instructions. 

Figure 8 shows the organization of the task evaluation 
mechanism. The diagram is to be interpreted in an informal 
sense, and is less akin to conventional flowcharts than in
dicative of the flow of tasks in the system. Further details 
may be found in Reference 18. 

Initially, the address of the word which will produce the 
"main result" is put on the demand list. The word itself is 
then fetch~d. The instruction specifies certain arguments, 
which are also fetched. If the arguments are all ready, the 
function is evaluated. If not, then demand is propagated to 
each unready argument not previously demanded by placing 
its address on the demand list and setting a notifier in it. A 
word may contain several notifiers indicating which instruc
tions have demanded it. The presence of at least one notifier 
is used to signify a previous demand. Figure 9 sketches 
symbolically the flow of demand in the example of Figure 
5, along with the corresponding production applications and 
evaluations which take place. 

Once evaluated, a result value replaces the code word as 
ready data. Via the result list, any instructions which were 
specified by notifiers as awaiting this result as an argument 
are then notified by putting them on the demand list to be 
retried. Observe that all demanded operators remain acces
sible until they are replaced by ready data, either through 
being put on the demand list or through being referenced by 
a notifier of an accessible operator. 

Forms of evaluation other than pure demand evaluation 
can be supported by judicious pre-setting of notifiers and 
demand bits and advanced placement on the demand iist. 
Special operators are also available to the programmer 
which have the purpose of generating advanced demand to 
enhance parallelism, and for postponing demands to avoid 
premature allocation of data blocks. 

cl:r- initial task addresses 

CD- DEMAND LI ST 
(sequence of 
tas k addresses) 

RESULT LIST 
(sequence of task addresses 
with their values) 

C[)-- notifiee tasks 

Figure 8-Simplified task processing flow. 

PROCESSING UNIT ARCHITECTURE 

We do not go into great detail here on the organization of 
individual processing units. As described in the previous 
section, each unit selects tasks from its demand list. While 
on this list, a task is represented by its address in memory. 
The content of this address is fetched and, if a code word, 
an attempt is made to evaluate it. This normally entails 
reference to one or more additional words in the memory. 

Since a referenced word might reside in the physical mem
ory of any processing unit, fetching may involve transmis
sion of words through the communication network. In order 
that the processor need not be idle while such a fetch is 
taking place, we provide a staging area for buffering a set 
of such tasks while their operands are being assembied. The 
staging area is conceptually similar to a conventional pipe
line, except that order of task execution is unimportant, all 
essential ordering being explicit in the program graph. 

The size of the staging area is chosen to maintain reason
ably good utilization of the function units within the pro
cessing unit, which carry out each operation once its oper
ands are assembied. Of course, each function unit could 
itself be pipelined, depending on economic advantages 
which would accrue under particular application loads. De
sign of such a staging area is fairly routine and therefore will 
not be discussed further here. 
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Figure 9-Snapshots of the evaluation of an FGL program. Perforated arrows 
illustrate demand propagation. 

LOAD BALANCING 

Load balancing occurs through the redistribution of tasks 
from the invoke list of one processing unit to that of another. 
This is a function of the communication network which is 
separate from, but topologically compatible with, the routing 
of operand data. 

By the load at a processing unit, we mean the storage 
requirement of tasks on the invoke list at that unit. In a 
similar manner, we can define the load at any node of the 
communication network to be the sum of the loads at its 
spanned leaves, divided by the number of such leaves as a 
normalizing factor. 

Again, to simplify the explanation, we are assuming that 
the communication network is a binary tree. Each node of 
the communication network maintains desired lower and 
upper limits, Land U, on the loads of its immediate des
cendants. These are functions of the amount of storage cur
rently in use by the leaves spanned by those descendants. 
If the load of one descendant is above U and that of the 
other below L, the network attempts to shift tasks from the 
invoke list of the overloaded descendant to that of the un
derloaded one. If loads of both its descendants are above 
U, this will be communicated to its parent (if any), so that 
the latter may try to shift some of the load to one of its 

descendants having load less than L. In this way, the bal
ancing function is distributed throughout the communication 
network, with each node thereof applying the same balanc
ing strategy. 

The effectiveness of the balancing scheme relies on the 
loosely-coupled nature of the system. That is, no task is 
bound to a particular processor until storge is allocated for 
it. 

COMPARISONS WITH RELATED MACHINES 

The data flow machines of References 7 and 1 originally 
influenced the structure of AMPS. The communication net
work in AMPS plays the role of the arbitration and distri
bution network of the Dennis data flow machine. However, 
the processing units which assemble instructions and initiate 
information flow are of a higher level, as are the processors 
in Reference 1. 

Even though the architecture of AMPS has a tree like 
structure, it is not a .. recursive architecture" in the ~ense 
of Reference 6. The hierarchical structure and method of 
storage allocation in the Davis machine seem to impose 
certain constraints on the creation of new computations and 
on the flow of information in the machine. For example, 
when a processing element creates a task, the latter must be 
placed either in the space of the processor carrying out the 
application or in the space of a subordinate processor, even 
if all subordinates are crowded for space and the machine 
has other processors which have plenty of space. This prob
lem does not occur in AMPS, due to the construction of the 
communication network, the uniformity of the address 
space, and load balancing. 

A common feature of all of the previous architectures is 
that they are data-driven rather than demand-driven, as is 
AMPS. One might be led to think that the latter presents 
some additional overhead. However, closer examination re
veals that FGL programs are often simpler in that they do 
not require explicit instructions for the gating of data. 

In data-driven machines, a form of ready-acknowledge 
signalling is often used for transmission of data via storage 
words. This is, in fact, a special case of demand-driven 
computation, in which the demand for an operand is equated 
with readiness of its recipient. The demand-driven approach 
seems to provide more flexibility in the relationship between 
elaboration of a programmer-defined function and the eval
uation of its arguments. It is also clear that the demand
driven feature is a necessity in supporting lenient cons. On 
the other hand, demand-driven computation could possibly 
be engineered on other architectures by treating demands as 
data, but this seems cumbersome. 

The tree-structured reduction language machine of Ref
erence 20 is fundamentally different in its operation from 
AMPS. In the former machine, an expression to be evalu
ated is mapped symbol by symbol onto the leaves of the 
tree. In AMPS, an expression would fITst be converted to 
function graphs which then reside in the memory space of 
one or more processing units of the machine. 

Our system has in common with those just cited the desire 
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to integrate architectural, communication and language con
siderations. This is one of the ways it differs from superfi
cially similar systems, such as Cm*. 23 In Cm*, parallel pro
cessing is based on the concept of interacting sequential 
processes that run on conventional processors (DEC PDP-
11 's), while AMPS is capable of directly evaluating function 
graphs, integrates considerations of evaluation and local bal
ancing, and directly supports communication among tasks. 

CONCLUSIONS AND FUTURE RESEARCH 

We have stated that machine architectures should be de
veloped with greater attention paid to ultimate programma
bility. With this motivation, we have presented a loosely
coupled parallel processing system AMPS which executes 
an applicative language, FGL. We have sketched the inter
nal representation of programs in AMPS and the execution 
of programs on it. 

Our implementation seems to be the first detailed one 
presented for Lisp programs on a parallel machine. An im
plementation has been described qualitatively in Reference 
11. However, their description relates mainly to the issue 
associated with colonel versus sergeant tasks, sergeants 
being distinguished from colonels as tasks whose evaluation 
may never actually be required, but which provide a poten
tially useful way of employing otherwise idle processors. In 
contrast, all tasks in the machine described here are of the 
colonel variety, whose existence may be traced to certain 
strict operators, such as add in the leaf count example of 
Figure 3. On the other hand, subtle details, such as occur 
in the implementation of a global notiJier scheme, have been 
discovered in ihe course of designing our evaluator. 1s How 
such subtleties interact with an implementation which does 
offer sergeant tasks remains a topic for future investigation. 

The ideas presented here were derived after considering 
many possible alternatives. We may, of course, elect to 
return to one or more of these alternatives after more ex
perience in programming the machine has been gained. A 
simulator for the evaluation model has been written in Pascal 
to assist in such a venture. Thus far, the simulator has been 
used to verify that the evaluation mechanism works and to 
experiment with additions to the language FGL. Construc
tion of a Simula-67 simulator for the tree architecture is now 
in progress. We have no immediate plans for construction 
of a physical realization of the machine. 

Issues remaining to be investigated include the necessary 
support for FGL in terms of storage reclamation and sched
uling. We are currently contemplating how best to organize 
the distributed heap for efficient medium-term data storage. 

We have preliminary results on how to deal with other 
features of Lisp, such asfunargs, setq, andprog. A descrip
tion of the handling of funargs appears in Reference 18. 
Efficient access of array-like structures is handled by ex
tending cons from pairs to tuples and providing an indexed 
selector function. 

A related issue is whether indeterminate computations 
should be supported, as there are some indications that they 

permit efficiency gains not otherwise achievable. 17 Under 
investigation also is the use of machine operators for the 
support of resource allocation. These have been pro
grammed into the experimental simulator and seem to fit 
very naturally with our method of evaluation. The usefulness 
of applicative programs in allowing graceful backup when a 
processing unit fails also remains to be exploited. Thus many 
issues, at levels from detailed processor construction to 
more fundamental language problems, await us. 
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A prototype data flow computer 
with token labelling 

by IAN WATSON and JOHN GURD 
University of Manchester 
Manchester, England 

INTRODUCTION 

Computer users in many areas of scientific study appear to 
have an almost insatiable desire for processing power. Many 
of the computations exhibit a high degree of parallelism 
which is not exploited in conventional computer structures. 
Considerable interest has been shown in parallel computer 
architectures in the last decade in order to make use of this 
property. 

The two main approaches toward this goal have become 
known as SIMD (array processor) and MIMD (multiproces
sor) architectures which are typified by the ILLIAC IV and 
the C.mmp systems respectively. It is not appropriate to 
describe these architectures in detail here, but it should be 
noted that a number of inadequacies have come to light as 
these systems have been applied to many problems. There 
are two basic difficulties which appear in both architectures 
in slightly different guises. The first concerns the arbitrary 
choice of a fixed number of processing units in an architec
ture (64 in the case of ILL lAC IV, 16 in the case ofC.mmp). 
The difficulty that is occasioned by this choice derives from 
the fact that it is often inconvenient, if not impossible, to 
organize the problem to be solved so that it is exactly the 
"width" of the architecture. The second problem arises 
when sections of essentially serial programs are processed. 
The problems in SIMD architecture are clear; in MIMD 
systems the difficulty usually appears when a critical area 
of memory becomes "locked-out" while many processors 
are trying to access it. Evidence is accumulating that rela
tively little of the potential speedup of SIMD and MIMD 
systems can actually be achieved for a broad spectrum of 
problems: Minsky's conjecture, 1 Flynn's analysis 2 and En
slow's view of operating system overheads in multiproces
sors3 all attest to this opinion. 

More recently, interest has arisen in data driven compu
tation for the expression of programs (known as Data Flow). 
A computation is expressed as a data dependent directed 
graph with nodes representing computational operations and 
the arcs representing the flow of data. The nodes become 
ready for execution when all their input data are available. 
The expression of parallelism in terms of data dependencies 
rather than in spite of them, leads to a far more natural and 
flexible picture of parallel program execution. 
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The theoretical basis of data driven computation can be 
traced to the paper of Karp and Miller in 1966. 4 An extension 
of this line into machine architecture was pioneered by the 
team led by J. B. Dennis at MIT. 5,6 

The architecture described in this paper follows the same 
broad principles as the MIT work but introduces the concept 
of token labelling as a mechanism to support re-entrant code 
structures. It is believed that this leads to a more efficient 
use of storage resources and provides a greater potential for 
the utilization of parallelism. Another important aspect of 
the design is the use of pseudo-associative store to perform 
token matching; this is achieved by reducing the nodes to 
a simple machine instruction level with a maximum of two 
inputs. 

DATA FLOW PRINCIPLES 

In order to illustrate the principles of a directed graph 
representation, consider the 'Butterfly' of a Fast Fourier 
Transform shown in Figure 1. The expressions being eval
uated are: 

A'=A+C Cos a+D Sin a 

B/=B-C Sin a+D Cos a 

C'=A-C Cos a-D Sin a 

D'=B-D Cos a+C Sin a 

These can be built up from six simple nodes performing the 
functions of addition, subtraction, multiplication, sine, cos
ine and duplication of a value. A node becomes executable 
when its input values (normally called tokens) are available. 
Following this principle it can be seen that, assuming at least 
four execution units, the computation can be performed in 
seven steps as indicated by the number adjacent to the 
nodes. The total number of nodes in the graph is 2 t and 
therefore the computation has an average parallelism of 
three. 

The graph shown uses only simple operational nodes. In 
order to specify a more comprehensive computational model 
it is necessary to introduce a much wider set of primitives 
which provide control functions such as conditional branch-
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Figure I-Graph of an F.F.T. Butterfly. 

ing. A complete description of a practical order code is 
beyond the scope of this paper but can be found in other 
literature. 7 

PROBLEMS OF RE-ENTRANCY 

A complete Fast Fourier Transform is an iterative com
putation performed on a large array structure. Ignoring, for 
the moment, practical implementation mechanisms, con
sider the problems associated with using the graph of Figure 
1 as a complete description of the arithmetic computation. 
The input values are not simple scalars but arrays of the 
form A[l] ... A[N], B[l] .. B[N], etc., for each iteration. 
In a flexible parallel machine, there is no reason why further 
iteration steps may not proceed even though one iteration 
has not been completed for all points in an array. The inputs 
to the graph can then be of the general form A[n]j, B[n]j, 
etc., where n represents the array index and i the iteration 
level. It is then no longer possible to declare a node exe
cutable by the presence of any two tokens on its input as 
they may belong to totally different parts of the computation. 

There are three possible solutions to this problem: 

1. The use of a re-entrant graph is prohibited; each point 
of the array and each stage of the iteration must be 
described by a separate graph. 

2. The use of the graph is limited by allowing one token 
to reside on an arc of the graph at anyone time. This 
can be achieved by only allowing a node to become 
executable when both its input tokens are present and 
no token exists on jt~ output arc. 

3. The tokens are assumed to carry with them their index 
and iteration level as a labeL The rules are extended 
to require two tokens with the same label before a node 
can be declared executable. 

The first mechanism may require large amounts of code 
storage and, in problems where the iteration depth is only 
known at run time, the necessity for dynamic code genera
tion. It is believed that this could be a significant overhead 
in a practical system. The second implies a sequential but 
pipeIined use of the code. This will severely reduce the 
exploitation of potential parallelism. 

The labelling method permits the use of pure static code 
and enables maximum usage of any parallelism which exists 
in the problem specification, This is dearly at the expense 
of the extra information which needs to be carried by each 
token. 

Assuming that it is desirable to utilize the maximum 
amount of parallelism available, then the limitation of one 
token per arc must be rejected in the general case. Of the 
remaining two methods, it is our contention that token la
belling will result in much lower overheads in a practical 
system. 

One major use of re-entrant code, that of the procedure, 
has not yet been mentioned. Parallel invocation of proce
dures can be supported by ensuring that a unique identifier 
is allocated to each input token at the procedure call. 

It is not possible in this paper to describe all the impli
cations of token labelling. Techniques are required to sup
port nested iterations, recursive procedure calls and index 
manipulation in data structures. These can be achieved by 
nodes which operate on the label fields of tokens rather than 
the data values. More comprehensive information on the 
labelling concept can be found in descriptions of our own 
work 7 and that of Arvind and Gostelow at the University of 
Irvine, California, U.S.A. 8 

THE MACHINE ARCHITECTURE 

Although it may be profitable to use a Data Flow com
putational model to describe parallel activities in a wide 
range of architectures, it is likely that a hardware structure 
which reflects the model directly will result in the most 
efficient implementation. 

The basic elements of a Data Flow machine must contain 
parallel processing units which perform the nodal opera
tions, a stored description of the directed graph and a mech
anism for collecting and matching tokens. The first two 
requirements can be realized using standard processing and 
storage techniques; the matching operation is more complex. 

During a computation, tokens will be produced by pro
cessing units which must await the arrival of other Lukens 
with identical labels which are directed to the same node. 



They can then form an executable package to be allocated 
to a free processing unit. This storage and matching function 
can be simplified greatly if the maximum number of node 
inputs is limited to two; an associative storage technique 
can then be used. 

Figure 2 shows the basic architecture of the Manchester 
Data Flow Prototype which uses these principles. 

The Instruction Store is a random access memory which 
holds the directed graph description. Each entry is in the 
form of a nodal operation and the addresses of the subse
quent nodes to which the output token(s) will be directed. 
Note that in this practical implementation, nodes are able to 
specify two output destinations for their result. It is also 
possible to specify a literal value as one input to the node. 

The processing units are microprogrammed microproces
sors with a distribution and arbitration system. The distri
bution system, on receipt of an executable package, will 
select any processor which is free and allocate the nodal 
operation. The arbitration system controls the output of 
tokens from the processors. 

The switch provides input and output for the system. 
Initial tokens are directed to the starting nodes of the com
putation. A special destination address in the final nodes of 
the graph allows tokens to be output. 

The Token Queue is a First In First Out buffer which 
equalizes data rates around the system. 

INSTRJCTION STORE 

operation next 
instruction 'A 

next , 
Instruction 'B' 0- literal 

input 
tokens 

output 
tokens 

TOKEN QUEUE 

value label next 
instruction 

Figure 2-Basic architecture. 
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The Matching Store is associative in nature, although it 
is implemented using conventional random access store with 
hardware hashing techniques. The associative field is formed 
from a concatenation of the label and next instruction fields; 
the value field is the token value. There is a requirement in 
a practical instruction set for single input nodes which re
quire no matching operation. A control digit in the next 
instruction information allows a bypass of the Matching 
Store in this case. 

In order to execute a program, the graph description is 
entered in the instruction store. The initial data tokens are 
input to the Token queue via the switch. As an example of 
this, Figure 3 shows a very simple graph to form the sum of 
the product of two pairs of numbers, together with an indi
cation of the Instruction Store entries and initial token for
mats. The label is not used in this case and is thus set to 
zero. 

The tokens, on reaching the front of the Token Queue, 
can access or bypass the Matching Store dependent on the 
Next Instruction Information. An access to the Matching 
Store will cause an associative search of the store. If a token 
is found with the same label and Instruction Address it is 
removed to form a token pair. If no match is found, the 
incoming token is written to the store. 

Token pairs from the Matching Store, or single tokens 
which have bypassed it, now access the Instruction Store 

ADDR=l 

AllDRESS 

Ul.lJr 

\'i 

y 

x 

OPERATlO:\ 

~IPY 

MPY 
Ann 

LABH 

0 
0 
0 
0 

y 

A . - (1\' * X) + (Y * Z) 

A 

Instruction Store entries 

~rXT I~STRUCTIO~ 'A' ~rXT TSSTm~TIOS 'B' 

AnllR L, II. /R .11. 

OUTPUT 

L.II. 
R,II. 

Initial Tokens -------

~rXT I I\STRUCT 1m,: 

ADDR L.II./R.II. 

L.II. 
R.Il. 
L.II. 
rul. 

AnDR 

:\ONE 
~Ol\r 

'Jo~r 

l.. II. /R .lI. 

M.S. 
BYPASS 

~O 

~O 

~O 

~O 

Figure 3-A simple graph and its machine representation. 



626 National Computer Conference, 1979 

and form an executable package. This is distributed to any 
free processor for execution. Tokens produced by the pro
cessors are entered on the back of the Token Queue via the 
Arbitration Unit and Switch. 

This operation proceeds in a pipelined manner around the 
ring structure until the computation is complete and any 
output tokens have been produced. Each unit communicates 
with its successor and predecessor by a two-way handshake 
interface. This ensures that if, for example, all processing 
units are busy, the ring operation is suspended until the 
necessary resources become available. 

In order to facilitate the description of the architecture, 
certain simplifications have been made. It does, however, 
contain the underlying principles of the prototype Manches
ter Data Flow machine. 

IMPLEMENTATION OF THE MACHINE UNITS 

The token queue 

The Token Queue is implemented using Random Access 
Memory with pointers indicating the front and back of the 
queue. The store is divided into two independent stacks 
which permit concurrent read and write operations. Al
though it is not intended to include storage hierarchies in 
the prototype design, it is felt that use could be made of 
shift register devices if a much larger queue were required. 

The matching store 

The pseudo-Content Addressable Memory required for 
the matching operation uses hardware parallel hashing tech
niques similar to those described by Goto and Ida. 9,10 How
ever, as the order of propagation of results around the ring 
is unimportant, use can be made of an overflow hashing 
mechanism rather than a re-hash. The advantage of this is 
that the average store access time can be reduced and a 
backing store structure can be introduced. 

The instruction store 

No special techniques are necessary in the Instruction 
Store. It is simply a linear Random Access Memory which 
is addressable by the Next Instruction Information field. 

The processing units 

Ten Processing Units are constructed from Schottky 'bit
slice' microprocessor elements. They contain alterable mi
croprogram store in order that the instruction set can be 
changed with ease. All processors are connected to a com
mon bus with a distribution mechanism to allocate execut
able instructions to free processors and allow the output of 
results. A preliminary study of arithmetic operations has 
indicated that an average instruction execution time of 3~S 
can be achieved in each processor.ll 

r-------11 PROCESSORS I~-~-----. 
nl1 + P2o- POo)/(1+P2i) 

I INSTRUCTION I 
STORE 

MATCHING 

STORE 

n(1-P
2i

J/(1+P
2i

) 

Figure 4-Data rates. 
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The processor speed has already been stated as an average 
instruction time of 3/-tS. If all ten processors can be utilized 
fully then an instruction execution rate of 3.3 MIPS can be 
achieved. It is necessary to estimate the storage speeds 
which are consistent with this. 

With reference to Figure 4 we define four values: 

Tokens per unit time read from the token queue. 
Probability of an instruction requiring two inputs. 
Probability of an instruction producing two out
puts. 
Probability of an instruction producing zero out
puts. 

The following relationships can be derived: 

Tokens will access the match
ing store. 
Tokens will bypass the match
ing store. 
Pairs of tokens will exit from 
the matching store. 
Instruction accesses will be 
made, and executable instruc-
tions formed. 



Tokens will be produced by the 
processors, pass through the 
Switch, and be written to the 
token queue. 

The constraint imposed by the processing unit is that: 

nJ(1 + P21)=3.3x 106 

For a typical program it appears, from simulation experi
ence, that the following values of the probabilities are real
istic for typical problems. 

U sing these we see that: 

P~=0.5 

P2o=0.6 

POo =0.1 

n=3.3x 106 x 1.5=4.95x 106 

From this we can derive the following required operation 
times for the units: 

1. Token Queue Read-Given by 1/n=202nS. 
2. Matching Store Access-A token reaching the match

ing store, requires one read cycle plus one write cycle 
whether or not it is a successful match. Therefore the 
times are given by 

Read time + Write time=(1 + P2)12nP2i 

=303nS 

3. Instruction Store Read-Given by (1 + P21)/n=303nS 
4. Switch Operation-Given by (1 + P ~)/n( 1+ P 20 - P oJ = 

202nS 
5. Token Queue Write-Same as Switch Operation=202nS 

From these figures it can be seen that the storage units must 
have access times of the order of 200nS to maintain the 
execution rate of ten processors. This speed can be readily 
achieved by low cost MOS storage devices currently avail
able. 

ARCHITECTURAL EXPANSION 

In order to obtain very high speeds from any parallel 
computer system it is neceSSqry to exploit parallelism in 
processing, storage and information transfer. The critical 
"bottlenecks," particularly in MIMD machines usually ap
pear in the form of crossbar switches, common highways or 
common stores through which all the processors in the sys
tem may wish to communicate. The reason for this can be 
traced to the need for a processor to demand, and require 
rapidly, data from any other part of the system. In addition, 
there is a necessity to control access to data which has yet 
to be formed; this can also introduce significant communi
cation overheads. 

In a data driven environment, a processor is not required 
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to perform a section of a computation until all the data are 
presented to it as an executable package. Rapid data access 
to other parts of the system and access control are then 
unnec~ssary. This suggests an architecture containing a 
mechanism which accepts tokens from all processors and 
then distributes them to parallel but independent storage and 
processing resources. 

In the Manchester architecture, this can be achieved by 
extending the input/output switch to become the intersection 
point of many identical "rings." A strategy is adopted, using 
the label and instruction address fields, which distributes 
tokens from different parts of the computation across the 
parallel rings. 

The switch could be a crossbar, but this would suffer from 
the same problems as in a MIMD machine. Due to the 
pipelined nature of the rings, the requirement is for a high 
throughput rate rather than a fast transfer across the switch. 
A parallel pipelined structure can therefore be used which 
does not create a "bottleneck" in the system. The prototype 
will only contain a single "ring" as described previously. 
The switch will be constructed to enable the connection of 
further identical rings at a later date. 

A more comprehensive description of the implementation 
and estimated performance of the multi-ring architecture can 
be found in other literature. 7 

PROGRAMMING A DATA FLOW MACHINE 

This section is intended to provide a brief outline of the 
methods available for programming a Data Flow machine. 

It would seem that the natural way of expressing a di
rected graph would be via a graphical language, and such 
languages have been investigated. 12 However, textual lan
guages are far more familiar and it can be argued that fea
tures such as data structures are easier to express into a 
textual form. 

One approach is to take a conventional language and 
translate it into a Data Flow graph. The principles involved 
in such a translation were originally suggested by Miller and 
Rutledge. 13 More recently, Whitelock 14 has developed an 
experimental compiler for a subset of PASCAL which com
piles code for the Manchester machine. 

Another class of languages, the Single Assignment Lan
guages, are more naturally suited to the expression of par
allelism in a Data Flow form. Some of these languages, for 
example Id,15 TDFLi6 and LAPSE,17 have been deveioped 
specifically for this purpose. Other similar languages such 
as LUCID18 have developed independently with emphasis 
on the proof of correctness of programs. 

It is too early to forecast with certainty which of these 
approaches will be most fruitful. The Manchester single 
assignment and conventional compilers produce code for an 
architecture simulator; they are being evaluated at the pres
ent time. 

It is certain that a Data Flow machine can be programmed 
without great difficulty, with no requirement for a knowl
edge of the underlying architecture which support,s the ex-
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ecution. The exact form of languages which will gain ac
ceptance is yet to be decided. 

CONCLUSIONS 

The expression of computations in data dependent graph
ical form provides a natural method of determining the par
allelism which is present. In the design of practical execution 
mechanisms, problems exist in the implementation of re
entrant code. An architecture has been proposed which at
tempts to overcome many of these problems by introducing 
a label which is carried by every data token. This, together 
with a pseudo-associative token matching store, results in 
an architecture which can be constructed at low cost using 
components which are readily available. 

A prototype machine is in the process of design and its 
performance is being evaluated by simulation. It is not in
tended that this prototype should be of very high speed but 
should provide a research vehicle for studies of the potential 
of Data Flow machines for the solution of real problems. 
The architecture is extensible by using copies of the basic 
design and this will proceed if the initial investigations are 
successful. 

No attempt has been made in this paper to address the 
problems of programming a Data Flow machine. Research 
is, however, being conducted both at Manchester and many 
other places which promises to produce high-level languages 
which will allow a machine independent formulation of par
allel programs. 
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A view of dataflow* 

by KIM: P. GOSTELOW and ROBERT E. THOMAS 
University of California 
Irvine, California 

INTRODUCTION 

In 1946 John von Neumann outlined an organization for 
computers 1 that has dominated the languages and architec
ture of machines to this day-the familiar sequential, one
word-at-a-time instruction stream which modifies the con
tents of a memory. Although the von Neumann model has 
proved to be a viable and powerful approach to computation, 
we have chosen to explore other models of computation to 
determine if they offer advantages in ease of programming, 
exploitation of concurrency and performance. A primary 
motivation is new technology such as large scale integration 
(LSI) which has greatly expanded the range of choice in 
computer design. 

Dataflow is an alternative model of computation which is 
particularly promising. The basic principles of dataflow are 
asynchrony and functionality, and thus are in distinct con
trast to the von Neumann model. Readers familiar with look
ahead processors2 such as the IBM 360/91 and the CDC 
660017600 will find that the principles of dataflow are not 
new. However, our goals in exploiting the principles of 
dataflow are of a more fundamental nature than the goals of 
the above systems. Rather than using dataflow simply to 
improve the performance of von Neumann processors, we 
have adopted the semantics of dataflow as the base seman
tics of our system. A primary reason for this direction is a 
desire to explore the full generality of dataflow. Another
reason, perhaps of greater importance, is our impression 
that the functional nature of dataflow simplifies the seman
tics of programming languages and thus may reduce the cost 
of software (especially in the case of mUltiprocessor sys
tems). Our approach is first to design a fully-integrated sys
tem before attempting to construct hardware. This includes 
the design of a base machine language, a preliminary high
level language, 3 a user protection facility, 4 and a high-level 
exception handling facility, 5 all of which are based on the 
semantics of dataflow. 

The following sections discuss details of the principles of 
dataflow with emphasis on a method of interpretation de
veloped at Irvine. The general version of this interpreter is 
known as the unfolding interpreter and is described in the 
following section. (Details on a specific unfolding interpreter 

* This work was supported by NSF Grant MCS76-12460: The VCI Dataflow 
Architecture Project. 
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are available elsewhere.3) The third section presents imple
mentation techniques for dataflow systems while the fourth 
section discusses some principles of multiprocessor design 
currently being developed. 

BASIC PRINCIPLES OF DATAFLOW AND THE 
UNFOLDING INTERPRETER 

The present section concentrates on the logical implica
tions of dataflow semantics without regard to physical im
plementations, efficiency, etc. These latter topics are dis
cussed in later sections. 

Asynchrony and Functionality 

The following introduces dataflow by showing the corre
spondence between constructs in the high-level dataflow 
language Id (for Irvine datatlow) with schemata in a graph
ical dataflow machine language. The goal is twofold-first 
to show by example that programs need not be written in 
dataflow machine language, and second, to provide some 
intuition for understanding the execution of dataflow pro
grams. We wish to emphasize that our purpose is to present 
the basis of dataflow and not to discuss the syntax of a 
particular dataflow language (Id), or the details of a partic
ular machine language. 3 

Consider the following Id constructs: 

s~initial sum~ 

for i from 1 to n do 
new sum+-sum+f(i) 

return sum); 

procedure sum (i, k) 
(return (if i > k then 0 

else f(i)+sum(i + I. k»); 
s+-Sum(l, n); 

(2.1 ) 

(2.2) 

both of which can be expressed in mathematical terms as 

s= L f(i) 
i=t 

Statement (2.1) is an assignment statement whose right-hand 
side is an Id loop expression. The statements in (2.2) are a 
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procedure definition followed by an application of that pro
cedure. Each of these constructs has a number of inputs
a value for n, a definition for the function procedure f, and 
in the case of the sum procedure definition, the value of i. 
In addition, both (2.1) and (2.2) produce the same result. 
We abstract these two definitions of "sum" by considering 
each to be a "black box" as shown in Figure la. Each dark 
spot in the figure represents the presence of a data item 
referred to as a token. For now, we can consider a data item 
to be an instance of an integer, real, or boolean value. 

The mechanics of computation within a black box can be 
ignored as long as three conditions are met: 1) a complete 
set of input values (i.e. tokens) is consumed, 2) the com
putation within the box has no effect on other computations 
except perhaps to compete for resources (i.e. there are no 
semantic side-effects), and 3) a complete set of result tokens 
is always produced if the computation terminates. A black 
box meeting these requirements is a function . The basis of 
dataflow is the definition and operation of interconnected 
functions. One way, for example, to interconnect functions 
is by composition (Figure Ib). Other dataflow interconnec
tion schemes including cycles have been devised3 ,6,7 but are 
not discussed here. 

As opposed to the sequential, one-instruction-at-a-time 
memory cell semantics of the von Neumann computer, the 
basic principles of dataflow are: 

1. Operations execute when and only when the required 
operands are available (asynchrony). 

2. Operations are functions (there are no side-effects). 

These principles imply that the order of execution of two 
functions, such as e and g in Figure 1b, is irrelevant since 
the computations internal to e and g cannot interact. Thus 
e and g can be computed concurrently. Such concurrency, 
present in the interconnection graph itself, is called static 
parallelism. A more interesting example of the asynchrony 
achievable in dataflow occurs when a function is executed 
more than once, either by iteration or by recursion (for 
example, function fin (2.1) and (2.2) previously). As shown 
in Figure 1c, suppose that a dataflow machine replicates the 
function f and its input and output lines for as many times 
as f is executed. Since f has no side-effects, each copy of f 
can be computed in any order or concurrently. This con
currency is called dynamic paraLLelism since the concur
rency potential depends on the number of repetitions (de
termined at execution time) of the function f. Dynamic 

sum sum 

Figure la-Abstraction of the Id construct sum 

Figure I b-Composition of functions 

parallelism is of particular interest because it can affect the 
time complexity of an algorithm. For example, suppose the 
time complexity of function fin (2.1) and (2.2) is O(m) (i.e. 
assume that f has an additional parameter m). Then on a 
sequential machine the time complexity of either (2.1) or 
(2.2) would be O(nm). However, on a dataflow machine 
capable of dynamic parallelism, the processing time com
plexity would be O(n+m) because the time required is O(n) 
to generate the n instances of f, plus O(m) to simultaneously 
compute all instances of f (assuming O(n) processors are 
available), plus O(n) again to sum the resulting values. The 
total is O(n+m+n)=O(n+m), where for simplicity we have 
ignored some important considerations such as communi
cation ·conflicts. 

It is important to note that the input and output lines of 
a function are replicated for as many times as the function 
is executed. This implies that at most one token will ever 
travel on any given line instance, thus preserving function
ality. In addition, the situation shown in Figure 2 is pre
cluded by the "single-assignment rule" present in the high 
level language. 

The replication of f and its input and output lines does not 
alone ensure dynamic parallelism since data dependencies 
in the program may inhibit it. For example, if the previous 
definition of sum is changed to 

s+-{initial sum~; x~5 
for ifrom 1 to n do 

new x~f(x); 

that is 

new sum~sum+new x 
return sum) 

n 

s= 2 Xi 
i=1 

Figure Ie-Instances of function f 



Figure 2-An illegal connection 

then the input to f depends on the value computed by the 
previous instance of f. That is, the instances of f must be 
computed sequentially. 

The Unfolding Interpreter 

Using the simple notions of asynchrony and functionality 
discussed above, we present an interpreter which manages 
a context for each value produced and consumed in the 
system. The purpose of context management is to logically 
separate and direct the values to the proper instance of each 
function. 

At this point we note that other dataflow interpreters have 
been defined6,7 which rely on either fixed-size buffers and 
request/acknowledge communication between functions, or 
the assumption of an unbounded FIFO queue between each 
interconnected function. The unfolding interpreter is capable 
of far more asynchronous operation than these other inter
preters because of the function copying it performs. 

Each execution instance of a function is called an activity 
and is uniquely identified by an activity name. An activity 
name comprises two parts denoted u.i where u is the context 
part and I is a unique label referencing the description of the 
function to be computed by that activity. In addition, the 
referenced function description specifies the destination la
bels to be used for transmission of result tokens. A data
flow object program is a set of labeled function descriptions. 
The actions of the interpreter can now be stated: 

1. Tokens generated by the execution of activities are 
grouped by activity name. 

2. When the input tokens to an activity become available, 
the activity is executed according to its description. 

3. Output tokens are produced by tagging the values re
sulting from the execution of an activity with the des
tination's activity name. The u part of the destination 
activity name is derived from the u part of the activity 
name of the producing activity according to a set of 
rules (some examples are given below). The I part is 
derived from the output destination information which 
is part of the description of the function executed by 
that activity. Note that the act of computing a desti
nation activity name is equivalent to creating a "iogical 
line instance" extending from the producing activity to 
the destination activity. 

To illustrate, consider the dataflow object program in Figure 
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3a. Let the activity name of an instance of e be u.l. The rule 
for function composition says that the context of the output 
is identical to the context of the input, and the label of the 
output is specified by the description of the function being 
executed, i.e. the program code. This results in activity u.l 
producing an output token with destination activity name 
u.1. Now consider the case when an activity itself comprises 
(smaller) activities, for example a procedure call, which is 
provided for by the base machine language primitives A, 
BEGIN, END, and A -1 as shown in Figure 3b. This figure 
shows the creation of a new set of activities resuiting from 
the application (call) of procedure f. Note that the descrip
tion of procedure f is one of the input values to the procedure 
application box. (We will not be concerned here with the 
representation of procedure values.) Activity name genera
tion for procedure call is as follows: 

• The A (activate) primitive-Assume that the activity 
name of an instance of A is u.l. Since the procedure 
call represents a change in context, the A primitive 
"stacks" the context part u within the new activity 
name, thereby creating a unique context for the activ
ities within f. The activity name produced is u'.beginf 
where u'=u.l. Also by convention, the A primitive 
groups into one vector value all of the input arguments 
so that exactly one input argument token is always 
delivered to the newly created instance of f. 

• The BEGIN primitive-The purpose of BEGIN is to 
distribute the input arguments to the activities within 
f with no further change in the context u I. 

• The END primitive-The END primitive "unstacks" 
the context u ' to reveal the outer context and the label 
I. It then constructs the activity name u.t (the activity 
to which the result of the procedure is to be returned) 
which can be accomplished in a number of ways. For 
example, t could be computed from I according to an 
agreed-upon rule. Also, by convention, the END pri
mitive combines all output values onto one token for 
transmission to the A -1 activity. 

• The A -1 (terminate) primitive-The purpose of the A-1 
primitive is to distribute the results of f to activities in 
the outer context with no further change in the context 
u. 

Though not presented here, other schemata for the un-

t: 4J 
Figure 3a-a Composition of functions 
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Figure 3b-Applicatinn of procedure f 

folding interpreter have been devised. 3 In particular there is 
a loop schema which "unfolds" the loop body (including 
nested loops) to expose dynamic parallelism. (The unfolding 
interpreter gets its name from this capability.) The loop 
schema depends on adding a new field, i, to the context part 
of an activity name to yield (u.i).I. Like recursion, each 
iteration of a loop exists in a distinct context generated 
simply by incrementing the i field in the activity name. 

IMPLEMENTATION SCHEMES 

In this section we discuss techniques for efficient imple
mentation of dataflow. Although von Neumann computers 
may be used to implement these techniques within a data
flow system, we rigidly maintain that the semantics of data
flow are the only semantics visible external to the system
a principle we consider vital to the success of dataflow. 

Dataflow Structures and Memory 

Operation of the unfolding interpreter requires many cop
ies of program code. Logical copies are sufficient and can 
be created simply by copying the pointer to a physical copy 
since all code (and data) is read-only. (Note that the label I 
in an activity name is equivalent to a pointer.) Of course in 
a multiprocessor environment, having just one physical copy 
may imply a bottleneck. In this case, we consider it the 
responsibility of a particular implementation to selectively 
make physical copies (in distinct memories) to reduce the 
bottleneck. 

Similiar remarks hold for the transmission and replication 
of values larger than simple integers, reals, booleans, etc. 
The need for logical copies is especially evident when a 

value, such as an entire matrix, is transmitted between two 
functions and the receiving function utilizes only a small 
part and discards the rest. Also, a common programming 
task is the production of a data object which differs in only 
small ways from another (perhaps large) input data object. 
Because dataflow values can never be modified, an entire 
new object must be created, making the straightforward 
copy-all approach quite expensive. 

Dennis has shown6 that the amount of copying can be 
reduced by properly defining a SELECT and APPEND op
eration on "structured" data residing in a conventional 
memory. A dataflow structure is a set of (selector: value) 
pairs where a selector is an integer or string and a value is 
any dataflow value (including another structure). A dataflow 
structure is always a tree (e.g. Figure 4a). The SELECT 
function (subscripting) has two arguments, a structure value 
and a selector, and it yields the value at the specified selec
tor. The APPEND function has three arguments: a structure 
value, a selector, and a value to be appended to the given 
structure at the specified selector. APPEND does not mod
ify the given structure but instead makes a logical copy of 
it with the new selector and value appropriately placed. This 

ra 
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Figure 4a-A dataflow structure 



7 

I 

A View of Dataflow 633 

r-S 
s r r s 
I X 

Figure 4b-APPEND (a, s, y)-+{3 

can be implemented (with pointers) such that a physical 
copy need be made only of the "top level" of the original 
structure value. Thus sub-structures can be shared between 
any number of structure values without violating dataflow 
semantics. A simple example is given in Figure 4b where 
both structures (logical trees) physically share the sub-struc
ture at selector r. 

Since the definition of dataflow structures precludes the 
construction of internal cycles, a simple reference count 
scheme can be used to reclaim structures no longer needed. 
The reference count method is also helpful in detecting the 
special case of an APPEND to a structure when there is 
only one logical copy of that structure (i.e. reference count 
equals one). In this case APPEND can quickly produce its 
output by simply updating the old structure in place. 

In the following we consider several explicit representa
tions for dataflow structures. When a dataflow structure has 
contiguous integer selectors, a vector of contiguous memory 
words may be used where one value (or a pointer to a value) 
is stored per memory word. This is termed array represen
tation. It is easy to see that in array representation a (one 
level) SELECT can be done in constant time while APPEND 
requires O(n) time (for copying), where n is the number of 
words in the result memory vector. 

A second representation, termed seLector vector, is a fairly 
compact representation when string or sparse integer selec
tors appear in the dataflow structure. Again a contiguous 
memory vector is used but the (ordered) selectors are ex
plicitly stored with the values. SELECT can then be done 
in O(log n) time using a binary search while APPEND re
quires O(n) time where n is the number of selectors. 

A third representation of a dataflow structure is a modi
fication to a "balanced" tree scheme such as an A VL tree, 
B-tree, or B*-tree. 8 In the following we have selected a 

1 
a. 

I I 
11 49 101 213 

I I I I 

specific B-tree, the 2-3 tree, to illustrate the concept. A 2-3 
tree is a tree in which every vertex that is not a leaf has 
either two or three sons, and every path from the root to a 
leaf is of the same length. 9 A dataflow structure and its 2-3 
tree representation is given in Figure 4c. Each internal ver
tex of a 2-3 tree contains the value of the largest selector 
appearing in its sub-tree. These values are used in the SE
LECT (and APPEND) operation to guide a modified binary 
search requiring O(log n) time, where n is the number of 
leaves in the tree. APPEND can also be done in O(log n) 
time,1O where none of the vertices of the original tree are 
disturbed (except perhaps for reference counts) and most of 
the original 2-3 tree is shared between the argument and 
result structures without affecting functionality. The 2-3 tree 
representation also promotes efficient concatenation of da
taflow structures (an operation quite useful in programs such 
as quicksort, fast Fourier transform, etc.) with constant time 
required in the best case and O(log n) time required in the 
worst case, given certain restrictions are met in the input 
structures. 1O However, a significant disadvantage with 2-3 
tree representation is the extra memory required for the 
internal vertices of the tree; and while asymptotic behavior 
is good, O(log n), the constant factor in the equation also 
could be significant. 

The reader may note that the design of an efficient datat-
low memory system involves problems (i.e. memory man
agement, garbage collection, choice of representations, etc.) 
which also occur on conventional systems. Currently these 
tasks are reprogrammed to some extent by each application 
program that is written. Our feeling is that by embedding 
these tasks within the system as close to hardware as is 
practical, a significant burden is removed from the applica
tion programmer, and if a good design is obtained, average 
performance will improve. 

Q a. 

V 1 
V 2 V 3 

V 4 Vs 

Figure 4c-Dataflow structure represented as a 2-3 tree 
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Implementation of the Unfolding Interpreter 

One problem with the theoretical unfolding interpreter is 
the unbounded length of activity names, the primary purpose 
of which is to logically separate the tokens so that the inputs 
to each copy of each function are uniquely determined. For 
this purpose a unique number, N, for each context combined 
with the label I is sufficient. For example, starting with 
activity name N.I for the A activity in Figure 3b, the context 
is changed by obtaining a new unique number N' to form 
activity name N' .beginf. In addition, an association is made 
in memory between N' and the activity name N.t; alterna
tively a token carrying N.t can be sent from the A to the 
END activity. In either case, the return from the inner 
context is accomplished by the END activity which fetches 
the information N.t associated with the number N' and uses 
it as a logical "return address" to the outer context. 

The major question in this approach is the method of 
generating and managing the unique numbers. If enough bits 
(say, 60) are used to store N, uniqueness of N can be guar
anteed to extend over the life of the system. However, if 
the system guarantees that none of the activities (and their 
associated tokens) exist from the previous use of N, a value 
N can be reused and significant savings achieved. This is 
generally not a problem in context management on sequen
tial machines; however, due to the asynchrony of dataflow 
it is possible, for example, that an END activity finishes 
execution before all of the activities in the procedure have 
finished, even when the system guarantees that all such 
activities will eventually finish. One workable solution is to 
prevent END from finishing execution before all other ac
tivities and tokens of that procedure application have been 
consumed. With this restriction, a simple scheme such as a 
tree of stacks (cactus) can be used to implement unique 
number management with reusable names. 

A second problem with the unfolding interpreter is the 
requirement for system-wide unique labels for object code. 
As is common in conventional systems, a tree-structured 
directory system with path specifications may be used to 
implement dataflow labels. If desired, path specifications 
can be included within activity names. For example, I can 
be split into two fields p.s where p is a pointer to a procedure 
and s is a function (statement) number in that procedure. 

MULTIPROCESSOR DESIGN PRINCIPLES 

Although dataflow principles can be advantageously ap
plied to conventional systems, we believe that new concepts 
in computer architecture must be developed to take full 
advantage of the concurrency and functionality of the da
taflow model. This final section is largely speculative be
cause of the difficulty of accurately predicting the perform
ance of proposed architectures. However, we have 
simulated variations of a specific dataflow architecture and 
the results are reported in detail elsewhere. ll Moreover, 
since the design of this architecture contains much detail 
and changes rapidly, we summarize our experience with it 
in the form of tentative principles for the design of one 

possible form of dataflow machine. These principles are not 
new and have been applied to many systems. However, 
such a statement serves as a point of comparison with other 
views. 

Our goal is to design a general purpose computing system 
which 

1. Can effectively distribute small pieces of a computation 
over many processors in the machine; 

2. Is modular enough so that additional blocks of proces
sors can be easily added to increase the capacity of the 
machine; 

3. Has a measure of fault tolerance so that hardware 
failures may decrease performance but will not nec
essarily halt the machine (i.e. fail-soft); 

4. Does not require knowledge of the number and config
uration of processors to write programs which effec
tively utilize these resources; 

5. Does not depend on expensive interconnection 
schemes (e.g. crossbar switch) or extremely fast circuit 
speed for good performance; 

6. Can support a number of simultaneous users. 

The first principle of mUltiprocessor design (evidenced by 
simulation results) is the program-dependent tradeoff be
tween distribution and localization of computation. Distri
bution may allow concurrent execution of a program, but it 
also tends to increase communication costs. Thus for any 
particular architecture and computation, there exists some 
optimal degree of distribution (perhaps as little as one pro
cessor) for which execution time is minimized. Locality (e.g. 
"the working set" in paging systems) is an established prin
ciple of conventional systems. Moreover, we believe that 
locality will be present to an even greater extent in dataflow 
due to the absence of side-effects and due to the high degree 
of structure imposed by our high level dataflow language. 
To take advantage of locality, we must consider two features 
of a dataflow system: 1) how the topology of the architecture 
allows reduced communication costs when physical locality 
is present and 2) how program locality is preserved in the 
mapping to physical hardware. 

One topology which supports locality is a hierarchy of 
modules. For example, a primitive module could be a pro
cessor with memory which can execute any dataflow ma
chine language instruction or group of instructions, including 
an entire dataflow program (the extreme case of locality). 
Primitive modules are connected to form larger modules 
which are then connected, etc., such that any module can 
be considered to consist of some processing power and some 
associated memory. This structure supports locality to the 
extent that communication within any given module can be 
made less costly than communication off the module. 

A second aspect of locality is the mapping of program 
locality to physical locality in the machine. Assume each 
processor in the machine to have a distinct physical address. 
We have found that the activity names themselves con
structed by the unfolding interpreter contain much of the 
locality information present in the source prngram. For ex
ample, activity names with the same context part belong to 



the same instance of a procedure (or loop). In addition, the 
labels I in the object program can be assigned by the com
piler such that numerically-close labels suggest close con
nection of functions. These pieces of information can be 
used by an activity assignment function which maps from 
logical activity names to physical processor addresses. The 
resulting physical address is placed on each output token to 
guide its transmission in the communication network. The 
selection of an appropriate assignment function is similiar to 
the problem of selecting an appropriate hash function for a 
scatter table but with the additional consideration of pre
serving locality where appropriate. Note that the assignment 
function and the communication network perform a partial 
sorting of activity names by physically directing tokens to 
their destinations. The final sorting is done by each proces
sor on only those activity names which map to its physical 
address. 

As a practical matter, designing a fairly good assignment 
function which distributes computation while preserving lo
cality is not too difficult to do (at least for the small selection 
of programs we have executed on our simulator). However, 
the selection of an optimal assignment function is a difficult 
problem requiring further investigation. We also note that 
it is possible for the machine to tune its assignment func
tion(s) at execution time for improved performance. 

The second principle of multiprocessor design we have 
adopted is that the communication delay (ignoring conflicts) 
between any two processors should be no more than O(log 
n) where n is the total number of processors. If we rule out 
complete interconnection schemes, this principle also sug
gests a hierarchical interconnection of modules. However, 
a tree is not the only structure with the O(log n) property. 
Two other examples are the boolean n-cube 12 and the inter
connection network of Wittie. 13 Both of these networks can 
be viewed as trees in which sufficient additional connections 
have been made such that the root node has become indis
tinguishable. (In other words, pick any node in the network; 
then appropriate connections can be deleted so that a tree 
remains.) Although much investigation remains to be done 
before selecting a particular interconnection network, we 
feel that a more highly connected structure than a tree is 
appropriate for two reasons: 1) the extra connections pro
vide some measure of fault tolerance and 2) more flexibility 
is allowed to map the logical tree structure of many programs 
into the many physical trees present in the network. Cur
rently we are favoring a modification of the Wittie network 
due to its lower implementation cost. 

The last principle of multiprocessor design is recognition 
of the potential benefits of redundant copies of data and 
program code. Conventional systems have already devel
oped this concept to some extent, primarily in the area of 
virtual memories and high speed caches. However, dataflow 
can take further advantage of redundant copies because 
values are never modified. We have three goals in pursuing 
the concept of redundancy: 1) to improve performance 
through concurrent access of data in distinct memories, 2) 
to improve performance through a caching scheme which 
localizes data to where it is most used, and 3) to identify 
each data copy so that if one copy is damaged, a search can 
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be instituted to obtain another valid copy. For those readers 
interested in possible mechanisms to achieve some of these 
goals, Reference 11 should be of some help. 

CONCLUSIONS 

The decision to incorporate the full generality of dataflow 
is not without its costs. We have seen that the principles of 
dataflow sometimes suggest implementations which make 
"inefficient" use of memory. Of course better implemen
tations may yet be found but we suggest that problems with 
memory be viewed in the context of the following points: 1) 
the full generality of dataflow is not always required-for 
example a program like matrix multiplication can be exe
cuted within the semantics of dataflow and still require little 
more memory than does a conventional machine, 2) dupli
cation of data and code can have various benefits such as 
concurrent memory access and the possibility of recovering 
from hardware faults, and 3) the cost of hardware and mem
ory is decreasing while the cost of software and system 
failures will probably continue to increase. Thus in a few 
years' the "efficient" use of memory in many situations 
might be viewed quite differently. 

An introduction to dataflow is not complete without men
tioning other issues and capabilites. Dataflow streams and 
managers are available to program history-sensitive appli
cations such as airline reservation systems, resource man
agement, etc. directly in a high-level language; 14 in addition, 
abstract data types are available. 
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A hardware-independent virtual architecture for PASCAL* 

by VISW ANATHAN SANTHANAM 
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Wichita, Kansas 

INTRODUCTION 

Since its introduction in 1971, PASCAL language has re
ceived rapid acceptance as a structured programming tool 
in a wide variety of applications ranging from computer 
science education to systems programming in production 
environments. It is, therefore, not surprising that numerous 
reports relating to implementation of PASCAL compilers on 
various computers continue to appear in the current litera
ture (References 1,4,6,12 for example). Many of these im
plementation reports relate to adapting an existing compiler 
to another computer. In many instances, these compilers 
are themselves written in PASCAL which makes it easy to 
adapt them using one of these procedures: 

1. Implement the target machine of the original compiler 
as a virtual machine in the current hardware by means 
of an interpreter or microprogram. Now, the original 
compiler and its output can be executed on the current 
machine. 

2. Alternatively, change the code generation 'phase of the 
original compiler to generate object code suitable for 
the current hardware. Then cross-compile the modified 
compiler (under the original compiler) and transport 
the object code to the current computer. 

The second alternative is superior if efficiency is impor
tant. In fact, many implementors take a two-phase approach 
whereby the compiler is adapted quickly by the first ap
proach, and it is refined later by the second approach to 
achieve better performance. When such a transition is made 
from the original virtual machine code to a more suitable 
object code, the best choice is not always the native instruc
tion set of the present hardware, There are a number of 
situations where another virtual machine may be a better 
choice. For example, the hardware may be microprogram
mable, in which case a well designed virtual machine could 
not only yield compact object programs but could also lead 
to better execution speeds. Another situation where virtual 
machine code may be preferred over native code is where 
a number of small PASCAL programs execute concurrently 
and interactively. This latter situation arises in instructional 

* This research was partially funded by a grant from the Wichita State Uni
versity Research Committee. 
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environments where object code compactness and diagnos
tic capabilities overweigh execution speed. 

The objective of this paper is to present a virtual machine 
design for PASCAL without basing the design on any spe
cific hardware. The abstract machine is. called VAMP for 
"Virtual Architecture Made for PASCAL," and its features 
are based on the PASCAL language, but they may also be 
adapted for use with other similar languages, such as 
ALGOL, SAL13 and BCPL.u 

There are a few other virtual architectures, some reported 
in the literature while the others are handed down from one 
implementor to the next, which are designed expressly for 
PASCAL-like languages. Notable among these are the P
machine10 and, more recently, EM-l.13 The P-machine is 
based on a 30-bit word-oriented processor, and it does not 
lend itself for efficient adaptation to other computers, such 
as the IBM 360/370. Nevertheless, many of the present PAS
CAL compiler implementors have adapted it in some form 
or the other due to the availability of a well written well 
documented compiler generating code for it. The architec
ture of EM-l is also hardware-dependent to the extent that 
the code address space is assumed to be organized into 
eight-bit bytes. A more important different between EM-I 
and the current work is in the basic objectives. EM-l is an 
architecture to match the needs of PASCAL-like languages 
and minimize the object code size of programs within the 
constraints of a specific underlying hardware. VAMP is an 
abstract machine designed only to match the needs of PAS
CAL-like languages, regardless of the hardware used to im
plement it. An implementor of VAMP has the choice to 
trade code size for execution speed, execution speed for 
firmware size and so on. Furthermore, VAMP is designed 
to meet the needs of full PASCAL language and not a typical 
subset of it. Once again, an implementor may omit selected 
features of V AMP if only a subset of PASCAL is to be 
implemented. 

Despite the differences in the basic objectives, many of 
the architectural features of V AMP were motivated by sim
ilar features in these other virtual machines. In fact, as we 
point out in the section on implementation guidelines, an 
efficient implementation of V AMP will perhaps incorporate 
many of the ideas contained in the descriptions of these 
virtual machines. 

The hardware-independent virtual architecture and the 
rationale for the design choices are presented in the next 



638 National Computer Conference, 1979 

section. Some guidelines on how to adapt VAMP for a 
specific hardware are included in the third section of this 
paper. 

ORGANIZATION OF VAMP 

We describe in this section the organizational details of 
an abstract machine called VAMP for "Virtual Architecture 
Made for PASCAL." As the name implies, the features of 
V AMP are oriented specifically toward efficient support of 
PASCAL. However, because of the many similarities be
tween PASCAL and other block-structured languages such 
as ALGOL, it is possible to adapt many of the features of 
V AMP for use with these other languages as well. The 
reader is assumed to have basic familiarity with PASCAL 
or a similar language. An excellent treatment of PASCAL 
can be found in References 14 and 9. Features of concurrent 
PASCAL are outlined in Reference 3. 

The description of VAMP to be presented in this section 
is hardware-independent. The unit of memory, the forms of 
data representation, the number and purpose of hardware 
registers and other similar details regarding the processor 
on which VAMP is to be implemented, are unspecified. Of 
course, these and other hardware characteristics of the pro
cessor will determine the performance of VAMP, but they 
do not dictate the feasibility of implementation. 

The term "efficient support," used earlier in this section, 
needs elaboration. The primary concerns of a language
based virtual machine design include (a) ease of compiler 
implementation, (b) object code compactness and (c) speed 
of execution. By design, there is a direct correspondence of 
features between VAMP and PASCAL. This correspond
ence significantly reduces the complexity of a compiler by 
eliminating the need for complex register and storage as
signments that other compilers may need. At the same time, 
the design allows compilers to make trivial optimizations. 
such as combining a conditional branch with a preceding 
test, to reduce number of instructions. Also, by design, the 
number of object instructions per source statement is much 
smaller for VAMP than for a processor with a general-pur
pose instruction set. Such a low ratio of object code to 
source statement assures a certain degree of object code 
compactness regardless of the underlying hardware. In ad
dition to this, the implementor can usually trade object code 
size for execution speed and vice versa, which is another 
degree of freedom that a virtual machine designed for a 
specific hardware does not provide. 

An added advantage exists when a hardware-independent 
virtual machine is chosen as the target machine for compi
lers. Programs can be compiled into truly portable "object 
code" (as opposed to intermediate code that must be proc
essed by a non-trivial translator) that is readily assembled 
into executable code for a specific implementation of 
VAMP. 

General features 

V A MP has five address space types that are accessible to 
a program. These are identified as CODE. PARM. DATA. 

STACK and HEAP. There is one occurrence each of the 
CODE and HEAP spaces per program, whereas there is one 
occurrence each of the PARM, DATA and STACK spaces 
per active block. (An "active block" is one whose procedure 
has been called but has not returned yet.) The CODE space 
contains object instructions and constants. The reason for 
not providing an independent 'constants' space is to allow 
separate compilations of procedures. The HEAP is intended 
for dynamic allocation of variables through the use of the 
PASCAL data type pointer. A PARM space contains the 
actual parameters of the block; a DATA space contains the 
local variables; and a STACK serves as the work area for 
the procedure. The size of the CODE space is fixed. The 
sizes of PARM and DATA spaces of a given block can be 
determined at compilation time. An estimate of maximum 
size for a STACK space can be determined at the time of 
activation of the block. The size of HEAP is not specified 
by the program, but it is usually determined by the availa
bility of memory in the operating environment. 

It is not intended that these address spaces be allocated 
and managed independently. A typical implementation may 
integrate these address spaces into a single partition of mem
ory (See References 1,10,13 for e~ample). Because of this, 
we assume that every address space is realized from the 
same basic memory which is made up of cells. The size of 
a cell is unspecified, but it must store at least two distinct 
values. It is required that the cell be effectively addressable. 
Direct addressability in hardware, though not a requirement, 
should yield better performance. 

The rationale for introducing five different address spaces 
is that it provides higher flexibility in compiling PASCAL 
programs and it divides information into logical compart
ments. CODE space, for example, may be write-protected. 
Though PARM and DATA spaces are fixed in size for a 
given block in PASCAL, some special procedures (such as 
READ, WRITE etc.) may be written to handle a variable 
number of parameters. V AMP allows for this possibility. 
Similarly separating STACK space from DATA space allows 
the allocation of dynamic arrays at block entry time. These 
features are not standard in PASCAL, but we anticipate the 
need for some non-standard functions in most systems for 
better efficiency or for being able to interface with external 
non-PASCAL environments. 

Data representation 

VAMP implements five basic data types-integer, natu
ral, real, pointer and packed naturals. All these types, ex
cept the pointer, may have one or more variable size rep
resentations in memory. The size of a variable length data 
item will be specified in the address used to access it (see 
operand addressing in this section). The minimum size for 
the types integer. natural and real is one cell. The maximum 
sizes, also called standard sizes, for these types are set by 
the implementor. For elements of the packed naturals type 
the minimum size may be a fraction of a cell, and this too 
is determined by the implementor. The maximum size for 
an element of this type is the same as that of the type 
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natural. The variable size representations just described 
apply only to addressed operands; operands on any stack 
are always represented in their standard sizes. Furthermore, 
there are well defined procedures for conversion of. a data 
item from one size to another. 

Integers and reals are defined in the traditional manner 
with well defined procedures for the usual conversions in 
both directions. Natural is an unsigned integer with the 
requirement that its standard size representation be identical 
to the standard size integer with the same magnitude. Once 
again, well defined procedures are provided for conversion 
from a natural to integer, and from a non-negative integer 
to natural. 

With the exception of the type pointer, all the basic data 
types of PASCAL (all scalars, their sub-ranges and reals) 
are to be implemented with the integers, naturals and reals 
of V AMP. The rationale for variable size representations of 
these types is based on this principle. This is essential if we 
wish to achieve reasonable storage efficiency when repre
senting such a wide range of basic types with the small set 
of VAMP data types. If an implementor chooses a fairly 
large unit of storage (e.g., 16 bits or more) as the cell, then 
there will be less need for variable size representation. On 
the other hand, if the cell is chosen to ,be a small unit of 
memory (say, eight bits or less) better packing of data in 
memory can be achieved, but variable-size representation 
is inevitable. V AMP design leaves the choice up to the 
implementor by specifying one as the minimum number of 
representations to be implemented in each category. 

Even after judiciously choosing an 'optimal' size for a 
cell, an implementor may find it hard to pack data satisfac
torily, especially in relation with packed arrays of PASCAL. 
For example, the choice of an eight-bit byte for the cell may 
satisfactorily impiement most basic data types, but it may 
be unsuitable for implementing a packed array of booleans, 
or a packed array of scalar such as (MON, TUE, WED, 
THU, FRJ). The need for efficient packing also arises in 
conjunction with the common implementation of the P AS
CAL type set as a bit map (or packed boolean array). V AMP 
provides for the type packed naturals to achieve a higher 
level of storage compaction in these cases at the expense of 
packing and unpacking overhead at run time. The number 
of direct manipulation facilities is also limited when an array 
of naturals is so packed. 

The V AMP pointers are used for two main purposes. They 
implement the PASCAL type pointer and also represent var 
parameter in procedure calls. A VAMP pointer is required 
to be of fixed size and capable of representing an address in 
any of the currently active address spaces. This includes the 
CODE space, the HEAP space, the DATA, PARM and 
ST ACK spaces of all active blocks. The implementor may 
place a limit on the number of such active blocks to be 
allowed. 

Operand addressing 

When an instruction needs an operand it is located by an 
address. The V AMP address may locate an operand either 

as an immediate operand or by identifying an address space 
and a cell offset. An immediate operand may be in-line, 
following a suitable prefix in the address, or it may be 
obtained by popping the current stack top element. The 
former mode is useful in compiling operand references to 
small constants whereas the latter mode provides a powerful 
method for realizing single and zero-address operations from 
a standard two-address or one-address instruction. For ex
ample, VAMP includes only one "store integer" command 
with two addresses-one for the source operand and the 
other specifying the destination in memory. The same in
struction can also' 'pop" the current top of stack integer to 
memory by simply specifying a "stack-top-immediate" 
mode for the source operand. This is not only intended to 
reduce the size of the interpreter needed to implement 
VAMP, but also yield compact object programs as this fa
cility is available to all operations that use addressed source 
operands. The potential increase in the size of addresses 
themselves can often be eliminated by judiciously encoding 
the address modes. 

An addressed operand (as opposed to an immediate op
erand) may reside in any of the address spaces that are 
directly accessible to the current procedure. This includes 
the CODE space, the current STACK space and the DATA· 
and PARM spaces of the most recently activated blocks at 
lexicographic levels lower (outer) or equal to the current 
level. (Operands on the other stacks are strictly local to the 
blocks owning them, while operands in the HEAP space can 
only be accessed via pointers). This means that a VAMP 
address need only reference 2* n+4 address spaces while ex
ecuting a procedure at level n (counting from 0 for the 
program level). The implementor may place a limit on the 
maximum value for n. 

A memory operand may also be addressed indirectly by 
a VAMP pointer. In this mode of addressing, known as 
indirect addressing, the final operand may reside in any of 
the currently active address spaces. However, the pointer 
itself must reside in one of the directly addressable spaces 
or be popped from the current stack top. (There is no pro
vision for "in-line immediate" pointers, as PASCAL doesn't 
provide for pointer constants other than nil). It should also 
be noted that there can only be one level of indirect address
ing in anyone address computation as a pointer is not 
capable of indicating an indirect mode. 

In all cases except when the operand is obtained as an 
immediate operand from the stack top, the address also 
includes an operand size indicator. The number of different 
sizes represented in an address may vary depending on the 
operand type that it locates and it is determined by the 
implementor. This freedom to choose many different lengths 
for one type (say, natural) and possibly only one length for 
another type (say, real) makes V AMP design a flexible one 
without adding unconditional overheads to the interpretation 
process. In the case of indirect addressing, the size infor
mation in the address applies to the final operand, not the 
intermediate pointer. This is why V AMP pointers are re
quired to be of a fixed size. 

Independent of how the final address is arrived at, the cell 
offset of that address may be modified by adding a natural 
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called index. If indexing is indicated in the address, the 
current stack-top natural is popped and saved before pro
ceeding further with the address computation. As in the case 
of indirect mode, only one level of indexing is permitted in 
V AMP. If both indexing and indirect addressing are speci
fied only the final operand address can be indexed in one 
operation. This design favors object code compactness for 
the more common cases ofvar parameter arrays and pointer
based arrays over the case of array of pointers. 

The reason for popping the index value from the current 
stack top rather than deriving it from an "index register" is 
many-fold. Since all arithmetic is carried out on the current 
stack-top, the index value is resident on stack-top to begin 
with. Furthermore, the introduction of an index register will 
require the implementor to come up with equivalent hard
ware features on his machine to implement V AMP. Such 
features may not exist in his machine. Even if high-speed 
registers are available in the hardware they could be better 
used as extensions of the stack top rather than set aside for 
indexing only. On the other hand, if the hardware includes 
registers that are intended for the sole purpose of indexing, 
the VAMP interpretor could still "pop" the index values to 
those registers and carry out the final indexing from there. 
Finally, the lack of need for complex register assignments 
takes a major burden off the compiler. 

The various formats of a V AMP address are depicted in 
Figure I as a "variant record" tree. The nodes represent tag 

"In-line 
Immediate" mode 

"VAMP Address" 

Immediate 

"stack-top 
Immediate" mode 

Addressed 

"Addressed Indirect" modes 

stack-top 

"stack-top 
Indirect" mode 

*inc1udes space type and lexic level ~umber if applicable. 

Figure 1-Address modes for VAMP. 

"Direct" modes 

fields and information fields, and the branches discriminate 
the cases of tag fields. It should be pointed out that the 
variant record representation is merely a way to illustrate 
the various address modes of V AMP, not a required imple
mentation scheme. 

Instruction formats and execution 

The object instructions of a PASCAL program reside in 
the CODE space of VAMP. There is a "register" in V AMP 
called PC (for Program Counter) that contains the cell offset 
of the next instruction. The VAMP interpreter always refers 
to this register to locate the next instruction to execute. 

Each instruction begins with an opcod.e which defines the 
operation. There may be additional fields following the op
code depending on the functions. These fields may be literal 
fields or address fields. 

A literal field provides the value of an instruction param
eter directly in-line. Typically these are integer and natural 
fields, represented by I and N respectively, whose values 
are known at compilation time. Each literal field is of a pre
defined length set by the implementor. An address field is 
a VAMP address whose format was described in the pre
ceding subsection. 

It is not required that the individual subfields of an in
struction be some integral number of cells in length, even 
though such an implementation may significantly reduce the 
chores of interpretation. It is, however, required that the 
total length of any instruction be an integral mUltiple of cells, 
as the PC is not capable of addressing subunits of a cell. 

The execution of a VAMP instruction proceeds in two 
phases---fetch phase and execute phase. The fetch phase is 
always completed before the execute phase begins. In the 
fetch phase, the current instruction is scanned from left to 
right 'decoding' individual fields as they occur. Decoding 
here means extracting literal fields into some standard length 
internal registers, evaluating address fields, and fetching the 
operands or simply computing an effective address, which
ever is needed by the operation. Table I lists all the instruc
tions of V AMP using a special notation which is described 
below. 

The "fields" column of the table lists the component 
fields of an instruction. The order of the fields is important 
as is the mnemonic used to describe it. Table II provides a 
complete list of field mnemonics and the associated fetch 
phase functions they involve. For example, an Al refers to 
an addressed integer source operand. An SI refers to an 
integer operand storage address; that is, an immediate value 
may not be returned from address computation. Sometimes 
a trailing decimal digit is appended to a field mnemonic to 
distinguish it from another field of the same type within the 
same instruction. 

The column labeled "function" outlines the execute phase 
functions of an instruction. The symbol .. ~" stands for as
signment of value to an operand in storage. The notation 
"(SI)~Ar' stands for "assign the integer value AI to mem
ory location 51." The term ifos refers to the integer which 
is currently at the top of the stack. Similarly n tos. rfos and 
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Opcode 
Mnemonic 

Arithmetic Group 

Opcode 
Description 

TABLE I 

Fields Function 

ADD Add AI itos-itos+AI. 
Similarly SUB, MUL, Div (real result), IDIV (integer quotient), MOD; and ADDN, ... ,MODN for naturals 
ABS Absolute AI iPush(IAII). 
Similarly NEG (negate); NEGN (negate natural). 
ADDR Add Real 
Similarly SUBR, MULR and DIVR. 
ABSR Absolute Real 
Similarly NEGR. 
EQS Equal?[Skip] 

AR 

AR 

I.AI 

rtos~os+AR 

rPush(IARI)· 

If 1<>0 then [if ipop=AI then PC-PC + 1]; else 
[if ipop=AI then nPush(l), else nPush(O)]. 

Similarly NES, LTS, GES, GTS and LES; and EQNS, NENS, ... , LENS for natural operands. 
Also, EQRS, NERS, ... , LERS for real operands (with "AI" replaced by "AR" and "ipop" by "rpop"). 
!TOR Integer to Real AI rPush(AI converted to real). 
Similarly TRUNC and ROUND for a real operand AR. 
SUBTIS Subscript Translate AI. SX. I 

Integer[skip] 

Similarly SUBTNS for a natural operand AN. 

Logical Group 
ANDS 

Similarly ORS. 
NOTS 

SKT 
Similarly SKF. 

And?[skip] 

Not?[skip] 

Skip on True 

Data Movement Group 

LAN 

PUSHI Push Integer AI 
Similarly PUSHN, PUSHR, PUSHP (Push Pointer). 
PUSHPN Push Packed Natura! AN .SPN 
STORI Store Integer AI.SI 
Similarly STORN, STORR, STORP. 
STORPN Store Packed Natural ANl.AN2.SPN 
STSIS Store Subrange 

Integer[Skip] 

Similarly STSNS (Store Subrange Natural [Skip]). 
MVC Move Cells 
PACKN 
Similarly UNPKN. 
EQCS 

Pack Naturals 

Equal Cell 
String?[skip] 

AI.SIl.SI2.N 

SXl.AN.SX2 
SN.AN.SPN 

SXl.AN.SX2.1 

SX: points to a record of 
il: integer (lower bound), 
i2: integer (upper bound), 
n3: natural (multiplier). 
If AI <i I or AI>i2 then; 

all of predefined 
lengths. 

else [nPush«AI-il)*n3); PC-PC+I]. 

If 1<>0 then [if npop and AN then PC-PC+I]; 
else [if ntos and AN then ntos-I, else ntos+-O]. 

If 1<>0 then [if not npop then PC-PC+I]; 
else ntos+-not ntos. 
If npop then PC-PC+1. 

iPush(AI). 

nPush( elem(SPN)[AND. 
(SI)-AI. 

elem(SPN)[AN2]-AN I. 
SI I points to an array of two integers 

i I; Lower bound, 
i2; upper bound. 

If AI <SIl or AI>SI2 then; 
else[(SI2)-AI; PC-PC + N]. 

For j:=O to AN-I do cell (SX2)[j]-cell(SXl)[j]. 
For j:=O to AN-I do elem (SPN)[j]-elem(SN)[j]. 

temp+-(cell(SX2) [j]=cell(SXI)[j]for j: =0 to An-I); 
IfI<>O then [if temp then PC-PC + 1], 
else nPush(temp). 

Similarly NECS, where "temp" is replaced by "not temp" in the 2nd step of function. 
GTCS Greater Cell SNl.AN.SN2.1 temp~for some OsksAN-!, cell (SX2)[k]>ce!! (SX!)[k] and eel! 

Similarly L TCS. 

String?[Skip] (SX2)[j]=cell (SXI)[j]for j:=O to k-l); 
If 1<>0 then[if temp then PC-PC + I]. 
else nPush(temp). 

Also, GECS and LECS with temp-condition for GTCS (LTCS) or condition for EQCS. 
Similarly EQPNS. NEPNS, GTPNS, LTPNS, GEPNS and LEPNS for packed natural strings with SNl, SN2 replaced by SPNI, SPN2 and "cell" replaced by 

"elem" 
INCPNS Inclusion Packed 

Natural?[Skip] 

Similarly EXCPNS with ">=" replaced by "<=". 

SPNl.AN.SPN2.1 temp+-(elem(SPN2)[j]>=elem (SPNI)[j]for j:=O to AN-I); 
If 1<>0 then [if temp then PC-PC+I}, 
else nPush(temp). 

DlFPN Difference Packed SPNl.AN.SPN2 For j:=O to AN-I do 
Natural elem (SPN2)[j]-elem (SPN2)[j]>elem(SPNI)[j]. 

Similarly UNIPN (union packed natural) and INTPN (intersection packed natural) with ">" replaced by "or" and "and" respectively. 
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Opcode 
Mnemonic 

Flow Control Group 
SKIP 
BRA 
FORUP 

Similarly FORDN. 
CASEI 

Opcode 
Description 

Skip 
Branch Absolute 
For Up 

Case Integer 

Similarly CASEN (Case Natural). 

Procedure/Function Linkage Group 

Fields 

AN 
N 

SI 

TABLE I.-{Continued) 

Function 

PC+-PC+1. 
PC+-AN. 
Top of stack contains i 1 ,i2: integers with i2 on top. 
if il <=i2 then[iPush(il); il +--i1+ I] 
else [ipop;ipop; PC+-PC+N]. 

SI locates an array of records of 
n I: natural of predefined length, 
n2: natural of predefined length, 
il: array [I .. nl] of integers of length 

specified by SI. 
temp: =ipop; j: = I; 
repeat PC+-PC+n2[j]; 

for k:=l to nl[j]do 
if il[j,k]=temp then exit 

until nl[j]=O. 

Note: The statements regarding procedures in this group apply equally to functions except when noted otherwise. 
CALL Call Procedure SX SX points to record of naturals of predefined lengths, 

ENTRB Enter Block SX 

RET Return from Procedure AN 

EXITB Exit Block SX 

Miscellaneous Group 
ADJS Adjust Stack AI 

GENP Generate Pointer SX 

GENHP Generate Heap Pointer AN 

n I: lexicographic level number of target procedure. , 
n2:offset in CODE space of target procedures entry point. 
Ifnl<=current procedure's lexicographic level number then all PARM, 
DATA and STACK spaces at the levels nl through current are saved and 
made unavailable to the target procedure. The current value of PC and the 
current level number are also saved. Current level+-nl; PC+-n2. 
SX points to a record of 3 naturals: n I, n2, n3 of independent predefined 
lengths. A PARM space of nl cells is allocated at the current level. nl cells 
are moved (with deletion) from the caller's STACK top to this PARM 
space. A DATA space of n2 cells and a STACK space of n3 cells are also 
allocated. The stack is initialized to empty. 
AN defines the number of cells to be transferred from the base of the 
current PARM space to the top of the calling procedure's stack (value 
returned by a function). The current PARM, DATA and STACK spaces are 
freed, the saved address spaces are made accessible to the calling 
procedure and PC is loaded with the return address in the calling 
procedure. 
SX points to a record of naturals: nl,n2,n3 of predefined lengths. nl 
defines the lexicographic level number of the target procedure to which 
control is to be transferred. The target block is the most recently activated 
block of that procedure. The DATA, PARM and STACK spaces of that 
block and all those at lower(outer) levels are made accessible to the target 
procedure. Cells from the top of the target procedure's stack are deleted 
until only n3 cells remain in its STACK space. Finally, PC+-n2. 

The top of stack pointer is adjusted by AI cells. If AI is positive, this is 
equivalent to allocating space on the stack; if AI is negative, words are 
deleted from the stack. 
A VAMP pointer to the address SX is generated and pushed on the current 
stack. 
A VAMP pointer referring to the HEAP space with an offset AN is 
generated and pushed on the current stack. 

ptos are used to refer to natural, real and pointer operands 
at the top of the current stack, These terms are to be distin
guished from ipop, rpop etc. which include an actual popping 
of the respective operands from the stack, The function 
iPflsh (x) refers to pushing the vahle of '" ae;; ~ stanciani 
integer on the current stack: similarly for nPush. rPush etc. 

When a memory operand is an element of an array it is 
referred to by the notation elem(address) [j], Thus, Helem 

(SPN)[1]~AN" means assign the natural AN to the first 
element of the packed naturals array beginning at SPN. The 
reader's full llndere;;tanding of these n0tations is (:'ssential for 
the discussion of the instruction set design that follows. 
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TABLE II 

Field 
Mnemonic 

AI 
AN 
AR 
AP 
SI 
SN 
SR 
SP 
SX 
SPN 

N 

Field 
Description 

Addressed integer 
Addressed natural 
Addressed real 
Addressed pointer 
Storage address of integer 
Storage address of natural 
Storage address of real 
Storage address of pointer 
Storage address 
Storage address of packed natural 

Literal Integer Field 
Literal Natural Field 

Instruction set design 

Throughout the design of the V AMP instruction set, care
ful thought was given to 

a. Simplifying code generation in the compiler. 
b. Eliminating unnecessary shuffling of stack top ele

ments. 
c. Providing opportunities for simple, but effective code 

optimization. 
d. Providing instructions that are capable of handling the 

most general program constructs, yet yield efficient 
code for simpler, more common cases. 

We illustrate each of these features whh exampies. 
Code generation is simplified by the provision of such 

features as "store sub-range Integer" (which checks the 
integer value against its bounds before storing), "Subscript 
Translate" (which provides for converting a subscript into 
a cell offset or index after bounds checking), "Move Cell" 
(which is used in record and array assignments), "pack and 
unpack naturals" and' 'For up/down." These features of the 
virtual machine can not only reduce object code size but 
make it simpler to translate some of the more complex 
constructs of the language. 

It should be pointed out in this context that the PASCAL 
case statements are not always to be translated into the case 
instructions provided in VAMP. The case statements often 
can be compiled into far more efficient code than a linked 
list of case values and case addresses. These efficient trans
lation schemes usually involve the use of "branch tables," 
which option is available in V AMP and should be exercised. 
But in the most general case, there may not be any better 
scheme than to compare the case expression against indi
vidual case values in some sequential order and branching 
when a hit is found. These are the situations under which 
the V AMP case instructions are useful. 

The design of the instruction subfields and their order also 
contributes toward this simplicity and can save unnecessary 
re-ordering of top of stack elements. Consider compiling an 

Fetch Phase 
Function' 

Returns a standard size integer. 
Returns a standard size natural. 
Returns a standard size real. 
Returns a VAMP pointer. 
Returns an effective address and length of an integer. 
Returns an effective address and length of a natural. 
Returns an effective address and length of a real. 
Returns an effective address of a VAMP pointer. 
Returns an effective address of an unspecified data type. 
Returns an effective address and element length for a packed natural 

array[O .. max]. 
Returns a standard size integer. 
Returns a standard size natural. 

assignment statement such as: 

a[i]:=b[i+l] 

It is most naturally translated into this code sequence 

compute i on the stack 
translate it into an index for a 
compute i+ 1 on the stack 
translate it into an index for b 
store b (indexed) into a (indexed). 

Thus, the order of appearance of source and destination 
addresses in the store instruction saves us from having to 
reverse the indexes on the stack. This also holds if we had 
to push b on the stack explicitly (e.g. for type conversion) 
before "popping" it to a. A similar reasoning was applied 
to the design of every VAMP instruction. 

The V AMP instruction set allows the compiler to generate 
"optimized code" without the need for complex optimiza
tion passes. Consider a simple if . .. then . .. else in PAS
CAL: 

if a >b then s 1 else s2 

An unoptimized sequence of object code may appear as 
follows: 

push a 
push b 
push boolean a>b 
Branch on boolean =false to s2. 
etc. 

If a and b are of compatible types, the "push b" step can 
be avoided. But if we recognize also that a branch is to 
foHow we can generate "compare and skip" instruction 
directly instead of "push boolean." If the skip offset field 
is large enough, one could even eliminate the "Branch on 
boolean" that follows. Similar savings can also be demon
strated in the case of repeat . .. until loops. Another case 
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of simple optimization occurs in assignment statements in
volving simple expressions on the right hand side and a 
compatible variable type on the left hand side, such as: 

a[j]: =0 

or 

c[3]:='?,' 

In these cases one can generate a single store instruction 
(not counting the index computation) rather than a push/pop 
sequence. 

A reader familiar with other stack machines may find 
some 'standard' stack operations missing. The lack of 'Pop' 
statements is one such case, which we have shown as equiv
alent to a 'store' with "stack top immediate" mode of ad
dressing for the source operand. Similarly a 'Duplicate' can 
be achieved by a 'Push' with the source address referring to 
the current STACK space. An 'exchange' is not provided 
as the need for it should be rare. Even then a sequence of 
push and store (pop) operations can yield the desired result. 

The design of VAMP is oriented toward implementing the 
full PASCAL language, not a "typical subset" of it. For 
example, the PASCAL goto that allows leaving the current 
block and transferring control to a statement in a surround
ing block is one of the more difficult features of the language 
to implement. The "Exit Block" feature of VAMP aids in 
transferring control out of a block in an orderly manner. On 
the other hand a simple use of the go(o can most often be 
realized in terms of a "Skip" or a "Branch" and, perhaps, 
an "Adjust Stack" instruction. Similarly, "sub-range store" 
instructions may be generated only when bounds checking 
is desired; the ordinary "store" instructions can yield better 
speed if performance is important. 

Before concluding the discussion on the VAMP instruc
tion set, we wish to point out the design consideration for 
some of the less obvious instructions. The "For up/down" 
instructions are executed after pushing the initial and final 
values of the control variable on the stack. These values are 
always interpreted as integers which, on the stack, are in
distinguishable from naturals. The initial value integer will 
also serve as the "control variable image" during future 
iterations. When the "For" statement is executed, a copy 
of this image variable is provided on top of the stack unless 
the end condition is met. This is so that an appropriate store 
instruction can be used to store it into the actual control 
variable by the first instruction in the loop. This avoids the 
need for typed "For" instructions. 

The "call procedure" instruction specifies the lexico
graphic level number and the CODE space address of the 
target procedure. Three other pieces of information-the 
sizes of the PARM, DATA and STACK spaces for the target 
procedure-are specified in an "Enter Block" statement 
which should be the first instruction in the target procedure. 
These parameters may appear as a record within any of the 
address spaces normally accessible to that procedure except 
its own PARM. DATA and STACK spaces. 

The "Exit Block" instruction is intended to "clean up" 

the activItIes of all intervening procedures when a gata 
transfers control from a called procedure to a label in a 
calling procedure. It also provides for "cleaning up" of the 
target procedure's STACK space to the state expected by 
the next instruction in that procedure. This is achieved by 
specifying the number of cells that should remain on the 
stack when that instruction is begun. It should be noted that 
the size of the current stack is a unique number for a given 
point in the program and it can be determined at compilation 
time. 

The "case" instructions are implemented using a linked 
list of case values and associated case addresses (see Figure 
2). As we pointed out earlier, most common instances of the 
PASCAL case statement will probably lend themselves to 
translation to more efficient VAMP code than the proposed 
"case" instructions. A compiler should reserve this general 
form for those case statements that don't easily translate to 
another more efficient form of code. 

The features provided for manipulation of packed naturals 
are motivated by the expected use of this VAMP type. If 
character strings were mapped into (unpacked) array of nat
urals then the "compare cell string" type of instructions will 
be used for string comparison which is permitted in PAS
CAL. On the other hand, if they are mapped into the packed 
naturals type, then the "compare packed natural string" 
type instructions will apply. The "Inclusion/Exclusion" 
comparisons and the "Difference/Union/Intersection" op
erations with packed naturals are provided for the set com
parisons and set operations that are permitted in PASCAL. 
The "Pack/Unpack" facilities aid implementing the corre
sponding "standard procedures" of PASCAL (see Refer
ence 9). 

The next section deals with the issues of adapting VAMP 
to a specific hardware. 

IMPLEMENTATION GUIDELINES 

No matter how well it is designed in abstract, an archi
tecture such as VAMP must be adapted judiciously to a 
given hardware before claims of better efficiency can be 
made. In this section, we attempt to list some of the major 
trade-offs that an implementor of VAMP will be faced with, 
and offer some guidelines on how to make such trade-offs. 
We also present examples of possible adaptations for two 
contrasting architectures, namely the IBM 360 and the Bur
roughs B17oo. 

Adapting VAMP for a specific hardware 

The choice for "cell" is by far the most crucial one to 
make. It must match the underlying hardware. It should be 
at least one byte for byte-addressable machines like the 360; 
it could be as small as a bit for the B 17oos. For machines 
with smallest addressable unit of memory that is several bits 
long (e.g. CDC 6600 with 60-bit word) the choice should be 
gnided by other factors such as code compaction versus 
execution speed. Any choice of less than 60 bits for the 
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Address in CASE instructions 

nl, no. of case 
values in case·l 

n2, no. of case 
values in case 2 

II 

II 

incremental 
offset of case 1 

incremental 
offset of case 2 

II 

case value 
1 of case 1 

case value 
1 of case 2 

II 

case value 
2 of case 1 

case value 
2 of case 2 

case value 
nl of case 1 

case value 
n2 of case 2 

TIm no. of case 
alues in case m 

incremental 
offset of case m 

case value 
1 of case m 

case value 
2 of case m 

case value 
nm of case m 

o incr. offset 
of end of case 

Figure 2-The CASE instructions of V AMP. 

CDC 6600 will require software "simulation" of addressa
bility and probablY lead to some speed degradation. 

The best choice for the unit "cell" is not always the
smallest addressable unit of the hardware. On the B1700, 
for example, choosing a larger unit such as eight bits (or 12 
bits) could lead to a reduction in the average instruction size 
due to fewer bits needed per VAMP address. Furthermore, 
on some machines, operands may have to be aligned at 
specific address boundaries for efficient access. One way to 
counter this problem is to define cell to be an "aligned unit" 
of storage. The compiler that generates code for the specific 
implementation of VAMP could then assign aligned ad
dresses to data types as it processes their declarations. If 
we were to generate "portable" V AMP code, then the data 
map must be included with the object code. The translator 
that would convert this code into a specific V AMP code can 
take care of alignments and related address adjustments 
needed. 

The next major choices are in the standard sizes for the 
basic data types. For the naturals, integers and reals the 
arithmetic capabilities of the hardware dictate the most suit
able sizes. The standard size for a V AMP pointer is deter
mined by the choices for the maximum number of active 
blocks and the maximum size of an address space. 

After this, the implementor should consider what types 
are to have variable size representations and how many. For 
the type real, there is less to be gained by a variable size 

representation, as PASCAL does not permit sub-ranges of 
reals as a data type. Integer sub-ranges are permitted and 
therefore shorter representations could lead to storage com
paction. The most significant gains are to be expected from 
variable size naturals, as all of the following PASCAL types 
are to be represented as naturals-standard scalars---char, 
boolean, user-defined scalars, sub-ranges of char, and non
negative sub-ranges of integers. This is why a single repre
sentation for the natural is likely to result in poor use of the 
memory. For the 360, two or three representations (besides 
the standard one) may be useful-one, two and three-bytes. 
For the B1700 with eight-bit cells and a 24-bit standard 
natural, two smaller representations of eight bits and 16 bits 
may be valuable. 

The next issue to tackle is whether or not "packed natu
rals" are to be really packed. For VAMP machines with 
eight-bit cells, packing of naturals could yield significant 
storage savings in relation with packed boolean arrays. Ad
ditional sub-cell representations, such as two-bit or four-bit 
packed naturals, may not be justifiable unless main storage 
is scarce and/or hardware addressability permits it easily. 
Based on this observation, we could choose a one-bit packed 
natural representation for ihe 360s and one-bit and four-bit 
representations for the B 1700. 

The choice for V AMP address formats is confronted next. 
As Figure 1 suggests, there are a number of sub-decisions 
to be made here. Do we wish to allow variable size offsets? 
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TABLE III 

V AMP Feature IBM 360 Burroughs B 1700 

Machine Name VA MP/360 VAMPIl700 
Hardware Memory Byte addressable; Bit addressable; 

16M bytes memory Max. 64K bytes 
(model dependent) 

Definition of "cell" 8-bit byte 8-bit field 
Standard sizes 

naturals & integers 4 cells 3 cells 
reals 4 cells 6 cells (real arith. not 

supported in 
hardware) 

Variable sizes 
real no no 
natural 1 cell, 2 cells, 4 cells 1 cell, 3 cells 
integer 2 cells, 4 cells 2 cells, 3 cells 

Alignments 
stack full-word none 
real full-word none 
natural half-word for 2-cell none 

full-word for 4-cell 
integer half-word for 2-cell none 

full-word for 4-cell 
Packed Naturals 

Permitted? Yes Yes 
Sizes I-bit I-bit, 4-bit 

Vamp Address See Appendix I for See Appendix II for 
details details 

Max. static nesting 128 7 
Max. address space size 16M cells in CODE, 64K cells 

HEAP spaces 
64K cells in all 
others 

Variable offsets? Yes Yes 
Variable in-line imm.? Yes Yes 

Pointer see Appendix I for same as for V AMPI 

details 360 
Max. dynamic nesting 4096 4096 
Size 4 cells 4 cells 

Do we wish to allow variable size (in-line) immediate oper
ands? Many of these issues are dealt with in the same man
ner as we did previously. They usually boil down to a trade
off between execution speed and object code compaction. 
The issue of compiler complexity could also contribute to 
a decision of this nature, but in the author's opinion, a 
certain degree of complexity in compilation should be tol
erated if it could lead to run-time savings. 

Table III summarizes these major implementation choices 
for the IBM 360 and the B 1700. These choices are neither 
"optimal" nor "absolute." They are merely intended to 
serve as a "first-cut" choice for adapting VAMP. Code 
generated from these design choices can then be monitored 
for efficiency and fine-tuned accordingly. 

It is most appropriate to point out that there are a number 
of special considerations that should be taken into account 
during the adaptation of VAMP. Tanenbaum13 lists the av
erage frequencies (static and dynamic) with which the com
mon features of PASCAL-like languages are used in systems 
programs. This information along with Huffman's8 coding 
techniques will help the implementor achieve better com
paction and execution speed for VAMP programs. 

CONCLUSION 

The design of VAMP was motivated by the numerous 
implementations of PASCAL and similar languages with 
virtual target machines, many of which were designed for 
specific (real) machines and adapted by others with little or 
no change to match their own hardware. There was no 
systematic way to distinguish features made necessary or 
desirable by PASCAL from those that were dictated by the 
specific hardware. The purpose of this work has been to 
collect those features directly attributable to the needs of 
PASCAL language and present them as an abstract hard
ware-independent virtual machine which we call VAMP. 

The most direct use of the architecture presented in this 
paper will be in conjunction with target language design for 
PASCAL compilers. Another interesting possibility that it 
presents is the notion of a "universal target language." If 
we carefully design such language and write a compiler to 
generate code in that language, it could make PASCAL 
programs "portable" at or near object code level. The au
thor is currently involved in the design of such a language 
and a translator that will produce the VAMPI1700 (see the 
third section) code from it. The re~ults of this investigation 
will be reported in a later paper. 

There are a number of other directions for further research 
in this area. While the popularity of PASCAL is growing at 
an unprecedented rate, there are a number of efforts under
way to refine the language. One of the weak points of present 
PASCAL is that there are no provisions for exception-han
dling in the language. This deficiency makes it less attractive 
for use in development of crucial programs such as operating 
systems. If and when such a facility is accepted into the 
language, V AMP would have to be redefined. While the 
need for organized exception-handling may be seen even in 
the absence of corresponding provisions in the higher-level 
language, we chose not to include any such features in 
VAMP in the spirit of being concerned more or less with 
the "standard" features of PASCAL. 

The works of Bowles,2 Goodenough5 and HilF may pro
vide directions on how to implement exception-handling 
along with VAMP. Reports of difficulties an~ how they were 
overcome could provide valuable information for extending 
PASCAL to include this important feature. 

There are other topics for investigation that are perhaps 
more ambitious. Almost every computer system, mini or 
maxi, supports a multitude of high-level languages. Typi
cally, there are the popular languages such as COBOL that 
the end user needs, and there is a "software deVelopment 
language" (to use one vendor's name) which is suitable for 
writing parts of the operating system and utilities. Because 
of the diversity in the features of these languages, a single 
virtual machine may not be ideally suited for all of them. 
Yet, the software developers could save a lot of effort and 
time if a minimal union of these virtual machines can be 
designed. It is not known, for example, whether an accept
able virtual machine can be designed to support COBOL, 
FORTRAN and PASCAL. Answers to such questions will 
he highly beneficial to software houses writing and selling 
portable software products, especially compilers. 
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APPENDIX I 

VAMP!360 address format and pointer design 

1. Address Format: 

I Prefix 

1 byte 

Prefix: 

0-3 bytes 
depending on prefix. 

(hex) 00 - immediate, stack-top. 
01 - 03: immediate, in-line, 3 operand length 

variations. 
04 - OF: immediate, in-line, special constants 

such as 0,1-1,10, char" ", pointer nil, etc. 

Remaining modes; hI h2 (hex), with hl~1. 

hi = 1-F: { stack-top indirect x 3 op.length VariationS} 

{
direct} x 2 offset length variations 

indirect x 3 op. length variations 

h2=xn: where x is "indexed-or-not" bit and n=0-7: 

r CODE space 

t
rSTACK"'J 

local DATA 
PARM 

global DATA 

imm.surrounding {CATA} 
PARM 

others* 

*others=}2nd Prefix byte including the following informa
tion: 

a. lexicographic level number (7 bits) 
b. DATA or PARM space (1 bit) 

Offset Length variations: 

length 1 = 1 byte. 
length 2=2 bytes for all address spaces except CODE. 

3 bytes for CODE space. 

Operand length Variations: 

Depends on operand type (see Table III). 

2. Pointer Format: 

Fixed length=4 bytes. 
First byte (or 2 bytes) contents: 
(hex) Ox=nil 

lx=CODE (next 3 bytes define offset) 
2x= HEAP (next 3 bytes define offset) 

3xxx= DAT A (xxx defines dynamic block number, 
next 2 bytes define offset) 

4xxx=PARM (same as for DATA) 
5xxx=STACK (same as for DATA) 

APPENDIX II 

VAMPI/700 address format design 

Address Format: (with cell=8-bits) 

Prefix I 

1 cell 0-2 cells 
depending on prefix 
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Prefix; 

(hex) 00: immediate, stack-top 
01: immediate, in-line. 

02-0F: immediate, in-line special constants such as 
0,1,-1, IO,char .. ", pointer nil, etc. 

Remaining codes for "addressed'· modes-

Ix: with x=O-F from 

! 
stack-top indirect ) 

CODE, direct 
Local STACK, direct 
Local STACK, indirect 

X indexed? X 2 op. 
Lengths 

Remaining codes yx interpreted as follows: 

y=2-F from (7 lexic levels X DATA or PARM) 
and x=O-F from 
(indexed? X 2 op. lengths X 2 offset lengths X indirect?) 
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INTRODUCTION 

There is at present a broad consensus that a capability-based 
architecture is the best approach to safe systems. 5 ,3,6 How
ever, at the bare hardware level, a machine should provide 
for a set of basic mechanisms (e.g. processor assignment, 
manipulation of queues of processes, definition of and ma
nipulation on domains) without prejudging of any policy to 
be applied to these elements. The internal structure of the 
objects referred to by capabilities, the way they are organ
ized into capability lists and the evolution of these lists in 
relation to various events appearing throughout the life of 
a program and of its possible activations should appear at 
some higher level, so that they can be modified without 
disturbing the hardware. This demands flexibility (the ca
pability for emulating, for instance), adaptability (to future 
modifications) or the ability to define a machine which could· 
be orientated, on demand, toward a certain class of appli
cations (see for instance, the Burroughs Bl700 approach). 
In the following, we shall be concerned mainly with this 
level, which we shall call "virtual architecture level." Con
sidering a basic architecture, which we describe briefly, we 
define a virtual architecture for higher-level languages 
(namely PLll, COBOL, FORTRAN and the system imple-

. mentation language LIS,13) called the HLL-machine in this 
discussion. The objectives of the HLL-machine are the fol
lowing: 

• To define a virtual architecture as clean and homoge
neous as possible, on which compilers may become 
more simple, and debugging aids more powerful. 

• To define a minimum of intermediate languages, ide
ally, just one, for supporting PLI1, COBOL and FOR
TRAN. 

• To define a set of run-time mechanisms enforcing 
safety. 

• To obtain more compact object programs, as compared 
to third generation computer systems, so as to reduce 
the working sets of programs. 

• To abide by the error confinement principle, which 
states that a procedure should not have at its disposal 

* This study was sponsored by the French DRME, Direction des Rech.erches 
et Moyens d'Essais, under contract 741450. 
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more capabilities than actually required for its execu
tion. 

• To improve overall system performance. 

CONCEPTS AND TERMINOLOGY 

All the system resources are defined as objects, an object 
being the unit of naming, sharing and protection. An object 
is referenced through a capability, which specifies access 
rights for this object and contains a reference to its reali
zation. Capabilities cannot be created, modified or de
stroyed but at the basic architecture level; they must be 
protected against unauthorized modification and are grouped 
into C-lists, which are distinct from the objects, called data 
sets, which are accessible to the user. ** 

The addressing scheme of the basic architecture provides 
a process with a capability list, two call/return stacks-CS 
(Capability Stack) for capabilities and VS (Vaiue Stack) for 
other information, and a set of base registers. A procedure 
is considered as composed of four parts: 

1. Definition of a set of objects. 
2. Definition of entry points into this procedure . 
3. Instructions manipulating the objects defined in 1. 
4. References to entry points of other procedures. 

Some of the objects defined in a procedure are purely local 
to it (not accessible from the outside), while others (called 
external objects), may be shared among several procedures. 
A procedure, which is an object of the cataloging system, 
may be referenced by means of one of its entry points. 

In the following, we define a domain as a connected partial 
subgraph of a graph G of the above kind. A domain is 
therefore a construction on procedures. 

Example-Given four procedures PI, n, P3, P4 and 
assuming PI references P2 and P3, P2 references P3, P3 
references P2 and P4, and P4 references P2 and itself, the 
graph G is as shown in Figure la. Possible domains for this 
graph are G itself, or G 1 or G2 as shown in Figures I band 

** Due to considerations of data representation compatibility with other sys
tems, the tagged architecture scheme was not retained, in spite of its merits.7 
The partition principle has been retained. 
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Pl 

P2 

Figure la-Graph G. 

Ic, respectively. A program is a domain in which an entry 
point of a specific node of the graph has been specified; this 
node then corresponds to the main procedure. A process is 
a particular activation of a program; control enters the main 
procedure specified by a program and walks along edges of 
the graph G. 

In a procedure, as it is constructed by a compiler. refer
ences to external objects or entry points are symbolic: actual 
access to an object implies that symbolic references be 
transformed into (virtual) addresses. Two extreme possibil
ities may be considered for these transformations: 

I. Prior to any program specification, all references are 
transformed into addresses-the complete domain 
(corresponding to the graph G above) is constructed at 
one time; this corresponds to the well known static 
linking strategy. 

2. The transformation of references into addresses is per
formed on demand-the domain is constructed edge
by-edge during the process activation. This corre
sponds to the dynamic linking strategy, as it is imple
mented in MULTICS,lO for instance. 

Any linking policy appears as a particular way of construct
ing domains. 

With the notion of domain in mind, a classification of 
objects can be issued according to their scope and lifetime. 
The scope of an object corresponds to the existence of an 
entry for this object in the cataloging system. It may be 

• System-wide-For instance, a file which is accessible 
by several processes. 

• Domain-wide-Local to a domain (e.g. a STATIC EX
TERNAL variable in PLII). 

• Internal-I.e., local to a procedure. 

P3 

Gl 

P2 

Figure Ib 

Pl 

G2 
P3 

P2 
Figure Ie 

The lifetime of an object is related to the existence of a 
realization for this object; inside its scope, an object mayor 
may not have a realization. 

ADDRESS SPACE-ACCESS PATHS 

In order to achieve protection and error confinement, the 
informations which constitute the address space of a process 
have to be grouped inside distinct areas, according to three 
characteristics of the objects they are to contain: 

• Scope 
• Lifetime 
• Access rights 

In the first step, we define the areas which are necessary 
for a PUl-like language, then we define relations between 
these areas-that is, the access paths to information. 

Addressing space areas 

The different areas are introduced in the order of their 
creation, from the compilation of a procedure until its exe
cution in a specific domain. 

• Procedure areas are defined at compile time. They con
sist of three parts: 

1. A CODE area containing object code instructions. 
2. A DC area containing descriptors and constants. 
3. A LINK area, a list of capabilities containing refer

ences to this procedure realization and entry points, 
and to the objects that this procedure may manipulate 
whose scope is not internal. 

The first two areas are distinguished because their access 
attributes are different-CODE is 'execute-only,' whereas 
DC is 'read only.' 

As long as the procedure is not destroyed, a single copy 
of CODE and DC areas will ever exist (object code is reen
trant), whereas a new copy of the link area is created everv 
time the procedure is linked to a new domain. . 

• Domain area. A domain must have its own (domain) 



LINK area, which is a concatenation of copies of pro
cedure LINK area. This is necessary because some 
objects referenced by a LINK are domain-wide, and 
the resolution of the reference to such objects in a 
LINK area is domain-dependent. 

• Execution time areas. A distinction is introduced ac
cording to the lifetime of the objects. 

Three classes-known from PLit-are introduced: 

- Static. An object of this class has a single realization 
all over the process activation. 

- Automatic. The lifetime of an obje.ct in this class is 
related to the activation of blocks and/or procedures. 

- Controlled. The existence of a realization which may 
consist in several 'generations' is under programmer's 
control. 

The following areas are introduced: 

- ST, static area, contains the realization of static ob
jects whose scope is not larger than the domain. Sys
tem-wide objects are realized in individual areas called 
DS (Data Sets). The ST area, created when a domain 
is activated, is enlarged every time a procedure is 
activated for the first time. As for the domain LINK 
area, only a part of the ST area-called slot-is ac
cessible at a given time; it corresponds to the currently 
executing (external) procedure. 

- Objects of the automatic class are realized in a value 
stack VS if they are local to the domain, or referenced 
from a capability stack CS if they are not (then their 
realization is in a DS area). 

- Controlled objects cannot be system-wide; they are 
realized in a value heap area, VH, to which some 
garbage collection algorithm must be associated. 

• Dangling references. A dangling reference is a reference 
to an object which currently has no realization in the 
address space. A safe implementation must detect such 
a circumstance, which may arise whenever the lifetime 
of an access path to an object is larger than the lifetime 
of this object. The problem is complicated since by 
means of pointers, parameters or overlay definitions, 
several access paths to an object may coexist. A solu
tion consists of introducing tombstones 9 indicating 
whether a realization for the object currently exists, 
and forcing all the access paths to the object to use this 
tombstone. 
For automatic objects, tombstones may be defined on 
a block basis. As regards controlled objects, one tomb
stone per generation is required. A major characteristic 
of tombstones is that, once allocated, they can never 
be reused. Due to this, tombstones are realized in a 
particular area, called the tombstone space (TS). 

Access paths 

Three kinds of information are manipulated in the address
ing space-addresses, descriptors and values. Values may 
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appear in ST, VS, VH, or DS areas, according to their scope 
and lifetime. 

For, protection purposes, 1 objects are associated with de
scriptors; these may be completely defined at compile time, 
then they are implemented in the read-only DC area, or they 
are not fully defined before execution, then they have to be 
constructed dynamically in VS or VH areas, according to 
the object class (automatic or controlled). 

Access to an object is gained through indirections across 
the address space areas. These may communicate between 
each other according to certain restrictions. Three kinds of 
communications have to be considered-capabilities, ad
dresses and pointer values. The Appendix exhibits the au
thorized communications between areas, from which ad
dress formats can be derived. Before describing these 
formats (in the third section) a few words about pointer 
values and program structure are necessary. 

Pointer values 

The use of pointer values, if they are to be implemented 
just as addresses, is a means of violating the rules of lan
guages concerning the manipulation of variables in relation 
with their types. One way to avoid this is to associate not 
only a reference to an object, but also a descriptor of this 
object, to a pointer value. 4 By this means, a descriptor is 
associated with every access path to a variable, and there
fore control can be exercised on the type of access which 
is attempted to it whatever access path is used. 

Program structure handling 

Block structure is taken under consideration by means of 
activation records (see for instance, the BURROUGHS 
B670011) on capability and value stacks, CS and VS. An 
activation record contains the following information: 

• Dynamic links (DC, DV) to the block which activated 
this block. 

• Type-block, procedure. 
• Lexicographic level. 
• Exit information indicating through which statements 

control can leave the block. 
• Reference to the tombstone associated with the acti

vation record. 
• Condition enabling information. 
• Display information characterizing the activation rec

ords of the blocks which statically encompass this 
block. 

• Loop control information. 
• Parameters area (see below). 
• Realization of automatic objects (values and/or descrip

tors). 

As regards parameters, since formal parameters define a 
new access path to an actual parameter, they should be 
considered as pointer values, so that the protection require
ments just defined can be met. 
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Figure 2-0perand addresses. 

ADDRESS FORMATS DESCRIPTORS 

Addresses 

Three kinds of addresses are introduced, which allow a 
realization of the access paths in accordance with the re
strictions defined in the appendix. Bit patterns are given as 
an indication. 

• Operand addresses appear inside instructions, as shown 
in Figure 2, where 

AT: Specifies the area and the kind of address defined in 
AD-direct or indirect. 

AD: Is a deplacement within the area or slot defined by AT. 
If AT specifies a stack, then AD is a pair (11, d) 
indicating the lexigraphic level and a displacement in
side the activation record. 

• Internal addresses are purely dynamic and are used for 
special purposes (i.e. tombstones), as shown in Figure 
3, where 

AT: Same as before. 
V: Validity field-If set to 0, indicates a dangling refer

ence. 
d: Displacement in the area specified by AT. 

• General addresses may be created at compile time in 
the descriptor area DC, or at a run-time, to implement 
pointer values in particular. They may contain up to 
three kinds of information: 

- The descriptor of an object or a reference to it (D). 
. - A reference to the next area of the access path (R). 
- An additional displacement (P) used either when the 

reference R does not lead directly to the object, or 
for aggregate elements (see the following). 

These three informations are not always required and four 
types of addresses are defined: 

- Type 0 contains field D. 
- Type 1 contains fields D and R. 

0 1 5 31 

I 
V 

I 
AT I d 

I 
Figure 3-Internal addresses. 

- Type 2 contains fields Rand P. 
- Type 3 contains fields D, Rand P. This type is used 

to represent pointer values. 

Type 3 addresses are shown in Figure 4, where 

T: Type of the address. 
AT: Specifies the area and the kind of address. There is a 

particular AT value which indicates that R contains a 
value, and not an address; this is used for intermediate 
results. 

V: Validity field; V=O indicates a null pointer value. 

Descriptors 

The data structures which are taken under consideration 
are elementary items, arrays and aggregates . 

• Elementary item descriptors appear in the D field of 
Type 1 or Type 3 general addresses. They specify the 
different attributes of the object (arithmetic, string ... ). 
For strings, they contain the length of the area allocated 
to the string. For arithmetic data, base, scale, mode 
and precision are encoded. 

• Array descriptors define both the array structure and 
the array element. This allows the detection of out-of
bounds references, and unauthorized manipulations on 
an element. A descriptor for a two-dimensional array 
is represented in Figure 5, where 

N: Number of dimensions. 
RVO: Relative virtual origin, i.e. displacement to the 

(virtual) element with subscripts 0, 0, .... ,0. 
Lower and upper bounds of subscripts for this 
dimension. 

LB, VB: 

M: Displacement from one element to the next one 
in the same dimension. 

o 

• Aggregate descriptors consist of Type 0 addresses (cor
responding to the main aggregate and any sub-aggre
gate) and a collection of Type 1 or Type 3 addresses 
(one for each terminal aggregate component). The Type 
o address contains the number of elementary compo
nents in the (sub-) aggregate, and a displacement to the 
descriptor of the first component. An example is shown 
in Figure 6. By this mean, an item is accessed in the 
same manner, whether or not it belongs to an aggregate. 
An array of aggregates is described as an aggregate of 
arrays. 

2 6 31 
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Figure 4-Type-3 addresses. 



Type-O address { 

For each 

dimension 

Type-lor 

Type-3 address 

I N 

RVO 

LB 

M 

LB 

M 

I 
Address of 1st 

Design of a High-Level Language Machine 653 

J 

1 

I 

D 

element 

DB 

UB 

(A) 

Address of 

element with 

subscript 

sl'····'sn= 

Figure 5-Array descriptor. 

INSTRUCTION SET 

The first question in designing the instruction set concerns 
the number of intermediate languages-should one define a 
single intermediate language, as it is done in most systems, 
or a high-level language, as it appears in the Burroughs 
B 1700? Considering microprogram memory size, mainte
nance problems, training of software people and develop
ment costs, the best solution is to have a single intermediate 
language. As regards PLlt, FORTRAN and COBOL, a de
sign based on PLI 1 includes nearly all the language construc
tions of COBOL and FORTRAN. Only a few additional 
features are necessary to cope with particular constructions. 
It would be necessary to estimate the performance loss-if 
any-when executing COBOL or FORTRAN programs onto 
a PLlt-based architecture. 

Type-O ~ 
for A 

DCL lA, 
address for B 

2B, for C 
'If"' 
.JV, 

3D, Type-l 

2E ; addresses for D 

for E 

The following objectives must be kept in mind when de
signing an instruction set: 

• Safety-The error detection must be as precise as pos
sible, and appear as soon as possible. 

• Efficiency-The most frequently used language con
structions should be treated efficiently. Thus, the de
signer must have some knowledge about how the lan
guage is actually used, which implies run-time 
measurements in source programs. 12 

• The instruction set should provide facilities for com
piler designers, and for the implementation of high level 
debugging aids. 

• Generality-A few general mechanisms should be used, 
rather than locally-optimal implementation tricks. 

r 
3 

2 P 
~. 

... 

Figure 6-Aggregate descriptors. 
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Let us consider the various forms of instruction streams 
and related hardware architectures. 

• Stack machine and zero-address instructions. This cat
egory may be illustrated by the Burroughs B6700---sin
gle or double precision data items are stacked, other
wise descriptors are stacked. Such a structure requires 
that operand values or descriptors be explicitly pushed 
on the top of the stack prior to any computation. 

• General registers and one-address instructions-IBM/ 
370 or CDC 6600 can be found in this category. Its 
major interest lies in an optimal handling of interme
diate results. It requires that registers be explicitly 
loaded by instructions. In a descriptor-based architec
ture, it is mandatory that a description register be as
sociated to each general (data) register. As a practical 
consequence, the complete register must be large 
enough to contain the largest data item, which may be 
too costly for small to medium machines. 

• Three-address machines are reminiscent of the pioneer 
days; they may be illustrated by the Burroughs B3700 
system. They are will suited to variable length items 
handling but two problems require special attention
intermediate result handling and array accessing. 

Intermediate results or constants are represented as a 
special form of general addresses called IDV (Immediate 
Descriptor and Value). An IDV contains both the descrip
tion and the value of an item, which saves one indirection. 
Some instructions may specify the creation of an IDV as the 
result of an operation; this is specified in the instruction op
code (I option). Source program measurements show (see, 
for instance, Reference 8) that the arithmetic expressions 
are generally extremely simple and do not involve any in
termediate results. This is an argument in favor of three
address code, which generates instruction sequences which 
are more compact (and, therefore, interpreted more effi
ciently), as long as no intermediate result is required, with 
the counterpart of a higher cost for the execution of more 
complex expressions. 

Again, according to program measurements, it appears 
that one reference among three is to array element; this 
means that array handling instructions should be given spe
cial care. On stack or general register machines, a rather 
long sequence of instructions is required. We suggest that 
two instructions be introduced: 

• build index list 
BINDL n, OPAo,OPDA t, ... ,OPDAn 

which builds a list of n index values with operands 
OPDA lo ••• ,OPDAn at location OPDo, and 

• index 
INDEX OPDA t.OPA 2,OPA3 

which selects an element from the array defined by OPDA t. 
with the index list found in ()PA 2, and stores it in OPA 3 

The instruction also performs subscriptrange checkine, ac-

cording to the information found in the array descriptor. In 
the examples of instructions exhibited below, OP stands for 
OPerand, OPDA for OPerand Descriptor Address, and OPA 
for OPerand Address. Instructions may be classified as fol
lows: 

• Computational 
Examples: 
1. ADDI OPDA t,OPDA2,OPA3 (OP3:=OPt+OP~ 

I in ADDI indicates that an intermediate result (lDV) 
is created at the location specified by OPA 3 

2. INC OPDA t,OPDA2 (OP2:=OP2 +OPJ 
3. DECI OPDA t (OPt:=OPt-i) 

• Computational data movement 
Examples: MVNZ OPDA t moves numeric zero to OPt. 

• String operations, which require the use of descriptors 
Examples: 
I. CAT [I] OPDA o,OPDA t,OPDA 2 is the concatenation 

of two strings 
2. SUBSTR [1] OPDA o,OPA t,OPA2 selects a substring 

in OPo, according to two integer values (origin and 
length) found in OPt and creates string descriptor for 
the string in OPA 2• 

• String move instructions 
Examples: 
1. MOVE [I] OPDA}.OPDA 2 (OP2:=OPJ 
2. MVS OPDA t: sets string OPt to 'spaces' 

• Index manipulation-see BINDL and INDEX above. 
• Branching-several forms of branching are considered. 

Relative to the current instruction, indirect (to cope 
with COBOL's PERFORM and ALTER statements), 
local to a block, or outside the current block. Note that 
this last case implies a lot of housekeeping work, es
pecially on the stacks. A typical branch instruction 
contains operand(s) address(es) and branching address. 
Examples: 
1. BRLESS OPDA t,OPA2,BADDR 

(if OPt<OP2 then go to BADDR) 
2. BRS OPDAt,BADDR 

(OPt =spaces then go to BADDR) 
• Procedure and block control-Call instructions specify 

the address of a list of parameter descriptors repre
sented as an aggregate, and the address of an entry 
descriptor. For safety purposes, leaving a block resets 
its activation record to zero. When entering a block, 
the activation record is initiated by means of compu
tational data, or string, or address movement instruc
tions. 

• Address movement instructions are the only way to 
alter the contents of a pointer value. 
Examples: 
I. SETPTR OPDA t, OPDA 2 forces pointer OP2 to ref

erence item OP 2. The pointer value inherits the item 
description, and the reference to the item may be 
indirect, if it is accessed through a tombstone (then 
the pointer will reference this tombstone). 

2. RF:SETPTR ()pnA 1 ft'''It't", pointt;"f OP I to the nuB 
value. 



• Miscellaneous instructions contain among other things 
allocate and free statements on the heap, and instruc
tions for the dynamic construction of descriptors. 

CONCLUDING REMARKS 

The instruction set we have briefly presented leads to 
compact object programs-a ratio of two has been observed 
for typical COBOL programs,2 as compared with the IBM 
370 code. Obviously, this instruction set shouid be tuned 
according to further measurement and to hardware and/or 
firmware requirements and constraints. =The design of the 
HLL-machine has shown that a unique architecture may 
support PLIl, COBOL and FORTRAN. A great attention 
has been given to safety problems (e.g. dangling references) 
and programs could be run safely on this architecture. As 
regards efficiency, this architecture cannot be considered as 
realistic unless specially tailored hardware and/or firmware 
be defined for it. 
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APPENDIX-COMMUNICATIONS BETWEEN 
ADDRESS SPACE AREAS 
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Horizontal arrows indicate possible beginnings for an access path: vertical 
arrows indicate possible terminations 
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Pointer value (in I I I I I 0 0 
ST, VS or VH) 

LINK, CS 0 0 0 0 0 0 I 

TS 0 0 I I 0 I 0 

DS, ST, VH, VS 0 0 0 0 0 0 0 
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The machine language of a computer is the programming 
language that the bare hardware can accept and interpret. 
In a von Neumann architecture, it is essentially a set of 
machine instructions and data formats. In a high-level com
puter architecture,7.8 the machine language is a high-level 
programming language since the hardware high-level archi
tecture accepts and interprets this high-level language. 
Therefore, the programming language for a high-level com
puter architecture is the high-level machine language. For 
this reason, the programming language to be presented in 
this paper is called the HLM language. 

Since the constructs of a high-level machine language 
affect intimately the constructs of the interpreting high-level 
computer architecture, the design of a high-level architec
ture begins with the design of a high-level machine laIlguage. 
This paper presents the design of a high-level machine lan
guage, while a separate paper describes the high-level ar
chitecture which implements this high-level machine lan
guage. 

DESIGN CONSIDERATIONS 

Before the HLM language is described, major design con
siderations that result in the choices of the particular data 
types, structures, operations and constructs are presented. 
These considerations serve as guidelines for the language 
design and are as follows: 

a. The overall consideration is understandability and sim
plicity of the language. 

b. The HLM language should have adequate language 
constructs for writing programs in applications' of sys
tem programming, data processing, scientific comput
ing and process control, since it is a programming 
language. 

c. The HLM language should have language constructs 
that typical programmers can understand well so that 
they can effectively use the language. 

d. The HLM language should have language constructs 
that facilitate the writing of reliable programs. 
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e. The HLM language should have language constructs 
that help in creating a simpLe and clean interactive 
direct-execution architecture4•8 for its implementation. 

f. The HLM language should not be over-designed 
merely for the sake of seeking power and elegance of 
the language. 

g. The HLM language should have adequate language 
constructs for writing high-level software, since the 
high-level architecture may have software. For exam
ple, the HLM language may be used to write an inter
preter for a high-level or a very-high-Ievel language. 

h. The HLM language is designed with a particular regard 
to microprocessor implementation. 

1. The HLM language may become afamily of program
ming languages. It wil! be a family because member 
languages will have a uniform syntax and a similar 
structure, but with a different choice of data types. 
Each member language will be simpler to implement 
since it will meet a limited need, yet it will be adequate 
for its programming purpose. 

In case of a conflict among the previous considerations, a 
compromise is guided by the overall consideration. 

PROGRAM 

A program declares data and specifies data operations for 
data processing or computing. To specify complex opera
tions, sequences of data operations are needed. Control 
operations are needed to sequence the data operations. 
These data operations and their sequencing in a program 
create the data flow and the control flow, respectively, of 
the program. This section introduces the concept of data 
flow and control flow of a program, and then describes the 
program elements and program structure of the HLM lan
guage. 

Data flow and control flow 

In any program, there are two flows-the data flow and 
the control flow. The data flow is the flow of the data 
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changes in the program as a result of data operations; it is 
described by data flow statements. The control flow is the 
flow of data operations sequences when the program is being 
executed; it is described by control flow statements. Ex
amples of a data flow statement and a control flow statement 
are the assignment statement and the "if' statement, re
spectively. 

In the HLM language, the data flow and control flow are 
organized 'so that all data flow statements are embedded in 
control flow statements. In this way, the order of executing 
the data flow statements is entirely directed by the control 
flow statements. Visibility of both the data flow and control 
flow to the HLM language programmer is one of the unique 
language features of the HLM language; this helps the pro
grammer to understand program execution better. 

Program elements 

The program elements of a high-level language are those 
constituents which make up a viable program. The program 
elements of the HLM language are: 

a. Macro definition 
b. Data declaration 
c. Procedure definition 
d. Control flow statement 
e. Data flow statement 
f. Comment statement 

Macro definitions describe the macros of a HLM program. 
Each macro definition specifies some program text for' 'sub
stitution" when the macro name is later called. An example 
is shown in Figure 1 where macro x denotes "123," and 
macro exchange (y,z) denotes "y:=y +z." 

Data declarations declare the names of the data storages 
together with their types and structures. An example is 
shown in Figure I where buffer i of data-type number of two 
digits, buffer j of data-type string of 10 characters, buffer m 
of data-type status of 'TRUE,' 'FALSE,' and 'donL.know;' 
and array k with 10 array elements of data-type number of 
two digits are declared. 

/*This is an example of the HLM language program*! 
MACRO x= 123 ENDM; 
MACRO exchange(y,z)=y: =y+z ENDM; 
BUFFER i OF NUMBER[2], 

j OF STRING[10], 
m OF STATUS[TRUE,FALSE,donL..know]; 

ARRAY k[IO] OF NUMBER[2]; 
PROCEDURE a; 

ENDP a; 

BLOCK i: =INPUT(O); ENDB; 
CALL b(i); 
BLOCK OUTPUT(O):=i; ENDB: 

PROCEDURE b(BUFFER x OF NUMBER[2]): 
BLOCK x: =x*8; ENDB; 

ENDPb; 
ENDPROGRAM; 

Figure l-An example showing program e!.ements and program structure. 

Procedure definitions describe the procedures of a HLM 
language program. Each procedure consists of control flow 
statements and optionally local data declarations. An ex
ample is shown in Figure ] where Procedures a and bare 
defined. Procedure a has three control flow statements but 
no parameters. Procedure b has buffer x of data-type number 
of two digits as the parameter which is called by reference. 
It has only one control flow statement. 

Data flow statements specify data operations. Control 
flow statements specify the data flow statements to be next 
executed. Two types of control flow statements are shown 
in Figure I-BLOCK and CALL. There are three BLOCK 
statements, each specifying one or more assignment state
ments to be executed. There is one CALL statement which 
calls Procedure b. 

The comment statement provides an explanatory remark 
for improving readability and documentation. It is a string 
of characters from the character set enclosed by a pair of 
symbols, /* and */., and may appear anywhere a space char
acter can except inside of a character string. An example of 
the HLM program is also shown in Figure 1. A more detailed 
example is shown in Reference 9. 

Program structure 

The program structure of the HLM language is chosen to 
be simple because simplicity is an overall design consider
ation. As illustrated in Figure 2, a HLM language program 
consists of macro definitions, data declarations, procedure 
definitions, and a statement to indicate the program end. An 
example of program structure is also shown in Figure 1. The 
order to the appearance of these program elements may be 
changed as long as a name is declared before it is referenced. 
The first procedure definition is the main procedure where 
program execution begins. The other procedures are to be 
called by the main procedure directly or indirectly. (A pro
cedure is called indirectly if it is called through more than 
one procedure calls.) 

Data 

In designing a programming language, there are several 
aspects of data5 that need be considered-data types, data 
structures, data operations and data flow. In addition, there 
are control data types, control data structures and control 
data operations. 

r-----------

Macro Definitions 

Data Declarations 

Procedure Definitions 

Program end statement 

Figure 2-Program structure for a HLM language program. 
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Data types are the primitive elements which may be nu
merical, physical, or others that are chosen to represent the 
data. They determine the scope of the language to describe 
the data. Data structures are the program elements which 
actually contain the data; they offer the facility in the lan
guage to access the data. Data operations are those opera
tions which operate on the data types and data structures. 
Merely providing a data type or a data structure in a pro
gramming language without an adequate provision of data 
operations does not make that data type or that data struc
ture particularly useful. The "programmability" of program
ming language is often limited by the data operations avail
able for the data types and data structures. Data flow refers 
to the changes of the values in the data structures. Control 
data types and control data operations refer to those data 
types and data operations that affect the control flow during 
the program execution. These aspects of the HLM language 
are discussed next. 

Data types and operations 

There are many data types in current programming lan
guages. Examples are data types of real and label in Algol 
60, fixed and floating-point numbers in Fortran, record in 
Cobol, printers and files in PLIl, integer and string in 
SIMPL-T and byte and address in PUM. In Pascal, data 
types may also be defined by the programmer. In the HLM 
language, five data types are chosen-decimal number, 
character string, byte string, time and status. 

Decimal numbers represent numerical objects. Character 
strings represent symbolic objects. A byte string represents 

TABLE I-Data Type Operations and Data Flow Statements 

Data Type Data Operations 

decimal 5 decimal arithmetic operations 
number 

character 
string 

byte 
string 

time units 

status 

Concatenate strings x and y 
Find length of string x 
Find sub-char string in string x, 

starting at ith char for j chars 
Convert char string to byte string 

4 logical operations 
5 byte arithmetic operations 
4 shift operations 
Find subbyte string in string f, 

starting at ith byte for j bytes 
Convert byte string to char string 
Find length of string x 

Convert x msec into date-and-time 
Delay n time units 
5 integer arithmetic operations 
increment' decrement buffer x by 5 

time-units 

set buffer x to status on 

Data Flow Statements 
(examples) 

a:=b+c/d; 

x:=xIIY; 
i: =LENGTH(x); 
y: =SUBCHAR(x, i, j); 

a: =CONVBYTE(x); 

i:=j.A.k; 
k:=j+k; 
i:=SHR(j, a); 
f: =SUBBYTE(f, i, j); 

x: =CONVCHAR(a); 
i: =LENGTH(x); 

datime: =CONVTlME(x); 
a: =a DELAY n; 
tl:=t2+t3; 
X:=INC 5; 
X:=DEC 5; 

see note 

Note: This is a control operation which is to be specified by a control flow 
statement as shown in Table IV. 

a bit string; however, a byte string is restricted to bit strings 
of mUltiples of eight-bit lengths. Time represents real time 
from which relative time, incremental time and delay can be 
derived. Status represents the condition after a test. A spe
cial case for status is the boolean status, which has the 
values of TRUE and FALSE. 

In the HLM language, data operations for the five data 
types are shown in Table 1. The five arithmetic operations 
are +, -, x, /, and modulo; they are provided for decimal 
numbers, byte strings and time units. The four logical op
erations are .A., .0., .E., and .c. which represent logical 
and, or, exclusive-or, and complement, respectively. They 
are provided for byte strings. The six shift operations are 
SHL, SHR, ROL, ROR, RCL and RCR which represent 
logical shift left and right operations, rotate left and right 
operations, rotate-with-carry left and right operations, re
spectively; they are available only for the data type of byte 
string. 

Concatenation, finding-length, finding-substring and con
version operations are provided for both character strings 
and byte strings. In addition, delay and conversion opera
tions are provided for data type of time units, and the set 
operation is provided for data type of status. 

Data structures and operations 

There are many data structures commonly used in pro
gramming. Examples are arrays, queues, stacks, tables, 
trees, files and list structures. 5 In the HLM language, data 
structures are declared in data declarations. Examples of 
data declarations are shown in Figure 3. The available data 
structure types are buffers, one-dimensional arrays, stacks, 
ports, clock, and files. 

A buffer is a data storage which may store anyone of the 
five data types (it is equivalent to the simple variable in a 
programming language where the variable stores a mathe
matical object). An array is a linear list of a fixed number 
of array elements which have the same data type. Each 
array element can be referenced by a subscript. Only one
dimensional arrays are adopted to keep the hardware array 
structure simple. A stack is a linear list of a varying number 
of stack elements of the same data type. It is a first-in-Iast
out structure. Only one end of the stack is accessible for 
insertion and deletion of stack elements. 

A port is a "data storage" through which input data or 
output data flow. A clock is a special type which generates 
the real time, and a timer is a special type where time uni~s 
are being accumulated. Both accept only the data type of 
time units. A file is a list of related file elements commonly 
called records. (The records physically reside on an external 
storage device.) Each record may be structured or unstruc
tured. A structured record consists of fields and subfields 
and it can be of fixed or variable length. An unstructured 
record can be interpreted by means of a structured template. 

The data operations for the data structures are shown in 
Table II. In brief, there are two operations for buffer, four 
for array, seven for stack, two for port, eight for file and 
one for clock. 
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Any data structure may be subdivided into any number of 
fields or sub-fields which are organized by level numbers. 
Examples of data structures with fields are shown in Figure 
3. 

Following conventional usage, the names of data struc
tures in a data declaration may sometimes be referred to as 
variables. 

Control data types 

A control data type is the data type which affects the flow 
of control in program execution. For example, the value of 
a test in an if-statement is a control data type since this 
value causes a change of control flow. In a conventional 
programming language, the control data types are not spe
cially recognized; they are not considered as separate data 
types. 

In the HLM language, there are two control data types
status and time units; they have been shown in Table I. A 
status is a datum stored in a data storage specifically for 
control flow modification. The datum can be numeric, boo
lean (i.e. TRUE or FALSE), or symbolic (such as "on" or 
"complete"). The time unit represents such units as hours, 
minutes, seconds and microseconds of time. For conveni
ence, it may be abbreviated as tut. 

Data flow statements 

A data flow statement specifies one or more data opera
tions. It consists of a sequence of operands and operators. 
The syntax of a data flow statement requires it to begin with 
a data-operator keyword such as PUSH and SIZE. Exam
ples of data flow statements are shown in Tables I and II, 

where each data flow statement begins with a data storing 
operation indicated by the data operator ": = ' '. The data 
storing and data reference operations together with the input 
and output data flows, the timing reference and the operator 
precedence are subsequently described. 

Data reference 

Data reference is the appearance of a declared name in a 
data flow statement. It is a data operation since the appear
ance means the access of the value of the name. It is the 
most common data operation. If an operator were chosen to 
represent this operation, this operation could be "fetch a" 
or "access a" where a is a declared name. No operator is 
used to represent this data operation in programming lan
guages. This practice is followed in the HLM language. 

Data storing 

Another often-used data operation is data storing which 
stores an operand into a data storage. The operand is the 
value of a declared name or the value of an expression; the 
data storage is a declared data structure. If an operator is to 
be chosen to represent the data storing operation, this data 
operation could be: "store a into b" or "store a +b into c , " 
or "assign a into c." Common practice in programming 
language uses an assignment operator such as ": = " to rep
resent it. In the HLM language, this practice is followed. 
However, the assignment statement or statements are en
closed by the reserved control flow delimiters, BLOCK and 
ENDB to enhance the visibility of the data flow statements 
and allow a simpler implementation. 

ARRAY prograDLJDemory[65,536] OF BYTE_STRING[l]; 
ARRAY 01 am[a~size], 

02 type of CHAR-STRING[l], 
02 name OF CHAIL-STRING[lO], 
02 locn OF NUMBER[2], 
02 ptrl OF NUMBER[2], 
02 ptr2 OF NUMBER[2]; 

BUFFER am.-mara OF NUMBER[3], 
am-..free OF NUMBER[3], 
x OF TIME_UNIT[MSEC]; 

STACK 01 nestack, f*nesting stack*/ 
02 type OF CHAR-STRING[I], 
02 name OF CHAR-STRING[lO], 
02 locn OF NUMBER[2], 
02 ptrl OF NUMBER[2], 
02 ptr2 OF NUMBER[2); 

STACK estack OF STATUS[syntax,execute); f*execution stack*/ 
BUFFER calledproc OF CHAR-STRING[IO], 

fp--.Joc OF NUMBER[2); 
CLOCK 01 wal1clock, 

02 MONTH OF NUMBER[2], /*note that MONTH, DAY, YEAR, HOUR,*/ 
02 DAY OF NUMBER[2), /*and MIN are reserved words*/ 
02 YEAR OF NUMBER[2], /*since only reserved words are capitalized*/ 
02 HOUR OF NUMBER[2], 
02 MIN OF NUMBER[2]; 

Figure 3-Examples of data declarations. 
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TABLE II-Data Structure Operations and Data Flow Statements 

Data 
Structure 
Type 

buffer 

Data Operations 

reference buffer x 
store into buffer x 

Data Flow Statements 
(examples) 

y:=x; 
x:=y; 

array reference array element x[n] y: =x[n]; 
(one-dim.) store into array element x[n] x[n]: =y; 

stack 

port 

file 

clock 

find number of elements of array y: =SIZE(x); 

search array x for argument y 

reference nth element from top 
of 

stack x 
push down y into stack x 
pop up from stack x into buffer 

y 

y: =SEARCH(x) FOR (y); 

y:=x[n]; 

x: =PUSH(y); 
y:=POp(x); 

test stack x for empty x=EMPTY; 
find number of elements of stack y: =SIZE(x); 

x 
initialize stack x to empty 
search stack x for argument y 

and return index from stack 
top 

for the first occurrence of y. 
(return -1 if none found) 

x:=EMPTY; 
z: =SEARCH(x) FOR (y); 

input from port 1 into buffer cmd cmd: =INPUT(l); 
output '@' to port 0 OUTPUT(O):='@'; 

open input file x 
open output file x 
close and save file x 
close and delete file x 
read DIRECT file x record n 
write DIRECT file x record n 
read SEQUENTIAL file x 
write SEQUENTIAL file x 

read clock x in declared time 
units 

OPENIN(x); 
OPENOUT(x); 
CLOSESA VE(x); 
CLOSEDELETE(x); 
READIR(x[n]); 
WRITEDIR(x[n]); 
READSEQ(x); 
WRITESEQ(x); 

READ(x); 

Input and output 

In the HLM language, the input data or the output data 
flow through a pseudo-data storage called "port." An 110 
device is connected to a particular port; this connection is 
determined by the system configuration. There are a maxi
mum of 128 input ports and 128 output ports; the port is 
represented by the reserved words INPUT or OUTPUT, 
and the port number is indicated by a numerical subscript. 
Examples are shown in Table II. 

Clock 

A clock is a data source which generates the data type of 
time. It generates real time for time referencing and for 
synchronizing hardware processors. Reserved word CLOCK 
is used to represent the real time clock. A data declaration 
is needed to declare the names and time_units desired for 

one or more clocks, though all the clocks give the same real 
time. A reading operation to CLOCK gives a reading in its 
declared time_units. 

Expressions 

An expression is concatenation of operands and operators 
to specify a sequence of operations. A numerical expression 
is a sequence of numerical operands and arithmetic opera
tors. In the HLM language, there are five types of expres
sions corresponding to the five data types. The order of 
evaluating the operations in an expression follows the prec
edence of the operators. In the HLM language, the prece
dence follows common convention. 

CONTROL 

Control refers to those language constructs that may 
change the path of program execution. There are several 
aspects of control that need to be considered-control types, 
control operations, control flow and control structures. 
These aspects for the HLM language are discussed next. 

Control types 

The control type refers to the manner in which the control 
flows during program execution. In a conventional program
ming language, the control flow follows the written order of 
the statements of the program; this type of control is se
quential. There are other types of control. For example, 
PL! 11 has the concurrent type of control in the name of 
multiple-tasking. PL/M3 has the interrupt type of control to 
meet the needs of a microprocessor system. CDL2 permits 
non-sequential execution of statements. 

In the HLM language, two control types are selected
sequential and interrupt. The sequential type of control per
mits the execution of control flow statements according to 
the order of the control flow statements in a procedure. The 
execution begins with the main procedure which calls di
rectly or indirectly the other procedures. 

The interrupt type of control permits the suspension of 
the control flow and transfers the control flow to a prede
fined interrupt procedure. This interrupt procedure is then 
executed and returns to where the control flow was inter
rupted. The interrupt type of control also permits interrup
tion by software. 

Boolean expression 

The application of a relational operator (i.e. =, =1-, >, <, 
:2:; ::;;) to two data storages of the same type yields an 
expression of the control type boolean. All six relational 
operations are available to four data types, and only two (=, 
=1-) are available to the remaining data type STATUS. (See 
Table 111.) 
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TABLE III-Control Data Operations and Boolean Expressions 

Boolean Expression 
Data Type Control Data Operation (examples) 

decimal number 6 relational operations x<y AND y> z 
4 boolean operations 

character string 6 relational operations x<y AND y>z 
4 boolean operations 

byte string 6 relational operations x<y OR y<z 
4 boolean operations 

time units 6 relational operations x<y OR y<z 
4 boolean operations 

status 2 relational operations (= and #) x=on 
4 boolean operations x=n AND y=off 

The value of a boolean expression can be negated by 
prefixing it with the unary boolean operator NOT. Two 
boolean expressions can be joined by one of the three binary 
boolean operators (AND, OR, or XOR) to form a more 
complex boolean expression. 

Note that all boolean expressions must contain at least 
one relational operator with one exception. If a data storage 
of type STATUS's value is either the status constant TRUE 
or FALSE then it is considered to be a boolean expression. 

Control flow statements 

Control flow refers to the order in which the control flow 
statements are executed. Since the data flow statements are 
embedded in the control flow statements, control flow also 
refers to the order in which the data flow statements are 
executed. 

In the HLM language, there are two control types-se
quential and interrupt. Skeleton control flow statements are 
shown in Table IV. The control flow statements for the 
sequential control type are: 

a. Block statement 
b. If statement 
c. While statement 
d. Call statement 
e. Return statement 
f. Macro statement 
g. Procedure statement 
h. Set statement 

Each of these control flow statements is single-in-single-out. 
These simple control constructs make the HLM language a 
structured programming language. 

The control flow statements for the interrupt control type 
are: 

a. Interrupt statement 
b. Disable statement 
c. Enable statement 

TABLE IV-Control Operations and Control Flow Statements 

Control Flow Statement 
Control Type Control Operation (skeleton) 

sequential grouping BLOCK ... ENDB; 
alternative IF ... THEN ... ENDI; 

IF ... THEN ... ELSE ... ENDI; 
looping WHILE ... DO ... ENDW; 
macro declare MACRO ... ENDM; 
procedure declare PROCEDURE ... ; ... ENDP; 

PROCEDURE ... RETURNS ... ; 
... ENDP; 

procedure call CALL ... ; 
procedure return RETURN; 

RETURN ... ; 
set a status SET ... TO ... ; 

interrupt execution interrupt INTERRUPT ... ; 
disable interrupt DISABLE ... ; 
enable interrupt ENABLE ... ; 

The interrupt statement suspends the current control flow, 
and transfers it to a specially defined procedure. The enable 
and disable statements enable and disable the ability of the 
interrupt to occur, respectiVely. 

Control structure 

Control structure refers to the manner in which the dec
larations and statements are organized to steer the control 
flow. For modularity, declarations and statements are al
lowed to be grouped together in a certain manner. For ex
ample, the compound statement in Algol-60 and the do-end 
group in PL/I allow the grouping of statements. In Algol-60 
and PL/l, both statements and declarations may be grouped 
into a so-called block structure; the block structure may 
permit a complex interaction between the data flow and 
control flow of a program. 

In the HLM language, simple control structure is sought
after. There is no ALGOL-like block structure. Only three 
control structures are permitted-nesting structure, macro 
substitution and procedure structure. The nesting structure 
allows the nesting of two or more control flow statements 
(e.g. if statement enclosing a while statement). The macro 
and procedure structure are described in the next sections. 

Macro 

As mentioned before, macro definitions in a HLM lan
guage program describe the macros of the program. Each 
macro definition specifies some program text for substitu
tion. The program text is substituted at where it is called. 
Syntax of this program text is not recognized until after the 
macro is called and the textual substitution is made. 

In the HLM language, macro definitions within a macro 
definition are not allowed for simplicity in implementation. 
Nevertheless, they serve the llSeful fnnction", of text substi
tution and text compacting. 
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Procedure 

As mentioned before, procedure definitions in a HLM 
language program describe the procedures of the program, 
and the first procedure is the main procedure. 

Procedure structure 

There are three relations among the defined procedures, 
which are the procedure defining, calling and returning re
lations. These relations are called collectively the procedure 
structure. 5,6 

In the HLM language, simplicity of the procedure struc
ture is sought-after. As a result, a "simple" procedure struc
ture is chosen which has the following characteristics: 

a. No procedure may be defined within another procedure 
(i.e. no nested procedure definitions). 

b. No procedure may be defined or called recursively. 
c. Each procedure always returns to where it is called. 

The simplicity of the previous procedure structure contrib
utes toward simpler program writing and in tum more reli
able programs. 

Procedure parameters 

A procedure may need no parameters if all variables are 
declared globally. However, in the HLM language, there 
can be local data declarations and parameters are permitted 
in a procedure definition. The parameter can be the name 
of any data structure of any data type. However, it can be 
neither a procedure name, nor a macro name. All parameters 
are called by reference or by value. 

It should be noted that procedure parameters contribute 
to the interaction between the data flow and the control flow 
of the program. This interaction is needed, but it should be 
minimized and made visible for the purpose of contributing 
toward reliable programs. 

Function 

It is common to have functions in a programming lan
guage. For example, there are function subprograms in For
tran and typed procedures in Algol-60. In the HLM lan
guage, no specific designation is provided for functions. For 
most commonly-used functions, they may be pre-declared 
as data operators. Otherwise, a function is regarded as a 
special case of procedure where the procedure returns with 
a single value for any data type and a call statement is still 
required. 

LEXICALITY 

Lexicality deals with the symbols and codes of the lan
guage. It plays an important role since it greatly influences 

the appeal of the language to the potential users as well as 
the implementability of the language on a computer system. 
In this section, we choose the character set and code. We 
describe how constants are written. We specify how names 
are spelled, and what the operators and reserved words are. 

Character set and code 

The seven-bit ASCII X3.4-1968 code consists of the fol
iowing iwo types of symbols: 

a. Single character symbols which consist of 52 letters, 10 
digits and 33 special characters. 

b. Control symbols which consist of 33 reserved words. 

An escape function represented by symbol ESC is provided 
in order to allow the ASCII code to be expanded beyond 
the 128 characters. 

In order to guarantee that the character set is capable for 
information interchange between computer systems and 
communication systems, the 95 single character symbols of 
the seven-bit ASCII code are chosen as the character set of 
the HLM language. From this character set, the constants, 
the identifiers and the operators are formed. 

Constants 

Constants are data values. The constants for the data 
types of the language are described below. 

Numerical constants 

A number is a numerical constant. For the data type of 
decimal numbers, a numerical constant is written as a dec
imal number, which can be positive or negative. A decimal 
point may exist if it is needed. Examples of numerical con
stants are: 

-579, 579.0 and +57.95 

The permissible range of decimal numbers is to be chosen 
during implementation; the default range is chosen to be 15 
digits including a sign. 

Character-string constants 

A character-string constant is a string of characters en
closed by a pair of apostrophes. In case an apostrophe is a 
character of the string, this apostrophe is written as a doub
le-apostrophe. Examples of character-string constants are: 

'ABC$*+=/?' and 'ABC"DEF"GHI'. 

The size ofa string is limited by the available memory space. 
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Byte-string constants 

A byte-string constant consists of one or more bytes in 
concatenation (i.e. 8, 16, 24, etc. bits). It can be written in 
hexadecimal, octal, or binary form. The constant must be 
preceded by letter H, Q, or B and followed by a hexadeci
mal, octal or binary number in a single-quote pair. Examples 
are: 

H'AIB2C3', Q'23456T, Q'255', and B' IOIOIOIO'. 

Status constants 

A status constant is an identifier or a decimal number. It 
first appears when the status is defined in a data declaration. 
It represents a condition to be used as an operand in a 
boolean expression in either the SET, IF or WHILE control 
statements. Examples of status constants are: 321, on, off, 
TRUE, FALSE, and ready_queue_empty. 

Time constants 

A time constant is a numerical value in time units. The 
time units can be microseconds, seconds, minutes, hours, 
days, months, years or combinations thereof. Examples are 
IO microseconds, 15-hour120-minute/25-second, 1977/aprill 
15. The time units of a clock are declared in a clock decla
ration. The generic term for a time-unit is coined to be a 
"tut. .. 

Identifiers 

Identifiers are the names for data types, data structures, 
procedures, macros, statuses, subscripts, fields, etc. Ex
amples have been shown in Figure 3. An identifier name is 
a character string consisting of letters, digits and character 
underscore; with the first character being a letter. Although 
there is no limit to the length of the identifier name, the 
identifiers in a program are distinguished by the first eight 
characters. This choice makes the size of the hardware's 
symbol table reasonable. 

Operators 

Operators are the terminals of the language. They consist 
of single-character operators, two-character operators, and 
reserved words. There are 20 single-character operators, 7 
double-character operators, and 84 reserved words. Note 
that a blank is also a delimiter which is required for sepa
rating symbols. 

A FAMILY OF LANGUAGES 

The aforementioned programming language can he organ
ized into a family of member languages. In this way, the 

programmer needs to learn only a member language and the 
compiler/interpreter can be simpler. It is a family because 
all the member languages have the same program structure, 
control structure and data structure. Their differences are 
in the choice of the data types and control types and their 
associated data and control operations. 

A member language for software implementation may 
choose all the five data types and both control types since 
it needs all of the descriptive power of the language. A 
member language for computation needs only the data types 
of number and status and the sequential control type. A 
member language for data processing needs to choose the 
data types of number, character string, file and status and 
the sequential control type. A member language for real
time control needs the data types of number,. byte-string, 
status, time and both control types. A member language for 
microprocessors needs the data types of byte-string, status 
and time and both control types; this choice of data and 
control types is imide to match the microprocessor capabil
ity. 

For each of the member languages of the family, a com
piler or an interpreter or both may be constructed. The 
implementation can be made simpler for the whole family 
by providing a family of software modules so that the com
piler or interpreter of a member language could be built from 
a subset of these software modules. 

CONCLUDING REMARKS 

A programming language serves as a bridge between the 
programmer and the computer hardware. In the past, a pro
gramming language may have been designed for its power 
and elegance. The language as a result may have become 
hard to understand, long to learn and costly to implement. 
The language may well have been over-designed. The design 
of the HLM language has been an engineering undertaking 
with both the programmer's viewpoint and the language 
implementation taken into consideration. 

To the programmers, the language is designed with a pri
mary consideration of simplicity and understandability. The 
following language concepts and constructs have been 
adopted. 

I. The concept of the data flow and control flow in a 
program and visibility of their interaction. 

2. Inclusion of the data types of status and time and their 
data operations. 

3. Data structures can all be declared with fields and 
subfields. 

4 .. Data operations are provided for all data types and all 
data structures. 

5. Treatment of inputs and outputs as data sources and 
sinks, respectively. Input and output data transfers are 
treated as input and output data operations, respec
tively. 

fl. Provision of a real-time clock il\ provided t0gether with 
data operations. 
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7. Simplicity of control structure. There are no block 
structures, no recursive procedures, no nested proce
dure definitions and ·no nested macro definitions. 

8. The use of single-in-single-out control flow statements. 
9. Provision of both sequential and interrupt control 

types. 

For implementation considerations, the language is de
signed to give a simple interpretation model. Costly and 
unnecessary constructs are avoided or eliminated. Imple
mentation by both compilation and interpretation is consid
ered. The following are the specific considerations: 

1. Separation of the data flow and control flow interpre
tation. 

2. Simplified model as a result of no block structures, no 
recursive procedures, no nested procedure definitions 
and no nested macro definitions. 

3. Presence of reserved words at the beginning of each 
declaration or statement. 

4. Declaration of the number of digits, characters and 
bytes for the data types of number, character string 
and byte string, respectively. 

The following language constructs should be excluded for 
the sake of simpler implementation, but they have not be
cause of more effectiveness in programming: 

1. Provision of field and subfield definition for any of the 
data structures. 

2. Provision of data operations for all of the data types 
and data structures. 

3. Provision of procedure parameters. 

The HLM language is now under an experimental and 
evalu~tion phase. During this phase, the language is used 
for writing programs. An interactive interpreter for a mem
ber language is being designed and implemented for exper
imental and evaluation use. The HLM language will be re
vised and refined as a result of this phase. 
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Data management in distributed data bases* 

by C. V. RAMAMOORTHY and BENJAMIN W. WAH 
University of California 
Berkeley, California 

INTRODUCTION 

The recent advances in large-scale integrated logic and mem
ory technology, coupled with the explosion in size and com
plexity of the application areas, have led to the design of 
distributed architectures. Basically, a Distributed Computer 

·System (DeS) is considered as an interconnection of digital 
systems called Processing Elements (PEs), each having cer
tain processing capabilities and communicating with each 
other. This definition encompasses a wide range of config
urations from an uniprocessor system with different func
tional units to multiplicity of general-purpose computers 
(e.g. ARPANET). In general, the notion of "distributed 
systems" varies in character and scope with different peo
ple. 30 So far, there is no accepted definition and basis for 
classifying these systems. In this paper, we limit our dis
cussion to a class of DCSs which have an interconnection 

. of dedicated/shared, programmable, functional PEs working 
on a set of jobs which may be related or unrelated. 

Due to the information explosion and the need for more 
stringent requirements, the design of efficient coordination 
schemes for the management of data on a DCS is a very 
critical problem. Data on a DCS are managed through a data 
base. A Data Base is a collection of stored operational data 
used by the application systems of some particular enter
prise,6.12 and a Distributed Data Base (DDB) can be thought 
of as the data stored at different locations of a DCS. It can 
be considered to exist only when data elements at multiple 
locations are interrelated and/or there is a need to access 
data stored at some locations from another location. Due to 
the ever-increasing demand for on-line processing, there is 
a need for decomposing very large data bases into physically 
or geographically dispersed units and/or integrating existing 
data bases held in physically isolated nodes into a single, 
coherent data base that will be available to each of the 
distributed nodes. 

In this paper, the design issues and solutions for resource 
management of data on a DDB are studied. The different 
aspects of resource management are categorized in the next 
section. These management issues are part of the issues 
related to the operational control of a DDB and are con-

* Research supported by Ballistic Missile Defense Contract DASG60-77-C-
0138. 
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cerned with the management of data as resources. They can 
be divided into three related levels, namely, the query level, 
the file level and the task level. The query level is concerned 
with the processing of user queries and requests so that 
parallelism in processing can be maximized, and the amount 
of communications on the system can be minimized. On the 
file level, the related issues are the compression of data files 
for efficient storage and communication, as well as the 
placement and migration of files for efficient accesses. On 
the task level, the objective is to schedule the requests so 
that overlap in processing can be maximized. These issues 
and some of the corresponding solution algorithms are stud
ied in detail in the third to sixth sections respectively. Fi
nally, the seventh section provides some concluding re
marks . 

RESOURCE MANAGE~.1ENT OF DATA IN DDBS 

There are many issues in the design of a data base, among 
which are the issues in logical organization, architectural 
designs, operational control and evolution. These issues 
have been discussed in Reference 31 and will not be repeated 
here. A summary of the issues in the design of a DDB are 
shown in Figure 1. In this paper, the resource management 
issues of data and files on a DDB are studied. The specific 
data management issues investigated are: 

Query decomposition on DDBs 

A query is an access request made by a user or a program 
in which one or more files have be accessed. When multiple 
files are accessed by the same query on a DDB, these files 
usually have to reside at a common location before the query 
can be processed. Substantial communication overhead may 
be involved if these files are geographically distributed and 
a copy of each file has to be transferred to a common 
location. It is therefore necessary to decompose the query 
into sub-queries so that each sub-query accesses a single 
file. These sub-queries may then be processed in parallel at 
any location which has a copy of the required file. The 
results after the processing are then sent back to the re-
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Figure I-Classification of issues in distributed data base systems, 

questing location. It is generally true that the amount of 
communications needed to transmit the results is much 
smaller than the amount needed to transmit the files. This 
approach has been proposed in the design of the centralized 
version of INGRES41 and is extended to the design of SDD-
1,42 and distributed INGRES.8 However, in some cases de
composition is impossible and some file transfers are still 
necessary. In order to avoid these extra transfers, a tech
nique is proposed in the third section so that redundant 
information is added to the files and non-decomposable 
queries can still be processed without any file movements. 

Data compression 

Data compression is any reversible encoding technique 
that produces a measurable reduction in the size of the data 
encoded. By reversible, it is meant that the original data is 
recoverable from the compressed form. Due to the growth 
in the size of information processing, it is necessary to 
develop good data compression techniques which reduce 
the size of the stored information and the amount of inter
node communications. This issue is discussed in the fourth 
section. 

File placement and migration 

This issue relates to the distribution and migration of data 
base components, namely, files and control programs, on 
the DDB with the objective of minimizing the overall stor
age, migration, updating and access costs on the system. A 
file assignment algorithm is proposed in the fifth section. 

Task scheduling 

Requests on the DDB must be scheduled so that high 
parallelism and overlap can be achieved. The request may 
be a single word fetch or it may be a page or file access. 
The parallelism on the DDB is important because in order 
to attain high throughput, the parallel hardware and re
sources must be efficiently utilized. The control of task 
scheduling can be distributed or centralized. In distributed 
control, each node may act independently and coordinate 
with each other. In centralized control, there is a primary 
node in which all scheduling control will be performed there. 
The decision of which is the better control mechanism de
pends very heavily on the interconnection structure and the 



communication overhead involved. This issue is discussed 
in the sixth section. 

The relationships among the various data management 
issues are shown in Figure 2 where a relation ~ is said to 
exist between two design issues a, 6, i.e. a~6, if the solution 
of 6 is transparent to the solution of a. That is, the solution 
of a is not affected by the solution to 6, but not vice versa. 
The solution to a can therefore be developed independent 
of 6. In Figure 2, it is seen that generally, task scheduling 
is transparent to file placement and migration which in turn 
could be transparent to data compression and query decom
position. Algorithms for data compression and query decom
position can therefore be developed independently. In de
veloping algorithms for file placements and migrations, the 
solutions for data compression and queJ:y decomposition 
should be taken into account. However, in most cases, as
sumptions can be made about their solutions and the file 
placement and migration problem can be solved independ
ently. For example, it may be assumed that all queries which 
access mUltiple files may be decomposed into sub-queries 
that access single files. The file placement and migration 
problem for mUltiple files is therefore decomposed into many 
single file optimization sub-problems. It must be noted that 
other operational control requirements may also impose re
strictions on the solutions to the data management issues. 
For instance, different reliability requirements may demand 
different lower bounds on the number of copies of a file on 
the DDB; different concurrency control mechanisms may 
have different costs on the file placement problem; etc. 
Reasonable assumptions must therefore be made about these 
operational control requirements in order to determine their 
effects on the resource management issues and to solve 
these issues independently. 

QUERY DECOMPOSITION ON DDBS 

The approach 'using Ciiiery decomposition is geared to
wards relational data bases. 4 In a relational data base, data 
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Figure 2-Relationships among various data management issues. 
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is viewed as relations of varying degree, the degree being 
the number of distinct domains participating in the relation. 
Each instance of a relation is known as a tuple, which has 
a value for each domain of the relation. Thus a relation can 
be simply represented in tabular form with columns as do
mains and rows as tuples. In query decomposition, optimi
zation is performed on the processing of a single query 
originated at a node. The objective is to decompose a mul
tiple relation query into as many single relation sub-queries 
as possible so that data (relation) movements from one node 
to another can be minimized. 41.42.8.13 However, there exists 
non-decomposable queries which require all the relations 
that they access to be present at a common location. A large 
number of relation transfers may be needed if these relations 
are geographically distributed. In order to avoid these extra 
relation transfers, a technique utilizing redundant informa
tion is proposed here. Instead of decomposing queries that 
access multiple files, it may be sufficient to provide redun
dant information in each relation so that mUltiple relations 
do not need to reside at a single location before the query 
can be processed. This will be illustrated later in this section. 
We begin by first examining the different types of queries 
on a relational data base. 

A query on a relational data base consists of two parts: 
the part specifying the domains of the relation to be retrieved 
and the part specifying the predicate which is a quantifica
tion representing the defining properties of the set to be 
accessed. Let S be a relation of domain s#, sname, status, 
city; and SP be a relation of domains s#, p#, qty. The 
queries on a relational data base can be classified into the 
following categories: 6 

• Retrieval Operations 
a. Single Relation Retrieval-The predicate represent

ing the defining property of the set to be retrieved 
is defined on the same relation as the set. 
E.g. GET (S.sname): S.city = "Paris" AND 
S. status > 10 

b. Multiple Relation Retrieval-The predicate, as well 
as the set to be retrieved, may be defined over mul
tiple relations. 
E.g. GET (S.sname): (SP.s#=S.s# AND 
SP.p#="P2") 

Relation SP and S must be available simultaneously 
before the query can be processed. 

• Storage Operations 
a. Single Relation Update 
b. Multiple Relation Update 
c. Insertion 
d. Deletion 

• Library Functions 
These represent more complicated operations on the 
predicate than the equality operations, e.g. counting 
the number of occurrences, selecting the maximum! 
minimum etc. 

A query which is defined over mUltiple relations is not 
decomposable into single relation sub-queries when it has a 
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logical relation defined over a common domain of these 
mUltiple relations. For example, the query: 

GET (S.sname): (SP.s#=S.s# AND SP.p#="P2") 

is not decomposable into single relation retrievals because 
there is a logical relation .• = " which is defined over a 
common domain s# of the relations Sand SP. These rela
tions must be available simultaneously at a common location 
before the retrieval or update operations can be performed. 
It is noted that the common domains of these multiple re
lations actually represent multiple copies of the same domain 
on these relations (although the information they contain 
may not be identical). A lot of transfers can be eliminated 
if their common information is represented in both relations. 
For example, in processing the query: 

GET (S.sname): (SP.s#=S.s# AND SP.p#="P2") 

on two geographically separated relations, Sand SP (Figure 
3a), it may be necessary to transfer relation S to the node 
where SP resides and then process the query there or vice 
versa. However, if the information SP.s#=S.s# are com
piled beforehand into the two relations (Figure 3b), then it 
is only necessary to send the query to the location where S 
or SP resides and the query can be processed there. 

This technique poses several problems. First, it is nec
essary to take one extra bit for each tuple in order to compile 
this piece of information. If the amount of information to be 
added is large, (e.g. when the number of different predicates 
defined on a common domain of two relations is large), the 
size of the extra storage space may be significant. Second, 
when the common domain of one relation is modified, it is 
necessary to "multiple update" all the common domains of 
the other relations in the data base. Referring to Figure 3b, 
if an extra tuple with s#=2 and sname="Boston" is added 
to relation S, then it is necessary to update the SP.s#=S.s# 
information in relation SP because relation SP contains a 
tuple with s#=2. If updating activity is frequent, then the 
"multiple update" cost is large. Third, this technique re
quires that the data base designer to be able to estimate the 
amount of additional information to be compiled into the 
relations. A possible technique is to pre-analyze the type of 
predicates used in retrievals and updates and to determine 
what are the essential information to be compiled into the 
relations. A compromise should be made between introduc-
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ing extra information with additional storage space and 
higher cost in multiple updates and reducing the amount of 
relation transfers. It would be advantageous for the more 
frequently used predicates and less advantageous for others. 

DATA COMPRESSION 

With the increase in the amount of information processing, 
it is important to keep the utilization of the memory high. 
The information content of data stored in large alphanumeric 
data bases is usually low. Further, as the processing be
comes distributed, the communication overhead of transfer
ring data from one location to another is usually substantial. 
In order to keep the utilization of the storage sub-system 
high, and to keep the amount of data transferred over com
munication links low, data compression is a natural solution 
to the problem. However, the use of compression codes 
which remove the redundancy of data seems to be in direct 
conflict with the use of redundant coding, e.g. parity check 
codes, which increase the reliability. What is needed then 
is an exploration of efficient error limiting codes which can 
be applied to compressed data and an analysis of the error 
rate of various compression schemes. 

Desirable properties of compression codes 

In designing a compression code, it should possess to 
some degree each of the following properties: 

I. The technique should be reversible, i.e. the original 
data should be fully recoverable from the compressed 
form. This property can be relaxed in certain situations 
when the data is repeated elsewhere, e.g. the keys in 
a directory structure are usually repeated across levels. 

2. The coding scheme should cause a measurable reduc
tion in the size of the stored data. In comparing 
compression codes, a standard measure called percent 
compression is generally used. 

[size of input data] 
percen~ = -[size of output data] 

compreSSIOn . x 100% 
[size of mput data] 

3. The technique should be reasonably efficient to imple
ment. 



4. The technique should be general enough to be equally 
applicable to all alphanumeric data files. 

Two other properties which are often desirable in compres
sion schemes are: 

5. The prefix property, i.e. no c~de is the prefix of an
other code. This assures that the decoder never has to 
backup on any portion of the text. 

6. Lexicographic ordering property, i.e. if the input data 
is in a sorted order, then after encoding, the output 
data is still in sorted order. This property is useful for 
indexes. 

Existing compression techniques, which possess part or 
all of the above properties, can be classified into the follow
ing board categories: (1) Run length encoding; (2) Differenc
ing; (3) Statistical encoding; (4) Value set schemes .. 

Run Length Encoding-In a data base, there are frequent 
occurrences in which the data occur in a continuous se
quence of identical characters, e.g. sequence of zeroes. This 
sequence can be replaced by the character followed by a 
count. Run length encoding is a technique by which a string 
of continuous characters or a "clump" are replaced by a 
repeat flag for the character followed by the size of the 
"clump" or run length. In practice, however, since very 
long clumps are highly improbable, one can limit the run 
length encoded and combine the flag and length in a single 
byte. This is the technique used in WYLBUR.lO Run length 
encoding of a single character type is potentially the most 
successful, with diminishing returns for more characters. 
Huang has discovered an upper bound for the entropy of 
run length encoding. 1!! 

Differencing-Differencing refers to techniques which 
compare a current record to a pattern record and retain only 
the differences between them. It is particularly successful 
with large files of records with fixed length alphanumeric 
fields where most corresponding fields are the same or are 
blanks and zeroes. This is the approach normally used for 
sequential files, where the pattern record is taken by the 
previous record in the file. When differencing is applied to 
direct access files, however, the first record of each block 
is left uncompressed and used as a pattern for the remaining 
records in the block. The unit of information on which dif
ferencing is performed can be the bit, the byte, the field or 
some logical data in the record. Byte-level differencing is 
the most common case since byte access is convenient and 
cheap. In field-level differencing, bit maps are often used to 
indicate the presence or absence of a field when identical to 
the previous. Two examples of the use of differencing in 
relational data base systems are Titman's experimental sys
tem38 and the Peterlee Relational Test Vehicle. 39 

Statistical Encoding-Statistical encoding is a transfor
mation of an input alphabet so that it is assigned a code bit 
string whose length is inversely proportional to the fre
quency of its occurrences in the text. Since different char
acters occur with different frequencies, a statistical encoding 
scheme will usually compress the text. Huffman coding 
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scheme20 is an optimum, elegant and simple algorithm to 
assign variable length bit codes with the prefix property to 
characters, given their frequencies of occurrence in a text. 
There are other techniques such as the Hu-Tucker Algo
rithm,18 which has both the prefix and the lexicographic 
ordering property. The major drawbacks of statistical en
coding are that it does not exploit the natural radix of the 
computer (e.g. byte, word, etc.), and it does not take into 
account some special characteristics of the data, e.g. strings 
of repeating characters, and the distinction between numeric 
and character data. A solution to this is the use of fixed 
length encoding which manipulate data in units of byte. 32,2 
Further, the fact that the size of each character is variable 
also causes problems when the data are modified and the 
reliability of the data is difficult to assure because the char
acter stream would not be recognizable once a bit is de
stroyed. 

Value Set Schemes-A value set scheme in a data base 
system is a coding scheme in which repeated storage of data 
elements in their full character representation is avoided. 
Instead, each data element is stored once in the system and 
all subsequent occurrences of the same data element are 
referred to the first stored occurrence. An example of this 
technique is shown in the MacAIMs Data Management 
(MADAM) System14 in which a reference number is assigned 
to a new entering data element and all subsequent operations 
on the data element use the reference number. However, 
the fact that reference numbers are unique only within a 
relation could lead to problems in the reliability of the data 
management system and the integrity of the data. The 
MADAM System also uses a binary tree scheme for main
taining reference numbers which is inefficient for insertion 
and costly in storage space for large sets of data. There are 
other schemes which represent a better tradeoff between 
storage efficiency and processing efficiency. 24 

The decision of which code to use is highly dependent on 
the applications. For example, in a data base where the 
order of data is not important, the lexicographic ordering 
property is not important. The required properties of the 
applications must therefore be identified by the designers 
before the code is selected. 

Future directions of research 

While there are many reported results on data compres
sion, the future directions of research are seen to be con
centrated in the following areas: 

Identify and characterize data redundancy-In a data base, 
there are many levels of data. For example, there are the 
file level, the record level, the field level and the byte level. 
The type of data redundancy at each level must be identified. 
This would aid in selecting data compression schemes best 
suited to the particular type of redundancy. Further, it leads 
us to the possibility of multi-level compression schemes, 
wherein data is compressed through a set of cascaded stages. 
Each level of the data is possibly compressed using a dif
ferent technique. The compression code must be selected so 
that it minimizes the effects on other levels of the data. 
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Develop a comparison model for various compression 
schemes-The comparison model must be able to measure 
the amount of storage reduction and the computation cost 
for encoding and decoding. A simple measure is the percent 
compression defined earlier. The computation cost can be 
broken down into the CPU cost, the memory usage cost and 
the input/output cost. In order to calculate the storage re
duction for a given compression scheme, the number of 
encodable units of tokens in a record or file must be pre
dicted. This can be obtained from an assumed input distri
bution such as uniform distribution, normal distribution or 
Zipf s distribution at the given level of data. 

Study adaptive HutTman coding techniques which respond 
to update activity-As the data base gets updated, the initial 
Huffman code assignment based on the a priori character 
frequency distribution may no longer be optimal. A thresh
old for the expected compression ratio has to be determined 
which can dynamically reassign the variable length codes 
for the new frequency distribution. Further, the threshold 
selected should not cause excessive re-coding. The problem 
of updates which change the size of the data, and the reli
ability problems should also be studied. 

Investigate the feasibility of implementing, in a micropro
cessor, a simple self-measuring self-adjusting encoder/de
coder-Experience has shown that the current implemen
tation of data base systems are I/O bound within a node and 
communication bound on the DCS. A microprocessor en
coder/decoder, by performing compression and decompres
sion, would cause communications to be done more effi
ciently, at the same time distributing or relieving this 
function from the processor sub-systems. Such a device 
would perform the following functions: (a) encode and de
code data: (b) measure and adjust the code assignments: (c) 
detect errors and automatically re-initiate the operation; and 
(d) control concurrent accesses. The advantage of this de
sign is that it would make data compression transparent to 
the rest of the system. 

In conclusion, the use of data compression allows data to 
be stored more efficiently and data communication to be 
done with shorter messages. However, many issues relating 
to the feasibility, the design of coding techniques, the reli
ability of the resultant codes, the implementation issues, 
etc., must be solved. It is contended that such solutions do 
not exist now and future study is necessary. 

PROGRAMIDAT A PLACEMENT AND MIGRATION 

Definition o/the problem 

The problem is defined as follows: given a number of 
computers that process common information files, how can 
one allocate the files so that the allocation yields minimum 
overall operating costs. This problem has been called the 
File Allocation Problem (FAP).9 A more general problem is 
the Dynamic File Allocation Problem (DFAP) in which the 
files are allowed to migrate over time so as to adapt to 
changing access requirements. The solution to this problem 

is affected directly by the query decomposition strategies 
and rather lightly by the data compression techniques. If the 
query is always decomposable into single file sub-queries, 
then the placement of each file may be optimized independ
ently. Otherwise, the distribution of the files on the DCS 
must be optimized jointly and this increases the complexity 
of the problem significantly. On the other hand, data 
compression techniques generally affect the amount of data 
requested at a node and therefore the cost of an access is 
governed by the type of compression techniques used. By 
making certain assumptions on the query decomposition 
strategy and the compression technique, the F AP can be 
studied independently. 

Motivations for file placement and migration 

The major reason for allocating mUltiple copies of a file 
to certain parts of the system at certain times and the unne
cessariness of keeping a copy of every file at every node all 
the time is because users have localities of access in any 
time interval. At any particular time, a file may be used by 
a group of users and it will continue to be used by the same 
group for a certain length of time. For a particular user, the 
file that he wants to access may be available locally, in 
which case, he can access the file with very little cost. If 
the file is not available locally, he would have to pay a cost 
in terms of delay in accessing the file and also introducing 
traffic in the network before he can make the access. It is 
under this situation that we should consider moving a copy 
of the file to his node. Introducing a new copy would also 
increase the cost in terms of storage space and the additional 
overhead in locking and concurrency control. Therefore, the 
decision of whether to introduce a new copy of a file in
volves a balance of the cost between the two cases. The 
costs, e.g. communication costs, are a function of the to
pology of the system, the type of communication protocols 
used and most importantly, the extensiveness of usage at a 
particular node: Further, as the request frequencies change, 
the file allocation on the system must also change accord
ingly. However, in this case, the cost in migrating the file 
from one node to another must also be taken into account 
in the file placement algorithm. 

Previous work 

Most of the previous studies on optimization are based on 
static distribution, that is, the allocation does not change 
with time. Some variation of dynamic distribution involves 
the application of static algorithms whenever need arises. A 
summary of the previous researches in this area is shown in 
Table I. These algorithms are very expensive to run in real 
time. A particular solution to this problem involving a 30 
site network required about an hour on an IBM 360/91 com
puter. 16 The difficulty in optimization is also exemplified in 
Reference 33. Moreover, most of the algorithms are shown 
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TABLE I.-A Survey of Previous Researches in File Placement/Migration 

Network Flow Techniques Mathematical Programming & Exhaustive Searches Heuristic 

Stone34- 37 Jenny2l.l7 Chu3 Caseyl 

Assumption Complete Complete Complete All objects 
relations among relations relations independent. 
objects: No among objects, among 
IredUndant cop;e, objects: File 
of objects. access is 

poisson. 
Parameters A vg. amount of Functional Storage cost: Storage cost: 

comm. traffic equations Transmission Query trans. 
among obj.: represents cost: File cost: Update 
Execution cost constraints on length: trans. cost: 
on a computer: which process Request rate Query rate 
Overhead in placements between between nodes: 
migration. depend; files: Update Update rate 

Communica- rate between between nodes. 
tion demands files: 
between Maximum 
processes. allowable 

access time: 
Storage 
capacity. 

Algorithm Network flow Network flow Integer Path search on 
used & predicate programming cost graph 

calculus. 
Remarks Static: Optimal Do not Algorithm Algorithm 

for 2 processors: consider very efficient: 
Sub-optimal for multiple copy complex: Independence of 
3 processor allocation: Consider objects reduces 
sys,tem: Can Min-cut alg. delay from allocation of 
calculate critical produces network multiple file to 
load factor for 2 optimal queuing single file. 
processor subprocess approach. 
system. groupings: 

Minimize 
communication 
overhead. 

to be NP-complete. * * 9 Although polynomial algorithms 
could exist for some special cases of the problem, e.g. the 
allocation of files in a two-processor system,34 their use in 
practical applications is very limited. This result suggests 
that the distributed system designer should focus his atten
tion to efficient heuristics. 

Heuristics for file distribution on a DDB are usually in
teractive algorithms. A feasible solution can be generated. 
Users of some decision algorithms then have to decide 
whether to improve the solution or not and how to improve 
it. The disadvantages of these types of algorithms are that 
they usually find a local optimum instead of a global opti
mum and the validation of the algorithm is very difficult. 
For most cases, the heuristics can be shown to perform 

"'* NP-complete problems22 is a ciass of problems for which there are no 
known optimal algorithms with a computation time which increases polynom
ially with the size of the problem. The computation times for all known 
optimal algorithms for this class of problem increase exponentially with prob
lem size, i.e., if n represents the size of the problem, then the computation 
time goes up as kn where k> 1. 

Levin & Foster Loomis & Mahmoud & 
Morgan25•29 Ghoshl3 et. al. ll Popek26•27 Riordon28 

Only Program- All objects Star network: Complete Indep. obj's: 
data relation independent. All objects probabilistic Query & refn 
exists between independent. relation among traffic divided 
objects. objects. equally among 

alloc. nodes. 

Communica- Data base with Queuing time Inter-node I Communication 
tion cost for multiple target & service time trans. cost: cost: File 
query: segment types: for Node storage cost: 
Communica- Queries with transactions: capability: File Query/update 
tion cost for mUltiple target Storage length: traffic & 
update: Traffic segment types capacity: A vg. Processing corresponding 
rate for query/ no. of needs of file: return traffic for 
update from a messages in Prob. of a each file at each 
node to a file network: Avg. request acc. an node: 
via a program. local object: Prob. Availability 

processing: of a request/ requirements. 
A verage file update is 
length: Access incident on a 
frequency: H/ node: Prob. of 
W,S/W 2 objects 
characteristics. processed in 

parallel. 
Path search on Combinatorial Queueing Clustering Int. prog. or 
cost graph search thru. network alg.: add-drop 

possible sol. Integer prog. heuristic 
Algorithm Maximize no. Minimize Dynamic Obtain both I 

efficient: of segments difference network capacity ! 
Definite access that query can from optimal behavior assignment for I relations retrieve in branching ignored: links & file 
among objects parallel from probabilities: Maximize placements: 
reduces the different Algorithm potential for Should consider 
allocation of nodes: Do not complex. parallelism. query to be 
multiple file to model routed to nearest 
single file. communication node & not 

I 

delays. distributed 
equally among 
all nodes. 

satisfactorily for some example values, but the algorithm is 
so complex that its worst case behavior is very difficult to 
determine. We first classify the three most commonly used 
heuristics, then we will discuss the application of a file 
assignment algorithm on this problem. 

Hierarchical designs 

This is a heuristic procedure in which attention is first 
restricted to the more important features of a system. In a 
file allocation problem, attention can first be restricted to 
geographical regions. After analysis has been performed and 
the files have been distributed to different geographical re
gions, attention can be directed to the less important details 
such as allocating files within a geographical iegion. This 
stepwise refinement procedure can continue down many 
levels. At each level of optimization, it is hoped that the 
effects on the optimization of the current level from the 
levels above and the levels below are very small. Neverthe-
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less, iterations and design cycles may exist to refine the 
solution. 

Clustering algorithms 

Clustering algorithms are horizontal design processes 
which have a similar objective as hierarchical algorithms, 
namely, to' reduce the complexity of the analysis in a large 
system. In a DDB, clusters can be formed on geographical 
distribution of access frequencies. The files are then allo
cated to clusters. The file allocation within a cluster may 
further be refined as in hierarchical algorithms. 26,27 

Add-drop algorithms 

In applying this algorithm, a feasible distribution of files 
is first found. The total cost of the system can be improved 
by successive addition or deletion of file copies. When a 
feasible solution with a lower cost is found, it is adopted as 
a new starting solution and the process continues. Eventu
ally, a local optimum is reached in which addition or deletion 
does not reduce the cost. The whole procedure can be re
peated with a different starting feasible solution and several 
local optima can be obtained. By taking the minimum of all 
the local minima obtained, it is hoped that we can get very 
close to the global optimum. 28 

The above techniques are by no means complete. A com
bination of these techniques may be chosen by the designer. 
In the next section, we introduce a file assignment heuristic 
which utilizes some of the principles of add-drop algorithms. 

File assignment algorithm 

In this section. we present an algorithm which can be used 
to optimize the file placements on a DCS. The assumptions 
that we use in developing the model are: 

J. File accesses are independent-By this, it is meant that 
there are no interactions among the files and all the 
accesses on the system are single file accesses. The 
placements of each file can therefore be optimized in
dependently. 

2. It is assumed that all the constraints on the system can 
be represented in the form of costs. For instance, paths 
linking two nodes in the network which violate some 
constraints such as the response time constraint, have 
a high inter-communication cost induced on them. 

3. It is assumed that for a certain time interval considered, 
it is divided into periods. The file access behavior for 
a period are assumed to be estimated at the beginning 
of the period and the access behavior for the subse
quent periods cannot be estimated at that point. With 
this assumption. it is possible to optimize the file al
locations of each period independently and is not nec
essary to use dynamic programming to optimize the 
allocations for all the periods as done in Reference 25. 

No assumption is made on the length of each period. 
Their lengths need not be identical and may be deter
mined dynamically. The algorithm described in this 
section determines the file placements for each period, 
but no provision is made for determining the length of 
each period. 

The symbols used in the model are: 

number of nodes in the distributed system 
indices for files 
length of the current period of consideration, T 
a random variable indicating the total amount of 
query accesses (including updates) at node i to 
file a (since we are optimizing each file inde
pendently, we will not write the superscript a in 
the remaining part of the discussion) 
a random variable indicating the fraction of 
queries ~t node i that are updates to file a 
per unit cost of accessing file a from node i to 
nodej 
per unit cost of mUltiple updating file a from 
node i to node j 
per unit cost of moving file a from node i to 
nodej 
per unit cost of storing file a at node i 
length of file a in bits 

{ 
0 if file a does not exist at node i during period 
1 T otherwise 

{~ if file a does not exist at node i during period 
T -1 otherwise 

{j: Yj=O}=set of nodes without a copy assigned 
{j: Yj = l}=set of nodes with a copy assigned 
{j: l j =unassigned}=set of nodes unassigned 
KoUKl UK2 , IKI=n (cardinality of K) 

Consider the problem of allocating file a on the system at 
the beginning of period T of length t, the total amount of the 
retrievals and updates in this interval are estimated to be 
qj( l.-al) and ajql' The per unit cost of assessing, updating 
and transferring file a from node i to node j are Si,j, Mj,j, 
and NjJ respectively. We assume that whenever a user at 
node i makes a request to a file not residing at node i, he 
will make the access at a node which has a copy of the file 
and with the lowest cost of access from node i. Our objective 
is to minimize the cost in the system. Our objective function 
is: 

n 

Z= L qj(1-ai) min Si,j 
i=1 j,Yj=1 

n 

+ L Yj(fj + min N i,j)la 
j=1 i,X;=l 

n n 

+ L L YjaiqiMi,j 
j=l i=1 

The first term in the above equation represents the query 
access cost; the second term represents the fixed cost of the 
period (cost of storage+cost of file transfers at beginning of 



period); while the third term represents the mUltiple update 
cost of the system. We can rewrite the integer program as 
follows: 

n n 

Z= 2 QjminSiJ+ 2 YjFj (1) 
i=l j, Y j=l j=l 

where 

(2) 

n 

Fj=(fj+ minNj,j)la+ 2 (liqiMi,j (3) 
i,Xj=l i=l 

subject to 

(4) 

The file assignment algorithm proposed here consists of 
the following basic parts: 

1. Property or condition to assign or not to assign a copy 
of the file to a node. 

2. Computation of a representative value for a candidate 
problem. (The state of a candidate problem is made up 
of the states of allocation to the n different nodes of 
the DCS. In general, the n nodes of the DCS can be 
partitioned into three sets, Ko, Kl and K2') The func
tion of the representative value is to illustrate the min
imum of the candidate problem without actually enum
erating all the allocations for the unassigned nodes. 

3. Stopping the criterion. 

The general steps of the algorithm are shown in Figure 4. 
We discuss each of these steps briefly here. 

M-l. This is to initialize the candidate problem-all nodes 
are unassigned at this point. The candidate list, which is 
a list of states where an extra node from K2 is added to 
Ko or Kl and its corresponding representative value, is 
assigned the empty set. 
M-2 to M-S. These four steps essentially achieve the fol
lowing: a node is selected from the un-assigned set, K2, 
and is assigned a copy or not assigned a copy of the file. 
A representative value, which is chosen to be a lower 
bound estimated by solving the integer program (Equation 
1) without the integrality constraints (Equation 4), is cal
culated for each of the corresponding candidate problems. 
The derivation of the linear programming lower bound for 
a candidate problem is shown in the appendix. The com
puted lower bound and the corresponding assignments are 
attached to the candidate list. These steps are then re
peated for each of the nodes in K2 • 

M-6. This step selects, from the candidate list, the can
didate problem with the minimum lower bound and the 
corresponding assignment of nodes and use it for the next 
iteration. Steps M-2 to M-6 therefore have selected a node 
and have decided whether a copy should be placed at that 
node. This node is removed from the K2 list. 
M-7. The steps M-2 to M-6 are repeated until the K2 list 
is empty. The overall computational complexity of the 
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algorithm is O(n4). To further illustrate the steps of the 
algorithm, it is applied on the following example. 

Suppose the following matrix represents the query cost 
Si,j for a five-node system. l 

S= r!2 ~2 r i2 
L 6 9 12 6 

Let 

Q = [Q i1 = [ 24 24 24 24 24 ] 

and 

F=[Fi1=[ 168 180 174 126 123 ]. 

By enumerating the 25 -1 possible allocations, it is found 
that a copy of the file should be allocated to nodes 1, 4 and 
5 giving a cost of 705. The detailed application of the heu
ristic is shown in Figure 5, giving a solution of 717. In 
general, this method will give a solution very close to the 
optimal solution and the computation complexity is very low 
when compared with that of generating the optimal solution. 
The five examples on a 19-node problem solved by Caseyl 
are compared with the solutions using the proposed heuristic 
and is shown in Table II. It is seen that the results do not 
deviate substantially from the optimum solutions. The re
sults indicated here are somewhat preliminary. For the sake 
of simplicity, a more complicated algorithm is not presented. 
This algorithm, together with the analytical results and the 
theoretical studies will be presented in a future paper. 

TASK SCHEDULING 

Definition of the problem 

This problem is related very strongly to the problem of 
query decomposition. After the query has been decom
posed, the Query Scheduling Problem (QSP) is to sequence 
the processing of the sub-queries on the DDB for a given 
distribution of the files on the DCS defined by the F AP. 
Depending on the ways in which the sub-queries are proc
essed, QSP can further be classified into Sequential Query 
Scheduling Problem (SQSP) and Parallel Query Scheduling 
Problem (PQSP). In SQSP, the sub-queries are processed 

TABLE H.-Comparison between Casey's Solutions on a 19-node Problem 
and the Solutions of the Proposed Algorithm 

Casey's Cost using Time on 
U pdatelQuery Optimum Proposed COC6400 

Problem Percent Cost Algorithm (sec.) 

1 to 117596 123073 7.7 
2 20 188738 200971 7.7 
3 30 242581 246107 7.7 
4 40 291790 298690 7.7 
5 100 431720 615342 7.7 
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NO 

NO 

Initialize Candidate Problem 
KO=~' K1=f!l. K2={1.2, •..• n} 

K2+K2• Candidate List- + f!l 

Form Candidate Problem Ci where 

~.i+KO' ~.i+KIU{i}. ~,i+K2-{i} 
Find lower bound of Ci 
Attach to Candidate List 

Form Candidate Problem Ci where 

~. i+KOU{i}. ~. i+Kl' ~. i+K2-{i} 
Find lower bound of Ci 
Attach to Candidate List 

Select minimum of Candidate List, j 

Set KO~.j' Kl~.j' K2~.j 
for the selected Candidate Problem; 

K2+K2; 

Candi date 

Figure 4-File assignment algorithm. 

M-l 

M-2 

M-3 

M-4 

t-1-5 

M-6 

M-7 

in sequential order. Using the results produced by the pro
cessing of the previous sub-query, the processing of the 
present sub-query will produce some results to be used by 
the next sub-query in sequence. If the files used by the sub
queries are separated geographically, intermediate results 
have to be transferred over communication lines. The ob
jective is to minimize the amount -of communications re-

quired. In PQSP, multiple queries are sent to different nodes 
and they are processed in parallel. The results after the 
processing are sent back to the requesting location. In this 
case, the response time may be smaller because all the 
communications are done in parallel (it is assumed that the 
major overhead is in communications and not in processing). 
For a compromise between the amount of communications 
and the response time, a combination of sequential and 
parallel query processing may be used. The QSP is a very 
similar problem which has been studied in other areas, e.g. 
the deterministic scheduling of multi-processors, the sched
uling of requests in a computer system, etc. The results 
obtained there may therefore be extended to this study. 

In order to solve the QSP, the notion of task must be 
defined. A task is defined to be a simple request which uses 
a resource for a finite amount of time. A request is said to 
be simple if no other resource is needed during the pro
cessing of this request. A complex request can always be 
broken down into a sequence of simple requests. A resource 
on a DDB can be physical, such as a communication chan
nel, a processor, etc., or it can be logical, such as a file. 
The tasks are usually governed by a precedence graph so 
that a task cannot be processed until its predecessor has 
finished processing. The task scheduling problem is to se
quence the processing of the tasks, subject to precedence 
constraints, so that some overall optimization criterion is 
satisfied. The criterion can be the maximum completion time 
of all the tasks if the objective is to maximize the throughput 
of the system; or it can be the sum of the completion times 
of all the tasks if the objective is to minimize the average 
response time. 

To schedule the processing of queries, they are first de
composed into multiple tasks and the tasks are subsequently 
scheduled. The general task precedence graph for the pro
cessing of a query in the PQSP which requires the use of 
geographically distributed files is shown in Figure 6. On a 
DCS, the communication overhead, which includes time to 
set up the communication path and the queueing delay to 
transmit the messages, is usually much larger than the pro
cessing overhead for a query. Therefore, the time required 
to process a task at a node in Figure 6 is usually negligible 
as compared to the time to pass the results over the com
munication sub-system. The communication overhead on a 
DCS is dictated by the configuration of the interconnection 
mechanism. Many models have been designed to study the 
behavior of these delays, e.g. in Reference 23. 

The QSP is usually solved with distributed control, that 
is, there does not exist a primary node which schedules all 
the processing of the queries on the DCS. Further, complete 
information for optimal scheduling are usually not available 
due to the high overhead in distributing them. The tasks are 
usually scheduled at each node sub-optimally without as
sembling all the necessary information before the schedul
ing. 

Assumptions lIsed to simplify the problem 

Certain assumptions are often used so that the problem 
can be simplified. 
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Figure 5-Application of file assignment on Casey's 5 node example. 

Communication overhead 

The processing overhead is usually much smaller than the 
communication overhead and they are usually ignored. This 
assumption will eliminate many tasks in the precedence 
graph. 

Static versus dynamic algorithms 

Static algorithms schedule a set of tasks available at the 
time of scheduling and a set of tasks that are known to arrive 
at fixed future times. The schedule does not change during 
the duration of the processing of these tasks. On the other 
hand, dynamic algorithms are more flexible and they re
schedule all the available tasks whenever a new task comes 
in. The advantage of dynamic algorithms is that they allow 
task initiations to be dynamic and do not restrict the sched
ule to the order determined initially, but they have the dis
advantage of larger overhead. With the use of dynamic al
gorithms, the assumption that there are precedence 
constraints among the tasks can also be relaxed. Whenever 

a task enters the system, all the tasks in the system are re
scheduled dynamically. The choice between the use of static 
and dynamic algorithms is system dependent. If the arrivals 
of requests are indeterminate, then dynamic algorithms are 
usually better. On the other hand, if the arrivals of requests 
can be determined precisely, then static algorithms should 
be used. The choice between static and dynamic may also 
be dictated by the overhead in each type of algorithm, and 
a judicious choice must be made by the designer. 

Deterministic versus probabilistic processing time 

The processing time for a task can be assumed to be 
deterministic or probabilistic. In the deterministic case, it is 
possible to determine which order can best satisfy the op
timization criterion and therefore all the tasks can be sched
uied in a specific order. However, in a probabilistic case, it 
is difficult to do so when the processing times of all the tasks 
are governed by a common distribution. Certain assump
tions, e.g. the distribution of job size, have to be made 
before an analytical evaluation is possible. 5 The theory of 
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Figure 6--Task precedence graph for the processing of a query in the PQSP which requires the use of geographically distributed files. 

scheduling developed now are mostly applicable to the de
terministic case}5 They can be used to approximate the 
probabilistic case when the average or the worst case pro
cessing times are used. Lastly, the difficulty of the sched
uling problem can be assessed easily in most cases under 
the deterministic assumption. NP-completeness of the prob
lem can usually be shown or a polynomial algorithm can be 
found. The QSP under the independent query assumption, 
can be shown to be NP-complete. Under this situation, the 
designer has to look for good heuristics which can be exe
cuted within the real time constraints. However, the eval
uation of these heuristics is usually difficult. Evaluation 
methods and techniques are usually ofthree kinds, analytical 
techniques, simulations and approximation algorithms. An
alytical techniques generally have to make some simplifying 
assumptions about the system parameters in order for the 
solution to be tractable and the results obtained are usually 
not accurate. On the other hand, simulations are almost 
always expensive to run, and it is difficult to exhaust all the 
possible cases of the system. A third type of evaluation 
algorithms are approximation algorithms. 40 There are two 
classes of these approximations, one guaranteeing a near
optimal solution always, and the other producing an optimal 
or near-optimal solution "almost everywhere." These types 
of algorithms are still in the research stage and an unifying 
approach in designing algorithms of this type is still lacking. 
The future trend is in the direction of investigating good 
approximation algorithms for scheduling qneries. 

CONCLUSION 
In this paper, we have studied in detail the issues of 

resource management of data on a distributed data base. 
These issues are divided into three related levels. namely, 
the query level, the file level and the task level. 

On the query level, the major issue is the decomposition 
of user queries so that parallelism in processing can be 
maximized and the amount of communications on the sys
tem can be minimized. It is shown that the approach using 
decomposition is deficient when the query is non-decom
posable. In this case, the files needed to process the query 
must be moved to a common location before the query can 
be processed. An algorithm is proposed in this paper which 
preanalyzes the type of accesses on the system and intro
duces redundant information onto the files so that file trans
fers can be reduced. 

On the file level, the issues are the compression of data 
for efficient storage and communication and the placement 
and migration of files for efficient accesses. In data compres
sion, the existing techniques has been classified into four 
areas-run length encoding, differencing, statistical encod
ing and value set schemes. A multi-level compression 
scheme is proposed so that data is compressed through a set 
of cascaded stages. In the area of file placement and migra
tion, a file assignment algorithm has been proposed. In gen
eral, this algorithm gives a solution very close to the optimal 
solution and the computation complexity is very low when 
compared with that of generating the optimal solution. 



On the task level, the problem is to sequence the pro
cessing of the sub-queries for a given distribution of the files 
on the distributed system so that overlap in processing can 
be maximized. It is shown that the problem of query sched
uling on a distributed data base is NP-complete. The future 
directions of research are therefore in the search of effective 
apl'roximation algorithms. 

The issues we have discussed in this paper encompasses 
the spectrum from the processing of the query to the sched
uling of the requests. However, many other issues may arise 
in the design of the data base. These include other issues in 
operational control, such as directory management, concur
rency control, security and privacy, etc. and they may affect 
the strategies used in data management. The study of these 

_ issues, however, are beyond the scope of this paper. 

APPENDIX-DERIVATION OF THE LOWER BOUND 
OF A CANDIDATE PROBLEM 

We derive in the appendix the lower bound of a candidate 
problem given the state of it. We can rewrite the objective 
function (Equation I) on condition on Ko, Kl and K2. 

+ ~ Q-*min S--£- 1 1,J 
ieli.O j,Yj=1 

+ ~ Qi*min Si,j+ ~ FiY i 
ieli. 2 j, Y J=1 ieli.2 

We have 

min Z= ~ Fi+ ~ Qi* min Si,j+ ~ FiY i (A-I) 
ieli. 1 ie1i.Ol'K2 j, Y j=1 ieli.2 

subject to Yi=O,l 
where Qi is defined in Equation 2, and Fi is defined in 
Equation 3. 
Equation A-I is a non-linear integer program, we can rewrite 
it in the form of a linear program. Let 

UiJ = fraction of accesses made from node i to node j; 
Pi = set of indexes of those nodes that can access node i; 
ni = cardinality of Pi' 

n n n 

min Z= ~ ~Q-S- -u -+ ~F-Y £.. £... 1 I,J I,J £.. I 1 

i=l j=l 

n 

s.t. 2: Ui,j = 1 
j=l 

O~ ~ Ui,j ~nj Yj 

iePj 

i=l 

i= i, ... , n 

j= 1, ... , n 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

Equation A-3 is true because the total amount of fractions 
must be summed to 1. Equation A-4 is derived by summing 
over all iePj , the inequality O~Xi,j~Yi which says that only 
nodes with a copy of the file can supply users' demands. By 
relaxing constraint A-5, it becomes a linear program and the 
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value of Z obtained will provide a lower bound to the original 
integer program. The solution to the linear program (Equa
tion A-2 to Equation A-4) has been solved in Reference 7. 
The solution is: 

(A-6) 

Z- _= { 1 
I,J 0 

(A-7) 

The complexity of the solution is 0(n2). 
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INTRODUCTION 

The ANSI/X3/SPARC study group on data bases has pro
posed a general architecture for a data base management 
system. 2 The keystone of this architecture is the conceptual 
schema which is an explicit description of the enterprise 
informations modelled in the data base. It portrays the ent
ities, properties and relationships of interest in the enterprise 
and constitutes a stable platform in order to map the external 
schemas which describe the data, as seen by the program
mers, onto the internal one which defines the data as seen 
by the system. Finally the ANSI/X3/SPARC DBMS study 
group envisions a three-level organization which induces 
three levels of administration functions, three levels of 
schema processors and three levels of data manipulation 
modules. This architecture is partially represented Figure 1. 
It should be noted that only functions are specified, not their 
implementation. 24 

The ANSI/X3/SP ARC study group on distributed systems 
has proposed a reference model. 3 This model allows appli
cation processes possibly located on different systems to 
exchange messages through sessions which logically join 
them. The major contribution is the structuration of the 
cooperating systems into layers. Each layer can be seen as 
a distributed sub-system. Cooperation between the distrib
uted parts of a layer is governed by a set of protocols specific 
to the layer. Six, and now seven,l1 layers have been iden
tified. The first three, and now four, layers provide a uni
versal transport service. The next layer supports interaction 
between cooperating application processes-it performs 
their binding and unbinding by sessions and controls the 
exchange of data through these sessions. The presentation 
layer enables the application processes to interpret the 
meaning of the data exchanged by transforming them into 
the desirable representation, format or model. The major 
concepts of this reference model are represented in Figure 
2. 

In this paper, the architecture of a distributed data base 
management system integrating the two proposals is pre
sented. The basic assumption which guarantees the feasi
bility is that the geographical localization of data has a con-

* Sponsored by IRIA, Le Chesnay, France. 
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ceptual meaning. Consequently, the conceptual schema can 
be distributed, each part representing an enterprise depart
ment's description as modeled in a local data base. Ob
viously, an external schema is entirely si'.uated on a site. 
The mapping of a user request which refers to an external 
object into one or several conceptual requests is performed 
by an external presentation module which can be seen either 
as an external to conceptual transformer2 or as a presenta
tion control service. 3 The conceptual requests which result 
are then taken in charge by a communication kernel which 
performs at first the session control functions of the ANSI! 
X3/SPARC distributed system reference model. In addition, 
it also performs the data base concurrency, 20,5,9 recovery6,13 
and security 12 controls. After possible transmission through 
the transport management layers, the requests are submitted 
to conceptual data base managers which execute them. The 
answers follow symmetric paths in the distributed system. 
Finally, the externai presentation module is responsibie for 
constructing the concluding unique user answer. 

This paper is organized as follows: In the first section, it 
is argued that, at least for a large class of applications, the 
distribution of objects is performed at the conceptual level. 
Consequently, an implementation of the conceptual schema 
in a distributed system is suggested. In the second section, 
the ANSI/X3/SPARC DBMS architecture is distributed in 
a computer network. That entails the development of a com
munication kernel allowing the interchange of the" conceptual 
data manipulations through the transport network. More
over, each local metabase which contains the local part of 
the conceptual schema must be accessible from remote com
puters; this feature. permits the binding of an external 
schema with the distributed conceptual schema. In the third 
section, the communication kernel is presented using several 
concepts proposed in the ANSI!X3/SPARC distributed sys
tem contribution, mainly at the session control level. In the 
last section, a reference model for a distributed data base 
system is proposed. Data base and message management 
are integrated-(a) The external-to-conceptual transformer 
of the DBMS architecture is coalesced with the presentation 
controller of the distributed system architecture. (b) The 
read/write data base commands and the send/receive mes
sage commands appear as two different presentations of 
data interchange basic actions. (c) The integrity controls of 
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the data bases and of the communications between pro
cesses are executed by the communication kernel which 
appears as the heart of the proposed architecture. 

CONCEPTUAL DATA DISTRIBUTION 

Conceptual realm of data distribution 

Several papers 16,18,8 dealing with distributed data base 
management system architecture assume that only the in
ternal schema is geographically split and that localization of 
data concerns the conceptual to internal level mapping. 
Other papers 17,1 are quite ambiguous on this topic. Our opin
ion is that at least for a large family of applications, the 
distribution of data is connected with the view of the enter
prise. This opinion seems to be in agreement with the SDD.l 
architecture. 21 

Such an opinion has been verified on real application
first, the ordering, manufacturing and delivery of vehicles 
at the French motor car company Renault. 7 For example, 
the fact that Renault model R30 is manufactured in Flins 
and that all the entitie8 concerning a car of this model must 
be stored on the Flins site belongs to the enterprise descrip-

tion and should be explicated at the conceptual level. For 
this application, the localization criterion of an entity is the 
place of the modeled object in the real world. This is not 
directly connected with efficient use of computing facilities. 
On the other hand, the transfer of R30 entities from Flins to 
Paris in the distributed system would doubtless be of interest 
for the life of the enterprise-it would mean that the man
ufacturing of R30 model is moved from Flins to Paris. 

The conceptual meaning of object localization has also 
been verified on other applications, like the management of 
spare parts. In the Renault real world, spare parts are dis
tributed to two stores. Consequently, in the Renault com
puter world, they will be distributed in two local data bases 
managed by two interconnected computers. The localization 
criterion of objects is the modeling of the distribution of 
spare parts in the real world which is a conceptual property. 

Conceptual schema design and implementation 

The conceptual schema contains the definition of concep
tual objects and the expression of their properties. In dis
tributed data bases, the first property of conceptual objects 
is to be distributed. Therefore. this property can direct the 
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design of the conceptual schema in agreement with the geo
graphical distribution of sites. Thence, it is proposed to 
divide the conceptual schema in parts, each part correspond
ing to a local site. Obviously, it may be argued that some 
properties involve objects localized on different sites, such 
as distributed integrity constraints. 19 They must be known 
in each concerned part; that means that when the conceptual 
schema is divided, the distributed properties must be inte
grated to each interested part. 

It is emphasized that only one conceptual schema must 
be designed-to provide a coherent conceptual view of the 
distributed enterprise couched on a unique booklet using the 
conceptual model should enhance significantly the interest 
of the system. The implementation of each part of the unique 
conceptual schema is performed on each site which must 
present conceptual objects to other sites in agreement with 
the conceptual schema. Thus, it should provide a distributed 
stable platform to which local internal schema and global 
external ones may be bound (see Figure 3). The design proc
ess of the conceptual schema may be distributed (each site 
designing its part) or centralized (designed by some enter
prise administrators), but the existence of such a platform 
is very important in distributed enterprises because it defines 
the objects which may be interchanged between the depart
ments. 

ANSI/X3/SPARC DBMS ARCHITECTURE 
DISTRIBUTION 

Assuming that the conceptual schema can be divided in 
local parts, the ANSI/X3/SPARC DBMS architecture can 

be easily distributed in a computer network. In order to 
simplify the presentation, host computers of the network are 
classified in two types: 

• Data computers, which contain a set of data stored in 
a local data base . 

• Processing computers, which execute external data 
base application programs. 

In the last section, an integration will be presented where 

_ _ '" -:"_;-- - _, ..... ..:-.::; .... ..... -:, - "'} (1) 
/~ ~ "\ ( l ... ) C~ , (- - - ') ( ,{ h \ 
,""'T'-.,I ",", -,/ ........ ~ .... _ ......... __ ..... 11--~ ---

t ~~·t· t i ' \,1 I\.' 
. / /". . \ I I '. '. 

(2) 

.. 
! ! 
I I } '@ (3) 

Figure 3-Schema binding and division. (I) External schema (several external 
models). (2) Conceptual schema divided in local parts (one model). (3) Internal 

schema (one internal model for each computer type). 
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each host is simultaneously a data computer and a pro
cessing computer. 

Data dictionary directory 

A key point of the ANSIIX3/SPARC DBMS architecture 
is the data dictionary directory. It can be seen as a meta
data base where every DBMS processor fetches the param
eters required by its execution. In order to implement the 
ANSI/X3/SPARC DBMS architecture with data computers 
and processing computers, it is necessary to distribute the 
elements of this data dictionary directory. The main ele
ments of interest are 

• The user program descriptions 
• The external data base schema object type descriptions 
• The mapping structures relating external and concep-

tual objects ' 
• The conceptual data base schema object type descrip

tions 
• The mapping structures relating internal data base and 

conceptual one 
• The internal data base schema object type description 

A large part of these elements is now easy to distribute. 
By hypothesis, a user program description and an external 
schema are located on a processing computer. In the same 
way, each data computer needs at least an internal schema 
to describe the internal structure of its local data base. Then, 
as the conceptual schema is divided in local parts, it is 
desirable to implement each part on the corresponding data 
computer, particularly in' order to avoid duplication of the 
whole conceptual schema on each processing computer. 
Consequently, mapping structures relating internal and con
ceptual level are situated on data computers. 

The only point to discuss is the place of the mapping 
structures relating external and conceptual objects. As they 
are strongly dependent on the model seen by external ap
plication programs, localization on each computer which 
uses them improves the independence between computers. 
Let us point out that an external schema can be mapped on 
the whole conceptual schema; thence, an external object 
can be mapped into many conceptual objects of different 
localization. Consequently, the mapping structures relating 
external and conceptual objects must include the distribution 
rules of the external objects. 

Functional processors 

Once the data dictionary directory is distributed, each 
DBMS processor can be located using the simplest criterion 
of setting it on the computer which manages the parameters 
most frequently required by its executions. Consequently a 
processing computer is equipped with an external data base 
schema processor (one for each external model) and a con
ceptual/external data base transformer (one for each external 
model). A data computer is endowed with an internal data 

base schema processor, a conceptual data base schema pro
cessor, an internal data base/conceptual transformer and an 
internal storage/internal data base transformer. Let us point 
out that the transformation of external objects into concep
tual ones includes the distribution of external objects on 
data, that is to say, the decomposition of global queries and 
updates into local ones. 25.21 

Interfaces 

The distribution of ANSIIX3/SPARC DBMS interfaces is 
straightforward. However, two interfaces must be trans
formed into a protocol. 

a. The conceptual data manipulation language (system 
format) must be exchanged on the network between a 
pair processing computer-data computer. This in
cludes conceptual objects requests and receipts with 
associated control. For this purpose, it is proposed to 
develop a standardized data manipulation protocol. 
Such a protocol must be derived from a data manipu
lation language with a high degree of functionality in 
order to take care of the network slow rate of com
munication. A good example of such a language is 
QUEL22 as used in SDD. J21 and in progress in the 
SIRIUS project. 9 

b. The external data bases schema processor needs have 
access to the distributed conceptual schema in order 
to bind the external objects to objects declared in the 
conceptual schema. It can be performed by consulting 
the meta- data base which contains on each data com
puter the conceptual schema. For this purpose, the 
previous data manipulation protocol can be utilized. It 
allows documentation on the conceptual schema from 
a processing computer if a facility is provided to ma
nipulate the meta- data bases which contain the local 
parts of the conceptual schema. 

Finally, only one data manipulation protocol must be 
added. This protocol is implemented as the first level of the 
communication kernel which is described in the next sec
tion. Figure 4 gives the schematic of the system on a pro
cessing computer and Figure 5 gives the schematic on a data 
computer. Let us point out that Interface 3 must stay ac
cessible through the network for the application system ad
ministrator; this interface can be implemented with the data 
manipulation protocol. 

THE COMMUNICATION KERNEL 

An overview 

The communication kernel performs and controls the 
communications of data manipulations and resulting entities. 
It includes the transport management which carries out the 
transfer of data between endpoints and which corresponds 
to Levels 1, 2 and 3 of the ANSIIX3!SPARC distributed 
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reference model (l, 2, 3 and 4 in (ISO 78), see Figure 2) 
when the endpoints are located on different computers. 
When they are located on the same computer, the transport 
management corresponds only to a buffer movement. In 
addition, the communication kernel includes two layers: 

• The session control which controls the correct inter
action of processes (transaction and possibly batch pro
cesses) with the conceptual data base. 

Internal 
schema 

processor 

Storage! 
internal 

transform 

Conceptual 
schema 
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• The data manipulation control which controls requests 
and receipts of conceptual object occurrences. 

The functions of these two levels are specified in the follow
ing. Each of them requires a specific protocol between pairs 
of controllers. The different layers implemented on every 
computer are summarized in Figure 6. Figure 7 illustrates 
the different levels of protocols between two sites. 

Data manipulation controller functions 

The different functions of the data manipulation controller 
are the following: 

• Communication of conceptual data manipulations, i.e. 
coding/decoding into/from messages and sending/re
ceipt of these messages. 

• Communication of status, i.e. coding/decoding into/ 
from messages and sending/receipt of these messages. 

• Communication of conceptual object occurrences, i.e. 
packing/unpacking into/from messages with possibly 
ciphering/deciphering and sending/receipt of these mes
sages. 

• Fatal error control and occasional abortion of concep
tual data manipulations. 

Communicatio 

kernel 

Figure 5-Partial schematic on a data computer. 
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• Global flow control of the number of objects generated 
by each conceptual data manipulation. 

The data manipulation protocol specifications define the for
mat of messages which contain data manipulations, status 
and conceptual objects. 

Session controller functions 

The session controllers coordinate the distributed pro
cessing. The main functions of this layer are the following: 

• Initiation and termination of processes. 
• Start/stop of process steps (transaction commitment 

unit or job step). 
• Journalizing of updates. 
• Commitment of updates and step back-up and recov

eries. 
• Resolution of concurrency conflicts. 

The session control protocol specifications define the for
mat of messages requesting initiation and termination of 
processes, start/stop of steps, commitment of updates," 
locking and unlocking of objects, 15 collection of locking sta
tus for deadlock detection,IO step back-up and recoveries. 14 

THE UNIFIED ARCHITECTURE 

The unified architecture is now straightforward. Two gen
eral-purpose computers are represented Figure 8. 

The external presentation box summarizes the processors 
and interfaces represented in Figure 4, except the external 
application programs and the communication kernel. It in
cludes the external schema processors whose roles are the 
validation of the external schema declarations, their binding 
to the conceptual schema and the insertion of the resulting 
structures in the local part of the data dictionary directory. 

It also includes the conceptHal/external transformers which 
receive the user primitives and translate them into standard
ized conceptual data manipulations. For this purpose, the 
structure describing the external schemas and their binding 
to the conceptual one are utilized. Of course, several exter
nal models and external data manipulation languages should 
be offered to the users. 

The data base management box summarizes the proces
sors and interfaces represented in Figure 5, except the com
munication kernel. It includes the conceptual schema pro
cessor which interacts with the enterprise administrator for 
the declaration of the local part of the conceptual schema. 
After compilation, the structures resulting from this local 
part of the conceptual schema are stored in the local part of 
the data dictionary directory. This box also includes the 
internal/conceptual transformer which receives the concep
tual data manipulation from the communication kernel and 
transform them into internal data manipUlations using the 
structures resulting from the conceptual schema and the 
mapping structures relating conceptual schema and internal 
one. Of course, the data base management box also includes 
all the internal and storage facilities. 2 

Let us point out that there is no direct path to interchange 
a message between two application programs located on the 
same computer or on different ones. This can be performed 
through data bases. However, in order to simplify such a 
path, objects can be defined in the internal to conceptual 
mapping description as stored in main memory-only buff
ering will be performed. 

CONCLUSION 

The proposed architecture requires the definition of every 
interchangeable object in the conceptual schema. That is, in 
the mind of the author, a key-point to ensure the success of 
distributed systems. Indeed, it is alarming to see in some 
distributed enterprises the development of distributed ap
plications without control over the application-level com
munications--each application programmer is allowed to 
specify his own application protocol. 

DATA MANIPULATION -----------

SESSION CONTROL --------

Figure 7-The different levels of protocols. 
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At the present time, the question of great importance is 
to control and standardize the high-level communications 
between computerized workstations. The conceptual de
scription of objects which are modeled and consequently 
can be interchanged is a necessaIY tool towards the ultimate 
goals: "To make every process in the world addressable to 
one another such that they can exchange information when 
such exchange appears useful. ... " 4 But also, to make 
every set of data accessible to every process when such 
accesses are useful and authorized. 
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Design of a prototype ANSI/SPARe three-schema data base 
system* 

by ERIC K. CLEMONS 
University of Pennsylvania 
Philadelphia, Pennsylvania 

INTRODUCTION TO THE THREE-SCHEMA 
ARCHITECTURE 

This paper has three objectives. First, it describes briefly 
how an ANSI/SPARC three-schema data base system pro
totype could be constructed, using wherever possible avail
able data models, system software, and research results. 
Second, it lists data models selected for each of the three 
levels; it also explains these selections. We find no existing 
proposal for an external schema facility to be adequate; 
therefore, our third objective is to develop specifications for 
the external level. A user interface based upon simple hi
erarchical user records is proposed, the necessary theory is 
described and a mapping language for the definition of ex
ternal schemata is proposed. 

The first three sections treat the first and second objec
tive, describing and justifying design decisions for each 
level. The next three sections introduce specifications for 
the external level. The final section presents conclusions. 

Need for multiple data models 

Data structures employed in an integrated data base man
agement system must address three goals: enterprise sup
port, user support, and machine access for retrieval and 
storage. Enterprise support requires logical completeness: 
if data have been gathered and maintained at considerable 
cost, then it is essential that it be possible to use this data 
to respond to any logically meaningful query. User support 
requires iogical simplicity: regardless of the compiexity of 
the structures needed to support the enterprise's data pro
cessing, it is essential that the structures with which an 
individual user must interact be both simple and well suited 
to his programming needs. And, for machine access to the 
stored data, data description must be provided at a level low 
enough to permit efficient operation by the physical devices. 

Unfortunately, these requirements usually appear to be 
incompatible. A structure that is logically complete enough 

* Research supported in part by National Science Foundation Grant MCS77-
18108. 
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for the enterprise is not sufficiently simple for convenient 
use by most programmers. Likewise, as is shown by ex
ample in the following section, a structure that is well de
signed for one application may not be suitable for another. 

A promising mechanism for resolving these difficulties is 
the three schema model offered by ANSI/SPARC.1 Rather 
than attempt to define a single class of data structures of 
universal applicability, ANSI/SPARC proposes three levels 
of structures, one each for the enterprise, the users and the 
machine itself. 

Such a model requires not only the ability to declare data 
structures of different classes, but to define maps between 
these structures. In this paper we propose choices for data 
models appropriate to each of the three levels. In particular, 
we develop an originai model for the user ievei and a lan
guage for mapping to it from the enterprise level. 

ANSI/SPARe Architecture 

In the proposed ANSI/SPARC architecture there are three 
separate but related levels of data base schema: conceptual 
schema, external schema, and internal schema. The concep
tual schema must be complete; it supports the enterprise 
and its view of the data required for its operations. The 
external level includes many external schemata; each exter
nal schema supports one or more applications programmers 
and provides a set of data structures required by and de
signed for their applications. The internal schema is needed 
for data access at the device level. 

The following terms will prove useful. We define the sto
red data base as the actual data described in the internal 
schema, and a user data base as the collection of user 
records described by the user's external schema. Mappings 
between the stored data base and a user data base are, at 
least in theory, composed of maps from the internal to the 
conceptual level and from the conceptual to the external 
ievel. An external schema is often referred to as a user view 
of a data base or as a user view. 
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Design of a prototype 

The following design is proposed for a three-schema data 
base prototype. Its construction can be facilitated by ex
ploiting existing software. It supports necessary functions 
for both machine efficiency and applications programmer 
effectiveness. And the data models used at all three levels 
are well understood. 

For the 'internal level we propose that a CODASYL data 
base management system9,10 be employed. The conceptual 
level will be a relational system. 2,11 And the external level 
will be based upon a Virtual Information Object (VIO) in
terface, introduced in an earlier work 6 and summarized in 
a later section. These choices are defended in the third 
section. The remainder of the paper describes the proposed 
external schema facility. 

The three schema prototype will have the structure shown 
in Figure 1. We shall examine in detail only Interface One. 

AN ANSL'SPARC EXAMPLE 

We consider a simple university data base including six 
entity types and the relationships among them: Departments 
offer courses, employ both students and faculty and have 
students taking a major concentration in the department's 
courses. Faculty members teach course sections and advise 
students. Students enroll in course sections, and for each 
course taken by each student there is a course grade. A 
conceptual schema can be presented in several different 
ways; the data structure diagram in Figure 2 is but one way 
of displaying this university data base. 

Several interesting external schemata can be defined on 
this conceptual schema; we offer three: 

I. A grade report for each student, listing all courses and 
grades for courses taken. 

2. A course roster, listing for each course section the 
faculty member who taught it and a list of students in 
the section and their grades. 

3. A departmental roster, listing all student majors of each 
department and their grade-point average. 

These data structures are shown in Figure 3. 
We note that the structures of Figures 3a and 3b appear 

to be incompatible; for the first we want the data base 
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Figure I-Form of the proposed three-schema data base system prototype. 

Figure 2-A university data base with six record types and the relationships 
among them. 

organized as a hierarchy with courses listed for each student, 
while for the second an organization with the students listed 
for each course seems most appropriate. Also, the grade
point average data in Figure 3c, while derivable from data 
in Figure 2, is not explicitly stored in the university data 
base. These observations can be summarized: 

1. None of the figures correspond exactly to the data 
structure of Figure 2 nor to a subset of this figure. 

2. Each is a legitimate user view for a data processing 
application. 

3. All are to be supported by the conceptual schema for 
the academic data base. 

4. Each is to be supported by an appropriate external 
schema. 

SELECTION OF DATA MODELS-INTERNAL, 
CONCEPTUAL AND EXTERNAL SCHEMATA 

CODAS YL-Choice for internal level 

For a variety of reasons relating to efficiency of data 
access, we select the CODASYL model as the basis for the 
internal level. 

Requirements at this level are control of record placement 
and definition of access paths for efficient selection of single 
records, subset queries and complex queries requiring data 
base navigation. The CODASYL model permits placement 
of records in areas, and supports indexed and hashed single 
record access, multi-list processing using pointer chains, 
inverted access using pointer arrays, and navigation using 
access through sets. 

But we must reject the CODASYL model as too complex 
for the external level. 7,13 Likewise, we must reject it as too 
rigid and inflexible for the conceptual level: 7 while exten
sions to the functions to be supported by a data base can 
generally be encompassed by changes to the CODASYL 
schema, these changes are likely to result in dramatic re
structuring of the schema, rather than mere extensions to it. 
For example, ·additional functions require replacing a hier
archical relationship hf'tween two r("C'oro type.;; with a ('on
fluency among three. 
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STUDENT-NAME 
COURSE 
COURSE 

COURSE 

GRADE. 
GRADE 

GRADE 

(a) A student Grade Report based upon the data base shown in Figure 2 

FACULTY-NAME COURSE 
STUDENT-NAME GRADE 
STUDENT-NAME GRADE 

STUDENT-NAME GRADE 

(b) A Course Roster based upon the data base shown in Figure 2 

DEPT-NAME 
STUDENT-NAME GRADE-POINT-AVE 
STUDENT-NAME GRADE-POINT-A VE 

STUDENT-NAME GRADE-POINT-A VE 

(c) A Departmental Roster based upon the data base shown in Figure 2 

Figure 3-Three user views defined upon the university data base of 
Figure 2. 

Relational-Choice for conceptual leveL 

We select the relational model as the basis for the con
ceptual level. 

The relational model is flexible, in that changes in use of 
the data base will rarely require changes in the structure of 
the conceptual schema. It is mathematically rigorous, in that 
its operators are defined in terms of the predicate calculus. 
And it is complete, in the sense that any retrieval request 
expressible in the first order predicate calculus may be per
formed. 

But we must reject the relational model as too tedious for 
the external level: 6 overcoming normalization to recreate 
records with structured or repeating data items requires 
lengthy and unnatural queries. Likewise, we reject the re
lational model for the internal level, because we require 
more explicit control of record placement and of the speci
fication of efficient access paths than the relational model 
provides. 

There exist other possibilities for the conceptual level, 
e.g., Chen's Entity Relationship Model5 or recent work by 
Bachman4 or Gerritsen and Lee. 14 We prefer the relational 
model because it is more proven and more robust. The 
relational model has been subjected to considerable analysis 
and several implementations are currently operational. 2.15 

The relational model's syntactic simplicity makes it unlikely 
that changes to the perceived relationships among entities 
will require changes to the schema. 

Choice for external-No model available 

There is no model available that fully meets our require
ments for an external schema facility. Requirements are 
summarized and a proposed model is presented in the fol
lowin~ section. 

DESIGN OF AN EXTERNAL SCHEMA FACILITY 

The external schema provides the basis for convenient 
use of the data base by individual applications programmers. 
It supports the definition of user views, that is, virtual data 
bases constructed from the common stored data base. These 
virtual data bases may differ dramatically in format and 
content from the stored data base; ideally this would permit 
a close or exact match between the cognitive structures 
employed while analyzing the problem and the data struc
tures employed while writing the program. 

Requirements 

The external schema facility must support restructuring 
of data· and definition of data items in user records that are 
not necessarily explicitly present in the stored data base or 
described in the conceptual schema. Data structures in user 
views need not support mUltiple and diverse users; a user 
view need not be flexible or complete in the sense of a 
schema designed to support the data processing of the en
terprise. Rather, we want the simplest possible use: to obtain 
the description of a single entity, the user requests a single 
data access. Thus, to obtain grade-point averages for stu
dents majoring in decision sciences, we should be able to 
write a query of the form: 

SELECT GRADE-POINT-AVE 
FROM STUDENT 
WHERE MAJOR = 'DEC SCI' 

It should not be necessary to traverse a complex data base 
like the one depicted in Figure 2; it should not be necessary 
for the user to specify the full details of obtaining a student 
record, testing the major, then obtaining all grade records 
for this student for the course grade. 

These requirements argue against supporting networks in 
the external schema. Networks are useful principally be
cause data bases must support mUltiple users employing 
different access paths through the data; confluencies, for 
example, usually appear because different users require dif
ferent and inconsistent hierarchies, not because any single 
application requires a network. Networks offer more power 
than a single user needs, but at a cost: they are too complex 
to be truly convenient. Similarly, these requirements argue 
against flat systems like the relational model: because of the 
simplicity of the supported structures these systems do not 
permit data structures that closely match the cognitive struc
tures with which the programmer solves his problem, and 
thus they are too simple to be convenient. We believe that 
an external schema facility must support the greatest pos
sible variety of virtual hierarchies. 

We define a virtual information object (VIa) as the pro
gram structure corresponding to the programmer's cognitive 
structure employed during problem analysis and solution. 
VIas are constructed as required from the stored data base 
to meet the needs of individual applications programmers. 
A VIO instance serves as a user record, and a VIO decla-
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ration provides both the schema definition for a record type 
in the user view and the definition of the map needed to 
construct records of this type from the stored data base. 

Classification of hierarchies 

Hierarchies are either basic or recursive. A recursive hi
erarchy is one where subordinate entries are of the same 
type as their parent node and have all the same properties; 
thus they can have subordinate entries also of the same 
type. Such hierarchies can reach arbitrary depths and de
grees of complexity. Discussion of recursive hierarchies is 
deferred until a later section. 

In this section we introduce three dichotomies that permit 
the classification of all basic hierarchies: 

I. Extent-"Single" or "all" 
2. Entries-"Simple" or "grouped" 
3. Content-"Complete" or "summary" 

When entries are "simple," descendant nodes correspond 
to single entities (e.g., single treatments for a patient), and 
are constructed from single instances of entity descriptions 
(e.g., a single treatment record). When entries are 
"grouped" descendant nodes correspond to groups of en
tities (e.g., groups of all medical treatments or all surgical 
treatments for a patient), and are constructed from several 
instances of entity descriptions (e.g., the collection treat
ment records of the appropriate type). 

When ex tent is "all," then all of a node's descendants are 
present in a single, wide, tree-structured record; when ex
tent is "single" each node has one descendant and thus 
relationships between a node and its descendants are rep
resented by a forest of narrow trees. 

Combination of options for entries and extent provides 
power and flexibility in the definition of hierarchies. 
Grouped entries and single extent would provide a set of 
records, one for each type of treatment received by a pa
tient. Grouped entries, all extent would provide a single 
record including data on all treatment types, while simple 
entries and all extent would provide data on all treatments 
but without aggregation by treatment type. 

Finally, "summary" content indicates that only summary 
information such as counts, totals or averages are to be 
included in the hierarchies while "complete" content indi
cates that both the summaries and the complete data from 
which they are calculated are to be included. 

These three dichotomies can be combined to form seven 
classes of hierarchies** as shown in Figure 4. By forming 
hierarchies of greater depth, structures of arbitrary com
plexity can be formed. 

** Generally, three dichotomies would yield eight classifications. Since the 
combination single, simple, summary is nul useful. it is not induueu. Thus 
there are only seven types of hierarchies. 

SIMPLE 

Single All 

Complete X X X X X X 

~ 
B B B A A B B B A A 
~ I I I I I I I I I 
+ ~tc # + ":it: # 

Summary X,5 

GROUPED 

Single All 

complete X X X 

B,3 A,2 B, 3 

/1' 
+ ? ~~# +~= 

Summary x X X 

b,3 A,2 B,3 A,2 

Figure 4-A general taxonomy of hierarchies. 

LANGUAGE FOR DECLARATION OF USER VIEWS 

Information required by the external schema facility 

The external schema facility itself requires information, 
specifying how data from the physical data base are to be 
accessed and combined to produce records in the user view. 
This information is of three types: 

1. Access information 
2. Restructuring information 
3. Data item declaration 

Access information specifies which data are to be ac
cessed. It names the relations in the conceptual schema that 
contain the dec;;ired informati()n and gives c()nditi()ns that 
determine which tuples are actually to be used. 
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Restructuring information controls the combination of 
data from normalized relations to produce the desired gen
eral hierarchical records. These hierarchies are of the forms 
presented in the fourth section; restructuring information 
must therefore be specified in terms of the three dichotomies 
that were introduced. 

Data item declaration specifies what information is ac
tually to be included in user records; this information may 
of course be different from the data accessed from the stored 
data base, as an average of course grades differs from the 
extensive list of grades and courses taken. Data items may 
be of three types: real elementary, virtual elementary or 
structured. A real elementary item is one present in the 
conceptual schema. A virtual elementary item is unstruc
tured (i.e., a field or COBOL elementary item) and com
puted from items in the conceptual schema. A structured 
item itself contains one or more data it-ems; since these in 
turn may possess structure, hierarchies of arbitrary com
plexity may be declared. 

Introduction to the language 

The language we developed for the declaration of user 
views is based upon SEQUEL.2 

Access information is specified using the form: 

FROM relation-name 
WHERE condition 

We have found that the condition that qualifies the tuples to 
be accessed is almost always of the same form: use in the 
descendant items those tuples whose keys are related "in 
the obvious way" to the keys of the parent items. As an 
example, in a personnel data base, keys of children contain 
the keys of a parent; in a customer-order data base, keys 
identifying details include the keys of orders to which they 
belong. We call this form of qualification implication; e.g., 
access those children implied by employee tuple, access 
those details implied by the order tuple. We represent im
plication by the symbol "~." 

Restructuring information is specified by placing an option 
list within parentheses. The default options are "single" 
extent, "simple" entries and "complete" content, and only 
non-standard options need be specified. 

There are different formats for declaring each of the types 
of data items. Virtual elementary items have the form: 

item-name: defining-expression 

Real elementary items may be declared with either the form: 

item-name: conceptual-schema-item-name 

or, if the data item is to have the same name in both the 
conceptual schema and the user record, the equivalent form: 

SELECT item-name 

may be used. Finally, to declare structured data items, the 

form is: 

STRUCTURE structure-name: (option-list) 
item declaration 

END structure-name. 

Comments on this language 

We offer beiow an example of a declaration of a map to 
construct a user record. We present the language statements 
needed to map from the conceptual schema of the university 
data base presented in Figure 2 to a departmental roster. In 
this external schema for each department there is a record 
containing the department name and a list of all students 
and their grade-point averages. 

STRUCTURE ROSTER: 
SELECT DEPT-NAME FROM DEPARTMENT; 
STRUCTURE STUDENT-ENTRY: (ALL) 

SELECT STUDENT-NAME 
FROM STUDENT ~ DEPARTMENT: 
STRUCTURE COMPUTE-AVERAGE: 

(ALL, SUMMARY) 
SELECT GRADE FROM 

GRADE-REC ~ STUDENT; 
GRADE-POINT-AVE: (SUMMARY) 

AVERAGE (GRADE): 
END COMPUTE-AVERAGE. 

END STUDENT-ENTRY. 
END ROSTER. 

That is, undeniably, an ugly language for schema decla
ration. We offer the following observations in its defense: 

I. It is not solely a DDL, as the CODASYL subschema 
facility is. Its mapping function subsumes much that is 
DML and thus eases the writing of applications pro
grams. 

2. It is not solely a subschema facility. Its DML function 
subsumes many of the data access and restructuring 
tasks that would otherwise be performed by applica
tions programmers to construct item descriptions from 
several data base sources. 

3. The declaration of a single map, while prepared only 
once, will be of use in severai programs associated 
with an application. 

Thus, while this map may not be easy to code, it permits 
the easy retrieval of names and averages for students ma
joring in Decision Sciences: 

SELECT STUDENT-NAME, GRADE-POINT-AVE 
FROM ROSTER 
WHERE DEPT-NAME = 'DEC SCI' 

Likewise, it is now easy to perform several other tasks, e.g., 
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comparing averages in the Finance and Marketing Depart
ments: 

SELECT AVERAGE (GRADE-POINT-AVE) 
FROM ROSTER 
WHERE DEPT-NAME = 'FIN' 

SELECT AVERAGE (GPA) 
FROM ROSTER 
WHERE NAME = 'MARKET' 

In the next section we offer a more advanced example of 
VIO declaration. Additional details of the language, its use 
and its implementation, can be found in an earlier work. 6 

A more advanced example of VIO declaration 

The following example illustrates use of grouping and 
multiple levels of summary in VIO declaration. We examine 
a hospital data base, in which records are maintained on 
patients, physicians and treatments. In particular, patient 
records include patient identification number, patient name 
and identification number of attending physician; treatment 
records include patient identifier, identifier of the adminis
tering physician and associated data. 

We wish to construct a patient history that lists all treat
ments of a single patient, grouped by treatment type and 
within type grouped by physician. We want only summary 
information: Counts of the number of treatments by physi-

PATIENT: (PAT#, PATIENT-NAME, PHYS#) 

TREATMENT: 

HOl8 
SI27 
X442 

(TREAT#, 

TI 
T2 
T9 
T5 
T4 
T8 
T6 
T3 
TI2 
T7 

WELLINGTON 
CROMWELL 
NELSON 

PAT#, TYPE, 

SI27 MED 
SI27 SURG 
X442 SURG 
S127 MED 
SI27 P.T. 
X442 MED 
SI27 P.T. 
SI27 MED 
HOl8 MED 
SI27 SURG 

(a) Sample data for a hospital data base 

TI2 
PI4 
T12 

PHYS#, 

PI2 
PI4 
PI4 
PI2 
TI9 
PI2 
T20 
PII 
PII 
PI4 

NAME CROMWELL 

TREAT-COUNT 7 
PHYS-COUNT 5 
TYPE-COUNT 

TYPE MED SURG PT 

TYPE-TREAT-COUNT 2 
TYPE-PHYS-COUNT 2 

(b) A VIO instance constructed from sample data 

DATE) 

06/01179 
06/04179 
06104179 
06/05179 
06/15179 
05/10179 
06118179 
06/02179 
05/15179 
06/04179 

Figure 5-SampJe data and a VIO instance constructed from it. 

STRUCTURE PATIENT-HISTORY: 
SELECT PATIENT-NAME 
FROM PATIENT; 

STRUCTURE HISTORY-DATA: 
(ALL, SUMMARY, ORDER BY TYPE, 
GROUP BY TYPE, GROUP BY PHYS#) 
SELECT TYPE, PHYS#, DATE 
FROM TREATMENT~PATIENT; 
TYPE-PHYS-COUNT: (pHYS# SUMMARy) 

COUNT (TREATMENT#); 
TYPE-TREAT-COUNT: (TYPE SUMMARy) 

COUNT (TREATMENT#); 
TREAT-COUNT: (SUMMARy) 

COUNT (TREATMENT#); 
PHYS-COUNT: (SUMMARY) 

COUNT (pHYS#); 
TYPE-COUNT: (SUMMARY) 

COUNT (TYPE); 

END HISTORY-DATA. 
END PATIENT-HISTORY. 

Figure 6-An example of VIO declaration employing summaries and multiple 
level~ of grourings. 

cian within type, by physician, and total, as well as counts 
of the number of types of treatment and the number of 
physicians administering treatments to this patient. 

An illustrative collection of conceptual level records and 
an associated VIO instance are depicted in Figure 5. The 
necessary VIO declaration is shown in Figure 6. We note 
that in the construction of this user record the interface 
performed both DML and DDL functions-data are ac
cessed from several data base sources, grouping and order
ing is performed and the necessary summaries are prepared. 
While the associated VIO declaration is somewhat lengthy, 
it is now possible for simple data processing tasks to be 
accomplished by the retrieval of the appropriate virtual rec
ords. 

RECURSIVE HIERARCHIES 

Finally, the external schema facility is extended to include 
declaration and processing of recursive hierarchical struc
tures. Recursive structures are those where lower levels in 
the hierarchy are of the same type as higher levels, and may 
themselves have similar lower levels. Recursive hierarchies 
do arise (e.g., organizational chains of command, parts ex
plosion diagrams) and may readily be encoded in a single 
relation. Unfortunately, even relationally-complete lan
guages do not support retrieval from such structures. 8 For 
example, the ORG relation represents the relationship be
tween a department and its subordinate departments: 

The query: 

ORG: (DEPT # , SUB#) 

SELECT SUB# FROM ORG 
WHERE DEPT# = 1 

retrieves all sub-departments of Department 1. 
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SELECT SUB# FROM ORG 
WHERE DEPT# = 

SELECT SUB# FROM ORG 
WHERE DEPT# = 1 

retrieves all sub-departments of sub-departments of Depart
ment 1. But there is no single query which will traverse the 
entire organizational structure, retrieving all subordinate de
partments regardless of their depth in the tree. 

Three concepts are essential in an external schema facility 
that is to treat recursive structures: 

• Definition-Node specification is the declaration of the 
individual nodes of a recursive structure, their format 
and data content. 

• Definition-Iteration control is the control of which 
node-s are to be included in a recursive structure. 

• Definition-Tree traversal is the processing of the 
nodes of a recursive stmcture. 

Node specification has much in common with VIO dec
laration. The structure of the node may be specified using 
the three dichotomies introduced in the fourth section, data 
may be accessed from desired tuples of any combination of 
relations, and the data included in the node may be real or 
computed virtual items as appropriate. Thus, considerable 
generality in the format of individual nodes is provided. 

Iteration control is used to prune the depth and breadth 
of the tree. It determines which nodes are to be included, 
based upon distance from the root, content or contents of 
subordinate nodes. By combining node specification, which 
determines the contents of nodes, with iteration control, 
which determines the shape of the tree, the necessary gen
erality in definition of recursive hierarchies is attained. 

Tree traversal is used to process recursive hierarchies. It 
is used for such things as determining manpower totals over 
an organization, or cost of components using a parts explo
sion diagram. A more detailed treatment of recursive struc
ture definition and processing is not possible here, but is 
available elsewhere. 8 

CONCLUSIONS 

Summary of the proposed prototype 

For the conceptual schema we want generality, complete
ness and the ability to support unanticipated users of the 
data base. For this we employ the relational model. 

For the internal schema we want control over storage, 
record placement and use of indices and access paths. Wher
ever possible, we want efficient operation; in particular, for 
common and anticipated requests, we require this efficiency. 
For this we employ the CODASYL network model. 

For the external schema we want user orientation, ease 
of applications programming, close relationships between 
the cognitive structures of the programmer and the data 
structures of the program. For this we employ a hierarchical 
external schema facility, the details of which have been 
outlined previously. 

Features that must be provided by an external schema 
facility 

A facility to treat adequately the declaration of external 
schemata must provide the following features: 

1. A set of hierarchies-These hierarchies are virtual; that 
is, they are declared in the external schema but need 
not be stored in the data base in terms of set member
ships, repeating groups or related record segments. 
Hence the set of hierarchies provided may be redun
dant or inconsistent; we feel this last point eliminates 
the need for the support of more general networks. 6,1 

2. Full support of the classes of hierarchies presented in 
the fourth section-Provision must be made for "sim
ple" or "grouped" entries, "single" or "all" extent, 
"complete" or "summary~' content. Additional fea
tures have also proved useful;' e.g., sorting entries, 
limiting the number of entries included. 

3. Recursive hierarchies-Provision must be made for 
node specification, iteration control, and tree traversal. 
We feel that node specification is best managed using 
the features of VIO declaration and that iteration con
trol should be a simple extension to qualification. 

Status of implementation 

We have completed both an analysis of the requirements 
for a hierarchical external schema facility and the design of 
a VIO-based interface to support this facility. A language 
processed by the interface, used for mapping between con
ceptual and external levels, has been presented. Two ex
perimental tools have been constructed: a VIO-to-relational 
processor and a VIO-to-CODASYL processor. No serious 
conceptual difficulties have been encountered. Implemen
tation of the three-schema prototype described here requires 
only acquisition of a relational-to-CODASYL mapping fa
cility. 
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On the implementation of a conceptual schema model within 
a three-level DBMS architecture* 
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INTRODUCTION 

The ANSI/X3/SPARC study group on database management 
systems 2 as well as some independent researchers 17,10 have 
proposed a three-level "coexistence" architecture to data
base management systems. Under this approach (see Figure 
1) a number of different users can be supported by means 
of different External Schemas, possibly with different data 
models and languages. It involves construction of a concep
tual schema which completely represents the structure and 
semantics of a particular database. The underlying internal 
schema must provide a storage representation for the con
ceptual schema. Although the composition and scope of the 
conceptual schema is still a matter of controversy, 1 several 
data models, semantic models (e.g., References 7, 8, 9, 13, 
16, 20, 21) etc. could be considered as candidates for defin
ing conceptual schema. Given a particular model for the 
conceptual schema, a number of problems arise in its im
plementation into a three-level DBMS, particularly regard
ing the design of an internal schema specification language 
to specify the mapping of the model into storage. 

This paper discusses the general issues involved in imple
menting one specific model due to Falkenberg9 termed "the 
object-role model," as a conceptual schema model. Consid
erations in the design of a Conceptual Schema Language 
will be indicated. However, the emphasis will be on the 
issues of Internai Schema Language design. These languages 
are currently being developed and implemented at the Re
search Laboratories, Siemens AG, Munich, West Germany. 
Detailed analyses of these languages will be presented in 
forthcoming papers. 4 ,15 Rather than present detailed lan
guage syntax, mathematical definitions of terms, operations, 
etc., this paper will highlight the issues and design decisions 
deemed essentiai for impiementing a conceptual model. 

A database administrator (DBA) in an organization is en-

* This work was done while the first author was at Siemens AG, Munich, 
West Germany. 
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trusted with the task of defining a conceptual schema and 
an internal schema. In this paper wherever applicable, we 
point out that the DBA has to choose among alternatiyes or 
has to be aware of the implications of his decision. 

The object-role (O-R) model 

For the sake of completeness we will summarize the con
cepts from the object-role (O-R) model. This model is an 
ideal candidate for conceptual schema modeling since it has 
only a few basic concepts, which make it simple to use. It 
aiso has been shown to be evolvable and transformable. 9.10 

The model is used for modeling facts from a particular uni
verse of discourse by means of objects, roles and associa
tions. Objects are atomic, discrete elements in nature; the 
only information represented by them inherently is their 
existence. Facts concerning an object correspond to its as
sociation with one or more objects. An object performs a 
role in every association of which it is a part. Thus associ
ations, which are n-ary in general, are composed of object
role pairs. Figure 2 gives an example of a model of a data
base in which the pairs (Doctor D, performs), (Surgical
procedure S, is-performed), (Patient P, is-operated) define 
the association "Surgical operation." An association may 
be "objectified" and may perform a role in another associ
ation. The latter is termed a nested association. In Figure 
3 Miller's-salary is a binary association and (Miller's-salary, 
has-as-starting-date) is an object-role pair which is a com
ponent of the nested association "Miller's-salary-history." 

The modeling concepts introduced thus far deal with mod
eling instances of objects, roles and associations. The type 
concept is introduced by which an association type refers 
to ail associations with identical object-role pairs. Objects 
are pooled into object types such that objects under one 
type have at least one role in common. Figure 4 represents 
a database schema of which Figure 3 is an instance. 

Objects and roles may be provided with significations. 11 
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Structure of 
User Views 

External 
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Enterprise View 

Structure of the 
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CS 
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Externdl • • • • (. , ucneman 
ES n 

Figure I-Three-level DBMS architecture. 

An object-type named Person may be signified by the per
son's First-name. A number of significations may be pro
vided, e.g. First-name, Last-name and Date-of-birth for the 
object-type Person to make the signification unique. Fre
quency of occurrence of roles may be supplied as an addi
tional information. In Figure 4 they are shown in parenthe
ses. E.g., (0,1000) indicates that a Date may be the starting 
date in 0 to 1000 Salary-history associations whereas (1,1) 
indicates that a particular salary RSSOc1(ltion stf\rts on one 
and only one Date. 

A conceptual schema language (CSL) 

A CSL is being designed4 to define the conceptual schema 
of a database using the concepts from the object-role model. 
One of the early design decisions involved the definition of 
object-types. 

As originally defined in the model, an object is atomic and 
has no information of its own. On principle, identification 
(=unique significRnce) of an ohject x must he possihle by 
associating x with objects of a different type(s)-usually 
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Figure 2-0bjects and associations in a conceptual mode19 (instance diagram). 
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Figure 3-A nested association (instance diagram). 
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, Figure 4-A database schema involving object-types and association-types (schema diagram). 
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strings over some alphabet. Associations serving this pur
pose are called name associations (also identifying associ
ations) and an object (=1= x) participating in a name associ
ation for x is called a name object for x. E.g., in Figure 6 
object type Dept is identified by association type Dnum, and 
Person by Pnum. In general, a hierarchy of associations may 
identify an object. However, if for each object x of a type 
X we know a string Sx that can serve as a never-changing 
identifier for x, CSL allows for defining X as a self-identified 
object type. This simplifies the conceptual schema. CSL 
deals with object types as follows: 

I. An object type has a name (e.g. Person). 
2. An object type is devoid of any inner structure. An

association participating in a nested association is 
treated as an association rather than as an object. 

3. A non-self-identified object type is distinguished from 
an object type which stands for the names of the for
mer, (e.g. Person is different from Alpha). It is iden
tified by a number of name associations. (E.g. each 
Person object is identified by an object of type Empl
number.) This concept is parallel with Navathe's iden
tifying relations. 14 

4. For a self-identified object type the distinction men
tioned above is not made. The name of an object of 
such a type is treated as if it were the object it stands 
for. 

Roles, object types and even (object type, role) pairs may 
occur in more than one association type and also several 
times within one association type, if this is necessary to 
describe the semantics of a conceptual model. The latter is 
a means for expressing symmetric relationships between 
objects (see Figure 5). However, the DBA must realize that 
the choice of several identical (object type, role) pairs af
fects possible manipulations. E.g., a query like "List all 
persons associated with person x by role is-friend-of' im
plies investigation of all (not only one) roles is-friend-of. 
This is a typical example of implementing a conceptual 
model by selecting a proper implementation strategy rather 
than by changing the model itself. 

Semantic rules were postulated9 as a means of providing 
additional constraints for consistency and integrity among 
data instances. The syntax of CSL can be designed to in
corporate such rules to any degree of complexity. E.g., a 
very high-level semantic rule: no two names in the database 
can be the same; a very low-level semantic rule: 

L-;-:r icnJ-ol 

Figure 5-An association-type with identical role names. 

1O,000:::;Salary::::;50,000; a 'complex semantic rule: salary 
raises do not apply to persons who earn more than their 
second-level managers. Another design consideration in
volves the setting up of triggering mechanisms to invoke 
procedures representing semantic rules. Currently CSL al
lows semantic rules like the following to be automatically 
invoked during the execution of corresponding update pro
cedures: 

I. Characteristics of association types, e.g. "An em
ployee cannot work on more than two projects." 

2. Characteristics of object types, e.g. "10,000:::;salary
amount:::;50,000 ... 

3. Dependencies between associations, e.g. "Total salar
ies of employees on a project cannot exceed its 
budget. " 

4. Characteristics of events, e.g., "A person's marital 
status cannot change from "divorced' to "single'." 

Most databases have transactions or updates which cause 
changes in the data instances uver a periud uf time. Time i!:) 
an important attribute of data and provides valuable infor
mation in any dynamic database. Incorporation of time in 
semantic models has not been addressed sufficiently, barring 
a few exceptions (References 3, 5 etc.). Objects with a time 
point as an attribute· have been called events, while those 
with time interval as attributes have been called processes. 24 

Incorporation of time into the above CSL is being investi
gated without classifying the object-type into subtypes. 4 

AN APPROACH TO THE DESIGN OF AN INTERNAL 
SCHEMA LANGUAGE 

In the discussion above we highlighted the features of the 
O-R model and the requirements of a corresponding CSL. 
After a particular database conceptual schema is expressed 
using CSL, the database must be populated with instances 
which are mapped into storage according to an internal 
schema specification. Any retrieval or updating transactions 
operating on an external view are mapped into transactions 
on the conceptual view and further into transactions on the 
internal view. The internal schema language (ISL) must be 
capable of expressing all manipulation. 

Our ISL design is based on the premise that databases 
will be stored in electronic cyclic memories using quasi
associative addressing techniques. Existing implementa
tions 12,18,19 have shown that these storages and accompa
nying processors can store and manipulate relations very 
efficiently. The relational data modelS has also been shown6 

to fit the bubble hardware well because of the intrinsic 
similarities between the two. A relational model-based ISL 
must allow for specifying the storage of relations corre
sponding to the conceptual schema in the CSL. 

ISL structure 

The language is divided into fom level, along the logic~l 
to physical spectrum. 
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~ 
E-number-belongs-to Is-member-of 

Is~salary-of 

Has-workers 

Is-budget-of 'I Budget I 
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Figure 6-Conceptual model of a personnel database. 

Level i-At this level the logical structure of the stored 
data is specified. With the assumption that stored data is 
in the form of relations, one must sPecify what relations 
need to be stored and how they are populated. Two main 
operations termed aggregation and substitution are de
fined at this level. 
Level 2-Provides for the specification of constraints on 

relations whereby they can be organized to support effi
cient logical access structures. E.g., tuples may be or
dered, a relation may be partitioned horizontally by clus
tering tuples or vertically by reordering and grouping of 
domains. 
Level 3-At this level a lot of information is supplied to 
define the mapping of relations into storage. It consists 
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of: the division of the target address space into areas 
(extents) and the allocation of relations to them; definition 
of the type of encoding, formatting information at the 
domain level such as length, type (picture), padding, jus
tification; definition of storage policies dealing with tuple 
insertion, overflow handling, free space management, 
space reclamation, relative placement of relations, etc. 
Level 4-This level is used to characterize the structure 
of the storage itself. It defines what a unit of storage is, 
how these units are grouped into higher-level storage 
structures, what types of access is supported, whether 
data compression algorithms are used and so on. 

Levels 2 through 4 include the detailed specifications that 
any Internal Schema Language should be able to express 
(see Reference 2). If a model other than the relational were 
used for stored data, relations and tuples would be replaced 
by corresponding constructs from that model. 

In the rest of this paper we propose to focus on the ISL 
at Level 1 because it is at this level that the conceptual 
model of a database must be mapped into and specified in 
terms of a corresponding storage counterpart. The choice of 
the 0-R model for conceptual modeling and the relational 
model for internal schema modeling presents some interest
ing problems. 

An internal schema "view" 

An Internal Schema View defines one particular way that 
a DBA might choose to map a given conceptual model into 
storage. Some of the previous work 22 on internal schema 
has dealt with the problem of coming up with optimal so
lutions to mapping. i.e. defining optimal views when the 
target storage model is known. We assume that by doing an 
analysis of the processing requirements and given the knowl
edge of occurrence frequencies in associations, the DBA 
would decide to aggregate associations in a particular way; 
the opposite possibility where the DBA would like to split 
associations does not exist since in the 0-R conceptual 
model associations represent semantically-irreducible facts. 

We first describe the IS structure as it is implied by the 
CS definition. This is the structure we store in case no 
structuring specification is given. 

Representation of references to objects-Whenever an ob-

Aggregation 

ject of a self-identified object type is referred to, we store 
its name. For each instance y of a non-self identified object 
type or of an objectified association type we create an in
ternal identifier iy and store iy wherever y is referred to. 
Representation of associations-An association type 
A=«Ol,rl), (02,r2), ... ,(OmrJ), where Oi is an object type 
or an (objectified) association type and ri is a role, is rep
resented by an elementary relation 

RA COlX02X ••• xOn 

with domain names 0l'rl, 02'r2' ... , On·rn. The term "el
ementary" was chosen because these relations may be used 
to build larger relations, but cannot be split. Given an in
stance of type A that associates object instances Xl' x2, 

... , Xn such that for l:::;i :::;n, Xi is of type Oi and plays role 
rb we store the tuple (Yl' Y2' ... , yJ in relation RA , where, 
according to (i), for 1 :::;i:::;n, 

J name of XI' if 0 1 is a self-identified object type 

l ixl' the internal identifier of instance Xi> which we 
create, if 0 1 is a non-self-identified object type or 
an objectified association type. 

. A key of relation RA comprises a sublist of the domain list 
ofRA. 
E.g. the Birth association is represented by elementary re
lation RBirthCDatexPerson with domain names 

Date' Birthdate-of , Person' Born-on 

Let us consider Figure 4 as an example of a nested associ
ation: 
We create elementary relations RSalary-History and RSalary with 
domain names Salary·Starts, Date· Is-the-starting-date-of, 
Person· Earns and Salary-Amount· Is-earned-by. The in
stance of Figure 3 will be treated as follows: 

I. Assuming Person, Salary-Amount are self-identified 
object types, the tuple (Miller, 20000) is stored in 
RSalary, 

2. Since Salary is an objectified association type, we cre
ate an internal identifier, e.g. S 1, for the tuple (Miller, 
20000). 

3. Assuming Date is a self-identified object type, the tuple 
(S 1, 1-1-78) is stored in RSalarY-History, 

An IS View is defined by specifying an aggregation. E.g., to aggregate all associations in Figure 6, the following statements 
are used (An assumption could be made that each role name occurs in one and only one association type. However, for the 
sake of generality, we use role names qualified by association type names.): 

Vl=Name 
Birth 
Work 
Salary 
Co-worker 

[(Person· P-has-name) 
[(Person . Born-on) 
[(Person· Works-in) 
[(Person· Earns) 
[(Project' Has-workers) 

AGGR (Person' Born-on)] 
AGGR (Person' Works-in)] 
AGGR (Person' Earns)] 
AGGR (Person' Is-member-of)] 
AGGR (Project· Has-as-Budget)] Budget 
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The philosophy of the AGGR statement is to specify a relational join 8 by selecting a joinable domain from a number of 
different associations. Two relations are joinable if they are coherent, i.e. if they share at least one object type. In VI, the 
domains on which join is performed are either Person-ids or Project-ids .. Figure 7(a) shows the elementary relations and Figure 
7(b) the result of aggregation which is a relation with domains containing identifiers, either internal identifiers or name values. 

In aggregating associations we had to use a "modified join" as follows: "A modified join takes the union (as opposed to 
intersection) of values in the join-domain from the relations being joined. Null values are created under appropriate domains 
corresponding to relations where a domain value may be absent." This is necessary because no elementary facts may be lost 
in mapping from the conceptual to internal schema. Figure 8 shows a conceptual schema and corresponding elementary 
relations. Relation BIBLIO is the result of aggregation of the two associations by joining on the Book-ids. The tuples (B3,A2,
-) and (B4,-- ,PI) would be absent under conventional join. However, in relation BIBLIO we must preserve the fact that book 
B3 has author A2 and book B4 has publisher Pl. 

Subs titution 

As shown in Figure 7(b) aggregation results in the definition of an aggregated relation where· certain domain values are 
internal identifiers. A DBA is allowed to define relations by substituting some or all of the internal identifiers by name values 

R 
Person. De;:>te 

v..'ork \,'orks-in Employs 

PI DPJ 

P2 DP2 

P3 DPI 

Elenentarv relations for identifying associatio_~ 

s-to 

Person· Empl-number. 

P-ha s-num be.-=.r-t_.:::E_-n:.:..:u:;;:mo,::b.:::.e"-r---=b:..=e.:::;l.:;::on:.:<>..::s:,....-..::..t 0",--

1'1 100 

1'2 110 

200 

Dept· I Dept-numher' 
ll-has-numbe r ----t-D-number-be longs-t 0 

I 
I 

])1'1 801 

DP2 802 

I 

Elementary relations for associations 

R 
Salar 

R 
Budg;2t 

Person· Money. 

EarnS_--~1-[ s-salar'):"--'2.f __ _ 

PI '+[lK 

P2 ()OK 

rH::~~::~~d et 

PRJ 

PR2 

PR3 

'10ney. 

==""'-'-=----+ I s·-bll,:!£~ t_:-_oJ __ 

lOOK 

2(lOK 

1 ~I 

R Person. Time. Project. 

Co-~,ker 1---"'~-"'m'::':l'n"-'-11:"';'H . ...:.r __ (:':":)f~'-I---'-'.:Al)oca t l'_J_ _Has-worke~ 

1'1 SO" PRJ 

PI SO~ PR2 

P2 20/ PR3 

I 
P2 HOl. PRJ 

P3 JOO! PR2 

Figure 7a-Elementary relations for the conceptual model in Figure 6. 



704 National Computer Conference, 1979 

by using a SUBST specification. E.g., continuing with Figure 7(b), 

PERSONNEL=Vlwhere [Person. P-has-name SUBST Pnum] 
[Dept. Employs SUBST Dnum] 

will produce a PERSONNEL relation in which Persons and Departments are represented with name values instead of by 
internal identifiers. See Figure 7(c). 
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Figure 8-A modified join operation. 

Additional ISL statements have been defined for a further manipulation of the stored relations by the DBA. A DROP 
statement has the following syntax: 

(dropstatement) :: =DROP <typename){,<typename)}f~ 
(typename) : : = (objecttypename) I (associationtypename) 

If the DBA visualizes that all the processing against a conceptual schema can be supported by the defined aggregations, he 
may proceed to drop certain object types and/or association types. The corresponding elementary relations would be 
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Given relation R wiCh one:many relationships; 

R A B e 
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r---------
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! al b2 c3 , 
i 
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~·~2---bl c2 
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- _. __ ._---
al b2 ci 
al b2 c2 
al b2 c3 
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S = R REPEAT e 3 TIMES; gives 

S A B e(l) e(2) 

al bl cl c2 
al b2 cl c3 
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a2 bi c2 c4 
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T = S REPEAT B 2 TIMES; eives 

T A B(l) B (2) e(l) 
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al b2 cl 
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T takes up 24 elements of storage 
Figure 9-Cse of REPEAT by DBA to adjust the breadth of relations. 
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automatically scratched. To scratch a specific relation from internal-schema storage, the DBA uses a SCRATCH statement. 

(scratchstatement) :: =SCRATCH(relationname){,(relationname)}: 

When there is an association type which associates an object type with two or more object types in a one: many fashion, 
mUltiple values occur in certain domains for a given value in one domain. Figure 9 shows an example relation which results 
from one: many associations between A: B and A: C. To fit the storage-characteristics a DBA may want to adjust the 
"breadth" of a relation by allowing domains to be subscripted as shown in Figure 9. A REPEAT statement is used toward 
that purpose (see Figure 9). This idea is reiated to multi-valued dependencies. 23 

(repeatstatement) :: = (relationname)REPEAT(domainlist) n TIMES 

To revert back from the use of SUBSTITUTE, DROP, SCRATCH and REPEAT commands, a DBA can use RESUBST, 
KEEP, CREATE and COLLAPSE comIl).ands. 

One of the advantages of choosing a relational structure for the internal schema is that the manipulation operations can be 
derived from the relational algebra. Queries in external schemas will be mapped into a set of relational operations like 
Projection, Restriction, Natural join on the elementary and aggregate relations. The implementation will account for repeating 
domains with SUbscripts and null values. 

Reorganizaiion of is 

According to the procedure outlined previously, a given 
conceptual schema produces a set of relations in the internal 
schema. The composition of this set can be controlled to 
some extent by the DBA by using the manipulation opera
tions. If relations need to be normalized, rearranged, decom
posed or synthesized, the relational operators will be avail
able to the DBA. It is conceivable in the future that certain 
sequences of operations will be made available in the form 
of IS reorganization verbs. 

SUMMARY 

This paper has highlighted some of the typical issues that 
arise during the implementation of a particular semantic 
model in a three-level DBMS architecture. The model cho
sen is the object-role model due to Falkenberg. 9 With a 
given design decision to organize the internal schema using 
relations, considerations for the design of an internal schema 
language were discussed. A systematic approach to defining 
relations and popUlating them so that they are equivalent to 
a conceptual model was outlined. Of particular importance 
is the concept of aggregation using a modified join operation. 
IS manipulation verbs for the DBA were also indicated. The 
Conceptual and Internal Schema Languages are currently 
being implemented at the Research Laboratories, Siemens 
AG, Munich, West Germany. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the cooperation 
of and valuable discussions with Mr. Breutmann, Dr. Fal
kenberg, Mr. Hahne and Mrs. Mauer in the development of 
the paper. The research contribution of Mr. Breutmann and 
Mrs. Mauer in the development of the Conceptual Schema 
Language is particularly recognized. 

REFERENCES 

1. ACM-SIGMOD 1978 International Conference on Management of Data, 
Panel: "The Conceptual Schema Controversy," T. William OIle, Chair
man. 

2. ANSI/X3/SPARC, Study Group on Data Base Management Systems, 
Interim Report, published by FDT Vol. 7, No.2 February 1975. 

3. Bradley, J., "Operations Data Bases," Proc. Fourth Very Large Data
base Conference, Berlin, West Germany, available from ACM, New 
York, September 1978, pp. 164-176. 

4. Breutmann, B., E. Falkenberg and R. Mauer, "CSL: A Language for 
Defining Conceptual Schemas," Working Paper, Research Laboratory, 
Siemens AG, Munich, West Germany. 

5. Bubenko, J. A., Jr., "The Temporal Dimension in Information Model
ing," Proc. IFIP Conference on Modeling in Database Systems, 1977. 

6. Chang, H., "On Bubble Memories and Relational Data Base," Proc. 
Fourth Very Large Database Conference, Berlin, West Germany, avail
able from ACM, New York, September 1978; pp, 207-228. 

7. Chen, P. P. S., "The Entity-Relationship Model-Toward a Unified View 
of Data," ACM Transactions on Database Systems Vol. 1, No.1, March 
1976. 

8. Codd, E. F., "A Relational Model of Data For Large Shared Data 
Banks," Comm. ACM Vol. 13, No.6, June 1970, pp. 377-387. 

9. Falkenberg, E., "Concepts for Modelling Information," Modelling in 
Data Base Management Systems, North Holland, Amsterdam, 1976. 

to. Falkenberg, E., "Concepts for the Coexistence Approach to Data Base 
Management," International Computing Symposium 1977, North Hol
land Publishing Co., Amsterdam, 1977. 

11. Falkenberg, E., "Significations: The Key to Unify Data Base Manage
ment," Information Systems Vol. 2, No.1, Pergamon Press, Great Brit
ain, pp. 19-28. 

12. Lin, C. S., D. C. P. Smith and J. M. Smith, "The Design of a Rotating 
Associative Array Processor for a Relational Data Base Management 
Application," ACM TODS Vol. 1, No.1, March 1976, pp. 53-65. 

13. My!opoulos, J., P. A. Bernstein and H. K. T. Wong, "A Language 
Facility For Designing Interactive Database-Intensive Applications," 
Proc. ACM-SIGMOD International Conference, Austin, Texas, May 
1978, to appear in ACM-TODS. 

14. Navathe, S. B., "Schema Analysis for Database Restructuring," pre
sented at the Third VLDB Conference, Tokyo, Japan, October 1977, to 
appear in ACM Transactions on Database Systems. 

15. Navathe, S. B. and J. Lemke, "Concepts for the Design of an Internal 
Schema Using the Relational Model," (in preparation). 

16. Navathe, S. B. and M. Schkolnick, "View Representation in Logicai 
Database Design," Proc. ACM-SIGMOD International Conference on 
Management of Data, Austin, Texas, May 1976, pp. 144- 1 56. 

17. Nijssen, G. M., "A Gross Architecture For the Next Generation Data 
Base Management Systems," Proc. IFIP TC-2 Working Conference on 
Data Base Management Systems, Frendenstadt, January 1976. 



708 National Computer Conference, 1979 

18. Ozkarahan, E. A., S. A. Schuster and K. C. Sevcik, "Performance 
Evaluation of a Data Base Machine," ACM TODS Vol. 2, No.4, Decem
ber 1911, pp. 291-316. 

19. Schuster, S. A. et. aI., "RAP-2-An Associative Processor for Data 
Bases," Proc. Fourth ACM-SIGARCH Workshop on Computer Archi
tecture for Non-numeric Processing, Blue Mountain Lake, N.Y., August 
1918. 

20. Senko, M. E., et. aI., "Data Structuring and Accessing in Data Base 
Systems,"' IBM Systems Journal Vol. 12, No. I, January 1913, pp. 30-
93. 

21. Smith, J. M. and D. C. P. Smith. "Database Abstractions: Aggregation 

and Generalization," ACM Transactions on Database Systems Vol. 2, 
No.2, June 1911. 

22. Tompa, F. W., "Choosing an Efficient Internal Schema," Systems for 
Large Data Bases, P. C. Lockemann and E. J. Neuhold (editors), North 
Holland Publishing Co., Amsterdam, 1916, pp. 65-11. 

23. Fagin, R., "Multivalued Dependencies and a New Normal Form for 
Relational Databases," ACM Transactions on Database Systems Vol. 2, 
No.3, September 1911. 

24. Sundgren, B., "Database design in theory and practice, toward an inte
grated methodology," Proc. Fourth International Conference on Very 
Large Databases, Berlin, W. Germany, September 1918. 



The practice of data base administration 

by JAY-LOUISE WELDON 
New York University 
New York, New York 

The position or role of data base administrator has been 
described and discussed since the earliest specifications for 
data base management systems. 1,2,4 Most of the literature on 
DBA is normative-describing in detail what the DBA func
tion should include. Different authors have focused on the 
DBA's role in introducing the data base concept to organi
zations,S the functions that the DBA should perform,7 the 
specification of tools and DBMS features needed by DBAs,3 
and how to establish and perform the DBA's responsibilities 
within an organization.5,6 In practice, however, the organi
zation and content of the DBA function may be quite dif
ferent from the ideal. Other factors related to the DBA's 
technical and organizational environment may influence the 
DBA's role. This paper summarizes the results of an explo
ratory survey on data base administration9 which was un
dertaken as a first step toward identifying and understanding 
these factors. 

METHODOLOGY 

The survey included 25 DBA groups within firms located 
in the New York metropolitan area. Individual interviews 
were arranged with the manager of each DBA group. The 
interviews were unstructured and the questions generally 
open-ended. However, the interviewer did follow an inter
view outline that included questions on three topic areas: ]) 
basic characteristics of the firm, 2) organizational charac
teristics of the firm and of the DBA group, and 3) the tasks 
performed by the DBA group. The interviews were sum
marized immediately after they occurred and the responses 
were later coded according to previously-defined classifi
cation schemes. 

Based on existing literature on DBA, seven characteristics 
were defined as independent variables, i.e. factors that were 
thought to influence DBA organization and content: 

Age of the DBA 
organization 

Origin relative to DBMS 

DBMS 

The number of years that the 
DBA organization/position 
had existed. 
Was DBA instituted before, 
with, or after the DBMS? 
Which DBMS package was 
used? 
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Industry 

Installation size 

EDP organization 

Data base scope 

The industry most 
descriptive of the firm's 
business operations. 
An index combining the size 
of the hardware and the 
number of bytes stored in 
data bases. 
The degree of centralization 
of the EDP organization. 
An index based on the 
number of different 
application areas with 
current or planned data base 
support. 

Five factors descriptive of the DBA function were also 
defined for use as dependent variables: 

Size 

Organizational position of 
DBA 

Orientation of DBA staff 

DBA organizational 
structure 

DBA tasks 

Size of DBA staff with 
respect to total EDP staff. 
Described by the number of 
levels between the DBA and 
the head of EDP, the 
position of DBA with respect 
to its primary users, and an 
indicator of organizational 
change since DBA's 
inception (higher, lower, no 
change). 
Ratings of the DBA staff on 
a technical-administrative 
scale and an application
systems scale, 
DBA's span of control and 
the number of organizational 
levels below DBA. 
A vector of yes-no indicators 
for 48 representative DBA 
tasks. 

Responses were tabulated for each of the variables above 
to obtain descriptive 'statistics (frequency distributions, 
means or medians, etc.) on each. The task indicators were 
summed for the sample and used to rank order the DBA 
tasks with respect to frequency of mention. 
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To explore possible relationships among the independent 
and dependent variables, comparative statistics (Chi-square 
tests, t-tests, and rank-order correlations) were used. The 
sample was partitioned by each of the seven independent 
variables and values of the dependent variables for the sub
samples were compared. 

RESULTS* 

The nature of the survey respondents can be determined 
from the descriptive statistics on the independent variables. 
The sample was largely self-selected, and therefore not de
monstrably random. However, the characteristics show a 
reasonably diverse group, representing a spectrum of age 
(one to five years), industry, installation size, and data base 
scope. One DBMS (lMS) dominates the sample (used by 65 
percent of the respondents) as does one mode of EDP or
ganization (75 percent were centralized). 

The characteristics of the DBA groups can be summarized 
as follows: 

• Size-The size of the DBA group relative to EDP staff 
size ranged from 0.4 percent to 12.5 percent with a 
mean of 3.34 percent and a standard deviation of 3.01 
(actual staff sizes ranged from one to 28). If projected 
staff increases are included, the mean increases to 3.86 
percent. 

• Organizational position-Organizational position was 
of interest since most authorities claim that DBA re
quires a high management level for success. Most of 
the groups surveyed were two or more levels below the 
top EDP manager. The range for this variable was one 
to four, with only 25 percent reporting directly to the 
top EDP manager. Most of the DBA groups had 
changed their organizational position since their incep
tion, most for the better. This suggests that DBA might 
start low in the organization and gain in position as the 
function matures. Over half of the groups, however, 
were placed on a lower organizational level than their 
primary users (e.g. applications programmers). This 
suggests that DBA is still considered a support function 
by most EDP groups. Only 10 percent of the DBA 
managers were on a higher level than the manager of 
their primary user group. 

• Staff Orientation-Each DBA group was assigned a 
rating on two five-point scales according to the job 
titles or descriptions provided for their staff members. 
(Scale I: I =All administrative, no technical; 2; 
3=Mixed; 4; 5=All technical. Scale 2: I =Applications
oriented; 2; 3=Mixed; 4; 5=Systems-oriented.) The 
tabulation of the first scale showed a clear dichotomy, 
with twice as many groups rated technical as rated 
administrative (mean rating = 3 .55, standard devia
tion= 1.5). Responses on Scale 2 showed that most 
groups were applications-oriented (45 percent) or mixed 

.. An extended discussion uf the survey results and supporting data can be 
found in another paper by the author. 9 

(40 percent), and none were entirely systems-oriented. 
(Mean ratings=2.4, standard deviation = 1.1). 

• Organizational Structure-Almost all of the respond
ents (89 percent) had either one level (42 percent) or 
two levels (47 percent) of staff reporting to the DBA 
manager. For both flat and pyramid structures, the 
most common span of control was three (the range was 
zero to six). The most common functional designations 
associated with these three subgroups were: Support 
for data base design and maintenance, data standards 
(including data dictionary), and DBMS support. 

• Tasks-The tasks performed by each DBA group were 
recorded on a menu of 48 representative tasks culled 
from the literature. ** By summing across the sample 
for each task, the proportion of DBA groups performing 
each task was determined and the tasks were ranked 
accordingly. Table I shows the tasks most, and least, 
frequently mentioned. 

FACTORS INFLUENCING DBA CHARACTERISTICS 

Relationships were detected between each of the inde
pendent variables and one or more DBA characteristics. 
While some of the other cross-classifications suggested pos
sible relationships, due to the small sample size (N =20, five 
responses being unacceptable for various reasons), they 
were not statistically significant. Except where noted, the 
following discussion will be limited to significant relation
ships (p<.05). 

The length of time that a DBA had been in existence was 
found to be related to four of the five DBA characteristics. 
Only relative staff size was not significantly related. Inspec
tion of the data shows, however, that the younger groups 
(three years or less) show more variation in size and a higher 
proportion of small staff sizes than the older groups. 

As might be expected, the older groups show more inter
nal structure and have experienced more organizational 
change than the younger groups. Younger groups also tend 
to be more applications-oriented, while older groups are 
more systems-oriented. This might be associated with the 
development cycle of the data base applications (i.e. 
younger-design, older-operational). 

DBA appears to start as a technical support group for one 
or more applications areas (and below them in the organi
zation). Over time DBA moves to a higher level (equal to 
the primary user group) functioning then in a more consult
ative fashion. 

One interesting, though non-significant, result suggests 
that a change may have occurred in this pattern over the 
past two years. The youngest DBA groups (two years or 
less) reported a broad range of applications supported, sim
ilar to the oldest groups (greater than four years). This, 
coupled with the fact that none of the young groups sup
ported only one application area, suggests that DBA may 
now be avoiding the project approach, i.e. supporting only 
one application area, which was common in the past. 

"'* The full list of tasks is shown in the Appendix. 
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TABLE I-DBA Tasks Mentioned by Survey Respondents 

Most FrequentLy Performed 
Task % 
Maintain Data Dictionary System 75 
Evaluate DB software 60 
Maintain DB descriptions 60 
Reorganize DBs 60 
Recover DBs 60 
Select DB software 55 
Forecast DB growth 55 
Generate DB descriptions 55 
Monitor DB performance 55 
Develop standards for data 55 
element names 
Determine physical structures 50 
Specify DB access policies 50 
Load DBs 50 
Set policies on DB backup 50 
and recovery 

DBA groups established before a DBMS was installed 
tend to be larger (in relative size) than those instituted with 
or after the DBMS. This, however, may be indirectly related 
to age, since groups started before the DBMS are older than 
most of the groups started with or after the DBMS. 

Installation size was found to be related to the level of the 
DBA with respect to the top EDP manager and also to the 
amount of organization change experienced by the DBA. 
DBAs in organizations with large installations (large model 
hardware and large data bases) tend to be lower in the EDP 
organization than those in smaller installations. These DBAs 
also reported more organizational change (both positive and 
negative) in the DBA group than did DBAs at smaller in
stallations. 

The relationship between the DBMS package used and 
DBA characteristics was significant for only two variables: 
DBA's span of control and DBA tasks. Both of these results 
compared IMS DB As with DBAs using other DBMS pack
ages. IMS DBAs were found to have larger span of control, 
i.e. more persons reporting to them, than the other DBAs. 
Further, the ranks assigned to DBA tasks by the IMS DB As 
were found to be inversely correlated with those assigned 
by the other DBAs. The IMS DBAs emphasize tasks related 
to planning and control (forecast growth, data dictionary, 
data name standards) while the others emphasize operational 
support tasks (e.g. data base load, troubleshooting). 

In contrast with the sparse relationships detected between 
DBA organizational characteristics and the independent var
iables, the content of the DBA function was related to all 
but one. Differences in the rank order of tasks performed 
were detected among groups partitioned by every independ
ent variable, except installation size. For a fuller discussion, 
see Reference 9. 

CONCLUSIONS 

The results of this survey support two major conclusions. 
First, the organizational aspects of data base administration 
groups are affected primarily by the length of time that the 

Least FrequentLy Performed 
Task % 
Select DB-related hardware 0 
Enforce DB retention policies 0 
Requirement analysis for DB 5 
applications 
Schedule computer time 
Determine program structure 10 
Evaluate DB-related hardware 15 
Design forms/procedures for 15 
DB applications 
Enforce standards for 15 
application coding 
Maintain DC monitor 15 
Enforce standards for 20 
documentation 
Educate DB users 20 
Set application priorities 20 

group has existed. This suggests a maturation process for 
DBA, perhaps similar to Nolan's stages of EDP growth. To 
formulate such a hypothesis, criteria defining each stage in 
the process must be specified and characteristics of DBA 
organization and structure related to each stage. 

Second, it appears that the tasks performed by DBA 
groups vary independently from organizational structure or 
position. The composition of a DBA's job and the rank 
ordering of tasks within it are influenced by several factors, 
including the DBMS package used, EDP organization type, 
and the scope of data base applications. Additional task data 
from stratified random samples for each of the related var
iables could be used to explore these relationships in greater 
detail. It may then. be possible to develop task profiles for 
the several different types of data base administration func
tions that exist in practice. 

APPENDIX-CLASSIFICATION OF DBA TASKS 

Planning and Management 

Evaluate data base software (e.g. DBMS, DDDS) 
Select data base software 
Evaluate data base-related hardware (e.g. disks, terminals) 
Select data base-related hardware 
Define implementation strategy for data bases 
Forecast data base growth 
Set operational goals (performance, downtime) 
Set application priorities 
Hire, fire, promote data base personnel 

Data Base Design 

Requirement analysis for data base applications (data iden-
tification) 

Develop data definitions 
Determine data structures (views) 
Determine physical structures 
Generate data base descriptions (DDL) 
Design integrity controls for data base applications 
Design forms and procedures for data base applications 
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Application Programming/Testing 

Determine program structures (processes) 
Develop standards for application coding 
Enforce standards for application coding 
Application system testing 

Controls 

Generate data base descriptions (DOL) 
Maintain data base descriptions 
Design integrity controls for data base applications 
Specify data base access policies 
Record data base usage 
Monitor data base controls 
Develop standards for data names 
Develop standards for application coding 
Develop standards for documentation 
Maintain ODDS 
Set data base retention policies 
Select/design security techniques (passwords, locks, etc.) 

Operational Support 

Monitor data base controls 
Load data bases 
Reorganize data bases 
Recover data bases 
Monitor data base performance 
Tune data base to meet operational goals 
Troubleshooting (i.e. track down problems) 
Enforce standards for data element naming 
Enforce standards for application coding 
Enforce standards for documentation 
Set policies on data base backup and recovery 
Schedule computer time (e.g. when data base is up) 
Develop data base utilities (data compression. encryption. 

query languages) 
Enforce data base retention policies 

DBMS Support 

Install new DBMS features 
Modify or fix DBMS 
Maintain data communications monitor 
Develop data base utilities (data compression, encryption, 

query languages) 

User Support 

Prepare data base documentation 
Disseminate data base documentation 
Educate data base users 
Maintain ODDS 
Maintain query language(s) 
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in large design data bases 
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INTRODUCTION 

One way a data base can cease retaining a meaningful re
lationship with the "real world" situation that it models is 
through violations of its semantic integrity, i.e., transgres
sions of the defining constraints of its data. These con
straints state the legality of the data values and are defined 
by the creators of the data, e.g., a checking account cannot 
be negative, or the salary of an assistant professor cannot 
be greater than that of a full professor. 

The variety of integrity constraints to be maintained can 
be extremely wide. It can range from general low-level man
agement such as dangling references to complex knowledge 
specific to the "real world" situation, e.g., in the case of a 
building, detection of spatial conflicts or even statics and 
mechanics. 

Many of the debates about the different data models pro
posed in the past few years center around the extent of the 
semantics that these various models hold. Whatever data 
model one can use nowadays, there will always be semantics 
which escape it. In daily practice, these semantics are often 
maintained by the application programs or the manual users. 
This forces them to maintain information about the data 
base in a form external to it (a data base about the data 
base) when in fact it is conceptually part of the data base 
itself. Incorporating this external information in the data 
base would be an extension of the effort which led in the 
first place to modeling a "real world" situation with a com
puter data base. Moreover, interaction with the data base 
would be improved by automating the maintenance of these 
semantics. 

This need exists for any kind of data base but it is espe
cially pressing for what I call design data bases. 4 A design 
data base not only stores a model of some artifact and 
provides primitive accesses to it (e .g., query processing) but 
also supports the design of this model with the hesitations 
and backtracking usually involved, e.g., the schema (the set 
of data types) is continuously modified. The design of, and 
the interaction with, such a system are greatly helped by the 
data and control abstraction features of a high-level pro
gramming language. GLIDE2 is an example of a design data 
base. The integration oflanguage and data base concepts for 
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design applications and its relationships with the principles 
presented here are discussed in Reference 4. 

Unary integrity constraints apply to a single record and 
n-ary constraints apply to several records. The proposed 
approach starts by considering an n-ary integrity constraint 
as composed of one set of dependent variables and one set 
of independent variables. Variables can be both dependent 
and independent. The value of a dependent variable is par
tially or entirely determined by the values of the independent 
ones. Maintaining an n-ary integrity constraint consists in 
recomputing or checking the values of its dependent varia
bles when the independent ones change. 

The variables of an intra-record integrity constraint are 
attributes of the same record. A record is a collection of 
data logically related and stored together. The variables of 
an inter-record constraint are attributes of several records. 
These records can be instances of the same type or of dif
ferent types. 

The distinction of ·constraints according to the number of 
records they involve is important from two viewpoints. 
First, the record types and the operations performed on 
them determine the modularity of the data base schema and 
of the "contexts" in which the applications execute. Sec
ondly, records belonging to the same integrity constraint are 
rarely in core at the same time and, in a traditional computer 
architecture, the cost of disk access is high. The emphasis 
of this approach is on inter-record constraints. 

This paper presents three basic principles of an approach 
to automatic maintenance of semantic integrity in large de
sign data bases. First, the maintenance of integrity is delayed 
uniii stricdy necessary. Second, integrity violations are tem
porarily tolerated. Third, integrity constraints are proce
dures included in the record definitions and automatically 
activated by the system. These principles are generally not 
supported by the data base systems attempting elaborated 
automatic maintenance of integrity, in particular INGRES 7 

and System R. 1 A mechanism based on these principles is 
currently under investigation. 

DELA YED MAINTENANCE OF INTEGRITY 

An integrity constraint is to be maintained when one or 
more of its independents has been updated. This mainte-
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nance consists of propagating the updates from the inde
pendents to the dependents. Scheduling this propagation 
requires knowing which records are the dependents, and 
also something of the ways these dependents use the inde
pendents in order to decide when to notify them and in what 
order. This propagation can be scheduled either by the rec
ords themselves or by the system. 

The records are not the best qualified to schedule this 
propagation. As noted by Hammer,3 the dependents of a 
record are often defined long after the record itself. Records 
should not have to anticipate their users and their uses. 
They should not even have to maintain the knowledge of 
their existing uses in order to confine their view of the world 
to themselves, thus reinforcing the modularity of the 
schema. 

Making the system schedule the propagation of updates 
has important costs, too. The propagation must be scheduled 
relative to other tasks. The scheduling policy must be gen
eral enough to fit all applications or, at least, to fit most 
applications and offer the others a way to override it. 

A simple and general policy is immediate propagation of 
updates, which consists of giving priority to propagation 
over everything else. It is the policy of INGRES. However, 
it often means that control leaves the context which intro
duced the update to wander through the data base. This 
happens when a record is used in different contexts. For 
instance, in a building, a post can be used for structural 
purposes as well as for running pipes and wires. When 
updating the post for structural reasons, it would be long 
and difficult to consider simultaneously the effects of this 
update on the piping and the wiring systems. Often, accesses 
of overlapping contexts must be serialized. Furthermore, 
the disk accesses to the remote dependent records can drast
ically slow down the operation of writing in records. 

Other scheduling policies consisting of alternating propa
gation and other tasks would require well defined priorities 
between these tasks and propagation. They would require 
spreading some knowledge of record dependencies and uses 
out of the records. This knowledge should remain associated 
with the records. even if not necessarily with the independ
ent ones. 

The proposition, then, is to delay the propagation of up
dates until strictly necessary, i.e., when the dependents are 
accessed, for whatever reason, including checking their ex
ternal integrity. The integrity of a record is more important 
when the record is about to be used than when it resides on 
disk. 

TOLERANCE OF INTEGRITY VIOLATIONS 

A consequence of delayed maintenance of integrity is that 
the data base must be able to tolerate violations of its integ
rity, at least temporarily. Between the time an independent 
record is updated and the time a record depending on this 
record is accessed, the constraint that links these two rec
ords is left unenforced. Furthermore, the independent up
date may imply a dependent value which is illegal because 
of another constraint applying on the dependent. Violations 

are tolerable only as long as they, or their causes, i.e., the 
updates, are recorded. In contrast, in System Rand 
INGRES, updates leading to violations are immediately re
jected. 

Sometimes, tolerance of violations is not only an accept
able consequence but is desirable. Integrity constraints may 
apply at some moments and not at others. This is particularly 
true for design data bases. One advantage of using a model 
to design a complex artifact is that the constraints for making 
the model are different, and hopefully more manageable, 
than those for making the artifact. Some constraints per
taining to the artifact may be ignored for convenience, until 
the end of a design phase. Such a phase defines an integrity 
transaction for the constraints temporarily dropped and the 
records they concern. 

In the current approach, integrity transactions are delim
ited by (dependent) record openings. Opening a record ends 
the transaction for the record and the constraints in which 
it is a dependent. If it is desired to open a record without 
maintaining one of its constraints, this constraint can be 
associated with another record. This other record is opened 
when the constraint needs to be checked. The purpose of 
some records may be to implement the external integrity of 
other records. Such records are typically aggregation ab
stractions as defined by Smith and Smith. 6 They are the 
dependents of the aggregations and the records whose in
tegrity they implement are the independents. For instance, 
aggregations are useful for centralizing the management of 
circular dependencies. 

In the cases described so far, violations are tolerated until 
they are detected. Now, tolerating and recording a violation 
may be the action to take when the violation is detected, in 
order to postpone its resolution. For instance, in a trans
action during which an integrity constraint does not apply, 
it may be useful to record the violations of this constraint 
on the fly, so that they can be readily taken care of at the 
end of the transaction, instead of being recomputed. Re
cording violations is also useful when a constraint possesses 
several independent variables and is violated by the update 
of one of them. This violation can be notified to the other 
independent variables. Often, at least one can change its 
value in order to accommodate the requested update. For 
instance, if several persons share a checking account, one 
person can overdraw the account and another one compen
sate the overdraw. 

Simultaneous alternative values for variables can be as
similated to violations of the data base integrity. They in
dicate some indecision as to what the unique values of the 
variables are. They are often useful to tolerate temporarily, 
especially in design activities, due to the hesitant nature of 
these activities. 

Alternatives may be generated by the same process or by 
different ones. Regarding the latter case, the principles of 
resource protection and concurrency control, traditionally 
used in operating systems, are necessary but not sufficient 
for data bases. Locking mechanisms serialize concurrent 
accesses. However, since writing in a data base is to leave 
a more or less permanent mark, the question of whether the 
authorized processes write in a record serially or in parallel, 
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is immaterial. What is important is that overwriting each 
other may lead the processes into conflicts which cannot 
necessarily be solved as soon as they occur. 

INTEGRITY CONSTRAINTS INCLUDED IN THE 
RECORDS AND AUTOMATICALLY MAINTAINED 

Since all the semantics usually desired in a data base 
cannot be incorporated in the data structures, one has to 
resort to executable code. This code should be of a high 
level in order to maximize the power of integrity constraints. 

The code implementing the integrity constraints of a re
cord can be included in the record definition in the manner 
of abstract data types. 5 It participates in defining the record 
semantics, particUlarly, its behavior, as much as data struc
tures. This code should be pre-compiled in order to avoid 
recompiling it every time it is executed. Integrity constraints 
can then be implemented by pre-compiled procedures called 
integrity procedures. 

Clearly, including integrity constraints in the records is 
acceptable for intra-record constraints since it confines them 
to the concerned records. It also holds for inter-record con
straints. While the records should not know their uses, they 
must know the records on which they depend or, rather, 
abstractions of these records. Consequently, integrity pro
cedures are included in the dependent records. This inclu
sion respects abstraction boundaries. Integrity procedures 
write in the dependent records or check their values, and 
they simply read the independent ones. 

While the usefulness of the notion of abstract record type 
in data bases has been acknowledged by several authors, 
e.g. Reference 6, others have objected to it. In particular, 
Hammer3 rightly points out that the behavior and the uses 
of a record type evolve over time. The proposal to exclude 
the uses of a record from its definition reduces this evolution 
significantly. 

This procedural approach is different from one which 
guarantees integrity by providing procedures for accessing 
the data base. Such procedures guarantee that the data base 
transits from one valid state to another. They implement 
state transition integrity. State transition procedures enforce 
immediate maintenance of integrity and do not tolerate vi
olations. 

The inclusion of integrity constraints not only in the data 
base but in the records, contrasts with other approaches. 
The separation of integrity constraints from the records, as 
in INGRES and System R, makes insertions and deletions 
of integrity constraints easier and it centralizes the detection 

of conflicts between them. The cost of this separation, how
ever, is to spread the definition of the records. 

The' mode of activating integrity checks, i.e., integrity 
procedures, remains to be examined. There are two kinds 
of integrity checks. Some are implicit. The user does not 
want to have to activate them explicitly all the time. They 
can be activated automatically whenever necessary, i.e., 
when the records are accessed. The others are explicit. They 
take place at the end of a user-defined transaction which 
can span several record accesses. A unified scheme is pro
posed which satisfies both sorts of integrity checks. 

Integrity procedures should be written by the user and 
compiled in relation with record declarations (either types 
or instances), but automatically invoked by the system upon 
well defined conditions. These conditions are data base op
erations, e.g., record reads and writes. System R possesses 
a similar triggering mechanism which activates the execution 
of statements of a query language. 

For implicit checks, integrity procedures are automati
cally activated every time their records, supposedly the de
pendent records of the constraints, are accessed. As for 
explicit checks, opening a record which implements integrity 
constraints of other records marks the end of a user-pro
grammed transaction. 
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On query-answering in relational data bases 

by E. L. LOZINSKII* 
Rutgers University 
New Brunswick, New Jersey 

INTRODUCTION 

In recent years the relational model has been widely adopted 
for data base description. According to this model a data 
base, DB, describes certain objects of the world having 
certain attributes, and the relationships among them. Thus, 
DB is characterized by a set of attributes, D, a set of do
mains associated with the attributes, and a set of depend
encies, F, corresponding to the relationships among the at
tributes (all the terms and concepts not defined here are 
those of References 1-3). A data base is a collection of 
relations, R={R;}. Each relation R; is characterized by a 
set of attributes S;={DjIDjED} called its scheme, and con
sists of a set of tuples. Each tuple is a map from the attri
butes of the relation scheme to their domains that satisfies 
all the dependencies of F (we shall consider functional de
pendencies) . 

We shall consider the following model of a data base 
operation. A data base represented by a collection of rela
tions R is accessed by a set of jobs submitted by users in 
order to retrieve, delete, insert or modify any subset of the 
data. In general, retrieval is an essential part of these pro
cesses. Thus, each job accessing a data base requires re
trieval of some information from it. Users submit their re
quests for information in the form of queries, specifying the 
data which must be retrieved and the conditions that must 
be satisfied by the desired data. The task of query processing 
is to determine the set of data to be checked and retrieved 
from the data base, the proper order in which the data should 
be accessed and the types of manipulations that must be 
performed on the data. 4 This processing is referred to by 
different authors as query translation5 or access path find
ing. 4,S,7 

Let a query require a retrieval of data which belong to a 
set of attributes D' . It can be shown that such a query may 
be answered in a certain relational data base only if from 
the same data base a relation can be derived which contains 
all the attributes of D' specified by the query. Let us call R
query a query that requires a creation of relation with a 
given scheme. R-queries originate not only from users' re
quests but can also be initiated by a data base management 
system (a data base administrator) as a means of relations 

" On leave from the Department of Computer Science, Hebrew University, 
Jerusalem, Israel. 
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transformation in the process of data base evolution and 
restructuring. 

Let a query be answerable by means of a procedure which 
contains a sequence of relational operations project, join, 
divide and restrict. 8 Among these operations, the join op
eration is subject to a number of strong constraints. Specif
ically, an execution of a join operation on two relations R 1 

and R2 with the purpose of creating a new relation 
R3=Rl*R2 can produce invalid data in the sense that R3 
can contain a tuple which does not satisfy the original set of 
dependencies F. In order to avoid the appearance of invalid 
data, the condition of a lossless join 9 -

12 must be satisfied. 
Thus, we shall concentrate upon join operations of a query
answering procedure, assuming that all the relations pro
duced by joins are properly projected and restricted. 

So, considering a collection of relations, R, and a R-query 
that requires a relation Rk with a scheme Sko the following 
questions arise: 

1. Can R k be derived from R? 
2. Which relations should be joined to produce Rk from 

R? 
3. What is the sequence of join operations (optimal ac

cording to the accepted criteria) that produces R k ? 

The algorithm described in the fourth section answers 
these questions. 

LOSSLESS JOINS 

As was shown by J. Rissanen!O a relation Rk with a 
scheme S k can be produced by means of join and project 
operations from a set of relations R={R;} (such that 
S kC US; I R;E R) if these relations satisfy the following con
ditions for lossless join given in References 9-12. 

Let us say that a set of attributes B functionally depends 
on a set of attributes A (abbr. A~B) if there is a functional 
dependency fEF such that f: A~B. We shall use the 
concept of closure, CL(X), of a set of attributes X defined 
in Reference 11 as follows: 

1. XCCL(X) 
2. If YCCL(X) and there is fEF such that f: Y~Z, 

then ZCCL(X) 
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3. No attribute is in CL(X) unless it so follows from (1) 
and (2). X~ Y denotes the fact that Y~CL(X). 

I t can be shown that if X ~ Y, then the functional depend
ency X ~ Y is in F or can be derived from F using a set of 
inference rules based on the axioms given by W. Arm
strong. 13 So, the closure of X is the union of all the sets of 
attributes dependent on X according to the adopted infer
ence rules. 

A join of relations Ri and R j is loss less (that is, it does 
not produce any invalid information) iff Sin S j~ S i 
or S;nSj~Sj. 

As an example (taken from Reference 11), let us consider 
a data base characterized by the attributes NAME (N), 
ADDRESS (A), PHONE NUMBER (P), DISTRICT (D), 
under the given set of dependencies F={N~A, N~P, 
A~D, P~D}, and represented by the following set of re
lations (the primary keys of relations are underlined): 
R={R 1=CNA), R 2=(ljP), R 3=(,6D), R4=(fD)}. 

By the definition of join operation,1.2,8 two relations, R; 
and R j , may be joined if they contain common or compa
rable sets of attributes, A and B, such that Ak S i and BkS j. 
So, four different joins can be executed on the sample re
lations of R (common attributes are indicated in parenthe
ses): R I2 =R 1*R 2(N), R I3 =R 1*R 3(A), R 24=R2*R 4(P), 
R 34=R 3*R 4(D). The three former joins satisfy the condition 
for losslessness, but the latter one does not, because 
CL(N)={N, A, P, D}, CL(A)={A, D}, CL(P)={P, D}, 
CL(D)={D}, so neither {A, D} nor {P, D} belongs to CL(D). 
Relation R 34 , indeed, can contain invalid data, because 
within a district it relates each phone number to arbitrary 
addresses not considering that the related phone number 
and address must belong to the same person name. 

Suppose that a relation R' with a scheme S' required by 
a R-query can be produced losslessly by a sequence of join 
operations on a set of relations {R;}. Let us denote the 
operands of a join operation R I (left relation) and R r (right 
relation), such that if'the join is lossless, then without any 
loss of generality SlnSr~Sr' A join R1*R r produces a 
relation R 1r with a scheme Slr=SIUS r , There is a subset of 
attributes Kl~SI (called a key of Rd, such that 

(1) 

By Armstrong's axioms,13 Kl~SIr. i.e. a key of the left 
relation is also a key of the product. This implies the follow
ing property of sequences of lossless join operations: 

If a relation R' with a scheme S' is produced losslessly 
by a sequence of join operations from a set of initial 
relations {R;} such that S'kUSi, then there is a relation 
RjE{R i}, called a source relation of R', such that S' 
functionally depends on each key, K, of R j • (Proofs are 
omitted here for brevity). 

GRAPH REPRESENTATION 

A given set of functional dependencies, F. can be repre
sented hy ~n A NO/OR gr~ph14 in the following way. Let 
G=(V. W, E 1 • E 2 ) denote an AND/OR graph. when-~ V is 

a set of AND-nodes and terminal nodes, W is a set of OR
nodes, El is a set of AND-arcs (the arcs going out of AND
nodes), E2 is a set of OR-arcs (the arcs going out of OR
nodes). We shall say that an AND/OR graph G, called anF
graph, displays a given set of dependencies F={ fi r iff for 
each fiEF such that fi: A;~Bi (Ai and B; are sets of 
attributes) all of the following hold: 

1. V:J{vjIDjE(AjUB;)}, where Vj denotes the node dis-
playing D j 

2. WiEW 
3. E1:J{(vk> wi)IDkEA j } 

4. E 2::l{(Wh vm)IDmEB;} 
5. There are neither other nodes nor other arcs in G. 

In words, V contains nodes, called v-nodes, corresponding 
to all the attributes appearing in F (D(Vi) denotes the attrib
ute displayed by Vi> D(vd=Di); W contains nodes, called 
w-nodes, corresponding to all the dependencies appearing 
in F (f( W j) denotes the dependency displayed by W j, 

f(wj)= fj); for each distinct left-side set of attributes Ai (of 
a dependency f;) there is a w-node, wjEW, which accepts 
incoming arcs from all the v-nodes corresponding to A i and 
emits outgoing arcs to all the v-nodes corresponding to B i . 

For example, Figure 1 shows a F-graph which displays 
the following set of dependencies: F={DID2D3~D6D7' 
D4D5~D7' D6~D9' D7~D9' D7D8~DlO}' The AND-arcs 
going to the same w-node are linked by a bow, w-nodes are 
marked by a double circle. 

Let a collection of relations R={R i } represent a DB with 
a given F. Because our aim is to construct a requested 
relation from {R;} we supplement the F-graph G=(V, W, 
E 1 , E 2 ) with the following information corresponding to the 
relations of {R i}: for each R i add to G a node U I, called a 
u-nod e, such that if K is one of the keys of R i, then u i 

Figure 1 



emits outgoing arcs to all the nodes of G displaying attributes 
of K. Ri is displayed by Ui; K is said to be tied by Ui' 

We shall say that an AND/OR graph H=(U, V, W, E 1, 
E2, E 3), called an R-graph, displays a given representation 
R of a DB with a given F, iff all of the following hold: 

1. V, W, E1 and E2 are those of the F-graph G 
2. U={udRiER}, Ui denotes the node displaying Ri 
3. E3~{(Ui> vk)IDkEKd, Ki denotes a key of Ri 
4. There are neither other nodes nor other arcs in H. 

As an example, Figure 2 shows a R-graph displaying the 
following representation of a DB having the F-graph of 
Figure 1: R1=(DID2D3DSD7D9)' R 2=(D .. Dr,D7), 
R3=(D7DSD9D lO)' 

Let us say that a node ViEV in H=(U, V, W. E 1, E 2, 
E 3) is reachable from a set of nodes V~ V (abbr. V~Vi) if 
the following holds: 

a. ViEV, or 
b. There is a node Wj preceding Vi> (Wj, vi)EE2, S.t. all 

the nodes preceding Wj, {Vk I (Vb Wj )EEd, are reach
able from V. 

Because each dependency of F is displayed by the cor
responding w-node of H, reachability is equivalent to be
longing to a closure in the same sense as H is equivalent to 
F. This implies the following: 

(i) A node ViE V is reachable from a set of nodes VC V 
iff D(V)~D(vi)' -

(ii) A node ViE V is reachable from a node ujE U if Uj 
ties a set of nodes V~ V such that V~Vi' 

(iii) If a relation R' with a scheme S' can be produced 
losslessly from a set of relations {R i}, then a R-graph 
H which displays {R i } contains a u-node, Up called 
a source node of S' , from which all nodes {v i I DiE S '} 
displaying the attributes of S' are reachable. Indeed, 
let R m be a source relation of R', then the node U m 

displaying R m in H is a source node of S' . 

Figure 2 
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JOIN PROCEDURE FOR R-QUERY 

If a relation R' can be produced from a set of relations 
R={R i } there is, in general, a number of different sequences 
of join operations producing R' . For example, if a data base 
having the F-graph shown in Figure 3 is represented by the 
relations R 1 = (D 1D2), R2 = (DID3)' R3= (D2D 4), then a re
lation R' = (D1D3D 4) can be produced by the following join 
sequences: 

a. J 1 : R~ =R 1*R 2(D 1), R~=(DID2D3); 
J 2: R' =R ~*R3(D2)' R'=(D 1D3D4). 

b. J 1: R~=R1*R3(D2)' R~=(DID2D4); 
J 2: R'=R~*R2(D1 ), R'=(D 1D3D4). 

In these sequences we do not care about project opera
tions which should appear in practi-cal procedures. For in
stance, in Sequence b the relation R ~ probably should be 
projected in (D 1D 4 ) before J 2 • We assume that 
relations R; produced by joins are properly projected. 

One of the join sequences producing R' should be pre
ferred to others according to certain criteria, one of which, 
in particular, is the total processing cost, CJ='i,c(J i ), 
where c(J i) is the processing cost of J i' The processing 
cost of a join operation depends on the structure, compo
sition and location of the joined relations and of the product 
as well. We assume that each relation R i is assigned an 
access cost c(R d (say, proportional to its physical size). 

Our goal is to construct an efficient sequence of joins 
J(R')={J1, J 2, ... } which produces a relation R' (with a 
scheme S', required by a R-query) from a given set of 
relations R representing a data base with a R-graph H. The 
features of lossless joins of relations and the graph repre
sentation described in the second and third sections provide 
a basis for an algorithm which performs this task in a number 
of stages as follows. 

A. Let X be a target set, that is a set of nodes displaying 
the attributes required by a given R-query, such that 
X={xID(x)ES'}. At this stage all the source nodes of 
X (from which all the nodes of X are reachable) are 
found in H, constituting a set Us. If Us is empty then, 
by (iii), the requested relation cannot be constructed 
according to the given data. The algorithm used at this 
stage is a graph equivalent of the Membership algo
rithm presented in Reference 15. 

Figure 3 
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B. Let us consider au-node u i' a v-node y and a set of 
relations P( u i' y) such that a relation R' with a 
scheme S'=D(KdU{D(y)} can be produced from 
P(Ui' y) but cannot be produced from a subset of P(Uj, 
y). We shall call P(uj, y) ajoin path from Ui to y. 
CP(uj, y) stands for the cost of P(uj, y) such that 
CP(Uj, y)=Ic(Rj)IRjEP(uj, y). P(uj, Y) denotes a 
join path from Uj to a set of nodes Y, such that P(Uj, 
y)=UP(Uj, y)lyEY. Stage B finds a join path from 
UiE Us to a given target set X which has the minimum 
join path cost among all the join paths from Ui to X 
found by the algorithm. This stage is based on Dijk
stra's algorithm for the shortest path in a graph. 16 

C. As was mentioned previously, there is, in general, a 
number of different join procedures (i.e. sequences of 
join operations), J(uj, X) producing R' from P(uj, 
X). Let JO(uj, X) denote the optimal join procedure 
that has the minimum total processing cost, CJO(Uj, 
X)= min CJ(uj, X). At Stage C for all the source 
nodes uiEU~ an optimal join procedure JO(Ui' X) is 
built. This stage is based on Huffman's algorithm17 for 
finding a tree with minimum weighted path length. 
Then among all these join procedures the algorithm 
chooses the one, J(R'), with the lowest processing 
cost, such that CJ(R')= min CJO(Ui' X)lujEU s ' If 
R' cannot be produced from the given data, the al
gorithm returns J(R')=<fJ. 

COMPLEXITY ESTIMATION 

Let 'T stand for a measure of complexity (say, the running 
time) of an algorithm, and let F denote the number of all 
appearances of attributes in all the dependencies of F (if all 
the dependencies belonging to F are written down as a 
sequence of names of attributes appearing in them, then F 
is the length of this sequence). Let I R I denote the cardinality 
of R. 

The analysis of the algorithm of the fourth section gives 
the following estimation of the complexity of its stages: 

'T(A)=O(I R I.F), 

'T(B)=O(I R 1
3F), 

'T( C)=O(I R 1
3 ). 

Thus, the complexity of the algorithm finding an efficient 

join procedure for a given query is polynomial, 

(cf. an exponential-time algorithm given in Reference 12). 
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ASTROL-An associative structure-oriented language 

by JAMES F. \VIRTH 
East Carolina University 
Greenville, North Carolina 

INTRODUCTION 

The language ASTROL resulted from the search for a 
"small" language somewhat like LISP 1.5 which could be 
easily implemented on a minicomputer with about 32K bytes 
of store. The LISP cell was considered to be an example of 
the record-an object whose structure is specified by a set 
offield descriptors. However, the set of descriptors is often 
allocated at compile time, whereas it would be useful to be 
able to add descriptors to a record dynamically. 

The essential information requirement for a record is the 
ability to associate values to certain combinations of record 
and descriptor-a task for an associative memory. Conse
quently, the author determined to create a conversational 
language whose structure was implicitly bound to the facil
ities provided by an associative memory-an Associative 
Structure-Oriented Language. This was a conceptual exper
iment to discover what ideas would arise in the attempt to 
adapt traditional programming constructs to such an envi
ronment. 

FUNDAMENTAL CONSTRUCTS 

The kind of memory envisioned for ASTROL was one 
that could associate a value z to a pair x, y where x, yand 
z were any members of some set A. Perhaps a content 
addressable memory (CAM) could be used-where each 
word of the memory is divided into three fields x, y and z. 
Instead of being addressed, a word (x, y, z) would be ac
cessed by specifying its x and y field contents. The storage 
of the word (x, y, z) would represent the association of z to 
the pair (x, y). In ASTROL the instruction xy~z expresses 
the storage of such an association in the memory while the 
expression (x y) denotes the retrieval of the value z last 
associated to x and y. The association· is deterministic in 
that a subsequent storage operation xy~w will erase the 
previous association. The operation (xy) can be thought of 
as meaning "the yth element of array x, ,. "field y of record 
x," or "subject x's y-attribute." It is left associative with 
maximum precedence so that xyz is the same as (xy)z while 
xyz~w means (xy)z~w. 

The objects x, y and z from the set A are called atoms 
and include the signed integers, symbols a fa LISP such as 
BIRZWP, and two other categories-the code atom and 
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anonymous atom-to be described later. A special anony
mousatom, nil, is included as the default value for an 
undefined association (x y). 

Beyond the simple notations given above, the evolution 
of ASTROL was guided by the principle of simplicity, and 
so the language has only one data type-the atom from A. 
The subcategories of A are mostly irrelevant to the language 
so that no expression is restricted to using a special kind of 
atom. 

Simplicity also required that there be a single statement 
type and so ASTROL is an "expression" language. Each 
instruction is an expression with a value and so can appear 
elsewhere within a larger expression. The value of the as
sociation xy~z is z, whereas the expression x(y~z) causes 
the same association but has the value x. The latter form is 
useful in assigning multiple attributes to the same subject. 
Thus 

X(Yl~Zl)(Y2~Z2) ... (Yn~Zn) 

can be thought of as defining a "record" x whose ytth field 
has the value Zi • As in ALGOL 60, the operation ~ is right 
associative so that xy~zw~u means xy~(zw~u) and re
sults in two associations zw~u and xy~u. For a general 
example suppose that the memory has already stored the 
associations: 

MARY SON~BILLY 
JOHN DOG~SPOT 

Then the expression: 

JOHN WIFE~MARY 
REL J~WIFE 

JOHN (REL I) SON (DOG~MARY DOG 
~JOHN DOG) BUDDY~JOE, 

has the value JOE and causes the associations MAR Y 
DOG~SPOT, BILLY DOG~SPOT, and BILLY BUD
D Y ~JOE to be piaced in memory. 

In addition to the (xy) and xy~z operations, there are 
seven binary infix operators +, -, *, /, <, < =, and = with 
the usual meanings. These all have the same precedence as 
~ and are all right-associative. The relational operators 
yield 1 for true and the nil atom for false; and a missing left 
operand for - is presumed to be O. 

CONTROL STRUCTURES 

Formally speaking ASTROL does not support the concept 
of a program. However, a series of expression ei can be 
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combined into a new expression (e 1: e2; ... en) by the 
operator .. which is left-associative, has minimum prece
dence and operates by deleting its left operand after evalu
ating both. Clearly this is a thinly-disguised program block. 

Conversational languages such as BASIC provide editing 
flexibility by labeling every instruction in a program. This 
process can be seen as the association of an instruction code 
segment to each label. It is natural to adapt the associative 
mechanism in ASTROL to this purpose, and to that end 
code segments are allowed to be atoms in A. The series of 
instructions which evaluate an expression (el; e2; ... en) 

can be organized into a single object called a code atom and 
will then be a member of A. This data object is denoted by 
[e 1; e 2; . . . en]. The operator DO is used to evaluate the 
instructions in such a code atom. For example the value of 
[2+3] is the code atom which can add 2 and 3, but the value 
of DO [2+3] is 5. The operator DO has a precedence just 
above that of the semicolon. When DO is applied to a non
code atom, it leaves that atom unchanged. Consequently, 
the value of DO MAR Y is just MAR Y. However if the 
association: 

STEP I ~MARY DOG--SPOT; JOHN HAIR--BROWN] 

were placed in memory, then the value of (STEP I) would 
be a single code atom while the expression DO STEP I 
would have the value BROWN and would cause the two 
indicated associations. 

The code atom is the only dev~':.e for controlling program 
flow. It is unnecessary to have a "case" construction, be
cause what might have been written: 

case X( I) of begin 
A: MAR Y DOG--SPOT; 
B: JOHN DOG--SPOT; 
Y: MARY HAIR--BLOND 
end case 

can instead by rendered as DO CS (X /). provided that the 
associations: 

CSA~MARYDOG--SPOn 

CS B~JOHN DOG--SPOT] 
CS Y~MARY HAIR--BLOND] 

are present in memory. 
Because the "if-then-else" construction is a special ver

sion of the "case" statement, it too becomes unnecessary. 
However, the resulting ASTROL formulation is awkward 
and so an IF-ELSE operator was included in the language: 

valueJr IF 'ELSE -] = {Value {x} when value {y} i~' n0.1 nil 
1.-) <. mlue {z}when value {Y}IS 1111 

This operator does not control program flow as in ALGOL 
because each operand of the IF-ELSE is evaluated before 
the result is selected, Thus the code atom remains the sole 
vehicle for program control and the ALGOL version of "if 
x then Y else z" must be expressed as DO (LV] IF x ELSE 
[z]), where the parentheses could be omitted since the DO 
and IF-F.l SF orer~tor" havt' the same precedence and arc 
associated to the right. 

The traditional loop construction can be implemented by 
. recursion, but it was felt that this would be an expensive 

solution in practice. Consequently the language supports an 
operator, REPEAT, with the same precedence as DO. Its 
operand will be repeatedly activated by DO until it yields a 
non-nil value, which will then be the result of the REPEAT 
operator. Several loop flowcharts are given in Figure I along 
with equivalent expressions in ASTROL. 

It should be emphasized that REPEAT x is an expression 
and does have a value. For example if A were an array of 
20 elements, then the instruction: 

STEP FIND--
[POS I~; REPEAT [DO NONE IF (20<POS I--POS 

I +1) ELSE [pOS I IF A(POS 1)=3 ELSE NIL]]]; 

will create a code atom STEP FIND whose activation gives 
the value of the first position in A whose element is 3, or 
the value NONE in case none are. 

SYSTEM SYMBOLS 

Although generally speaking there are no variables in AS
TROL, it does support six operandless operators #, $, @, 
?, ??, and NIL which are like read-only variables. The result 
of executing each of these system symbols is described 
below: 

# Results in a new anonymous atom for each execu
tion. 

$ Results in an anonymous atom, called the proce
dural context, which represents the procedure call 
depth. 

@ Results in the atom representing the function pro
cedure currently executing. 

? Results in the next atom from the input data stream 
each time that it is executed. 

?? Results in the atom previously read by the ? oper
ator. 

NIL Results in the nil atom. 

The operator # introduces the fourth category of atom
the anonymous atom-which is a data object not in one of 
the other three categories: integer, spelled symbol or code 
segment. An anonymous atom is an internal object created 
by the system when the user needs a new object but does 
not want to name it. Each occurrence of the operator # in 
an expression will represent a new such object. As an ex
ample consider the expression: 

THE ROOT--# (OP--ADD) 
(LEFT--# (OP--ADDj(LEFT--3j(RIGHT--7)) 
(RIGHT--# (OP--SQRTj(RIGHT--9)) 

which creates the labeled ordered tree shown in Figure 2. 
The first occurrence of # creates the root node of the tree, 
while the second and third occurrences create the left and 
right daughters of the root. The root node is associated to 
the pair TIlE ROOT. The node labds are considered to be 
OP-attributes of the anonymous nodes. 
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Ex 1 Ex 3 Ex 4 

blk blka blka 

NO 

Ex 2 blkb blkb 

ans 

NO 

blk ansa ansb 

Figure 1 

The operator $ is related to the procedural treatment of 
identifiers. In a sense no procedural language has explicit 
variables but rather uses an identifier to represent a variable 
in that specific context which is the scope of the variable. 
Hence the value of the variable is associated with the con
text/scope and the identifier. This association is explicit in 
ASTROL so that the context/scope is a concrete atom in A 
represented by $ and not an abstraction of the form of a 
program. Hence $x represents the value associated to the 
identifier x in the current context $ without need of a special 
mechanism. When a procedure is invoked, $ acquires a new 
value to represent the context of that copy of the procedure, 

while return from the procedure reinstates the previous 
value of $. Hence the action of $ simulates the pushing and 
popping of procedure stack "frames." In ASTROL the only 
means of changing context is the procedure call and so 
contexts can be stacked dynamically (even recursively) but 
cannot be statically nested as in ALGOL. The use of $ is 
discussed further in the next section. 

FUNCTIONS 

Since ASTROL is an expression language, the only pro
cedures are functions. There is no special syntax for the 
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3 7 9 
Figure 2 

definition of a function and any atom can represent a func
tion. A function invocation has the form: 

X[Yl , Y2, ... , Yn] 

where x is the function name and the Yi are the actual 
parameters and are passed by value. The [ ] operation has 
the same precedence as the elided operator (xy) so that xy[z, 
w]p(q~r) means the same as «(xy)[z, w])p)(~r). 

The actual parameter Yi is passed to the function x as 
follows. The expression (xi) should be the corresponding 
parameter name and so the association $ (xi~ Yi is used to 
pass Yi under the name (xi). After the parameters have been 
passed, the system performs a DO(x VAL) to execute the 
code body (x VAL) associated to the function. As men
tioned in the last section, the value of $ is changed just 
before initiating the function call and is restored when the 
code atom (x VA L) has finished execution. Even if x is not 
a function, or (x VAL) is nil, all these operations are still 
legal, although the function value may be nil. 

Since a local variable n used in a function can be referred 
to as ($ n), the associative mechanism and the explicit con
text atom $ make it unnecessary to allocate local variables 
to the function in any special way. 

As one example, consider the expression: 

F(l~ X)(2~ Y) VAL~[«2*$ X)-$ Y], 

which creates the function F(x, y)=2x- y. A more elaborate 
example is given by the definition of the function composi
tion operator COMPOS which creates a function dynami
cally. This created function is represented by an anonymous 
atom and its composition factors are stored as the F and G 
attributes of that atom. Since the created function is anon
ymous, its name is accessed by the operator @ within its 
code body: 

COMPOS(I~F)(2~G)VAL~ 

[# (I~X)(F~$ F)(Cfr-$G) VAL~[@ F[@'G[$X]]]]. 

Although parameters are passed by value in ASTROL, 
the existence of the code atom allows a parameter to be 

, effectively passed by name. 

USER INTERACTION 

User input is handled by the ? and ?? operators covered 
earlier, while output is done with the operators! and: which 
have a precedence slightly higher than the semicolon and 
are left-associative. Both operators tabulate to the position 
given in the left operand. The! then outputs the print rec.ord 
and begins a new one. Finally both operators enter the fIght 
operand into the print record and yield the next available 
record position as their value. For example the expression 
!A:B:C!D would produce: 

ABC 
D {no carriage return}, 

and have 3 as its value. Output of anonymous atoms and 
NIL is omitted, while output of a code atom will print it out 
in source form. This eliminates the need for a program listing 
command. 

There are no special editing or command instructions. The 
user types an expression followed by a . and the system 
evaluates it. For example the instruction: 1 +2. would print 
out 3. 

Liberal use of the DO operator will allow simple instruc
tion editing via the ~ operator. This also facilitates debug
ging since individual steps in a task can be tested in isolation. 

Creating user program files presents a problem, since a 
task in ASTROL is performed by a loosely organized system 
of code segments and there is no program as such for the 
user to save. Dumping all the associations in memory would 
be awkward because of the anonymous atoms. Conse
quently, the primitive function SA VEffile-name, n] includes 
a parameter n to determine the class of associations x Y~ z 
to save. When n is 0, then z must be a code atom and x and 
Y must be integers or symbols. When n is 1, then z may also 
be an integer or symbol. The associations are dumped in 
source-readable format so that the primitive function 
READffile-name] can simply substitute the specified text 
file for the normal teletype input stream. 

Actual implementation of the language required simulation 
of the associative memory. This was done by hash-coding 
the subject-attribute pairs. For efficiency in execution, code 
atoms were translated into a postfix polish notation, al
though this requires de-translation in order to list such an 
atom. The only garbage collection is to delete unreferenced 
code atoms. Currently, ASTROL runs on a PDP11120 with 
32K bytes of store under the RTll operating system. 

CONCLUSION 

A potential technological advance such as the associative 
memory might be expected to have some impact on pro
gramming concepts. ASTROL was created in anticipation 
of this advance and illustrates some of its consequences for 
programming. Although it is goto-Iess and programs should 
be carefully organized in a top-down fashion-the code seg
mentation and automatic data structure allocation impart an 
unstructured flavor to the language. The use of data asso
ciations to control program flow allows easy extension of 
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conversational programs-often without requiring any alter
ation of existing code segments. 

Currently the language is being used to implement CAl 
programs for mathematics and computer science and to in
vestigate an alternative to transformational English gram
mar. 
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APPENDIX 

BNF grammar for ASTROL 
(digit) ::= 0 111213141516171819 
(letter) :: = A I B I C I D . . . X 1 Y I Z 
(binary operator) :: = + I - I * I < I¢:I = I / 
(io operator) :: = : 1 ! 
(system symbot) :: = $ 1 # I? I?? 1 @ I NIL 

(integer) :: = (digit) 1 (integer)(digit) 
(name) :: = (letter) 1 (name)(letter) I (name)(digit) 
(instruction) :: = (block). 
(block) :: = (io) I (block); (io) 
(io) :: = (expression) I (io operator)(expression) I (io)(io 

operator ) (expression) 
(expression) :: = (simple expression) I - (expression) I 

DO(expression) I REPEAT(expression) 1 

(simple 
expression )IF (expression) ELSE (express 
ion) 

(simple expression) :: = (term) I (term)(primary) ~ 
(expression) I (term)(binary 
operator)(expression) 

(term) ::= (primary) I (term)(primary) I (term)(primary) 
~ (expression») I (term)[ ] I (term)[ (argument 
list)] I [(block)] 

(primary) :: = (integer) I (name) I (system symbol) I 
(block») I RND[ (expression)] I 
READ[ (expression)] I SA VE[ (expression), 
(expression) ] 

(argument list) :: = (expression) I (argument list), 
(expression) 
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INTRODUCTION 

Recent years have witnessed a widespread and intensive 
effort to develop systems to store, maintain and access data 
bases of varied size. Such systems are referred to as 
DBMS-Data Base Management Systems. In different 
areas, such as artificial intelligence, management informa
tion systems, military and corporate logistics and medical 
diagnosis, a wide variety of DBMS exist. All these systems 
have generally been implemented on conventional com
puters, which are based on the von Neumann design. In this 
design, operations will be performed on the information in 
the memory by means of their addresses. Because of the 
size of typical data bases and costs of memory, we cannot 
hold all information in the main memory and swapping con
verts the search problem to a transportation problem. Pres
ent-day systems have to transfer large sets of data from their 
mass storage to the CPU, where simple compare-functions 
are performed in order to separate relevant data from irrel
evant data. The transfer channels with their limited capacity 
form the main bottleneck of this system and as a result, 
great efforts have been made to reduce the necessary data 
flow by means of sophisticated software systems and addi
tional redundancy such as index tables and inverted files. 
By these techniques, address of information will be obtained 
from a directory. Although directory partially solved the 
bottleneck problem, it nevertheless created some problems. 
The directory should logically be kept in the main memory. 
If we are dealing with large data bases, naturally we are 
dealing also with large directories, and large directories oc
cupy a large portion of the memory. Also, the use of direc
tories will create some complexity in the search, update and 
delete algorithms. Conventional computers are all based on 
numerical operations. The necessity of designing new hard
ware based on non-numerical operations has been discussed 
in detail by one of the authors.1 In contrast, use of associ
ative or content addressable memories and hardware design 
based on non-numerical operations as well as numerical 
operations causes information stored at unknown locations 
to be processed efficiently on the basis of some knowledge 
of its content. 

In developing new architectures for future machines some 
of the most important trends in hardware and software tech
nology must be brought into focus. On the hardware side, 
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the significant trends are the development of LSI and VLSI 
technology which allow increased functionality of hardware 
components coupled with a drastic reduction in cost per 
function. This implies that new architectures must exploit 
this trend to incorporate more software functions by hard
ware. The second important trend in hardware is the devel
opment of serial access secondary storage devices such as 
CCD or magnetic bubble memory (MBM). It is forecast that 
by 1980/81 a IMbit memory will be available for both CCD 
and MBM, which will emerge as powerful competitors for 
disks and tapes. 2 We· could make the assumption that a 
major part of future data base systems will reside in such 
shift-register type memories. The proposed architectures in 
this paper will, of course, work for other kinds of rotating 
secondary devices such as disks. A common feature of all 
these secondary devices is that they are block-oriented, that 
is, access to a block is slow but data flow rate is high. If the 
processing of information has to be done by CPU, blocks of 
information need to be transferred back and forth from the 
CPU to secondary devices. The new machine architectures, 
therefore, should attempt to provide processing capabilities 
outside of CPU and along with secondary devices in the 
form of associative hardware which will operate on infor
mation on the fly. This idea was originally suggested by 
Slotnik,3 and in recent years a significant amount of effort 
has been expended in the development of similar architec
tures in data base applications. 8-17 

There are, however, several disadvantages to an associ
ative approach-first, hardware for associative processing 
still has to prove its cost-effectiveness compared to the 
existing software implementations: second. future innova
tions in computer systems design and architecture have to 
confront inertia and large investments on the existing sys
tems. Although the principles of associative processing are 
as old as second generation computers (and there is an 
extensive body of literature dealing with many aspects of 
this phenomenon in computer design), the major bottleneck 
for the development of associative systems has been the 
degradation of speed (the memory cycle time) for the re
quired size of the memory. The demand on the size of the 
memory can be reduced by intelligent design of the archi
tecture. For example, the design of the Lee machine is 
impractical because the design assumes the main memory 
system to be associative. In an earlier paper one of the 
authors l showed that a small associative memory could em-
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ulate the functions of the Lee machine if information could 
be passed over it. In the data base context, we are looking 
for similar architecture and therefore the size of the asso
ciative memory will be reduced. This, coupled with the 
development of VSLI technologies, shows good promise for 
the use of associative hardware for future machines. A rel
atively recent associative processor ALApI9 demonstrates 
tlie feasibility of making large associative processors prac
tical. 

This paper will introduce a high-level data base language, 
ASL-Associative Search Language-which is suitable for 
direct hardware implementation by associative hardware. 
The architecture for ASL and, its proposed hardware imple
mentation will be described in future papers. This paper is 
concerned with a preliminary definition and specification of 
ASL. 

On the software side, as far as the data base management 
systems are concerned, an overall recent trend is character
ized by the phrase data independence. Data independence 
means that the user is able to perform retrieval and storage 
operations on the data base depending on the information 
content without having to deal with representational details. 
Codd4,5 proposed an important data model, the now-famous 
relational model, which provides the user with a model of 
data based on content or data value only. Based on Codd's 
model, a number of families of data sub-languages and query 
languages have been proposed-one class based on rela
tional calculus (viz., DSL ALPHA, INGRES, DAMAS), 
another class based on relational algebra (PRTV, 
SQUIRAL), and a third class which adopts a "mapping" 
approach based on the relational algebra (SQUARE, SE
QUEL, Query-by-example). The reader is referred to the 
text by Date6 or the review article by Chamberlin 7 for more 
details. In the late 60s, an associative language, ASP,20 was 
developed in the context of list and language processing. 

The conceptual framework of ASL is very similar to that 
of SQUARE,I8 a data sub-language which formed the basis 
for the development of SEQUEL. The similarities of these 
two languages are reflected in the definition of the basic 
operations which brings forth explicitly the associative na
ture of processing, and also in avoiding the use of quantifiers 
required by languages based on relational calculus. Both 
ASL and SQUARE are relationally complete, provide facil
ities for query, insertion, deletion and update operations, 
and are meant for non-professional programmers who do 
not possess a high degree of mathematical sophistication. 
However, the originators of SQUARE did not emphasize 
the associative nature of the primitive operations since the 
language was not considered for hardware implementation. 
The authors are of the opinion that for hardware implemen
tations of data base operators, development of a language 
like SQUARE or ASL is essential. The relationship between 
a high-level user language such as SEQUEL or Query-by
example with SQUARE or ASL is similar to the relationship 
between FORTRAN or PLII and assembly language except 
that the definition of ASL is independent of actual hardware 
implementation. We also claim that ASL has several advan
tflges over SQ(TARF, 8", follows: the structure of the lan
guage is more precise and the expressions in the language 

can be handled by parsing algorithms that are available for 
well formed arithmetic expressions in programming lan
guages which, in the hardware context, define a precise 
sequence of controlling operations by the hardware; ASL 
allows parallel computations of a set of relations and is 
based on variable size information fields with complete in
dependence; ASL is also easily extendable to multi-dimen
sional as well as non-relational data ba~es; and finally, ASL 
provides potential for the development of a FORTRAN-like 
language for data base applications. 

ASL-AN ASSOCIATIVE SEARCH LANGUAGE FOR 
DATA BASE MANAGEMENT 

The language ASL-A ssociative Search Language-is a 
high-level data base language designed for information re
trieval and storage operation on data bases using associative 
principles for basic operations. The language has been de
fined based on the relational model of data presented by 
Codd, although extensions to non-relational models are pos
sible. A partially complete syntax for ASL is included in the 
Appendix. 

The fundamental operation in ASL is a search on a data 
base with respect to criteria (search arguments). The result 
is a relation yielding the retrieved information. This opera
tion can be thought of as an assignment statement W: = X, 
where W is a relation and X is composed of three parts, 

HOW WHERE WHAT, 

where "HOW" specifies the search arguments (search cri
teria), .. WHERE" specifies the relation name and 
"WHAT" specifies the output domains of the relation. If R, 
C, D stand for WHERE, HOW and WHAT respectively, we 
can say R is a binary transformation operation whose op
erands are C and D, and can be expressed as 

C@D. 

C is a set of sets (C= (c 0, ... , C k» where each element in 
this set (c;, 0::5 i::5 k) is an unordered list of search arguments; 
for ;=0, c;=cp, denotes an empty set of search. D is also a 
set of sets (D= (do, ... , d n » where each d;(O:::S;;::5n) is a 
non-empty unordered list of domains over R. When d; in
cludes all the domains of R, it will be denoted by a. The 
result of operation ® on C and D is a set of relations 
( W 0, . . . , W n) where the domains of W; (0::5;::5 n) are the 
same as those of d i (O::5;::5n). In our implementation we 
assume C and D as well as Ware singleton sets. 

The informal presentation of ASL will be with respect to 
the employee-department data base as follows: 

E(ENO, ENAME, DEGREE, LOCATION) 
D(DNO, DNA ME, DHEAD, LOCATION) 
ED(ENO, DNO, HOUR) 

where ENO, DNO stand for Employee and Department 
number, E'\'AME, DNA,\fE stand for Employee and De
partment name. and HOUR shows how many hours each 
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employee works in each department. Each query will be 
expressed in two forms, first as assignment statements 
W: =X, where X is specified using conventional notations 
in data base literature,6 and then in the form of ASL state
ments. 

RETRIEVAL OPERATIONS 

Simple retrieval 

• Get department number of all departments 

W:=cf>@DNO 

According to our current implementation of ASL, this query 
will be presented as below in ASL language: 

D. 

W=[D]DNO; 

where D. declares the name of the relation. Note the set of 
rules in the appendix shows that each program will be started 
with the declaration of all relations used in that program. 
Henceforth, in all the examples, we will omit the declarative 
statement. 

• Get all the information of all employees: 

w:=cf>@a 

which in fact is equivalent to W: = E. This query in ASL will 
be written as 

W=[E]: 

Qualified retrieval 

• Get employee numbers for all employees in LOCA
TION Ll with DEGREE>3: 

W: =(LOCATION =' L l' 1\ DEGREE>'3 ')@ ENO 

In ASL it is W=«LOCATION EQ 'L 1 ')I\DEGREE GT 
'3')[E]ENO: . 

This example illustrates that C could be specified by a 
predicate. The output W is a relation whose tuples are ENO 
of relation E. 

Complex retrieval 

Up to now, retrieval operations with simple search argu
ments and over one relation which yields a sub-relation of 
the original relation have been discussed. A sub-relation is 
a relation derived from a given relation by the seiection of 
a row, the projection on columns, and then removing the 
redundan~ tuples. We will now consider more complex re
trieval operations. 

Retrievals that yield sub-relations by using more than one 

relation: 

• Get employee names for employees who work in de
partment D 1 : 

W:=«DNO='D1') @ ENO)@ENAME 

The nested nature of operations has been illustrated by this 
example-first, the relation ED will be searched for all de
partment numbers equal to D I yielding a subrelation of 
ENO. This sub-relation will then be used as an argument to 
obtain ENAME. In fact, this sub-relation wiil be searched 
in associative fashion. The operation can be seen as: 

X:=(DNO='Dl') @ ENO 

W: =V(ENOEX)@ENAME 

In ASL we have W=«DNO EQ 'D1')[ED]ENO)[E]ENAME:. 
The right-hand side of an assignment statement will be 

called a set expression. A set expression, like arithmetic 
expressions, can be written in infix notation, as previously, 
or in postfix notation as 

W: =(DNO='DI')ENO @ ENAME E 

defining the same relation W. The use of postfix notation 
avoids redundant use of parentheses and also has the ad
vantage with respect to compilation and the design of hard
ware controller that implements the language. We will write 
the· set expressions in infix notation. The predicate expres
sions will always be parenthesized. 

• Get employee numbers for employees who work in 
department managed by 'SMITH': 

W: =«DHEAD='SMITH')@ DNO) @ ENO 

and in ASL: 

W: =«DHEAD EQ 'SMITH')[D]DNO)[ED]ENO;. 

• Get employee names for employees who work in de
partment managed by 'SMITH': 

W: =«(DHEAD='SMITH')@DNO) @ ENO)@ENAME 

and in ASL: 

W:= 
«(DHEAD EQ 'SMITH)[D]DNO)[ED]ENO)[E]ENAME;. 

A complicated set expression like the previous one could be 
parsed starting from the postfix equivalent expression using 
dynamic relation variables such as A and B: 

W:=(DHEAD='SMITH')DNO@ENO @ ENAME@ 

The parsing will proceed from left to right and the compu
tation will proceed as 

A: =(DHEAD='SMITH')@ DNO 

B:=A@ENO 

W:=B@ENAME 

We will now consider retrievals that do not necessarily 
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yield sub-relations and use several construction operators 
like tuple-compatible union (U), intersection (n), comple
mentation (~), cartesion product (0), join, division (~) and 
restriction ( ..!.), along with Boolean operations AND (/\), 
OR (V), NOT (-), and predicates using these and relational 
binary operators <, >, =, s, ~, < >. The normal set of 
arithmetic functions and 'library' functions of counting and 
averaging, etc. could be super-imposed on these. In many 
of the expressions written that follow, more than one state
ment, sometimes with implicit loops, will be used. Although 
our language is relationally complete, it does not satisfy the 
single statement requirement. The data sub-languages using 
relational calculus that satisfy the single sentence constraint 
but use existential and universal quantifiers do not seem to 
be so easily understood by even reasonably sophisticated 
users. Furthermore, our motivation also has roots in the 
hardware implementation and provides us with a simple 
interface design for translating queries into hardware control 
signals. Only the first forms of the queries (viz., W: =X) are 
specified; ASL statements are omitted. 

• Get a list of all employees with the amount of hours 
they work for each department: 

X:=ED 

W: = U [x0[(ENO=x(ENO»@ENAME]] 
xEX 

wh~re x(ENO) denotes the ENO field of xEX. 

• Get employee names for employees who do not work 
in department D I : 

W: =[( 1> @ DNO) 

-«DNO='DJ') @ DNO)]@ENAME 

• Get all employee and department names. Pair so that 
the indicated employee and department are located in 
the same place: 

X: =1> E LOCATION 

W: = U [(LOCATION=x)@ENAME) 
xEX 

0(LOCATION=x)@ DNAME] 

• Get employee names for employees who work in all 
departments: 

X:=1>@ ENO 

Y:=1>@DNO 

W: =«X @ DNO)= Y)@ENAME 

JOIN OPERATION 

Let 0 be any relation =. < >. <. S. >. ~. Then the 0 
join of a relation R on domain Dr with relation S on domain 

Ds is defined (using Codd's notation) as: 

R[DrODs]S={(rs) I rER/\sES/\(r(DT )Os(Ds»} 

where r(Dr ) and s(Ds) are assumed to be O-comparable. 
The quantity (r s) denotes a concatenation of tuples. It is 
possible to specify a subset of domains to be concatenated 
without repeating the comparand domains. Let us denote 
these domains by Dr * and D s *. Then we can define our set 
expression equivalent of O-join as: 

Y:=1>@D r 

Z:=1>@Ds 

X:={(y,z)lyEY, zEZand yOz} 

W:= U {y@D r*}0t0{z®Ds*} 
(LEX 

where t could be either y or z or (y,z). 

Example 

Let 

ABC C D SOu 3 U 

4 U 

R a 1 1 
a 2 1 
b 1 2 
c 2 5 
c 3 3 

and let Dr=Ds=C, Dr*=(A,B), Ds*=(D), t=y and 0 be 
equality (=) so that we are computing equijoin. Then 

Y:=1>@C=(l,2,3,5) 

Z:=1>@)C=(2,3,4) 

X:=«2,2), (3,3» 

W: = U [y ® (A,B)]0 y0[z ® (D)]= [b 3
1 

3
2 UJ . 

(LEX C U 

The computations of the set X do not follow the format of 
a set expression although it is a well defined set. Similar 
well defined set computation procedures must be part of 
ASL facilities. 

DIVISION OPERATION 

Let Dr, Do denote domains in relation R such that 
DrnDo=cb. Let Ds be a domain in relation S such that it is 
comparable with Dr. Then the division operator 

is defined by the set expressions 

X:=1>@D s 

w:=n x@Do 
XEX 
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Example 

A B C D F 
R 1 11 x S IT] 2 11 y x 2 

3 11 x y 1 
4 12 x 

Let Dr=C and Ds=D. Let Do=(B). Then 

X:=cp@D=(x,y) 

W: = (x® (B))n(y® (B))= (11,12)n (11)= (11) 

RESTRICTION OPERATION 

The restriction operation is simple to model in our 
scheme. The search arguments are defined in terms of a 
binary relation () between comparable subsets of domains 
D 1 and D 2 of the relation R, and an output domain D 3 is 
specified. Thus 

Example 

ABC 
R p 2 1 

q 2 3 
q 5 4 
r 3 3 

Let Dl=B, D2=C, D3=(A,B,C), ()=>. Then 

UV' - ({B>r') rii\ (Li B r')- [p 2 11 
... -" '-'/'0''>.' ,,-,- q54J' 

STORAGE OPERATIONS 

Storage operations such as "update," "insert," and "de
lete" can be performed easily by accessing appropriate 
tuple(s) from the appropriate relation followed by modifi
cation of information. They can be specified in two forms: 

1. Set Expression : = new-data. 

This is a simple store operation that changes the existing 
information to new values without regard to previous value 
and does not alter the relation otherwise. 

2. W: =a modified relation expressed by appropriate 
transformation of the set expression. 

We give some examples below: 

• Update 
change the location of department D 1 to "NEW 
YORK" 

(DNO='Dl')@LOCATION:='NEW YORK' 

• Delete all employees whose degree is less than 4, 

E: =E -(DEGREE <4)@ 8 

In ASL it is E=E -(DEGREE LE '4')[E]. 

• Delete relation E. 

E:=E-E 

In ASL it is simply E -. 

• Add a new employee to EMPLOYEE relation. 

E: =EU(ENO='123';ENAME='JOE ,DEGREE 

='S', LOCATION ='ROME') 

and in ASL we have 

EU(ENO='123'; ENAME='JOE'; DEGREE 

='5'; LOCATION='ROME'); 

• Add 5 to Hour for employee number N: 

x:=N@HOUR 

x: =x+5 

(ENO=N)@ HOUR:=x 

In ASL it is given by 

(ENO=N)[ED]HOUR=HOUR +5 

CONCLUSION 

A preliminary definition of a data base management lan
guage based on associative primitive operations along with 
its BNF specification has been presented in this paper, De
tailed implementation of ASL as a language processor and 
hardware architecture based on ASL will be reported in 
future papers. Because of the upsurge of recent interest in 
nonnumeric computation, development of specialized lan
guage processors will result in simplification of software 
systems and will lead to the development of specialized 
hardware processors which will exploit the current trends 
in technology. 
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The following syntax, which is based on BNF form, gives an intuitive understanding about the structure of ASL. This is 
not a complete set of rules-the syntax has been simplified for ease of understanding. 

(Program):: =(Dec list)(Re list) 
(Dec list):: =empty I 

(Dec list) (Relation Id). 
(Re list):: =(Re list) (Relation): I 

(Relation) : 
(Relation):: =(Up Relation) I 

(Q Relation) I 
(T Relation) 

(Up Relation):: =(Ch Relation) I 
(Add Relation) I 
(D Relation) 

(Add Relation):: =(Relation Id) U(Domain-value list) I 
(Relation Id) U(Domain-type list) 

(D Relation):: =(Relation Id) -(Set expression) I 
(Relation Id)-

(Output Set):: =empty I 
(Domain list)(Domain) 

(Relation Op):: = [( Relation Id)] 
(Domain-value List):: =(Domain Value) I 

(Domain-value list): (Domain value) 
(Domain value):: =(Domain) =(Expression)* 

(Domain-type list):: =(Domain type) I 
(Domain type):: =(Domain), (Type) 

(Domain list):: =ernpty I (Domain list)(Domain): 

(Ch Relation):: =(Search set)(Relation Op)(Domain-value list) I 
(Set expression»)(Relation Op)(Domain-value list) 

(Q Relation):: =( Set expression) I 
(Relation Id)®(Relation Id) I 
(Relation Id)(Join)(Relation Id) I 
(Relation Id)(Divide)(Relation Id) I 
(Relation Id)(Restriction)(Output Set) I 
(Relation Id)(Log-set Op)(Relation Id) 

(T Relation):: =(Relation Id) =(Q Relation) I 
(Relation Id)=(Up Relation) 

(Set Expression):: =(Search Set)(Relation Op)(Output Set) I 
«Set expression»)(Relation Op)(Output Set) I 
(Relation Id) 

(Search Set):: =empty I 
(expression) I 
« Search Set) )(Log-set Op)( expression)'" 

" (Expression) is any usual arithmetic expression. 
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INTRODUCTION 

Some relational data base systems l such as PRTV2 and SE
QUEL allow the user to create his own relations (logical 
files) as subsets of the main data. Wiih such a facility the 
user may express his own view of the data in terms of the 
relations he creates. If a large number of such relations are 
created, disc storage space problems and other maintenance 
difficulties can arise. 

A relation which is expressed in terms of other relations 
is called a defined (derived or implied) relation2 or view. 3 

The user submits to the system a definition of these relations 
expressed in terms of data base relations using relational 
operators. For example, consider relations MALE, FE
MALE whose domains (fields) are name, age and income. 
The user may define the relation PEOPLE as the union of 
relations MALE and FEMALE. He may also define the 
relation OLD as a subset of relation PEOPLE where 
(age>50). 

The data base system decodes the definition and stores it 
in a retrievable form. The defined relation is then available 
to the user at the same logical level as the other data base 
relations. The defined relation remains merely a stored def
inition (i.e. implicit) until it is requested by a query. The 
implicit form takes negligible disc space. 

When the defined relation in its implicit form is referenced 
by a query, e.g. list the people whose income is greater than 
5,000, it is then created, i.e. made explicit, by carrying out 
on the stored data the operations indicated in the definition. 
For example, to create relation OLD relation PEOPLE is 
assembled first. The tuples (records) of relation PEOPLE 
are then accessed and those matching the selection criterion 
are written back to disc as tuples of the relation OLD. 

The explicit forms of relations PEOPLE and OLD may 
stay in the data base and they will not have to be recreated 
if they are requested by other queries. In this way defined 
relations may substantially improve the response time of 
recurring queries. 

We may consider the data base storage space as made up 
of two parts. One part is for storing the base relations (e.g. 
MALE and FEMALE) and another part whose content 
changes dynamically with the needs of the users. The de
fined relations facility enables the system to make efficient 
use of the dynamic storage space. At some stage in the 
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process of creating and querying relations the dynamic stor
age space may be consumed. One or more explicit relations 
will then have to be made implicit in order to free space for 
other requested relations. The relations in the dynamic stor
age switch between being explicit and implicit. The replace
ment algorithm which picks the relations to be made implicit 
has been discussed in a previous paper. 4 

Notation 

In this paper the set notation is adopted for relations. This 
is explained in the following table: 

SYMBOL MEANING 
U 
n 
: (filter) 
%(list) 

* 

union 
intersection 
selection, the filter is a boolean expression 
projection, the list is a string of selectors 
join (cartesian product or equijoin). 
difference 
is defined as 
assigned to 

e.g. the definitions of relations PEOPLE and OLD are ex
pressed as follows: 

PEOPLE~ MALEU FEMALE 
OLD~PEOPLE: (age>50) 

The hierarchy of defined relations 

In Figure 1 a data base having a hierarchy of defined 
relations is shown. In such a hierarchy the user may not be 
aware of the relationships and the dependencies that exist 
among the data base relations. It is therefore advantageous 
to provide the facilities by means of which the user can 
perform all the operations on a defined relation without 
restrictions. Ideally, the user will treat the defined relations 
in exactly the same way as any other base relations, without 
restrictions forcing him to be aware of the dependencies 
between relations. That is, the system should possess a 
higher degree of data independence. It is therefore desirable 
to have the user activities (queries, application programs, 
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SUPPLIER OLDST 
(City, Status) (S#, Sname, Status, City) 

OLDSP 
(SII, PI!, Qty) 

SUPPLY 
(SII, plI, Qty) 

projection 

SC 
(City, Status) 

A/ 
FULLST 

(City, Status) 

NEWSP 
(SII, PII, Qty) 

Figure I-Supply data base. In these hierarchies of defined relations, OLDST, SUPPLIER, OLDSP and SUPPLY are base relations. SC is defined on SUPPLIER: 
FULLST is defined on SC and OLDST. 

Definitions: SC+- SUPPLIER % (City, Status) 
FULLST +-OLDSTnSC 
NEWSP+-OLDSP-SUPPLY 

updates, etc.) independent of the logical representation, the 
access path and the level in the hierarchy of the data. The 
user need not know where a relation is a base or a defined 
relation, is implicit or explicit, nor will he need to know 
whether it is stored as a file or a mere collection of pointers 
to some other files. However, giving all this freedom to the 
user is desirable only as long as the consistency of the 
definitions and the defined relations is preserved. 

The problems of the management of defined relations 

In a data base with a defined relations capability such as 
the one shown in Figure 1, some of the system operators 
(e.g. updates, removal of relations from the data base and 
the redefinition of relations) may lead to logical problems. 
These operators must be adapted to take care of the hier
archical structure and the dependencies that exist among the 
relations. This paper is concerned only with the update 
problems. 

Examples of these problems are: 

• In Figure I, if relation SUPPLIER is updated and re
lation SC is implicit, how can we update an explicit 
copy of relation FULLST? This is an efficiency prob
lem. 

• If relation FULLST is updated, how can we update 
SUPPLIER and OLDST? This is a logic problem. 

Objectives 

This paper explains the update problems and offers solu
tions for some of these problems. Examples are given to 
illustrate these solutions. The paper also identifies the un
solved problems which require further research and inves
tigation. 

Some update algorithms are suggested. They aim at pre
serving the consistency of the information in a data base 
having a high degree of data independence. These update 
algorithms deal with the logical part of the problem and 
hence pave the way for other algorithms to care for the 
particular details in particular implementations. 

UPDATES 

Updates may be divided into: 

a. Insertions 
b. Deletions 
c. Changes in object values . 

In the following discussions, the tuples which will update a 
relation are termed the updating relation. The insertion is 
seen as a union of the updating relation and the relation to 
he updated. The deletion is seen as the difference of the 
relation to be updated and the updating relation. The 



changes in object values are taken conceptually as deletions 
followed by insertions. 

The update algorithms 

Let us divide the updates into two: 

1. Update at higher levels of the hierarchy. 
2. Update at lower levels of the hierarchy. 

Referring to Figure 1, updating relation S:UPPL Y or SUP
PLIER is an update at a higher level of the hierarchy with 
respect to NEWSP and SC, FULLST respectively. Updat
ing FULLST or NEWSP is an update at a lower level. 
Updating SC is an update at a higher level with respect to 
FULLST and an update at a lower level with respect to 
SUPPLIER. 

Update at a higher level 

In this type the update is filtered down the hierarchy and 
reflected on all the relations defined on the updated relation. 
The corresponding definition is applied to the updating re
lation successively at each level of the hierarchy. The prob
lem here is how to pass updates down efficiently and in 
particular when intermediate levels are implicit. 

DEFINITION 
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Insertions 

Given relations A and R, let RUI be the updated value of 
R. Let X=f(A,R) be a defined relation. Relation IN is sought 
such that XUIN is the updated value for X which corre
sponds to the update of R. Such IN can be found for all 
operators (0 in case of insertions at high levels. This is 
shown in table CHANGE (Figure 2). 

When f is union, intersection, projection or selection 
IN =f(A,1) i.e. X need not be present in order to evaluate 
IN. 

The mechanism of the insertion is essentially carried out 
at each level as follows: 

a. Given the updating relation (I) and a definition, relation 
IN is found from table CHANGE. Relation IN is now 
the updating relation which will be passed to the fol
lowing levels down the hierarchy. (i.e. IN will be I of 
the lower level). 

b. If the relation to be updated (X) is explicit, the updated 
value will be XUIN. This applies to all relations at 
lower levels. If X is implicit, updates are passed down 
the hierarchy without materializing X. 

Examples 1 and 3 in the Appendix illustrate this type of 
insertion. 

The exception to Rules a and b is the definition containing 
the difference operator when the second relation is to be 

PROOF IN 

X+- AU R AU (R U 1) = (A U R) U I = (A U R) U (A U I) ! or A U I 
X+-An R A n (R U I) = (A n R) U (A n I) AnI 

E-< X+- R - A (R U I) - A = (R -A) U (I - A) I -A 
~ 
~ X+- A - R A - (R U I) = (A - R) - I = (A - R) - (I n A) lor I n A 
en X+- R% (list) (R U I) % (list) = Ro/o(list) U 1% (list) Io/o(list) Z - X+- A *R A *{R U I) = (A * R) U (A * I) A * I 

X+- R:(mter) (R U I) : (mter) = (R:(filter) U I :(mter)) I : (filter) 

X+- A U R AU (R - I) = (A U R) -~ - A) ·1 -A 
X+- A n R An (R - I) = (A R) - I = (A n R) - (A n I) lor A n I 
X+- R - A (R - 1) - A = (R - A) - I = (R - A) - (I - A) lor J - A 

~ 

E-< X+- A - R A - (R - I) = (A - R) U (I n A) I n A 
~ X+- R%(list) (R - 1)% (list) '* Ro/o(list) - Io/o(list) R must be .....:l 
~ made explicit 
0 X+- A * R A * (R - I) = (A * R) - (A * I) A * I 

X+- R:(mter) (R - I) : (filter) = R:(mter) - I:(filter) I lor I: (filter) 

= R:(filter) - I 

Figure 2-Table CHANGE for procedure alter. A is a relation: R is the relation to be updated: J is the relation of tuples to be inserted or deleted: RUI is the 
process of update by insertion: R-I is the process of update by deletion: IN is the resulting updating relation to be passed to lower levels. Given the definition, 

the updating relation IN is found. If a complex expression defines X in terms of R, the expression is broken down into simple forms. 
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updated i.e. definitions of the type X~A-R, where R is the 
relation to be updated. In this type the insertion is carried 
out as follows: 

1. Either: 
IN =1 is passed to lower levels. 
Or: 
Alternatively, IN =InA will be passed to lower levels 
(as in table CHANGE). 
The updating relation (IN) is passed to the lower levels 
as a deletion and the process continues as a deletion 
operation. 

2. If the relation to be updated (X) is explicit, the updated 
value will be X - IN. This applies to all the relations at 
lower levels. If X is implicit, updates are passed down 
the hierarchy without materializing X. 

Example 2 in the Appendix illustrates this type of defini
tion. 

Deletions 

In this case the update may be specified by providing 
either a relation (I) containing the tuples to be deleted or 
boolean filter which selects the tuples to be deleted from the 
relation to be updated. These extracted tuples constitute the 
updating relation (I). 

In a fashion similar to the previous section's, given rela
tions A and R, let R - I be the updated value of R. Let 
X=f(A,R) be a defined relation. Relation IN is sought such 
that X - IN is the updated value for X which corresponds to 
the update of R. Such IN can be found for all operators, f, 
as in table CHANGE (Figure 2). 

When f is intersection, join or projection IN=f(A,I). i.e. 
X need not be present in order to evaluate IN. The mech
anism of the deletion is the same as that of the insertion 
(described in the previous section) except for the following: 

• In (b) the union is replaced by the difference. 
• In (I) only the alternative method is applicable. The 

updating relation is passed to lower levels as an inser
tion. 

• In (2) the difference is replaced by the union. 

Change in object value 

A change in object value (modification) can be concep
tually considered as deletion followed by insertions. 

The algorithm 

The algorithm for insertions and deletions from higher 
levels follows: 

procedure alter (R,I, DELT) recursive: 
boolean DELT, DELN: relations R,I,IN: 

comment R is the relation to be altered 

is the relation of tuples to be inserted or 
deleted from R 

n is the number of relations defined on R 
Dj is the jth definition on R 
Xj is the subject of Dj, i.e. the jth relation 

defined. 
DELT, DELN true if deletions are to be 

made from R false if insertions 

DELj 

CHANGE 

are to be made to R. 
is true if an insertion to R 
implies a deletion from Xj 
is a procedure which calls 
table CHANGE. Given the 
definition Dj, the updating 
relation I and DELT, the 
procedure returns the tuples to 
be inserted or deleted; 

if R is explicit then begin 
ifDELT then R:=R-I 

else R: =RUI 
end: 

for j: = 1 step 1 until n do 
begin 

DELN: =DELT:;i::DELj 
IN: =CHANGE (Dj,I,DELT); 

if IN :;i::null 

end 
end alter: 

then alter (Xj,IN, DELN) 

The algorithm for changes in object value follows from the 
previous algorithm. 

Discussion 

The great advantage of the approach described above is 
that only the explicit forms are updated. Implicit relations 
will not be recreated just for the purpose of having them 
updated. This saves the cost of creating all the relations 
down the hierarchy. Hence, in very large data bases the 
advantages of defined relations will not be outweighed by 
the substantial cost of recreating implicit relations whenever 
an update occurs. In such an environment, the overhead of 
storing table CHANGE and executing the update algorithm 
is negligible. 

It is noteworthy that table CHANGE will have entries for 
all the user-defined operators. One problem, however, is to 
find rules for dealing with the complex definitions. No at
tempt has been made to explore this subject in the present 
paper. 

Update at a lower level 

Here the problem is how to pass the update up the hier
archy without introducing inconsistency. It is a logic prob
lem. In additiun tu the conditions imposed on ordinary up
dates. e.g. the compatibility of the updating relation and the 



relation to be updated, the following conditions should be 
satisfied for updating relations at lower levels: 

1. The update should not result in incomplete information 
at upper levels. 6, 7 

Consider the following example: 
Given relations X, Y and R. 

y 

2 C 5 
3 A 8 
6 B 8 

Definitions: 

x 

3 A 8 
6 B 8 

X~ Y: (field{l»2) 
R ~ X% (fields 1 and 2) 

To update R by I 

4 M 
5 T 

and X by]' 

9 K 3 

R 

3 A 
6 B 

When relation R is updated, the union of the updating 
tuples (I) and relation X cannot be formed because these 
tuples supply information for only two of the components 
of X. In such cases the update will provide incomplete 
information and should therefore be prohibited. Updating 
X, however, does not lead to missing information in 
upper levels. The system should prompt the user to up
date the relation at the lowest level whose update does 
not violate Conditions 1 and 2. 

2. No ambiguity should result at higher levels due to the 
update. 

s 

1 
6 
2 

Q z 

4 1 
5 6 
2 2 

4 
5 

Definition: 

I 

9 
3 

Z~SUQ 

e.g. if a relation Z is defined as the union of relation S 
and Q. 
When Z is updated the data base system cannot readily 
know which of the updating tuples should update each of 
Sand Q and which should update both relations. When
ever such an ambiguity exists, the update operation must 
be prohibited. 

3. The updating tuples must satisfy the definition of the 
relation to be updated. In the example in (1) above, if 
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relation X is updated by relation P, 

9 
1 

p 

K 
T 

3 
6 

the system must reject the last tuple because it contra
dicts the definition of the relation to which it will belong. 
Similarly, if a tuple is to be deleted from such a relation, 
an equivalent tuple must exist in the rdation; otherwise 
the deletion is meaningless. 

With these constraints, more weight is attached to the 
consistency of the data base information at the expense of 
the user convenience. Indeed, inconsistency in itself, re
gardtess of any other repercussions, may perhap-stead to 
more inconvenience to the user. With updating at a lower 
level, almost every operator in the definition requires dif
ferent updating algorithms as will be explained in Figure 4. 
In all cases the update can be passed up without explicit 
values of the relations involved. For joins, the upper level 
relations must be implicit if side effects of updates are to be 
avoided. 

A more formal but less complete discussion of these prob
lems, based in part on an earlier version of this paper, is 
given by Todd. 5 The relational operators may be divided 
into regular and irregular operators according to their per
formance when relations having these operators in their 
definitions are updated. Regularity is a property of the type 
of update as well as of the form of operation. 

The regular and irregular operators 

Regular operators have two major properties when they 
appear in the definition of the relation to be updated: 

a. They do not lead to ambiguity. 
b. The updating information can be passed to higher lev

els. 

When the operator is regular we will have the advantages of 
the updates at higher levels. When a definition contains an 
irregular operator, the problem of ambiguity arises. It is 
interesting to note (Figure 3) that with the exception of the 
selection operator, those operators that are irregular with 
insertion are regular with deletion and vice versa. 

Validity of updates 

In certain cases of join and selection, even regular updates 
can make the data base invalid or have undesirable side 
effects. These can only be checked given particular data 
values. 

Consider a relation inserted into relation X, 
X~A:(filter). If the tuples of I do not satisfy the filter an 
inconsistency will be introduced. If such a set I is deleted 
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Insert: 
DEFINITION PROOF 
X-AUB XUI=(AUI)UB=AU(BUI) irregular 
X-AnB XUI=(AUI)n(BUI) regular 
X-A-B XUI=(AUI)-(B-I) regular 
X-AO/o(list) XUI=AU(QO/o(list», many Q irregular 
X-A*B XUIk(AUIO/o(fields(A))) regular 

*<B U I 0/0( fields(B») 
X-A: (filter) XUI;;;2AU(I:(fiIter» regular 

Delete: 
X-AUB X - I=(A - I)U(B- I) regular 
X-AnB X-I=(A-I)nB=An(B-I) irregular 
X-A-B X-I=(A-I)-B=A-(BUI) irregular 
X-AO/o(list) X- I=(A -I)o/o(list)t regular 
X-A*B X - I;;;2(A - IO/o(fields(A)))*B } irregular 

X - I;;;2A *<B - 1000(fields(B))) 
X-A: (filter) X - I=(A - I):(fiIter) regular 

Figure 3-Regular and irregular operators for updates at a lower level. 
t A-I, generalized difference, those tuples of A that do not project into I. 

from X, only tuples satisfying the filter must be deleted from 
A (the remainder cannot be deleted from X in any case, as 
they could not have been X to start with). 

If a relation I is inserted into a relation X,X+-A*B, tuples 
are inserted into A and B. This may have the side effect of 
inserting tuples (E) into X. (E=I%(fields(A»*BUA*I% 
(fields(B».) Whether or not this is desirable depends on the 
application. It can be checked by reference to A and B 
without materializing X. 

Other cases of regular updates cannot directly cause va
lidity or side effect problems. 

Discussion 

The table in Figure 4 shows the update form of the defining 
relations. Each defining relation has its own form of update. 
Updates from lower levels of the hierarchy should be care-

DEFINITION 

Insertion: 
I. X-AnB 

2. X-A-B 

4. X-A:(fiIter) 

Deletion: 
I. X-AUB 

2. X-A%(Iist) 

3. X-A:(fiIter) 

{
AUI 
BUI 

{ 
AUI 
B-1 

NEW FORM AFfER UPDATE 

{ 
AUIO/o(fields(A» 
B UIo/o(fields(B» 
AUI 

{
A-I 
B-1 
A-I 
(a generalized difference; those tuples of A which do 
not project into I). 
A-I 

Figure 4-CHANGE table for updates at a lower level. Only the regular 
operators are shown. 

fully checked to ensure that the operators in the definitions 
involved are regular and that the updating information is 
logically valid. With large data bases such overheads are 
tolerable because of the probable avoidance of recreating 
intermediate implicit relations. However, with small sized 
data bases it may be sensible to prohibit updates from lower 
levels. 

CONCLUSIONS 

This paper has attempted to investigate the major aspects 
of the update problem for data bases with defined relations 
capabilities. It has been shown that in the majority of the 
cases implicit relations can be updated at higher levels of 
the hierarchy without the need to create their explicit forms. 
No ambiguity or inconsistency will arise from updates at 
higher levels. 

However, updates at lower levels may lead to ambiguity 
in some situations. Checks are also needed to establish the 
validity of the updating information. In very large data bases 
updating the defined relations in the manner described in 
this paper will lead to substantial saving in the computer 
system resources. It is hoped that this paper will initiate 
some research in this interesting and practical problem. 
Thorough investigation is needed for the whole problem of 
lower level updates. Algorithms for handling complex defi
nitions are also required. 
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APPENDIX 

Relation SUPPLIER 
S# SNAME STATUS CITY 
SI SMITH 20 LONDON 
S2 JONES 10 PARIS 
S3 BLAKE 10 PARIS 
S4 CLARK 20 LONDON 
S5 ADAMS 30 ATHENS 

Relation SUPPLY 
S# P# QTY 
SI PI 3 
SI P2 2 
SI P3 4 
SI P4 2 
SI P5 1 
S2 PI 3 
S2 P2 4 
S3 P3 4 
S3 P3 4 
S3 P5 2 
S4 P2 2 
S4 P4 3 
S4 P5 4 

The hierarchy of the defined relations mentioned in the 
following examples has been shown in Figure 1. 
Relation OLDST 

CITY 
LONDON 
KHARTOUM 

Relation OLDSP 

STATUS 
20 
15 

S# P# QTY 
SI PI 3 
S2 P2 4 
S6 PI 3 
S7 P4 

Example J -(Insertion at a higher level) 
Definitions: 
(i) SC~SUPPLIER%(CITY ,STATUS) 

(ii) FULLST~OLDSTnsc 
Before Update: 

Relation SC 
CITY 
LONDON 
PARIS 
ATHENS 

Relation FULLST 
CITY 
LONDON 

STATUS 
20 
10 
30 

STATUS 
20 

Relation I (The updating tuples to be inserted in relation 
SUPPLIER) 

S# 
S6 
S7 

After Update: 

SNAME 
AHMED 
KIM 

STATUS 
15 
35 

(1) Update relation SUPPLIER 
SUPPLIER: =SUPPLIERUI 

CITY 
KHARTOUM 
TOKYO 
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(2) Compute new I by substituting I in the definition for 
the relation to be updated. 
I: =I%(CITY,STATUS) 

Update SC. 
SC:=SCUI 

(3) I: =OLDSTnI 

Update FULLST 
FULLST: =FULLSTUI 

I 
KHARTOUM 15 
TOKYO 35 

SC 
LONDON 20 
PARIS 10 
ATHENS 30 
KHARTOUM 15 
TOKYO 35 

I 
KHARTOUM 15 

FULLST 
LONDON 20 
KHARTOUM 15 

Example 2-(Insertion and deletion at a higher level) 
Definitions: 
(i) NEWSP~OLDST-SUPPLY 

(ii) R~NEWSP%(1) 
Before Update: 
Relations SUPPLY and OLDSP are as above 

NEWSP 
S# 
S6 
S7 

P# 
PI 
P4 

QTY 
3 

R 
S6 
S7 

After Update: 
update SUPPLY by I 

I 
S# P# QTY 
S6 PI 3 
S8 P2 1 

(1) SUPPLY: =SUPPL YUI 
(2) following the proposed method, I either remains un

changed, or I: =OLDspnI. 

S6 
S8 

I 
PI 
P2 

3 

NEWSP: =NEWSP-I 
NEWSP 
S7 P4 

(3) the update continues as deletion. 
I: =D: = 1% (1) 

R:=R-I 
R 
S7 

D 
S6 
S8 
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Example 3-(lnsertion at a higher level, with implicit rela
tions) 

Definitions-Same as Example 1. 
Assume that relation SC is implicit. 

Before Update-As in Example 1 
(1) SUPPLIER: =SUPPLIERUI 
(2) I: =I%(CITY,STATUS) 

I 
KHARTOUM 15 
TOKYO 35 

SC is implicit. We do not create it for the update. Continue 
to the next level. 

(3) I: =OLDSTnI 

FULLST: =FULLSTUI 

I 
KHARTOUM 15 

FULLST 
LONDON 20 
KHARTOUM 15 



Performance enhancement for relational systems through 
query compilation* 

by RANDY H. KATZ 
University of California, Berkeley 
Berkeley, California 

INTR-eD-UCTION 

In recent years, considerable research has been directed 
toward the relational model of data first proposed in Ref
erence 5. The advantages of this approach have been dis
cussed elsewhere, however they can be summarized as fol
lows: (1) the user is presented with a very simple view of 
his data (i.e., organized as tables of information), (2) the 
user is freed from explicitly knowing the underlying imple
mentation structure of his data (i.e., data independence) and 
(3) very powerful non-procedural, set-oriented query lan
guages can be defined for the relational model because of 
its simple conceptual structure. 

While commercial versions of data base systems based 
upon hierarchicaP8 and network11 models have existed for 
several years and are used widely, 9,8 at this time there exist 
few commercially available relational systems. Two rela
tional prototype systems currently in operation are the 
INGRES system1 and System-R.3 

A major criticism of the relational approach is that the 
model does not lend itself to efficient processing because 
there is no provision for the user to explicitly "navigate" 
through access paths in his data. Until recently, the exper
imental systems previously mentioned were not overly con
cerned with efficiency. However, efficiency has now be
come an important goal. 

Hence, from direction of relational data base efficiency, 
motivation is provided for compilation of data base queries. 
The goal is to move as much query processing to compile
time as possible, thereby reducing the overhead of query 
execution at run-time. However, there are several problems. 
Some query processing algorithms are data-dependent. For 
example, the decomposition algorithm of Reference 19 
makes use of the cardinalities of relations, rather than sta
tistical information, in selecting among alternative plans to 
implement a query. Such algorithms may actually suffer in 
performance if the processing strategy is determined at com
pile-time rather than with the more perfect information avail
able at run-time. Further, any change in the data base 
schema will invalidate some compiled queries. These include 

* Research supported by the Army Research Office under Grant DAAG29-
76-G-0245. 
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chap.~s t9 the ~u!horiz;ati9Il rights of a given user, changes 
to views of the data base one is -allowed tosee-anct changes 
to the physical structure of the data. Note that in many data 
base applications, the structure of the data is relatively static 
over time. Compilation can be most effective in these cases. 
Even given these problems, compilation techniques should 
improve relational system performance. 

The goal of this paper is to analyze the problems of query 
compilation in the specific environment of the INGRES data 
base system. A proposal was implemented and its space and 
time efficiency is analyzed. 

PREVIOUS WORK 

In the early work on relational systems, high level non
procedural query languages were provided to process ad
hoc queries presented interactively by non-programmers. 5,6 

Current work is directed towards applications-oriented lan
guages for programmers, which integrate relational query 
capabilities into programming languages. These languages 
are meant to complement conversational query languages. 
In this situation, it is possible to take advantage of the more 
static non-interactive environment to improve the efficiency 
of query processing. 

In order to classify and to compare the work which will 
be summarized, it is useful to define "levels of compila
tion." Query processing consists of the following steps: 

1. The query string is analyzed (i.e., parsing). 
2. Object names are converted to an internal form via 

System Catalogs (i.e., lookup). 
3. A processing plan is built. 
4. The processing plan is executed by calls to the access 

methods. 

Using this, five levels of compilation can be defined: 

O-The query is completely interpreted at run-time (i.e., 
Steps 1-4 are performed at run-time). 

J -The internal form of the query is built at compile-time 
(i.e., the query is converted from a string to a parse 
tree at compile-time). 
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2-The internal form is built at compile-time, with name 
resolution taking place if possible. Otherwise, Step 2 
will have to be executed when the information is avail
able at run-time. 

3 -The internal processing plan is determined at compile
time and translated into an internal form suitable for 
run-time interpretation. 

4-The internal processing plan is represented within the 
user program by calls to the underlying access meth
ods. 

Level 0 represents the least amount work done at compiIe
time, namely complete interpretive execution of the query 
at run-time. Level 4, on the other hand, represents the 
movement of the most amount of processing to compile
time. 

In the remainder of this section, we describe several ex
isting or proposed data base programming languages and 
describe what level of compilation they support or propose 
to support. 

ASTRA 12 

ASTRA is a relational system built on a hierarchical sys
tem at the University of Trondheim, in Norway. It supports 
a high-level applications-oriented language called ASTRAL 
(A STructured Relational Applications Language), based 
upon SIMULA. The compiler maps an ASTRAL program 
into a SIMULA program augmented by subroutine calls to 
the underlying data base system. It is the job of the compiler 
to choose the best access paths when translating relational 
expressions into sequences of host language statements and 
subroutine calls. The functions of query parsing and of de
termining a query processing plan are moved to compile
time. The plan, represented by calls to the underlying sys
tem, is interpretively executed at run-time. Hence, the AS
TRAL compiler supports Level 3 compilation. No mention 
is made of the recompilation problems associated with 
changes to the data base schema. 

Extended PLII16,lO 

Reference 16 describes extensions to PU 1 which allow an 
applications programmer to access data from a relational 
data base. The language is extended by introducing the no
tion of a template, which is a PUI structure containing data 
base relation names and attribute names, along with a SE
LECT statement, that qualifies those tuples which are to be 
retrieved. In Reference 10 the problems of recompilation 
under a changing schema are explored. The authors point 
out that the performance advantages for a compilation ap
proach are somewhat offset by the increased sensitivity of 
a compiled program to schema changes. They propose that 
the program be separated into three modules-one for ap
plications-oriented processing, one for data base interactions 
and one for authorization and integrity enforcement. If there 
is a change in some aspect of the schema, only the relatively 

small module of code which is effected by that change will 
have to be recompiled. This approach has actually been 
used in a system to support Extended PUt. An architecture 
similar to this proposal will be necessary for any system 
which attempts to provide Level 3 or Level 4 compilation, 
because the internal processing plan will become invalid if 
the schema changes. Note, however, that the proposed ar
chitecture implies many inter-module communications. This 
overhead may outweigh the advantages of compilation. 

System-RI-4 

System-R is an interesting system from the standpoint of 
compilation because it originally supported only interpretive 
query execution, but now supports both compiled and in
terpretive queries. The origin of System-R can be found in 
SEQUEL-XRM,I,2 a single-user relational system designed 
to support the SEQUEL query language. 4 The system in
terpretively mapped the non-procedural statements of the 
query language into tuple at a time commands to the under
lying relational memory system, XRM (extended n-ary re
lational memory). The interpreter was organized into three 
modules-parser, optimizer and scanner. The parser trans
lated a SEQUEL query into a corresponding parse tree. The 
optimizer, when given a query tree, selected a processing 
plan which would minimize the number of tuples retrieved 
based upon the available access paths. The scanner actually 
executed this plan by judiciously scanning the underlying 
relations. 

Note that the parsing step is independent of whether the 
query is being interpreted or compiled. Furthermore, if the 
optimization step is independent of the actual data in the 
data base then the optimized processing plan can be deter
mined at compile-time as well. It then becomes a simple 
matter to compile the scanner into a query specific data 
access routine. This approach was taken in System-R. 11 

Because the data access routines consist essentially of ac
cess method calls, System-R supports Level 4 compilation. 

All data access routines are separated from the user pro
gram to facilitate recompilation when the data base schema 
changes. A routine is marked invalid by the system if it 
depends on the schema change and is recompiled the next 
time it is called. The recompilation process is simplified if 
the query tree is saved along with the data access routine. 
This is· because only the optimization and code generation 
phases need to be re-executed. 

COMPILATION FOR INGRES 

In this section, a scheme for the compilation of QUEL, 
the data sub-language of the INGRES Data Base System,7 

is presented. Complications due to the compilation approach 
are then examined. 

The INGRES system consists of five concurrently exe
cuting processes: 

+ - -+ + - - + + - - - + + - - - + + - -+ 
1 User 1- - ~ Parserl- - ~ OVQP 1 - - -+IDecompl - - -+IDBU' 
I PG M 1'- - -, ,'" - - I ,'" - -, I .- - -, 1 

+- -+ +- -+ +- -+ + - --+ +--+ 



These are the user program, the parser, the one-variable 
query processor, decomposition and the data base utilities. 
The parser converts query strings into trees. OVQP interpre
tively executes one-variable queries, i.e., those involving a 
single relation. Decomp controls the decomposition of mul
tivariable queries into a sequence of one-variable queries. 
The DBUs provide utility support. Communication between 
the processes is accomplished by . 'pipes," which are essen
tially message buffers. 

Borrowing from System-R terminology, there are three 
phases in the lifetime of a program-preprocess-time, com
pile-time and run-time. Preprocess-time refers to the time 
when data manipulation statements of a . program are first 
analyzed and translated. Compile-time refers to the time 
when the actual host language program, with associated data 
base calls, is compiled. Run-time refers to the time when 
the program is in execution. Compilation of data base quer
ies is most advantageous if it can be performed at prepro
cess-time. However, flexibility considerations may make it 
necessary to defer compilation of the data base portion of 
a program until run-time, when complete information is 
specified. 

It is possible to describe the various levels of compilation 
presented in the previous section in terms of the INGRES 
system: 

LeveL O-INGRES interpretively executes all queries. The 
EQUEL preprocessor translates a user program into a se
quence of host language statements and calls on the under
lying data base system. These calls pass the queries in the 
form of character strings to INGRES for run-time execution. 

LeveL l-INGRES translates the query string into a tree 
at run-time. The structure of the query tree can always be 
determined from the string. Thus; it is possible to parse the 
query and build the tree at preprocess-time. If the data base, 
relation, and attribute names are known then information 
associated with those names can be placed into the tree. If 
we make the restriction that this information must be known 
at preprocess-time, Level 1 compilation can be achieved. 

Level 2-If the restriction that all names must be known 
at preprocess-time is lifted, then it is necessary to fill in 
missing information at run-time when all names must be
come known. Thus Level 2 compilation can be accom
plished. Note that the form of the tree is unaffected by the 
lack of information at preprocess-time. The information in 
the nodes of the tree, on the other hand, depends upon 
information associated with unresolved names. These names 
must be looked up in the system catalogs at run-time. 

LeveL 3-INGRES constructs an execution plan by de
composing a complex query into a sequence of one-variable 
queries. This is accomplished by alternatively applying tuple 
substitution and reduction. 19 Once a collection of decom
posed query trees is available, it is possible to generate code 
at preprocess-time which will perform the decomposition at 
run-time. Because tuple substitution can not be performed 
until run-time, the generated code will have to be parame
terized in order to allow actual values from the data base to 
be substituted. It is useful to think of the generated code as 
query procedures which can be invoked by other query 
procedures, with the lowest level of invocation representing 
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parameterized one-variable queries. These queries can then 
be passed to the OVQP for interpretive execution. Note that 
the invocation of the compiler to build these query proce
dures will have to be postponed until run-time unless com
plete information is available at preprocess-time. 

Level4-Based upon the physical structure of the under
lying relations, OVQP determines the efficient access paths 
for the processing of a one-variable query. Once the query 
procedures are constructed, it is possible to generate access 
method calls for the query procedures. Thus, Level 4 com
pilation is easily achieved once Level 3 compilation is op
erative. 

At this point, we will give an example of Level 4 compi
lation. Consider the following QUEL query: 

range of E,M is employee 
range of D is department 
retrieve (E. name) where E.salary>M.salary 

and E.manager=M.name 
and E.dept= D.dept 
and D .floor# = 1 
and E.age>40 

The query requests the names of all employees over 40 years 
old who make more than their managers and work in a 
department which is situated on the first floor. The following 
two queries can be detached from the original: 

range of D is department 
retrieve into Tl (D.dept) where D.floor#= 1 
range of E is employee 
retrieve into T2 (E.name, E.salary, E.manager, E.dept) 

where E.age>40 

The original query becomes: 

range of D is Tl 
range of E is T2 
range of M is employee 
retrieve (E.name) where E.salary>M.salary 

and E.manager=M.name 
and E.dept=D.dept 

The decomposition algorithm chooses a variable for substi
tution. If D is chosen, D.dept is replaced by actual values 
from the data base. A parameterized query of the above 
form is decomposed further, with the value of D.dept being 
the parameter. Continuing, the following query is detached: 

range of E is T2 
retrieve into T3 (E.name, E.salary, E.manager) 

where E.dept=value 

The above query now becomes: 

range of E is T3 
range of M is employee 
retrieve (E.name) where E.salary>M.salary 

and E.manager= M.name 
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At this point, another tuple substitution is necessary. Sup
pose the variable E is chosen. The resulting queries have 
one variable and can be executed directly by OVQP. 

The compiled version of this query would look something 
like this: 

Q( ): 
access method code for "retrieve into Tl (D.dept) 

where D.floor#= 1" 
access method code for "retrieve into T2 (E.name, 

E.salary, E.manager, E. dept) where 
E.age>40" 

for each tuple in TI, call Q'(dept) 
Q'(d): 

access method code for "retrieve into T3 (E.name, 
E.salary, E.manager) where E.dept=d" 

for each tuple in T3, call Q"(name, salary, manager) 
Q"(n,s,m): 

access method code for' 'retrieve (n) where 
s>M.salary and m=M.name" 

The compilation approach for INGRES just described 
causes several problems. Data bases are potentially dynamic 
objects. A system based upon compilation must be able to 
deal with changes to the logical and physical schema. Also, 
the architecture of the system must ensure security for user 
data. 

Due to protection considerations, (e.g., only processes 
owned by INGRES are allowed to execute access method 
calls), the query portion of a program will have to reside in 
a separate process from the rest of the program. Requests 
for the execution of a query can be passed down the pipe 
from the user program to the query process, with results 
being returned in the opposite direction. The process struc
ture would be as follows: 

+ - -+ . + - - -+ + - -+ 
I user I _ .:xe.: Q~ -+ 1 query I _ _ -+ I DBU I 
I pgrml ~ ~es:its- - I process I ~ - - - -I I 
+--+ +---+ +--+ 

A V A V +. - - - . - + 
+D~T~ !!A.§.E ___ + 

The five-process system has been replaced with a three
process system. Note, however, that the query process is 
unique to each program, whereas the processes of the cur
rent INGRES system can be shared among concurrent 
users. 

Because the access method code is dependent upon the 
physical structure of the relations, the query process can 
become invalid if there is a change to the physical schema. 
A scheme similar to that used in System-R can be used to 
recompile those query processes that have become invalid. 
A system catalog, in the form of a relation, associates query 
processes with data base objects they depend on. A process 
can be marked invalid if an ohject it derend~ up()n ha~ 

changed. When a program uses an invalid query process. 

the compiler can be invoked to recompile the program. If 
the query trees are maintained in the data base, only the 
query process itself need be recompiled. Otherwise, the 
original program will have to be reprocessed for the regen
eration of the query parse trees. 

Because authorization and views are implemented by 
query modification,14,13 the techniques described above can 
be used to recompile a program if authorization privileges 
or views are changed. In this case however, the query tree 
will have to be reconstructed. To avoid reprocessing the 
user program, it may be useful to maintain the query string 
in the data base and to perform all four steps of query 
processing on this string. 

RESULTS 

Four versions of the INGRES system were configured for 
comparison. These were: 

I. The standard five-process system, available through 
the EQUEL preprocessor (the EQUEL system). 

2. A modified five-process "parse at compile-time" sys
tem, with the parser process copying pipe input to pipe 
output (the C-EQUEL (5) system). 

3. The four-process "parse at compile-time" system, 
available through the C-EQUEL preprocessor (the C
EQUEL (4) system) 

4. A C program augmented with hand-coded access 
method calls (called AM code). 

Three test programs were selected as benchmarks, called 
Test Programs I, 2, and 3. The structure of the programs is 
essentially the same. Each program consists of a single re
trieve statement which is executed one thousand times. The 
retrieve statement in Test Program I has no qualification, 
hence the entire relation must be scanned. Test Program 2 
contains a relatively complex qualification. However, the 
entire relation must be scanned, because the qualification is 
true for every tuple. The only difference between Test Pro
grams I and 2 is the complexity of the qualification. Simi
larly, Test Program 3 contains a relatively complex qualifi
cation for which no tuples of the relation will qualify. 

The first comparison made between the configurations 
was in user program size. Table I summarizes the results. 
Basically, as the level of compilation increased (e.g. ap
proached complete compilation), the user program size in
creased. This result can be misleading. The total size of an 
INGRES program is actually the sum of the sizes of the 
processes which make up the system. Table II contains the 

TABLE I.-Relative Program Sizes (bytes) 

Compiler Used Test Program 1 Test Program 2 Test Program 3 

EQUEL 10694 10756 10758 
C-EQUEL (5) 16180 16306 16306 
C-EQUEL (4) 16192 16318 16318 
AM Code 24400 24418 24418 



TABLE n.-Relative Sizes of INGRES 
Processes 

Process 

Parser 
OVQP 
Decomp 
DBUs 

Size (K= 1024 bytes) 

54K 
60K 
57K 
58K 

relative sizes of the major INGRES processes. Using this 
measure of program size, the EQUEL programs required 
224K bytes, the C-EQUEL programs required 181K bytes, 
and AM programs required 24K bytes. . 

INGRES processes are actually shared among concur
rently executing INGRES programs, since the processes are 
re-entrant. Thus, the storage requirements for EQUEL and 
C-EQUEL programs should be distributed among the con
current users of the system. This "would require approxi
mately ten concurrent users of INGRES for an E_QUEL 
program to match the storage requirements of the AM pro
gram. The results indicate that for certain kinds of programs, 
the compilation approach may actually decrease the overall 
storage requirements for data base programs. This will de
pend upon the complexity of the program as well as the 
number of concurrent users. In any case, the storage re
quirements for compiled programs do not appear to be pro
hibitive. 

The second comparison made was in speed of query pro
cessing. For each of the four systems, five different tests 
were run. These tests differed mainly on the test program 
used and the number of tuples scanned during the test. The 
first three tests consisted of the three test programs run on 
a relation with a single tuple. The remaining tests consisted 
of Test Progams 1 and 2 run with the same relation, but this 
time with 25 tuples. The timing results are listed in Table 
III. 

TABLE I11.-Test Run Elapsed Times 

Program '* Compiler Mean Standard 
(tuples scanned) Used (sec) Deviation 

1 (l tuple) EQUEL 235.0 .7 
C-EQUEL (5) 201.9 .9 
C-EQUEL (4) 183.0 .5 
AM Code 4.5 .5 

2 (1 tuple) EQUELYs 310.8 1.2 
C-EQUEL (5) 224.6 .5 
C-EQUEL (4) 205.1 .3 
AM Code 4.4 .5 

3 (1 tuple) EQUEL 308.4 .9 
C-EQUEL (5) 223.1 .6 
C-EQUEL (4) 203.4 2.0 
AM Code 4.4 .5 

1 (25 tuples) EQUEL 489.8 .5 
C-EQUEL (5) 459.2 .7 
C-EQUEL (4) 440.5 .7 
AM Code 28.8 .4 

2(25 tuples) EQUEL 641.3 1.4 
C-EQUEL (5) 553.8 1.1 
C-EQUEL (4) 532.9 1.8 
AM Code 28.8 .5 
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For each experiment, the four versions of the same pro
gram were run 20 times while there was no activity on the 
system. Elapsed time was used for the measurements be
cause it is relatively easy to measure and because it is a 
good indicator of combined CPU and 110 time when there 
is little other activity on the system. The mean and standard 
deviation of the readings were computed and are reproduced 
in Table III. For easy comparison, bar graphs of these re
sults can be found in Figure I. Because the standard devia
tions are typically quite small (i.e. less than one percent), 
the mean run-times are a good basis fVi comparing the 
benchmarks. 

Table IV is a compilation of the percentage improvements 
between two given configurations. The improvement due to 
parsing at compile-time is presented in Line I. The improve
ment due to eliminating the parser process is listed in Line 
2. The total improvement of C-EQUEL over EQUEL is 
available as Line 3. The improvement of complete compi
lation over interpretation is recorded in Line 4. 

The advantages of parsing at compile-time are obvious 
from Table IV. The more complex the query is, in terms of 
the time it takes to parse the query string, the greater the 
improvement possible with C-EQUEL. This is illustrated in 
the percentage improvement for Run 1 and Runs 2 and 3. 
However, because parsing represents a fixed overhead, as 
the total time to process the query increases, the improve
ment due to compile-time parsing decreases. This is evident 
from the improvements for Run 1 and Run "4. 

The major difference between C-EQUEL (5) and C
EQUEL (4) is the inclusion of a dummy parser process that 
copies data from input to output. The improvement repre
sents the benefits gained by reducing the size of the system 
by one process. As can be seen from the results of Runs I, 
2 and 3 and Runs 4 and 5, the OVerhead associated with the 
existence of an extra process is essentially fixed. As the 

TABLE IV.-Percent Improvements 

Program '* Percent 
(tuples scanned) Compiler 1 Compiler 2 Change 

1 (1 tuple) EQUEL C-EQUEL (5) 14 
C-EQUEL (5) C-EQUEL (4) 9 
EQUEL C-EQUEL (4) 22 
EQUEL AM Code 98 

2 (1 tuple) EQUEL C-EQUEL (5) 28 
C-EQUEL (5) C-EQUEL (4) 9 
EQUEL C-EQUEL (4) 34 
EQUEL AM Code 98 

3 (1 tuple) EQUEL C-EQUEL (5) 28 
C-EQUEL (5) C-EQUEL (4) 9 
EQUEL C-EQUEL (4) 34 
EQUEL AM Code 98 

1 (25 tuples) EQUEL C-EQUEL (5) 6 
C-EQUEL (5) C-EQUEL (4) 4 
EQUEL C-EQUEL (4) 10 
EQUEL AM Code 94 

2 (25 tuples) EQUEL C-EQUEL (5) 14 
C-EQUEL (5) C-EQUEL (4) 3 
EQUEL C-EQUEL (4) 17 
EQUEL AM Code 96 
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Figure I-Comparison of program execution times. 

total processing time increases, the associated overhead be
comes less significant, as shown in Runs 4 and 5. 

The improvement of C-EQUEL over EQUEL is repre
sented by the percentage improvement of C-EQUEL (4) 
over EQUEL. In the case of a complex query with little 
associated processing, the improvement is over one-third. 
In the case of simple queries which require much processing, 
however. this improvement is considerably less. 

The most striking result is the improvement of compiled 
programs over interpreted ones. The result that compiled 
programs will run faster than interpreted ones is not sur
prising; the magnitude of this improvement is. It indicates 
that there is considerable overhead associated with a mul
tiple process interpretive system that has little to do with 
performing the actual functions necessary for query pro
cessing. 

CONCLUSIONS 

The compilation approach to query processing has the 
potential of greatly reducing the overhead associated with 
execution of queries. An actual parse at compile-time system 
was implemented and was shown empirically to reduce 

query processing time. at a modest increase in storage re
quirements. This is only one possible point in a continuum 
of possible levels of compilation, each with its own time/ 
space tradeoffs. Complete compilation was shown to pro
duce substantial time savings, with possible space savings 
as well. 

A general notion of compilation level was presented and 
it was shown how to describe an interpretation-based system 
such as INGRES in terms of different levels of compilation. 
On the" basis of experience with C-EQUEL, some conclu
sions about the ease of implementing other proposed levels 
of compilation are possible. The extension of Level 1 to 
Level 2 "would require little additional work. All that is 
needed is to look up names in the INGRES system catalogs. 
The extension of Level 2 to Level 3 would entail a consid
erable implementation effort. Programs would become sen
sitive to changes in the physical schema. Decomposition 
would have to be executed at preprocess-time in order to 
generate the query procedures. Further, the compiler would 
have to be invokable at run-time, because data base, relation 
and attribute names may not be known until then. Once 
these implementation obstacles have been surmounted, 
Level 4 is relativelv easy to implement" All necec;;c;;ary infor
mation is known when the Level 3 program is created. 



Essentially, code is generated directly, as opposed to being 
generated with conditional statements to control execution. 
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System considerations for predicting mass storage subsystem 
behavior 

by E. J. McBRIDE, A. B. TONIK'and G. R. FINNIN 
Sperry Univac 
Blue Bell, Pennsylvania 

INTRODUCTION 

We are always interested in predicting the performance of 
systems and/or subsystems. A "typical" question is: "Is the 
most important component of system performance the way 
mass storage subsystems behave?" The answer is yes, most 
of the time. 

Assume a solitary program is running on a system. The 
running of the program is broken into two major parts: the 
loading and the running. Loading usually takes between Y4 
to 1/ 10 of the total run time. The exceptions are programs 
that run for an hour or more during which the load time is 
insignificant. During load time there is little CPU-time and 
during the total run time there is usually little overlap be
tween CPU-time and I/O-time. The amount of CPU-time 
will usually range anywhere from 1/6 to slightly more than 
Y2 of the I/O-time. The exceptions are programs that will 
load the data and just sit there and grind away on it. These 
time periods, shown in Figure 1, are actually pieces of un
equal duration that are intermixed. This is true of a trans
action program as well as a batch program. 

Another consideration of performance is multiprogram
ming, i.e., the way one program multiplexes with many 
others. In this case, when a program wants to use one of 
the facilities of the system, that program may find it busy. 
In fact there may be several of the programs waiting for the 
use of that facility. The waiting time until a program gets to 
use that facility has to be added to the run-time of that 
program. The average queue waiting for service depends 
upon the average utilization of that facility and the mix of 
programs. The higher the utilization, the longer the queue. 
Since mass storage already takes a majority of the running 
time, we do not want to multiply the I/O-time by more than 
three or four because of long queues. On the other hand 
since CPU-time is relatively short, we do not mind multi
plying that time by a large factor. Therefore, we can afford 
multiprogramming up to the point of using the CPU for 80 
to 90 percent of the time while we try to keep disk utilization 
down to 50 percent. 

Disk performance is important to system performance, 
but trying to predict its performance is very complicated. 
The control unit is used for a short period of time to get a 

749 

disk started toward a location. During disk seek time, the· 
controlunh can start seeks to many other disks or perform 
data transfers to/from them. At the end of a seek, the disk 
enters latency time. At this point, the disk will either attempt 
to interrupt the control unit (non-RPS case) or wait until it 
arrives at a rotational position. At RPS time (rotational po
sitioning sensing), the disk tries to request service from the 
control unit. If the control unit is busy and the disk is using 
RPS, the disk may have to wait a revolution or more. This 
is caused by the disk not gaining access to the control unit 
within a given RPS time. The number of missed revolutions 
depends on the number of disks on a subsystem, the request 
rate of I/O commands to the subsystem, the RPS timing 
constraints and the amount of the data to be transferred. 
These are related in very complex ways. 

This paper is written to document some of the findings 
from our studies of Mass Storage Subsystem behavior. It is 
not intended 1.0 be an analytical treatise of Mass Storage 
behavior. It is written more as an attempt to describe some 
of the techniques we are using. GPSS models and analytical 
models were constructed. The study of these models yielded 
some interesting observations into subsystem behavior. A 
typical question is how many missed revolutions will an 
'"average" disk have when attached to a system. Since each 
missed revolution costs 16.6 milliseconds on conventional 
disks, the answer to such a question can have a significant 
impact on system performance. 

Figure 2 shows an example of the complex set of events 
which occur during normal disk accessing. The times shown 
are not necessarily to scale. Note that access completions 
need not be in the same order as initiations. Some disks 
may complete without missing revolutions while others may 
miss many. The remainder of this paper describes a method 
of studying this type of subsystem plus the effects of some 
of the critical parameters. 

From a systems level the interesting parameters of a sub
system are its response time and its throughput. Response 
time as measured from the time an 110 is requested at the 
user level (not the control unit level) until the time the data 
is in memory. Throughput is the maximum number of re
quests per second which can be sent to a subsystem without 
having the queue build up beyond bounds. 
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Figure I-Typical distribution of time for a program. 

MASS STORAGE SUBSYSTEMS 

The term Mass Storage is used to refer to input-output 
(I/O) subsystems consisting of the rotating magnetic disk 
media or the new solid state technologies such as Bubble 
and Charge Coupled devices. The disk drives may have 
movable data recording and read back mechanisms (RlW 
Head) or fixed head mechanisms. The solid state devices 
are equivalent to the fixed head disks in that no physical 
positioning (seek) of the RlW Head is required prior to a 
data read or write operation. 

The data are stored on these Mass Storage devices in 
what are called tracks. Figure 3a illustrates, in a simplified 
manner. the concept of data tracks on a movable head disk 
device. Each track contains a set of data blocks (four shown 
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in the figure) which are units of information read from or 
written to the device per operation. Each data block may 
contain one or more file records as specified by the appli
cation software. The number of blocks per track and the 
number of tracks per device are determined by the storage 
density of the device. The tracks are in continuous motion 
at a speed dictated by the design of the device. Now, in 
order to read or write a data block, the read/write head must 
be positioned over the desired track and the intended block 
must move under this head. 

In Figure 3a, a seek (head positioning) has occurred from 
Track 1 to Track 200. Since this is mechanical motion, it 
tends to be very time-consuming; the time element is rep
resented as SSk (seek time). When the seek completes, the 
read/write head must wait for the particular data blocks. 
This also involves physical motion and is represented as S1 
(latency time). In Figure 3a, the head is waiting for data 
block 3. When the data block reaches the head, time must 
be spent transferring the data to or from the block (provided 
the control facilities that connect the disk to system main 
storage are available for use). The data transfer time (Su) is 
determined by the track speed, the density of storage on the 
track (i.e. bits per inch) and the size of the block. When the 
block transfer is completed, the operation is finished and 
the disk is free to accept a new operation. 

In Figure 3b, the track concept is illustrated for the solid 
state technologies. There is no seek time, instead, the track 
is switched to a single read/write head. However, there is 
a latency time in moving the desired data block under the 
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FUNCTIONS 

A - HOST CALCULATES LOCATION AND QUEUES 
PACKET TO CHANNel 

B - CU QUEUES PACKET AND ISSUES SEEK 
TO DISK 

C - DISK SEEK TIME WITH RPS 

D - DISK COMPLETES SEEK AND GAINS 
ACCESS TOCU 

E - CU ISSUES SEARCH/READ 

F - CU TRANSFERS DATA TO HOST 

G - HOST CLEANS UP AND NOTIFIES PROCESS 
THAT DATA IS AVAILABLE 

H - DATA IS AVAILABLE FOR PROCESSING 

S = SERVICE TIME = 28 MILLISEC (TYPICAL) 

THROUGHPUT = 8 ACCESSES/92 MILLISEC 
(NOT TYPICAL) = 86.02 ACCESSES/SECOND 

NOTE: 1 TO 8 REPRESENTS EACH DISK NUMBER 

Figure 2-Performance factors. 
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Figure 3-Logical representation of latency. 

head. The maximum latency time (SI max) for these devices 
ranges in the one to five milli-second time interval, whereas 
disks are typically in the 16 milli-second range. This shorter 
latency time, zero seek time and higher track speed and 
density give the solid state devices a definite performance 
advantage. 

Storage devices are only one constituent ofthe subsystem. 
Each subsystem has at least one control unit. The control 
unit usually services more than one storage device and also 
connects to the system facility called a channel. The channel 
services the software queues requesting input or output (II 
0), issues commands to the subsystem control unit to start 
I/O operations and controls the flow of data blocks to or 
from main storage. Channels may also share facilities among 
more than one subsystem. However, the real burden is 
placed on the control unit. It must service requests from the 
channel to start 110 and it must service requests from the 
storage devices to transfer data blocks. To obtain efficiency, 
control units are designed to overlap certain 1/0 operations 
(i.e. time multiplex its resource) but once it connects to a 
storage device for data block transfer, it remains connected 
until the transfer completes. The utilization of the control 
and channel facilities plays an important role in determining 
the performance of the subsystem. This aspect will be dis
cussed later in the paper. 

ROTATIONAL POSITION SENSING (RPS) 

A storage device after completing its seek or track select 
operation must then attempt to gain use of the control unit 
and channel facilities. A device without RPS will attempt to 
obtain the control unit immediately at the end of its seek or 
track select. On the average, the read/write head will be 
one-half the maximum latency time from the desired data 
block. Nothing can happen until the data block moves under 
the head. In the non-RPS case the control unit like the 
device is used during this waiting period. This tends to 
increase the control unit utilization during each data transfer 
operation and tends to limit the number of requests the 
subsystem can handle. 
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To keep from wasting control unit time by forcing it to 
wait out latency, RPS can be used. Figure 4 illustrates the 
concept of RPS. The tracks are divided into sectors (the 
figure shows eight sectors, typically there are 128) and the 
storage device does not become a candidate for control unit 
service until a specific sector is reached. This allows the 
control unit to service other requests from the channel or 
other storage devices during RPS time. In the illustration, 
the read/write head is shown within Sector 3 when the seek 
or track select completes. 

The storage device will not become a candidate for control 
unit use until Sector 3 is sensed. Since Sector 3 is under the 
read/write head the device attempts to obtain the control 
and channel facilities. If these facilities are free and have set 
up for the data transfer before Sector 4 is sensed, the device 
and control facilities stay connected through Sector 4 and 
transfer at data block 14 in Sector 5. Otherwise, the device 
must wait until its track rotates almost one full latency time 
(to Sector 3) and try again to obtain the control facilities. 

CONFIGURATIONS 

The term configuration refers to how the subsystem con
nects to the system. This is very important to performance 
evaluation. This paper will deal to two basic configurations: 
1) the single access and 2) the dual access. Figure 5a illus
trates single access. Shown is one channel facility servicing 
two single access mass storage subsystems. Single access 
means that the storage devices connect to only one control 
unit. It will be shown that thjs configuration significantly 
limits the number 110 requests a subsystem can handle per 
unit time. 

In the illustration, the channel is shown interfacing a soft
ware facility and main storage. The software is shown serv
icing the subsystem queues which hold requests for 110. The 
software processes the termination of each 110 operation, 
removes requests from queues and starts 1/0 operations on 
the channel facility. This software process is not considered 
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Figure 4-Sector positioning. 
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Figure 5a-Single-access subsystems configurations. 

in this paper. The channel to main storage interface is shown 
to indicate the path for data block transfers. It too affects 
performance but will not be considered in this paper. 

The control units are shown connecting up to eight device 
facilities. This value, typically, represents an efficient load 
on the control unit. However, cost-effective configurations 
with 16 or more devices per control unit are possible. 

The second type of configuration (dual access) is illus
trated in Figure 5b. Two channel facilities are shown con
necting to two control units which share the eight storage 
devices. This connection, at the expense of hardware, en
hances performance by effectively lessening the load on a 
single control unit. In general, the performance limitation is 
now predominately shifted to the service capabilities of the 
storage devices. 

SUBSYSTEM ANALYTIC MODEL 

When viewing subsystems performance, the concern is 
with individual storage devices and their software device 
queues. That is: 1) How long, on the average, must a request 
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Figure 5b-Dual-access subsystems configurations. 

sit on the device queue before being serviced by its device? 
2) What is the average time for a request to pass through 
the subsystem? 3) What is the average size of the device 
queue? 4) How do the service time elements of the channel, 
control unit and device affect performance? 

It is desirable to structure a model that is simple but takes 
account of the important parameters affecting performance. 
The model described in this paper views a single device 
queue and its storage device. The interference of other stor
age devices sharing the control unit and other subsystems 
sharing the channel are also included in the model. 

Figure 6 represents a queuing model flow diagram for a 
subsystem storage device using RPS. The device queue re
sides in the system and holds requests for 1I0s issued by 
the software. The queue is nothing more than a waiting line 
and obviously we would like the number of requests waiting 
in line to be small. Average time spent waiting on the queue 
for service is designated t"" and is dependent upon the rate 
at which requests enter the queue and the average time the 
subsystem takes to service the queue. The arrival rate to the 
group of device queues associated with a specific control 
unit is Ar . This value is a random arrival and the device 
queues are not skewed. Each device queue receives on the 
average an equal faction of Ar . The arrival rate per device 

DEVICE 
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DEVICE CHANNEL 
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Figure 6--Time sequence for RPS model. 



is ArPn , where: 

Pn = ~d where Nd =# of devices per control unit. (1) 

The wait time (t,.,) can, under heavy load, exceed the time 
to service a request (S). Service time (S), as Figure 6 indi
cates, is comprised of seven time elements. The first time 
element is the mean wait time that a request, taken from the 
device queue, must experience before gaining access to the 
control unit (t(U(J. That is, when a request leaves the device 
queue, it enters a queue in the channel. This queue can hold 
only one request; however, the channel has a large number 
of such queues to handle many devices on one or more 
subsystems. ~tlC depends on the effective control unit utili
zation and the mean time the control takes to service re
quests. The effective control unit utilization (Pee) is a meas
ure- of the average time the control U1}H ~ppears to be busy 
to a request on the channel queue. If only one control urilt 
is connected to the channel, Pee equals Pc (the real control 
unit utilization). However, if other control units are also 
using the channel, Pee is larger than Pc. This is a method 
used to factor in interference due to other subsystems shar
ing the channel facility. The service time of the control unit 
is the average of the time to process a command from the 
channel (Srp) and to transfer a data block to or from the 
device (Sw+Scd. 

When the control unit becomes available it processes the 
request (SfI'). This action consumes some control unit time 
as indicated in Figure 6 by Pc under the Srp increment. The 
control unit then signals the storage device to seek to the 
track specified in the channel command. At this point, the 
control unit is free to service other requests and the storage 
device is now busy in its seek time interval. When the seek 
completes, the read/write head must wait for the track sector 
to position. This is the mean latency time (Sd and is equal 
to one-half the maximum latency time. The device now 
attempts to gain use of the control unit. If the control unit 
is busy and if the track sector slips past a given point, the 
track must reposition again to the specified sector. This 
requires one full latency time interval and is sometimes 
referred to as missed revolutions. The average of these 
missed revolutions serves to increase or extend the mean 
latency by an additional time interval depicted as Set. It is 
desirable to keep this time as small as possible. 

When the device finally obtains the control unit, both the 
control and device must wait out any sector time preceding 
the data block to be transferred. This time is determined by 
the sector window time and has a mean value depicted by 
Sw. In Figure 4 the maximum window time would be Sector 
3 and 4 plus Sector 5 up to the start of Data Block 14. 
Window time should be small if RPS is to provide a per
formance advantage over non-RPS. 

When the data block is reached, both control unit and 
device take part in the block transfer during period Sd. At 
block transfer completion, the I/O request leaves the modei 
and the next request on the device queue can enter the 
channel queue. Figure 7 is a flow diagram for a non-RPS 
device. The model is the same as RPS up to the end of SSk . 
The device then attempts to gain use of the control unit and 
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Figure 7-Time sequence for non-RPS model. 

like the channel request, a mean wait time for the control 
unit is encountered (t".c). 

Finally, when the control unit is obtained, both the control 
unit and device must wait out the mean latency time (Sd. 
Here lies the disadvantage, the value of Pc increases because 
of device latency. This increases t'de and thus the service 
time. The increased S and subsystem utilization causes an 
increase in the device queue waiting time. 

MATHEMATICAL EXERCISE 

Now that we have walked through the flow diagrams and 
have defined the terms relating performance, we are ready 
to handle the equations of the model. The main time element 
of interest is the average response time (tq) in performing 
an I/O request to a specific device. This measures the time 
waiting on the device queue and time being serviced by the 
subsystem device: 

(2) 

tq is referenced to the independent variable Ar . That is, we 
are interested in examining how 1q varies as the load to the 
subsystem is changed. 

Service time (S) as indicated in the flow diagrams is com
posed of subsystem-dependent parameters. The degree of 
control that can be exercised over these time elements will 
dictate the control over subsystem performance. Ultimately, 
performance relates to throughput which is Ar times the size 
of the data blocks transferred per unit time. This throughput 
may be constrained by response time requirements and 
buffer requirements for the queues in main storage. If a 
system can tolerate large response times in I/O and the 
resulting variance in ~, then high throughput can be ob
tained. Otherwise, response time must be restricted which 
results in lower throughput: 

S=t, . .c+Srp+Ssk+Sl +Set+Sw+Sd RPS (3) 

S=2~de+Srp+Ssk+Sl +Sd non.;.RPS (4) 

t",e (Mean control unit wait time)-See Equation i2 
Srp (Control unit processing time)-Fixed by control unit 

design. Values may range from 0.2 milliseconds to 
1.0 millisecond. 

SSk (Mean seek time)-Determined, to some degree, by 
device design and system factors. Refer to Appendix 
I and Reference I. For the model, specific values are 
assumed and the variance from the mean is assumed 
to be uniformily distributed. 

Sl (Mean latency time)-Fixed by device design. Sl 
equals one half time maximum latency time which 
assumes a variance that is uniformly distributed. 
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Sel (Mean extended latency)-See Equation 20 
Sw (Mean window time)-See Equation 11 
SII (Data block transfer time)-Determined by the design 

of the device and the software application's need for 
certain data block sizes. S<l is the block size in bytes 
divided by the data transfer rate of the device. 

Each time interval with a bar has a variance. Variance is 
a measure of the spread or dispersion from the mean value. 
Our intent is· to obtain a reasonable estimate of variance 
which will be used in evaluating mean wait time on the 
device queue: 

O"~S)= O"~t.,c)+ O"~SSk)+ O"~SI)+ O"~Sed+ O"~Sw) (5) 

O"2(t.JC) =(t.,c)2 

O"2(SSk) =(Ssk max) 211 2 

O"~Sd=(SI max)2112 

O"~Sed=See Equation 21 

O"~Sw) =(Sw max)2112 

exponential distribution 

uniform distribution 

uniform distribution 

uniform distribution 

Before device queue wait time (t,.,) can be evaluated, the 
subsystem utilization (Ps) must be specified: 

(6) 

Now, t.., can be determined and when added to S, we have 
the mean response time. The equation for t.., is a basic 
equation from the field of queueing theory (see Reference 
I): 

(7) 

The mean wait time for the control unit (t,.JC), the extended 
latency time (Sel), and the sector window time (Sw) must 
still be evaluated before service time (S) can be known. 

In the section on RPS, the concept of sectors was dis
cussed. The data block to be transferred starts in a specific 
sector. The starting point can be located anywhere within 
the sector (i.e. between beginning and end). Now, it takes 
time for the control unit and channel to prepare for the 
transfer. Therefore, all resources must be ready at least one 
sector prior to the sector containing the data. We will call 
this portion of the sector window the fixed portion (Swr). A 
specific number of sectors prior to Swr is allotted to the 
device to obtain use of the control and channel facility. This 
is called the window connect time (Swc)' Obviously for the 
sector RPS device to have a performance advantage over 
non-RPS devices, the window connect time must be small 
in comparison to the maximum latency time. Only a few 
sectors per track are normally required. Typical disk devices 
have 128 sectors per track at about 0.130 milli-seconds per 
sector. 

Tsec equals the time interval of one sector: 

Tsec =Sl maxl# of sectors per track 

Swc equals mean window connect time: 

Swc=N xTsee/2 N=O, L 2, ... , etc. 

(8) 

(9) 

Swr equals mean fixed window time: 

Swr= 1.5 x Tsec (10) 

The mean window time is now available: 

(11) 

The next step is to determine the control unit wait (t,ve)' 
This time element is dependent on how busy the control unit 
and channel are and on the average time the control unit 
takes to service a channel command or transfer data. A 
modification of the Equation 7 used to evaluate the wait 
time on the device queue is used to calculate Cc. The ad
justment to the equation is necessary because the queues in 
the subsystem are finite. That is the number of requests at 
any given time for control unit service can not exceed the 
number of devices connected to the control unit. A very 
good discussion on this subject can be found in Reference 
1, p. 451. The adjustment factor (A) used in this model was 
developed by trial and error to force fit the wait time results 
to the graph on p. 453 of Reference 1. 

- Sc x Pee xA 
t,,,c= (1- Pee) (12) 

Sc is the control unit service time: 

(13) 

Pce is the effective control unit utilization. It factors in the 
real control unit utilization Pc with the channel utilization 
(Peh) that may result due to other subsystems sharing the 
channel: 

Pee = 1-(1- PCh) x(1- Pc) (15) 

If only one subsystem is connected to the channel, Pch 
equals zero. Therefore, Pee equals Pc. Under this condition 
the channel and control unit can be viewed as one single 
facility: 

(16) 

A is the adjustment factor to compensate for a limited queue: 

A=(1-Pee (:>Id-ll) x exp [[(-10 

Nil equals the number of devices connected to the control 
unit. 

The last equation to be evaluated is for the extended 
latency time (Sed. To do this, we need to determine what 
the probability is that the control unit will be available during 
the sector window connect time. The time the control unit 
is free is 1 - Pee. If the control unit is busy when the connect 
sector is sensed, the probability that it will become free 
within Swc (window connect time) is: 

(18) 

Therefore, the probability the control unit is available is: 

Pca=l-Pce+Pcex[l- exp (-Swe/!,..c)] (19) 



The extended latency (Set) is: 

Set = S1 max x (1/Pea "':"1) 

The variance of Set is: 

2(S )= Set2(l-Pea ) 
(J" et Pea 2 

(20) 

(21) 

The set of equations are now complete and response time 
as a function of request rate can be evaluated. The supple
mentary equations above also provide addiiional insight into 
what is going on in the subsystem. 

SUBSYSTEM EVALUATION 

The first configuration that will be looked at is the single
access, non-RPS disk subsystem with one control unit con
nected to the channel. The components of service time as
sumed for this configuration are: 

Sd=0.5 milli-seconds 

S1 =8.33 milli-seconds 

SI"P= 1 mill i-second 

SSk = 15 milli-seconds 

twr=varies with the load 

S=24.8 milli-seconds+2tw(, 

Figure 8 is a plot of response time (tq ) as a function of 
requests (Ar)' Figure 8a shows three curves: (1) two disks 
per control unit; (2) four disks per control unit; and (3) eight 
disks per control unit. Each disk services an equal percent
age of Ar • The arrows indicate the point on the curves where 
the probability that a request to the subsystem must wait 
because a previous request has not been completed is 0.5. 
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Figure 8a-Single control unit with non-RPS. 
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This will be called subsystem queue= 1. If the service time 
is assumed to be exponentially distributed (worse case), the 
variarice of response time when subsystem queue= 1 can be 
very large. This means that it is possible for approximately 
10 percent of the requests to the device to exceed response 
times that are three to five times the mean. Note that as the 
device queue approaches one, the wait time on the queue 
(t,J almost equals the service time. This is due to the in
crease in control unit and device utilization. The two-disk 
curves show that the disk devices are the limiting resource 
at about 20 requests per disk per second. The four-disk 
curve indicates that both control unit and devices limit the 
performance at about 17 requests per disk per second. The 
eight-disk curves show the control unit limiting the perform
ance at about 11 requests per disk per second. It appears 
that in the area of the four-disk curve, the subsystem is most 
cost effectively utilized. The reason that control unit utili
zation increases rapidly is due to waiting out the disk latency 
time since the devices are not using RPS. A point of concern 
is how the subsystem performance behaves as Ar is in
creased beyond a device queue of one. For the eight-disk 
curve, the subsystem would bog down with large queues 
and long response times. 

The next configuration is a single-access disk subsystem 
using RPS. The service time elements assumed are those 
specified for the non-RPS configuration. However, two ad
ditional elements are required for RPS: 

Se =0.5 milli-seconds ( ~4 sector times) 

SWf=0.19 milli-seconds (-1.5 sector times) 

A plot for a four-, eight-, and 16-disk configuration is shown 
in.Figure 8b. It's easy to see that a definite performance 
increase has resulted by not tying up the control unit during 
latency time. The disk devices are now the major limiting 
resources in performance. The gain in performance over the 
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non-RPS for the four-disk configuration isn't too drastic (i.e. 
20 requests per disk per second with respect to 17). How
ever, the control unit utilization for RPS is very low and this 
implies that additional devices can be cost-effectively added 
to the subsystem. Note the gain in performance for the eight
disk curve over the non-RPS. The devices are capable of 
servicing 19 requests per disk per second as opposed to 11 
for the non-RPS and with a response time in the area of 50 
milli-seconds instead of 90 milli-seconds. Additionally, the 
curve beyond the subsystem queue = 1 is more gradual, im
plying a greater tolerance to variation in the request rate. 
The RPS control unit is even capable of handling up to 16 
disk devices in an efficient manner. 

Beyond this point cost-effective gains in performance be
come questionable. The magnitude of the extended latency 
time at a subsystem queue= 1 increases as disks are added 
and Ar is increased. This is due to the increase in control 
unit utilization and reduces the device's capability to handle 
requests. The situation isn't too bad because the time to 
transfer data chosen for this configuration was small. This 
implies that the device either has a fast data transfer rate or 
a small data block size (e.g. 500-1000 bytes per block). If 
a larger Sd is assumed the control unit utilization would 
increase and with it the extended latency. The only way to 
reduce extended latency is to reduce control unit utilization. 
A good way to do this is to add it second control unit and 
channel and configure it as a dual access subsystem. This 
cuts the control unit utilization because the two units share 
the request load. 

Figure 8c illustrates a dual-access configuration using 
RPS. Again, four-, eight-, and 16-disk curves are shown. 
The service time elements are specified for the single access 
RPS configuration. For the reason stated above, the gain in 
performance is not dramatic for the four- and eight-disk 
curve. For the 16-disk curve, a respectable improvement in 
Ar is indicated. In addition, the low control unit utilization 

CONTROL UNIT UTILIZATION (%1 

10 20 30 
.10 

I? 53"'{' DEVICE UTILIZATION 

(/) 4 DISKS c .08 z 
0 
u 
w 
CIl 

I 
w .06 
::E 
i= 
w 
(/) 

Z 
0 

.04 ~ 
(/) 
w 
a: 
w 
CI « 

2.5 msec Sel a: .02 w 
> 55% DEVICE UTILIZATION « 

1 msec Sel 

80 160 240 320 

NUMBER OF SUBSYSTEM REQUESTS PER SECOND fA r) 

Figure 8c-Dual control unit with RPS. 

indicates that disks in excess of 16 can provide a cost-effec
tive increase in performance. 

SUPPLEMENTAL EVALUATION 

Channel utilization impact 

If the channel is being used by more than one subsystem, 
each subsystem interferes with the other. The effect of this 
interference is felt in increased response times at a given 
load on the subsystem. This in turn forces the system to 
drive the subsystem at fewer requests per second to obtain 
reasonable response times and more stable queues. A rea
sonable approximation of the degree of impact channel uti
lization has on a subsystem is listed in Table 1. 

Latency time 

The role that maximum latency time plays in limiting the 
throughput of a subsystem depends on the magnitude of the 
maximum latency time with respect to the service time (5) 
of the subsystem. Reducing latency will improve perform
ance. Table 11 lists the gain in performance when maximum 
latency time is reduced by 25 percent, 50 percent and 100 
percent. Column 1 indicates that if maximum latency time 
has a value in the area of 80 percent of the service time, a 
significant increase in throughput is gained if it can be re
duced by 50 to 100 percent. For disk units there is little 
chance to reduce latency but for bubble and charge coupled 
devices some latitude of control exists. Furthermore, these 
solid state technologies have performance characteristics 
such that latency time may be in the area of 80 percent 5. 

Seek time 

Seek time, like latency time, has a major affect on 
throughput. For disk subsystems, some control can be ex
ercised over seek time. The degree of performance improve
ment, again, depends on the initial value of seek time with 
respect to the service time (5). Table 111 lists the percentage 
of increase in throughput by reducing seek time by 25 per
cent, 50 percent and 100 percent. Column 1 shows that 
significant ~ains are realized if the initial value of Ssk is 80 
percent of S. 

TABLE I-Perrormance Impact Due to Channel Utilization 

CHANNEL APPROXIMATE LOSS 
UTILIZATION IN THROUGHPUT 

0.1 6% 

0.2 15% 

0.3 25% 

0.4 36% 

0.5 48% 



TABLE II-Predicted Improvement Due to Reduced Latency 

~----------------------~--------~ 

SI max = .85 SI max = .55 SI max = .25 
PERFORMANCE PERFORMANCE PERFORMANCE 

INCREASE INCREASE INCREASE 

u.w 
O:E 25% 12% 6% 3% 
~j: 
-> 

50"10 I 25% 14% 5% ~(,) (')z 
:':)w 

100% I 75% c~ 34% 12% 
w~ 
a:...l 

Data transfer time 

Typically, Sd is small compared to service time. However, 
it not only consumes device time, it also consumes control 
and channel time. These latter two facilities are shared and 
time consumption must be well managed. Table IV shows 
the impact of reducing Sd when it is 10 percent, 5 percent, 
and 2 percent of the service time (8). Disks typically have 
Sd in the 5 percent, to 2 percent of 8 range. A change in Sd 
can be the result of a change in data block size or data 
transfer rate. 

Control unit processing time 

This time is small compared to 8 for disk subsystems, but 
may become significant for solid-state devices. It impacts 
throughput in a manner similar to data transfer time. Like 
Sd, it consumes control unit time and if the control unit is 
to service a large number of requests for high-performance 
solid-state devices, it must be held to a small percentage of 
S. Table V lists the impact on performance of Srp when its 
value is 10 percent, 5 percent and 2 percent of 8. 

CONCLUSION 

The mathematical model defined in this paper can be used 
to give a system designer a good deal of insight into what 
parameters can be most effectively changed to yield the 
desired performance. Given parameters such as seek time, 
latency time, control unit processing time, sector time, and 
channel loading, these parameters can be used to predict 
subsystem performance. The model described here was 
checked against an internal GPSS model simulating over
lapped seeks on disks. The results of our mathematical 
model agreed within 10 percent of the GPSS model. 

TABLE lIl-Predicted Improvement Due to Reduced Seek Time 

Ssk max = .85 Ssk max = .55 Ssk max =.2 S 
PERFORMANCE PERFORMANCE PER FORMANCE 

INCREASE INCREASE INCREASE 
u.. 
Ow 25% Z:E 
0-

24% 12% 5% 

i=~ 
(,)liI:: 50% 59% 28% 10% 
:::>w 
C w 
w(l:) 100% 278% 67% 12% 
a: 

Predicting Mass Storage Subsystem Behavior 757 

TABLE IV-Predicted Improvement Due to Reduced Data Transfer Time 

w 
:E 

u..i= 
Oa: 

Sd max =.15 Sd max =.05 5 Sd max = .025 
PER FORMANCE PERFORMANCE PERFORMANCE 

INCREASE INCREASE INCREASE 

ZW 
0U. 

25% _(I:) 

~z 
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(,)~ 
:::>a: 50% 
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APPENDIX I 

Seek time 

There are a number of ways to compute seek time. Some 
of them are analytic, some are heuristic. There are a number 
of ways to shorten seek time. This appendix will talk about 
shortening seek time by restricting the number of cylinders 
that contain data. 

On the assumption that the requests to a disk are to 
random locations, then the average movement of the head 
mechanism is across Y:3 of the cylinders. Many people have 
suggested that the average seek time could be shortened by 
taking the contents of the queue of requests for this disk and 
moving to one of the closer positions. 

Two techniques have emerged called Scan and C-Scan. In 
both, the list of commands are arranged in cylinder position 
sequence. Any new command is inserted in the list in the 
proper numerical position. Scan says to start at one end of 
the list and always go to the next position as you go through 
the list in one direction. When there are no more in the list 
for that direction, turn around and go through the list in the 
opposite direction. The head mechanism will take a number 
of steps in one direction and then a number in the other. 
The C-Scan (circular scan) will do the same, except that at 
the end of the list, it will jump back to the beginning of the 
list and start over. 

Intuitively, C-Scan seems more efficient. In Scan, when 
a new position is deposited in the list after the scan has just 
passed that point, the command has to sit there until the 
scan reaches the end and comes back through the list once 
again. In C-Scan, such a command only has to wait through 
one scan (not two). Also, in Scan, when the end of the list 
is reached and it turns around, there is small probability that 
there is anything in the list at a close cylinder positi,on. 
Therefore, at the beginning of each scan, the distances to 

TABLE V-Predicted Improvement Due to Reduced Processing Time 

Srp max = .1 5 Srp max = .05 5 I Srp -;;x = .02 S 
PERFORMANCE PERFORMANCE PERFORMANCE 

w INCREASE INCREASE INCREASE 

o~ 
~~ 
t~ 
:::>w cu 
WO 
a: a: 

0.. 

25%1~~ 
50% 30% 

100% I 69"10 

3% 0.5% 

5% 1% 

I 9% ~J ~, 



758 National Computer Conference, 1979 

the next cylinder will be relatively large. Surprisingly, in
tuition does not work. Simulations 2 show that for small 
queues, Scan is better than C-Scan. The large seek distance 
to the beginning of the list seems to hurt. For example, if 
there are two commands in the list, C-Scan has one large 
seek and one small seek, while Scan has two small seeks. 
Teorey3 says that C-Scan does not begin to payoff until the 
queue length goes over 100. But we cannot allow the queue 
length to ever reach such lengths because of the prohibi
tively long response times. 

Croteau states that whenever the average queue length 
exceeds 0.2 per disk, Scan begins to give better results than 
random. She also states that when the average queue length 
is two or three (response time is two or three times service 
time), then the average positioning time has been reduced 
about 10 percent. 

Restriction to part of disk 

The only way to radically shorten the seek time on a disk 
is to keep the head from moving long distances. To do this, 
take the group of files or databases that are accessed by a 
set of programs. Record part of these files on all the non
removable disk packs. The part of any disk should be con
fined to contiguous cylinders. Then when running those 
programs, seek time is confined and shortened and as many 
disks as possible are operated in an overlapped way. Mul
tiprogramming has to be restricted to one set of programs 
at a time. If multiprogramming cannot be restricted, then 
the only way to shorten seek time is to use only a fraction 
of the cylinders to record data. This costs more, because 
more disks are needed. In addition, it could mean more 
throughput because more disks are operating in parallel. 

The average positioning distance, if requests are random. 
is one-third of the occupied cylinders. The average position
ing time is not the time to move one-third of the cylinder 
positions. You have to add all the times to move from any 
possible position to any other position (including the zero 
time to stay on the same cylinder position) and then divide 
by the number of moves. The average positioning time is 
usually less than the positioning time to move an average 
number of cylinder positions. Waters 4 gives the formula for 
computing average seek time. 

The average seek time is reduced if the requests are not 
randomly distributed over all cylinder positions, but are 
bunched. Waters shows how to compute the average posi
tioning distance if the high activity records are all grouped 
together. He shows that the minimum seek distance occurs 
when the high activity records are recorded in the middle 
group of cylinders while the maximum seek distance occurs 
when they are in the lowest numbered cylinders. Waters 
then gives two examples. In one case 80 percent of the 
requests go to 20 percent of the disk. When the 20 percent 
are in the beginning cylinders, then the average seek dis
tance is about one-fifth the number of cylinder positions. 
When the 20 percent are in the middle cylinders. the average 

seek distance is about one-seventh of the cylinder positions. 
Both are better than the one-third for random requests. 

The other case is for 60 percent of the requests to go to 
5 percent of the disk. When the cylinders are in the begin
ning, the average number of positions moved is about 0.3 of 
the cylinder positions. When the 5 percent are in the middle 
cylinders, the average number of cylinder positions moved 
is less than 0.2 of them. 

If you confine 100 percent of the requests to a smaller 
number of cylinders, then you get even better average seek 
times. In fact, if you only used 40 percent of the cylinder 
positions for data, then you get a small average number of 
cylinders moved than any of the previous cases. 

APPENDIX II 

Wait times with RPS 

The following derivation is due to John Marsden of our 
Sperry Univac group in London sometime in the middle or 
early 1970s. Usually, wait time is a function of queue length. 
He has come up with an ingenious scheme where wait time 
is a function of the utilization of the control unit. Ordinarily, 
with only one command waiting for service, the wait time 
is latency time with an average of RJ2 (half a rotation time). 
With more than one command waiting for service, some of 
the commands will have extra rotation times added to their 
wait time because the control unit is busy when it is time to 
acquire it. The average wait time is: 

.. R R'Pee 
Avg. walt tIme= "2 + ~ 

Pee 

where Pee = utilization of the control unit caused by all other 
disks and channel contention. 

R=Time for 1 revolution of the data or media. 

The extra wait time begins to be noticeable when the control 
unit is busy more than 20 percent of the time. 

The derivation goes like this. The average latency on the 
first rotation is Rl2. This will be true if the control unit is 
not busy at the RPS time. The other disks keep the control 
unit busy with a utilization of Pee. The probability that it 
will not be busy is (1- Pee). The probability it will be busy 
on the first revolution is Pee, and not busy on the second is 
(1- Pee). The average wait time in this case is one-and-a-half 
rotations. 

Prob. of first rev. = 1- Pee; 
. R 

avg. tIme= "2 

Prob. of second rev. = Pce(1- Pee); 
. 3R 

avg. tlme= 2" 

u . 5R 
Prob. of third reV.=Pce d-Pce): avg. tIme=,2" 



Weighted Avg. Time: Wat 

R 3R 5R 
= 2(1- Pee)+ """2 Pee(1- Pee)+ """2 Pee2(l- Pce)+ '" 

R 
= 21+3Pee+5Pee2+"'(1-Pee) 

R 1 2Pee 2 
= 2(l-Pee) I-Pee + (l-Pee) 

R R'Pee =-+--
2 1- Pee 

If Pea = 1- Pee 

Then 

Variance of latency 

The variance of the extra missed revolutions has been 
computed by Antony Jenkins. It is derived as follows: 
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2 (R'Pee)2 (R'Pee)2 
(T =(l-Pee) 0- -1- +Pee(I-Pee) R-~ 

Pee Pee 

+Pee2(I-Pee) (2R- ~~~::r + ... 

=(1- Pee) (l_~2ee)2 [Pee 2+ Pee(l- 2Pee )2+ Pee 2(2-3 Pee )2+ ... J 

R2 
= -1-- (Pee + Pee 2+ Pee 3+ Pee 4+ ... ) 

-Pee 
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A software reliability study using a complexity measure 

by THOMAS j. WALSH 
Control Data Corporation 
Shrewsbury, New Jersey 

INTRODUCTION 

Software engineers face a real probtem in guaranteeing that 
their computer programming systems under development 
will be able to function in a reliable manner and be easily 
understood, maintained and extended. A major impediment 
of this problem is coping with the inherent complexity of the 
software system in an effective way. The complexity of the 
computer system will defeat the designer's efforts unless a 
relatively simple way is found to break the problem down 
in order that the resulting programs are testable and main
tainable. Complex problems must be factored into smaller 
units to be treated by the human intelligence because man's 
capacity for logically precise invention is limited. The con
sequence of ignoring these bounds to man's cognitive and 
creative capacity was well stated by Harlan Mills of IBM:! 

We often ignore the complexity of a planned program or sub
program. But when the complexity exceeds certain unknown 
limits, frustration ensues. Computer programs capsize under 
their own logical weight, or become so crippled that mainte
nance is impossible. 

Complexity is an attribute of a computer program much 
like storage and speed of execution, the difference being a 
measurement stick of a program's complexity has not been 
available. Thus, this important quantitative attribute has 
been generally ignored. 

To appreciate the impact of ignoring a program complexity 
measure, let us take a brief look at the phases constituting 
the life-cycle of a typical software system. These phases 
encompass the process of design, implementation, testing 
and maintenance. 

Scientific studies have validated the facts that at least half 
of the systems development time is spent in testing2 and 
most dollars are spent on maintaining systems.3 Figure 1 
illustrates the typical break-down of software costS.4 

The high cost of software is primarily due to software not 
being reliable enough. The key to software reliability is in 
the degree of precision and accuracy achieved during the 
design process, which has the greatest effect on the overall 
efficiency of the system and consequently the overall cost. 
This point cannot be over-emphasized. Frequently, pro
gramming systems have not been designed to facilitate test
ing efforts nor to constrain the impact of change. What is 
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needed is a methodology for software system development 
which makes a concern for reliability an integral part of the 
development process, especially in the design phase. Such 
a methodology would consist of various tools and techniques 
distributed over the four previously-mentioned phases. 

In recent years, what I will refer to here as "structured 
programming ideas" have emerged as a foundation for pro
gramming to become a science. This set of ideas has been 
referred to as "improved programming technologies" by 
IBM and as "programmer productivity techniques" by 
Yourdon. 5 

Regardless of the label, they represent several interrelated 
disciplines which have a natural affinity and yield noticeable 
benefits to the software system builder when used together 
in a systematic fashion. 5- 8 

Each time a new idea is added to this evolving program
ming methodology, the opportunity for greater precision and 
reliability in programming practices increases. The analyti
cal complexity measurement of McCabe is a new idea and 
deserves both recognition and membership in the promising 
methodology. 9 The complexity measurement represents an 
attractive and powerful concept because of its relatively 
simple applicability, its direct impact on the process of de
sign, and its mathematical origin. 

Complexity can usually be calculated for computer pro
grams by simply counting the number of decision statements 
and adding one. The complexity measurement focuses at
tention on the process of design so the function specified for 
the software can be intellectually gripped and performed in 
the simplest possible manner. This advanced design tech
nique allows for comparing alternate designs in search of 
the true order that the best solution really called for. It 
strives to eliminate obscure structures, cumbersome deci
sion-making processes, and overly complicated control 
paths. This design capability is language-independent. The 
mathematical origin accounts for the measure being highly 
correlated with the expected amount of testing work. It 
facilitates a more thorough and methodical testing process 
by yielding a minimum number of paths through a program 
that must be exercised in order to make testing meaningful 
(Structured Testing). Furthermore, it simplifies maintenance 
activities by the strengthening of testing and limiting the 
complexity of the program to be fixed. It identifies software 
programs that will be difficult to test and maintain and en
courages the creation of a more testable and maintainable 
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MAINTENANCE 

TESTING 

DESIGN 

Figure I-Typical breakdown of software costs. 

system. Overall, this mathematically-based measurement 
permits management and control of program complexity via 
a quantitative basis. 

Figure 2 illustrates the hierarchical relationship and utili
zation order between top-down design, the complexity 
measure and structured programming. Top-down design is 
concerned with the "divide-and-rule" principle. It recog
nizes that complex problems must be factored into a com
bination of many small solvable problems. The complexity 
measure then weighs the individual module's complexity to 
facilitate proper design, testing and maintenance. This may 
indicate the need for further top-down design. Finally, struc
tured programming tackles the problem of program logic 
design. Figure 3 represents a survey of structured program
ming ideas distributed over the four phases of software de
velopment. This chart is not complete, but it is intended to 
be illustrative. Definitions for these techniques and related 
documentation techniques may be found in the Glossary. 

BACKGROUND 

This section's purpose is to sketch some significant his
torical developments in the evolution of structured program
ming ideas in order to properly view McCabe's complexity 
measure. The first major result was a paper by Bohm and 
Jacopini.lO This classic manuscript introduced organization 
and discipline by showing that any program, no matter how 
complex, can be composed in a structured manner with only 
three relatively simple control structures which are popu
larly known as "SEQUENCE," "IF THEN ELSE" and 
"DOWHILE" (Figure 4). An analogy of this powerful de
velopment is often made to engineering where any logic 

circuit can be constructed from" AND," "OR" and "NOT" 
gates. The importance of this result was that it mathemati
cally dealt with the problem of complexity in control logic. 
The proof for the "structure theorem" is grounded firmly 
in mathematics. Solidly grounding viable techniques in 
mathematics not only increases the confidence level of pres
ent users of these techniques, but it facilitates the future 
development of even more powerful techniques. Although 
this paper was published in English in 1966, the proper 
recognition it deserved did not materialize until the 1970s. 
A major driving force in its recognition was Edsgar W. 
Dijkstra who strongly endorsed structured programming by 
a famous letter in the Communications of the ACM and 
numerous articles. ll ,12 

Professor Dijkstra, historically, is a man ahead of his time 
whose clear thinking and proper design of programs have 
earned him a most influential and respected position in the 
computer programming profession. 13 An underlying theme 
to much of his work has been the view of software as a 
creative branch of mathematics. Therefore. he sees the 
mathematical method as the most effective way for the 
human mind to come to grips with complexity. 14 

Many individuals have contributed to the methodology 
referred to here as structured programming ideas-espe
cially Harlan Mills, who also was an early advocate of struc
tured programming. 15 He provided mathematical assurance 
for structured programming ideas in his .. Mathematical 
Foundations for Structured Programming.' 'I It should be 
noted that Mills' paper also contains the mathematical seeds 
that McCabe will use to simplify his theory of cyclomatic 
complexity. Mills has been very concerned about the prob
lem of complexity. He views 16 complexity as the "principal 
barrier to the application of computers to intelligent prob
lem-solving." In a more recent article,17 he reiterates the 
call of Dijkstra for a mathematical basis for the practical 
control of computers in complex applications. 

Recently, endorsements of McCabe's method as being 
both reasonable and intuitive have come from various 
sources. 18,19 Glenford J. Myers of the IBM Systems Re
search Institute concludes his manuscript by stating: 

Although it is an extremely simple concept, V(G) appears to 
be a practical complexity measure because it is easy to calcu
late, it confirms subjective opinions about complexity, and it 
is consistent with studies showing a high correlation between 
the number of decisions in a module and the modules' com
plexity and error proneness. 

McCABE'S COMPLEXITY MEASURE 

McCabe's complexity measure is a mathematical tech
nique for calculating the logical complexity of a computer 
program. The complexity of a computer program is an at
tribute which may be assigned a number representing its 
logical weight. The quantitative complexity number gener
ated is independent of the program's size, but dependent on 
a program's decision structure or the number of basic paths 
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TOP-DOWN DESIGN 

COMPLEXITY MEASURE 

DESIGN 

STRUCTURED PROGRAMMING 

Figure 2-Hierarchies of system development reliability tools. 

through a program. It provides a quantitative means for 
modularization and allows for identification of programs that 
will be difficult to test and maintain. Although complexity 
can assume a value of one to infinity, a reasonable upper 
limit of intellectual manageability has been placed by 
McCabe at ten. This number is only slightly higher than the 
upper bound that psychological studies confirm as the num
ber of issues man can consider simuitaneousiy. 20 

McCabe recommends that designers be required to cal
culate complexity as they create software programs and 
when complexity exceeds ten, sub-functions should be given 
their own procedure or the software should be redone. 

In the interests of communication, this section has sup
pressed much of the technical mathematics which forms a 
solid foundation for this advanced methodoiogy io come to 
grips with complexity. This would include the works of 
many people, including Bohm, Jacopini, and Mills. lO•l It 
would require a highly technical type of discussion outside 
the scope of this paper. I am very much aware of these 

shortcomings and can only trust this approach will not dim
inish the serious respect this body of knowledge so well 
deserves. 

The following material represents some of the highlights. 
The theoretical basis for McCabe's complexity measure is 
graph theory. The following connection exists between 
graph theory and computer programs. Each node in the 
graph corresponds to a block of code in the program where 
the flow is sequential and the arcs correspond to branches 
taken in the program. Thus, all computer programs may be 
expressed as graphs or to be precise "program control 
graphs." This is an important concept because it represents 
a gateway through which the power of mathematical analysis 
may be applied to computer programs. Graph theory allows 
for such a graph to yield a quantitative cyc]omatic complex
ity number via the formula: 

v(g)=e-n+2 (1) 

For example, in Figure 5 e (arcs) has a value of nine, n 
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a) Sequence 

b) I f-Then-El se Statements 

c) Wh i 1 e-Do Loops 

Figure 4-Control structures of structured programming. 

(nodes) has a value of eight, and the complexity of the 
program is three. 

A simple but powerful key to McCabe's proposal is 
brought about by a mathematical simplification that shows 
the complexity for a structured program to be equal to the 
number of decision statements plus one. Mills1 showed that 
with the number of function, predicate and collecting nodes 
represented by 0, 7T, and "I, respectively, and the number of 
control lines (edges) represented by e in a structured pro
gram, that the following holds true: 

e=1+0+37T. (2) 

Furthermore, the number of collecting nodes is always equal 
to the number of predicates as in: 

7T=y. (3) 

Therefore, it follows that (1) can be transformed, 

V(G)= (1 +O=37T)-(O+27T+2)+2= (4) 
7T+ 1. (5) 

Figure 5-Example of complexity graph. 

It should be noted that McCabe has recently proved that the 
structure of all programs (structured and unstructured) is 
equal to the number of conditions plus one. The. preceding 
grants us the mathematical assurance to calculate the com
plexity of a given program either by counting the predicate 
nodes in the flowchart or by inspecting the source code. 
This allows for simplicity in the application of the complex
ity measure by suspending the task of drawing time consum
ing graphs. In addition, the measurement process can be 
easily automated. In fact, McCabe has built a control struc
ture complexity tool to run on a PDP-IO that analyzes the 
structure of FORTRAN programs. 

AEGIS CASE STUDY 

The AEGIS Naval Weapon System is an advanced ship
board combat system which is tasked with shielding the 
U.S. fleet. 21 System control is governed by three high-speed 
general purpose AN/UYK-7 computers. An individual com
puter is assigned to the Radar system, the Weapons and 
Control System and the Command and Decision system. 
The heart of this large computerized system is the AN/SPY
lA three-dimensional phased array radar. The reiiabiiity 
study focused on eight functionally-related computer mod
ules which constituted what is known as the software control 
loop and display processing of the radar. Each module was 
assigned with a primary function of the radar control soft-
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ware. This included radar scheduling, search management, 
track processing, radar return processing, etc. A module 
itself is further divided into procedures to perform specific 
tasks within the module. These eight modules were com
posed of 276 procedures or programs which were the actual 
subjects of the complexity study. These procedures were 
written in a high-level language (CMS-2Y) and run on a 4-
bay AN/UYK-7 high-speed computer. The AEGIS project 
utilized the software engineering techniques of top-down 
design and structured programming. 

The methodology called for the calculation of a number 
of quantitative parameters for each procedure. These param
eters included the number of software errors experienced, 
the number of source statements, the number of machine 
words, and a complexity number. The first parameter called 
for the collection and analysis of software errors detected 
during the development phase of these modules. The number 
of software errors were distilled from an existing program 
trouble report system. A serious effort was made to obtain 
only those problem reports related to software errors rather 
than design changes. Interviews with the programmers re
sponsible for the code facilitated this end. The procurement 
of a complexity number was through McCabe's complexity 
measurement recommendation. 

A correlation was found between a high complexity value 
and the occurrence of bugs for a procedure. Those proce
dures with a complexity greater than or equal to ten ac
counted for a disproportionate share of the bugs. Overall, 
23 percent of the procedures accounted for 53 percent of the 
bugs. This fact alone is not conclusive. In general, the pro
cedures with a complexity measurement greater than or 
equal to ten were also the largest users of source statements. 
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This meant that a correlation also existed between a high 
number of source statements and the occurrence of bugs for 
a procedure. Recognition of this phenomenon, most notably 
described in the New York Times project by IBM,7 has led 
to attempts to limit the physical size of procedures, e.g., 50 
lines of source code. An obvious flaw with limiting programs 
solely by physical size is that it ignores the density of control 
structures in those 50 lines. 

The principal result of the study into logical complexity 
occurs when the 276 procedures are divided into two groups 
and their respective error rates are compared. These groups 
are defined as those procedures with a complexity measure
ment less than ten and those procedures with a complexity 
measurement greater than or equal to ten (Figure 6). Ap
proximately half of the actual source code is in each of these 
groups. Yet, those procedures with complexity greater than 
or equal to ten experienced over 21 percent more errors. 
The error rate for the group of procedures with complexity 
measured below ten was 4.59 errors per 100 source state
ments. The error rate for the group of procedures with 
complexity greater than or equal to ten was 5.60 errors per 
100 source statements. Clearly, the effect of these error rate 
differences in a large software system is significant. 

Now, Figure 7 illustrates what empirical studies have 
shown concerning the relationship between detected and 
undetected errors. As the number of detected errors in a 
piece of software increases, the probability of the existence 
of more undetected errors also increases. 4 Put simply, errors 
come in clusters. Thus, it can be confidently predicted that 
when the procedures in the study enter the maintenance 
phase of their existence, the procedures with a complexity 
greater than or equal to· ten will continue to experience 

(G) >10 

Figure 6-Complexity measurement. 
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Figure 7-Relationship between discovered and undiscovered errors. 

higher error rates than those procedures with complexity 
below ten. A far more reliable radar computer system could 
be achieved by reducing the software logical complexity of 
all procedures below ten. In fact, this suspicion can be 
extended to all large systems that were developed without 
a complexity measure. 

SUMMARY AND RECOMMENDATIONS 

Reliable software is no accident. It is the residue of a 
collection of software engineering techniques which have a 
natural affinity and are distributed over the four phases of 
software development. The key phase is design because its 
effects propagate through all the other phases. A new soft
ware engineering design technique is McCabe's quantitative 
complexity measure which is mathematically linked to the 
works of Bohm, Jacopini and Mills. The following recom
mendations are made as a result of my study utilizing 
McCabe's complexity measure to software system builders: 

1. The complexity measure should be viewed as a struc
tured programming technique and employed with the 
other structured programming techniques to enhance 
software reliability. 

2. The complexity measure should be used to create a 
more testable and maintainable system by warning de
signers when a program has become too complex. 

3. The complexity measure should be used to evaluate 
alternate designs with the goal of finding the simplest 
possible solution to the problem specifications. 

4. The complexity measure should be used as a more 

thorough and methodical testing process which quan
tifies the amount of work necessary for reliable testing. 

5. The complexity measure should be viewed as an aid to 
the maintenance process via its strengthening of testing 
and the limiting of the complexity of the program to be 
fixed. 

6. The complexity measure should be used on existing 
software to identify programs that will be difficult to 
maintain and extend. These programs are prime can
didates for redesign. 
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STRUCTURED PROGRAMMiNG iDEAS GLOSSARY 

I. Chief Programmer Team-A group of computer specialists organized 
into a team much like a surgical team. 

2. Code Walk-Throughs-A walk-through of the actual code to guarantee 
that it reflects the design document. 
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3. Complexity Measure-A quantitative attribute of a computer program 
which measures its logical weight. Mathematically expressed via formula 
v(g)=e-n+2. 

4. Hipo Hierarchy Chart-A documentation technique based on function. 
5. Design Walk-Throughs-A walk-through of the design document check

ing for errors or omissions in the architecture of the design. 
6. Maintenance Walk-Throughs-A walk-through of the proposed changes 

to guarantee the "fix" is not going to unintentionally impact other parts 
of the system. 

7. Nassi-Shneiderman Charts (Chapin Charts)-A chart detailing the inter
nal logic of a module. 

8. Programmer Librarian-A designated person who handles the clerical 
activities of programming. 

9. Pseudocode-An informal documentation method representing struc
tured programming logic. 

10. Regression Techniques-Analytical techniques which are capable of com
paring different versions of the system and indicating differences. 

11. Structured Design-A set of design guidelines to be used at the modular 
level. 

12. Structured Programming-A programming technique based on the com
bination of three basic forms resulting in programs which can be easily 
read, modified and maintained. 

13. Structured Testing-Testing guidelines which require that the number of 
tests not be less than the cycIomatic complexity. 

14. Top-Down Design-A design strategy which constantly seeks to factor 
a problem into its smallest parts. 

15. Top-Down Implementation-Coding in a top-down fashion or the higher 
level modules first. 

16. Top-Down Testing-Testing the higher-level modules of a system before 
the lower-level modules. 



A Markovian model for reliability and other performance 
measures of software systems* 
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INTRODUCTION 

Several studies have been undertaken in recent years to 
investigate the software failure phenomenon, with the ob
jective of developing analytical models for quantitative as
sessment of software performance. Most of these studies 
assume that the times between software failures follow an 
exponential distribution with a failure rate that depends on 
the number of errors in the system (see, for example, Jelinski 
and Moranda,5 Littlewood and Verra1l6 and Shoomanll). A 
key assumption made in most of these studies is that the 
errors are removed with certainty when detected. However, 
as pointed out in Miyamot07 and Thayer et al.,l2 errors are 
not always corrected when detected. The existing models 
do not provide a solution for such situations. 

In this paper we develop a Markovian model, which we 
call an Imperfect Debugging Model (IDM), for studying soft
ware failures when ermrs are not removed/corrected with 
certainty, i.e., for the case of imperfect debugging. Also, 
expressions are derived for the following probabilistic per
formance measures: 

• Time to a completely debugged system. 
• Time to a specified number of remaining errors. 
• Number of remaining errors at time t. 
• Number of errors detected by time t. 
• Reliability function. 

Actual failure data from a large Department of Defense 
(DoD) software project are analyzed and the results com
pared with the observed values. 

MODEL DEVELOPMENT 

The following assumptions are made for developing the 
model: 

1. An error causing a software failure, when detected, is 
corrected with probability p, while with probability 

* This work was supported by the Air Force Systems Command's Rome Air 
Development Center, Griffiss Air Force Base, NY. 
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q(p + q= 1) we fail to completely remove it. Thus, q is 
the probability of imperfect debugging. 

2. The time, Tj to a software failure, when i errors remain 
in the sysiem, follows an exponential distribution with 
parameter iA. The parameter A represents the mean 
error occurrence rate per unit time. 

3. The time to remove an error will be neglected in this 
model. 

4. No new errors are introduced during the debugging 
process. 

5. At most, one error is removed at correction time. 

Let X(t) denote the number of errors remaining in a soft
ware system at time t. We will use this random variable to 
describe the behavior of the error removal process as a 
function of time. Further, let N be the number of errors at 
the beginning of the debugging phase, i.e., X(O)=N. 

Suppose that there are i errors in the package at some 
time. Then from Assumption 1, we note that after the oc
currence of the next failure 

X(t)= {1:-1 w~th probab~l~ty p. 
I wlth probabilIty q 

(1) 

In other words, if we were to observe the X(t) process at 
times of software failures, then its behavior is governed by 
Equation 1. The transition probabilities Pjj from state i to 
state j are given by 

{

p j=i-l 
_ q j=i poO-

13 1 i= j=O 
o otherwise 

i, j=O, 1,2, ... , N. (2) 

A diagrammatic representation of transitions between states 
corresponding to Equation 2 is given in Figure 1. 

Assumption 2 implies that the Probability Density Func
tion (PDF) and the Cumulative Distribution Function (CDF) 
of the random variable Tj are, respectively given by 

(3) 

and 

(4) 

We note that even though the stochastic process X(I) 
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q 
q 

N-2 

Figure I-A diagrammatic representation of transitions between states of X( t). 

makes transitions from state to state in accordance with 
Equation 2, the times spent in various states are random 
and are given by Equation 3. Hence, the process {X(t), 
t2!::O} forms a semi-Markov process (see, for example, 
Ross9). A typical realization of this process is shown in 
Figure 2. It should be pointed out that in our formulation 
the process X(t) undergoes both real and virtual transitions. 
This means that after an attempt to remove an error the 
state of X(t) may change or may remain unchanged. In 
Figure 2, real transitions occur at states N, N - 2 and i while 
a virtual transition occurs at state N - 1 . 

N 

N-I • • 
N-2 e--
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o TIME 
Figure 2-A typical realization of the X(t) process. 

Let Qjj (t) denote the one-step transition probability that, 
after making a transition into state i, the process X(t) next 
makes a transition into state j by time t. In other words, if 
a software package has i remaining errors at time zero, then 
Q u (t) represents the probability that the next failure, re
sulting inj remaining errors, will be by time t. Then, we can 
show that 

Qu(t)=Pu·Fj(t) 

for i, j=O, 1,2, ... , N. Substituting (2) in (5) yields 

{ 

pFi(t) j=i-l 

Q. (t) = q Fi (1 ) ! = ~ 
u 1 J=I=O 

o otherwise 

(5) 

(6) 

For known parameters N, p and X, the probabilities Qu(t) 
are obtained from Equation 6. This equation represents the 
basic model that will be used in the following sections for 
obtaining the various performance measures for software 
systems. 

EXPRESSIONS FOR PERFORMANCE MEASURES 

Distribution of time to a completely debugged software 
system 

Suppose i is the number of errors remaining in a software 
system at some time during the debugging process and let 
Gi,o (1) represent the probability that the time required to go 
from i to 0 errors is less than or equal to t. In other words, 
Gi.O(t) represents the CDF of the time required to get a 
completely debugged system when the current number of 
remaining errors is i. 

Recall that at time zero, X(O)= N and at the time of the 
first failure 

X( ) = {N - 1 with probability p 
t N with probability q 

(7) 

as shown in Figure 1. Suppose that the debugging at the first 
error occurrence is perfect. Then the probability of going 
from N to N-l errors in time [u, u+du] is given by 
dQN.N-l (u). If the system clears an error at time u, then the 
process X(t) restarts with (N-l) remaining errors at time 
u and the probability of going from N - 1 to 0 in time t - u 
is GN-1,O(t- u). Hence the probability of going from N to 0 
in time t is 

f GN-1,O(t-u)·dQN,N-l(U)=QN,N-l*GN-1,O(t), (8) 

where * denotes convolution. 
Similarly, if the debugging at the first error occurrence is 

imperfect, the probability of going from N to 0 in time t is 

f GN,o(t-u)·dQN,N(U)=QN.N*GN,O(t). (9) 

Since the events depicted in Equations 8 and 9 are mutually 
exclusive, we get the renewal equation 

GN,o (t)= QN,N-l* G,V-l.O (t)+ QN.N* Gs.o (t). (10) 



In general, we get the renewal equation 

Gi,o(t)= Qi,i-l* Gi-1,O (t)+ Qi,i* G i •O (t) 

for i= 1, 2, ... , N 

where Go•o (t)= 1. 

(11) 

Using the Laplace-Stieltjes (L-S) transform technique (see 
Ross,9 for example) to solve the renewal Equation 11, we 
obtain the probability that the software system will be com
pletely debugged by time t as 

N 

GN.O(t)= ~ CNJ(1-e-,;P~.t). 
j=l 

where 

Distribution of time to a specified number of remaining 
errors 

(12) 

In many instances a completely debugged software is not 
cost-effective and we may be willing to tolerate a certain 
number of remaining errors, say no, which will ensure some 
desired reliability. The distribution of time to no is then of 
interest. 

Using an approach similar to the one above, we get the 
renewal equation 

G i•no (t)= Qi.i-l* Gi-1,no (t)+ Qi,i* G i •no (t), (13) 

for i = no + 1, . . . , N 

where Gno>no (t)= 1. Then the probabiliiy that the software 
system will have no errors by time t, starting with N errors 
at time 0, is obtained by 

N-no 
GN.no(t)= ~ BNJ.no{l-e-(no+j)PAt}, (14) 

j=l 

where 

N' . B ___ '_--:--(_I\i-l_}_ 
N.i.no=no!}1(N- no-j)! ' no+j' 

Distribution of number of remaining errors 

Let PN,no (t) represent the probability that there are no 
errors remaining in a software package at time t, given that 
there are N errors at the beginning of debugging, i.e., 

PN,no (t)= P{X(t)= no I X(O)= N} 

which is the so-called state occupancy probability. Condi
tioning on the next failure and fonowing an approach similar 
to the above, we get the following renewal equations: 

Pno,no (t)= e -nOAt + Qno,no* P no.no (t), Nos,N, (15) 

no<N. (16) 
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The· distribution of the number of remaining errors at time 
t is 

PN,no(t)=GN,no(t)-GN,no-dt), no=O, 1,2, ... ,N (17) 

where 

G N,N(t)=I, 

, GN,-l(t)=O. 

Finally, the expected number of remaining errors in the 
software at time t is 

N 

E[X(t)IX(O)=N]= ~ nOPN,no(t)=Ne-PAt. (18) 
no=O 

From Equation 18, we note that the number of errors re
maining in the software system is expected to decrease ex
ponentially Qver the debugging time. 

Expected number of errors detected by time t 

We introduce a new random variable N(t) which denotes 
the total number of errors detected by time t. The process 
{N(t), t~O} is called a counting process. We are interested 
in obtaining the expression for the expected number of er
rors detected, MN (t), during the debugging period, t, when 
the initial number of errors is N, i.e. 

MN (t) = E[N(t) I X(O)= N] 

which is called a Markov renewal function. By conditioning 
on the next software failure, we obtain the renewal equations 

MJ(t)=Fj(t) + pMj - 1* Fj(t) 

+qMj*Fj(t), j=1,2,.' .. , N 

where Mo (t)=0. From (19) we obtain 

N 
MN(t)= - (1 - e-PAt). 

p 

110\ 
\" .... I 

(20) 

By taking the derivative of (20) we can get the error detec
tion rate at time t, 

(21) 

which is exponentially- decreasing over time. This implies 
that more errors are detected during the early stages of 
debugging. Note that if we let t~oo we have 

which is the expected number of software errors detected 
by the end of debugging. 

Let us now consider the case when the detected errors 
are separated as new errors and errors which were not 
corrected due to imperfect debugging. Let N[(t) be a ran
dom variable which denotes the total number of imperfect 
debugging errors by time t. Then we can show that 

(22) 



772 National Computer Conference, 1979 

where 

DN(t)=E[N/(t) IX(O)=N]. 

Note that DN(oo)=q N . Equation 22 implies that 1O<kJ per
p 

cent of the software failures during debugging will be due to 
imperfect debugging. 

Software system reliability 

So far we have studied the stochastic behavior of the 
number of errors in the software system during the debug
ging period. Now we investigate the distribution of the time 
between software failures and study the problem of reliabil
ity growth. From the second section recall that the random 
variable Ti denotes the time to next failure when the number 
of remaining errors is i and Fi(t) is the CDF of T j • Let X k 

denote the time between the (k - l)st and kth software fail
ures and <l>k(X) be the CDF of X k . Note that X k does 
depend on the number of remaining errors at the (k-l)st 
failure but this number is not explicitly known. Further, let 
71 k be a random variable which denotes the number of re
maining errors between the (k-l)st and kth software fail
ures. Then, from the second section we have 

711=N 

<1>1 (x)= F N(X), 

and 

<1>2 (X)= pF N-l (x)+qFN(x). 

In general, we have 

N 

<l>k (X) = P (Xk.::5 X) = L p(Xk::5XI71k=i)p(71k=i) 
i=N-Ck-ll 

or 

k-l 
<l>k(X)= I p[Xk::5XI71k=N-k+ j+ 1)P(71k=N-k+ j+ 1) 

j=O 

or 

<l>k(X)= I . p .q FN-Ck-i-ll(X). k-l (k-I) k-j-l j 

j=O J 
(23) 

This is called a mixture of exponential distributions with 
binomial mixing portions. It can be shown that <l>n(x) is a 
Decreasing Failure Rate (DFR) distribution. The reliability 
function at the kth stage, i.e., between (k-l)st and kth 
failure, is given by 

Rk(x)= p{Xk>x} 

= 1- <l>k(X) 

- I . p q F V -(k-i-ll(X) _ k-l (k-I) k-j-l j-

i=O J 

where in general 

F..,(x) = 1- F .. .{x)= e-'vAX. 

(24) 

From a practical point of view the reliability obtained in (24) 
is not easy to work with. For computational purposes we 
use the following approximation. 

Rk(x)-e-[N-P<k-OJAX, k= 1,2, . . . (25) 

For details of this approximation, see Goel and Okumoto. 2 

APPLICATION TO A LARGE SOFTWARE PROJECT 

In this section we analyse the error data from a large 
software project and compute various performance meas
ures using the results of the two preceeding sections. The 
error data is taken from Fries,l and represents software 
errors from a large DoD systems development project. The 
project consisted of approximately 320,090 assembly lan
guage instructions. It included the operational software and 
the simulation software necessary to develop and test the 
former. Software Problem Reports (SPRs) were written in 
the time period from the beginning of configuration manage
ment (approximately start of integration testing) to delivery 
of the software. A total of 2036 SPRs were encountered 
during this period and they were categorized into 20 major 
groups. Data are also included about the source of errors, 
the type of correction made, and the time to find and fix the 
error. 

For purposes of this analysis, we consider 1612 errors 
reported during the last 12 months of the software testing 
phase. For estimating the parameters N, p and A we use the 
method given in Goel and Okumoto. 3 The estimated values 
of these parameters are 

N=2108, p=0.936 and ~=0.1127. 

Substituting N, p and ~ for N, p and A, respectively, in 
Equation 18, the estimated value of the expected number of 
remaining errors over the testing period t is obtained as 

E[ X( t) I X(O) = N] =2108e -(.936)(. 1127)t • 

A plot of this quantity is shown in Figure 3. Also shown 
in this figure are the observed values by month. The fitted 
curves (or MN(t) and DN(t) from Equations 20 and 22 are 
shown in Figure 4 along with the actual values for these 
quantities. From Figures 3 and 4 we see that the model 
seems to describe the behavior of the software error phe
nomenon very well. 

The reliability function for the system is obtained from 
Equation 25 as 

Rk(x)= e -[21OS-.936(k-1)](01l27)x. 

Plots of reliability for k=1613(50)1863, i.e., for the cases 
when the number of errors removed is 1612(50)1862, are 
shown in Figure 5. From these plots the extent of reliability 
growth with k can be easily evaluated. For example, 
R 1613 (0.1)=0.24 while R 1863 (0.1)=0.74, i.e., the value of 
R(O.I) increases by 200 percent when k goes from 1613 to 
1863. 

The plots in Figure 5 can also be used to determine the 
expected time required to achieve a desired reliability. Sup
pose our objective is to have a reliability of 0.3 at 0.2 weeks. 
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We want to know the number of errors that must be removed 
to achieve this reliability. In other words we want to know 
the value of k that yields R k (0.2)=0.3. From Figure 5, we 
see that R 1813(0.2)=0.3 so that k= 1813 errors to achieve 
desired reliability for the software system. Then the number 
of remaining errors will be 

or 
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The expected time required to remove (N - no) errors is 

1 NIl N-l 
I-LN,no= \ L -: = \ In --1 . 

P"-j=no+1 J p,,- no + 

For our case, we get 

1 2108+ 1 
,u2108.412 = (0.936)(0.1127) ·In 412+ 1 = 15.46 months .. 

In other words, to achieve the desired reliability, we will 
need to continue testing for 15.46-12=3.46 additional 
months. 

CONCLUSION 

We have developed an imperfect debugging model (IDM) 
for software systems and derived expressions for various 
performance measures in terms of the first passage time 
distribution of the underlying semi-Markov process. The 
failure data from a large software project were analyzed 
using the model developed in this paper. A comparison of 
the fitted and the obseived values indicates that the model 
provides a good description of the underlying failure phe
nomenon. Also, reliability curves were used to determine 
the debugging time required to achieve a desired level of 
software system performance. 
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Partial match retrieval for non-uniform query distributions* 

by V. S. A~AGAR and C. SOOCHAN 
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INTRODUCTION 

A good file design- arid investIgatIon of reason-ably fast and 
efficient algorithms to perform a required task on the infor
mation stored in the file are important in data base studies. 
In a reasonably large class of problems one can devise and 
evaluate algorithms with respect to measures independent 
of the storage and structuring of data. But when the question 
is the investigation of a suitable data structure for retrieval 
of a specific kind, algorithms and their measures depend 
heavily on the proper file design. This paper addresses both 
file design and algorithm design when searches are to be 
made in a data base for queries of speciaJ type. 

We are conce~ed _ with information retrieval based on 
secondary keys. In general the secondary keys form a subset 
of the attributes of a record and, thus, they can not uniquely 
identify a record. We view a secondary key as a k-tuple 
(iI' ••• , ik ), where ii, ... , ik is a subset of the attri
butes. The standard methods of whole key compa..risons 
cannot be done and hence the complexity measures for 
search problems involving secondary keys are different. 

Several authors, notably Schkolnick,11 have given meth
ods to select an optimal or near optimal subset of attributes 
for indexing under suitable assumptions on the probability 
distributions of transactions to be done on the data base. 
Another approach to handle multi-attributed files is to design 
tries, originally proposed by de la Briandais7 and Fredkin. 8 

A trie is essentially a k-ary tree whose leaves correspond 
to records and each internal node is a vector with compo
nents corresponding to attribute values. Each node on Level 
j specifies the set of all secondary keys that begin with a 
sequence of j characters and the node specifies a k-way 
branch depending on the (j+ l)st attribute. 

Recently, considerable interest has been shown in the 
- design of good tries for handling partially-specified queries. 

Partial match retrieval is concerned with searching and ac
cessing those records that satisfy the given query, although 
only fewer than k attribute positions are specified in the 
query. A survey of the software and hardware requirements 
for such associate retrieval problems is given in Minker.9 

Rivest 10 is the first to propose and use tries for partial 
match searching on binary attributed fIles. He discusses the 

* This research is supported by National Research Council Grant A 3552. 
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average case behavior of tries for uniform data and uniform 
query patterns. One of his conclusions is the conjecture that 
if s out of k attributes are specified in a query and there are 
Nbuckets, the average number A of buckets examined must 
be at least Ni-sik. This analysis for tries shows that the 
average A is close to Nlog2(2-slk). 

Burkhard3 - s h~s investigated partial match fIle designs 
and in particular gives methods to construct tries with good
worst case performance. Bentley and Burkhard2 have sug
gested several strong heuristics for the design of tries to 
handle partial match retrieval on real life files. 

We report our preliminary results on the construction and 
performance of tries for non-uniform data and non-uniform 
query patterns. Rivest suggested this as an open problem. 
The methods to be discussed here have a strong bearing on 
the characteristics of the records in a file and assume a 
known probability distribution on the query patterns. The 
concept of non-uniformity is thus different from the one 
used in Reference 5. Our empirical results and statistics 
gathered on exhaustive testing are reported in the fifth sec
tion. These results convincingly indicate that the tries con
structed handle partially specified queries better both in the 
average and in the worst case; the average case performance 
is better than the one reported by Rivest 10 and the worst 
case results are better than the one reported by Burkhard. 4 

DEFINITIONS AND PRELIMINARY RESULTS 

In this section we define the basic notions of record, fIle. 
query and trie. Some examples are also given. Let 
AI, ... , Ak be a finite set of attributes, where Ai takes 
values from a domain D i , lsisk. A record R is defined to 
be an ordered k-tuple (r1, ... , rk), where ri is in D i • A 
file F is a collection of records and thus a subset of Dl x 
D2 x .. · X Dk • Thus every record has the same number of 
attributes and we do not consider records with variable 
number of attributes. A key is an ordered k-tuple and is an 
element of F. A fully specified query is an element of Dl x 
... X D k • A partially specified query is an element of 
(~~ (Di U{*}», where the * indicates the unspecification of 
a component. One can regard this special symbol to mean 
a 'don't care' condition. Any record which matches the 
specified q values is relevant for this query. We restrict 
ourselves to the special case when each Di = (0, 1) and we 
say that F is a binary attributed file. 
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We let Q denote the set of all queries, i.e. the set of all 
sequences of length k over the alphabet (0, 1, *). Thus, the 
cardinality I Q I = 3k

• Let Qs denote the set of all queries in 
each of which exactly s positions are specified (thus there 
are u=k-s*'s). It is easy to see that I Qsl=(!')2'. For any 
query qs in Qs' we let qs( f) denote the set of records each 
matching qs in the s specified components. Example I-Let 
k=3 and 

F={OOI, 011,100,101, 111} 

The query q 1 = (0, *, 1) requests all records with r 1 =0 and 
r3=1 without any regard to r2 value. Thus ql(F)= 
{OOI, Oll}. The set of all queries for s=2 is 

Q2: (*,0,0), (*,0,1), (*, 1,0), (*,1,1) 

(0, *, 0), (0, *, 1), (1, *, 0), (1, *, 1) 

(0,0,*), (0, 1,*), (1,0,*), (1,1,*) 

One can verify that the total number of records which are 
retrieved from F to answer all queries in Q2 is 15. If we 
assume that the queries from Q2 occur with uniform distri
bution then the average number of records examined to 
answer a query from Q2 is 1.25. 

We will define a binary search trie (to be referred to 
simply as a trie). Each leaf node of a triestores one record 
or bucket. Each internal node at level i (the root is at level 
1) specifies a 2-way branch based on the .ith component of 
the record being stored. We insist that 

1. Each internal node specifies an attribute position j, 
Isjsk, such that no other node from the root to that 
position specifies j. 

2. If attribute j is tested in a node, then all nodes in the 
left subtrie of that node have a 0 in attribute position 
j and all nodes in the right subtrie of that node have 
a 1 in attribute position j. 

The records in F of Example 1 may be stored as shown 
in Figure 1. We have stored a record in a leaf node as soon 
as we find that this is the only record in its subtrie. Ob
viously this is not the only possible trie structure for F. 
The trie in Figure 2 is another mode of storage for F. 

A trie such as the one in Figure 1 or Figure 2 is known a~ 
a pruned trie. More formally we have the following defini-

1 

Figure 1 

Figure 2 

tions: 6 A full binary trie for a file F is a binary tree with all 
leaves at level (k+ 1), where k is the number of attributes 
in a record. The skeleton of a full trie is completely specified 
by the order of testing of the attributes on the trie. A pruned 
or collapsed trie is obtained from a full trie by deleting all 
empty leaves and pruning upwards until each leaf node 
stores one record. The decision regarding the order of testing 
the attributes can be made either globally (in which case all 
paths have the same relative order of attributes) or such a 
decision can be localized at each node. In the latter case the 
attributes might be tested in different relative orders along 
different paths from the root to a leaf node. A trie in which 
the order of testing is explicit in each node is called an 0-
trie. The tries shown in Figures 1 and 2 are collapsed 0-
tries; they have the same depth but have different shapes. 
If queries from the set {(t, *,0>,,(*, *,0), (*,1, O)} come 
more often than queries from the set {(O, *, 1), (*, *, 1), 
(*. O. *)} then fewer comparisons need be made in Trie 2 
than in Trie 1. Moreover, the number of records examined 
in Trie 2 is smaller than the number of records examined in 
Trie 1 to answer a single query from the first set. 

The methods that we describe in the fourth section will 
construct collapsed order containing tries. Thus a record is 
stored as a leaf as soon as it is the only record in the sub
trie; this reduces the average path length from the root to a 
record in a random binary trie from kto about log2 N, where 
N is the size of the file. We remark that the partial match 
file tries considered by Burkhard4 differ slightly from ours 
in the sense that he considers full (complete) binary tries 
and we get full binary tries only for the case N=2k. 

Without any regard to specific implementations, we as
sume that the space taken for a trie is simply the number of 
internal nodes in the trie. If the size of the file is small then 
the entire trie can be maintained in the main memory and in 
this case the cost of a search (or search time) is the number 
of internal and leaf nodes visited during the search. If the 
file is large, which is usually the case in real-life situations, 
the internal nodes of the trie can be maintained in the main 
memory and the leaf nodes are stored in external storage 
such as disk. In this case each leaf node contains more than 
one record; we refer to this as a bucket or a page. The cost 
of a search in this situation is the number of distinct accesses 
to the secondary storage. Since the time to search the trie 
itself is relatively small compared to the time needed for 
several accesses to the secondary storage, the cost measured 
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in number of buckets examined is justified. In our analysis 
the following is true: All buckets examined by a search 
contain all of the records in the data base satisfying the 
given partially-specified query. However, all the records in 
the examined buckets are not necessarily relevant to the 
given query. This would happen especially when a certain 
unspecified attribute in the given query is not chosen for 
testing anywhere along the search path in tp.e trie. For ex
ample, the query Oh will examine two buckets in the trie 
shown in Figur~ 2, although the record 100 in one of the 
buckets is not relevant to this query; however the other 
bucket examined has the record 011 which is the only rele
vant record for this query in the data base. 

.RECORD SPACE AND QUERY SPACE 

All the previous researchers in tl1Js area:m~sumeu"uniform 
distribution for record space as well as query space. This 
approach presupposes that all queries from the query space 
are equally likely to be queried when the data base contains 
a set N(:5:2k) of records and these N-subsets are once again 
equally likely. Such an assumption leads to closed form 
results for the average case and worst case behavior of 
search algorithm for a trie. 

But in real-life situations it is more natural to encounter 
non-random data. For example, consider a data base con
sisting of records over non-binary alphabets. Each record 
can be suitably coded to obtain a binary coded data base. 
Trie methods can be applied to this coded data base and 
with suitable decoding procedures querying in the original 
data base can be handled. In such cases the strong charac
teristics of the original data base and the properties must be 
taken into account in toe designs. Clustering, sparsity and 
coding influence the distribution of the binary-coded cata 
base. 

As pointed out by Rivest, 10 for non-random data an :' lter
esting problem is the choice of bits in order to split the file 
in the best possible manner. Thus, it is natural to assume 
that certain attributes are more often queried than others. 
Such an assumption must clearly reflect the relative fre
quency of instances of query patterns in the query space. 
The sample of query instances actually appearing over a 
period of time must be estimated in an unbiased way and 
must be incorporated in the construction and performance 
of the tries. 

It is also necessary for us to remark here that the concept 
of randomness or non-randomness must be clearly defined 
so that the results can be evaluated properly. Burkhard 5 has 
discussed non-uniform partial match file designs; he 
achieves non-uniformity of labels within the tries. One clear 
accomplishment of this non-uniform distribution of labelling 
has been to obtain inversions of certain recurrence relations 
and establishing bounds for the worst case behavior. Our 
concept of non-uniformity is different, although our methods 
of trie construction based on this concept might cause non
uniform distribution of labels within the constructed tries. 

In the next section we discuss three methods for construc
tion of tries. These meth2ds seem immensely suited to the 

following problem instances-non-uniform data and uniform 
query pattern;.uniform data and non-uniform query pattern 
and non-uniform data and non-uniform query pattern. The 
basic approach in each method is to make use of the char
acteristics of the records and the distribution of queries to 
decide the order of testing the attributes and obtain a col
lapsed O-trie. 

TRIE DESIGNS 

We discuss three methods for constructing tries: the first 
one is the one suggested by Bentley and Burkhard; 2 the 
second method is appropriate to non-uniform query distri
butions and the last method is suitable for non-uniform re
cord and query spaces. 

Methot! A- RWest~()-eb-~ .that very unbalanced.tries 
have good average case performance. Assuming that all 
partial match queries are equally likely (uniform), the prob
ability that a query will examine a node at level I in the trie 
is (2/3)l; this is because there are 2l3 k - 1 queries out of 3k 

queries that will visit this node. Hence, a query will less 
frequently visit the node that is farthest from the root. This 
suggests that one should try to maximize the unbalance at 
every level in the trie, hoping to achieve global unbalance. 
As suggested by Bentley and Burhard,2 it seems advanta
geous to look several levels down in the trie in choosing a 
bit position to be tested at a certain level; this look-ahead 
scheme tries to avoid those choices of bits that would op
timize locally but not globally. 

The notion of unbalance with respect to a bit position can 
be defined in more than one way. For example, consider the 
file as a table of N rows and k columns. Compute 
C 1 , ••• , Ck, where Cj is the fth column sum. Then the ratio 
cd(N-cd is a measure of unbalance for bit position i; 
another measure for the same bit position would be the 
absolute value of (N - 2c d. Whatever the choice of meas
ure, the main idea is to choose that bit position for a level 
in the trie that maximizes the measure and also maximizes 
the unbalance of the sub-trie at that level. 

Thus, a brief description of the method will be as follows: 
For definiteness assume the measure Ci I(N - Ci) for every 
bit position that is not yet selected for testing in the trie. 
For the full file of N records, we compute the k ratios Ci I 
(N - Ci) and pick j, l:5:j:5:kfor which the ratio is maximum. 
The attribute j is chosen to be tested at the root. Subdivide 
the file into two parts so that the left sub-trie will have 
records that have 0 in attribute position j and the right 
subtrie will have records that have 1 in attribute position j. 
We recursively construct the sub-tries for the partioned files. 

Example 2-Consider the file F={a, b, c, d, e, f}, 
a=1011, b=OOOI, c=OllO, d=1101, e=1010 and f=I111. 
The trie constructed by Method A is shown in Figure 3. 

Method 8-We assume that Pis a given probability matrix 
having k rows (one for each attribute) and three columns 
(for the values *, 0, 1). The entry Pi,j is the probability that 
the ith attribute will have the value j, l:5:i:;;k, j=*, 0, 1. 
The probability associated with any query can be computed 
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Figure 3 

from P. In real situations the most probable queries are 
concentrated in a small subset of the query space and the 
matrix is assumed to reflect such a situation. 

This method is mainly concerned with P and one may 
assume that the record space is uniform; i.e., the N records 
are equally likely to be chosen from 2k records. Since a 
search on the trie will visit both sub-tries of a node at Level 
lif the attribute tested there is unspecified in the query, and 
the probability of unspecification of that attribute is available 
in the matrix P, it is important to test that attribute in the 
lowest possible level in the trie; for this would decrease the 
number of buckets examined. Towards this we choose those 
attributes with high probability of unspecification and test 
them lower in the trie and choose those with low probability 
of being unspecified to be tested higher in the trie. Hence, 
we order the probabilities that the attributes may be un
specified. If (jt, ... , jk) is the ordering of the attributes 
corresponding to the increasing order of the probabilities of 
unspecification, then this is the order in which the attributes 
would be tested along any path from the root to a leaf node. 
Without any regard to the file, the previous ordering estab
lishes a full binary trie skeleton. At the root the attribute j) 
is tested; in Level 2 the attribute j2 is tested and so on. The 
records are stored as leaf nodes in this trie and finally the 
trie is collapsed to minimize the internal path length. This 
collapsed order-containing and order-preserving trie will re
tain the same relative order of testing of the attributes, i.e., 
ji is tested higher in the trie than jl if and only if jt preceeds 
jl in the ordering obtained from P. Note that not all attri
butes would be tested along every path from the root to a 
leaf node. We have reason to believe from our results that 
the branching decisions made on the untested bit positions 
are favorable both in the average and worst case analysis. 
The trie constructed by this method for Example 2 is shown 
in Figure 4. 

Method C-Here we propose to exploit both the query 
space and record space and record space non-uniformity. In 
some sense we correlate the structure of most probable 
queries with record structures to choose bit positions to be 
tested at various levels. 

From the file F considered as a (0, 1) matrix and the 
probability distribution matrix P, we form the product F.P, 
a matrix with N rows and three columns. The entries in this 
matrix can be looked upun as "similarity measure' between 

the record space and query space. The selection of attributes 
and their order of testing is done as follows: 

Find the minimum in the first column of F.P and the 
maximums in Columns 2 and 3. Consider the subset of F 
indicated by those row numbers wherein these extremums 
occur. Note that these extremums may not be unique. Apply 
Method A to this subset of Fand select that attribute number 
that maximizes the unbalance at the root. Partition the file 
so that all records with 0 in the selected attribute position 
will be in the left sub-trie and those with 1 in that position 
will be in the right sub-trie. The partitioned files and the 
remaining attributes are used to compute the similarity 
measure matrix for the sub-tries and the procedure is re
peated. 

Some remarks are in order regarding the methods dis
cussed here. Method A is one of the heuristics suggested in 
Reference 2, but we have tried several modifications. This 
method is easy to implement but requires several passes 
over the data. If the measure is properly normalized and the 
measure of skewness or unbalance of every node lies be
tween p and q, O<p<q< 1, q= 1- p, it can be shown that 
the amount of work necessary to construct the trie with N 
leaf nodes is of the order O(kN lo~ N), a= P-Pq-q. For 
very large files (large k and N close to 2k), we have tried to 
reduce the amount of work by considering statistical sam
pling of subsets of records and estimating the attribute po
sition that maximizes the unbalance. Our empirical results 
on the sampling technique are not conclusive; yet in several 
problem instances produce a good ordering of attributes in 
a small amount of time. We also remark that this method is 
very sensitive for update (insertion, deletion) operations; 
i.e., requires a total reorganization to produce a good trie 
for dynamically changing files. 

The other two methods are suited for non-uniform query 
and record sets. The order of testing the attributes in Method 
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B is totally independent of the record space. Thus, it is well 
suited for all kinds of transactions i.e., retrieval, insertion 
and deletion. The cost of constructing the skeleton trie in
cludes the cost of ordering the k probabilities of unspecifi
cations and the insertion of N records; thus, it is of the 
order O(k log2 k)+O(hN), where h is the average internal 
path length of the trie. These remarks do not apply to 
Method C. 

CONCLUDING REMARKS AND TEST RESULTS 

For a given trie, one can always find a partially specified 
query for which the cost of search is maximum. If this query 
occurs more often than others in practice, the constructed 
trie is far from optimal even in the average case. Keeping 
this in mind we have given methods, wherein near optimal 

, number of buckets are examined for "almost all" query 
instances. We shall clarify this notion of "almost all." 

Suppose B s , As and Ws denote the optimal, average and 
worst case costs for answering a query with s specified 
attributes. Let Ql contain the set of queries for each of 
which the cost of searching the trie is either close to B s or 
A sand Q 2 contain those queries for each of which the cost 
of searching the trie lie between As and Ws. We say that 
the performance of the trie is near optimal almost every
where (in probabilistic sense) over the query space if the 
following conditions are met: 

1. I[As]-Bsl remains small for all s=O, ... , k. Here 
[ ] is the ceiling function. 

2. I.qEQ2 P r[q] remains small. 
3. I.qEQ1 Pr[q] is large. 

N=9 

N=12 

N=17 

N=24 

TABLE I.-Uniform Query Distribution (Method A) 

K=4 u B TB W Tw A TA N"lk 

K=5 

o 1.0 16.0 1.0 16.0 1.0 0.0 1.0 
I 1.0 7.81 2.0 24.19 1.77 0.0 1.73 
2 1.33 2.72 4.0 7.78 3.06 7.78 3.0 

3.39 1.41 6.81 2.29 5.28· 3.54 5.2 
4 9.0 1.0 9.0 1.0 9.0 0.0 9.0 

o 1.0 16.0 1.0 16.0 1.0 0.0 1.0 
1 1.0 4.16 2.0 27.84 1.87 0.0 1.86 
2 1.87 2.08 4.0 13.68 3.48 13.68 3.46 
3 4.9 1.63 7.94 1.5 6.48 4.08 6.45 
4 12.0 1.0 12.0 1.0 12.0 0.0 12.0 

o 1.0 32.0 1.0 32.0 
1 1.0 17.14 2.0 62.86 
2 1.07 3.19 4.0 31.16 
3 2.57 1.94 7.9 3.25 
4 6.85 1.30 12.54 1.46 
5 17.0 1.0 17.0 1.0 

o 1.0 32.0 1.0 32.0 
1 1.0 8.3 2.0 71.1 
2 1.74 3.31 4.0 51.79 
3 4.31 2.40 8.0 10.71 
4 10.5 1.8 15.08 1.65 
5 24.0 1.0 24.0 1.0 

1.0 0.0 
1.18 0.0 
3.17 31.16 
5.59 21.6 
9.79 3.42 

17.0 0.0 

1.0 0.0 
1.90 0.0 
3.59 0.0 
6.78 10.71 

12.77 3.09 
24.0 0.0 

1.0 
1.76 
3.11 
5.47 
9.64 

17.0 

1.0 
i,89 
3.57 
6.73 

12.71 
24.0 

N=9 

TABLE II.-Non-uniform Query Distribution (Method B) 

K=4 U B TB 

o 1.0 16.0 
1.0 7.74 

2 1.32 2.96 
3 3.5 1.68 
4 9.0 1.0 

W 

1.0 
2.0 
4.0 
7.0 
9.0 

16.0 
24.26 
8.52 
2.08 
1.0 

A 

1.0 
1.54 
2.51 
4.6 
9.0 

0.0 
0.0 
8.52 
3.18 
0.0 

o 
1 
2 

1.0 
1.0 
1.9 

16.0 
4.1 
2.12 

1.0 
2.0 
4.0 
7.8 

16.0 
27.9 
14.08 

1.0 0.0 
1.75 0.0 

N=12 3.19 14.08 
3 4.92 
4 12.0 

K=5 

o 1.0 
1.0 

N=17 
2 1.02 
3 2.5 
4 6.8 
5 17.0 

o 1.0 
1 1.0 

N=24 
2 1.74 

4.18 
4 10.38 
5 24.0 

1 .., 
1.1 

1.0 

32.0 
17.28 
2.68 
2.04 
1.68 
1.0 

32.0 
8.26 
4.78 
2.74 
1.62 
1.0 

12.0 

1.0 
2.0 
4.0 
7.9 

12.7 
17.0 

1.0 
2.0 
4.0 
8.0 

15.22 
24.0 

2.5 
1.0 

32.0 
62.72 
33.88 

4.94 
2.08 
1.0 

32.0 
71.74 
53.44 
13.4 
2.44 
1.0 

6.13 
12.0 

1.0 
1.63 
2.74 
4.78 
8.82 

17.0 

1.0 
1.80 
3.33 
6.27 

12.14 
24.0 

4.2 
0.0 

0.0 
0.0 

33.88 
21.18 

3.52 
0.0 

0.0 
0.0 
0.0 

13.4 
3.16 
0.0 

Our extensive simulation for values k=3, 4 and 5 and the 
collected statistics have shown that tries constructed by 
Methods Band C conform to this standard. See Tables I 
and II. The following explanation applies to the tables: 

V-Number of unspecified attributes. 
B-Best Case cost (averaged over all tries with N leaf 

nodes). 
T r-Total number of queries that achieve B. 
W-Worst case cost. 

T ~Total number of queries that achieve W. 
A-A verage case cost. 

TA-Total number of queries that exceed [AJ. 

For Method A and uniform querying, the computed av
erage As satisfies the inequality, 

u=k-s 

u:;t:o, k 

The right side of the previous inequality is the best average 
cost reported and the left side is the conjectured minimum 
cost. See Reference 10. So one conclusion is that Method 
A improves the average case performance. Our empirical 
studies show that for large values of k, and N close to 2k, 
As approaches Nulk. This only reaffirms the earlier conjec
ture on the lower bound. In the case of non-uniform quer
ying, we have observed in several cases A s lower than 
Nulk: in general As oscillates on either side of Nulk. 

However, according to the 'almost everywhere' concept, 
the average case behavior prevails almost everywhere. This 
is due to the fact that 'bad' queries are taken care of by 
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these methods. Thus, our overall conclusion is that the prob
ability of worst case behavior is very low, the average re
trieval cost prevails almost everywhere over the query space 
and hence the constructed tries are either optimal or near 
optimal. 
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Comparing interactive computer services-Theoretical, 
technical and economic feasibility 
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Washington, D.C. 
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The Ohio State University 
Columbus, Ohio 

INTRODUCTION-COMPUTER COMPARISON 
MEASUREMENT PROBLEMS 

The comparison of interactive computer services is a fre
quent, important and essential activity for those involved in 
selecting from among alternative remote access services 
available through a computer network. The comparison and 
selection process can be very complicated, relying on both 
nonmeasurable and measurable comparison criteria. Non
measurable criteria, such as the availability of a particular 
compiler, are typically easy and inexpensive to evaluate. In 
contrast, for those criteria which are measurable, compari
son calls for an expensive process of collecting and analyz
ing relevant performance measurements from the netwoik 
computer services under consideration. (The term "network 
computer services" is used to refer to interactive computer 
services available via a computer network). Further, if 
measurement is not carefully planned to accommodate cer
tain inherent theoretical, technical and economic problems, 
the measurements which result may be misleading or invalid. 
A legitimate question arises as to whether comparison meas
urements should be done at all. This paper addresses the 
feasibility of including measurement phases in the process 
of comparing and selecting interactive network computer 
services. 

Two essential problems arise when measuring interactive 
services. The first is developing a test workload or "scen
ario" that is truly representative of a reai workioad. "'Rep
resentativeness" is a critical property since measurement 
experiments are designed so that the performance of an 
interactive service while processing the test workload is 
assumed to be close to what its performance would be while 
processing the real workload. This representativeness prob
lem is not addressed here, but will be discussed in the 
accompanying paper. The second probiem in measuring in
teractive services arises while collecting and analyzing data 
about the performance of a test workload. Three aspects of 
the data collection and analysis problem must be considered 
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in order to determine the feasibility of comparison measure
ment: 

1. TheoreticaL-Do statistical techniques which provide 
confidence statements about the probability of having 
made a correct selection exist for comparing interactive 
services? 

2. TechnicaL-Does the technology exist to apply sound 
theoretical techniques to the measurement phases of a 
selection process? 

3. Economic-Is it economically feasible to perform 
measurement experiments? 

These aspects of the data collection and analysis problem 
will be discussed in turn. 

A COMPUTER SELECTION MODEL 

In order to discuss the feasibility of performing computer 
service comparison measurements, a model of the computer 
selection process is presented in Figure 1. The selection 
process is divided into three phases, leading progressively 
from the set of all computer services offered by those sys
tems on a network to the isolation of the best one. Each 
phase involves evaluation of the services with respect to 
different classes of performance criteria. At each phase, 
those services which fail to satisfy the respective perform
ance criteria are eliminated. The kinds of performance cri
teria that are evaluated are described briefly in this section. 
The measurement phases are discussed in detail in the fol
lowing three sections. 

CLassification of performance criteria 

In choosing the best service from several alternative net
work computer services, performance criteria which de

I scribe what is meant by best must be determined. These 



782 National Computer Conference, 1979 

PHASE I 

PHASE ~I 

PHASE III 

ALL ALTERNATIVE COMPUTER SERVICES 

MANDATORY 

NONMEASURABLE 

CRITERIA 

MANDATORY 

MEASURABLE 

CRITERIA 

DESIRABLE 

IlIA 
NON

HEASURABLE 
CRITERIA 

IIIB 
MEASURABLE 

CRITERIA 

BEST SERVICE 

Figure I-Computer selection model. 3 

criteria can be divided into those for which no empirical 
measurement is necessary and those whose values are de
rived from actual system measurements. For example. eval
uating system documentation and amount of main memory 
does not require measurement collecting activity, whereas 
evaluating system turnaround time and response time for 
particular instructions clearly requires measurement. 

Performance criteria can be divided further into those 
which are mandatory and those which are desirable. to Man
datory criteria are defined to be any performance require
ments which must be satisfied by the computer services 
being considered for selection. Desirable criteria, on the 
other hand, are those which are not absolute requirements 
for system selection, but which would make the implemen
tation of the user's work easier. Therefore, if a given net
work computer service does not include- some desirable fea
tures, it would continue to be considered for selection, but 
the lack of each desirable feature would invoke some penalty 
on the respective computer service. 

Based on the two characteristics described above, per
formance criteria can be classified as: Mandatory Nonmeas
urable (MN), Mandatory Measurable (MM), Desirable Non
measurable (DN), and Desirable Measurable (DM). 
Examples of each class of criteria are provided in Table I. 

Application of performance criteria 

Figure I illustrates a sequence in which the classes of 
performance criteria should be applied in the process of 

choosing the best network computer service. This sequence 
is composed of three phases. Phase I involves the applica
tion of MN criteria. This phase is managed easily since each 
computer service either does or does not have each required 
feature. All of those network computer services which do 
not satisfy the MN criteria are eliminated. 

Phase II involves the application of MM criteria. In gen
eral, for each MM criterion, performance measurements are 
gathered from each network computer service and a decision 
is made as to whether or not the criterion is satisfied. Failure 
to satisfy a single MM criterion results in a service's elimi
nation. 

Finally, determination of the best alternative is made in 
Phase III. This phase is separated into two parts, Phase IlIA 
for the application of DN criteria, and Phase IIIB for the 
application of DM criteria. (Note: It is not implied that DN 
and DM criteria necessarily can be applied separately or in 
any particular order.) Phase IlIA requires an analyst to 
determine whether an alternative does or does not provide 
desired features. Provision of a particular desirable feature 
results in an alternative being credited with the "value" of 
that feature. This is done for all alternatives and all DN 
criteria. 

The information required in Phase IIIB is similar to the 
information required in Phase II in that it can only be ob
tained by system management. Data are collected from each 
alternative network computer service being evaluated and 
compared, and on the basis of relative performance, one 
service is selected as the best. In both of these phases, 
comparison requires collecting and analyzing relevant per
formance measurements for the various network computer 
service alternatives under consideration-in Phase II, to 
select those satisfying certain mandatory performance re
quirements, and in Phase IIIB, to select the best remaining 
one. It is specifically these two measurement phases that 
are the topic of further discussion. 

DATA COLLECTION AND ANALYSIS
THEORETICAL ASPECTS 

A collection of measurements can often give an illusion 
of fairness and objectivity to a network computer service 

TABLE I-Examples of Performance Criteria 

TYPE 
Mandatory 
Nonmeasurable 

Mandatory 
Measurable 

Desirable 
Nonmeasurable 

Desirable 
Measurable 

EXAMPLE 
I. The system must be fully delivered and 

operational no later than September I, 1979. 
2. Timesharing service must include FORTRAN, 

Basic, Lisp, SNOBOL and editing facilities. 
1. The mean-time-to-failure for a specific one month 

period must be greater than 4 hours. 
2. 95% of all trivial command response times must 

be less than 1 second. 
I. It is desirable that the system include Pascal and 

COBOL facilities. 
2. It is desired that the system provide a text editing 

capability. 
I. It is desired that the system provide a mean 

turnaround time for the benchmark run of 5 
minutes or less. 

2. It is desired that 95% of all trivial command 
response times be 0.5 seconds or less. 



selection when in reality the measurements contain little 
information of value. This can be the case when a selection 
is based on methods and techniques which are not statisti
cally sound. Suppose, for example, that an analyst executes 
30 script runs on a particular network computer service, 
intending to use the measurements which result as a fair and 
objective evaluation of that service. As was demonstrated 
in a full-scale case study discussed in Reference 12, if the 
measurements are not collected properly, it is possible that 
as few as two or three of 30 such measurements are statis
tically independent. Hence, 30 measurements may be quoted 
as the basis for an evaluation, but in reality the actual in
formation content is equivalent to that provided by a much 
smaller set of measurements. Thus, only an illusion of fair
ness and objectivity exists. 

The above example illustrates that ignoring correlation 
among consecutive measurements. can create a false sense 
of objectivity. Another problem arises if test conditions are 
such that the measurement error is relatively large compared 
to the difference between the services being compared. If 
appropriate statistical methods are not used to analyze the 
data, then the chance of selecting the best service by com
paring measurement data may be no better than the chance 
of selecting the best service by random drawing. 16 

The comparison of computer services provided by a net
work, therefore, requires a methodology designed to lead to 
the selection of the best service, and to provide control of 
the probability of having made a correct choice. Methodol
ogies dictated by classical statistical designs (which are in
appropriate for network computer service selection) lead to 
regression analyses of the data, employing either analysis of 
variance or curve-fitting techniques. The questions that can 
be answered using such methodologies are of the type, '"Is 
the performance of several alternative services the same?" 
(i.e. "Are the distributions of the performance measure
ments identical from a statistical point of view?") or '"How 
does one particular service performance parameter depend 
upon the other service parameters?" In most network com
puter service comparison efforts, however, these questions 
are not appropriate. The question of real interest is, "Which 
service is the best?" or '"How do the services rank from 
best to worst?" It is for problems of this type that statistical 
ranking and selection procedures were developed. 8 These 
procedures provide the theoretical foundation for valid 
measurement phases in a network computer service selec
tion effort. 

Statistical ranking and selection procedures are appropri
ate for three types of computer service comparison prob
lems-ranking services by 1) comparing sample means, 2) 
comparing sample percentiles and 3) comparing sample pro
portions. In all three cases, the procedures specify the num
ber of data points which must be collected from each service 
in a comparison study (or they specify a selection rule) in 
order to guarantee that the probability of a correct selection 
be at least a predetermined minimum value. 

The use of a mean, percentile or proportion statistic for 
network computer service comparison is an analyst choice 
based oncon.siderations about the comparison study's ob
jectives, the statistical properties of the data, and the statis-
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tical requirements of the selection methodology. Means 
often· are used for comparisons when criteria such as script 
turnaround time or script cost are of interest because these 
performance measures tend to have approximately normal 
distributions. For comparison criteria such as response 
times for various types of interactive commands, which tend 
to have exponential-like distributions/·15 the mean is not as 
informative a statistic. Percentiles or proportions are more 
appropriate. 4- 6 

A detailed description of how the three classes of statis
tical ranking and selection procedures can be applied to 
computer comparison studies has been presented in, several 
recently published reports. 2,3,11,12 In general, the procedures 
provide information regarding the natural ordering of a set 
of k distributions, where each distribution is summarized by 
some (unknown) parameter like its mean or a specific per
centile value. The procedures determine how the k param
eters rank with respect to a prespecified standard (Phase II 
in Figure 1) or with respect to each other (Phase IIIB in 
Figure 1). The ranking is accomplished by collecting sample 
observations and computing an appropriate statistical esti
mate for each of the parameters. These estimates are then 
numerically ordered and, depending on the goal of a selec
tion, inferences are drawn about the true population param
eters (i.e., their true ranking). A variety of assumptions 
concerning the populations and data collection process can 
be made. These include assumptions regarding the under
lying form of the distributions (e.g. normal, gamma) and the 
level of dependence between obtained observations. 

A procedure for making a selection based on proportions 
is presented below as an example. Suppose a representative 
test workload (script) has been prepared to be run on several 
computer services available on a network, and it is desired 
to select those computer services which can run the script 
in 10 minutes or less at least 80% of the time. (Turnaround 
time is variable due to uncontrolled external influences such 
as other users of the service.) The procedure for making the 
selection is given in four steps. Assume the following defi
nitions: 

k-Number of alternative computer systems in a study 
P*-Desired level of confidence in the correctness of the 
selection results 
n-Number of measurements collected from each com
puter system 
C(thld)-Criterion threshold value; i.e., mandatory value 
for a particular performance measure (10 minutes for the 
above criterion) 
X(i)-Number of measurements from the ith computer 
system which are less than C(thld) 
p(min)-Minimum proportion of measurements which 
must be less than C(thld) (80% for the above criterion) 

This procedure for selection assumes that measurements 
are independent and that measurements from the same com
puter service have a common probability of being less than 
C(thld). The procedure makes no assumption about the 
underlying form of the distribution of the data. 

Step I-Choose appropriate P*, C(thld) and p(min) val
ues according to nonstatistical considerations. 
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Step 2-Collect n independent measurements from each 
of the k computer systems. The analyst chooses n based on 
nonstatistical considerations, bearing in mind that as fl in
creases, more accurate estimates of each alternative's pro
portion will be attained. 

Step 3-Let X(i)=number of measurements from system 
i which are <C(thld). Note that since fl, the total number 
of measurements made, is identical for each computer sys
tem, the XU) values can be used to estimate a ranking of 
the true proportions. 

Step 4-For each system, compare XU) to a constant M, 
which is derived from ranking and selection theory. If 
XU»=M. then include the computer system in the selected 
subset: otherwise eliminate it. M is determined by table 
lookup based on the parameters k, n, P* and p(min). Ex
tensive values for M are tabulated in Reference 3 and also 
appear in Reference 12. 

The conclusion to be drawn from the development of 
statistical ranking and selection techniques which are appro
priate for computer comparison is that theoretically, sta
tistically sound techniques are available for using mean, 
percentile or proportion statistics in either Phase II (evalu
ation of mandatory measurable criteria), or Phase IIIB (eval
uation of desirable measurable criteria) of the selection proc
ess. (It should be noted that ranking and selection theory 
does not meet fully the needs of computer comparison ex
periments. Some extensions to the theory have been made3 

and several more are currently under investigation.) The 
next section discusses the technical feasibility of applying 
these techniques in actual network computer service com
parison studies. 

DATA COLLECTION AND ANALYSIS-TECHNICAL 
ASPECTS 

A large-scale feasibility case study was conducted at the 
National Bureau of Standards to evaluate the time and cost 
required to apply statistical ranking and selection techniques 
in a computer service comparison study. Four large-scale 
heterogeneous remote-access time sharing systems were 
compared: a DEC System-IO running a TOPS-IO Monitor, 
a Honeywell 6180 running MULTICS, an IBM 360/65 run
ning MVTITSO and a UNIVAC 1108 running Exec 8. The 
major goal of the study was to determine if it was technically 
feasible, given modern measurement technology (such as 
automatic measurement machines and automatic interactive 
script drivers), to collect the amount of data generally re
quired for analysis when using ranking and selection pro
cedures. The specifications for the case study and the ex
perimental results are presented here. 

Scenario alld scripts 

A scenario for the case study, presented in Table II, was 
designed to be reasonably typical of the functional require
ments of a real workload. It is not intended to be, nor is it. 
representative of any specific user's workload. The scenario 

TABLE II-Scenario for the Case Study 

I. Logon to the system 
2. Execute a COBOL search of a bibliographic database 
3. Execute a FORTRAN version of a synthetic benchmark 
4. Copy an interactive FORTRAN program file to file INTRI 
5. Edit file INTRI correcting a syntax error 
6. Edit file INTRI correcting a logical error 
7. Compile file INTR I 
8. Execute file INTRI which will interactively compute the prime 

numbers from 1-100 . 

9. Delete file INTRI 
10. Logoff the system 

consists of commands representing two types of remote 
access interactive computing: transaction processing and 
interactive program development and execution. 

The transaction processing was implemented in a COBOL 
program which executed a sequential search .of a biblio
graphic database in order to retrieve a given set of entries. 
The database consists of 2400 records, each of which is 132 
characters long. The transaction processing was accom
plished by Item No. 2 in the scenario (see Table II). A 
synthetic module which was capable of being adjusted for 
varying amounts and types of CPU and I/O activity was 
executed next (Item No.3 in the scenario). The last section 
of the scenario (Items No. 4-9) consists of commands to 
debug, compile and execute an interactive FORTRAN pro
gram which computes prime numbers. 

The translation of the scenario into scripts executable on 
each computer service required interaction with personnel 
who possessed a thorough knowledge of each of the four 
respective operating systems. For each computer service 
two activities were required. First, it was necessary to es
tablish permanent program and data files for use in each 
script execution. Then, instructions for the actual script 
execution were determined, sometimes including compli
cated control language constructs. 

The specifications for running the scripts were typical of 
a real selection procedure. The user is concerned with the 
quality of a network computer service offered during a par
ticular time period. If this quality is within acceptable limits, 
then service at all other times is assumed to be acceptable. 
In this case study, performance data was collected from 
each service only between 8:30 AM and 4:45 PM, Monday 
through Friday, in order to compare services under normal 
work day conditions. 

l:xperimental data collection and analysis 

Eight performance measures were chosen for computer 
service comparison in the case study. They are: 

1. Cost. 
2. Turnaround time for the entire script execution. 
3. Response time for the bibliographic retrieval (No.2 in 

the scenario). 
4. Response time for the FORTRAN version of a svn

thetic benchmark (No.3 in the scenario). 



5. Response time for the copy command (No.4 in the 
scenario). 

6. Response time for the first edit command (No.5 in the 
scenario). 

7. Response time for the second edit command (No.6 in 
the scenario). 

8. Response time for the interactive calculation of all 
prime numbers less than 100 (No.8 in the scenario). 

The hardware/software configuration for the case study is 
illustrated in Figure 2. The scripts were executed on each 
system under the automatic control of.a remote terminal 
emulator called the Network Access Machine. 13 Turnaround 
time, response time and cost data were automatically col
lected for each execution of each script by a minicomputer 
called the Network Measurement Machine. 1,14 (Many ven
dors distribute remote terminal e-mWators, and automatic 
measurement machines also are readily available on the 
market.) The data were analyzed using a statistical package 
called OMNITAB.9 Means, percentiles and proportions 
were calculated. Since all of the ranking and selection pro
cedures used require independent measurements, correla
tion coefficients were also calculated. The method of ensur
ing independence for the experimental data is described in 
Reference 12. 

Comparison results 

A sufficient amount of independent data was collected 
from the computer services in the case study to allow for a 
reasonably high statistical confidence in the comparison re
sults. The details of selecting services based on the various 
measurement criteria can be found in Reference i2. Based 
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on the full-scale case study, it was concluded that it is 
technically feasible to execute statistically sound measure
ment phases in a computer service comparison study. The 
question remains, "At what expense can the technology be 
applied?" 

DATA COLLECTION AND ANALYSIS-
ECONOMIC FEASIBILITY 

The amount of money available for a comparison study 
depends on the economic resources and policies of those 
sponsoring the study. So the question of economic feasibility 
only can be answered in the context of a completely speci
fied comparison experiment. However, cost estimates from 
the case study described above provide guidelines for ad
dressing this question. 

The total cost to collect measurement data and compare 
the four services in the case study was estimated to be 
$16,600. Personnel and equipment costs are itemized ac
cording to different tasks in Table III. Each task was per
formed by one professional and one technical person work
ing in cooperation on a full time basis. Personnel costs are 
estimated at $200/day for each person. This represents the 
average "burdened" (all overhead included) cost to the fed
eral government per day for each person. 

In a typical procurement study, the equipment cost from 
developing and running the scripts would be absorbed by 
the vendors. Therefore, although these costs are noted in 
Table III, no figures are entered. It is assumed that the 
equipment costs for the data collection and analysis are part 
of a selection effort. These activities require a specialized 
hardware and software configuration for about six weeks, 
with an estimated cost of $1,500. 

NETWORK 
MEASUREMENT 

MACHINE 
PDPll/20 

Q MEASUREMENT 
1---) --~> ANALYSIS 

MEASUREMENTS 
FROM RUNNING 

SCRIPTS 

(OMNITAB) 
DEC SYSTEM-I0 

~I---------~~ TERMINAL 

i 
i 

I i I ,..., -----, 
I ! OBJECT 

MACHINE* 

~ 
REMOTE J11 . 

EMULATOR 
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~------------~! I----------~ 

*DEC SYSTEH-I0 
HONEYWELL 6180 
IBM 360/65 
UNIVAC 1108 

Figure 2-Hardware/software configuration for the case study. 
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TABLE III-Estimated Cost 

A. PERSONNEL 
TASK PERSON DAYS COST ($200IDA Y) 

Scenario development 5 $ 1,000 
Script generation (4 computer 

services) 12 2,400 
Control programs for remote 

terminal emulator 8 1,600 
Script runs (data collection) 30 6,000 
Data analysis 15 3,000 
Report generation 3 600 
Overhead (equipment failure, 

bad data, etc.) 2 400 

75 $15,000 

B. EQUIPMENT 
TASK COST ($) 

Script development (4 computer 
services) 

Script runs (150 runs/service) 
Data collection and analysis $1,600 

$1.600 

TOTAL COST = $15,000 + $1,600 = $16,600 

* Supplied by the vendor 

Since care was taken to design and execute the case study 
in the same way that a real computer service comparison 
would be done, the total cost figure of $16,600 covers the 
measurement phases of a full-scale computer service com
parison study. This figure, therefore, can be used as a basis 
for a reasonable cost estimate when making a decision about 
using the selection methodology in alternative comparison 
environments. The impact on cost due to an increase in the 
number of computer services or due to a change in the 
number of selecti'on criteria is discussed next. 

If more than four computer services are to be compared, 
then various personnel and equipment costs will change, but 
in different proportions. Time for scenario development will 
remain the same since only one scenario is needed regardless 
of the number of services being compared. The time required 
for script generation and for writing control programs for 
remote terminal emulation will increase in direct proportion 
to the increase in the number of services being compared. 
This is because time is necessary to translate the scenario 
into a system compatible script for each service. The total 
elapsed time for data collection (script runs) may remain the 
same or increase slightly, inasmuch as the requirement for 
independent measurements forces interleaving of script runs 
on the different services anyway. As more time is required 
to collect measurements, more money must be allocated for 
data collection equipment. The total increase for both data 
analysis and report generation would be about two more 
person-days for each additional computer service. 

A change in the number of selection criteria to be applied 
will not have much impact on the cost of the study. Most 
automatic measurement devices collect data about every 
interactive transaction, even if it i5 not all required. So, 
increasing or decreasing the number of criteria used in a 

selection has little effect on the time and cost of data col
lection. Also, most statistical analysis packages are as easy 
to run for one variable as for ten, so changing the number 
of criteria will have only minor effect on the time and cost 
of data analysis. 

Based on the case study, it can be concluded that subject 
to certain practical constraints, it is economically feasible to 
compare services. 

CONCLUSION 

The comparison of interactive computer services available 
through a network is a complicated process involving meas
urement and nonmeasurement phases. Measurement phases 
of a computer service comparison process can be validly 
executed if test workloads can be generated which are rep
resentative of real workloads, and if measurements can be 
made on the test workload using statistically sound tech
niques. This paper has discussed the theoretical, technical 
and economic feasibility of employing statistically sound 
data collection and analysis in a network computer service 
comparison. Based on the evidence presented and refer
enced here, it can be concluded that, given a representative 
test workload and sufficient funds to measure the perform
ance of that workload as dictated by statistical ranking and 
selection procedures, accurate measurement phases can and 
should be included in a selection process. 
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Characterizing a workload for the comparison of interactive 
services 

by DOMENICO FERRARI 
University of California 
Berkeley, California 

INTRODUCTION 

Characterizing the workload is a necessary part of any sys
tem performance evaluation effort. This necessity is a con
sequence of the sensitivity of the performance indices of 
interest, be they productivity or responsiveness indices, to 
the nature, composition and intensity of the workload proc
essed by the system being evaluated. No matter how we 
define it, performance cannot be expressed by quantities 
independent of the system's workload. 1 

Similarly, the performance of two or more systems cannot 
be meaningfully compared if these systems do not process 
the same workload. This statement applies not only to pro
curement problems, but also to problems of improvement 
and design, that is, whenever a performance comparison is 
to be made between two systems which differ from each 
other in some respect (see Figure 1). Since the purpose of 
the comparison is to expose the relative merits of the two 
systems, configurations, versions, architectures, or solu
tions through the differences between the values of some 
suitable performance indices, the workloads they process 
must be the same if their influences on these values are to 
be identical. Otherwise, the differences between the indices 
will reflect those between the workloads as well as those 
between the systems, and it will be difficult or impossible 
to distinguish the respective contributions. 

The evaluation of a system's performance, or the com
parison of the performances of several systems, should ide
ally be made under the workload that the system, or any of 
the competing systems, will have to process from the prescnt 
to the end of its lifetime. This is, however, impossible, at 
least for most installations, since the workload is time-var
iant and its future evolution unknown. The only exception 
is that of those installations whose workload is constant in 
composition and intensity, and perfectly known (e.g., cer
tain industrial control and manufacturing computers). 

Moreover, even if the whole future workload were known 
(a very unrealistic assumption in the great majority of the 
cases), measuring or computing the performance of the sys
tem under its total workload would be impossible or im
practical. A much more compact workload is therefore to 
be used in evaluations or comparisons. Since performance 
indices depend on the workload's nature and composition, 
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this more compact input to the system must be a model of 
the total workload it replaces;l.2 in other words, it should 
accurately represent those properties of the workload which 
are of interest in the context where the model is to be used. 
And this is where the difficulties begin. 

THREE DEFINITIONS OF REPRESENTATIVENESS 

In the technicalliterattlre, the term "representativeness" 
has been traditionally employed when referring to workloads 
(especially artificial ones, such as a set of benchmarks) used 
in performance evaluation studies. If we agree that, inde
pendent of their type, these workloads are in fact workload 
models, we should use the term "accuracy" instead. Per
haps, representativeness is usually preferred because of its 
vagueness, which very accurately reflects the lack of an 
exact definition of the underlying concept. 

When is a workload model "representative" (or "an ac
curate representation") of a given workload? Probably, the 
most popular answer to this question is: When the model 
consumes the same physical resources at the same rates as 
the workload it tries to represent. This resource-oriented 
definition is unsatisfactory since 

a. It is heavily machine-dependent. 
b. The choice of the resources whose consumptions are 

to be considered and of the rate definitions influences 
the performance of the system (or systems) in a usually 
unknown way. For example, the set of the resources 
included in the characterization may be incomplete, or 
redundant; and, even if they are both complete and 
non-redundant, we generally do not know what con
sumption rates (overall means, moving averages, in
terval means, instantaneous means, or others) would 
be needed, or sufficient, to determine the performance 
indices of interest. 

Drawback a is irrelevant in studies involving a system 
which is not supposed to be modified, for example when the 
capacity of an existing system is to be determined. 3 How
ever, it becomes increasingly important as we move from 
these problems to improvement to procurement. Drawback 
b is unfortunately present in all contexts. 
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Figure I-Conceptual schemes of performance comp!1fison in (a) procure
ment, (b) improvement and (c) design environments. For the differences Pa
Pb between performance indices to reflect the relative merits of the systems 
being compared, these systems must process the same workload W, which 

is to be an accurate model of the actual workload. 

An alternative definition is the one based on functional 
considerations: Workload Wb models workload Wa if it 
performs the same functions as Wa. Wh~n the workload to 
be modeled performs relatively few well-known tasks which 
are repetitively executed on large volumes of data (e.g., 
payroll computation, sorting, accounting, compilation, and 
so on), such a functional definition is in principle applicable 
to the case we are interested in, the one where workload 
Wb is to be much more compact-that is, to execute in 
much less time·---than workload Wa. In this case, Wb may 
be obtained from Wa by suitably reducing the volume of 

data to be processed by each of Wa's functions; however, 
neither the relative proportions of the various tasks in Wb 
nor the criteria for choosing the input data for them can be 
determined by applying this workload model definition. Oth
erwise, the one above can only be used as a functional 
definition of the equivalence l betwe~n Wa and Wb, without 
implying or requiring that Wb be a sufficiently compact 
model of Wa or vice versa. An important applic.ation of 
functional equivalence will be illustrated. 

A third answer to the question we asked at the beginning· 
of this section may be dictated by the intended usage of the 
workload models to which the question refers. Since these 
models are to be applied in performance evaluation studies, 
what matters is the values of the relevant performance in
dices. Workload Wb is an accurate model of workload Wa 
for system S and performance index P if the values of P 
produced by Wb when running on S equal (with some error, 
which may be taken as a measure of the model's accuracy) 
those produced by Wa running on the same system2 (see 
Figure 2). Note that· P may be a set of global performance 
indices or of functions of such indices. 

This, like the previous ones, can be seen as a definition 
of workload equivalence; however, unlike the functional 
definition, it can be applied without restrictions (except in 

_w_a __ ~·~I~ ____ s ____ __ 
Pa 

_W_b __ ~·~I~ ______ S ______ ~_P_b~~~ 

( a) 

_w_a __ ~·~I ______ s_, ______ ~ __ P_'4~~ 

_W_b __ ~~~I~ ____ s __ , ____ ~ ___ P~~~b 

Figure 2-Performance-oriented definition of equivalence between two work
loads Wa and Wb. Wb can be said to be a representative model of Wa with 
respect to Sand P if Pa2!Pb (a). If P'a2!P'b, then Wb is a valid model of Wa 

even with respect to system S' (b). 
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the unlikely case of improperly chosen indices) to the equiv
alence between a workload and a compact model of it. A 
drawback the performance-oriented definition shares with 
the resource-oriented one is system dependence, but in this 
case the problem is one of model validity.1 A model cali
brated by comparing its output with that of the modeled 
system under certain conditions is then used under a variety 
of different conditions. Can it be expected to be acceptably 
accurate even under these conditions? In the case of a work
load model, the conditions include the system S with respect 
to which the model is equivalent to the modeled workload. 
Let us assume that both the workload and'the model can be 
transported, possibly by converting them, to system S', 
which is a different version or configuration of S, or a totally 
different system. Are they still equivalent when S is replaced 
by S'? A general answer cannot, of course, be given. In 
fact, very littJe,-ifanything, is known in this area. -W-e cou-. 
jecture that some of the methods used to increase the valid
ity of other models can be applied also to workload models. 
For instance, use of real instead of synthetic components 
and functional similarity may enhance this model's validity. 
Also, calibration based on performance indices more de
tailed than those we are interested in often widens a model's 
domain of validity.1 If, for example, the performance indices 
in P are the mean and the variance of response times, the 
workload model could be calibrated taking the distribution 
of response times as the calibration criterion. 

A definite advantage of the performance-oriented defini
tion over the functional one is the guidance it usually pro
vides in the design of a suitable workload model, as shall be 
seen below. What makes the performance-oriented defini
tion appealing is its operational verifiability coupled with its 
philosophical soundness. Unfortunately, in a procurement 
context, the question of model validity discussed above may 
make the functional definition more attractive, or even, 
when the new system or service to be procured does not 
have a predecessor whose performance can be taken as a 
reference, the only applicable approach. In general we feel 
that, whenever feasible, a performance-oriented solution 
should be preferred, but the workload model should be made 
as functionally similar to the modeled workload as possible 
in order to widen the model's domain of validity. 

THREE LEVELS OF WORKLOAD MODELING 

A workload and each one of its components Gobs, job 
steps, tasks, processes, interactions, transactions, and so 
on) may be modeled: 1 

1. At the physical level, i.e., by the consumptions and/or 
consumption rates of the resources (CPU instructions 
or time, main memory space, 110 channel time, disk 
transfers or time, disk space, and so on) of the physical 
machine or machines on which it is processed. 

2. At the virtual level, i.e., in terms of the amounts and/ 
or rates of the resources (higher-level language state
ments, virtual memory space, file accesses, data base 

accesses and so on) of the virtual machine or machines 
on which it executes. 

3. At the functional level, i.e., at the level of the appli
cations tasks the workload has to perform. 

When going from Level 1 to Level 3, the dependence of 
the characterization on the system decreases, while its prox
imity to the viewpoint of the end user increases. Thus, the 
end user's perception of what a workload is roughly corre
sponds to its characterizaiion at the functionallevei, but the 
programmer's (or interactive user's) viewpoint is better rep
resented by a virtual-level model. Actually, a prograIitmer's 
task just consists of translating functional descriptions of 
workload components into programs which utilize the re
sources of a given virtual machine. A Level-l equivalent of 
such a program is then obtained when its virtual resource 
demands are automatically translated into physical resource 
demands by language processors, the operating system, and 
the hardware of the physical machine. Thus, to be proc
essed, an executable workload model must always become 
a physical-level model, independently of the level at which 
it was designed. If a model is based on a functional char
acterization, it has to be translated into its virtual-level 
equivalent, which will in turn be transformed by the sys
tem's software and hardware into a physical-level equiva
lent. 

Our knowledge about how the variables to be used to 
characterize a workload can be defined and measured de
creases from Level 1 to Level 3. Thus, characterization is 
easier at a lower level than at a higher level, and models 
should generally be designed at the lowest acceptable level. 
Different types of evaluation studies require different mini
mum leveis of characterization. To evaluate a system's per
formance for such purposes as performance testing or de
termining the residual capacity, a Level-l workload model is 
usually sufficient. In the context of an improvement study, 
a Level-l model may be dependent on system aspects which 
could be modified as a final or partial result of the study. If 
this is the case, a Level-2 model will be necessary, since the 
comparison between the modified and the unmodified sys
tem is to be performed under the same workload, a condition 
hard to verify if the modifications affect the characterization 
on which the model is based. A Level-3 characterization 
will not be needed if, as is usually the case, the virtual 
machine will not be modified by the study. On the other 
hand, several different virtual machines are normally to be 
compared in a procurement study, which wiil therefore re
quire a workload model based on a functional (Level 3) 
characterization. 

Clearly, there are relationships between the levels at 
which a workload may be characterized and the definitions 
of workload model representativeness discussed in the pre
vious section. The verification of functional representative
ness requires a Level-3 characterization for the modeled 
workload and for its model. Similarly, with physical-level 
characterizations a resource-oriented definition of repre
sentativeness only can be used. Both the resource-oriented 
and the performance-oriented approaches are applicable at 
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any characterization level. Their common requirement is the 
existence of a machine on which both the workload to be 
modeled and its model can (at least conceptually) be run. 

WORKLOAD MODELING FOR THE COMPARISON 
OF INTERACTIVE SERVICES 

The general discussion in the previous sections will now 
be applied to the problem of procuring interactive services. 
We assume that a number of suppliers of computer services 
(single installations and/or networks) could be capable of 
processing a given interactive workload. The choice among 
them is usually made according to criteria influenced by a 
variety of factors. An important class of factors is that of 
performance indices, which in the present context are us
ually concerned with the responsiveness of the service to 
user stimuli.4 One major difference between the equipment 
procurement problem and the service procurement problem 
is that system-oriented indices such as productivity and uti
lization, normally conSIdered among the important ones in 
the former, are of no consequence in the latter. 

Another difference, having the same origin, is that the 
workload the evaluators may analyze and, to some extent, 
control is only a fraction of the workload to be processed 
by the installations or by the networks being compared. 
Actually, in the procurement of computer services. we do 
not compare systems, but loaded systems. The fluctuations 
of the loads existing on the competing systems or networks 
make the statistical requirements of empirical comparisons, 
which are to be performed in an essentially uncontrolled 
environment, particularly demanding. 5 

As in all procurement contexts, the workload (which in 
this case is only part of the total load) must be characterized 
at the functional level. System independence (we should 
actually say "service-supplier independence"), which is 
necessary for the fairness of the competition, is normally 
achieved by preparing a scenario,6 that is, a description of 
the functions to be performed by the model. These functions 
are described in a natural language and in user-oriented 
terms, since a formal workload description language, per
haps in the same vein as problem-statement or requirement
specification languages,7 has not been developed yet. The 
system-independent scenario, which functionally character
izes the workload model, is then manually translated into a 
number of scripts, so that one or more scripts are obtained 
for each service to be compared. A script is a sequence of 
interactive commands to be input, containing information 
about the speeds at which they have to be typed in, and of 
think times between the output and the input of consecutive 
commands. Included in a script are also the programs whose 
execution is to be caused by its commands as well as the 
files and data bases to be accessed. Thus, the set of scripts 
(often consisting of only one) which are derived from the 
scenario for each service are, or ought to be, equivalent at 
the virtual level to the workload model represented by the 
scenario. This virtual model will then be translated into an 
equivalent physical model hy the commanci interpreter. the 
operating system and the hardware when a remote terminal 

emulatorS (or some human users) inputs the scripts into the 
system (see the solid-line part of Figure 3). 

Even though in practice much effort may be required to 
make sure that the scenario is translated into the scripts 
without unduly favoring or penalizing certain services with 
respect to others, and not always the results of this effort 
are successful, the procedure just described is philosophi
cally unobjectionable. However, assuming that the workload 
is known, is the scenario a representative model of it? The 
answer depends on the definition of representativeness 
which is adopted. Most workload model designers implicitly 
or explicitly choose the functional definition and try to con
vince themselves as well as others that their scenario, while 
not doing exactly what the original workload does (how 
could it?), is indeed functionally representative. Sessions 
and sub-sessions are categorized according to their functions 
(text editing, program debugging, file manipulation, data 
base accessing, and so on), the frequencies of the various 
categories are measured, and a scenario representing a 
scaled-down picture of this functional characterization is 
somehow constructed.9,lo No effort, however, can success
fully conceal the large amount of subjectivity present in each 
decision. The lack of quantitative criteria and systematic 
methods makes it often necessary to resort to arbitrary 
choices. The situation is so hopeless that some evaluators 
find it easier to argue that representativeness is not impor
tant than to demonstrate that their scenarios are reasonably 
accurate models of a given workload. Can any improve
ments be made to this situation? If so', are they economically 
and technically feasible? 

PRODUCING A MORE REPRESENTATIVE 
SCENARIO 

Since the functional definition of representativeness is not 
easily applicable to compact workload models and does not 
suggest any systematic approach to model design, another 
definition not having these drawbacks should be considered. 
The performance-oriented definition is certainly an eligible 
candidate, but there is a major difficulty with it: What sort 
of performance should we use to determine whether a model 
is representative or not? If measurement of this performance 
is to be at least conceptually feasible (which is very desir
able), we should choose to consider the responsiveness of 
a system on which the workload to be modeled can run. 
Assuming that such a system, to be called system Z, exists 
(for example, it might be the one on which the interactive 
applications constituting the workload were developed), 
there are least two ways to proceed: 

1. A scenario is designed as briefly described in the pre
vious section: then, a set of scripts for system Z are 
derived from it (again as described above), executed 
on Z, and modified until they produce approximately 
the same performance as the entire workload to be 
modeled when running on Z: finally, either the scenario 
or the procedure to derive from it sets of scripts for 
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SCENARIO III 
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I 

Figure 3-The tree of executable workload models for a procurement study of interactive systems or services Sl, S2,' .. Sn. Script sets often consist of only one 
script, which performs all the functions iisted in the scenario. 

other systems, or both, should be modified to reflect 
these changes. 

2. A systematic method for extracting a representative 
scenario from a virtual-level characterization of the 
original workload is developed. 

Approach 1 is likely to be quite cumbersome in practice, 
also because it probably involves a large number of meas- . 
urement experiments. In principle, a method like 2, if one 
can be found, is certainly more attractive. The question is, 
therefore, whether a method for transforming an interactive 
workload into a much more compact one without appreci
ably affecting the responsiveness of a given system (Z) can 
be found. Note that both workloads are assumed for con
venience to be processed alone by system Z. If such a 
transformation is possible, the workload model should then 
be translated into an equivalent scenario (see the dashed 
part of Figure 3), an operation which is not conceptually 
complex but may be less than straightforward in practice 
when the peculiarities of system Z's command language, 
operating system, and organization are to be dealt with. The 
scenario, which should be expected to be much more de
tailed than usual and less explicitly reflecting the main func-

tions of the original workload, is finally translated into sets 
of scripts for all the competing services. Another fundamen
tal question is whether a model representative with respect 
to a dedicated system (Z) continues to be such when running 
on another, non-dedicated system. This is the problem of 
model validity discussed in the second section. For one of 
the services being compared, that which is selected, it is 
possible to verify a posteriori whether the model's repre
sentativeness was affected by this drastic change of envi
ronment. For the others, not even this late verification is 
feasible. Thus, only the validity enhancement techniques 
mentioned in the second section can be applied, without any 
guarantee of success. 

A number of obstacles must be overcome before an in
teractive-workload compaction method which leaves re
sponsiveness unaffected can be obtained. Responsiveness 
indices are generally very sensitive to the command mix 
(types and rates) and to the order in which commands are 
input and processed. Thus, characterizing an interactive 
workload by the frequency· distributions of command types 
and think times is not sufficient. Both the correlation among 
the commands issued by each user and the temporal rela
tionships among the various command streams cannot gen-
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erally be assumed to have a negligible influence on respon
siveness. In order to preserve both to the largest possible 
extent, we may subdivide the workload to be modeled into 
a number of time intervals. Each time interval should be so 
long that the responsiveness index or indices chosen for 
defining representativeness can be meaningfully computed. 
If, for instance, the workload model's calibration criterion 
is based on the distribution of response times, enough in
teractions should be contained in each interval that 

a. The frequency distribution of their response times is 
statistically significan.t. 

b. The distortions due to the interactions in progress at 
the beginning or at the end of each interval have neg
ligible effects on the corresponding distribution. 

c. The correlations between the indices (e.g., between 
the moments of the response time distributions) of con
secutive intervals can be ignored. 

Note that a similar subdivision is the basis of the "method 
of subsamples" used in simulation to compute the statistical 
accuracy of a given run's results or, alternatively, the min
imum duration of a run which will produce results with a 
given accuracy. 1,11 Assuming that all of the above conditions 
are satisfied, a subdivision yields a large number of sub
workloads, each having an associated performance index or 
set of indices. For example, this set of indices may consist 
of the relative frequencies of response times within the k 
classes defined by the values to,tl, ... tk(t(i-l)<ti, 
i=l, ... k: to=O, tk=+oo): 

Fji=nji/Nj (i=I, ... k), (1) 

where nji is the number of interactions with response time 
t such that t( i-I )<t<ti, and Nj is the total number of 
interactions in the jth sub-workload. Note that the value of 
one of the k indices F ji is functionally dependent on the 
values of the other k-l indices. 

With all responsiveness indices of practical interest, the 
value of index P for the whole workload is given by 

P= 1.- f NjPj, 
N ;=1 

(2) 

where P j is the contribution of the jth sub-workload to P, 
M is the total number of sub-workloads, and N is the total 
number of interactions in the workload. For most indices, 
P j coincides with the value of P for the jth sub-workload, 
but sometimes this is not the case. For instance, when P is 
the variance of response times, contribution P j is the sum 
of this variance for the jth sub-workload and the square of 
the difference between the mean response time of the jth 
sub-workload and the overall mean: 

P j= Var j+(Etj- Et)2 (3) 

Each sub-workload is thus characterized by its contribu
tions to the values of the overall performance indices, e.g., 
by the values of the F jis, or of Etj, or of Etj and 
Varj+(Etj-Et)2. This characterization may now be used 
to classify sub-workloads. that is, to cluster them into 
classes defined by values of the contributions relatively 

close to each other. If more than one index is being consid
ered, clustering methods3,12 or joint-probability scaling tech
niques13 will have to be applied. The objective of this op
eration is to reduce the original workload to a much more 
compact executable model by picking a relatively small 
number of representatives from each class. Note that, with 
joint-probability scaling, each class is composed of the sub
workloads contained within one of the regions into which 
the hyper-space of the characterizing variables has been 
divided. 

Once the classes have been defined, how many repre-
sentative sub-workloads should be selected from each class, 
and how should they be selected? Here again, the perform
ance-oriented approach helps us find a satisfactory answer. 
Let C be the number of classes being considered, and let 
the hth class contain Mh sub-workloads (h=l, ... C). The 
contribution P' h of each class to P can be defined in the 
same way as the contribution of each sub-workload, and 
hquatlOn L will become 

P= 1.- f N'h'P'h, 
N h=1 

(4) 

where N' h is the total number of interactions in the hth 
class. In turn, P' h can be expressed in terms of the contri
butions of the sub-workloads in the h th class as follows: 

1 Mh 

P'h= N'h;~ Nhj- Phj, (5) 

where Nhj is the number of interactions in the jth sub
workload of the hth class, and Phj is its contribution to 
P' h. Note that, if P is the variance of response times, Phj 
will be given by (3) where Et is to be replaced by Et' h, the 
mean response time of the class. Thus, (4) and (5) yield 

1 C Mh 

P= - ~ ~ Nhj·Phj. 
N h=1 ;=1 

(6) 

If the total number of sub-workloads in the model is to be 
m (m may be viewed as a design requirement), then the hth 
class will have to be represented by mh sub-workloads such 
that 

C 

~ mh=m. (7) 
h=1 

Assuming, with no loss of generality, that the first mh 
sub-workloads are selected to represent each class, the 
model will produce a performance index 

1 C mh 

p= - L ~ nhj·phj 
n h=1 ;=1 

1 C 
= - ~ n'h'p'h, 

n h=1 

(8) 

where nhj is the number of interactions in the jth sub
workload included in the model from the hth class, phj is 
this sub-workload's contribution to the performance of the 
hth class in the model. 

C mh C 

n= ~ ~ nhj= ~ n' h (9) 
h=l j=l h=l 
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is the total number of interactions in the model, and p' h is 
the contribution of the hth class to the model's performance. 

The performance-oriented definition of representativeness 
states that the model is representative if 

p=P (0) 

Sufficient conditions for satisfying (0) are, from (6) and 
(8), 

(11 n) 2: (j= 1, mh) nhj phj 

=(11 N) 2: (j=1, Mh) Nhj Phj, (11) 

or, from (4) and (8), 

n' h· p' hi n= N' h· P' hi N, (12) 

for all h (h = 1, . . . C). Conditions (2) are satisfied if 

p' h=P' h, (h=l, ... C), (13) 

and 

n' hln=N' hlN, (h=l, ... C). (4) 

Equations 13 are easy to satisfy, since the sub-workloads 
in each class have by construction very similar perform
ances. Thus, it should not be hard to select mh out of Mh 
sub-workloads having approximately the same values of Phj 
so that the resulting p' h is about equal to P' h. Equations 14 
say that the fraction of interactions from the hth class in the 
model should be equal to the same fraction in the original 
workload. In other words, classes should be proportionally 
represented in terms of their number of interactions, no 
matter how "heavy" or "light" these interactions are. If all 
sub-workloads contained the same number of interactions, 
Equations 14 could be written 

mhlm=MhIM, (h=l, ... C), OS) 

and mh would be proportional to Mh with a coefficient 
equal to the inverse of the scaling or reduction factor r= M 1m. 
Otherwise, determining the mhs will involve some itera
tions, since n in (14) is not given, but is to be computed as 
the sum of the il' h. The problem may be approached by 
computing the approximate mhs from (5), selecting mh 
sub-workloads from each class, determining the values of 
n' h and of n, and verifying whether equations '(4), or rather 
(2), are satisfied. If not, the sub-workloads selected to 
represent each class should be replaced by others, and pos
sibly their number should be changed, until Conditions (12) 
are satisfied within acceptable error bounds. 

Once the sub-workloads to be included in the model have 
been selected, their ordering and their implementation as 
executable scripts are to be determined. If the assumption 
of negligible correlation between the performances of con~ 
secutive sub-workloads is satisfied, the relative order of 
samples from the original workload should be immaterial. 
Thus, this order can be dictated by various objectives, for 
instance by that of facilitating transitions from one sub
workload to the next in the executable model. Note that 
some of the statistical techniques which are applied in sim
ulation can be used to verify the assumption mentioned 

previously, as well as the significance of the sample taken 
from the original workload to construct the model. 11 

Transitions between consecutive sub-workloads will have 
to be smoothed so that a continuous script to be input from 
each terminal during the execution of the model can be 
obtained. Partial interactions, those which had already 
begun when the sub-workload started or were not completed 
at the end of it, will be completed, or eliminated, or modi
fied, in order to minimize the distortions due to a transition. 
In most transitions, a major amount of turbulence is to be 
expected, since a number of terminals will have to switch 
from one subsystem (e.g., an editor) to another (e.g., a 
compiler). The impact of this turbulence on the accuracy of 
the model can probably be reduced by suitably modifying 
the sub-workload involved. The magnitude of such an im
pact cannot be predicted without experimentation. How
ever, it seems desirable, thetigh -perft-apsoo-t ve-ry eas-ily 
feasible, that the phase relationships among the various 
command streams be roughly preserved within each sub
workload during execution, for instance by making_ proper 
use of the transition periods and possibly by acting on think 
times, so that command arrival rates are not appreciably 
influenced by the responsiveness of the service. Note that 
this will probably require remote terminal emulators consid
erably more intelligent than usual. 

We have implicitly assumed that the executable model 
will consist of a number of command streams to be input by 
a trace-driven remote terminal emulator. An alternative ap
proach is the one based on synthetic sub-workloads. A syn
thetic sub-workload is a set of synthetic scripts whose per
formance can be changed by properly selecting the values 
of certain parameters. Both a synthetic sub-workload at the 
virtual level and its functional equivalent would generally be 
less realistic than their natural counterparts. However, their 
use could substantially facilitate workload model implemen
tation. This subject, which has not been studied yet, is 
certainly among those which deserve a great deal of atten
tion. 

A third approach to workload model construction, prob
ably the most attractive one, is directly suggested by the 
model design method described above. Since all the sub
workloads in a class are performance-wise roughly equiva
lent to each other, the model could be reduced to only one 
representative (possibly synthetic) sub-workload from each 
class, and performance could be computed as a weighted 
sum of the performances of these isolated sub-workloads, 
the weights being proportional to the numbers n' h of inter
actions in each class (see Equations 4, 8 and 14). A major 
difficulty with this method, which would on the other hand 
be very convenient since it would yield much more compact 
models and eliminate transition problems, is that of the bias 
introduced in the values of performance indices by the initial 
transients. l •ll This bias is likely to affect all measured per
formances and not only that of the first sub-workload as in 
the two previous approaches. Application of the methods 
used in simulation runs ll may reduce to acceptably low 
levels the inaccuracies due to the initial bias. This is another 
one of the many aspects of the workload model design pro
cedure proposed here which must be experimented with. 
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SUMMARY AND CONCLUSIONS 

The road to more satisfactory and defendable workload 
characterizations is, especially in procurement contexts, a 
long and difficult one. A preliminary investigation into the 
feasibility of applying a performance-oriented approach in 
the procurement of interactive services has been described. 
After arguing that the accuracy (or, as it is usually called, 
the representativeness) of a workload model is essential in 
all evaluation contexts, three definitions of representative
ness have been discussed. The three levels at which a work
load may be characterized, and their relationships to the 
different types of evaluation studies as well as to the defi
nitions of representativeness, have then been presented. 
Next, these general concepts have been applied to the com
parison of interactive services for procurement purposes. A 
method for designing a representative workload model in 
such a context has been proposed. The method is based on 
the performance-oriented definition of representativeness 
and on the assumption that a model designed and calibrated 
at the virtual level of characterization for a given system is 
valid also when transported to the functional level and on 
other systems or networks offering interactive services. 
While this assumption, like many other aspects of the 
method, are stilI to be experimentally verified, the philoso
phies and procedures proposed here can probably be applied 
in a more straightforward, less expensive way to simpler 
environments and types of workload. The method described 
requires extensive measurements, the recording of long 
command streams, sophisticated remote terminal emulators, 
and is likely to produce substantially less compact models 
than desirable. However. it must be recognized that the 
problem is a very complex one, and that the current solu
tions to it, far from being satisfactory, are only made ac
ceptable by the lack of any better approach. Furthermore, 
some ways of rendering the method and the model more 
feasible have been suggested. If the model can be reduced 
to one copy of a synthetic sub-workload per class, only the 
selected performance indices produced by the original work-

load have to be measured for each one of its sub-workloads, 
no tracing of command streams is necessary, neither tran
sition problems nor complex phase-preservation issues 
arise, and maximum compactness is achieved. In spite of 
the number of important "ifs" still pending, the approach 
thus appears to hold some promise of practical applicability. 
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Control of computing funds and resources in a networking 
environment * 
by BEVERLY O'NEAL and RONALD SEGAL 
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INTRODUCTION 

Users or potential users of computing services at research 
and educational institutions are currently trying to meet their 
computing needs in cost-effective ways that will also provide 
them with high-quality services. As these individuals at
tempt to match their needs against the expanding menu of 
available alternatives (mini- and microcomputers; central 
campus facilities; and local, regional and national networks), 
they may face restrictions on their choices. Some institu
tions treat all users alike and, subject to budget constraints, 
they are allowed the same access to all services or face the 
same restrictions. At other institutions, some users and not 
others face restrictions on the amount of available computer 
funds and on the types of resources that can be purchased. 

Often the treatment of users depends on how the institu
tion bills for computing services. For example, access to 
local computing services is "free" at many institutions, and 
only very superficial efforts are made to allocate or account 
for computer usage. At others, users are given "funny 
money" accounts (accounts that represent funds pre-allo
cated to the computer center) so that local usage can be 
monitored and controlled. In both cases, there is little pro
vision for the use of services other than the central facility. 
When "real" money (operational funds) is used to pay for 
computer services, users often have more flexibility in se
lecting services. Thus, institutional financial policies may be 
a major factor in determining how well the computing re
quirements of the user community are satisfied. 

One often-proposed method of meeting some user needs 
for computing services is through a national resource sharing 
computer network. Such a network could provide access to 
specialized computing resources, minimize duplication of 
software development and promote a widespread exchange 
of resources among educators, researchers, administrators, 
and students. 1 Sixteen institutional participants worked 

* This work was supported by the National Science Foundation under Grant 
Number MCS75; .. A Simulation and Gaming Project for Inter-Institutional 
Computer Networking." 
** EDUCOM is a consortium of more than 270 colleges, universities and 
non-profit organizations that serve higher education. It was founded to help 
its members make the most efficient use of computer communications tech
nology. 
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closely with EDUCOM in a recently-completed project 2 to 
investigate these issues in more detail. The participants in
cluded large universities and small colleges, public and pri
vate schools and teaching and research-oriented institutions. 
Interviews with key people at each institution concentrated 
on obtaining a deeper understanding of the institution's pol
icies and practices with respect to computer usage and pos
sible computer networking. 

Although this paper is mainly concerned with the impli
cations of the various types and levels of user control of 
funds on network participation, the discussion is relevant to 
most currently available computing options. 

INSTITUTIONAL PRICING STRATEGIES 

The pricing structure established by an institution's com
puter center can be used to implement various objectives. 3 

A common goal, for example, is to recover a fixed percent 
of the overall costs of the center (usually 100 percent). Since 
the net price to users often represents the sum of many 
component resource prices, the relative charges for these 
component services presents another degree of choice 
within the primary goal of cost recovery. Some institutions 
attempt to relate these prices to actual costs-i.e., the 
charges for memory, CPU, peripherals, etc. are directly 
proportional to their costs. Alternatively, the component 
charges may be directed towards encouraging efficient sys
tem utilization, allocating scarce resources, maximizing sys
tem usage and/or revenue or achieving a variety of other 
management goals. 

Instead of setting prices by the separate components of a 
service, circumstances may indicate other strategies for se
lected services. These include charging a flat rate (usually 
hourly), pricing by serviee and unit input or output pricing 
(i.e., by item retrieved from a data base or by transaction 
processed). All of these approaches can be scaled to a given 
cost recovery rate if desired, and can be tuned to meet the 
objectives described earlier. 

The usual approach in pricing is first to establish a base 
or standard price. Variations of this price can then be used 
by management to attain operational goals. For example, 
shift differentials are common procedures to encourage load 
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leveling, and priority differentials are a traditional way to 
use the price mechanism to determine scheduling. Often 
there are variations in price to reflect institutional policy 
towards various user groups or categories. For example, 
surcharges are frequently placed on all outside users, with 
even higher surcharges if the user is not from an educational 
institution. It is common to bill users with outside funds at 
a rate equal to full cost recovery, while other internally
funded users may be charged a lower rate (i.e., they are 
partially subsidized by the institution). In this context, a 
billing percentage of zero for some users implies that they 
receive free computing. This approach is preferable to no 
billing since it permits monitoring and accountability. More 
important, it has been shown that when users know the 
actual cost of their computing, even if they don't have to 
pay it, they function in much the same manner as those 
paying the full charges. 

SOURCES OF USER FUNDS 

In the past, many institutions offered computing free to 
their internal user communities. Although this practice still 
exists, at least partially, at many institutions, the current 
trend is towards charging in some fashion for computing 
services. Even if the charges do not amount to full cost 
recovery, they are useful for the purposes of allocating a 
scarce resource. At institutions that charge for computing 
services, a prospective user must look to either internal 
(institutional) or external sources of funding to pay for these 
services. At any institution, if a user does not feel that the 
internal services are appropriate, and wants to purchase 
services from an outside source, he must find a means of 
paying for these services. 

Internal sources of funds 

Internal funds may be allocated in different ways within 
the institution. Frequently, some or all computing is pro
vided as a "free" resource. This was true for the main 
institutional facility for two of the small colleges in the 
project. At most institutions, this occurs primarily with spe
cial purpose micro- or minicomputer facilities. Usually, the 
"free" facility is a dedicated operation serving a small, 
homogeneous community within the institution such as a 
department or research project. Depending on their location 
in the organization and function, such facilities may be cap
italized by state funds, government or foundation grants, 
tuition revenues, or departmental operating funds. In lieu of 
charges, there is usually an implicit allocation of resources 
depending on one's status or role in the organization, size 
or type of job, or the total system workload compared with 
the computing capacity (i.e., service may deteriorate as 
usage increases). 

A second method used at many universities is to give 
money directly to the computer center for operating ex
penses. Users (generally for academic or internal adminis

. lrative purposes) then receive accounts against which they 

may draw. These funds, since they actually have been al
located to the computing center, may not be spent for any 
purpose other than computing at the local facility. At half 
of the institutions studied, computer charges for most local 
users were handled through a combination of free computing 
and "funny money." Although there may be an upper limit 
to the total amount of funds available to a user, it is usually 
a straightforward process to obtain additional funds. 

There is a growing trend towards a third approach: Con
sidering money for computing as part of the operating ex
penses of the department or college. Over a third of the 
institutions studied treat their computer budgets in this way. 
The decision on how much money is to be spent on com
puting is made (often at budget time) at the departmental 
level. Operating funds are usually considered as "real 
money" and the department, if not the user, has reasonable 
freedom to spend them as it sees fit--e.g., for an internal 
system, at a service bureau, for networking, etc. 

These approaches have different implications for both the 
computer center and the user. In the "free resource" and 
"funny money" cases, the computer center has a fixed 
income with which it can budget its activities. Although this 
income mayor may not meet what the computer center 
management perceives as its needs, it is a known amount 
that is negotiated periodically between the computer center 
management and the administration. The job of the com
puter center is then to provide the best possible service for 
the available money. In the third case ("real money"), how
ever, the income is not so certain, since the computer center 
must compete with other resources that are vying for the 
users' dollars. This puts the center in a very different light. 
It must now stand or fall based on the quality and price of 
the service it provides relative to available alternatives, i.e., 
the computer center is running a "business." 

For the user, the first two cases represent degrees in his 
perception of a free good. The former may appear to him 
more unlimited than the latter (that is, if he could just get 
his tum to use the facility!), but there is no sense in either 
environment of being able to exchange the use of this service 
for any other that he might need. That must be done by 
special appeal or process, and at an incremental cost. With 
operating funds, the tradeoffs are much more obvious and 
concrete. The user measures local services against alterna
tive sources of computer services, if not als<? against the 
cost of-new books or journals, graduate students, or secre
tarial help. He must then make a conscious evaluation of 
how much the local computer services are worth to him 
when compared to other options. 

There are obviously various combinations of these meth
ods. Many institutions, for example, use a combination of 
"real" and "funny" money so that users are billed at a 
specified percentage of the actual cost of their computer 
usage and university funds make up the difference. 

External sources of funds 

External sources of computing funds available to the user 
are usually research grants or contracts sponsored by gov-



ernment, industry, or other funding agencies. The process 
for obtaining these funds depends on the particular source 
involved. Typically, the user must take the initiative obtain
ing those funds, and often, in the process of obtaining them, 
they are earmarked for computing. In general, users' control 
of their externally-supplied money more nearly approxi
mates the "real money" method of handling institutional 
funds. Again, the tradeoffs must be weighed by the user 
himself and a choice made. 

For the computer center, users supported by external 
funds may represent a relatively unpredictable source of 
income. When a new grant is requested, the potential recip
ient decides what portion is to be spent for computing ser
vices. There is no guarantee that all of the funds indicated 
for computer services will be spent as planned, or that the 
grant will be awarded in the anticipated time frame. A ma
jority of these funds come from granting agencies that can 
fluctuate in the level of their awards from year to year and 
there is no 'sure continuity. This uncertainty is one price that 
the individual researcher must pay for the added control 
that comes with outside funding. In aggregate, however, the 
income from such outside SOllrces is normally fairly pre
dictable, and the computer center management becomes 
very adept at estimating what this will be. 

USER OPTIONS FOR OBTAINING COMPUTING 
RESOURCES 

Depending upon the policies established by the institution 
for the expenditure of computing funds, a potential user with 
computing needs and funds is often faced with a choice of 
options. The money may be spent at the local computing 
facility (which may be a service purchased externally by the 
institution); to purchase services from an external source 
such as another university, a research institution, or a ser
vice bureau; or to purchase his own hardware, such as a 
minicomputer. 

At institutions participating in the project, users with ex
ternal sources of funds had the most freedom to exercise 
options that they selected. Those who use institutional op
erating funds to purchase computing services face more 
restrictions but usually have some degree of choice. Users 
with internal funds for computing, however, find it very 
difficult to purchase from any source except the local com
puting center. 

Local services 

Most institutions historically have had a single general 
purpose computer center that satisfies most of the needs of 
local users. As the cost of hardware drops, institutions are 
frequently offering several alternate centraiized faciiities. A 
common example is that of running student jobs and CAl 
(Computer Assisted Instruction) on a particular machine 
that is often a minicomputer. It is still the case, however, 
that most users are restricted to internal services and that, 
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although there may be multiple campus facilities, the choice 
for any given user or application is usually quite limited. 

External services 

There are several factors that must be faced in deciding 
whether or not to purchase a service externally. If the de
sired service is not available locally, the first question is 
usually, "Can it reasonably be added to the local service 
offerings?" Larger institutions offer most standard services. 
Services that they do not, and possibly cannot, offer locally 
include such things as large data bases, specialized appli
cation packages, and bibliographic retrieval systems. If there 
were a large demand for any of these, the institution might 
consider acquiring the service. However, for a growing num
ber of specialized services, it is not cost-effective to do so 
when both installation and maintenance costs are consid
ered. Such services are likely candidates for outside pur
chase. 4 

Another consideration is the quality of service. This is not 
as important in measuring local service as it should be but 
usually enters into the decision in evaluating external sup
pliers. As more external options become feasible, the issue 
of their comparison with local services will arise more fre
quently. For example, are external services a user option if 
they are "better" or less expensive than the local service? 
How does the quality of service, support, documentation, 
etc. of the external supplier compare with that of the local 
facility? How reliable is the external supplier as compared 
to the internal facility? Not only must the user considering 
an external source be aware of such factors, he must be able 
to evaluate their importance to him. 

Dedicated computing 

The number of applications in which the purchase of a 
mini- or microcomputer system makes sense is increasing. 
Hardware costs are decreasing rapidly, while performance 
is improving. Minicomputers can now meet many user needs 
at a low cost, while offering a degree of control and flexi
bility that the user cannot exert over the local computer 
center. In addition, minicomputers often can provide an 
interface to the central and network computers in addition 
to providing dedicated, low-cost, stand-alone service. 

In addition to their role in satisfying specialized campus
wide needs (CAl, administrative systems, etc.), the price 
performance ratio of small systems justifies serious consid
eration at the project or departmental level. Typical appli
cations include word-processing, introductory programming 
courses, monitoring and control of research experiments, 
specialized scientific software packages, and small simula
tions used by multiple students. 

It is beyond the scope of this paper to comment on the 
problems (often hidden) associated with small computers, 
such as estimating their full cost, maintenance difficulties, 
support problems, software shortcomings, etc. At the user 
level, constraints on the availability of such resources are 
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similar to those for acquiring external services. Those users 
with internal operating funds or specific outside sources of 
funding are usually the only ones that can consider such 
acquisitions. Often the review process is more stringent and 
specific than for outside services since there is a capital 
investment involved. 

At many institutions such acquisitions are not dealt with 
in an organized fashion and this has led to a diversity of 
incompatible equipment and duplication of capabilities. 
Given the total cost and net impact on the organization of 
these mini- and microcomputers, the need for institutional
level policies and coordination is becoming critical. 

A V AILABILITY OF COMPUTING RESOURCES TO 
USERS 

Machine resources 

If more than one computer is available at an institution, 
certain classes of users may be restricted to particular fa
cilities. The most common examples of these are the use of 
specific computers for class instruction or administrative 
data processing. Even if there is only a single computer, the 
institution may impose restrictions on the resources avail
able to certain user groups. Samples include limits on CPU 
time, maximum memory allocations, limits on disk storage 
space, or job priorities. Systems with restrictions such as 
these usually have ways in which the limits can be raised by 
special request. 

At institutions that use "funny money," or no prices at 
all, controls are important and may be quite involved. Sev
eral institutions imposed restrictions, for example, on the 
types of jobs that could be run by the various user cate
gories. Others imposed resource limitations also based on 
type of user. One institution had developed an involved 
cutback algorithm whereby overusage by one class of users 
impacted only that class and no others. Another operated 
by dividing the day into periods for administrative usage and 
periods for academic usage. Within the academic time slots 
at this institution, usage was on a first-come-first-served 
basis. 

When computing is financed partially or totally by "real," 
or operating, money there is less need for these types of 
controls. At such places, the pricing mechanism usually 
serves as a simple, effective allocation mechanism. To the 
extent that a free market environment is considered desir
able, the motivation for using real money for computing 
increases. 

Support services 

There are two major areas in which human resources are 
required-consulting and programming. A few institutions 
provide extensive support free of charge in both these areas, 
while most only offer casual consulting free and charge for 
programming or extensive consulting. Some institutions 
offer minimal consulting and no programming whatsoever. 

Different users at a· single institution may receive different 
levels of support. For example, students can usually get 
information about running jobs but cannot obtain program
ming help from the consultants. On the other hand, a user 
with outside funds can often pay for both programming and 
additional consulting services from the computer center 
staff. 

At most institutions in the project, limited consulting was 
available free of charge. Most of them allowed ail users to 
buy programming services with computing funds although 
one institution did not allow student funds to be used to 
purchase such services and two institutions provided no 
programming at all. 

INSTITUTIONAL REVIEW PROCESS 

Most institutions consider it necessary to have a review 
group to provide an institutional view on the use of facilities 
other than the local centralized facility, whether they be 
external services or the acquisition of individual minicom
puter systems. A variety of titles are in use, such as "Com
puter Review Board," "Computer Advisory Committee," 
or "Computer Center Oversight Committee." In addition to 
its role in reviewing outside purchases, it often also func
tions as a committee overseeing or advising the local com
puter center on purchases and budgets. Typically, members 
represent a variety of functional areas including faculty, 
department heads, heads of large research projects, com
puter center management and administrators. Usually the 
group is an institution-wide committee, although it may 
function on a college basis. At state institutions, there may 
be parallel legislative and institution-specific groups. At 
smaller institutions the review process may be performed 
by one person, such as the computer center director. 

The areas of concern to this committee also vary. In some 
cases it reviews only proposed purchases of hardware, or 
only cases in which institutional furtds are to be spent on 
external services. It may, however, have responsibility for 
all aspects of computing at the institution. 

At some institutions, as long as the money involved is 
from outside sources, approval is almost automatic. Thus, 
a user with a research grant may have no difficulty in getting 
authorization to purchase a mini-computer or to buy time 
from a ·service bureau, whereas a faculty member wanting 
to use departmental computing funds to buy access to a 
specialized package offered elsewhere may find this ex
tremely difficult. 

About a third of the institutions had established a formal 
review committee as described above for the purchase of 
outside service. Another third had a review process that 
was performed either by the computer center director or 
through an administrative office such as the vice president 
for research or administration or the university's finance 
committee. The rest of the institutions had no such review 
process, either because all users had operating funds and 
were unrestricted, or there was such a low level of outside 
usage that any cases were hand1ed on an nd hnc bllSis 

Computing at an institution is perceived differently by the 



various constituencies that come in contact with it. The 
administration often has one perception, while the computer 
center director may have a second, and the users a third. 
The review process should be the place where these some
times conflicting viewpoints can be resolved and translated 
into institutional priorities and policies. 

There is a clear require~ent for a review process at most 
institutions, and many are moving in this direction. How
ever, emphasis to date has been on the approval or disap
proval of specific requests, rather than on the establishment 
of mechanisms for providing more general policy guidance. 
As the number of options increases, institutions are recog
nizing the benefit of establishing overall policies for guiding 
and coordinating their computing decisions. For example, 
recommendations for standardization of time-sharing ter
minals have come from several committees, policies for 
ne-twerk ac-e-ess ~mission have come from others, and a 
few have t~ken the initiative and promoted policies for ac
quisition and operation of campus minicomputers. 

USER CATEGORIES 

Users at any given institution can be grouped in a variety 
of ways to reflect source of funds, computing activity or 
homogeneity of grouping. Institutions in the project were 
asked to define categories that represented the major levels 
at ·which funding and usage are controlled. In general, the 
categories selected represented line items on the institutional 
budget. Although many of the variations were unique to 
individual institutions, the many common elements in the 
groupings reflect the similarities in how computer usage is 
perceived at educational and research institutions. These 
groupings exist because most institutions do not treat ail 
users alike. Instead, the rules that apply to a user, and the 
control that he has over how and where his computing 
money is spent, depends largely on the category into which 
he falls. 

The groupings used were surprisingly similar across the 
institutions. Almost all of the educational institutions, for 
example, had a category entitled "instruction." This in
cluded classroom use of the computer both in teaching a 
programming language and as a tool in discipline-related 
subjects. Another grouping used by the majority of the in
stitutions was that of institution-funded research. This rep
resented student and faculty work for which there was no 
outside source of funds. One institution separated such re
search work into that done for masters' theses and that done 
for Ph.D. dissertations. Typically, these two categories, in
struction and internally-funded research, had great difficulty 
receiving permission to do computing on anything except 
the centrally provided facilities. Even in '"real money" en
vironments, central review committees were less than sym
pathetic to most requests for external expenditures or local 
capital investments by these users. 

Three-quarters of the participants identified externally
funded research separately, and one even separated govern
ment-funded research from other externally-funded re
search. Those that did not use this category to distinguish 
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users either had almost no externally-funded research (the 
very· small teaching-oriented colleges) or felt that this was 
not a useful distinction since all users had "real money," 
i.e., this category was merged with institution-sponsored 
research. In general, funded researchers had the most con
trol over their own computing destiny. By definition they 
have hard dollars to spend, their expenditures do not place 
a drain on institution revenues, and hardware acquisition or 
outside computing is often an explicit part of their grant or 
contract. Even so, there are often pressures to use the local 
facility if at all possible. 

Administration was also a separate category at three
quarters of the institutions. At most locations administrative 
work was performed on the same facility used for academic 
applications. By virtue of their place in the decision-making 
hierarchy, this group of users should be expected to have 
great flexibility of Ghoice in making computing. decisions. 
Up until now the choice seems to have been made between 
separate administrative facilities and the campus computer 
center. Security and privacy concerns, the cost of running 
large processing jobs, and the perceived need for control 
and flexibility have all contributed to this limitation on op
tions. 

Two-thirds of the institutions identified computer center 
staff usage as an explicit item. The rest generally assumed 
that since these users were not billed, there was no need to 
explicitly identify or budget for their usage. The philosophy 
was that staff usage was a fixed and necessary part of the 
facility workload. Except for explorations of remote re
sources by user services personnel on behalf of their cus
tomers, there is rarely any justification for computer center 
staff to seek alternatives to the facility that they operate. 

The final category identified by most sites was that of 
external users of the local facility. About a fifth of ihe 
organizations further separated outside educational use from 
other external use. Where this was done, non-educational 
users were billed at a higher rate than educational users. In 
general, even outside educational users paid a somewhat 
higher rate than internal users. Obviously, this group of 
users usually has no difficulty in "going elsewhere" for 
services whenever it chooses. 

Although these were the most common categories of 
usage, there were a few variations and one notable exception 
in categorization. Instead of following these breakdowns, 
one institution reported usage by schools and administrative 
units. This reflected the philosophy of decentralized control, 
i.e., each school had to account for computing expenditures 
as part of its operating funds. 

CONCLUSIONS-NETWORKING IMPLICATIONS 
FOR USERS AND THEIR CONTROL OF 
RESOURCES 

Groups iikeiy to benefit from networking 

Outside users. It is evident that some classes of users are 
more likely to use a network, or other alternatives to the 
central computer center, than others. The most obvious 
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example is that of the outside (non-institutional) users of a 
computer center. These users are not directly affiliated with 
the institution and have no restrictions to prohibit their pur
chasing services elsewhere. Often they are purchasing raw 
computing power rather than the entire package of service 
and user support. In these cases, they are likely to go else
where for service anytime that they perceive it is in their 
best"interest to do so. At most educational institutions these 
users represent a very small fraction of the total usage and 
are generally considered only as purchasers of excess ca
pacity. 

Externally-supported researchers. Users whose research 
is supported by external research funds are likely to both 
use and benefit from a ·network. The nature of their work 
often requires special packages or services that may not be 
offered at their institution. In most cases they are faculty 
members or graduate students who are familiar with those 
services that are useful in their work and that exist outside 
their own institution. This category of user, therefore, is 
likely to know about applicable remote resources (via 
professional or discipline contacts), and is also in a position 
to take advantage of them since the institution is likely to 
have less control over how their funds are spent than it does 
over other users. 

Users of specialized resources. Any user who needs a spe
cialized or unique resource is a likely candidate to benefit 
from a network. Examples of specialized resources incJud( 
unique hardware, CAl systems, statistical packages, econ
ometric models, planning models, and specialized data 
bases. These are the resources that may not be available at 
the local institution, and would be very expensive, if not 
impossible, to establish locally. Users of specialized re
sources may fall into any user category. Unfortunately, it is 
their category rather than their need that is likely to be the 
primary determillant of whether or not they may obtain 
these services via a network. There are indications, how
ever, that this situation is slowly changing. For example, 
review committees are much more sympathetic to requests 
for outside service when the resource is not available locally 
(many state this as a formal policy). Institutions, even those 
that provide local service as a free good or on a "funny 
money" basis, are recognizing the need to support outside 
usage in these circumstances. 

Groups unlikely to benefit from networking' 

Student users. Except for special packages like CAl ma
terials, student instructional needs are less likely to be met 
through networking. Programming courses and the use of 
simple models and packages are the kinds of applications 
that can be accomodated very effectively at most local cen
ters. In many cases a dedicated minicomputer may best 
serve such a group. Particularly in programming courses, 
access to outside services will not enhance the basic quality 
of instruction. An exception to this may occur at smaller 
schools that can not support the full range of programming 
languages. In such cases. the use of other [('l('ilitie"l over :1 

network may provide the only access to that service. 

Computer center staff. The staff of the computer center is 
likely to be the most knowledgeable about networking pos
sibilities and availability. They may be able to get free (or 
very cheap) trial accounts at other institutions and may try 
out new packages over the network for their user commu
nity. Their owQ. need for these services, however, is limited 
since they are employees of the central facility and their job 
is to facilitate its use. Their budget in "real money" is likely 
to be extremely limited, and although they may be a major 
source of information, they are unlikely to become a major 
purchaser of network services. 

Traditional administrative users. Administrative data pro
cessing, for a number of reasons, is less likely to be per
formed over a network. Primary reasons are the perceived 
need for control over the computing resources used, the 
concern for security, and the volume of input and output. 
Administrative applications are often very time-dependent 
and usually receive highest priority in the case of a crisis. 
On a network, such work has no assurance of special treat
ment and must be adapted to the schedule of the host com
puter. The second concern, security, is often mentioned but 
is actually less valid. Unauthorized access to such data may, 
in fact, be more difficult at an institution that is accustomed 
to protecting the data of a variety of outside customers. At 
present, networks are most effective for applications that 
require only a nominal amount of data input and output. 
Consequently, communications capacity limitations and the 
cost of data transmission currently impose severe barriers 
to administrative applications. 

It does not appear that the overall situation is likely to 
change in the near future for traditional administrative ap
plications. However. with the advent of decision-making 
tools such as planning and forecasting models, and special
ized hardware dedicated to "office automation," there are 
indications that new, non-traditional applications will be car
ried out in the most appropriate manner. Again, the place 
of this user community in the decisiqn-making hierarchy of 
most institutions makes it likely that it will be able to acquire 
both funds and authorization as the need arises. 

Groups that could benefit from a network but are unlikely 
to use one 

Student users. Some student instructional work might ben
efit greatly from expanded network services, and yet be 
unlikely to have access to a network. In particular, the use 
of discipline-oriented computer programs as teaching de
vices falls into this category. Marketing models, political 
science data bases, chemical reactor simulations and econ
ometric statistical packages represent computer resources 
of this nature that are not offered at every institution, and 
yet could represent a useful supplement to course work. 

Internally-funded researchers. Internally-funded research
ers, although they could also benefit from a network, are 
less likely than funded researchers to fully utilize one. The 
('lttra('tivene"l"l of (! network here lies in the specialized ser
vices that can thus be obtained; i.e., the need is similar to 



that of externally-funded researchers, but the funds and 
flexibility are not available. 

The primary problem that the above groups face when 
considering networking is that services purchased over a 
network must be paid for with real money, and this repre
sents an apparent cash drain on the institution. To the extent 
that the user can demonstrate that the value justifies the 
total cost, and adequate funds are available, this is not a 
serious problem. In many cases, although there is a net cost 
saving to the institution by not doing the work internally, 
this is diftlcult to demonstrate, particulariy in an environ
ment where the user pays less than the full cost for local 
computing. The solution lies in reorienting institutional ac
counting and billing procedures so that these trade-offs can 
be made explicit. In otherwords, if it is cheaper overall to 
go outside than to do the work internally, one should be 
able to show this in a straightforward manner. 

Needed organizational changes in a networking 
environment 

Computer center focus on providing services. Computer 
centers must gradually change their images from that of 
providers of general computing capacity to that of providers 
of computing services. In this context, they must focus on 
how they might best help the user to satisfy his computing 
needs, rather than trying to adapt his needs to fit their 
offerings. This concept is much easier to state than to im
plement. Hardware budgets, number of employees and so
phistication of equipment are traditional measures of re
sponsibility that are easy to quantify and evaluate. Service 
or cost-effectiveness of service are generally accepted con
cepts, but very difficult to measure. Administrative officers 
must find a way to motivate their computer center to focus 
on the latter concepts in looking at its performance. 

Expanded responsibility for user services. Particularly in a 
networking environment, the role of user services must be 
greatly expanded. It must be able to direct the user to avail
able service options and alternatives, to assist in the selec
tion process, and to assist the user in utilizing remote re
sources. All this is in addition to their more traditional 
services relative to the local facility. Although this new role 
is a difficult one, it is necessary before the computer center 
can effectively function as a provider of service as previ
ously described. 

More direct control for users. The current situation with 
respect to outside services at most educaiionai institutions 
can be summarized as a financial consideration: Those with 
"real" or outside money usually may spend it where they 
like: those with "funny" or internal money are usually con
strained to the local facility. This institutional posture may 
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not show any relation either to need or to cost/benefit con
siderations. In order to effectively function in a service 
environment, control over choice, and the responsibility for 
those choices, must shift from the institution to the user (or 
at least to the department). The user must be given both the 
motivation to examine alternate modes of obtaining service, 
and the authority to act on his decision. His decisions need 
not be based on cost alone, but could also include consid
erations of reliability, user support, suitability of service to 
his needs and ease of use. 

Make economic implications of choices mOi'e explicit. One 
of the major barriers to implementing the concepts just de
scribed is that the true economic implications of alternatives 
are rarely very explicit. Users are often faced with a choice, 
for example, between "free" internal computing and rela
tively expensive outside alternatives. In reality the incre
mental cost of providing the internal service may very well 
be higher than that of going outside. The evolution from free 
computing to real money will help this situation, as will an 
environment that motivates the computer center to focus on 
cost-effective service instead of merely the internal provi
sion of service. 

Implications for networking. Although networking offers 
a very attractive alternative for meeting certain computing 
needs, it will probably never be a very large percent of the 
computing usage at the average institution. However, for 
the user who cannot find what he needs locally, it represents 
a significant alternative for meeting his requirements through 
the purchase of external services. Such usage will grow 
slowly as institutions experiment with this mode of usage 
and accept it gradually where it proves successful. Financial 
concerns will continue to be a major factor, and users with 
their own source of funds will have more ready access to 
the network. This will gradually change as institutions begin 
to view computing as a service rather than a facility, and 
users acquire more control over their selection of such ser- . 
vices. 
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The economic impact of network affiliation upon institutions 
of higher learning 
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INTRODU<;:TION 

Educational and research institutions are increasingly be
coming concerned with determining the best means by which 
their computing requirements ean be satisfied, since these 
needs are becoming increasingly varied and are continuing 
to expand. Simply installing more processor power is no 
longer a solution. More types of software support, ranging 
from languages to specialized applications packages, are 
needed. Various types of data bases must be made available. 
Each of these entails the development of the necessary fa
cilities as well as continuing maintenance. While technolog
ical developments are continuing to reduce the cost of raw 
computing power, the cost of software is continuing to rise 
relentlessly. Accordingly, it is becoming economically im
possible for many institutions to support the breadth and 
variety of software that their users desire. 

One oft-talked-about solution to these growing problems 
is the computer network. For example, by linking institu
tions together it would be possible to share the development 
and maintenance costs of software and specialized data 
bases over a much broader user base. Clearly, it is unlikely 
that there would always be a nice fit between the services 
economically supplied locally and the services available over 
a network. On the other hand, it is clear that a national 
educational and research computing network would contrib
ute toward the solution of the escalating support costs being 
encountered. It would also address the problem of nonlocal 
availability of unique or specialized resources. 

There are obviously drawbacks to such a national net
work. Yet, the potential is so great that considerable interest 
exists. For example, EDUCOM (a consortium consisting of 
more than 250 colleges, universities, and nonprofit organi
zations and dedicated to helping its members make the most 
effective use of computer and communications technology), 
with the financial support of the National Science Founda
tion, organized a series of General Working Seminars on the 
subject of computer networking in higher education and 
research. Invited participants were drawn from the ranks of 
university administrators, computer center directors, users 
from key disciplines, and computer scientists. 

The results of the General Working Seminars have been 
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set forth in a very readable book! and shall not be repeated 
here. However, a general observation concerning the par
ticipants' conclusions is pertinent. Regardless of their 
professional role, all participants agreed that it is now tech
nically feasible to create a national network linking computer 
facilities at colleges, universities, and research institutions. 
While technological problems do remain to be overcome, 
these were viewed as minor in relation to the non-technical 
difficulties confronting such a network, difficulties involving 
economic, political, and organizational considerations. Ac
cordingly, it was believed critical to obtain a clear under
standing of these factors before embarking upon any large
scale network development. 

A variety of projects have been conducted to examine 
various aspects of networking. For example, a study by 
Weingarten, Nielsen, Whiteley and Weeg2 examined the ef
fects which the National Science Foundation's Regional 
Networking programs have had upon institutional computing 
activities. Berg3 has examined the exchange of computing 
services in relation to comparative advantage and interna
tional trade concepts from economics. Heller4 studied the 
relative price differentials between institutions for pro
cessing different types of standardized jobs. This represents 
an empirical study of the comparative cost advantages of 
different computing facilities, independent of the advantages 
of greater service offering availability. 

No one project, however, has taken a comprehensive look 
at the overall impact of a national network linking institu
tions of higher education and research. The concerns voiced 
at the General Working Seminars, coupled with the net
working interests of many institutions, led to the formation 
of a comprehensive three-year investigatory project funded 
by the NSF and conducted by EDUCOM. 

Experimentation on a national basis with a prototype net
work was rejected for a number of reasons. Such an effort 
would be very costly, would severely restrict the alterna
tives that could be investigated, would disrupt the normal 
operations of the affiliated institutions, and would require a 
significant commitment of energy and personal time from 
many key individuals. 

Accordingly, a simulation approach was taken to inves
tigate the non-technical issues confronting a national edu-
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cation and research computing network. This paper reports 
upon just one aspect of the overall study, namely the eco
nomic impact which affiliation with such a network might 
have upon member institutions. 

THE NETWORK SIMULATION PROJECT 

The network simulation project conducted by EDUCOM 
was divided into three phases. The first phase consisted of 
basic data collection. Eighteen education and research in
stitutions participated in the project, each contributing a 
voluminous amount of data with respect to the computing 
resources which they maintained and operated (hardware 
and software facilities), as well as data with respect to cur
rent operations (pricing schedules, priorities, demand levels 
by service type, and turnaround times as a function of de
mand levels). In addition, data was collected on user pro
files. A network simulation model to operate upon this data 
was constructed. The results of this project phase have been 
reported previously. 5-11 

Phase two expanded and updated the accumulated data 
base. Visiting teams interviewed administrators, users, and 
computer center personnel at each institution. Computing 
policies, practices, and decision rules, as well as institutional 
computing goals, were deduced from the interview data, 
confirmed with each institution, and added to the data base. 

Phase three enhanced the basic simulation model, so that 
it could be operated in three modes: 

• As a basic simulation model, with all decisions at each 
institution being reflected by programmed decision 
rules. 

• As a "straw network" game, with the player making 
decisions for' his institution but with pre-programmed 
decision rules making all other decisions. 

• As a full network game, with all decisions being made 
in parallel by institutional representatives. 

The basic simulation model was used to investigate a number 
of issues such as network stability to induced shocks: traffic 
flows as a function of price, service levels, and policy de
cisions: and migration and usage patterns. The straw net
work game was used by each of the participating institutions 
to learn about the possible effects of network membership 
and to experiment with alternative policy decisions. The full 
game was employed during a three-day session held at ED
UCOM with representatives attending from each of the par
ticipating institutions. In addition, these attendees partici
pated in a number of workshops. Project findings are 
summarized in Reference 12. 

Although institutions have a variety of reasons for seeking 
to join and participate in a national computer network, all 
share a common concern-namely, the likely economic im
pact of participation. Economics is the glue that binds all 
portions of the institution together, and the economic impact 
of national network membership is something that would be 
felt indirectly if not directly by all members of the institution. 

Accordingly, it is important to consider in some detail the 
possible economic consequences of network membership. 

CASH FLOWS 

When "cash flow" is mentioned in connection with a 
network, the associated thought is often "unplanned cash 
flow imbalances." It is very likely that there will be a net 
cash flow (either inflow or outflow) between anyone insti
tution and the other institutions on the network, for it is 
very unlikely that an institution's exports of computing ser
vices would exactly match its imports. Further, because of 
the variations in demand and supply, the net cash flows are 
very likely to differ from the desired or budgeted level. 

Cash flow imbalances 

Whether a net cash flow will or will not pose a problem 
for a specific institution is a function of three characteris
tics-the size of the net cash flow (relative to the total 
computing budget and to the budgeted level of net cash flow 
for that institution), the size of the cash inflow and outflow 
individually relative to the total computing budget, and the 
rate at which the magnitude of the net cash flow is changing. 

Relative size of net cash flow 

A net cash inflow or outflow will have little impact if it 
totals only a small percentage of an institution's total com
puting expenditures or of an institution's budgeted level of 
net cash flow. An institution may plan to run a small surplus 
to relieve budget problems or to run a large deficit because 
it chooses to purchase services externally rather than main
taining a larger on-campus computing capacity. In either 
case, so long as the difference betwe~n planned and actual 
is relatively small, the net cash inflow or outflow is not 
likely to impact the institution significantly. 

A large net cash flow, relative to budget, may have a 
significant impact. If steps were not taken to increase (de
crease) capacity or to restrict the purchase (sale) of services, 
there would necessarily be an effect upon an institution. An 
unexpected net cash outflow would require funds to be di
verted from other activities or would require deficit financ
ing on the part of the institution. An unexpected net cash 
inflow may be used to support other activities (or it may by 
law flow to another organization, e.g., the state treasurer). 
It may also impact the service received by internal computer 
users and may cause other side effects (e.g., tax implica
tions, violation of restrictions on unrelated income or source 
of income). 

Size of the cash flow components 

Independent of whether cash inflows match cash out
flows, there should be a concern for the size of the cash 
inflows and outflows relative to the institution's overall com-



puting expenditures. For example, a high level of external 
service purchases should raise questions concerning contin
ued availability of these services to the institution's mem
bers and the possibility of negotiating volume discounts from 
volume suppliers. On the other hand, a high level of sales 
to external users should raise questions concerning the li
kelihood of continued demand for these services. In either 
case there should be a concern about possible contractual 
arrangements, quantity discounts, volume guarantees, and 
the like. The sudden termination of a major supply source 
could seriously impact the continuation of the users' edu
cational and research computing while the termination of a 
major demand source could remove revenue needed to sup
port relatively high fixed costs of the computing facility. In 
either case, there is a potentially significant economic impact 
upon the institution, and the risk must be recognized and 
dealt with accordingly. 

However, unless an institution happens to offer a very 
popular specialized service, it is expected that the cash flows 
will be relatively small. Even in those cases where the cash 
flow is intended to be relatively large, there are mechanisms 
to protect against the increased-risk. Thus, risks previously 
described should not discourage economically sound ar
rangements. It is just that the importance of proper contrac
tual arrangements to protect the interests of both buyer and 
seller becomes much greater in these circumstances. 

Rate of change of net cash flow 

The fixed costs associated with the operation of a com
puting facility are relatively large. Thus, in the short run, a 
rapid change toward greater cash inflow would result in 
deteriorating service or response time, while a change to
ward lesser cash inflow would result in operational losses 
(or reduced surpluses) with such budgetary shortfalls having 
to be met with other institutional funds. Because of the 
relative inflexibility of short term cost/capacity adjustments 
in a computing facility, a rapid change in net cash flow can 
have potentially serious consequences. 

On the other hand, more slowly evolving changes offer 
the potential for lesser impact, since there is more time for 
the institution to make appropriate adjustments in purchase/ 
supply levels. 

Areas improved by differential cash flmvs 

There are a number of impacts which may stem from the 
above-described factors. These impacts are controllabie in 
the sense that cash flows can be controlled with management 
attention. The key is to make sure that proper and timely 
control is exercised. 

Minimum acceptable central facility 

Most institutions feel for reasons of control, local service, 
prestige, and so forth that there is a minimum size and 
capability level below which they would not want to reduce 
their central computing facility. (Often, this minimum size 
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is not very far below current capacity.) Such a capacity floor 
introduces a number of complications into network mem
bership. 

Fot example, the existence of a minimum capacity target 
implies that the central facility should operate at greater 
than or equal to the specified minimum capacity. Otherwise, 
the institution would be paying more than it should for 
computing, representing a direct drain on the institution's 
budget. The only alternative to an outright subsidy (paying 
for the operating deficit) is to attempt to increase net income 
through price adjustments. However, higher prices may en
courage additional business to flow to the network (thereby 
decreasing revenues and requiring that prices be raised again 
in a continuing cycle) and lower prices may not generate 
sufficient additional demand to overcome the reduced rev
enue from existing business. 

A minimum capacity level may also result in a number of 
institutional goals being overridden. For example, an insti
tution may desire to provide its entire user community with 
ready access to a national network so as to enhance the 
effectiveness of teaching and research. However, if this 
results in insufficient business being directed to the institu
tion's own computing facility, then pressures will develop 
to restrict network access. Network access may be rationed, 
outside usage may be taxed (to make internal use look eco
nomically more attractive to the user), or network use may 
be prohibited for certain types of computing (or for certain 
types of users such as students). 

Hard versus soft funding for computer services 

Many institutions fund internal computing with so-called 
soft money. That is, the institution directly supports the 
computing facility's budget and then allocates or rations 
usage by distributing time or "funny money" credits to 
users. The "funds" so distributed to users have no value 
for anything other than local computing, hence the term 
"soft." In contrast, all network computing will involve 
"hard" or real dollar expenditures. Thus, institutions must 
find additional hard money to fund those network services 
that are utilized, as additional cash outflows will be trig
gered. 

The funds to support network usage may come from four 
sources. They may come from hard dollars earned from the 
sale of computing services to the network (analogous to 
earning foreign exchange in international trade), or they may 
come from a reduction in support for the institution's own 
computing facility. Additional hard funding may be obtained 
from reductions in other programs or activities at the insti
tution, or it may be obtained from new funding sources. 
However, in pursuing new sources of funding, network 
usage would potentially have to compete with all other in
stitutional programs seeking additional funding support. 

Network sales viewed as an asset exchange 

An institution that is selling computer services to network 
users is in essence performing an asset exchange, ex chang-
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ing a portion of its computing facility for dollars. Whether 
or not this is advantageous depends upon the institution. 
For example, many state universities currently receive a 
fixed allocation from the state legislature to support com
puter operations; in tum, all revenues from services go to 
the state. Computing service sales to the network under 
these conditions would be disadvantageous, for the institu
tion would essentially be losing part of its computing capa
bility without receiving any benefit in exchange. 

Revenue source 

Membership in a network is often looked upon as a rev
enue source. There is a widespread belief that institutions 
can "make a profit" by selling computer services. (Clearly, 
not all institutions can be net sellers of services, although 
obviously some will be.) However, even for net sellers of 
service, the opportunity to generate net income is not with
out cost. 

First, if capacity is expanded to support outside service 
sales, then increased capital and operating costs must be 
considered along with the investment risk (users may switch 
to another facility at a later date, leaving the institution with 
excess capacity). Second, if capacity is not expanded pro
portionately, the institution's own users will be "paying" 
for the outside usage in terms of longer turnaround times 
and increased congestion. In fact, if the institution offers a 
priority surcharge scheme, internal users may literally sub
sidize outside usage through the priority charges required to 
maintain the same turnaround time. 

BUDGETING PROCESS 

The budgeting process will also undergo change in a net
working environment. At the present time most institutions 
make an estimate of sponsored research computing (based 
upon research contracts in-house and upon proposals out
standing) and an estimate of the appropriate level of edu
cational, administrative, and unsponsored computing. These 
figures are compared with the budget requirements of the 
computing facility in order to serve the aggregate workload, 
and a final budget is established for each type of computing. 
Funds for these activities are then allocated to the prospec
tive users, using either soft or hard dollars, depending upon 
the policy of the institution. 

With a national networking environment, two new factors 
appear-use of the local computing facility by external users 
and use of external computing services by local users. The 
former is a source of hard dollars, while the latter consumes 
hard dollars. The budgeting process still goes through the 
estimation phase as before. However, estimates must also 
be made of external use of the local facility. This estimate 
is more difficult to make, since an institution will generally 
have little knowledge of the computing plans of external 
users for the forthcoming budget period. (This is another 
reason why service guarantee/minimum volume agreements 
can be advantageous.) Since less is known about the volume 

and timing of external demands, there is likely to be a greater 
error surrounding their estimate. Hence, the institution 
should be prepared to accept a greater shortfall of revenue 
or a greater excess of demand at its computing facility than 
customary. 

The budget preparation process must also address the 
needs of internal users for outside services. The use of 
network services by internally-funded users can be tightly 
controlled, since the institution is in a position to dictate 
limits on the amounts that can be spent. The real risk arises 
if the institution ties the level of external use by these users 
to the level of service supplied to external users over too 
short a time span, so that fluctuations in external sales would 
disrupt the educational and research process. 

PRICING PRESSURES 

Most institutions presently operate their computing facil
ities as a quasi-monopoly. A variety of constraints (both 
funding and administrative) are established to restrict users 
to the local facility. However, participation in a national 
network implies much greater freedom for users to move to 
external computing sources to satisfy their computing needs, 
and institutions will be subject to a number of new pres
sures-pressures that will constrain some of the ways in 
which they might seek to price their computing services. 

Specialization 

As one would expect, different types of computers have 
different relative advantages in processing a specified work
load. As the study of Heller" showed, no one installation 
was least expensive for all types of work. Each had a relative 
advantage for some types and a relative disadvantage for 
others. Thus, no matter how well an ipstitution is operating 
its local computer facility, there will be external services 
that will likely be more cost-effective for certain types of 
work. 

As a result there is likely to be a trend toward speciali
zation of the services offered by different facilities. As var
ious segments of one facility's business are drained off by 
other fa<;ilities having a comparative advantage, the insti
tution is forced to compete in those areas in which it has a 
comparative advantage. Thus, there will be pressures to 
specialize. This mayor may not be in keeping with the 
institution's objectives. 

Price structure 

Differences between facilities are not limited to computer 
power alone. Many installations operate in a bundled fash
ion, with service and support factored into the computer 
rate. Accordingly, by shopping around, a user can select 
one service offering good support for program development 
and another service offering "cheap cycles" for those oc
casions when turnaround and support are not important. 



Thus, pressures will develop to move each member insti
tution toward a common, unbundled pricing structure 
(though not toward the same prices). To the extent that an 
institution fails to price some component of a service, there 
is a significant loss potential. Business that does not take 
advantage of the favored resource (but pays for it) will be 
lost, and business that does use the favored resource (but 
doesn't pay for it) will be gained. Revenue is likely to be 
lost, unless the institution adjusts toward an unbundled price 
structure. Such a change mayor may not be in keeping with 
an installation's operating philosophy. 

Cost-recovery disparities 

No two institutions are exactly alike, and their accounting 
systems are likely to be even more dissimilar. Thus, the 
costs that are included in the rate-setting process will vary. 
Even if two institutions have identical computing equipment, 
staff salaries, and rate structures, the values calculated for 
those rates are likely to differ due to differences in the cost 
bases or cost-calculation procedures used. Even among the 
eighteen participating institutions in this project, we found 
wide variations in reported costs in environments that would 
appear similar or comparable. Thus, many institutions are 
likely to feel there is "unfair competition" from institutions 
whose accounting systems might yield a lower cost base for 
budget and rate purposes. 

Local service advantages 

To place the previous factors in perspective, it must be 
remembered that every institution has many significant com
petitive advantages with respect to its local user population. 
For example, there is the general desire of users to "do it 
here" where things are more familiar and where they may 
have greater control or can obtain better responsiveness 
from the "establishment." There is also the inertia factor. 
Computing is not a uniform commodity, and there are sig
nificant conversion barriers to switching sites and services. 
Consulting and other user assistance can be provided better 
locally. There is also a cost associated with using a network 
(e.g., transmission costs), so each institution can offer a 
built-in cost advantage to its local user community. Thus, 
there will always be room for an institution "to do its own 
thing" without fearing the immediate departure of most of 
its local users. 

CONSTRAINTS ON A FREE-MARKET NETWORK 

In theory, the national network should be a competitive 
market place that permits competition between facilities to 
squeeze out operational inefficiencies and to encourage new 
entries when service offerings are inadequate. Users in such 
an environment would shop for the facility offering the great
est comparative advantage for their computing needs. As a 
result, more computing would be performed for the same 
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cost, and everyone would be a winner. In practice, however, 
this m'ay not happen. The stage is set, but there are a number 
of constraints which may preclude such competition. 

Non-comparable services 

Many of the computing services to be made available over 
the network are expected to be unique or specialized ser
vices. By their very nature these servicf'" will not be offered 
by many institutions. Hence, a competitive maiket fOi those 
services is unlikely to develop. 

Legal 

A variety of legal constraints, ranging from prohibitions 
on serving commercial organizations to prohibitions on serv
ing out-of-state organizations, may restrict the ability of a 
computer facility to sell its services externally over a na
tional network. The constraints will vary, depending upon 
educational discount contracts, state laws, and institutional 
charters. 

Tax 

Most educational institutions are exempted from property 
and income taxes with respect to their educational facilities 
and activities. To the degree that various taxing jurisdictions 
declare network service activities and revenue to be a non
educational use of facilities, an institution's ability to partic
ipate in the network may be sharply curtailed. Whether any 
commercial work will be tolerated and whether the provision 
of services to other educational institutions will be viewed 
as an educational or a business enterprise will depend upon 
the local taxing authorities' interpretations of their laws and 
regulations. However, the economic impact upon an insti
tution could be significant, as could the constraints upon 
network affiliation. 

Federal 

An internal computing facility serving federally-funded 
computing users is required to share its costs fairly among 
the various users. There is an elaborate body of procedures 
associated with the definiiion of ""fair costs." Normally, so 
long as the federal government pays these "fair" rates and 
other users, internal or external, pay no lower rate, the 
institution may charge whatever rate it desires. 

However, will federally-funded network users from other 
institutions still be considered outsiders on whom surcharges 
may be levied, or must these users be considered part of the 
internal federal sharing community which must be charged 
the lowest rate? Also, the importing and exporting of com
puter services by an institution may be viewed simply as an 
exchange of services, in which case an institution would 
have to make representations to its auditors about the fair-



810 National Computer Conference, 1979 

ness of another institution's charges. (Under the exchange 
interpretation, the computing charges of the external com
puting facility would have to be included in the local com
puting facility's cost base.) 

One of the features often mentioned in connection with a 
national network is a provision for software royalties. This 
would enable the developer of a program or routine to es
tablish a usage fee, providing an incentive to individuals to 
develop and share high quality software. It is anticipated 
that an individual could specify any royalty level he wished, 
depending upon his perception of the quality of his work 
and its value to others. However, arbitrarily established 
surcharges for internal users are not likely to be acceptable 
to government auditors, and the consequences could be 
severe if a broad set of external users (e.g., those with 
federal funding) were to be considered "internal users" for 
rate purposes. Thus, federal regulations may have a signif
icant impact upon one of the planned mechanisms to stim
ulate the development and sharing of quality software. 

Loss of freedom 

The decision to supply service to external users may result 
in a loss of freedom for the supplying institution. If the 
supplier were to see itself as offering a full-fledged service 
rather than temporarily selling excess capacity, it would lose 
the freedom to modify network service availability unilat
erally in order to accommodate local needs. 

By the same token, unless the user of an external service 
has some form of service availability agreement, he may be 
giving up control over his computing supply. Thus, some 
other organization, with which he is not affiliated, would 
have the power t~ change the availability or conditions of 
his access. 

Growth 

Even if an institution were able to compete freely in a 
national computing marketplace, there are a number of con
straints upon growth (both upwards and downwards) of its 
computing facilities that may limit network participation. 

• Institutional charter-The institution may not be able 
to operate an auxiliary, revenue generating enterprise, 
so that external business would have to be minimal. 

• Desired facility size-The institution's goals for a local 
facility may prevent the facility from being reduced to 
its economically optimal size. 

• Entrepreneurial risk-The institution may not be will
ing to accept the entrepreneurial risk associated with 
installation of additional· computing capacity and the 
sale of computing services to an external market. 

• Capital investment-An institution may not be able to 
expand facilities to serve external ll"ero;; hec~'I1lse of an 
inability to obtain capital funds. 

EVOLUTION OF NETWORK COMPUTING 
FACILITIES 

All of the factors discussed above appear to dictate against 
a significant change in the size of an institution's computing 
facility. However, there are ways around these problems. 
The following subsections suggest ways in which network 
computing facilities might evolve. 

Evolution of major network suppliers 

The establishment of a separate, wholly-owned corpora
tion to serve network demands (when business exceeds the 
institution's growth limitations) is a likely mechanism for 
providing popular computer services to a national market
place. Many institutions have indicated a desire to make 
their services available to other educational and research 
users. However, should these services prove very popular 
and should demand exceed what can conveniently be 
served, we have observed a willingness of institutions to 

, consider setting up a separate organization to serve a na
tional network community. 

This mode of network facility development has already 
been observed in practice. For example, library cataloging 
services started out as small offerings on the host institu
tion's computer facility. However, in the case of BALLOTS 
and OCLC, as the volumes of these services grew, they 
were spun off by their host institutions into separate service
providing organizations. Thus, the national network could 
evolve to a number of institutions providing minimum ser
vice volumes and a number of commercial organizations 
providing larger volumes of specialized services. 

Evolution of major network buyers 

The facility that is a successful network service buyer is 
likely to have evolved along one of two paths. On the one 
hand, it may have become a smoothly-operating, specialized 
facility that provides a limited range of services and imports 
the bulk of its requirements. The computing facility (hard
ware, software, and staff) would have become oriented to
ward providing a selective number of high quality, special
ized services. Other services would be supplied to users via 
network purchases. The facility itself might be large or 
small, depending upon the volume of those specialized ser
vices it might sell to others. 

On the other hand, the network buyer may have become 
a very small, limited computing facility. The institution may 
have reached this point either via a conscious decision to 
install limited local hardware capability, or by a decision to 
reduce the hardware configuration and scale of operation of 
an earlier facility. In either case network services would be 
1Ised to enhance the hreadth ::tnd cost-effectivene"ls of the 
computing services offered to the local user community. 



COST CONSIDERATIONS 

The availability of a wide array of computer services will 
have a number of cost-related impacts upon an institution 
and its internal user community. In particular, the benefits 
(costs) will accrue to (will be borne by) different portions of 
the institution. The following represent a sample of the con
siderations which an institution should evaluate in reaching 
a decision on network participation. 

User cost savings 

The previously-mentioned study by Heller4 indicated that 
the total cost to run a standard benchmark job at each of a 
number of institutions spanned a wide range. Variations of 
more than 10: 1 were observed in job cost from one insti
tution to another. This variation provides a significant op
portunity for a user to "shop around" and obtain meaningful 
cost savings for his particular type of work. 

On the other hand, if an institution has the capability and 
the capacity to do the work locally but the user takes his 
work elsewhere for processing, the total amount spent ex
ternally will be a direct loss of income for the institution. 
Note that the loss to the institution will exceed the user's 
savings. In order to maintain the same "net income" posi
tion, the institution must reduce the size of its own com
puting facility (e.g., hardware, software, staffing level re
duction) and/or obtain a compensating volume of business 
from other external network sources. Thus, when evaluating 
the user benefits that might accrue, an institution must also 
consider the actions that it will have to take to compensate. 

User cost increases 

Computing is not a uniform commodity, so one cannot 
substitute "Brand A" for "Brand B" effortlessly. There
fore, in order to obtain the savings indicated by the job 
processing-cost differentials described above, it will be nec
essary for the user to investigate the relative costs and 
advantages/disadvantages of different facilities. In addition, 
when he makes a decision to use "Facility X," the user 
must learn the command language and control statements 
for that facility and learn to work with a remote user con
sulting organization. 

All of these activities require an expenditure of the user's 
resources. The institution or the network may provide some 
assistance. For example, data on processing costs for com
mon benchmark programs at all facilities might be provided, 
so that the user would have information on which to limit 
his field of investigation. However, learning to operate with 
a new facility is a cost the user must always bear. Even if 
this did not involve an accounting charge, there would still 
be the cost of lost time, personal effort, and energy. Thus, 
the potential cost savings must be reduced by these added 
costs. 
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Facility cost savings 

The availability of network revenues may permit an insti
tution's computer facility to expand to a more economic 
size and take advantage of economies of scale. This would 
permit unit cost savings to be passed on to all users, internal 
and external alike. Usage growth may also permit the facility 
to upgrade its support levels for certain services, or to sup
port new services which were not economic at lower usage 
levels. 

Similarly, the availability via the network of external ser
vice suppliers may also permit an institution's computer 
facility to obtain cost savings by not expanding (or by ac
tually contracting) its scale of operation or its offerings. For 
example, a facility may be able to avoid a costly upgrade to 
new hardware by off-loading some of its growing local de
mand to outside service suppliers. Or a facility may be able 
to reduce its support costs by dropping services whose sup
port is very costly or difficult to provide or whose use is 
infrequent. Such services can be eliminated locally, since 
they could still be obtained remotely via the network. Thus, 
a network connection offers a variety of cost saving alter
natives. 

Institutional benefits 

The availability of specialized computer services via a 
network connection may enable an institution's research 
community to be more competitive in obtaining external 
research funding. That is, researchers might be able to un
dertake activities that had been foreclosed to them previ
ously due to lack of proper computational facilities. Greater 
research breadth and facilities' availability may also enhance 
the institution's educational program, aid student and faculty 
recruitment, and enhance the institution's reputation. Fur
ther, to the degree that researchers are successful in attract
ing additional external research support, the indirect or 
overhead charges against these research contracts will make 
a positive contribution to the support of the institution's 
facilities and general operations. 

PERSPECTIVES 

The various types of economic impacts that have been 
discussed must be characterized as potential impacts; they 
might or might not occur. Their significance will depend 
upon the particular institution, the type of network, and the 
operating environment. However, each impact can poten
tially occur, so it needs to be considered explicitly. 

On the other hand, reading the list of potential impacts 
gives an overall negative impression, for there are many 
things that can go wrong. Yet, many of these negative events 
are not likely to occur. Consider, for example, the iong iist 
of things that could go wrong with a jet airplane. Fortu
nately, most of the possibilities on that list never occur, and 
we continue to use commercial air transport safely. There
fore, let us consider what types of networking situations are 
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likely to occur, based upon the data provided by the partic
ipating institutions. 

Initial network usage is likely to involve specialized ser
vices that are not available locally. (Such specialized ser
vices would include application packages, data bases, as 
well as "cheap raw cycles. ") There is little expectation that 
major portions of an institution's internal users' workloads 
would be processed externally. Likewise, there is little ex
pectation that any supplier would capture a major portion 
of another institution's processing load. There will, of 
course, be exceptions. For example, Harvard not too long 
ago gave up a major portion of its local computing capability, 
choosing to rely instead upon service purchased remotely 
from MIT. However, it is expected that network flows for 
exports and imports of computer services will be in the 
range of five percent to 15 percent of an institution's overall 
processing budget. 

At this level of interaction, many of the potential funds 
flow problems discussed above become manageable. At 
worst, an institution might face a 15 percent reduction in 
business due to internal users going out on the network for 
service or and no external users choosing to make use of the 
facility. While no one looks forward to a 15 percent budget 
cut, it is not likely to cause severe dislocations. The impact 
may be further softened, since many institution's workloads 
are growing and since network utilization is expected to 
phase in gradually. 

Similarly, the other worst case (no internal users make 
use of network services but network users add 15 percent 
to the processing load on the facility) does not pose a sig
nificant danger. Most facilities either have some excess ca
pacity available or have planned various small enhance
ments that will increase capacity at moderate cost. Thus, 
the increased demand should be accommodated without 
undue service deterioration, expense, or risk. 

Pressures stemming from service-level comparisons (e.g., 
turnaround time, software quality) are likely to be present 
but muted due to the high conversion costs between facilities 
and the existence of user inertia. As long as these pressures 
remain moderate, they will exert a healthy influence on 
operations. However, unlike the other areas, this one has a 
much greater potential to become serious. If an institution 
is not operating close enough to the "customary" service 
levels, or if it is operating old, inefficient equipment, it might 
well be placed under rather severe competitive pressures. 

The various constraints on a free-market network repre
sent very real issues. Many institutions believe that these 
issues will not become serious so long as network business 
represents a "small enough" proportion of their business. 
On the other hand, network business amounting to 15 per
cent of revenues may not be "in the noise level," especially 
for facilities with multi-million dollar aimual budgets. It is 
impossible to speculate as to the likely outcome. Impacts of 
some of these issues will depend upon the rulings and inter
pretations of local governmental jurisdictions; thus an in
consistent pattern of effects may be seen across the country. 
In other cases, similar situations have not arisen previously, 
su there are no precedents from which to extrapolate. 

The constraints upon facility growth, while formidable 

sounding, are not expected to be a severe limitation on 
network development. Most facilities are not expected to 
face significant growth problems. The few that might face 
very high external demand levels are likely to be those with 
a pre-existing entrepreneurial disposition, sites that would 
be willing to create a new business enterprise to provide the 
demanded services to the network user community. This 
has been an observed growth pattern in university comput
ing operations, and administrators generally expect analo
gous behavior in a networking situation. 

The cost savings and other benefits that have been de
scribed appear for the most part to be real. That is, it appears 
that users will be able to gain the benefits described within 
the bounds of a reasonable .expediture of effort. Thus, the 
promise of a national network in many respects appears 
realizable. 
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Approaches to concurrency control in distributed data base 
systems* 

by PHILIP A. BERNSTEIN and NATHAN GOODMAN 
Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

Whenever multiple users or programs access a data base 
concurrently, the problem of concurrency control arises. 
The problem is to synchronize concurrent interactions so 
that each reads consistent data from the data base, writes 
consistent data, and is ultimately processed to completion. 
In a distributed data base this problem is exacerbated be
cause a concurrency control mechanism at one site cannot 
instantaneously know about interactions at other sites. No 
fewer than 30 papers on this topic have appeared to date. 
Our purpose is to survey this literature, concentrating on 
three approaches-locking, majority consensus, and SDD-I 
protocols-which together subsume the bulk of the litera
ture. ** 

Distributed concurrency control is complex and our treat
ment is, of necessity, sketchy. We urge the interested reader 
to consult the source materials listed in the bibiiography. 

BACKGROUND 

Preliminary definitions 

A distributed data base management system (abbr. 
DDBMS) is a collection of sites interconnected by a net
work. Each site is a computer running a local (i.e. non
distributed) DBMS, and the network is any computer-to
computer communication system. We assume that sites are 
widely dispersed geographically, so the network must em
ploy long-distance communication media. Consequently, 
inter-site communication is quaiitativeiy siower and more 
costly than intra-site computation. 

We define a data base to be a collection of data items. In 
practice, a data item may be a field. a record, a file, etc. 
This "level of granularity" is important, but does not impact 
concurrency control and so we leave it unspecified. 

Each data item may be stored at any site in the sysiem, 

* This work was supported by the National Science Foundation under Grant 
MCS-77-05314 and by the Advanced Research Projects Agency of the De
partmenr of Defense. contract number NOOO39-78-G-0020. 
*" References on these approaches are listed in the bibliography by topic. 
We will limit our use of in-text references in the interest of readability. 
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and moreover each may be stored redundantly at several 
sites. Redundant data improves the robustness and perform
ance of a DDBMS and must be supported by general purpose 
systems. Unfortunately, it is also a major source of com
plexity. A stored copy of a data item is called a stored ddta 
item. Though it is impossible for all stored copies of a data 
item to be identical at every instant of time, it is essential 
that all "converge" to the same final value. We use the term 
logical data item when the distinction between "data item" 
and "stored data item" requires emphasis. 

Users interact with the DDBMS by entering transactions, 
by which we mean a program or on-line query that accesses 
the data base. Transactions have two important properties 
in our model-( 1) We assume they represent complete and 
correct computations: i.e. each transaction, if executed 
alone on an initially consistent data base, would terminate, 
output correct results, and leave the data base consistent. 
(2) We assume transactions obtain data from the data base 
by issuing Read commands to the DDBMS, and modify data 
by issuing Write commands. The arguments to these com
mands are logical data items and it is the responsibility of 
the DDBMS (a) to choose one stored copy of each data item 
for Reads, and (b) to update all stored copies of each data 
item for Writes. We model a transaction as a sequence of 
Read and Write operations paying no attention to its internal 
computations. 

The read-set of a transaction is the set of logical data 
items it reads, and its write-set is the set of logical data items 
it writes. Two transactions conflict if the write-set of one 
intersects the read-set or write-set of the other. Similarly, 
two operations conflict if one is a Write and they operate on 
the same daia. ii is a fundamental theorem of concurrency 
control that two transactions require synchronization only 
if they conflict. (The converse need not be true, as we shall 
see in the fifth section). 

Serializability 

A log is a sequence of Reads and Writes. A log is serial 
if the Reads and Writes for each transaction are contiguous 
(see Figure I). Such a log represents an execution in which 
no transactions execute concurrently. Since we assume each 
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Serial log 

Rl (X)} 
Trans. Tl 

W1(x) 

Serializab1e log 

R1(x) 

W2(Z)}These operations can 
W (x) be interchanged with-

1 out affecting the 
R (x) computation. 

2 

W2(x) 

Figure I-Serial and seriaIizable logs. 

transaction preserves consistency if executed alone, a serial 
sequence of transactions also preserves consistency. A log 
is serializable (abbr. SR) if it is "equivalent" to a serial log, 
meaning that for all initial data base states it produces the 
same output and the same final data base state as some 
serial log. Since serial logs preserve consistency, and SR 
logs are equivalent to serial logs. SR logs preserve consist
ency as well. 

In a DDBMS, each site processes a different log. We 
define a distributed log (abbr. dlog) to be a set of logs, one 
per site. A serial dlog is a dlog in which each component 
log is serial and reflects the same total ordering of transac
tions (i.e., all transactions are in the same relative order in 
all logs in which they appear). A dlog is serializable if it is 
equivalent to a serial dlog. 

Serializability has been adopted almost universally as the 
correctness criterion for DBMS concurrency control; all the 
approaches we describe follow this convention. Alternate 
correctness criteria are discussed in References 20 and 22. 

Other aspects of concurrency control 

In addition to ensuring serializability, a concurrency con
troller must guarantee termination; it must operate robustly: 
and it must operate efficiently. 

A transaction may fail to terminate for one of three rea
sons--(l) Deadlock may occur, i.e. two or more operations 
might be forced to wait for each other. (2) Some operation 
may be indefinitely postponed by an unexpected conspiracy 
of events. Or (3) C.vdic restart might be experienced, mean
ing that the transaction repeatedly reaches a blocked state 
and is aborted and restarted. Every concurrency control 
approach is susceptible to some combination of these prob
lems. 

With respect to robustness, all approaches face essentially 
identical problems. We discuss this issue in the sixth section. 

The efficiency of a distributed concurrency controller is 
determined principally by how much inter-site communica
tion it requires. Typically, message delays in long distance 
networks are tenths of seconds, and network capacity is the 
scarcest system resource. In analyzing the performance of 
a controller, then, it is reasonable to study its communica
tion behavior, and ignore other aspects. We compare the 
performance of various approaches in the Conclusion sec
tion. 

DISTRIBUTED LOCKING ALGORITHMS 

Locking is the most widely used concurrency control 
technique. We describe locking first in the centralized 
DBMS context and then present several extensions for dis
tributed systems. 

Centralized locking 

Locking synchronizes transactions by explicitly detecting 
and preventing conflicts. When a transaction issues a Read 
or Write command, the DBMS attempts to "set a lock" on 
the desired data item; the lock is "granted" only if no other 
transaction holds a conflicting lock. If the lock is not 
granted, the requesting transaction waits until the lock is 
available and can be granted. 

Since the DBMS processes all Read and Write commands 
from every transaction, it can automatically generate lock 
requests for each command. This is important because it 
allows programmers to ignore concurrency control issues 
when writing their transactions. 

Eswaran et aUG prove that locking is sufficient to ensure 
serializability provided no transaction requests new locks 
after releasing a lock. This usually amounts to having trans
actions hold all locks until they finish execution. 

Since transactions are made to wait for unavailable locks, 
the possibility of deadlock exists (see Figure 2). Deadlocks 
can be detected by maintaining a deadlock graph in the 
DBMS. The nodes of the graph represent transactions and 
the arcs represent the "waiting-for" relationship; an arc is 
drawn from transaction T; to transaction TJ if T; is waiting 

Transactions 

Order in which 
transactions issue 
Reads & Writes 

Order is which 
DBMS executes 
Reads & Writes 

T1: Read(X);~ 

Write(y); R1(x) 

end R2(y) 

W1(y) cannot be scheduled be

cause it conflicts with R2(y) 

W2(z) cannot be scheduled be

cause it conflicts with R3(Z) 

W3(x) cannot be scheduled be

cause it conflicts with R1(x). 

. '. OF;>iHIl ock ! 

Figure 2-DeadJock 
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W1(y) must wait for T2 to 
release lock on y. 

JW2(Z) must wait for T3 to 
release lock on z. 

W3(x) must wait for T1 to release 
lock on x. 

Figure 3-Deadlock graph for Figure 2. 

for a lock held by Tj (see Figure 3). There is a deadlock in 
the system if and only if the deadlock graph has a cycle. 5 If 
a deadlock exists, some transaction in the cycle is backed 
out and restarted. This deadlock elimination technique can 
potentially lead to cyclic restart. A simple way of avoiding 
this problem is to always abort the "youngest" transaction 
involved in the deadlock. Other solutions to cyclic restart 
are described in the section on Conflict-Driven Restarts. 

Indefinite postponement can be prevented in a locking 
system by processing lock requests on a first-come-first
served basis. Other solutions are discussed in References 14 
and 19. 

Primary site locking 

Primary site locking is a simple extension of centralized 
locking. One site of a DDBMS is designated to be the "pri
mary site" and it manages all synchronization. When a 
transaction wishes to access data at any site, a lock is re
quested from the primary site. The primary site processes 
lock requests exactly as described in the previous section, 
the only difference being that lock requests come in over 
the network. Similarly, issues of termination are handled by 
the primary site exactly as in centralized locking. 

Although locks are centralized at the primary site, the 
data base is, of course, distributed. Once a transaction is 
granted a lock, it may access data at whatever site has a 
copy. It is important that if a transaction updates a data item 
that has many stored copies all copies are actually updated 
before the lock is released; otherwise another transaction 
can read a copy of the data item before the first update 
propagated there. It is also important that read-only trans
actions follow the locking discipline, or else they could read 
inconsistent data (see Figure 4). This point is often over
looked in discussions of distributed locking, yet is important 
because most applications predominantly consist of read
only transactions. 

The principal drawback of primary site locking is that the 

primary site tends to be a bottleneck-the capacity of the 
primary site to process locks bounds the capacity of the 
entire' distributed system. 

Primary copy locking 

Primary copy locking is an extension of primary site lock
ing that eliminates the primary site bottleneck. For each 
logical data item, one copy is designated the "primary 
copy"; when a transaction wishes to access a data item, it 
locks the primary copy. Since the primary copies of different 
data items may be stored at different sites, no single site is 
primary in any sense. This eliminates the bottleneck, but 
introduces a new problem-deadlock detection. 

To test for deadlock, all sites with some primary copy 
must participate. For example, Figure 5 illustrates a dead
lock involving two sites which cannot be recognized locally 
by either site. The solution is to designate one site of the 
DDBMS as the "deadlock detector"; periodically each other 
site sends it a list of newly granted or released locks, and 
newly pending requests. The deadlock detector then oper
ates as in the centralized case. 

As with primary site locking, if a transaction writes into 
a data item, all copies must be updated before the lock is 

Transactions 

T 1: Write(x); 

Write(y); 

end 

Order in which 
operations executed 

lock x for 

WI (x) at site 1 

R2(x) from site 

R2(y) from site 

lock y for 

WI (y) at site 1 

T 2: Read(x); 

Read(y) ; 

end 

Database 

y,Z 

T2 reads inconsistent data because it sees only 
part of T1

1 s updates. 

Figure 4-Read-only transactions must lock, too. 
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T1: Read(x); 

Wri te (y) ; 

end 

Transactions 

T 2: Read (y) ; 

Write(z) ; 

end 

Order in which locks are 
requested at each site 

site 1 

lock x for Rl 

- lock x for W3 

site 2 

lock y for R2 

- lock y for WI 

site 3 

lock z for R3 

-lock z for W2 

* x,y 

T3: Read(z); 

Write(x)· 

end 

Database 

z 
* 

* y,z 

*denotes primary 
copy 

None of the • led locks can be granted, hence the 
system is in deadlock. But deadlock graphs at 

each site are acyclic: 

site 1 site 2 site 3 

Figure 5-Multi-site deadlock. 

released: and read-only transactions must follow the locking 
rules. too. 

Conj1ict-driven restarts 

An interesting variant of primary copy locking has been 
described by Rosenkrantz, Lewis and Stearns. 33 The mech
anism, which we call conj1ict-drh'en restart, uses a model 
of transaction execution in which each transaction is active 
at only one site at a time and moves from site to site during 
its execution. When a transaction wishes to access a data 
item at a site, it tests whether it conflicts with a previous 
access made by an in-progress transaction. If it does con
flict. one of three actions is possihle-it waits. it is restarted. 
or the other transaction is restarted. Since testing for conflict 

is equivalent to asking whether a data item is locked, this 
approach is essentially a locking mechanism. 12 

The analysis of conflict-driven restart yields interesting 
observations about termination problems. If the system re
sponds to conflict by making the requesting transaction wait, 
deadlock is possible. To avoid deadlock Rosenkrantz et al. 
propose two mechanisms that substitute restarts for waiting. 
Both mechanisms require that transactions be assigned 
unique "timestamps" when they are submitted. Intuitively, 
timestamps correspond to the time a transaction was sub
mitted, and have two important properties-timestamps as
signed at any particular site must strictly increase with time, 
and timestamps assigned at different sites must be different. 
Timestamps are used to resolve conflicts as follows. In one 
mechanism, called the Wait-Die System, the requesting 
transaction waits if it has a smaller timestamp (i.e. is older); 
else it is restarted. In the second mechanism, called the 
Wound- Wait System, the requesting transaction waits if it 
has a larger timestamp (i.e., is younger); else the transaction 
it conflicts with is restarted. 

Rosenkrantz et al. prove that both mechanisms avoid 
cyclic restart, but the details of their behavior is quite dif
ferent. In a Wound-Wait system, an o~d transaction may be 
restarted many times, whereas in a Wait-Die system old 
transactions are never restarted. It is suggested that Wound
Wait produces fewer overall restarts, but the justification is 
more intuitive than analytic. 

MAJORITY CONSENSUS ALGORITHM 

The majority consensus algorithm of R. Thomas37 was one 
of the first distributed concurrency control mechanisms pro
posed. Many of Thomas's ideas have found their way into 
more recent designs. 

The majority consensus algorithm as presented by 
Thomas assumes a fully redundant data base, meaning that 
every site has a stored copy of every logical data item in the 
data base. A transaction executes at one site. Its Read com
mands access stored data at its site, and do so without 
locking or any other synchronization. Whenever the trans
action issues a Write command, the name of the data item 
being updated and its new value are recorded in an update 
list: the data base itself is not modified at this time. When 
the transaction completes, the update list is sent to all sites 
and each site votes on it. If a majority of the sites vote 
"Yes," the transaction is accepted, and the updates are 
installed at all sites. Otherwise the transaction is restarted. 
The heart of the algorithm is the rules that determine how 
each site votes. 

A site votes .. Yes" on transaction T if 

1. The data items read by T have not been modified since 
T read them (the algorithm requires that a data item 
must be read before it can be written). 

2. T does not conflict with any transaction T' that is 
pending at the site (T' is pending if the site has voted 
"Yes" hut T' h::ts nM yet he en <lccepted or rejected 
system-wide). 
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One way to meet Condition 1 is to use locking; but the 
majority consensus algorithm uses a timestamping technique 
instead. 

Transactions are assigned timestamps as in "conflict dri
ven restart," and each stored data item is tagged with the 
timestamp of the most recent transaction that has updated 
it. Also, update lists are augmented to include the name of 
each data item read by the transaction and its timestamp. 
Now, when a site receives an update list it can compare 
timestamps to determine whether Condition 1 holds. Since 
augmented updated lists specify transactions' read-sets and 
write-sets, Condition 2 is easily checked fl,S well. 

If Condition 1 is not satisfied, the site "vetoes" the trans
action and it is restarted. If (1) is satisfied but (2) is not, the 
site cannot vote on this transaction until the pending one is 
resolved. Since different sites receive update lists in differ
ent orders, they vote in--diff-er-ent--erdei's and deadlock c-oukl. 
result. To avoid deadlock, the site votes "No" if (1) holds, 
(2) does not hold, and the transaction has a larger timestamp 
(i.e. is younger) than the pending one. If a majority of sites 
vote "No," the transaction is restarted. 

The voting rules ensure that. two conflicting transactions 
are both accepted only if one has read the other's output. 
Since both transactions received a majority of "Yes" votes, 
some site, say S, must have voted "Yes" on both transac
tions. Since they conflict, S must have installed one before 
voting on the other; this guarantees that the second read the 
first one's output, for otherwise S would not have voted· 
" Yes." This is sufficient to guarantee serializability. 

THE SDD-l APPROACH 

The SDD-l DDBMS39-42 employs a qualitatively different 
approach to concurrency control. Each of the preceding 
methods synchronizes all conflicting Reads and Writes. 
However, not all conflicts can violate serializability (see 
Figure 6). SDD-l exploits this fact by means of two mech
anisms---{;'onflict graph analysis. and timestamp-based pro
tocols. 

Conflict graph analysis 

Conflict graph analysis is a technique for determining 
which conflicts require synchronization. The method begins 
with the definition of transaction classes. A transaction class 
is defined by a read-set and write-set. A transaction is a 
member of a class if the transaction's read-set and write-set 
are contained in the class's read-set and write-set (respec
tively). Asso('iated with each class is a transaction module 
(abbr. TM), a software DBMS component that serially pro
cesses transactions from that class. Since transactions in a 
single class run serially, only transactions in different classes 
can . 'interfere. " Hence, only inter-class conflicts need be 
considered. 

Due to the way classes are defined, transactions in differ
ent classes can conflict only if their corresponding classes 
conflict. Class conflicts are modelled by an undirected COI1-

Transact; ons 

T 1: Read(x,y); 

Write(z); 

end 

T 2: Read (x) ; 

Write(y); 

end 

Order of execution 
(assume a non-dist. 

database) Equivalent serial log 

note confl i ct 
R1(X,y) 

W1(z) 

R2(X) 

W2(y) 

Figure 6-A conflict that does not violate serializability. 

flict graph whose nodes represent class read-sets and write
sets, and whose edges represent conflicts. (There is also an 
edge between the read-set and write-set of each individual 
class. See Figure 7.) The important property of a conflict 
graph is that transaction: that do not lie on a cycle are 
always serializable and do not need synchronization. Only 
transactions that lie on cycles require synchronization. 

In a conflict graph system, the conflict graph is con
structed and analyzed statically when the data base and 
classes are defined. Classes that do not lie on cycles are 
noted; the TMs corresponding to these classes are 'toid' not 

Class definitions: 

C1: read-set 

C2: read-set 

Confl ict graph 

C1
1 s read-set 

C IS write-set 
1 

{x,y}, write-set = {z} 

{x}, write-set = {y} 

{x,y} 

{z} 

C 's read-set 2 

C IS write-set 
2 

{x} 

{y} 

Note: Transactions T1 and T2 in figure 6 are 
in classes C1 and C2 resp. Since the conflict 
graph is acyclic, their conflict cannot violate 
serializability (see text). 

Figure 7-Conflict graph. 
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to use synchronization when executing transactions. The 
remaining TMs must synchronize their transactions. 

Locking is one correct way to synchronize transactions 
that lie on cycles. If all transactions on cycles use locking, 
all executions are serializable. 12 However, other synchro
nization mechanisms are possible. 

Timestamp-based protocols 

SDD-l uses timestamp-based synchronization protocols 
in place of locking. While the details of these protocols are 
too involved for this paper, their basic structure can be 
sketched. 

Each edge from one class's read-set to another's write-set 
represents a conflict that must be synchronized if the edge 
lies in a cycle. This synchronization occurs during the pro
cessing of Read commands. Suppose the read-set of class i 
conflicts with the write-set of class j, and suppose Ti is a 
transaction in class i. To process a Read for Ti at site S, the 
concurrency controller waits until S has processed all Writes 
for transactions in classj that are "older" than Tj,*** but 
no Writes for transactions in classj that are "younger" than 
Ti • This has the same effect as locking the data shared by i's 
read-set andj's write-set. 

The advantage of timestamp-based protocols lies in the 
wide range of protocols that can be used. There is a special 
protocol for read-only transactions which is more efficient 
than locking. There is a special protocol for infrequently run 
transactions that places a heavier synchronization burden 
on these transactions while reducing the synchronization 
required for common transactions. In addition, all protocols 
use timestamps to resolve conflicts, so deadlock is pre
vented without the overhead of a detection algorithm. 

The correctness of conflict graph analysis· and the SDD-l 
protocols is proved in Reference 41. 

ROBUSTNESS 

Component failures are inevitable in a DDBMS, and any 
practical concurrency controller must operate correctly de
spite them. Problems of three types arise-(1) A failed site 
may hold information needed to synchronize in-progress 
transactions. (2) A failed site may hold stored copies of data 
items being updated by a transaction. (3) A transaction that 
is updating data at several sites may fail after performing 
some updates but not all of them. No mechanism yet de
veloped attains 100 percent robustness and it is believed 
that no such mechanism is possible. 4 Given this apparent 
limitation, one cannot prove that a concurrency controller 
is, or is not, robust: all one can do is express the level of 
robustness it attains. 

*** SSD-J assigns unique timestamps to transactions in the same manner as 
majority consensus. 

Loss of synchronization information 

When a site holding synchronization information fails, 
there are two options. One is to abort all in-progress trans
actions that depend on the information. If transactions are 
short and failures occur infrequently, this simple approach 
is satisfactory. The alternative is to maintain redundant cop
ies of synchronization information. Techniques for managing 
these redundant copies have been proposed by Afsberg and 
Day26 and Menasce et al. 31 The techniques are presented in 
the context of primary site or primary copy locking, but 
could be adapted for other approaches. 

The Alsberg and Day technique employs a back-up for 
each primary copy. When transaction T wishes to access 
data item x, it requests a lock against the primary copy as 
described in the section on Primary Copy Locking. If the 
concurrency controller decides to grant the lock, it forwards 
this information to the back-up, which records the lock in 
memory. Only when the lock is safely recorded at the back
up is transaction T permitted to access x. If the site con
taining the primary copy fails, the back-up can immediately 
take over and a new back-up selected. This scheme offers 
loo-percent protection against single-site failures, but of 
course is susceptible to multi-site failures. Protection against 
multiple failures can be improved by using mUltiple back
ups, although Alsberg et alY argue that one back-up is 
sufficient for most applications. 

Menasce et al. 31 propose a similar mechanism designed 
for multiple back-ups. The heart of their approach is a com
munication procedure for ensuring that all locks are received 
by all back-ups, and a procedure for reconstructing consis
tent lock tables following site failures. 

Non-availability of stored data items 

Suppose a transaction issues a Write command against a 
logical data itemx, and some stored copy ofx is unavailable. 
Since the DDBMS must update all stored copies of x, we 
have a problem. The DDBMS could delay the Write until 
all stored copies were simultaneously available, but this 
might never happen. Or it could abort the transaction, but 
then the availability of a data item would decrease as more 
copies of it were maintained. The solution is to buffer Write 
operations against non-available sites and to perform them 
when the failed site recovers. By buffering the Writes at 
mUltiple sites, increased protection against multiple failures 
can be achieved. This technique is sometimes called spool
ing. 47 

Transaction failures 

If a transaction fails before completion, a serious concur
rency control problem is created-every Write performed 
by the transaction must be backed out to avoid leaving 
partial results in the database. The usual technique for doing 
this is called two phnsp rnmmit. 4 
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While a transaction executes, all Writes it performs are 
placed in temporary files and not the permanent data base. 
When the transaction completes, it issues Commit messages 
to each site holding temporary files, whereupon the tem
porary file is merged into the permanent data base. If the 
transaction fails before sending the first Commit, no updates 
are installed. If it fails after sending some but not all Com
mits, the sites holding temporary files can recognize the 
situation and can consult the other sites. If any site did 
receive a Commit, all sites will perform the update. 

This technique achieves loo-percent protection against 
failures of the transaction alone, but is not fully robust with 
respect to multi-site failures. Hammer and Shipman47 de
scribe mechanisms for improving the multi-site robustness 
of two phase commit. 

CONCLUSION 

We have presented several approaches to distributed con
currency control, and the obvious question is, "Which one 
is best?" We have no clear answer to this question, but a 
comparison of the methods may be helpful. 

First, all methods presented here are correct -they all 
guarantee serializable executions. Second, the methods offer 
slightly different degrees of concurrency-conflict-driven 
restart and majority consensus offer slightly less concur
rency than conventional locking; conflict graph analysis 
combined with locking offers slightly more concurrency than 
conventional locking; and conflict graph analysis coupled 
with SDD-l timestamp protocols offers an . 'incomparable" 
degree of concurrency, meaning it allows some executions 
the other techniques prohibit, while prohibiting some exe
cutions the others allow. Termination issues are best under
stood in the context of locking, and locking is the only 
technique for which termination can be proved. Majority 
consensus is susceptible to cyclic restart, and conflict graph 
analysis coupled with SDD-l protocols can lead to indefinite 
postponement; in practice, however, the probability of non
termination can be made acceptably small. With respect to 
robustness, all approaches share the same problems, and 
the same techniques. So the approaches compare almost 
identically on these four issues, at least. 

The remaining area of comparison is performance. As 
explained in the section on Other Aspects of Concurrency 
Control, the key determinant of performance is communi
cations behavior. Unfortunately, few quantitative perform
ance results are available and we shall limit ourselves to 
basic observations. 

Primary site locking requires inter-site communication 
whenever a lock is requested or released. In principle, pri
mary copy locking could require the same amount of com
munication, but in a well configured system we would expect 
to do better. The reason is locality of reference-in many 
distributed applications, the majority of transactions access 
data local to the site at which they run. If that data is the 
primary copy, all lock requests can be processed locally. Of 

course, this advantage cannot be realized for data items that 
are heavily accessed from multiple sites. 

The performance of the SDD-l technique similarly de
pends on application-specific factors. If many transactions 
run in classes that do not require synchronization, the sys
tem will require few synchronization messages. Since the 
class definitions are tunable, classes can (in principle) be 
designed so that frequently-executed classes do not lie on 
cycles. However, if most transactions run in classes that do 
require synchronization, the communication overhead in
volved will be comparable to locking. 

The performance of majority consensus is comparable to 
primary site locking with these differences-all locks are in 
effect requested in a single message; in return for this sav
ings, though, multiple restarts may have to be endured. 

The material we have presented on each approach is a 
bare outline. We have left out many -important details and 
variations, and we urge the interested reader to consult 
source materials directly. 
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INTRODUCTION 

The growing recognition of the need for computer system 
security has resulted in the design, development and instal
lation of "patches," packages and even new operating sys
tems intended to provide higher degrees of data and systems 
protection. With the increased utilization of computer net
works and current developments in the area of network 
operating systems (NOSs)40,19,30 the requirements for secu
rity in networking environments are also coming under in
vestigation. 26,42 While research and development are still 
ongoing in the NOS area, it is vital to ensure that require
ments for the security and integrity of data are well specified 
and that mechanisms for achieving the needed levels of 
systems protection are included in the design of the NOS. 
This will ensure that subsequent production versions of 
NOSs incorporate such mechanisms-thus, charting a 
course away from the otherwise inevitable "retrofit secu
rity" situation. 

Military applications have been the source of much of the 
computer and communications security knowledge. How
ever, what is cost-effective in enhancing systems security 
for a military application may impose an untenable burden 
on a commercial or public system. To assist the manager/ 
analyst in identifying appropriate security mechanisms, this 
paper identifies a set of access control capabilities which 
should be considered for inclusion within a general purpose 
NOS. Before identifying the actual mechanisms involved in 
enhancing NOS security, an NOS environment is briefly 
described. An overview of computer network security re
quirements is then provided and suggested approaches are 
referenced. 

The second section identifies the specific access control 
functions required by the type of network operating system 
described in the first section. The implementation of these 
access control mechanisms in the NBS Experimental Net-

* This work is a contribution of the National Bureau of Standards and is not 
subject to copyright. Partial funding for this work was provided by the U.S. 
Air Force Rome Air Deveiopment Center (RADe) under Contract No. F 
30602-77-F-0068. Certain commercial products are identified in this paper in 
order to adequately specify the procedures being described. In no case does 
such identification imply recommendation or endorsement by the National 
Bureau of Standards, nor does it imply that the material identified is neces
sarily the best available for the purpose. 
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work Operating System (XNOS) is presented in the third 
section, followed in the fourth section by a discussion of 
current status and future plans. 

The NBS experimentaL network operating system 

Network operating systems are commonly viewed as the 
mechanism for masking system differences from users. The 
functional objective of a NOS is to support and simplify 
access to existing services and to expedite the construction 
and subsequent accessing of new services by simplifying 
interaction among systems and between systems and users. 
A major design goal for implementing a N OS on an existing 
computer network is that the NOS is transparent to the 
participating host systems. This goal is achievable through 
a consolidation of NOS support functions into a Network 
Interface Machine (NIM), as suggested by Kimbleton. 29 

The National Bureau of Standards has developed an Ex
perimental Network Operating System, XNOS, to demon
strate the feasibility of such general purpose NOSs and to 
facilitate the investigation of the capabilities and limitations 
inherent in such systems. 30 Figure 1 illustrates the user view 
of the network, while Figure 2 identifies the current XNOS 
configuration. 

The major computing requirements of XNOS are fulfilled 
by an XNOS Network Interface Machine (XNIM). The 
XNIM is, in fact, the focal point for user-system and system
system interactions. It serves, among other things, as a 
translator for commands (e.g., MOVE (file), DELETE (fi
Ie» and a transformer for data flowing between network 
processes. The first role provides the XNOS user with a 
standardized view of network resources by supporting a 
common command language for all participating hosts.1s The 
latter capability, termed Remote Record Access (RRA), pro
vides (1) the means for transmitting data between systems, 
and (2) the mechanisms for accessing and preserving the 
meaning of structured data as it is transmitted across het
erogeneous systems. 46,47 

\Vhile the remainder of this paper will discuss access 
controls within the context of the NBS XNOS implemen
tation, it should be noted that the functionality of the solu
tion approach applies to the general class of NOSs repre
sented by the NBS system. 
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Figure I-User view of network. 

Network security requirements 

The growth of time-sharing and other forms of computer 
networking have increased the vulnerability of data in com
puter systems. Not only are more systems being accessed 
by remote users, but large amounts of data are shipped 
between systems. 

Systems without adequate protection mechanisms are vul
nerable to threats including theft, fraud and vandalism. Po
tentiallosses range from unauthorized use of computing time 
to the unauthorized access, modification, or destruction of 
valuable data. Perpetrators of such abuse may be otherwise 
honest individuals wishing to playa few computer games, 
or sophisticated corporate spies, hoping to learn trade se
crets or perhaps acquire the list of a competitor's top ten 
accounts. (Computer crime is extensively treated in the lit
erature.)33-36 

In order to appreciate networking-specific security needs, 
it is useful to identify the relevant components of a network 
and their vulnerabilities. For these purposes, a network may 
be defined as consisting of three parts-host system(s), data 
communications equipment (e.g., communications nodes 
and links-often termed "communications subnet") and ter
minal systems. 

At the terminal equipment level, certain security tech
niques such as controlled access to terminal rooms or the 
incorporation of an identification signal within each terminal 
may be useful in "securing" a network, but certainly are 
not adequate in themselves. It is crucial, however, to know 
who the person using any particular terminal is in order to 
determine that person's rights and priviliges on the network. 
The process of verifying the claimed identity of a user is 
termed user authentication. 

Access control is the cornerstone of computer network 
security.' It includes not only authentication, but also au
thorization-the granting of the right to access an object to 
a user. An object may be a person, program, or process. A 
user is either a person or a program (process) working for 
the benefit of that user. 

When data communications facilities are involved, as in 

PDP 11/45~ __ ...... __ ....... 
(UNIX) 

PDP-lO 
(TENEX) NIM 

Figure 2-XNOS initial configuration. 
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the case of a network, the vulnerability of data and systems 
is greatly increased. Categories of threats in a communica
tions environment include passive and active wiretapping, 
between-lines entry and piggy-back infiltration. Petersen and 
Turn describe a number of such threats. 37 Encryption is one 
of the techniques used to provide protection in a commu
nications environment. It may be applied in a link-oriented 
or end-to-end fashion. 

The federal government has adopted a Data Encryption 
Standard (DES) for use in the protection of transmitted 
data. 16 Numerous works discuss such modern encryption 
techniques.6.2o.12-14.3 Karger identifies some of the limita
tions of end-to-end encryption and Kent presents protocols 
for the protection of interactive communications.2(;-28 In
cluded are techniques for key distribution and resynchron
ization following channel disruption. 

There are many aspects to computer and network secu
rity. We have highlighted several security methods and tech
niques in an effort to establish a framework for a discussion 
of NOS access control mechanisms. This is certainly not, 
however, a comprehensive treatment of computer security. 
Numerous excellent guides into this area are available (e.g., 
References 8, 42, 41,24,7,31 and 2). 

Network security center approach 

Before beginning the discussion of NOS access control 
functions, we shall briefly describe one example of a sug
gested approach to computer network security. This ap
proach, the Network Security Center (NSC), is of special 
interest here because of the possibilities suggested by the 
common functions that an NSC and a NOS with access 
control capabilities share, as well as the powerful system 
that would result from a combination of NSC and NIM 
functions. 

The NSC utilizes one or more dedicated minicomputers, 
termed Network Security Centers (NSCs), for validating 
user identity (authentication) and to some extent checking 
user access rights (authorization) to network resources. This 
approach, which has been extensively treated elsewhere, is 
briefly summarized in the remainder of this section. 4.5.22.9 

The NSC is responsible for the following functions: (1) 
authentication, (2) authorization, (3) establishment of a se
cure communications path for user access to network re
sources and (4) the collection and/or distribution of appro
priate information relative to this connection (e.g., audit 
data collected, user profile information supplied to host). 
Fundamental to the concept of a NSC is the assumption that 
a highly secure encryption algorithm, such as the DES, will 
be used to protect all information transmitted between par
ticipating systems. Such algorithms employ both enciphering 
and deciphering operations which are based on a binary 
number called a key. The key consists of a string of binary 
digits used directly by the algorithm. A unique key chosen 
for use in a particular application makes the results of en
crypting data using the algorithm unique. 

Intelligent Cryptographic Devices (ICDs) must exist at a 
level below the NSC. An ICD is used to establish a protected 
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connection between two network entities after authentica
tion and authorization checking have taken place. This ICD 
must be capable of being remotely keyed-by the NSC only. 
Furthermore, whenever a dialog is completed the corre
sponding connection must be broken to ensure that other 
users do not have an opportunity to "piggy-back" an au
thorized user and thus gain access to restricted resources. 
Figure 3 presents a simplified view of a network incorpo
rating a Network Security Center. 

In order for a user to gain access to a computer on a 
network which incorporates an NSC, the following steps 
must occur: 

1. The user initially connects to the NSC. 
2. The NSC performs authentication and authorization 

checking. . 
3. After validati-on of the user's claimed identity and suc.,. 

cessful authorization check, NSC then" "keys" the ICD 
for the user's device (e.g., terminal) and the target host 
with a "one-time" session key. 

4. The user and target host then communicate directly 
over encrypted lines. 

The protocol for establishing secure communications links 
in an architecture incorporating both XNIM and NSC would 
be somewhat different in that two or more host-to-host con
nections would be required for the same work session. 

NOS SECURITY REQUIREMENTS 

In order to provide data protection in a NOS environment, 
one must first support overall network security, as discussed 
in the preceeding section. The requirement that a NOS be 
nearly transparent to the host precludes any extensive de
velopment of host specific, access control software for the 
purpose of improving NOS security. The focal point for 
NOS security, then, becomes the NOS support computer
the NIM. 

Achieving/enhancing security in a NOS environment 
through use of a NIM gives rise to two issues-( 1) deter
mination of the appropriate extent or degree of NIM security 
services and (2) identification of the security capabilities/ 
services that a NIM can provide. 

o 
\l 

Figure 3-Network security center configuration. 

Level of security 

Increasing the effectiveness of one component in protect
ing the system usually results in diverting an attacker's pen
etration efforts to another, more vulnerable, system com
ponent. Since the NIM is the component which changes an 
"ordinary" computer network into a NOS, it is vital that 
the NIM does not become the "weak link" in the security 
structure of the net. This implies that the level of security 
provided by an NIM should not be less than that of any 
other network component. 

As no capability comes without cost, it would not be cost
effective to provide security ""overkill" and far exceed the 
highest degree of protection offered elsewhere in the net
work. Thus, an appropriate level of NIM security support 
would appear to be a level equal to or slightly greater than 
that of the most secure of the remaining network compo
nents. 

Support computer security functions 

A NOS provides an opportunity to enhance the security 
of a computer communications network. This is primarily 
because, as noted by Linden, ""a large class of security 
problems can be solved by putting a level of indirection 
between a subject and the object it is seeking to access." 25 

Within the category of NOSs being considered, the NIM 
acts as an intermediary between users and systems and 
systems and systems. Thus, the NIM can take advantage of 
its relationship with network hosts by properly utilizing the 
authentication mechanisms provided at each host. It can 
also control access to network resources via authentication 
and authorization checking techniques at the NIM ievel. 

Use of host security mechanisms 

Several opportunities exist for the XNIM to capitalize on 
host-supported mechanisms to enhance overall NOS secu
rity. Some of the obvious techniques are discussed in this 
section. 

Authentication 

When remote users are granted access to computer re
sources, authentication of the user's identity is critical. Due 
to their relatively low cost and ease of implementation, 
passwords are the most commonly used mechanism to 
achieve personal identity authentication. 43•44 In fact, pass
words are used by nearly all multi-user systems within the 
federal government and all commercial time-sharing sys
tems. I Other automated techniques (e.g., dynamic signature 
verification, hand geometry) are also beginning to make an 
appearance. 17.23.10 

The problem with passwords is that they are not used to 
full advantage by humans. Easy-to-guess passwords such as 
children's names, initials, birthdates and mothers' birth 
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names are among those commonly selected. Even the prac
tice of using randomly selected passwords from the English 
language reduces the password space significantly. As a 
result, such passwords are easier to determine by exhaustive 
searching than random strings of characters. In addition, 
changing passwords frequently is a nuisance to most users. 

Since the NIM's relationship with the NOS-participating 
host is similar to that of a terminal user, it is a trivial matter 
to enhance the protection of NOS objects (i.e., data and 
programs) maintained on the host by incorporating good 
password utilization procedures into the NIM. For example, 
"remembering" frequently changing passwords is certainly 
no problem for the NIM. Moreover, protection of these 
passwords within the NIM system can be accomplished 
through encryption, memory protection and other such tech
niques. 

Making the password difficult to guess is best accom
plished by careful selection of the size of the password and 
of the alphabet from which the password is constructed. 
Anderson provides the following guideline for the determi
nation of an adequate password size, S (in characters). 

(R/E)(4.39x l()4)X (M/ P)< =As (1) 

where R is the transmission rate of the line in characters per 
minute, E is the number of characters exchanged in a logon 
attempt, P is the probability that a password will be found 
during M, the period over which the systematic testing is to 
take place (in months of 24 hours per day operation) and A 
is the alphabet size. 2 

Of course the NIM could be directed to use the largest 
password space available for each supported system. With 
the resulting fixed password size per system, one then spec
ifies an acceptable probability P for the NOS-supported 
network host, and determines the maximum lifetime (M) 
allowed to ensure that level of confidence. Solving for Min 
Formula 1 then yields 

M< =(E/R)XAsXP/(4.39Xl()4) (2) 

As an example, assume that the probability of finding a 
six character password on a NOS-participating host must be 
no greater than .001, the logon attempt involves the ex
change of 100 characters and the line speed is 1800 charac
ters/minute. Then, for a 26-character alphabet (e.g., Eng
lish), the password lifetime M must be no longer than a third 
of a month (i.e., about 10 days). 

Requiring would-be users to re-dial the computer system 
after several (e.g., three) unsuccessful logon attempts would 
increase the effective password lifetime in the above ex
ample. These and other factors should be taken into consid
eration when attempting to determine the "right" mix of 
variables needed to provide the required degree of protec
tion. Still, from this discussion it is clear that the NIM can 
easily surpass the average user in the practice of effective 
password techniques. Other techniques for better utilization 
of password schemes are thoroughly discussed by 
Wood. 43- 45 

File naming 

Assume that a network attacker has succeeded in mas
querading as the XNIM or another, valid user and is now 
logged directly onto a network host (i.e., the XNIM is not 
in the path from user to host system). At that point, a 
number of factors interrelate in determining the degree of 
damage that an individual can do. Should his or her goal be 
the indiscriminate destruction of data files, then only the 
access controls of the host system, coupled with the access 
rights of the authorized user being imitated, can limit the 
success of the attacker. The XNIM certainly has no control, 
direct or indirect, in this situation. 

However, if a successful system penetrator is instead 
seeking to locate specific information, his job can at least 
be made more difficult by the use of non-informative file 
naming conventions. For example, if there is one NOS
owned account on each participating host system, then the 
files of all NOS users would be maintained in the same 
account space with such nondescript names as "NOSOOl," 
etc. No indication need be made at the host level of the 
actual "owners" of these files, since from the host's view
point, the NOS is the owner. If possible the NOS should 
also be the only party granted any access privileges to these 
files. 

Compartments 

To further complicate the efforts of masqueraders to lo
cate information, an NOS could maintain two or more ac
counts (i.e .. compartments of information) on each partici
pating host. Thus, for N account spaces, the probability of 
selecting the correct account on the first try would be re
duced to 1/ N. With the probability of successfully penetrat
ing any account through masquerading kept at a minimum 
by effective use of passwords, the net result is an increase 
in the protection of the NOS files. 

File compartments also exist at a finer degree of granu
larity. Consider the case of a penetrator successfully mas
querading as an authorized XNOS user, when accessing 
network resources through the XNIM. Since XNOS func
tions only operate on an XNOS-user-account basis, access 
to or destruction of all XNOS-maintained files requires pos
session of the appropriate set of access rights. Thus, total 
destruction of XNOS-maintained files would require emu
lating the set of users whose pooled access rights cover all 
XNOS files. 

NIM intermediary functions 

Access to NOS resources that are utilized via the NIM 
can be controlled at the time of system access and data 
access. Data access, in turn, may be effected at the file, 
record and data item level. Within this paper, file access 
will be the smallest degree of data granularity addressed in 
detail. Record ;:tnd dat;:t it(."m ;:tcct'''!''! control within a NOS 
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environment are currently under investigation and therefore 
will only be briefly mentioned. 

System access 

System access usually involves user authentication tech
niques. Within the NOS, system access takes place at what 
is commonly called "login" or "logon" time, at both the 
NIM and the participating host systems. At the time a user 
logs into the NIM, password or other user authentication 
mechanisms should be used. If, in the course of a NOS 
session, multiple NIMs need to communicate, then likewise 
each NIM must authenticate itself to the other in a like 
manner. The fact that each NIM-host communication is in 
support of a single, specific user, serves to restrict the dam
age th~t cap be done by an imposter. 

The issue that no~- arises is,- "What identity does/should 
the NIM process claim?" The alternatives are (1) a special 
(NOS) account (or set of accounts) could be maintained on 
each participating host for NOS sessions or (2) a NOS user 
could be required to maintain individual accounts on each 
system to be used on his behalf. In the latter case, the user 
would have to provide the NOS with all personal user-ids 
and associated passwords. Furthermore, in the event that 
two or more users request networking sessions involving the 
same target host, an equivalent number of connections 
would have to be effected between the XNIM and the host. 

The former case, however, has the consequence of main
taining all NOS-user files for a given system within the same 
target system NOS account(s), as previously discussed. Pro
viding effective access controls in this situation necessarily 
requires trust in the NOS-NSC process handling the ac
count. This is not an unreasonable requirement for so critical 
a component of the NOS. 

Data access 

Access control may be enforced through discretionary or 
non-discretionary systems. The former implies a system 
wherein the "owner" of an object (e.g., file, program) can 
grant access rights to individual users. 

Non-discretionary systems, on the other hand, deny users 
such rights. Instead, access to objects is granted on the basis 
of labels which specify the access class of the given object 
and the clearance of the subject requesting access. These 
labels may be changed only by the System Security Officer 
or equivalent. 

Pure non-discretionary systems are inappropriate for most 
civilian NOSs as they preclude flexibility and selectivity in 
object sharing. Conversely, discretionary systems require 
object owners to explicitly identify individuals or groups to 
whom access rights are granted. Therefore, it seems desir
able to aim for a combination or hybrid access control sys
tem for an NOS. Labels (i.e., clearances and classifications) 
would provide a security filter or first line of control to 
network resources, while object owners retain the right to 

selectively grant or deny access privileges to individuals and 
groups within that general framework. 

At the highest level in such a hybrid scheme, the rights of 
a user or process to access an object (e.g., file, record, data 
item) can be determined by a set of rules which specify the 
clearance (i.e., label) required to access an object of a given 
access class. A lattice security model has been proposed to 
enforce such controlled access to data among distributed 
computer systems. 26,27 This model is briefly described in the 
next section. 

Given that the flow of data through a network is governed 
by an appropriate non-discretionary model, then the partic
ular rights of individuals and processes to access and operate 
on that data must be determined. Such rights are often called 
usage restrictions and define the "mode of access" permit
ted to the data. Example modes of access include READ, 
WRITE. APPEND and EXECUTE. The mode of access 
allowed by a given user (subject) to a set of data (objects) 
may be defined by an access control list (ACL), as imple
mented in the Multics operating system. 39,32 

Other data access issues include local vs. remote author
ization checking and the complications that result from the 
capability of one party to grant access rights to another. The 
mechanisms for determining authorization can become quite 
complex when, for example, person A grants person B a set 
of access rights to a given object X and among that set of 
rights is the right to grant access to object X. In this context, 
the implications of granting a user READ privileges to an 
object should be fully considered. Once a user has been 
given READ rights to a file, for example, it is conceivable 
that a user process will copy the file. In such a case, it . 
would be inappropriate for the NI M to expend much effort 
facilitating multi-level GRANT capabilities. This differs 
from the case for NOS-supported data base access. 

Data flow control 

The applicability of the . 'lattice security model" 11 for 
controlling access to networked systems has been exam
ined. 26 This model was originally derived from the military 
classification system and is intended to be a non-discre
tionary access control system. Therefore, objects are as
signed access .classes and subjects are assigned clearances. 
For a subject to gain access to an object, it must be 
"cleared" for the object. A subject does not have the dis
cretion to grant access to objects to other subjects who are 
not cleared for the objects. The basis of the iaitice model is 
a set of partially ordered access classes from which subject 
clearances and object classifications are chosen. There must 
be a lowest access class that is strictly less than any other 
access class and a highest access class such that it is strictly 
greater than all other access classes. 

An example of a simple lattice would be the set of access 
ciasses {SECRET, PUBLIC}. In this case the ordering is a 
total ordering-PUBLIC<SECRET. The military security 
lattice, on the other hand, has two components-a sensitiv
ity level and a category set. Sensitivity levels are {UN-
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CLASSIFIED, CONFIDENTIAL, SECRET and TOP SE
CRET}. Categories involve the further segmentation of sen
sitivity levels into collections of information requiring 
special access permission ("need to know"). 

To ensure the integrity of the data, an individual or proc
ess with a given clearance is not allowed to WRITE to a 
process or data file with a lower access class. READs from 
a set of data at a lower access class are allowed. Although 
these restrictions do not inhibit the flow of data from, say, 
an unclassified file to a process with secret clearance within 
an individual host, complications arise when data is being 
accessed across host boundaries. In order for a process on 
one host (HOST A) to "read" data from another host 
(HOST B) HOST A must send a request for data to HOST 
B. This request is analogous to a WRITE to HOST B, and 
thus we have a violation of the confinement property. 26 

Acceptable solutions to this problem depend on the nature 
of the application and the security characteristics of the 
participating hosts. However, it is worth noting at this point 
that in most civilian NOSs the potential existence of trap 
doors (the primary threat against which much of this model 
is directed) is not a pressing concern. 38 Therefore, a less 
rigid approach to controlling access would quite possibly be 
sufficient to achieve the required level of NOS security. 

XNOS SECURITY MECHANISMS 

Security-enhancing mechanisms have been incorporated 
in the NBS XNOS to control access to (1) the XNOS mon
itor, (2) network files and (3) data elements within network 
files and data bases. The first two are discussed in this 
paper. The third is still under investigation. 

A secure operating system was not available for the XNIM 
implementation. However, it is assumed that such a system 
is a prerequisite for an operational NOS which intends to 
provide access control to network resources. There are cur
rent efforts ongoing in the development and verification of 
a secure operating system for a minicomputer of the same 
architecture as the NBS XNIM (i.e., DEC PDP 11145).38 

System access 

Consistent with conventional operating systems, access 
to XNOS is granted via passwords at XNOS "login" time. 
Since the XNOS-monitor is resident on the XNOS NIM 
(XNIM), which in turn is implemented on a real operating 
system (Bell Laboratories' UNIX time-sharing system), the 
user must first be recognized as a valid XNIM (unix) user. 
At this stage, authentication is accomplished by the posses
sion of the appropriate pair (unix-user-id,unix-user-pas
sword). The user must then be identified as a qualified 
XNOS user by presenting the XNOS subsystem with :im 
additional (preferably different!) password. In accordance 
with recommended password techniques,43-45 the XNOS 
password table is maintained in an encrypted form. 

To facilitate the prototype development and feasibility 
demonstration, XNOS currently maintains only one account 

on each supported host system. All user files, therefore, are 
kept in one account space and it is only necessary for XNOS 
to supply its own password to the target system when log
ging on. XNOS then keeps internal directories associating 
XNOS users with particular files in each target host account. 

File level access 

File level access control is accomplished in two stages
(1) access control specification (for files, users, and com
mands) and (2) XNOS command processing. 

Access control specification 

The decision to incorporate both discretionary and non
discretionary access control mechanisms within the XNIM
based XNOS monitor implies the need for the following 
information: (1) Object security classifications, (2) User 
clearances and (3) The specific rights to access specific 
objects possessed by specific users. 

XNOS maintains a profile of each authorized user. This 
profile includes that user's security clearance category (e.g., 
"3-B,C"). Only the XNOS "super-user" (i.e., System Se
curity Officer) has the ability to change a user's clearance. 

Within XNOS, access control lists similar to those in 
Multics are used to contain the first and third of the above 
information items. 39 At present, four classification levels are 
supported for all XNOS files-numbered zero through three. 
The assignment of classification names is arbitrary. For pur
poses of discussion, we can assume the following classifi
cation scheme: 

3-Top Secret 
2-Secret 
I-Confidential 
O-Public 

This particular scheme represents a strict partial ordering, 
since each security classification level is greater than the 
next lower level. In order to support the general lattice 
security model for data flow control, it must be possible to 
specify disjoint, "need-to-know" subclassifications (i.e., 
compartments) at any given (other than the greatest or low
est) level. Thus, Level 1 (Confidential) could be further 
divided into parts l.A, l.B, and so forth. Classification l.A 
could correspond to Confidential: Government Contracts or 
Confidential: Payroll, for example. 

At this, the non-~iscretionary level of control, a person 
attempting to access (or grant access to) a file must have a 
security clearance at least as great as the classification of 
the object. Furthermore, if the person's clearance is equal 
to that of the object, then the "need-to-know" category of 
the prospective user must match the subclassification of the 
object. Thus, the user who has a Confidential level clearance 
to see confidential objects relating to Payroll (classification 
1. B) would not be granted access to files classified l.A. 

To support discretionary access control. owners of files 
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ACCESS RIGHTS FOR: 
SECURITY LEVEL: 
OWNER: 

NAME 

wood 
kimbleton 

MODE 

r ea 
r 

testfile 
1. A. 
wood 

Figure 4---XNOS file profile and access control list. 

(as indicated in each file's access control structure) may 
grant up to four modes of access privileges to specified 
users. The available modes are read (R), write (W), execute 
(E), and append (A). With this capability, we now can fully 
specify the requirements and capabilities needed to access 
each file. Such a specification is shown in Figure 4. Note 
that a user must explicitly authorize access privileges for 
one's self to one's own file. This helps the user protect his 
files from himself. 

XNOS command processing 

In order to ensure flexibility-a mandatory design require
ment for an experimental system such as XNOS-the se
curity-related input/output characteristics for XNOS com
mands are maintained in a table. This table specifies, for 
each XNOS command, the minimal set of access privileges 
a user must possess to invoke the command with the given 
parameters (e.g., file names). A portion of the command 
access requirements table is shown in Figure 5. 

The decision to grant or deny access is made at run-time. 
Thus, for example, although user Smith may have been 
explicitly granted the right to read file FI, classified at level 
3.C, the clearance level of Smith at the time of the access 
request may result in the denial of access. Smith may have 
had clearance 3.C at the time FI's owner granted read priv
ileges to him; however, it is possible that Smith's clearance 
changed in the interim. Such run-time decision-making al
lows the XNOS system to be reasonably dynamic, in that 
the latest security-related information is used in determining 
access rights. 

COMMAND INPUT iviODE 

append ra 
compare r 
copy r 
delete rw 
erase rw 
rename rw 
type r 

On the other hand, the decision to grant or deny access 
needs to be made as soon as possible in order to minimize 
the computational and communications-related burden on 
the XNIM and the rest of the supported network. Therefore, 
the user's access rights are matched against the classification 
of both input and output files before any data access oper
ations are begun. For example, to COpy (fileI) TO (file2) , 
the user would have to be cleared at least to read file I and 
to write to file2 before the transfer would be initiated. 

Data item-level access 

One of the two basic functional objectives of a network 
operating system is preservation of meaning in transmitting 
structured data, e.g., records, between heterogeneous sys
tems. 30 Accomplishing this objective requires four major 
types of supporting information in add:ition to the binary 
string representing the record. These are 0.) the structure 
of the record and the storage order of its data elements, (2.) 
data element types, (3.) data element representations (which 
may be dependent on both computer and compiler) and (4.) 
data element names (to support differing source and desti
nation names or differences in source and destination stor
age order representations). 

Given knowledge of data element names, one potentially 
has the opportunity to control access to these data elements. 
Such control can prove highly desirable since it supports 
enhanced sharing of data subject to unrestricted access while 
providing required access restrictions and without necessi
tating separate files, as would otherwise be mandatory. 

As is the case for file level access control, data element
level access should also be supported by both discretionary 
and non-discretionary controls. This implies the need for 
managing a significant amount of access control-related in
formation. As a result, although the access control decision 
is implemented by XNOS-e.g., if access is denied XNOS 
will not support the retrieval and transmission of the data 
element-in practice such decisions are likely to be closely 
related to the utilization of database management systems 
(DBMSs). 

NBS is currently developing an Experimental Network 
Data Manager (XNDM) to investigate the problems of in
terfacing network users to dissimilar DBMSs. An XNDM 

OUTPUT MODE 

ra 

rw 

rw 

Figure 5-XNOS command requirements. 
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provides an excellent opportunity for examining issues re
lated to data element-level access control. Consequently, a 
key component of the NBS XNDM is an Access Control 
Mechanism supporting discretionary and non-discretionary 
controls. Revocation of grants of access privileges uses a 
mechanism similar to that described in References 21 and 
15 based on time-stamping. 

In addition to supporting both discretionary and non-dis
cretionary controis, the XNDM Access Control Mechanism 
also differs from counterparts for individual DBMSs through 
permitting distribution of access information across systems. 
Thus, in processing a query emitted by a source program S, 
one of the key steps is collecting the access rights of S. 
These rights are then transmitted, together with the query 
to a destination sytem where they are compared against the 
access requirements of the specific data elements. If access 
is not rejected, the appropriate data is retrieved. Otherwise, 
a rejection notice is returned to the calling program. 

A major problem in implementing network wide data ele
ment-level access controls is resolving the issue of how 
much trust one will place in an operating system using un
verified code. To circumvent this problem, all XNDM ac
cess control information is also resident in the XNIM. Thus, 
the arguments which one would make in establishing the 
appropriate level of trust are analogous to those used in 
discussing file-level access control issues earlier in this 
paper. 

CONCLUDING REMARKS 

The goals behind the XNOS access control mechanism 
implementation were much the same as those motivating the 
entire XNOS project-to demonstrate the feasibility of the 
concept and, while doing so, identify the design alternatives 
inherent in the development of such a capability. While we 
feel that these goals have been achieved, there is no intent 
to claim that the implementation approach is in itself the 
definitive one. In fact, as a part of the ongoing NBS inves
tigation of NOSs and related higher-level communications 
protocol issues, the XNOS implementation previously de
scribed by Kimbleton is currently undergoing a major re
structuring and re-implementation. 30 

Given the type of NOS architecture exemplified by the 
NBS XNOS, network operating systems can be used to 
enhance network security. The skillful utilization of existing 
host security mechanisms, such as password techniques, 
can result in an immediate increase in protection, as the 
NOS support computer can be relied upon to use the pre
programmed, recommended procedures for selecting, 
changing and protecting its passwords. Furthermore, by 
adding a level of indirection between network resources and 
those wishing to access them, the NOS not only achieves a 
higher degree of resource protection, but does so without 
requiring changes to the participating host sytems. It re
mains for system and network managers to determine the 
required level of security for a particular system or network. 
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Public key vs. conventional key encryption* 

by CHARLES s. KLINE and GERALD J. POPEK 
University of California 
Los Angeles, California 

INTRODUCTION 

As djstributedcomput~r systems grow and their conveni
ence attracts uses for which maintenance of privacy and 
security is important, the means by which encryption is 
integrated into these systems also becomes important. En
cryption is the only practical way by which secure, private 
communication can be conducted while employing untrusted 
media to carry the transmission. The interest has spurred 
developments in the use of conventional encryption algo
rithms and there is even a federal standard algorithm for 
commercial use.4 In addition, an innovative approach to 
encryption, called public key algorithms, has recently been 
proposed as a way to address many of the key distribution 
and other problems which are present in conventional al
gorithm-based approaches. 

Here we examine the general classes of functions desired 
of encryption algorithms as they are integrated into com
puter systems, and discuss the characteristics and prope.rties 
desired in each case. We then look at the two general ap
proaches-conventional algorithm-based, and public key
based. In every case we examine, we conclude that the two 
approaches are essentially equivalent. Neither approach has 
any particular advantage over the other. This conclusion is 
surprising, since one's intuition may suggest that public key 
algorithms are intrinsically superior because of their poten
tial additional flexibility. Certainly, many public key pro
ponents claim so. Yet, upon closer examination, the advan
tages of public key systems evaporate when one actually 
integrates them into a larger system. 

In fact, we will see that the major unsolved problems are 
not concerned with key distribution, or the development of 
trusted software, but instead with the need for strong algo
rithms, whatever their form, and for reliable authentication 
methods: ways by which the human being can be effectively 
identified by the computer system. 

PUBLIC KEY AND CONVENTIONAL ENCRYPTION 
ALGORITHMS-GENERAL CHARACTERISTICS 

Encryption provides a method of storing data in a form 
which is unintelligible without the "key variable" used in 

* This research was supported by the Advanced Resellrch Projects Agency 
of the Department of Defense under Contract MDA 903-77-0211. 
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the encryption. Basically, encryption can be thought of as 
a mathematical function 

E=F(D,K) 

where D is the data to be encoded, K is the key variable, 
and E is the resulting enciphered text. For E to be a useful 
function, there must exist an F', the inverse of F, 

D=F'(E,K) 

which has the property that the original data can be re
covered from the encrypted data if the value of the key 
variable originally used is known. 

However, the use of F and F' is valuable only if it is 
difficult to recover D from E without knowledge of the 
corresponding key K. A great deal of research has been 
done to develop algorithms which make it virtually impos
sible to do so, even given the availability of powerful com
puter tools. 

The "strength" of an algorithm is traditionally evaluated 
using the following assumptions. First, the algorithm is 
known to all involved. Second, the analyst has available to 
him a significant quantity of matched encrypted data and 
corresponding cleartext. He may even have been able ~o 
cause messages of his choice to have been encrypted. HIS 
task is to deduce, given an additional, unmatched piece of 
encrypted text, the corresponding cleartext. All of the 
matched text can be assumed to be encrypted through the 
use of the same key variable which was used to encrypt the 
unmatched segment. In particular, therefore, the difficulty 
of deducing the key used in the encoding is directly related 
to the strength of the algorithm. 

Recently, Diffie and Hellman! proposed a variation of the 
conventional encryption methods that may in some cases 
have certain advantages over standard algorithms. In their 
class of algorithms, there exists 

E=F(D,K), 

as before, to encode the data and 

D=F'(E,K') 

to recover the data. The major difference is that the key K' 
used to decrypt the data is not equal to, and cannot be easily 
derived from, the key K used to encode the data. Presum
ably there exists a pair generator which based on some input 
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information produces the matched keys K and K' with high 
strength (i.e. resistance to the derivation of K' given K, D, 
and matched E=F(D,K». 

The value of such a public key encryption algorithm lies 
in some potential simplifications in initial key distribution, 
as well as for "digital signatures." The key K used to en
crypt the data is expected to be publicly known, and is 
referred to as the public key. The key K' used to decrypt 
the data would be kept secret and is referred to as the private 
key. 

SYSTEM FUNCTIONALITY 

There are a number of privacy and security-related func
tions which are desired from a distributed computer system. 
Each of the classes of functions which have been suggested 
will be discussed, together with the properties desired of the 
function. 

The assumptions made regarding the threats against which 
protection is desired include tapping of lines, introduction 
of spurious traffic and retransmission of previously-trans
mitted genuine traffic. It is assumed that malicious attacks 
are expected, and that there do not already exist secure, 
high bandwidth paths between those who wish to commu
nicate in a private manner. This typically is the case when 
common carrier transmission media, including packet
switched services, are employed. 

Pril'ate communication 

This is the conventional use of encryption. In the distrib
uted systems being envisioned, such as a large-scale com
puter network, it is viewed as desirable to separately protect 
each different conversation from every other. That is, the 
goal is to guarantee that each user/user connection is pro
tected via encryption separately from all other connections. 
Therefore, each conversation needs its own key pair in con
ventional methods, and each user must have his own publici 
private key pair in the public key schemes. As a result, there 
can be a formidable key distribution problem. Any solution 
to this problem should not, in the view of many, depend on 
a single, central key distribution center, since the security 
of the entire network could depend on it, and the center 
contains high potential for abuse. 

Internal authentication 

In constructing a distributed system, it is not uncommon 
for the sites in the system to be connected using common 
carrier circuits, so that a potentially large amount of switch
ing mechanism may be involved in the links. Hence, the 
sites may wish to exchange several messages each time that 
they recommence operation, to assure that they are each 
connected to the right sites. The usual method seen in com
puter systems today, where one member of the pair reveals 
some ~t:cret information lu the uther, is unacceptable in 

general if one is concerned about spoofing., The conventional 
form of this problem concerns authentication of the user to 
the system, via some form of a login protocol. 

In networks, however, the problem is mutual-each 
"end" ofthe channel may wish to assure itself of the identity 
of the other end. Quick inspection of the class of methods 
used in centralized systems show that straightforward ex
tensions are unacceptable. Suppose one required that each 
participant send a secret password to the other. Then the 
first member that sends the password is exposed. The other 
member may be an imposter, who has now received the 
necessary information to pose to others in the network as 
the first member. Whoever goes first potentially reveals his 
secret to a spoofer, who can then masquerade and collect 
other secrets. Obviously, extension to a series of exchanges 
of secret information will not solve the problem. It only 
makes necessary a several-ste-p-posing procedure by the im
poster. A different approach is in order. 

Datagrams 

In the private communication function, it is generally 
understood that the parties wishing to communicate are will
ing to pay some reasonable amount of overhead to get the 
private conversation established, so that a key distribution 
algorithm involving several messages would be quite suita
ble, for example. However, in the case of short messages, 
or datagrams, it is generally viewed as unreasonable for the 
actual transmission of the short message to require signifi
cant overhead, such as several preceding messages to set up 
the channel. On the other hand, some queuing delays at the 
sending or receiving site may well be acceptable if the num
ber of overhead messages can be significantly reduced. Also, 
the datagram function is similar to mail, in that the receiver 
need not be active, or logged in, at the time the message is 
received. 

Digital signatures 

The goal here is to provide a way by which the author of 
a digitally-represented message can "sign" it in such a fash
ion that the "signature" has similar properties to the analog 
signature written in ink for the paper world. Without a suit
able digital signature method, many have argued that the 
growth of distributed systems will be seriously inhibited, 
since large classes of applications would be precluded. 

The properties required of a digital signature method in
clude the following: 

1. U nforgeability-It should only be possible for the au
thor to create the signature for any given message. 

2. Authenticity-There must be a straightforward way to 
conclusively demonstrate the validity of a signature in 
case of dispute, even long after authorship. 

3. No repUdiation-It must not be possible for the author 
of signed correspondence to subsequently disclaim au
thorship. 



4. Low cost and high convenience-The simpler and 
lower-cost the method, the more likely it will be used. 

Minimum trusted mechanism: Minimum central 
mechanism 

In all of these functions, it is desirable that there be min
imum trusted mechanism involved. This desire occurs be
cause the more mechanism, the greater the opportunity for 
error, either by accident or by intention (perhaps by the 
developers, maintainers, etc.). One wishes to minimize the 
involvement of a central mechanism for analogous reasons. 
This fear of large, complex and central mechanisms is well 
justified, given the experience of the failure of large central 
operating systems and data management systems to provide 
a reasonable level of protection against penetration. All the 
Kernel-based approaches to software architectures have as 
their goal the minimization in size and complexity of central, 
trusted mechanism. Others are distrustful that a centralized, 
governmental (presumably) communication facility, or even 
a large common carrier can be trusted to assure privacy and 
other related characteristics. These general criteria are quite 
important to the safety and credibility of whatever system 
is eventually adopted. They also constrain the set of ap
proaches that may be employed. 

PRIVATE COMMUNICATION-KEY DISTRIBUTION 

There are several requirements which any encryption pro
tocol must satisfy. First, the encryption algorithm must be 
strong. Second, the keys to be used must be chosen and 
stored securely. Third, the keys must be communicated 
securely. Finally, authentication must be provided to sepa
rate this conversation from others which may use, or have 
used, the same key. Of these issues, the main problem is 
key distribution. 

Conventional and public key systems solve these prob
lems in different ways. In conventional systems, a new key 
is typically requested for each new communication. A key 
controller (which mayor may not be centralized) chooses 
all keys, and performs any protection policy checks. The 
key controller only communicates the keys, establishing the 
communication channel if the protection checks succeed. 
The key controller communicates the keys chosen utilizing 
the same communications system as will be used for data 
transfer, but using previously arranged secret keys between 
the controller and the parties in the planned communication. 
However, it is straightforward to design the system so that 
the secret keys are stored in read only storage of the en
cryption units and never revealed. No authentication mech
anism is needed to separate the new secure channel from 
prior ones, since the new keys chosen effectively form an 
authentication-no prior messages are useful. 

Public key advocates claim that one of the advantages of 
public key algorithms over conventional algorithms lies in 
potentially simplified key distribution. Simply put, public 
key advocates argue that an automated "telephone book" 
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of public keys can generally be made available, and therefore 
whenever user x wishes to communicate with user y, x 
merely must look up y's public key in the book, encrypt the 
message with that key, and send it to y.1 Therefore, there 
is no key distribution problem at all. Further, no central 
authority is required initially to set up the channel between 
x and y. 

It is clear, however, that this viewpoint is incorrect
some form of a central authority is needed and the protocol 
involved is no simpler nor any more efficient than one based 
on conventional algorithms. 5 First, the safety of the public 
key scheme depends critically on the correct public key 
being selected by the sender. If the key listed with a name 
in the "telephone book" is the wrong one, then there is no 
security. Furthermore, maintenance of the (by necessity 
machine-supported) book is non-trivial because keys will 
change~ either because of thenatu-ral desire to- replace -a key 
which has been used for high amounts of data transmission, 
or because a key has been compromised through a variety 
of ways. There must be some source of carefully maintained 
"books" with the responsibility of carefully authenticating 
any changes and correctly sending out public keys (or entire 
copies of the book) upon request. 

Needham and Schroeders exhibit protocols to provide the 
desired properties for public key systems, and show that 
there are equivalent protocols for conventional algorithms. 
The protocols are equivalent both in terms of numbers of 
messages required as well as in the mechanisms which must 
be trusted. In particular, the public key must be requested 
from the central authority (be it implemented in a centralized 
or distributed manner) and transmitted in a way which guar
antees that the right key is received. Since the public key is 
reused, some authentication mechanism, such as a sequence 
number, is required to isolate this communication from oth
ers which may have used the same key. The communications 
required to retrieve the key and to establish the authenti
cation mechanism make the public key distribution algo
rithm entirely equivalent to conventional algorithms. 

Some public key advocates have suggested ways to avoid 
requesting the public key from the central authority for each 
communication. First, a-cache of keys can be kept (a small 
local "telephone book") and frequently used keys will be 
found there. 

Second, a concept known as certificates has been sug
gested.a A user can request that his public key be sent to 
him as a certificate. A certificate is a user/public key pair, 
together with some certifying information. For example, the 
user/public key pair may be stored as a signed message from 
the central authority. When the user wishes to communicate 
with other users, he sends the certificate to them. They each 
can check the validity of the certificate using the certifying 
information, and then retrieve the public key. Thus, the 
central authority is only needed once, when the initial cer
tificate is requested. 
- Both the previous approaches have several problems. 
First, the mechanism used to store the cache of keys must 
be correct, since it will be relied upon. Second, the user of 
the certificate must decode it and check it (verify the sig-
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nature) each time before using it, or must also have a secure 
and correct way of storing the key. Perhaps most important, 
as keys change the cache and old certificates become ob
solete. This is essentially the capability revocation problem 
revisited. to Either the keys must be verified (or re-requested) 
periodically, or a global search must be made whenever 
invalidating a key. Notice that even with the cache or cer
tificates, an internal authentication mechanism is still re
quired. 

Public key systems also have the problem that it is more 
difficult to provide protection policy checks. In particular, 
conventional encryption mechanisms trivially allow protec
tion policy issues to be merged with key distribution. If two 
users are not to communicate, then the key controller can 
refuse to distribute keys. ** However, public key systems 
imply the knowledge of the public keys. Methods to add 
protection checks to public key systems add an additional 
layer of mechanism. 

INTERNAL AUTHENTICATION 

There are a number of straightforward encryption-based 
authentication protocols which provide reliable mutual au
thentication without exposing either participant. The meth
ods are robust in the face of all the network security threats 
mentioned earlier. The general principle involves the en
cryption of a rapidly changing unique value using a prear
ranged key. In the following we outline a simple authenti
cation sequence between nodes A and B. At the end of the 
sequence, A has reliably identified itself to B. The analogous 
sequence is needed for B to identify itself to A. Typically, 
one expects to interleave the messages of both authentica
tion sequences. 

Assume that A uses a secret key, associated with itself, 
in the authentication sequence. The reliability of the au
thentication depends only on the security of that key. As
sume that B holds A's matching key (as well as the matching 
keys for all other hosts to which B might talk). 

I. B sends A in cleartext the current time of day as known 
to B. 

2. A encrypts that time of day using its authentication key 
and sends the resulting ciphertext to B. 

3. B decrypts A's authentication message, using A's 
matched key, and compares it with the time of day 
which B had sent. If they match, then B is satisfied 
that A was the originator of the message. If the received 
time of day is not much older than the current time of 
day, B is satisfied that the message has not been de
layed and retransmitted. 

This simple protocol does not expose either A or B if the 
encryption algorithm is strong, since it should not be pos
sible for a cryptanalyst to be able to deduce the key from 

** This approach blocks communication if the host operating systems are 
constructed in such a way as to prohibit cleartext communication over the 
network. 

the encrypted time of day, even if he knew what the cor
responding cleartext time of day was. Synchronized clocks 
in the network are not required. Further, since the authen
tication messages change rapidly, it is not possible to record 
an old message, retransmit it, and have it treated as valid 
by the recipient. 

Authentication protocols such as these require the prior 
distribution of secret keys. If data security is the goal, no 
formal authentication protocol is actually required when all 
data transmissions are encrypted, since possession of the 
key serves as prima facie evidence that the participants are 
the appropriate ones, as well as providing the mechanism 
empowering the communication. Nevertheless, authentica
tion protocols can give immediate assurance, and protect 
against the playback of previously recorded traffic. 

DATAGRAMS 

Datagrams are short messages from one user to another. 
These messages should be delivered with relatively low 
overhead if services such as electronic mail are to be prac
tical. In addition, it is desired that buffering be performed 
at the recipient site. That is, the mail should be delivered as 
soon as possible to the recipient site, and stored there, even 
if the desired user is not logged in. 

Assume that a user at one site wishes to send mail to a 
-user at another site. Using conventional encryption algo
rithms, the first user would request a connection to the 
second user, and a new key would be chosen and distributed 
by the key controller to each end of the communication 
channel. That key is sent using the secret keys of the two 
users. 

However, since the second user may not be signed on at 
the time, a daemon process is used to receive the mail and 
deliver it to the user's "mailbox" file for his later inspection. 
It is desirable that the daemon process not need to access 
the cleartext form of the mail, for that would require the 
mail receiver mechanism to' be trusted. This task can be 
accomplished by sending the mail to the daemon process in 
encrypted form and having the daemon put that encrypted 
data directly into the mailbox file. The user can decrypt it 
when he signs on to read his mail. In that way, the daemon 
only needs the ability to append to a user's mailbox file. 

In order for the user to know the new key used for this 
mail, however, the key distribution algorithm described ear
lier must be modified. Rather than send the key for this 
connection to both the sender and the receiver, the key 
controller sends the key twice to the sender, one copy en
crypted with the sender's secret key and one copy encrypted 
with the receiver's. The sender can prepend the copy of the 
key encrypted in the receiver's secret key to the mail before 
transmission. When the recipient signs on, his own mail 
program will examine the mailbox file, find the key message 
encrypted with his secret key, decrypt it to obtain the key 
for that message, and then use that key to decrypt the 
remaining text. 

In the case of public key encryption algorithms, the mail 
problem is somewhat simplified since the recipient knows 



what key to use in decryption (his private key). However, 
authentication is not possible since the recipient is not pres
ent when the message is received. Thus, it may be a replay 
ofa previously sent message. This problem can be prevented 
in the conventional encryption algorithm case via various 
protocols with the key managers, for example, by time
stamping the mail and having the recipient keep track of 
recently used mail keys. 

Both mechanisms just outlined do guarantee that only the 
desired recipient of a message will be able to read it. How
ever, as pointed out, they don't guarantee to the recipient 
the identity of the sender. This problem is essentially that 
of digital signatures, and is discussed in the next section. 

DIGITAL SIGNATURES 

The need for digital signatures has by now become ap-
. parent to many. At first, it appeared that public key methods 
would be superior to conventional ones for use in digital 
message signatures. The method, assuming a suitable public 
key algorithm, is for the sender to encode the mail by "de
crypting" it with his private key and then send it. The 
receiver decodes the message by "encrypting" with the 
sender's public key. The usual view is that this procedure 
does not require a central authority, except to adjudicate an 
authorship challenge. However, two points should be noted. 
First, a central authority is needed by the recipient for aid 
in deciphering the first message received from any given 
author (to get the corresponding public key, as mentioned). 
Second, the central authority must keep all old values of 
public keys in a reliable way to properly adjudicate conflicts 
over old signatures (consider the relevant lifetime of a sig
nature on a real estate deed for example). 

Further, and more serious, the unadorned public key sig
nature protocol just described has an important flaw. The 
author of signed messages can effectively disavow and re
pudiate his signatures at any time, merely by causing his 
secret key to be made public, or "compromised." This fact 
has also been pointed out by Saltzer .13 When such an event 
occurs, either by accident or intention, all messages previ
ously "signed" using the given private key are invalidated, 
since the only proof of validity has been destroyed. Because 
the private key is now known, anyone could have created 
any message claimed to have been sent by the given author. 
None of the signatures can be relied upon. 

Hence the validity of a signature on a message is only as 
safe as the entire future history of protection of the private 
key. Further, the ability to remove the protection resides in 
precisely the individual (the author) who should not hold 
that right. That is, one important purpose of a signature is 
to indicate responsibility for the content of the accompa
nying message in a way that cannot be later disavowed. 

The situation with respect to signatures using conven
tional algorithms initially appears slightly better. Rabin9 pro
poses a method of digital signatures based on any strong 
conventional algorithm. Like public key methods it too re
quires either a central authority or an explicit agreement 
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between the two parties involved to get matters going. *** 
Similarly, an adjudicator is required for challenges. Rabin's 
method, however, uses a large number of keys, with keys 
not being re-used from message to message. As a result, if 
a few keys are compromised, other signatures based on 
other keys are still safe. However, that is not a real advan
tage over public key methods, since one could readily add 
a layer of protocol over the public key method to change 
keys for each message as Rabin does for conventional meth
ods. One could even use a variant of Rabin's scheme itself 
with public keys, although it is easy to develop a simpler 
one. 

However, all of the digital signature methods described 
or suggested above suffer from the problem of repudiation 
of signature via key compromise. Rabin's protocol or ana
logues to it merely limit the damage (or, equivalently, pro
vide sekctivity !). It-~-m:s- that t-heproblem is. intrinsic to . 
any approach in which the validity of an author's signature 
depends on secret information, which can potentially be 
revealed, either by the author or other interested parties. 
Surely improvement would be desirable. 

A reliable digital signature method 

A simple, obvious solution is to interpose some trusted 
interpretive layer between the author and his signature keys, 
whatever their form. For example, suppose the list of keys 
in Rabin's algorithm were not known to the author, but 
instead were contained in a secure Unit (hardware or soft
ware). Whenever the author wished to send a signed mes
sage, he merely submitted the message to the Unit, which 
selected the appropriate keys and then used the signature 
algorithm. Each author would have access to such a Unit. 

The loading of each Unit requires some examination. In 
particular, the means which are used to select keys and 
insert them into each Unit must be correct if mail challenges 
are to be handled satisfactorily. That is, there must be some 
trusted Source of keys (and matching "standard message" 
in the Rabin protocol), and the key list for each author/ 
recipient pair must be deliverable in a correct, secret way 
to the appropriate Units. We will call the collection of Units 
and the Source(s), together with their internal communica
tion protocols, a Network Registry (NR). Such an NR ap
pears required to solve the problems raised earlier. Note 
that some secure communication protocol among the com
ponents of the Network Registry is required. However, it 
can be very simple; low-level link style encryption would 
suffice. 

For safety and efficiency, the NR functions presumably 
should be decomposed and distributed throughout the net
work. In particular, the failure or compromise of a local NR 
would then only have local consequences. One can even 

*** In his paper, Rabin describes an initialization method which invoives an 
explicit contract between each pair of parties that wish to communicate with 
digitally-signed messages. One can easily instead add a central authority to 
play this role, using suitable authentication protocols, thus obviating any 
need for two parties to make specific arrangements prior to exchanging signed 
correspondence. 
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construct local NR components of the Network Registry in 
a decentralized way so that compromise of more than one 
component would be required before a message signature 
was affected. 

The Registry concept is quite common in the paper world. 
A local government's real estate recorder's office is proba
bly the most commonly known example. 

Simplification of the proposed signature architecture
Specialized digital signature protocols unnecessary 

Once the necessity of a Network Registry is recognized, 
including a guaranteed authentication mechanism, it appears 
that simplifications in the mechanisms required for digital 
signatures can be made that seem to remove the need for 
specialized digital signature protocols. Instead, any of a 
collection of simple methods will suffice. 

In particular, in order for the Network Registry to operate 
satisfadorily (induding performing user authentication), it 
clearly must be distributed, and clearly must be able to 
communicate securely internally among the distributed com
ponents. Given that such facilities exist, then the following 
is an example of a simple implementation of digital signa
tures which does not require a specialized protocol or en
cryption algorithm: 

I. The author authenticates with a local Network Registry 
component, creates a message, and hands the message 
to the NR together with the recipient identifier and an 
indication that a registered signature is desired. 

2. A Network Registry (not necessarily the local com
ponent) computes a simple characteristic function of 
the message. author, recipient and current time, en
crypts the result with a key known only to the Network 
Registry, and forwards the resulting "signature block" 
to the recipient. The NR only retains the encryption 
key employed. 

3. The recipient, when the message is received, can ask 
the NR if the message was indeed signed by the claimed 
author by presenting the signature block and message. 
Subsequent challenges are handled in the same way. 

This simple protocol involves little additional mechanism 
beyond that which was needed by the Network Registry 
anyway. It does require that the Network Registry be in
volved in every message signature and validation. However, 
recall that all of the unadorned signature methods reviewed 
earlier require involvement of some form of a Network Re
gistry for at least the first message between any two parties. 
Public key protocols must check the "telephone book," and 
Rabin's method requires either a contract or a Network 
Registry. Furthermore, when one adds a more complete 
Network Registry on top of those other signature methods 
to correct their repudiation problem, all methods involve the 
NR for each message. Note that this protocol also does not 
require the NR to maintain anv significant storage for sig
nature blocks. 

Performance and safety 

Certain elementary precautions should be taken in the 
design of the Network Registry to avoid unnecessary inter
nal message exchanges and to assure safety of the keys used 
to encrypt the signature blocks. Performance enhancements 
presumably would involve distributing the signature block 
calculation. Safety enhancements could include the use of 
different keys at each distributed site, replicating sites, and 
employing a signature block computation which requires the 
cooperation of multiple sites. Each of these facilities is 
straightforward to build and so they are not discussed further 
here. 

It has been speculated that the task of constructing a 
Network Registry would be simpler using public key sys
tems, since only the secret key of the Registry needs to be 
stored securely. However, using conventional encryption 
the Registry could encrypt all the private keys using a master 
key which belongs to the Registry. Thus, it is again the case 
that only the master key of the Registry needs long-term 
secure storage. 

From the preceding discussions, we conclude that the 
digital signature algorithms proposed heretofore are unsat
isfactory, and the improvements required to correct their 
inadequacies make the use of a specialized digital signature 
algorithm unnecessary. 

We note here that the safety of signatures in this proposal 
also depends on the future history of protection of keys as 
before-in this case those held by the Network Registry. 
However, there are several crucial differences between this 
case and previous proposals. First, the authors of messages 
do not retain the ability to repudiate signatures at will. Sec
ond, the Network Registry can be structured so that failure 
or compromise of several of the components is necessary 
before signature validity is lost. In the previous methods, a 
single failure could lead to compromise. 

USER AUTHENTICATION 

While digital signatures are important, it is necessary to 
realize that there still must exist a guaranteed authentication 
mechanism by which an individu"al is authenticated to the 
NR (presumably directly the local Unit). Any reasonable 
communication system of course ultimately requires such a 
facility, for if one user can masquerade as another, all sig
nature systems will fail. What is required is some reliable 
way to identify a user sitting at a terminal-some method 
stronger than the password schemes used today. Perhaps an 
unforgeable mechanism based on fingerprints or other per
sonal characteristics will emerge. 

Once the user has been correctly identified to the system, 
public key systems also must deal with the problem of re
trieving the recipient's private key. That key must be se
curely stored, either in part in the user's head (not a very 
secure place), or somewhere else. Various forms of storage 
are po~sihle" for f>xample a simple card the user carries 
around with him, or in the system itself. However. the 



storage must be in a form which is not useful to anyone else. 
For example, if the user loses the box containing his key, 
no one else should be able to use it, nor decipher its con
tents. This requirement means that the box itself can not be 
used as the sole user authentication mechanism. In addition, 
the key must be stored in the box in an unreadable form, 
presumably encrypted using some system key. The user 
must first authenticate himself to the system, have the sys
tem read the box, decode the key, and store it securely for 
use. 

Once it is recognized that the system must be able to store 
keys securely, it becomes clear that the box just suggested 
can be dispensed with, except possibly as part of a user 
authentication mechanism. The system then would store 
users' private keys. Once a user has authenticated himself, 
the system can retrieve the key. This approach avoids the 
problem of requiring ~he user carry around a card, and 
makes revocation/change of keys simpler. 

Thus, there appears to be no advantage in the use of 
public key systems over conventional ones for user authen
tication or private key storage, since keys must be securely 
stored in either case. In fact, in conventional encryption, 
only the keys used for initial connection establishment with 
the key controllers require long-term storage. Others only 
remain as long as the connection is in use. 

CONCLUSIONS 

Based on the preceding discussions, we draw several con
clusions. First, the debate over the relative advantages of 
public versus conventional key encryption algorithms is just 
not very important, at least for the class of applications 
discussed in this paper. In either approach, there must exist 
a similar amount of secure mechanism that must be trusted. 
Public key algorithms do not aid that problem to any signif
icant degree. In any event, a strong algorithm is needed. 
Whether it is public key-based or a conventional one doesn't 
matter much at all, compared to the overriding necessity 
that it be strong. If strong conventional algorithms are easier 
to develop, as has been speculated,12 research would be 
better devoted to that area rather than public key systems. 
Once suitable algorithms are available, the remaining weak 
link in the principles of secure, distributed systems lies with 
the requirement to accurately authenticate the user to the 
system. 

Also, it seems that the digital signature methods which 
have been proposed, both public key- and conventional al
gorithm-based, do not adequately protect recipients of 
signed documents from repudiation of signatures by the au
thor revealing the secret key(s) employed. The difficulty 
appears intrinsic to the approaches being taken. An alter
native is available which overcomes this problem; however, 
that involves a small amount of trusted software. 
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The necessary underlying mechanism required to support 
improved digital signature methods, as well as other user
visible secure network communication protocols, is rela
tively well understood, and takes account of the important 
requirement that the amount of trusted mechanism involved 
be minimized for the sake of safety. 8 

In more global terms, this discussion of network security 
has been intended to illustrate the current state of the art. 
Assuming a common carrier philosophy, then general prin
ciples by which secure, common carrier-based, point-to
point communication can be provided are reasonably well 
in hand. Of course, in any sophisticated implementation, 
there will surely be considerable careful engineering to be 
done. 

However, this conclusion rests on one important assump
tion that is not universally valid. Either there exist secure 
operating systems to support the individual processes and 
the required encryption protocol facilities, or each machine 
operates as a single protection domain. A secure implemen
tation of a Key Distribution Center or Registry is necessary 
in any case. Fortunately, reasonably secure operating sys
tems are well on their way, so that this intrinsic dependency 
of network security on an appropriate operating system base 
should not seriously delay common carrier security. 
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MME OVERVIEW 

The increasing sophistication of military systems and de
creasing time frame for making decisions make it essential 
to provide the military commander better quality informa
tion faster. With today's technology, messages can traverse 
several thousand miles in fractions of a second, but hours 
are lost at either end, both in entering the message into the 
communications system and in delivering it to the person 
who can act on it. Even after the message is delivered, an 
officer acting on it requires background information to for
mulate a proper response. More often than not, that infor
mation is available only after time-consuming searching 
through ponderous files. The response is usually an outgoing 
message which must be coordinated with other people, many 
of whom are not in the immediate vicinity of the message 
drafter. Hand-carrying the draft to these people slows the 
response still further. In times of crisis this system can easily 
become overloaded, throwing the entire operation into 
disarray. 

This message management problem seems an excellent 
candidate for automation. Users of the ARPAnet have had 
a form of on-line message service for more than seven years. 
There is no question that the technology exists, but whether 
it will be cost-effective in the military environment is not so 
clear. 

In December 1975 the Defense Advanced Research Pro
jects Agency (DARPA), Commander Naval Telecommuni
cations Command (NAVTELCOM), Commander Naval 
Electronic Systems Command (N A VELEX), and Com
mander-in-Chief, Pacific (CINCPAC) signed a Memorandum 
of Agreement6 stating their intention to conduct an experi
ment at CINCPAC Headquarters whose express goal was 
to "evaluate the utility of interactive message service ca
pabilities in a military environment." The experiment is 
called the Military Message Experiment (MME). 

To have the military conduct an experiment of this sort 
is highly unusual. More traditionally the user community 
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would state their requirements in a Request for Operational 
Capability (ROC), which is interpreted and converted by 
some agency of the service into a system specification in the 
form of a Request For Proposal (RFP). The RFP is subject 
to further interpretation by the various contractors, first in 
their proposals in response to the RFP and later in the 
implementation by the winning contractor(s). 

Although this procedure has apparently served well for 
'procurement of more traditional systems, experience indi
cates it has been less successful in the field of computer 
automation, especially in data management systems like a 
message service, where the requirement is seldom well 
understood and the many levels of interpretation between 
the ROC and the final system lead to products poorly suited 
to the real requirement. The implications of a particular 
system design are subtle; if some aspect is inappropriate, it 
is often virtually impossible to change. ARPAnet experience 
has shown that the effectiveness of a message service is 
strongly dependent on ease of access to the system, how 
often people look at their messages, how "official" such 
messages are considered to be, ad infinitum. Further, the 
message service is often just the tip of the iceberg as users 
begin to understand the capabilities the system offers outside 
pure message processing. If the message service is used 
extensively, it intimately affects individuals' work style in 
ways that are difficult to predict. Thus it is very risky to try 
to specify "requirements" when repiacing a paper, pencil 
and typewriter world with modern "office automation" 
tools. Attempts at management information systems have 
shown it is particularly difficult to provide a user interface 
that is acceptable to high-level managers, so it is not even 
clear precisely who will sit at the terminals or how these 
people will interact with senior officers. 

The MME is a computer-world equivalent of a . 'fly-be~ 
fore-buy" test ofa message service in an operational military 
environment. The test is relatively small and inexpensive 
compared to the cost of multiple installations of a . 'produc
tion" system. The hope is the experiment will provide 
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enough experience and understanding of interactive message 
handling that subsequent production systems will be suc
cesses rather than expensive lessons in how not to automate 
the process. In June 1977 the U.S. House Appropriations 
Committee put a moratorium on virtually all new develop
ment of "message systems" by the Department of Defense 
until results from the MME can be evaluated. 

The MME is being conducted at the CINCPAC Head
quarters, Camp Smith, Oahu. The test community is ap
proximately 100 officers and staff personnel in CINCPAC's 
command center and "operations" directorate (called J3). 
Twenty-four video display terminals are provided for user 
interaction with the service. Seven printers are located 
throughout the headquarters for local hard copy. The host 
processor is a PDP-I 0 (KL processor) manufactured by Dig
ital Equipment Corporation running the TE~EX operating 
system developed by Bolt, Beranek and Newman. 4 The 
PDP-IO connects to CINCPAC's AUTODIN (AUTOmated 
Digital Information Network) terminal computer, called the 
LDMX (Local Digital Message eXchange). The LDMX sup
ports the current message handling service at CINCPAC; it 
prints copies of all CINCPAC's incoming AUTODIN mes
sages and accepts outgoing messages through an optical 
character reader, sending them to their specified addressees 
via AUTODIN. 

TECHNICAL RESPONSE TO THE MME 

The message service being used for the MME is called 
SIGMA, developed at the University of Southern California's 
Information Sciences Institute especially for this experi
ment. As such it is an "experimental" system to be used in 
an "operational" military environment to test the effective
ness of a "secure" "interactive message processing" ser
vice. Consider some of the issues implied by these terms. 

"Experimental" 

The primary purpose of the MME is to determine the 
effectiveness of interactive message processing in a military 
environment and to provide a technology-transfer path to 
apply the knowledge and techniques gathered to future gen
erations of military systems. Many design philosophies are 
implied in such a context. The system developed must be 
flexible enough to adapt to a changing understanding of the 
problem and additional requirements imposed by the user 
community. It must concentrate on issues of functionality 
and suitable user interfaces. This does not imply that other 
issues such as sizing and performance are not important
the system must still be responsive and large enough to 
support a meaningful experiment-but the system need not 
be cost-justified itself, merely sufficient to gain understand
ing of the functional and cost issues. And, perhaps most 
important, the system must be highly instrumented to allow 
collection of various data reflecting the manner in which 
users operate the message service. Analyses of these data 
al10w evaluation of user performance and usefulness o( ser-

vice facilities, and provide a further understanding of the 
potential role of interactive message services in the military 
environment. All of these factors were considered and 
respected in the development of SIGMA. 

"Operational' ' 

To gain the most accurate picture of the MME's potential 
impact on the military community, an early decision was 
made to perform the experiment in an actual military envi
ronment, the CINCPAC headquarters. Since CINCPAC al
ready has an effective manual message system whose use is 
well understood by its personnel, SIGMA presents a message 
processing model which is intuitively similar to the existing 
manual one in order to gain early user acceptance. This 
decision impJied choosing terminology which matched 
standard military usage, 5 and providing functions which, 
where possible, were similar to the manual ones. Since the 
military users operate the on-line system as only a part of 
their normal jobs, SIGMA has been designed to be highly se1f
instructive. 

"Secure" 

An important requirement for the SIGMA service is that it 
meet military security specifications. Although this test sys
tem will be operated only by personnel classified at Top 
Secret, it is a test objective that the message service address 
the multi-level security issues identified by previous re
search. 3,1 To satisfy this objective, SIGMA implements a se
curity model which behaves as though SIGMA were running 
in such a "provably secure, kernel-based" operating envi
ronment; this model is described in Reference 2. Although 
the provably secure environment does not yet exist on 
TENEX, SIGMA'S emulation of it allows the users to interact 
in a manner virtually identical to that they would encounter 
if SIGMA actually ran in the secure environment. 

"Interactive message processing" 

SIGMA has been designed to be a "complete" interactive 
message service for CINCPAC. Its user interface responds 
to the needs of computer-naive users in several ways. Since 
this community will not receive much special training in 
SIGMA'S use, an online Tutor and Help facility has been 
designed to take ~n the bulk of this responsibility. 7 The 
Tutor, like the rest of SIGMA, takes advantage of the spe
cially designed MME terminal,8 which features multi-win
dow displays and two-dimensional editing. 

The command formats are defined by SIGMA'S Command 
Language Processor (CLP). The user instructs SIGMA 

through a set of function keys or by typing commands in a 
predesignated "command window" on the screen of the 
MME terminal. The CLP parses and interprets these instruc
tions: it is table-driven so instructions may he added or 
modified easily. The CLP expands commands and parame-
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ters that are only partially entered and corrects misspelled 
words to the degree that it can, based on the user's personal 
directory of named objects as well as the command table. 
A Prompt facility is provided which allows the user to ask 
about required parameters for a given command without 
losing any of his operational context. This powerful com
mand language interface is an essential ingredient in provid
ing the user the highly supportive environment needed for 
users with little or no experience with computers. 

SIGMA-APPL YING INTERACTIVE TECHNOLOGY 
TO MILITARY MESSAGE PROCESSING 

In common with other styles of mutual communication, 
message processing has distinctly cyclic characteristics-a 
message is initiated; its contents are refined from draft to 
final form; it is approved and sent to its intended recipients; 
a recipient reads it, perhaps forwards it to colleagues; the 
information contained within invites (or requires) a reply; 
the reply is initiated, and the process repeats. Message pro
cessing as practiced at CINCPAC differs from other styles 
primarily in its highly formal nature, with guidelines govern
ing nearly every aspect. 

The entire message processing task can be roughly sepa
rated into three areas of closely related activities: Message 
management, incoming message processing and outgoing 
message processing. As implied by the cyclic nature of the 
communication process, none of the activities in one area 
is disjoint from those in other areas. For the purposes of 
presentation, however, the facilities of the SIGMA message 
service are described according to these three areas. 

Message management 

A message service must facilitate all phases of message 
management. The following sections summarize SIGMA'S 

support in this area. 

Messages 

Messages are SIGMA'S fundamental concern. They are 
composed of a diverse set of fields; a field's contents de
pends on its type. For example, a "TO" field contains a list 
of addressees, a . 'TEXT" field contains a succession of 
uninterpreted paragraphs, while a "SUBJECT" fieid can 
only have a single line of text (of arbitrary length). Although 
AUTODIN traffic is its primary focus, SIGMA also supports 

'formal in-house communications (Memos) and informal mes
sages (Notes). They differ slightly in the fields they contain 
and the ways in which SIGMA processes them. 

Folders, entries, and selectors 

FoLders are the users' basic mechanism for organizing and 
storing collections of messages in SIGMA. They contain el1-

tries which are pointers to messages. A folder entry, an 
abstract of its message, contains information such as the 
message's precedence, security, sender, type and subject, 
which are considered by SIGMA as attributes of the entry. 
An entry for an incoming AUTODIN message might look 
like 

22 R UU Auto 042222Z DEC 78 From: 
JCS WASHINGTON DC INCOMING Act: 13 
Subject: AIRCRAFf INFORMATION 

The above entry is number 22, with routine (R) precedence, 
unclassified (UU) security, AUTO DIN type, whose date/ 
time is 042222Z DEC 78, etc. When a folder is DISPLAYed 
(the capitalized part of verbs are SIGMA commands), a num
bered list of entries is put on the terminal's screen. 

For use in commands, entries from folders can be i&en
tified in three ways: 1) By their number, 2) by default to the 
current entry, 3) by HEREing the entry number, i.e., putting 
the terminal cursor into an entry and depressing the 
"HERE" key. With this scheme most folder entry com
mands-DISPLA Y, DELETE, FORWARD, etc.-have 
three forms. Using DISPLAY as an example, they are 

DISPLAY ENTRY entry-number 
DISPLAY ENTRY 
DISPLAY NEXT ENTRY 

The first is a typed command. The second is a function key 
which can take a HEREd entry; without one it will display 
the current entry. The last is also a function key. Some 
commands like DELETE and FILE (which copies entries 
from one folder to another) take entry lists, in addition to 
simple entry numbers, as parameters. 

As objects themselves folders can be CREATEd, DIS
PLA Yed, DELETEd, RESTOREd (the inverse of DE
LETE), and FILEd into. In addition, user directories of 
folders can be VIEWed and assuming access is permitted, 
folders can be shared among users. 

Often a user wants to extract from a file a class of entries 
which have some uniform characteristics. For example, he 
might wish to work on his messages according to their prec
edence. SIGMA provides selectors for this task. Selectors are 
boolean expressions composed of attributes of entries. 
When applied to folders they act as filters, returning lists of 
entries whose members satisfy their criteria. When the user 
has a folder displayed he can use the two selector com
mands, RESTRICT and AUGMENT, to change his display 
to exactly those entries he has selected. Thus after DIS
PLA Ying a folder, a user can see all secret entries from 
CINCPAC by typing the command 

RESTRICT SELECTION SECRET AND FROM 
CINCPAC 

The user can AUGMENT his display in a similar manner. 
If he now wants to add to this display those entries whose 
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precedence is routine, he types 

AUGMENT SELECTION ROUTINE 

AUGMENT and RESTRICT commands are "stacked" so 
that the user can always back up to his previous display 
using the BACK UP function key. 

At any point during a sequence of RESTRICTs and AUG
MENTs the user can CREATE a named selector which 
reflects the logical .. ANDing" (for RESTRICT) and 
"ORing" (for AUGMENT) ~hich led to the current state. 
In addition, he can CREATE a named selector directly by 
typing in the boolean as an additional parameter. DELETE, 
RESTORE, and VIEW commands apply to named selectors. 
A user's directory of named selectors can be VIEWed, and 
if access is permitted selectors may be copied from other 
users. 

The richness of entry attributes makes selectors easy to 
use for creating relevant folder displays. SIGMA commands 
that operate on entries apply only to those entries currently 
in view, i.e., selected. So if entries 5, 15, 22, 27 were se
lected, four uses of the DISPLAY NEXT function key 
would step through only those messages. 

Comments 

Message fields and folder entries may be annotated with 
arbitrary text strings by means of the COMMENT com
mand. Comments are identified by the user making them 
and have additional access properties; they can be public, 
private (to the commentor), or restricted to a named user. 
Comments are created by pulling a HERE in the desired 
message field or folder entry. The COMMENT command is 
then entered with the access specification and in response 
SIGMA will create a new field ready for editing. 

Editing and text objects 

Fields can be edited in two ways-by modifying the dis
play with local editing functions provided by the terminal, 
and by various SIGMA commands. Suffice it to say the ter
minal provides a full complement of editing capabilities. 8 In 
addition to those capabilities, SIGMA has its own editing 
commands. The PICKUP function key command deletes the 
characters between two HEREs, putting them into an un
named buffer. The PUT function key inserts the contents of 
the same text buffer at the current cursor position. The 
MOVE function key, a composition of PICKUP and PUT, 
moves the text between the two HEREs to the current 
cursor position. COPY is the same as MOVE except the 
characters are not erased. These commands give the user 
the capabilities to erase, move and copy large amounts of 
text conveniently. 

Text that is to be reused in messages or commands can 
be created and stored as a named text object. A text object 
is nothing more than a series of uninterpreted paragraphs, 
and can be CREATEd and edited using all the capabilities 

described above. A user directory of text objects can be 
VIEWed; they can be DISPLAYed, DELETEd, RE
STOREd and, if the access is correct, copied from other 
users. Named text objects can also be used in conjunction 
with the PICKUP and PUT commands. 

The content of a text object is unrestricted. No semantics 
are applied until it is put into an interpretable field. Once it 
is there, SIGMA acts on it depending on the type of field into 
which it was put. For example, text in an address list is 
checked for legal user names; when put into a field in which 
mUlti-paragraphs are allowed, the text is formatted. 

SIGMA has not explored all the potential of text editing. 
So while it has a FINDSTRING command, it doesn't have 
one for text substitution. The experimental use of SIGMA at 
CINCPAC will provide feedback related to the adequacy of 
our editing model. 

The SIGMA display 

SIGMA divides the MME terminal screen into four win
dows. The FLASH window at the top of the screen contains 
three lines. The first is updated every minute and gives 
general operating information, time of day, and so forth. 
The FEEDBACK line tells the state of SIGMA processing 
and conveys error information. The STATUS line will be 
described below .. SIGMA commands are typed into the two 
line COMMAND window below the FLASH window. 

The remainder of the screen is the user's working space, 
which may be occupied by one or two windows. When a 
user DISPLAYs a folder, text object, or message, the object 
is "opened" and put into the EDIT window. If another 
object of the same type is already opened, then it is FIN
ISHed, i.e., stored away with all new edits saved. If the 
open object is of a different type, then it is moved off the 
screen, though still opened, to make room for the newly 
DISPLA Yed one. The STATUS line names all the open 
objects with the first name on the list identifying the one 
currently on the screen. Three function keys, SHOW 
FOLDER, SHOW MESSAGE and SHOW TEXT, can be 
used to put the appropriate object back into the EDIT win
dow. 

The VIEW window shows objects which the user names 
with the VIEW command. It is cleared by the CLEAR 
VIEW function key. This window is not editable and is used 
only for reference (text can, however, be copied from it). It 
is shown at lower intensity to distinguish it from the EDIT 
window. The EDIT window occupies the full screen when 
nothing is viewed; otherwise, both share the screen. 

This section has given a functional view of SIGMA by 
describing its objects and some of its legal operations. The 
next two sections will give a'more structured view of the 
tasks which compose message processing. 

Incoming message processing 

Tn the military, formal A UTODIN messages are sent from 
the commander of an organization to the commander of 
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other organizations, never between individuals within the 
organizations. This practice requires the receiving command 
to determine the appropriate recipients within the command 
for every incoming message. Naturally the correct assign
ment of recipients is a critical part of the incoming pro
cessing task. 

CINCPAC employs a content-based scheme to determine 
the correct recipients. The fIrst stage of this process is im
plemented by the LDMX message processor. By scanning 
the header and selected fields of the message contents, 
LDMX makes a preliminary assignment to the top manage
ment level (directorate). Although LDMX is capable of more 
detailed assignment, CINCPAC chooses to allow its direc
torates to perform their own routing internally. Within the 
MME target population (13, the Operations directorate), this 
next level of routing is performed manually by an adminis
trative office (1301). Using both catalogued tables of routing 
assignment and his specialized training, 1301 scans each 
incoming message and determines its disposition. Such dis
position can be any or all of the following: 

Action 

Info 

Readboard 

Typically each message is assigned to an ac
tion officer. He is responsible for any actions 
or response to be made by the 13 directorate, 
and is said to have the action for the message. 
In addition to a responsible officer, the con
tents of the message may be of interest to 
other offIcers as well. Such offIcers are said 
to receive an information copy of the mes
sage. 
Certain messages may be of interest to large 
groups within the directorate, and occasion
ally to all of 13. Such messages are placed in 
binders caned readboards, which are then 
circulated through the directorate. 

While the 1301 assignment is generally accurate, it is nei
ther complete nor infallible. An officer receiving a copy of 
a message may determine that other officers not designated 
by 1301 should also receive copies. Occasionally the action 
assignment for a message is not appropriate; after seeing a 
message, an action officer may decide that another officer 
is better qualifIed to handle it and "sells the action" to him. 
Thus, the propagation of copies and/or action of a message 
may continue for several stages beyond the 1301 assignment. 
Based on data compiled at CINCPAC, an average of 40 
copies of a message is required to reach all its recipients. 

SIGMA supports incoming message processing with a va
riety of facilities. They can be roughly divided into the three 
areas of delivery, reception, and redistribution. 

Delivery 

SIGMA was designed to merge naturally into the existing 
message processing milieu at CINCPAC. Through the spe
cial LDMX interface, SIGMA'S Reception Daemon receives 
the text of incoming AUTODIN messages, parses them, 
builds the SIGMA internal representation, and stores the re-

suIting SIGMA-formatted messages in its message data base. 
To allow methodical retrieval of messages by arrival times, 
SIGMA also places an entry in a special folder called a Date 
File, a new instance of which is created each day to contain 
entries for all AUTO DIN messages received during that day. 
A user can then see an index of all messages received on a 
particular day by simply DISPLAYing the corresponding 
Date File. 

The high fan-out of incoming messages makes it impract
ical to provide a separate copy of each message to each 
eventual recipient. The scheme adopted in SIGMA was de
signed to minimize on-line storage requirements while still 
providing convenient access to messages. Messages are sto
red only once, in the central message data base. Each re
cipient receives not a copy of the message, but an abstract 
containing a useful subset of the message's contents. An 
instance of this abstract, called a citation, is created for each 
message transaction between users. Each citation sent to a 
folder causes a new folder entry to be appended (indeed, the 
terms citation and folder entry are often used interchange
ably), a task performed by a special SIGMA background proc
ess, the Citation Daemon. A citation is small (approximately 
fIve percent the size of a message) and thus is much more 
economical to replicate than the full message. 

All users access and modify the single copy of a message. 
Obviously such activity cannot occur unrestricted, or the 
integrity of the message contents and the users' intended 
changes could not be preserved. To allow such operations, 
a special scheme correctly assimilates parallel modifications, 
preserving both the consistency of the message and the 
users' intentions. 9 

Since messages flow into the 13 directorate constap+:y 
(approximately 1000 per day), the available secondary stor
age would soon fill unless appropriate steps were taken to 
reduce the number online. To make room for incoming mes
sages, an archival scheme has been implemented. Using 
frequency of access as a rough guide, SIGMA moves inactive 
messages onto bulk storage (magnetic tape), from which 
users needing access to messages can request retrieval. 
Mechanisms are also provided to allow shorter retention 
periods for selected messages. 

Reception 

Once citations have been sent to a user, he must be al
lowed to see them, access their referenced messages, and 
dispose of them as he sees fit. These capabilities revolve 
around a repository for incoming citations, a special SIGMA 
folder known to each user as his Pending File. Analogous 
to a mail in-basket, a user's Pending File receives all cita
tions destined for him. 

Physically, a Pending File is implemented as a SIGMA 
folder, and can thus be manipulated by the wide variety of 
folder operations-DISPLAY of referenced messages. 
COMMENTing, cross-sectioning via RESTRICT and AUG
MENT, etc. 

Since all citations for a user are appended to his Pending 
File, he must eventually delete nearly all of them, lest he 
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exceed the folder size restriction (which is in excess of 6000 
entries). This does not imply that a user must lose references 
to important messages, however, since a user may create an 
arbitrary number of other folders where he may FILE them. 

Frequently, messages of great urgency to a user may 
arrive. In such cases the user would like to be notified 
immediately, rather than wait until he happens to notice it 
appear in his Pending File (which might be some time if he 
were DISPLAYing some other folder). To allow a user to 
specify criteria for incoming messages for which he wants 
immediate notification, SIGMA provides the Alert facility. 
The user activates the Alert facility by creating a SIGMA 

selector named ALERT_SELECTOR. If such a selector 
exists, each incoming citation is matched against it to de
termine if it meets the Alert criteria. If so, the citation is 
added to a special Alert List. the format of which is very 
similar to that of a folder, and the bell at the user's terminal 
is rung. The user can then display the Alert list without 
disturbing his open folder, and access any of the referenced 
messages in a manner similar to that for folder entries. In 
addition, a count recording the number of active alerted 
citations is maintained in the SIGMA flash line. 

Redistribution 

As explained in the description of the Delivery task, the 
routing provided by LDMX is not sufficient to reach all 
appropriate recipients. Additional routing is provided by the 
administrative 1301 function, which supplies the bulk of the 
specific routing assignment, and by individual officers, who 
either supplement or correct the J301 assigments. SIGMA 

provides this flexibility by means of its redistribution facil
ities. 

To effect the bulk routing assignment at the directorate 
level, SIGMA provides the ROUTE command. With this sin
gle command, J301 can specify action assignment, info dis
tribution, and read board creation for an entire group of 
messages. Using the RESTRICT and AUGMENT opera
tions to select a class of similar messages, J301 can then 
perform a complete routing assignment for the whole class 
in a single step. 

Individual officers needing to perform further redistribu
tion have two more limited redistribution commands. The 
FORWARD command allows one user to send an informa
tion citation ("'FOR_INFO") to another. The ACTION 
command is similar, but implies that the originating officer 
transfers the action assignment to the designee (by means 
of the "FOR_ACTION" citation). Additionally, the AC
TION command causes an entry to be placed in the issuing 
user's Actio/l Log. a special folder which contains a record 
of all action assignments he has made. Since CINCPAC 
wishes to keep a central accounting of action assignments, 
users normally share a single ACiion Log (via SIGMA"S 

shared folder capability). 
All redistribution commands account for the further dis

tribution of messages by appending records to certain mes
sage fields. In each message a Distribution field records 
each user who has receIved an info citation. while an Actio/1 

field records the full history of action assignments. Thus it 
is possible to ascertain all users involved in a message's 
redistribution by examining its appropriate fields. 

Outgoing message processing 

In the existing manual system, CINCPAC officers deal 
exclusively with so-called "record traffic." Even when the 
contents of a message are routine, the onus of representing 
an entire command's viewpoint adds a measure of impor
tance. Consequently highly formalized procedures have de
veloped at CINCPAC to ensure that messages transmitted 
from the CINCPAC organization have been thoroughly re
viewed and approved by a responsible authority. 

In addition to supporting an on-line implementation of the 
review/approval process, SIGMA has augmented the media 
of communication. In addition to the existing formal traffic 
(AUTODIN messages), SIGMA has added two new message 
formats, formal internal and informal. 

• Formal internal messages (memos) are similar to con
tent and form to AUTODIN messages, but the address
ees are other SIGMA users. This provides CINCPAC 
personnel with a formal (recorded) medium to send 
official communications within the CINCPAC organi
zation. 

• Informal messages (notes) provide an off-the-record 
message medium for informal communication. Such 
messages, which are not reviewed or recorded, provide 
an alternative to face-to-face or telephone communi
cation. 

The outgoing message processing in SIGMA is roughly di
vided into four phases: drafting, coordination, release and 
transmission. 

Drafting 

During the drafting phase the original message is com
posed. The sources of the original contents of the body and 
various fields vary, depending on the type of message being 
prepared. SIGMA supports the following commands for mes
sage drafting: 

CREATE 

COpy 

REPLY 

An empty message form is created, with 
blanks for the editable message fields. The 
contents of any desired fields must be filled 
in by the drafter. 
This command, which requires an existing 
message as a parameter, copies all of the non
header fields into the new draft message. It 
is useful for pro forma messages which are 
sent frequently and whose contents are bas
ically similar. 
This command also takes a message param
eter, and creates a new draft in reply to the 
subject message. In this case, the addressees 
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are derived from the subject message, the 
subject is copied, and the referenced message 
cites are copied with a cite to the subject 
message appended as an additional reference. 

Once he has created his draft message, the author has the 
following alternatives: 

• He can save the draft for later use (via the FINISH 
function key). This can be done to hold an incomplete 
draft for later completion, or to save a pro forma mes
sage to make it available for later COPYing. To make 
later retrieval of such saved drafts convenient, SIGMA 

puts a citation referencing the draft in the user's Pend
ing File, so its existence is remembered and it remains 
easy to access. 

• He caR send- the message for review if it is a formal 
message. This process, called Coordination, will be 
described in more detail. 

• If authorized, he can cause the message to be trans
mitted to its addressees. This will be described in the 
section on Release. 

Coordination 

Within CINCPAC there exists a formal procedure for 
review and revision of a message prior to its release. The 
drafter can request several other officers to review the mes
sage, make comments, suggest changes and give a general 
disposition regarding the message. This procedure, called 
chopping, permits CINCPAC to acquire a consolidated 
opinion from a cross-section of responsible officers before 
a message is sent. 

SIGMA supports a style of coordination more general, al
though perhaps less flexible, than the manual CINCPAC 
procedure. The message drafter may designate any number 
of users in a field called the Chop List. With the special 
COORDINATE command, the drafter can specify that any 
or all of the users on the Chop List be requested to act as 
reviewers for the message (they are referred to as coordi
nators), causing a special "FOR-CHOP citation to be sent 
to each of the designated users. 

A coordinator is notified of the drafter's request to review 
a message by receipt of the FOR_CHOP citation in his 
Pending File. He can display the message, and will see the 
drafter's most recent version. The coordinator can make 
comments or suggest revisions to the message: if so, the 
changes are not applied to the drafter's copy, but rather to 
a copy belonging solely to the coordinator. In deciding upon 
his changes he has access not only to his own version and 
the drafter's, but to other coordinators' as well. 

When a coordinator decides that he in turn would like 
comments from other users (perhaps subordinates or other 
colleagues), he may further designate other coordinators. 
This "sub-coordination" is exactly analogous to that initi
ated by the drafter. In this case his sub-coordinators see his 
version of the message when they first display it. 

When a coordinator has finished his review of a message 

he may indicate his global disposition of the message by 
means of the CHOP YES and CHOP NO function keys. 
These commands cause a "CHOPPED" citation indicating 
the appropriate disposition to be sent to the drafter (or higher 
level coordinator), who is thereby notified that this coordi
nator has finished his review. 

During the coordination process, the drafter (or a higher
level coordinator) can monitor the coordination process by 
means of a status field, which indicates the progress of each 
coordinator. When coordinators have finished their reviews 
he can view their versions and note suggested changes and 
comments. He can incorporate changes by duplicating them 
in his own version or by copying the changed sections from 
the coordinators' versions. If he is not satisfied with the 
resulting message or wishes to elicit further review, he can 
initiate another coordination cycle, which will result in ad
ditional FOR-CHOP citations being sent. If the drafter is 
satisfied with the content of the message, he can initiate the 
Release process. 

Release 

Because of the formal nature of record communication, 
certain officers, designated release authorities (releasers), 
are solely empowered to approve outgoing record traffic. 
SIGMA provides the same enforcement by checking each 
attempt to transmit a message against a list of authorized 
releasers (since the three different message formats have 
different levels of formality, a separate list is maintained for 
each). 

When a drafter has determined that a draft message is 
ready for transmission, he must gain the approval of an 
appropriate releaser (unless he himself is one, in which case 
he can release it himself). He does this by using the CO
ORDINATE command after designating the releaser's name 
in a special Release field, causing a "FOLRELEASE" 
citation to be sent to the releaser. After receiving this cita
tion a releaser has options similar to those of a coordinator. 
He can display the drafter's and coordinators' versions, 
seeing comments and suggested changes. In particular, he 
may examine the "chop" disposition of the various coor
dinators to determine whether he is satisfied that there is 
sufficient agreement among them. If he is not satisfied he 
can make his own comments and changes and specify CHOP 
NO, in which case a citation is sent back to the drafter. But 
if the message is in order and the releaser is satisfied, he 
can initiate transmission via the RELEASE command, 
whereupon the message leaves the preparation phase and is 
sent for transmission processing. 

Transmission 

When approved by a releaser, a draft message is prepared 
for transmission by the SIGMA process called the Message 
Daemon. First the draft is marked as transmitted: this pre
vents it from being further modified or transmitted again. A 
new message is then created to contain the transmitted ver-



846 National Computer Conference, 1979 

sion of the draft message. Fields which are appropriate for 
transmission are copied from the draft; others which do not 
belong in transmitted messages (such as comments, chop 
lists) are omitted. 

When the contents of the transmitted message are pre
pared, the appropriate transmission medium is determined. 
If the message is destined for A UTODIN, the message is 
sent through the LDMX interface to be transmitted to the 
AUTODIN network. If it is an internal message, the trans
mitted message (in internal SIGMA format) is entered into the 
SIGMA message data base, and "INCOMING" citations are 
sent to each of its addressees. 

CONCLUSIONS AND USER REACTIONS 

Our initial opinion after studying toe CINCPAC environ
ment was that an interactive message service could be ex
tremely effective. The CINCPAC staff was enthusiastic 
about the possibilities and endorsed the experiment to the 
point that they were willing to serve as the test-bed for it. 
Now the experiment is underway and we are beginning to 
learn whether our optimism has been well founded. 

Although at the writing of this paper formal results are 
not yet available, CINCPAC users have been using the ser
vice for six months. They have already asked for changes 
and extensions to the service; some, like ROUTE, have 
been implemented. As expected, the use of such a service 
is altering the style in which many officers operate. 

Probably the most dramatic effect is on 1301 who previ
ously required seven hours to process the new messages 
that arrive overnight. Using SIGMA this process is reduced 
to less than an hour-and-a-half. Furthermore the feeling is 
the assignments made are generally better, primarily be
cause the same assignment is made to entire classes of 
messages at once, thereby assuring uniformity. 

Another group of users that has been heavily influenced 
by SIGMA normally get their messages from 1301 about 9:00 
AM, two hours after they come in in the morning. They have 
found that with SIGMA they can go directly to the Date Files 
for the day and, using Selectors, get the messages of interest 
without waiting for 1301 to distribute them. They are also 
able to find messages requiring their action that have been 
assigned incorrectly to others, messages that they simply 
never saw before SIGMA was available to them. 

There are still many improvements requested by CINC
PAC users which SIGMA has not yet addressed. Indeed, the 
list is already large even at this early date: 

• The ROUTE command was put into SIGMA in response 
to a direct request from 1301. Other composite com
mands can be visualized. It would be nice to have a 
powerful facility for building such "macros" from ex
isting commands. However, such a feature touches 
heavily on many difficult user interface issues. 

• The ALERT mechanism is fundamental but acts only 
on incoming messages. Some users have expressed in
terest in a general facility based on a variety of different 
events. 

• Users have expressed a desire for the ability to search 
the full message database with a mechanism like selec
tors. SIGMA has no model to support this expensive 
operation at this time. 

Although the experiment is just beginning to collect useful 
information, it is clear that SIGMA is having an impact on 
the message processing at CINCPAC. SIGMA appears to be 
rich and flexible enough to support the goals of the experi
ment to gain insight for future military message systems. As 
the users become more involved with interactive message 
handling their awareness of its capabilities and potential is 
being sharpened and their requests for functional enhance
ments are more accurately based on realistic needs. 

The injection of a research project, like SIGMA, directly 
into an operational military environment is an unusual event. 
This approach offers the military a more active role in de
veloping relevant software for sophisticated applications. 
The MME effort is showing that the transition from the 
laboratory to an operational setting can be accomplished for 
such an experiment, which should dramatically shorten the 
normal technology-transfer path. 
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INTRODUCTION 

Anyone who has been a part of a large software effort knows 
of its peculiar aftlictions and special problems. The literature 
teems with guidelines, rules and conventions for designing 
and managing such systems; in fact, there are probably more 
books written about large systems than there are large sys
tems. This paper will make no attempt to add to this liter
ature; instead it will simply report our experience over the 
last five years in the design and implementation of SIGMA. 3 

This introspective study is meant to be not a pedagogical 
paper but a reflective, often humbling, diary. 

SIGMA is the interactive message processing system built 
at the University of Southern California Information Sci
ences Institute (lSI) for the Military Message Experiment 
(MME).2 It is currently in active use at Camp Smith in 
Hawaii, supporting about 100 users, of which 24 may be -
concun:ently online. SIGMA comprises about 270 modules 
totaling some 2500 routines. This makes approximately 
200,000 lines of source code or some two edge-feet of list
ings. The point, of course, is that SIGMA is big by any metric. 
The software was designed and written by a revolving group 
of five to seven expert programmers, making SIGMA about 
a 30 man-year program. This is by no means a gigantic effort 
by industrial standards, but large when judged by research 
community criteria. 

Our experience should not be taken lightly. Deadline pres
sures notwithstanding, the lSI environment is conducive to 
high-quality output. Each project member has a private of
fice, an HP2640A CRT terminal, access to an inhouse library 
and all the facilities one expects at a computer research 
center. Our successes or failures are generally a result of 
our own ingenuity and intelligence or lack thereof, respec-
tively. -

847 

SIGMA ARCHITECTURE OVERVIEW 

The SIGMA message service runs on a Digital Equipment 
PDP-10 under the TEN EX timesharing system! and is writ
ten in the BLISS system implementation language. 6 The 
SIGMA system is divided into two functional areas: the user 
jobs, which interact with the message service users; and the 
daemons, a collection of background processors that per
form non-interactive functions. 

The SIGMA user job 

An instance of the SIGMA user job is created for each user 
who logs into the system. As seen in Figure I, the user job 
is composed of five major components. The Terminal Driver 
interfaces the specially modified HP2649A terminal4 to the 
rest of the user job. The Command Language Processor 
(CLP) reads command input, parses it, builds a command 
specification called an Execution Request Block (ERB), and 
passes it to the Functional Module (FM), through a protocol 
called EC99. The FM is responsible for the actual execution 
of commands, and thus it has two main tasks: to manage 
the dispiay of information on the terminal, and to manipulate 
SIGMA'S objects. * The former task is performed by a module 
called the Virtual Terminal (VT), which builds and maintains 
display lists for the terminal. The latter function is done by 
the FM directly for text objects and selectors, and by two 

* SIGMA supports four kinds of objects. Text Objects are lists of uninterpreted 
paragraphs. Messages, of which there are several kinds, are lists of various 
message fields. Folders are lists of message citations; a citation is an abstract 
of its associated message. Selectors are boolean expressions applied to folders 
in order to access only those citations whose attributes match those named 
by the selector. 
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Figure I-SIGMA user job. 

special-purpose modules called the Folder Module (F AC
MOD) and Message Module (MSGMOD) for folders and 
messages, respectively. Because of address space limita
tions, FACMOD and MSGMOD are located in separate 
TENEX forks (processes) and require a special Inter-Fork 
Communication Protocol (lFCP) to communicate with the 
FM. 

The SIGMA daemons 

The SIGMA daemons are responsible for tasks that require 
no direct user interaction and can thus be performed in 
background. These include management of the shared data 
bases (messages and folders), message reception and trans
mission, archive retrieval, and printer spooling. The dae
mons process requests received through input queues; the 
source of such requests may be the user jobs or other dae
mons. To provide operations personnel with the ability to 
control the daemons, a Configuration Control Program 
(CCP) communicates operator requests to daemons. 

A SIGMA TIMELINE 

Figure 2 represents our first effort at producing a mile
stone diagram for SIGMA'S development. This event-oriented 
chart provides a general impression of how SIGMA devel
oped. 

The project. which started in September 1973, was first 

called Information Automation (IA). Approximately one 
year later a series of six IA papers were produced defining 
the components of what was to be SIGMA and by January 
1975 a full system design was published. This 200-page doc
ument represented about ten man-years of effort culminating 
the period we now call "designing in a vacuum." 

The first SIGMA, which we will call SIGMA 0 (although it 
was both unnumbered and unnamed), made its debut a year 
later in December 1975. It didn't do much, but it did have 
a front-end that talked to users, a minimal FM that executed 
a few message manipulation commands, a terminal simulator 
that was to be functionally equivalent to the terminal being 
designed for our project, a primitive debugging mechanism, 
and a simple text editor. 

The next year was spent getting SIGMA 1.0 ready for a 
system evaluation which was to take place in Boston in 
February 1977. This pubescent period saw SIGMA take on 
functional substance. The first daemons were written; the 
concepts of folders, text objects, and selectors were imple
mented; and the FM was rewritten to encompass all the new 
objects. SIGMA 1.0 was slow and bulky, but showed enough 
promise to be the service selected for the Military Message 
Experiment. We knew even then that the daemon design 
and implementation were hopeless, but other things had to 
be done first. SIGMA'S performance had to be improved. 

Performance was the project watchword for SIGMA 1.75. 
Since the functionality had become stable, we were able to 
carefully analyze the system's flow of control, data paths, 
communication demands and so forth, a study which led to 
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Figure 2-A SIGMA timeline. 

optimizations spanning all parts of the user job. This per
formance transition was particularly trying. Still, by Decem
ber 1977 it was running at an acceptable speed. The changes 
we made were so dramatic that SIGMA 1.0 seemed like an
cient history. 

The time had finally come to deal with the daemons. Their 
original design was based on principles that led to an overly
complicated implementation whose data flow can euphe
mistically be described as baroque. The irony is that by 
SIGMA 1.75 we realized that all the requirements that led to 
this design were either too expensive or superfluous. This 
time the daemons were redesigned and rewritten based on 
our experience of what background support was actually 
needed. 

The new daemons had a great effect on our project. The 
1.75 daemons were hopeless to maintain, difficult to debug, 
and resistant to change; the 2.0 daemons of July 1978 were 
elegant by every programming standard. SIGMA could finally 
be called a mature system. Now and only now could we 
think about functional enhancements that involved the dae
mons. 

The remaining part of 1978 was spent preparing for SIGMA 

2.2. Among the new features was Alert processing, an ad
dition which made the online user immediately aware of 
activity in his personal pending fIle. The Alert concept had 
been knowingly lacking since SIGMA 1.0 but was not prac
tical to implement until we redesigned the daemons and had 
a stable user job. 

While in this timeline we seemed to be responding to 
individual and isolated problems as they appeared, a more 
abstract view of the development reveals a coherent top
down design. The first year we designed a message service 
in great detail. The first SIGMA was produced in year two 
with the emphasis on the front-end components, the eLP 
and the terminal. The functionality, defined and imple
mented during year three for SIGMA 1.0, was demonstrated 
in Boston. Following that came the architectural wirebrush
ing of the user job, culminating in SIGMA 1.75 in year four. 
The new functional daemons came during the fifth year 
together with a round of improvements for SIGMA 2.2. 

Even though we actually followed a sensible path in 
SIGMA'S development, our failure to realize what was hap
pening proved to be both costly and frust~ating. No doubt 
all retrospective analysis is concise and relevant; still, early 
recognition of certain principles would have prevented the 
chaotic nature of our progress. The next section will present 
those principles as a pseudo-mathematical theory of soft
ware development. 

LARGE SYSTEM DESIGN THEORY 

Now that SIGMA has matured we compared its current 
design and impiementation with the one planned in the initial 
system design. This comparison shows that about the only 
thing that survived all those years is the system diagram 
found in Figure 1. There is something futile about the first 
axiom: 
Axiom i-Early system design should identify only large 
namable components. 
Perhaps this is the best that you can do when designing in 
a vacuum. SIGMA 0 wasn't very good but it did show that 
our top-level design was sound. Lacking some sharp insight 
we believe that: 
Axiom 2-A complete running system is necessary to verify 
even a top-level design. 
The implications of this axiom are severe. When the system 
is being put together, a placeholder is needed for every 
component regardless of expense. We knew, for example, 
that even though the SIGMA terminal was scheduled for late 
1976, we needed a simulator for it in order to design the 
eLP and FM. The man-years spent on this known throw
away piece of software were eminently worthwhile, sub
stantiating the following: 
Theorem I-Every major component of a design must be 
implemented in some form. 
Our FM in SIGMA 0 produced the necessary results. It 
showed that the eLP/FM interface was sound and the ter
minal model was maintainable by the VT. Even though the 
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FM barely worked, nothing would have been learned if it 
didn't run. Trite as it may sound: 
Corollary 1. I-All implemented components must work. 
SIGMA 0 showedus that some of our high-level concepts. 
were designed correctly. However, the implementation ex
perience also taught us other things. 

The original FM had too many features, among them a 
concept called Placemarks. These were named locations 
within message bodies that the user could assign and address 
for various purposes. They were hard to implement, and in 
fact did not survive the transition to SIGMA 1.0. Placemarks 
mayor may not have proved useful, but this was not the 
time to find out; suffice it to say that much valuable time 
was wasted here. 

ACCMOD was the first complete message manager for 
SIGMA. It had a data base model for the way it serviced the 
FM. In other words, it owned the message being displayed 
and was involved in every facet of its editing. Besides just 
having performance problems, ACCMOD was a huge, un
wieldy piece of code. In the simpler file model, MSGMOD 
gets the message to the FM who "owns" it during the editing 
session, and then MSGMOD stores it when the user is done. 
The important knowledge we obtained from ACCMOD was 
that its model was wrong. However, a simpler implemen
tation would have shown this as well. 

One thing we designed right was the communication of 
common data between the forks of the user jobs. Data (such 
as who was logged on, the ID of the open message, etc.) 
was kept in memory shared between them. The effect was 
like a FORTRAN COMMON block. This simplest of inter
faces served so well that we still use it as originally designed. 
Of course, we understand its limitations, but we haven't 
reached them yet. 

This Plac e mark/ ACCMOD/COMMON experience shows 
clearly that a project should: 
Theorem 2-Start small in early design and implementation 
phases. 

It is hard to overestimate the pragmatic value of Theorem 
2. Its realization leads t~ a natural evolution in which the 
designers can cheaply reflect on their basic ideas and per
haps modify them before they run out of funds or energy. 
We should note that there were no daemons at this time. 
We were still designing them as if they would suddenly 
appear like Pallas Athena, springing full-grown from the 
forehead of Zeus. An understanding of Theorem 2 would 
have led us to a more conservative first-pass design. 

The work which led to SIGMA 1.0 represented a new di
rection for the project, one that was not fully appreciated at 
the time. SIGMA 0 verified our front-end model; SIGMA 1.0 
would define the system's functionality as needed by the 
FM. Had we realized that this was the real effort, we could 
have avoided the complexity found in the daemons. In other 
words: 
Axiom 3-You can't aim high on every component at the 
same time. 

Many things happen during a design cycle: Ideas are 
tested, system modules are inspected, some things work 
well, and some things are thrown out. Typically, some things 
stabilize. The CLP did by the time SIGMA 1.0 was rele~sed. 

The FM was beginning to at the same time. Unfortunately, 
what had stabilized throughout the user job was our text
handling routines called ZT. ZT was a loose collection of 
low-level functions. Given these primitive routines each im
plementer developed his own set of macros and functions, 
all based on the ZT structure. By the time we realized its 
performance and design implications, ZT was hard to re
move from the user job. The TEXT package that replaced 
ZT simplified SIGMA by imposing a coherent text-processing 
model on the project. What we should have realized is: 
Axiom 4-Recognize which component is stabilizing during 
a design cycle and aim high for it. _ 

These two axioms are the heart of our evolutionary design 
theory. Even with unlimited resources, we believe a project 
will do better to focus its attention on one major component 
at a time. Some scientific reasons, ranging from interface 
issues to manpower expenditure, are easy to generate. But 
one which is often missed is that very little is learned when 
an overdesigned module is rewritten or modified---it is better 
to build up from minimum capabilities than tear down from 
unneeded ones. This "hourglass design," in which one starts 
high and must then strip away features before a redesign is 
possible, is a painful way to develop a system. 

Consider the daemons. Their original design was based 
on four requirements: 

1. SIGMA would run in a distributed network environment. 
2. High-priority requests would need to be processed 

quickly. 
3. Individual long requests could not be allowed to hold 

up the daemons. 
4. Error results must be returned to the user in a syn

chronous mode. 

The ramifications of these early requirements were se
vere. The first implied a logon procedure so that the dae
mons knew the location of its users. This meant that when 
the daemons went down so did all the users, bad in opera
tional use in Hawaii and hopeless for development at lSI. 
The second requirement led us to an implementation of 
duplicate processors with different priorities in case a high
priority request came in. The "multiprocessor" environ
ment was also prepared for the .third requirement in which 
a request could monopolize a processor. Finally, returning 
requests to the user, as necessitated by (4), implied a single 
output process for distributing results. 

By SIGMA 1.75 all those requirements were shown to be 
spurious and the code supporting them was removed. What 
was left were daerp.ons with the barest capabilities. From 
them together with our experience with 1.75 we were able 
to redesign and rewrite the daemons to be elegant and func
tionally relevant in just four months. This lesson is our first 
major result: 
Theorem 3-A void the hourglass design syndrome. 

Figure 3 depicts this theorem graphically. The syndrome 
is seductive and debilitating. The natural ego of a designer/ 
programmer drives him to build to the hilt. We've all seen 
thh happt!ll in design meetings. A few capabilities are clearly 
required; some others are suggested and incorporated. Once 
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rolling, this juggernaut is hard to stop, and a concise design 
suddenly belongs to a committee. PL/I is an old example; 
SIGMA'S former daemons are our contribution. 

F ACMOD is an example of how smoothly evolution can 
take place. Folders contain message entries and are the 
place from which messages are displayed. Besides just being 
displayable, entries can be keyworded, deleted, filed into 
other folders, commented, selected by various criteria, etc. 
Instead of building in all these capabilities, the first F AC
MOD had only the barest set. FACMOD came up quickly 
and grew with our needs. Naturally, many of the require
ments we foresaw were added later, but many were not. 
The message is clear: 
Theorem 4-Underdesigned components are needed during a 
system's evolution. 

We have talked about system design in terms of focus on 
mainline modules, aiming high in selected pieces, underde
signing others. Axiom 4 also alluded to stabilizing factors 
within all parts of the system. Those are important to watch 
for. As important are sections that are critical for one reason 
or another. Two examples in SIGMA are the IFCP package 
and the Terminal/Terminal Driver communication protocol. 

The IFCP is the data channel between the FM and both 
MSGMOD and FACMOD. It was independent of application 
and unlikely to change regardless of the direction of any of 
those components. The IFCP had to be robust and solid; it 
was serving many masters. It was recognized as a critical 
component of SIGMA and designed accordingly. 

The terminal protocol raised different issues. Even though 
the transmission lines at lSI between the terminal and the 
Driver were virtually perfect, we knew that lines at other 
installations might not be. Without knowing how bad lines 
could be, we anticipated the worst and built a robust pro
tocol that included acknowledgments, timeouts, retransmis
sions, and checksums. Our experience in the Boston review 
and in Hawaii made us glad that we did. So, underdesign is 
good, but: 
Theorem 5-Aim high for critical sections. 

Part of aiming high is to understand in detail what is 
expected of the component under examination. Before the 
daemons were redesigned in aim-high mode, a firm require-
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ments specification was written for them. This document 
gave our design and implementation a well-defined target. 
The VT never has received this treatment and remains 
loosely organized. It seems that part of aiming high means 
that: 
Corollary 5. I-Firm requirements are needed for mainline 
components. 

Requirements are one thing, and documentation is an
other; the former precedes implementation while the latter 
follows it. Once a major component of the system has been 
written, complete documentation should be generated for it. 
Much lip service is paid to this liturgy; we are no exception. 
All the good reasons for documentation are easy to list but 
one that is understated is that undocumented components 
take on an orphan flavor if the writer leaves. This happened 
to the VT. It passed from hand to hand, each programmer 
leaving his mar~ huLuuone documenting anything. Sp: 
Corollary 5.2-Fully document mainline components ~ they· 
are written. ----

As important as Theorem 5 and its corollaries are, their 
duals are just as important: 
Theorem 6--Aim low for noncritical system. components. 
Corollary 6. I-Noncritical components need only tentative 
requirements. 
Corollary 6.2-Small documentation effort should be spent 
on noncritical components. -- -- - --
-Noncritical system components should get aim low treat
ment-the daemons and ACCMOD should have but didn't, 
FACMOD and COMMON should have and did, the VT and 
ZT shouldn't have but did. The technical issues here are not 
controversial. However, the psychological one of producing 
work that is less than your best arises. Perhaps a good 
manager should assign his best programmer to produce such 
code, since ego is less likely to be a problem. Even though 
the code is known to be throw-away, it still has to work 
(Corollary 1. 1). 

The theme of aim-low also brings out questions of per
formance. The development leading to SIGMA 1.0 paid vir
tually no attention to performance. We used flexible data 
structures, clean interfaces between modules, and straight
forward coding techniques. SIGMA 1.0's performance was 
poor but not unexpectedly so. When performance became 
an issue, we analyzed SIGMA using Program Counter (PC) 
samples, a technique that takes snapshots of running code 
to tell what code is being executed. We found, for example, 
that our storage management package needed tight optimi
zation, since it was active all the time. That was expected, 
but we also found that some heavily used operating system 
facilities took several orders of magnitude more time than 
we expected. This stunning information taught us that: 
Axiom 5-A priori, it is impossible to know in which sections 
of code performance will be critical. 

With the PC samples as a guide optimizing SIGMA'S code 
in the user job was straightforward: the character output to 
the terminal was rewritten at a 100to-l saving, the FM's 
folder handling was changed from linked lists to an array 
structure, FACMOD and MSGMOD calls were tuned to 
specific needs, and a TEXT package was incorporated to 
replace ZT. These changes were extensive and revolution-
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ary; still, they didn' t affect the overall design. Assuming 
that the early design gets you within one or two orders of 
magnitude of your target, we believe that: 
Axiom 6-Performance is "easy" to add later. 

Once all these changes were made, we had a much faster, 
sleeker, less flexible User Job. At this point another PC 
sample test showed that the Text package had an inefficient 
look-up routine that needed recoding. Axiom 5 tells us about 
anticipating performance, but here we have a case where 
the code didn't even exist at design time. The evidence is 
clear: 
Theorem 7-Performance should not be an early design goal. 

This theorem promotes an ideal which served SIGMA 

poorly. In following it we found ourselves with a SIGMA 1.0 
that was very slow when compared to one of our competitors 
during the Boston review. The "fast" system did not have 
the capabilities of SIGMA, although that fact'together with 
the above performance principles was lost on some (fortu
nately not all) of the reviewers. The performance of SIGMA 

I .75 vindicated our development strategy. 
Until now the discussion has addressed design theory with 

an undercurrent of implementation examples. With the ev
olutionary principles we are proposing, design and imple
mentation are inextricably tied together. Now the focus will 
shift to the implementation side. 

The literature rightly pays much attention to storage han
dling. searching and sorting, queue modeling, etc., because 
of their widespread use. To have poorly implemented pack
ages of this sort is ludicrous. whether you are aiming high 
or low. Besides avoiding code duplication, these modules 
have a unifying effect on a system. Our careful implemen
tation of free storage, lexicons, and queues were based on 
the principle that: 
Axiom 7--Good support packages are essential and well 
unde rstood. 

Support tools are important, but a good supporting envi
ronment for testing is essential. From the beginning we 
realized that since BLISS had no debugging facilities we 
would have to provide (Jur own. A system-error package 
was built to take over control when an error was detected. 
The programmers had an ASSUME (boolean,message,data) 
statement available that invoked the system-error mecha
nism if the boolean was false. The package was small when 
we started (no hourglass design here) and grew as SIGMA 

evolved. Note however, that small and aim-low are not the 
same: 
Theorem 8-Aim high on debugging tools. 

It is time to formalize an assumption that conveys our 
theory. We have been cavalier about the implementation 
effort required by our evolutionary model. Yet each design 
cycle, whether it was the CLP, the FM or the daemons, was 
followed by a painless implementation phase. Once under
stood: 
Theorem 9-System components are easy to build with good 
support tools. 

This optimistic theorem runs contrary to prevailing, per
haps self-serving, opinion. Our contention that well defined 
modules can be cranked out comes from innumerable i.:ases, 

from both SIGMA and other sources. It's just not hard to 
build "one." Yet what we have tried to show throughout 
this paper is that a large system needs to evolve, since many 
decisions can be wrong. We have shown how things can be 
designed or modeled poorly. 

Even knowing where to put functionality can be a prob
lem. As an example, the original SIGMA design included a 
component called the Personal Daemon (PD). An instance 
of this background prQcess was created for each user job, 
and its intended purpose was to provide a background pro
cessing capability which was active even when the user was 
not. Alerts were originally designed to be a PD function. 
Since we neither knew all the potential functions of such a 
process nor had the time to develop them, we (correctly) 
gave it aim-low treatment. As the design of SIGMA was 
reworked from 1.0 to 2.2, each of the existing hypothesized 
PD functions was reassigned to another area. With nothing 
left to do, the PD was removed. Unfortunately: 
Axiom 8-Often you guess wrong. 

Every component of SIGMA has been rewritten, Large 
pieces of code were abandoned: ACCMOD (twice), the FM. 
the daemons, the PD. It is the nature of the evolutionary 
design theory that: 
Theorem 1000Almost everything gets thrown away. 

Even aim-high modules can be re-examined and thrown 
away. SIGMA had a directory scheme for storing and retriev
ing messages based on a lexicon package (height-balanced 
A VL trees). It worked from the beginning and never was 
looked at until our performance cycle. When it got dumped 
for a simpler scheme we knew nothing was sacred: 
Corollary 10. I-Don't be afraid !.2. throw stuff away. 

Once this fear is conquered, a lot of pressure is removed 
from a design/programmer staff-certain kludges are ac
cepted, simplicity encouraged. The aim-low paradigm cou
pled with Theorem 10 means that each component will get 
a sei.:onu chance during an aim-high cycle. The CLP got it 
by SIGMA O. Functionality made the FM the focus of SIGMA 

1.0. The entire user job got aim-high treatment for 1.75. 
Finally, the daemons were the target for 2.0. Each cycle left 
a little more of SIGMA hardened, i.e., 
Corollary 1O.2-Every development cycle will focus on ~ 
permanent component. 

Even though we didn't realize it at the time, SIGMA fol
lowed an orderly development cycle. It would be nice to 
attribute this outcome to our careful long-range planning, 
but that is not the case. The things we did were circumstan
tially good or bad. Performance, redesign, and new require
ments all imply that a large system is a moving target. Simply 
stated, the first fundamental result is: 
Theorem ll-No one can implement a large system in one 
pass. 

It is seductive to think that you can. Even more seductive 
is the notion that a long, studious design is the answer; we 
tried and failed. Every aspect of SIGMA proved the statement 
made by our last theorem: 
Theorem 12-A large mature system must evolve; it cannot 
be designed. 

This second fundamental result is borne out by all large 



systems. There is no good reason to suspect that anyone 
can design a big system down to the bit level using any 
known methodology. 

CONCLUSIONS 

The theme of this paper is applicable only to large, multi
year projects. Though many of the principles are relevant to 
any effort, the theory applies to a "design a little, implement 
a little, design some more, implement some more ..... 
paradigm, rather than the "design it, implement if" one. 
The most important early decision is to recognize which 
model is appropriate. Remember the two fundamental theo
rems. 

A relevant issue, not previously mentioned, is the choice 
of a programming language for a project of SIGMA'S magni
tude. When we faced this decision, INTERLISp5 was 
brought up. Though it comes with a marvelous programming 
environment, its lack of speed and address space problems 
made it impractical to use. Once BLISS was chosen for 
SIGMA, all code was written in it. Perhaps a better scheme 
would have been to write an aim-high interface, in the IFCP 
manner, to exist between forks written in BLISS and others 
written in INTERLISP. Then aim-low modules, perhaps 
written in INTERLISP, could have been put together very 
quickly. Using this strategy implies a strong commitment to 
this design philosophy. 

We all guess wrong (Axiom 8) but perhaps the main reason 
that this theory is not in general use is that people don't like 
to reprogram modules they have coded before. But a large 
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software project has many people on it, so the solution is 
obvious. Let the aim-low implementation drive the design; 
when aiming higher, let someone else implement it. The 
daemon and FM rewrites were perfect illustrations of this 
point. 

As with top-down programming, egoless programming, or 
chief programmer teams, no magic is offered. This theory 
is not a panacea for all software problems. Lousy designs 
and poor programmers will still defeat any methodology. 
What we do offer is a guess as to how to make a long-term 
project less painful and more rewarding. 
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The terminal for the Military Message Experiment 
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Marina del Rey, California 

INTRODUCTION 

One clthete-chnic-al challenges faced in the Military Mes
sage Experiment (MME) is providing a system that is easy 
to learn and operate by the typical action officers who are 
the users of the message service. These people have no 
computer background and have neither the time nor the 
inclination to master a complex system in order to accom
plish a simple task such as reading their message traffic, 
which they already do effectively. The system must offer 
some new capabilities to make it attractive, but above all it 
must be comfortable and natural to use. A most critical 
ingredient of the user's interface to the system is the ter
minal. 

To provide the desired naturalness and ease of use, we 
want to make available the same sorts of facilities that the 
user has at his desk, where he is able to scan quickly through 
large amounts of data, see whole pages of text at once, and 
easily change his attention back and forth between pages of 
different documents. He is able to view several documents 
at the same time and edit or annotate a message at any spot 
by simply writing there. With paper and pencil these abilities 
are effortless and natural. We would like to be able to give 
him the same capabilities in our on-line system with the 
same simplicity of use. 

Unfortunately we are constrained by such practical con
siderations as the cost of the terminal hardware, its main
tainability, the amount of desk space that it occupies, etc. 
Like most such devices, the MME terminal is a compromise 
between conflicting goals. 

In the early days of the MME program it was envisioned 
that users would be distributed all over the island of Oahu 
and that the host computer would be on the mainland. The 
long delays involved (a satellite hop and an unknown number 
of network nodes) argue for providing buffering and pro
cessing power in the terminal itself in order to guarantee 
responsiveness to the user (an essential attribute of a natural 
interface). Economics restricts the speed and memory size 
of the terminal processors. The terminal that has resulted is 
different in concept than any currently on the market. 

OPERATING WITH THE MME TERMINAL 

The style of interaction we have attempted to achieve is 
to have the user feel he is talking directly to the application 
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program, with the terminal transparent to him. Simple but 
powerful two-dimensional editing functions are available in 
the terminal- w-it-b a one-t.o--one relation between a keystroke 
and the execution of a function. The editing operations au
tomatically format the screen dynamically so at all times the 
user sees a well ordered presentation Of his data. Because 
of instant response to these operations, the user feels he is 
editing the document directly (rather than executing abstract 
commands to a computer which makes the changes for him, 
which is really what is happening). 

To further this impression, the terminal masks the user 
from its memory limitations. The user can scroll through a 
full document without having to break it into pieces that will 
fit on screen or in memory. To achieve this the terminal has 
considerably more display buffer memory than screen space. 
The terminal gives the user the impression that it holds the 
entire document locally, even though it is really bringing 
new data in from the host as needed. 

The naturalness of the interface rests on the principle that 
"what you see is what you get." The user merely edits a 
text image on screen to cause the system to make the se
mantic changes to the database that those editing changes 
imply. This editing often has the side effect of controlling 
some operation; for example, the addressees for a message 
are thought of as simply names in the "To" field of the 
message, which is filled in by editing the screen along with 
all the other message fields. The user is not forced to think 
of these names as active arguments to the message sending 
process, which the application program must parse, check 
for validity, and perhaps correct, before accepting them. 

To allow flexibility in the data presentation made to the 
user, the terminal has a variety of highlighting facilities, 
such as inverse video, underlining, and half-intensity. Basic 
editing and dynamic formatting are done in the terminal, but 
the application program has control over how text is high
lighted, what format constraints apply and where editing is 
allowed to occur, with granularity down to a single charac
ter. Thus the data sent to the terminal contains editing, 
highlighting and formatting attributes, as well as the text 
itself. 

To give a user the ability to view several objects simul
taneously or quickly switch to views of different objects, 
the terminal provides a facility called "windows." Each 
window can hold a different data object and can be inde
pendently scrolled, giving the user the impression that he is 
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working directly on the entire document. Windows may be 
established by the application program to occupy only part 
of the screen, so several can be displayed at the same time. 
They may be moved on or off screen almost instantaneously, 
making it easy for the user to shift his attention between 
objects. 

The terminal also supports a variety of command language 
styles. The terminal has function keys whose actions are 
assigned by the application program, but it also allows typed 
command input, menu selection (using the cursor to point), 
and an ability to refer to arbitrary characters on screen as 
arguments to commands. 

IMPLICATIONS FOR THE APPLICATION PROGRAM 

The terminal's style of interaction has profo.und effects on 
the application program. First it implies a rich data structure. 
A sequential file does not lend itself to arbitrary editing 
conveniently. Whatever representation the application pro
gram has of the documents it deals with, it must be able to 
extract and send to the terminal the controls for editing, 
highlighting and formatting along with the text. It also must 
be able to change its database to match the changes reported 
from the terminal, and make correct semantic interpretation 
of these changes. We call this application resident model of 
the data in the terminal the "Virtual Terminal" (VT). There 
must be a VT for each active window in the terminal. 

In most alphanumeric applications, changes to the data
base are made only as a result of the execution of some 
command through a command interpreter. The semantic 
content of the command is extracted, the change is made to 
the database, and then the appropriate display information 
is generated from the new data and sent out to the terminal. 
SIGMA, the application program for the MME2, operates in 
this manner on many of its commands. 

SIGMA, however, also allows changes to the database 
through screen editing. In this case the changes to the text 
that are sent by the termiRal go to the virtual terminal, where 
their semantic impact is interpreted, and the database up
dated. In this way the meaning of the database can be 
changed as a side effect of editing, rather than by direct 
command execution. For example, while filling in a message 
form the user enters the contents of a message address field. 
So far as the user or the terminal is concerned this is just 
text, like any other text in the message. But since it is an 
address field, SIGMA parses the text, extracts user names 
and builds an address structure in the database, one element 
per addressee. If the text or format of the address field is 
changed as a result of SIGMA'S semantic interpretation (e.g., 
addressees' names might be corrected), the necessary mod
ifications are sent out to the terminal. 

Since the terminal does its own formatting, the application 
program considers text of a paragraph as a continuous 
stream. Only where the structure of the text dictates (e.g., 
paragraph beginnings) does the application force format con
trols. The usual ASCII control characters CR (carriage re
turn) and LF (line feed) do not appcar in SIGMA·S rcprcscn 
tation of text. 

THE USER'S VIEW 

The MME terminal is a Hewlett-Packard 2649A CRT Ter
minal (an OEM version of the HP2645A terminaP), with 
microcode supplied by lSI. The CRT holds 24 lines of text. 
SIGMA permanently assigns the top three lines as Status 
lines, where system and user status is continuously reported 
and error messages appear. The most frequently used SIGMA 

commands are assigned to 30 function keys. Other com
mands must be typed in the Instruction wiridow, which 
occupies the next two screen lines below the status lines. 
The remaining 19 screen lines make up the working space; 
they may contain a View window for reference only, a 
Display window for editing, or a split between Display and 
View to allow referring to one object while working on 
another. 

Two keypads next to the standard keyboard keys control 
the local terminal operations, including cursor movement 
(by character, word, line or window), character insertion 
~any of the normal typewriter printing keys), deletion (by 
character, word or line), scrolling of independent windows, 
and a special function called HERE. The terminal maintains 
the screen format, automatically breaking a long line at a 
word boundary and wrapping the remainder onto the next 
line. The carriage return key forces subsequent text to start 
on a new line. 

FUNCTIONAL DESCRIPTION OF THE MME 
TERMINAL 

Since the 2649 is microprogrammable, the functional op
eration is entirely defined by the microcode. Communication 
between the application program in the host computer and 
the terminal is done in blocks of data, representing a com
plete command from the application to the terminal (dis
patch) or a complete report of some new condition in the 
terminal to the application (notice). 

The terminal is basically a half-duplex device, in that it is 
either in input state (keyboard active) or output state (host 
computer active). During input state the user has at his 
disposal the full screen-editing capability. The terminal 
switches to output state whenever a function key is pushed 
(e.g., the EXECUTE key, which causes SIGMA to interpret 
and execute the contents of the Instruction window, is a 
function key). During output state the keyboard is disabled. 
The terminal is returned to input state when the host sends 
a special "Continue" dispatch. Strictly speaking, the system 
is not half-duplex because in output state the terminal does 
send certain control notices required to maintain consistency 
between the terminal's database and the host's model. 

Communications between the terminal and the host is 
really one computer talking to another. Each transmission 
must be error-free; otherwise the computer's model and the 
terminal's model may not match. To insure the needed re
liability of uata aClO~~ potentially noisy lines, a fully syn
chronized block retransmission protocol is used. 



Windows 

The MME terminal is designed to hold up to seven sep
arate items of text in areas called "windows." Windows are 
allocated and deallocated by the host (never by the termi
nal). They are of arbitrary size so long as the total contents 
of all the allocated windows does not exceed the memory 
capacity of the terminal. Although the host fills the windows 
by sending data to them, the terminal does its own memory 
management and decides what data to keep when it nears 
its memory limits. 

Windows may be thought of as numbered text buffer 
areas. A window may be assigned to occupy any contiguous 
portion (full horizontal lines) of the screen, such as lines 15 
through 23, with an operation called "map." Normally a 
window contains more lines of text than will fit on the 
mapped area (it may also contain less). "Map" places that 
portion of the data from the window that will fit onto the 
screen, while any excess data beyond the screen area is 
stored in "margins," areas logically considered to be above 
and below the window's mapped screen area. Data scrolls 
on-screen from these margins. 

Several windows may be mapped on different areas of the 
screen at the same time, which allows a user to view several 
text objects simultaneously. A window may also be un
mapped, which means it remains in the terminal memory, 
but is not visible to the user. Figure 1 illustrates the terminal 
with four windows, three of which are mapped. The host 
may switch the contents of the screen from one text item to 
another very quickly by "unmapping" the displayed object 
and mapping the new object. 

Mapped windows scroll independently. The ROLL UP or 
ROLL DOWN keys cause scrolling in whatever window the 
cursor is in. This operation is done entirely within the ter
minal, without telling the host. Therefore, although the host 
always knows what text is in each window and what win
dows are mapped onto which screen lines, it usually does 
not know exactly what text is visible on screen at any time. 

Domains 

In the MME terminal all text is stored in "domains,"' the 
atomic unit for the communication of text between the host 
and the terminal. Each window is made up of a contiguous 
string of domains. Domains may be any length up to 100 
characters. Any character stored in the terminal can be 
uniquely identified by its window, domain identifier within 
the window, and character position within the domain. Do
mains have format, highlight, and control attributes assigned 
when the domain is created. The user is not aware of the 
domain structure of text, except as domain attributes are 
apparent to him. Figure 2 illustrates the domain structure 
for part of a SIGMA display. 

Normally each domain starts at the character to the right 
of the last character of the previous domain and may wrap 
around onto the next line. However, the application program 
may set a domain to be "formatted," which makes the 
domain start on the next line at the left margin of the screen, 
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regardless of where the previous domain ends. In this case 
the blank space to the right of the previous domain is es
sentially undefined to the application program, since it can
not be identified by domain ID and character position. The 
terminal will not allow the cursor to move to an undefined 
location. If a user attempts to move his cursor into such an 
area, it will jump to the next enterable domain. 

The 2649 allows any combination of blinking, underlining, 
inverse video and half brightness on a character-by-char
acter basis. The MME terminal limits this highlighting to a 
domain basis; that is, all characters in a domain are high
lighted the same. Character set selection is also done as a 
domain attribute. 

Domains also have editing control attributes set by the 
host when domains are created. They control whether the 
cursor may enter the domain, whether the domain is editable 
(from the keyboard), whether characters within the domain 
may be marked with a HERE, and whether the domain will -
accept carriage returns. Space is left for assigning other 
attributes. 

When a user edits text he is changing the contents of some 
domain. If, for instance, he inserts or deletes characters, the 
domain expands or contracts appropriately and the domain 
is recorded as "Changed." Nothing is sent to the host until 
the user begins to edit another domain, at which time the 
terminal will send the host the new contents of the previ
ously edited domain (via a "Changed Domain" notice) and 
record this new domain as the Changed domain. Thus the 
host computer may be, at most, one domain change behind 
what is in the terminal. Eventually the user will push a 
function key, carriage return, or the HERE key. The first 
action the terminal takes on these keys is to lock the key
board and send out the pending Changed Domain notice if 
there is one. It then processes the key pushed, which en
sures that the host always has the up-to-date state of the 
terminal before performing any operation on the data (all 
SIGMA commands are initiated by a function key). 

Most often the data displayed come from the application 
program, in which case the host computer creates the do
mains and sends them to the terminal. However, the ter
minal will generate domains in three special instances. 

1. When user editing causes a domain to exceed 100 char
acters, the terminal will generate a new domain and 
tell the host its location, ID, and contents in the form 
of a special "Extraction" notice. 

2. A carriage return creates a new "formatted" domain 
and a special "EOL" notice is sent to the host, re
porting the location and the ID of the new domain. 

3. The HERE key marks the character at the cursor po
sition as a parameter for a subsequent command by 
splitting it off into a new, one-character domain with 
inverted video and non-editable attributes. This mark 
will stay associated with that character regardless of 
any editing the user might do thereafter before the 
command is executed. Merely reporting the character 
position in the domain and the domain ID is not suffi
cient. The" HERE" notice contains all the information 
needed to identify the position of the marked character, 
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Figure I-Multiple windows. 

how the old domain was split, and the ID of the new 
domains created. 

Flash lines 

The terminal has an eighth window called the Flash win
dow. If it exists at all, it is assigned to the top of the visible 
screen. amI can he set by the application to occupy from 
zero to 24 lines. It has no domain structure and has ftxed 

attributes. It is alw'ays non-enterable, and has no highlight 
or formatting properties. SIGMA uses the Flash window for 
status and other output-only information, since it does not 
have to keep around a corresponding data structure for this 
window. 

Cursor control 

Although there is only one visible cursor, each window 
may have an implicit cursor position. When more than one 
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window is mapped on screen, the UP WINDOW or DOWN 
WINDOW key causes the cursor to move to the implicit 
cursor position of the adjacent window. 

The host has two controls over the implicit cursor for a 
window: I) On what character in the window it shoud be 
and 2) on what line on the screen (for mapped windows) it 
should be. For unmapped windows, the latter translates to 
"on what line on the screen it would be if the window were 
mapped." A separate dispatch is provided for each. This 
limited form of cursor control is the only way that the host 
can establish what data is shown on screen. Since the user 
can scroll the screen contents, this is transient control at 
best. The host also has a dispatch to put the actual visible 
cursor into the desired mapped window (at the implicit cur
sor position). 

Scrolling 

The terminal's basic heuristic for mapped windows is to 
keep extra lines of text in margins above and below the lines 
that are on-screen. This lets the user scroll in either direction 
without having to go to the host for more data. Whenever 
the terminal assesses that a margin is getting too small, it 
will send a .. Vacancy" notice to the host asking for more 
data for that margin. The terminal calculates the number of 
lines of data to ask for based on the size of the on-screen 
area, the number of lines in the margin, and the amount of 
memory left in the terminal. 

Memory management 

The 12K bytes of display memory in the terminal are 
allocated as necessary for each dispatch. When the remain
ing memory is reduced to a prescribed limit, the terminal 
tries to reclaim memory from unmapped windows, and if 
that does not yield enough, from large margins of mapped 
windows. Memory is reclaimed by deleting domains and 
their contents from the edge of the margin and then telling 
the host through a "Scroll" notice. A Scroll notice identifies 
the last domain deleted and from which margin it came. It 
is important that the terminal be able to generate Scroll 
notices even when the keyboard is locked and the host is in 
control, for it is during this state that the host will send the 
data that reaches the memory limit. The terminal must be 
free to reclaim memory right away in order to have room 
for the next dispatch, which may already be in the terminal's 
input buffer. 

It is possible for the terminal to try to reclaim memory 
from the same margin into which the host is writing. To 
prevent this, the host can set special "No Reclaim" controls 
for each margin of each window, and the terminal will not 
reclaim memory from a window margin so marked. The host 
must be careful not to leave these No Reclaim controls on, 
or the terminal will quickly run out of margins from which 
it can rl;'c1aim memory and the terminal memory will become 
full. 

CONCLUSIONS 

The MME Terminal is now operating with SIGMA at 
CINCPAC Headquarters. It appears to be successful in pro
viding an interface that is quick to learn and natural to use. 
Editing is easy to master, since the operations provided are 
simple and their results immediate. The user deals with large 
messages or files as single continuous entities, which appear 
to be completely contained within the terminal. The user 
never has to consciously .. send" an editing change to the 
host; he simply makes the change, just as he would on 
paper. 

The terminal's most obvious limitation is the small size of 
the screen (24 lines of 80 characters), compared to the full 
page printed on paper that users are used to seeing. This is 
particularly noticeable when operating in split screen mode 
looking at two objects. This limitation, however, points out 
what we consider to be a significant technical contribution 
of the MME terminal. 

By dealing in terms of windows and domains, and letting 
the terminal format the text and control the flow of data (via 
Vacancy and Scroll notices) we have achieved a division of 
labor which makes the application program almost com
pletely independent of the terminal characteristics. The high
level protocol that achieves this also supports the natural 
user interface style we sought. The application program has 
no knowledge of, or concern for, the amount of memory in 
the terminal. Since the terminal manages its own memory 
and tells the host when and how much data to send, the 
application program never needs to consider whether the 
text "will fit." 

Furthermore, the application program assumes very little 
about the size or characteristics of the display screen. A 
small section of code in SIGMA, which controls the mapping 
of windows to screen lines, knows that the terminal has 24 
lines. It has no idea how many characters fit on a line, or 
whether the terminal has proportional spacing, or what kind 
of display technology is employed. 

The application program is also completely unconcerned 
about details of the terminal's editing facilities. For instance, 
SIGMA does not know the terminal does not have a "type
over" mode, or that it does have a "word delete" key. The 
terminal could scroll a line at a time or a page at a time. 
Adding a positioning device like a "mouse" or a joystick 
would not affect SIGMA at all. In theory, one could add a 
"replace string" function internal to the terminal if he 
wanted without affecting the application program (we chose 
not to because we feel such operators should be global to 
the entire document and therefore belong in the host). 

The protocol isol.ates the physical and functional features 
of the terminal from the application program, which allows 
us to take advantage of new, more capable terminals with 
more memory, larger screens and more powerful editing 
features without having to rewrite the application software. 
At the same time we maintain the desired interactive coup
ling between the terminal and the host. 

We believe a protocol which provides this independence 
is needed to foster the use of "intelligent" terminals for 
network applications. We are advocating the development 



of a protocol to support communication with such powerful 
terminals, which we are calling the Network Virtual Pro
cessing Terminal protocol (NVPT). We do not propose that 
the MME terminal protocol in its current form is sufficient 
for NVPT, since it does not yet provide adequate format or 
editing controls. It needs to accommodate a variable number 
of display windows and visible screen lines, and issues such 
as backward compatibility with teletypes and down-load 
capabilities must be considered. We do feel, however, that 
the protocol in MME provides a good starting point for 
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discussion of an NVPT and we invite constructive criticism 
directed toward achieving such a goal. 
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On-line tutorials and documentation for the SIGMA message 
service 

by JEFF ROTHENBERG 
USC/Information Sciences Institute 
Marina del Rey, California 

INTRODUCTION 

The highest goal of the SIGMA service has been to success
fully make the transfer from the computer science research 
environment to the working military message processing 
environment for which it was intended. One of the problems 
leading to the failure of such technology transfer in the past 
has been a lack of appreciation for the importance of the 
way a system is introduced into a working environment, 
how users are trained in its use, and how it is documented 
from the users' point of view. This paper describes SIGMA'S 

approach to these issues. 
The target users of SIGMA are military personnel at CINC

PAC engaged in message processing. The functional aspects 
of this military message processing environment are de
scribed elsewhere. 4 The target users understand and com
petently perform complex and important tasks. The training 
and documentation material for SIGMA assumes that the 
users are already expert at their jobs and that they will 
quickly become proficient at using SIGMA if it is presented 
to them in familiar terms. 

The fact that target users cannot afford the time for ex
tensive scheduled classes or other means of collective in
struction suggested that on-line tutorial and help facilities be 
developed to allow a user to learn at his own pace and to a 
self-determined depth, and to minimize the need for class
room or one-to-one personal instruction. A short introduc
tory lecture gives an overview of SIGMA and shows users 
what it can do for them. From there on, the user refers to 
on-line aids for most of his training, using human consultants 
only when necessary. While reference aids also exist in 
hardcopy form, it was strongly felt that on-line references 
should be available whenever the user is working with 
SIGMA. On-line references have the advantage that they are 
guaranteed to be available, they can be kept dynamically up 
to date more readily than hardcopy, and they can exploit 
knowledge of the user's state to pinpoint what he is most 
likely to need help with. The initial design proposal for these 
training and documentation facilities was published in May 
of 1975,3 and a requirements document for the actual doc
umentation was published in June of 1976. 2 

The strategy for training and documentation in SIGMA 

involves three avenues of attack. The Command Language 

863 

Processor (CLP), which parses the user's input commands, 
implements a Prompt facility that allows the user to see 
which commands are legal in his current state. The Help 
facility provides on-line access to detailed reference mate
rial. The Tutor provides a complete curriculum of on-line 
Lessons and Exercises. 

THE SIGMA TERMINAL 

The SIGMA (MME) terminal is described elsewhere,5 but 
a brief description is in order here. The terminal consists of 
a keyboard with a number of special function, keys and a 
CRT screen divided into several horiiontal (full-width) win
dows. 

SIGMA uses the top two lines of the screen for alert and 
status information called the Flash and Status Windows, 
respectively. The third line is a Feedback Window which 
SIGMA uses to give feedback to commands the user executes 
(e.g., error messages). Following the Feedback Window is 
the Command Window, in which the user enters typed com
mands. 

The remainder of the screen is used as a working area 
consisting of a Display Window (where data objects can be 
displayed and edited), and/or a View Window (where data 
objects can be shown for reference but not edited). 

The terminal supports multiple windows that mayor may 
not be "mapped" onto the screen. For example, the user 
can have a data object displayed in the Display Window and 
can press a key to split the screen and map another object 
into the View Window. The documentation facilities de
scribed beiow make use of ihis mapping feature to take over 
the screen for documentation purposes (at the user's re
quest), and later restore it to its original state. 

PROMPT 

When the user presses the key labelled PROMPT on the 
SIGMA terminal keyboard, the CLP remaps the working area 
of the screen as a Prompt Window and shows all commands 
that are legal in the current state. (When the user hits 
PROMPT again, the original state of the screen will be 
mapped back again.) If the user cannot recall the arguments 
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or form of a command he is typing, he can hit PROMPT and 
be shown the various forms of the command he has begun. 
If he types an ambiguous command in the Command Win
dow and tries to execute it, the CLP will respond with an 
error message (in the Feedback Window) telling the user 
that the command is ambiguous and suggesting he press 
PROMPT. If the user then presses the PROMPT key, the 
CLP shows Prompting of all those commands which it can
not yet disambiguate based on what has been typed in the 
Command Window. Commands that are close to what the 
user typed (e.g., which match the number and types of the 
given parameters) are shown highlighted. 

For example, suppose the user has a file named Pending 
and a text object named Papa. If he types "D P" in the 
Command Window and hits PROMPT, the Prompt facility 
will show four possible commands: 

Display Text (Existing Text Name) 
Delete Text (Existing Text Name) 
Display File (Existing File Name) (Security) 
Delete File <Existing File Name> 

With each command is shown a brief description of its 
function and a stylized form of the command with its param
eters. 

Once a command (or list of commands) is shown by 
Prompt, the user can select one of the commands with the 
cursor and press PROMPT again; this expands the descrip
tion of that particular command, showing the syntax and 
meaning of each of its parameters. 

ON-LINE HELP 

If the user needs a more detailed description of a com
mand or cannot remember which command to use, he can 
request the next level of documentation: Help. 

Compatibility of on-line and hardcopy reference material 

Considerable effort was devoted to making the on-line 
Help database semantically identical to the hardcopy printed 
Reference Manual so that the user would not find these 
alternate forms of documentation incompatible or confusing. 
At the same time, however, syntactic differences between 
the printed form of a Reference Manual and an on-line ref
erence database had to be allowed for. For example, the 
printed form requires page numbers, section headings and 
chapters, whereas the on-line form is accessed interactively, 
making this .organization irrelevant and cumbersome. 

HELP 
BACK 

SERVICE FACILITIES 
FORWARD 

The Current Term field shows the Term for which HELP is 
currently displayed. The New Term field allows the user to 
type in a new Term for which he wants Help. Spelling 
correction is provided hy means of the 'Same algorithm em· 
ployed by the CLP. 

The documentation facility was designed to automate se
mantic compatibility while allowing syntactic variatio'n so 
that documentation writers (documentors) would find it easy 
to maintain both on-line and hardcopy reference material in 
an up-to-date and interlocked form. 

Using on-line help 

SIGMA documentation is organized under a large set of 
"Terms," which are words or phrases that name various 
aspects of the system. Terms include all command and pa
rameter names, classes of data objects and operations, and 
procedural matters relevant to the user's work situation. 
They are essentially a set of keywords and key-phrases that 
semantically cover SIGMA and the environment in which it 
is embedded. Several synonymous Terms may refer to the 
same information. The actual documentation for a given 
Term consists of text called a "cell" (a word SIGMA users 
never see). The display of a cell can be scrolled: it is not 
broken into frames in the sense of screenfuls or pages. 

Requesting help 

If there is a command or part of a command in the Com
mand Window when the user presses the HELP key, Help 
is provided for the Term corresponding to the command 
word. If the Command Window is empty, pressing HELP 
results in a "top-level" Help display which is just a descrip
tion of how to use the Help facility itself. (This is imple
mented simply by having the Help facility provide Help for 
the Term "HELP. ") 

Use of the screen in help 

When Help is activated, the Feedback Window displays 
a message telling the user that Help is being shown below 
and how to "get out" (that is, how to return to what he was 
doing before he hit HELP). The Flash and Status Windows 
are unaffected. The Command Window and work area (Dis
play Window and/or View Window) are mapped away, and 
the remainder of the screen is divided into two windows 
analogous to the Command Window and Display Window. 
(When the user returns from Help to his previous state, the 
screen is returned to the state it had before he hit HELP.) 
The lower of the two Help windows shows the actual doc
umentation cell for some Term. 

The topmost of the Help windows consists of two lines 
which appear as 

Current Term: Some Key Phrase 
New Term: 

Selectable terms 

The other four fields are shown in inverse video highlight
ing. The convention followed in the Help facility (and ex
plained in the top-level Help display) is that anything that 
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appears on the screen in inverse video is itself a Term for 
which the user can get Help simply by selecting the high
lighted field with the cursor and pressing HELP again. Thus 
the Terms HELP and SERVICE FACILITIES are always, 
available whenever the user is getting Help; he has only to 
move the cursor into either of these fields and press HELP. 
SERVICE FACILITIES shows an Index-like list of the 
major topics and commands in SIGMA; when it is selected, 
the lower Help Window shows what is effectively a menu 
of topics on \vhich Help is available. Any Term that appears 
highlighted (in inverse video) in this list can be selected 
similarly with the cursor. The user can thus use Help as a 
menu-driven access facility, or he can type in specific Terms 
to be accessed (at New Term). Whenever the Help display 
is changed, the Current Term field is changed to show the 
Term whose documentation cell is being displayed. 

The fields BACK and FORWARD are also shown high
lighted. These are not really Terms, but are "virtual function 
keys" which allow the user to retrace his steps through 
previous Terms for which Help has been displayed. 

Documentation writing and maintenance 

As explained above, the design of the documentation fa
cility included a concern for how documentation is written 
and maintained for two syntactically disparate but semant
ically identical forms: hardcopy and on-line Help. The 
printed Reference Manual for SIGMA is generated using a 
traditional formatting system driven by commands embed
ded in the text to be formatted. 

The on-line version must display selectable Terms as high
lighted words or phrases which the user can select as de
scribed above. It must also allow the definition of Terms. 
The documentation text itself is generally the same as that 
in the hardcopy Manual. In order to make it possible for the 
user to select occurrences of Terms within the text, the 
documentor can flag words or phrases as potential Terms. 
An occurrence of a Term is shown as selectable only if the 
documentor flags it as a potential Term AND the Term is 
actually defined in the current database. ' 

In order to make writing and maintaining documentation 
easy, a single combined source is used for both forms. Spe
cial bracket pairs control documentation preprocessing by 
signalling that characters are intended for either the hard
copy Manual or the on-line database or both. 

THE TUTOR 

The final level of detail in documenting SIGMA consists of 
a full curriculum of on-line Lessons and Exercises covering 
most of the features of the system. The primary goal in 
designing the Tutor was that the user be able to take Lessons 
on-line and tryout various commands in a Protected Mode. 
That is, the Tutor guarantees that the user can do no harm 
to any real data (his own or anyone else's) when taking a 
Lesson. However, it was felt that any attempt to interpret 
or simulate the action of commands would sooner or later 

result in divergence between the Tutor's simulation and the 
real behavior of SIGMA. The only way to keep the user's 
faith that a Lesson describes the system as it really works 
is to effectively let the system simulate itself. 

The Tutor supports two related features: Lessons and 
Exercises. A Lesson is a detailed description of some aspect 
of SIGMA. As of this writing some dozen Lessons have been 
written. The user can take any Lesson at any time by using 
the command "LESSON j." No order is enforced, though 
the Lessons are arranged in a logical sequence for most 
users' needs. A user can retake a Lesson any number of 
times, can quit in the middle, and can start up in the middle 
the next time. 

On-line lessons 

The user asks for a lesson with the command "LESSON" 
which takes a lesson number. The available lessons are 
listed in the hardcopy Reference Manual and in on-line Help. 
When the user executes the LESSON command, the Lesson 
text is displayed in the working area of the screen. The 
Feedback Window shows a message telling the user he is in 
a Lesson and how to get back to what he was doing before 
he entered the Lesson. The Lesson text shown in the work
ing area can be scrolled through, just like any display on the 
SIGMA terminal. Lessons provide complete discussions of 
the most important topics having to do with using SIGMA. 

Most of the Lessons have Exercis~s associated with them, 
which they suggest the user take. 

On-line exercises 

An Exercise is generally a very short and specific task 
that the user can try in the Tutor's Protected Mode (a phrase 
the user never sees). Lesson 2, for example, discusses a 
user's special data object called the Pending File and then 
suggests that the user try Exercise 1 to display a Pending 
File. Later in the Lesson, the user is shown how to display 
messages from a file, and Exercise 2 is suggested, which 
allows the user to display a message. In keeping with the 
nonassertive philosophy of the Tutor, the user is not coerced 
in any way into trying the Exercises. He can skip some or 
all of them, can take them in any order and can retake them 

'any number of times. 
The user takes an Exercise by typing the command "EX

ERCISE k" in the Command Window. The Exercise num
ber automatically refers to that Exercise for the Lesson in 
progress. When the user enters the Exercise, the working 
area of the screen (which had displayed the Lesson) is re
mapped to display the Exercise. The Feedback Window 
displays a message telling the user he is in an Exercise and 
how to get out of it. 

An Exercise describes how to specify some particular 
command or set of commands and suggests that the user try 
them. In order to try them, the user simply moves the cursor 
into the Command Window and types the command, just as 
he would if he were not in the Tutor at all. At this point, the 
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Command Window is simply parsed by the CLP as always. 
However, the resultant parsed command is not immediately 
executed but is first passed to the Tutor for scrutiny. The 
Tutor compares the command with the list of allowed com
mands for this Exercise. If there is a match, the Tutor allows 
SIGMA to execute the command; otherwise, it displays a 
message in the Feedback Window telling the user the com
mand he typed did not match any of those in the Exercise. 

The protected mode 

The screening of commands by the Tutor is performed 
after the CLP has parsed them. Thus the match is not be
tween what the user typed and what the Exercise said he 
should type but rather between the parse of what he typed 
and a parsed form encoded with the Exercise. The result of 
this approach is that the semantics of what the user typed 
are compared with the desired semantics in the Exercise. 
Any alternate form that the CLP can recognize as the same 
target command will pass the Tutor's inspection as the de
sired command. This behaves correctly in a pedagogic 
sense, in that the user is considered to have completed the 
Exercise successfully if he achieves the desired result, re
gardless of how he achieved it. (The next level of this ap
proach 1 is to actually allow the command to execute and 
compare the result of its execution with the desired state. 
This comparison is harder to define and perform, and allow
ing execution makes it harder to guarantee the Protected 
Mode. It was felt that for efficiency and safety command
level matching was the best solution for SIGMA.) 

In order to provide the Protected Mode, the Tutor must 
not only screen which commands can be executed, but must 
in some cases switch the data objects on which a command 
operates so that "real" data is never used. If real data were 
used, it would also be hard for the Exercise to refer to what 
the user was seeing when he displayed data. By using special 
Tutor data, the Tutor both protects the real data and has a 
handle on what the user sees when performing the Exercise. 
The Tutor's only interference with the execution process is 
to switch data objects in the parsed command after the CLP 
has parsed it and before it is given to SIGMA to execute. 

Use of the screen in exercises 

When the user executes a command within an Exercise, 
SIGMA is unaware that the Tutor is involved, and the screen 
is used just as it would be if there were no Exercise dis
played. The Tutor is responsible for mapping away its own 
display and allowing SIGMA to display what it will. However, 
once the user has executed a command he must be able to 
return to the Exercise to see what to do next. A toggle is 
provided which allows the user to switch the screen between 
the "normal" state (as it appears after executing a com
mand) and the "Exercise state" (which maps the Exercise 

text into the work area). To prevent confusion the Tutor 
uses the Feedback Window to keep the user aware of what 
he is looking at and how to toggle to look at the opposite 
state of the screen. In practice this requirement for toggling 
in an Exercise is no worse than flipping back and forth 
between a figure and a description of that figure on two 
different pages in a printed lesson. 

Tutor summary 

The Tutor has proved a powerful training device whose 
use has greatly facilitated the introduction of SIGMA to users 
in a working environment. It frees users to learn at their 
own pace and their own convenience. It provides the se
curity of always knowing that there is a detailed and dynam
ically up-to-date description of the operation of SIGMA avail
able at the user's fingertips whenever he is running SIGMA .. 

RESULTS AND CONCLUSION 

Formal statistics have not yet been gathered on the Mili
tary Message Experiment as a whole or the training process 
in particular. To date about 100 users have been exposed to 
the introductory lecture on SIGMA, and about two-thirds of 
those users have taken at least some of the on-line Lessons. 
As expected, the earlier Lessons have sufficed to get users 
started using SIGMA; most users have not found it necessary 
to take the later Lessons which deal with the full range of 
features in SIGMA. It is too early to give quantitative results 
as to the efficacy of on-line training for SIGMA, but indica
tions are that users are able to gain competence and facility 
with the system by means of the supplied on-line training 
aids combined with human interaction and conSUlting. 

The success of introducing any system into a real-world 
environment depends on many factors. An attitude of re
spect for the end user is crucial in all phases of producing 
a user-oriented system, and it permeates the design of 
SIGMA. The awareness of the need for on-line Help and 
Tutorial facilities is only half the battle for good user doc
umentation: equally important is the style in which the doc
umentation and training material are written. All condescen
sion must be avoided, and if the documentor is a member 
of the Computer Science community he must keep in mind 
that he is writing' for users whose expertise is different 
from-though probably no less than-his own. 

SIGMA'S three-pronged attack on documentation includes 
a Prompting facility, a fully integrated on-line Help and 
hardcopy Reference Manual, and a complete curriculum of 
on-line Lessons and Exercises under the Protected Mode of 
a Tutor. This approach has proved an efficient way for users 
to learn how to use SIGMA and to access reference materials 
while using it. 
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Maintaining order and consistency 
in multi-access data 

by RONALD TUGENDER 
USC/Information Sciences Institute 
Marina del Rey, California 

MULTI-ACCESS DATA-A LONG-STANDING 
PROBLEM 

The problem of controlling simultaneous access to shared 
data runs throughout the history of computer science. In 
order to preserve the consistency and integrity of such data, 
computer scientists and programmers have developed 
locks,6 semaphores,3 the notion of critical sections,4,3 mon
itors,5 and innumerable other techniques, both concrete and 
abstract. The great interest in such mechanisms throughout 
the computer community, both in the literature and in prac
tice, is indicative of the importance of the problem. 

Classical examples 

Control over simultaneous access is necessary in count
less practical applications, one of the most common of which 
is the need to guarantee strictly sequential access to critical 
resources by competing-conceptually or literally-parallel 
executing processes. To provide the necessary interlocking, 
implementors have used techniques such as the simple lock 
and its more sophisticated cousin, the mutual exclusion sem
aphore. In each of these, before being allowed to access the 
critical resource, a competing process must pass a decisive 
test, engineered to ensure that 

• Only one process can pass the test, no matter how 
many processes are competing or how frequently they 
attempt access. 

• Once a process has passed the test and is granted access 
to the resource, no other process can pass until the first 
has "released" the resource. 

A different type of control over simultaneous access is 
necessary to satisfy another problem, referred to in the 
literature as the "Readers and Writers Problem." 2,1 In this 
case several readers accessing shared data wish to ensure 
that the data they are reading remains constant during the 
reading period. It can be summarized by the foliowing rules: 

• Any number of Readers may access the data simulta
neously, but if any Reader has access, no Writer may 
also have access until all Readers are finished. 
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• Once any Writer has gained access, no Reader or other 
Writer may have access until the Writer has finished. 

Multi-access objects in SIGMA 

Neither of the above techniques is appropriate if any of 
the competing processes need extended access to the re
source. Any process doing so would block other processes 
from completing their tasks, potentially lengthening the time 
required to complete them significantly and, in an interactive 
environment, slowing the response time. In a situation in 
which a process needs read access to a data object for a 
long time, possibly concluding with a need to modify the 
object, neither of the above techniques can offer the guar
antee of integrity of the data as well as provide timely in
teractive response when many processes are competing. 

In the SIGMA message service8,7 the two most important 
and frequently used data objects, messages andfoiders, are 
both typically shared among several users. At any time, any 
or all of the users allowed to share one of these objects may 
"open" it (request read and potentially write access), read 
through it for an arbitrarily long time and modify it in any 
of several ways. A scheme had to be developed which al
lowed simultaneous access by several users for arbitrary 
lengths of time, preserved a consistent image of the object 
for each user even while it was being modified by others, 
and both permitted and correctly assimilated modifications 
made in parallel by several users. At this point a description 
of the users' perception of the two SIGMA shared objects is 
in order, to illustrate the issues involved in parallel modifi
cation. 

SIGMA messages 

A SIGMA message is conceptually similar to a formal 
business letter with a sender, addressees, a body and various 
other information. In draft form (i.e., before it is sent), it 
may be read and revised by several reviewers before it is 
actually approved for sending. Several people may be in
volved during the draft/revision process, and for time effi
ciency it is often desirable for them to work in parallel. 
SIGMA provides this parallelism by giving each reviewer an 
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up-to-date copy of the current draft message, allowing him 
to edit, revise and comment as he sees fit. Each user's 
rendition of the message, called a messagette, contains all 
the original, unmodified parts of the original draft, his own 
modified sections replacing their original counterparts, plus 
any new text and comments. 

After the message has been sent (referred to as a trans
mitted message), its character changes. It is no longer a 
draft entity, subject to revision. Just like a letter which has 
been dropped into a mailbox, it has become an official doc
ument, the contents of which are now on record. Users may 
read it and make comments, but are not allowed to change 
its contents in any way. 

SIGMA folders 

A SIGMA folder can be likened to a file into which mes
sages are placed. In SIGMA, however, the folder contains 
not the messages themselves but rather abstracts, called 
entries, containing a pointer to the actual message (for re
trieval purposes) and a subset of the information contained 
in the referenced message. When messages are sent to a 
user, the entries referencing them are automatically placed 
in a particular folder named "Pending" (analogous to a mail 
in-basket). A user can create other folders and copy entries 
between them, where the number of folders needed or the 
significance of the entries placed into them is left entirely to 
the user's discretion. To help him locate specific entries 
within folders, a user is provided a rich set of searching 
tools, including the ability to associate entries with user
chosen keywords. A user can also place comments on en
tries and delete entries that are no longer needed in the 
folder. 

A user may permit any or all of his folders to be accessed 
by other users, in which case the other users are allowed 
the same searching facilities available to the owning user, 
as well as to read the abstracts, make and read comments, 
and retrieve referenced messages. To allow users to peruse 
folders conveniently, SIGMA also maintains a place-marker 
in a folder for each user, marking the last entry he has 
referenced; when he next accesses that folder, he will be 
returned to the same entry. 

Further complications 

The requirement that many users be allowed to modify an 
object in parallel posed several logical as well as implemen
tation problems. It became apparent that the solution in
volved more than simply providing the correct form of in
terlock apparatus; it also had to preserve as much as possible 
the intent of the modifiers. This caused two complications 
well beyond the scope of the classical techniques described 
earlier: 

1. "Whoops, where'd it go?"-Prom the application sys
tem standpoint. even assuming that writers are pre
vented from simultaneous modification. logical incon-

sistencies can still occur if they can write arbitrarily 
when it is their turn to write. Consider an object rep
resented as a linked list, where the types of modifica
tion allowed are add, replace and delete elements of 
the list. What does it mean to replace an element just 
deleted by another writer, or to add an element adja
cent to one just deleted? 

2. "That's not how I remember it!"-Just as important 
as the ability to produce a logically consistent object 
is the need to have the updated object conform to each 
user's expectations of how it should appear after mod
ification. Consider the typical situation which occurs 
when several authors or reviewers are allowed to edit 
a draft document in parallel, and they specify disparate 
sets of changes to a common secretary. When the up
dated draft appears, one or more authors may be sur
prised that the new draft does not reflect the changes 
they specify. 

Clearly the above situations could be avoided if some 
restraints were placed on the types of modifications allowed. 
In the latter case, for example, the problem lies not in the 
authors nor in the secretary, but rather in the revision proc
ess which allowed parallel modification of a common data 
object. To avoid the confusion the secretary could have 
requested that each author confine himself to a different 
section of the document during a given review cycle, which 
would ensure that the various sets of modifications would 
not seriously conflict. While not a perfect solution, some 
restraint on the types of modification permitted was neces
sary to allow SIGMA to preserve the basic intent of the 
modifying users. 

AUGMENTING THE CLASSICAL SOLUTIONS 

In light of the previous observations, the approach taken 
to provide parallel modification comprised two main com
ponents. The first was to carefully constrain the types of 
modifications permitted to the several users so they would 
cause neither irreconcilable conflicts nor unexpected results. 
The second involved finding a representation by which the 
modifications could be expressed. 

Limiting modification 

Determining in which ways to limit modification was a 
delicate issue. If the limitations were not strict enough or 
not along the correct dimension, the several sets of changes 
would conflict too much; if too restrictive, the users would 
be prohibited from expressing the changes they wished (and 
should be allowed) to make. The data objects involved, 
messages and folders, and the operations supported on them 
were thus designed with the goal of making the necessary 
limitations seem natural rather than confining. 

Limitations applied to draft messages 

In draft messages, SIGMA imposes its limitations on par
allel modification by slightly constraining the draftlrevision 
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model. Rather tharl portray a message as a shared entity, 
with all reviewers attempting to edit the one version into the 
form they want it, SIGMA effectively gives each user his 
"own" rendition of the message, to modify as he wishes. 
The process of successively refining a draft involves the 
selective reading and inclusion of desired segments of var
ious users' messagettes, reading and possibly taking action 
on comments and suggestions, eventually resulting in a new 
draft. While the assimilation of the various changes and 
suggestions would normally be expected to be performed by 
the original author, any reviewer would have access to the 
same information and tools to create his own rendition. 

The approach of giving each user his own rendition of a 
draft message avoids the complications described earlier. 

1. Messagettes are logically and physically separate. 
Since each user may write only into his own messa
gette, modifications specified by several users contain 
no conflicts to produce logical inconsistencies. * 

2. Each user works with his own rendition of the message. 
While he has access to other users' messagettes, from 
which he can incorporate desired sections, his message 
always accurately reflects only changes he has made. 

Users are thus allowed a free hand in composing or revising 
draft messages, while still retaining the ability to read, ref
erence and comment upon other users' versions. 

Limitations applied to transmitted messages 

As previously described in the analogy to conventional 
mail, the content of transmitted messages is not subject to 
arbitrary modification. Users are restiicted to a small set of 
operations. 

• Comment-A user may place comments on any desired 
part of a transmitted message. 

• Forward-A user may specify that the message be for
warded to one or more other users. A notation of the 
users receiving such forwarded copies is appended to 
certain message fields. 

The limited scope of these operations avoids the undesir
able complications. 

1. All the types of modifications that users can specify 
are non-conflicting. 
• Inserting a new comment is strictly additive, requir

ing no change to the message's basic contents. Mul
tiple comments specified in the same place in the 
message are simply added one after the other. 

• Editing an existing comment causes no conflict, as 
each user may modify only his own comments. 

• Forwarding is also an addiiive operation, simply ap
pending the names of the forwarded addressees to 
the end of the appropriate field. 

* Subject to additional considerations discussed later. 

2. With the possible exception of the order in which com
ments or forwarding entries appear in the message 
(since users may comment or forward in parallel), the 
updated transmitted message conforms to each user's 
expectations. 

Limitations applied to folders 

The structure and use of folders prohibit providing a copy 
for each user, as in draft messages. The replication of stor
age to keep the multiple copies would be too expensive 
(folders tend to become quite large), as would the processing 
necessary to add each new entry to all of the copies. Con
sequently, all users access and modify the same folder ob
ject. Clearly, not all users may be allowed to modify a folder 
arbitrarily. As shown earlier, such a situation would lead to 
chaos unless some limitations on Illodification are imposed. 

Fortunately, a compromise was found which provided the 
appropriate limitations without unduly constraining the ca
pabilities of the users. Since it was logical to permit the 
owner of a folder more latitude in modifying it than other 
users, the limitations imposed differed, as follows: 

• Owner-The owner is allowed all possible modification 
capabilities, including the abilities to 
-Delete the folder entirely 
-Delete and modify entries 
-Add keywords to entries 
-Append entries to the end of the folder 
-Add or modify comments (his own) 
-Keep a place-marker in the folder 

• Non-owner-Non-owning users are permitted only the 
latter three capabilities. Note that these are all basica1!y 
append-like operations, causing no structural changes 
to the folder . 

This two-level capability scheme avoids the undesired 
complications described earlier. 

1. The owning user alone can specify "dangerous" (struc
ture-modifying) changes, so conflicts cannot occur. As 
in messages, appending data to the end or modifying 
data pertaining only to a specific user (comments, 
place-markers) do not produce conflicts. 

2. The only departures from users' expectations occur 
when entries are deleted by the owner: comments spec
ified by other users for deleted entries simply disap
pear; a place-marker specifying a deleted entry is ad
justed to the nearest entry remaining. In all such cases 
the behavior is reasonable and does not constitute a 
significant departure from users' expectations. 

Representing and applying parallel modifications 

Once the appropriate limitations had been established to 
eliminate textual inconsistencies between the modifying 
users, there remained the issue of providing a mechanism 
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which allowed changes to be assimilated into a common data 
object regardless of the number of users reading or updating 
the same object in parallel. It was also considered desirable 
to preserve a consistent image for readers during their access 
of an object (the goal in the Readers and Writers Problem); 
changes performed by other users should not cause objects 
to "change underneath them." 

To provide the consistent image of an object during a 
user's session, a temporary copy of the object is made upon 
access. The reading and modification are then performed 
upon the copy, ensuring that no unexpected changes occur 
during the session. However, when a user's modifications 
have been completed, the net effect of the specified changes 
must then be performed on the central copy (called the base 
copy), which constitutes the "real" object to the rest of the 
users. Note that the modified copy cannot in general simply 
be substituted for the base copy; if any other users were 
making changes in parallel, such a strategy would cause all 
sets of changes but the last to be lost. Rather, the mechanism 
developed for SIGMA centered upon a construct called a ~
file. 

The a-file concept 

When referring to a change in a variable (say x), mathe
maticians often express it as ~x, meaning "the change in 
x." To obtain the new, updated value of x (call it xnew ), one 
must take the old value (.fold) and apply the change (~x), 
which in mathematics is done by addition, i.e., 

Xnew = Xold + ~x 

The notion of ~-files in SIGMA is conceptually similar to 
the mathematical ~. Each user, when accessing an object, 
is given a local copy. As he modifies it, his changes are 
remembered. When his changes are complete, SIGMA places 
into the ~-file a record of the effective changes applied by 
the user to the object. A ~-file thus represents the distillation 
of changes made by a user to his local copy of an object in 
an editing session, which, if "added" to the base copy, 
would produce the changes specified by the user. 

The analogy to the mathematical ~ is complicated by the 
possibility of having several ~-files produced in parallel by 
different users, each referring to the same base copy. Since 
the users work independently, the order in which the ~-files 
are applied cannot be guaranteed. If one user makes changes 
which conflict with those of another user, the consistency 
of the base file and maintenance of users' intentions cannot 
be guaranteed. But, as previously described, the types of 
modification' allowed cause no significant conflicts. 

What's in a a-file? 

When a user modifies an object, the ~-file produced con
tains not the new contents of the object but rather a speci
fication of the modifications that need to be performed on 
the base (original) copy to make it conform to the user's 
changes. The following types of change specifications .used 

in SIGMA ~-files, called ~-operations, are sufficient to de
scribe all possible changes to SIGMA objects. 

• Add-Add a new item of data to the object adjacent to 
some other data item. 

• Delete-Delete a data item from the object. 
• Replace-Replace the contents of a data item with a 

new value. 

For efficiency in applying the changes to the base copy, 
the identification of the data items to be affected by the ~
operations is done by an absolute, rather than symbolic, 
addressing scheme. This avoids costly searching to locate 
affected items, but requires that the addresses in the base 
copy at the time the ~-operations are performed match those 
which existed at the time they were generated. The con
stancy of these absolute address references is guaranteed by 
the non-conflicting nature of ~-files and the internal struc
tures of messages and folders, which do not require address 
manipUlation in response to modifications. 

Mechanics of assimilating a-files 

Once the various ~-files have been generated, the task 
remains of applying them to the base copy. Rather than 
assign this task to the SIGMA user processes, it was decided 
to create separate processes (one for messages, one for 
folders) to execute this assimilation function, implemented 
in the SIGMA system as shared background processes known 
as daemons. When a SIGMA process creates a ~-file as the 
result of user changes, it enqueues a request to the appro
priate daemon, supplying the name of the object to be mod
ified and the name of the ~-file in the form of a physical 
location identifier (PLID), an operating-system-dependent 
path name describing the location of the ~-file information. 
The daemons execute these requests in order, finding the 
referenced PLIDs and applying the contained ~-operations 
to the named objects. A diagram depicting the process of ~
file incorporation is shown in Figure 1 (although the SIGMA 
message service processes many shared objects, the figure 
concentrates on just one such object, in the process of being 
modified in parallel by several users). Note that the order 
in which d-files are processed is arbitrary, but the consist
ency of the resulting updated object is preserved by the non
conflicting nature of the changes they contain. 

The division of labor in the updating task between the 
SIGMA processes and the daemon provides several benefits. 
It allows the d-file incorporation task to be performed by a 
separate background processor, insulating the SIGMA pro
cesses from a significant processing burden (hence user
perceived response time delay) which they would otherwise 
encounter whenever an update operation was performed. 
And since the SIGMA processes have no need to modify the 
base copy of an object (all writing is done in the ~-files 

instead), the daemon can be given exclusive write access to 
the base copy. Combined with the "copy-on-access" dis
cipline imposed to maintain a consistent view of objects for 
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Figure I-The /l-file mechanism. 

users, no costly interlock is necessary to prevent access 
conflicts between the daemon and the SIGMA processes. 

Flaw in the non-conflict assumption 

Despite the careful considerations described earlier re
garding limitations on modification, a significant flaw de
veloped, although it was not specifically connected to par
allel access. Rather, it developed as a side-effect of the 
division of labor between the generation of changes (by 
users through their SIGMA processes) and their application 
to the base copies (performed by the daemon). Since the 
daemon is an asynchronously operating request-driven proc
ess, there is typically a measurable time interval between 
the generation of a Ll-file and its assimilation into the base 
copy. During this interval, whose duration depends upon 
system load and daemon backlog, a user's pending changes 
are not reflected in the base copy. If the user accessed the 
object during this period, he would find that the object did 
not contain his changes, vioiating the requirement to pre
serve user expectations. Moreover, if the user were allowed 
to access the old copy anyway, and made changes which 
conflicted with those of the pending Ll-file, the assumption 
of non-interference of Ll-files would also be violated. 

The inescapable conclusion was that a user could not be 
allowed to access the old (unmodified) copy of the object; 
he could only access the object with his previous changes 
incorporated. The following approaches were considered: 

1. The user's SIGMA process could keep track of the 
pending Ll-file and note whether its assimilation had 
occurred. If not, the SIGMA process could perform the 
assimilation itself to recreate the modified object. This 
approach required significant bookkeeping and addi
tional computing in the SIGMA process to duplicate that 
soon to occur in the daemon. Also, it would not be 
able to account for changes made by other users. 

2. The SIGMA process could prevent the user from pro
ceeding further in his terminal session until the assim
ilation of the Ll-file were complete. This would intro
duce an unnecessarily severe degradation in user
perceived response time at the conclusion of editing of 
each object. 

3. The SIGMA process could prevent a modifying user 
from accessing the object again until the previous 
changes had been assimilated. While this approach 
could temporarily prevent a user from accessing a par
ticular object, it would not inhibit him from executing 



874 National Computer Conference, 1979 

SIGMA operations not pertaining to that object, unlike 
(2) does. 

Since in practice it is rare that a user attempts to re-access 
an object before the daemon has had the opportunity to 
perform the ~-file assimilation, Approach 3 was chosen. 
While not an elegant solution, the infrequent temporary den
ial of access to a specific object poses a negligible incon
venience and is thus a minimal impediment to users. 

CONCLUSIONS 

The multi-access scheme described in this paper has been 
in operation within the SIGMA message service for over three 
years. This experience has shown the approach to have 
successfully satisfied the requirements needed to provide 
multi-access to SIGMA'S shared data objects. Following are 
several of the most successful aspects of the SIGMA multi
access methodology: 

• Parallel access to shared objects by an arbitrary number 
of users (processes) occurs with no conflict. 

• Each user is satisfied that his changes to a shared object 
are faithfully recorded. 

• Users accessing shared objects are not confused by 
other users' changes during their own editing sessions. 

• The limitations imposed on modifications are natural 
rather than cumbersome, and do not overly constrain 
users. 

• The concept of a ~-file and the resulting non-conflict
ing, incremental update of shared objects is a powerful 
technique to apply to the multi-access problem. 

• The division of labor between the foreground (SIGMA) 

and background (daemon) processes provides two sig
nificant benefits-the ability to avoid expensive readerl 
writer interlocks on shared objects, and the shifting of 
the processing burden away from the user process to 
achieve better user-perceived response. 

While this methodology was developed specifically for the 
SIGMA message service application, the concepts involved 
are much more general. Similar techniques could be suc
cessfully applied to many other shared data applications, 
such as command-and-control, data base management sys
terns, information retrieval systems, or any other application 
in which many users can have access to common data and 
in which preserving the intent (and hence the trust) of those 
users is an important concern. 
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Exact solution for the initialization time of packet radio 
networks with two station buffers 

by DANIEL MINOLI 
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Holmdel, New Jersey 

INTRODUCTION 

The Packet Radio Network (PRNET), a store-and-forward 
packet-switching system sharing a single radio channel via 
multi-access techniques and spread spectrum, is an effective 
communication medium for data and voice transmission in 
situations requiring fast deployment, non-fixed hardware lo
cations, encryption and anti-jamming in hostile military en
vironments.1-5.14.15 

Many investigators have developed analytical solutions 
for the performance of channel access schemes typically 
employed (pure ALOHA, ALOHA, CSMA, etc.).1-13 These 
studies have shown, among other things, that PRNET's can 
be easily saturated and become unstable unless efficient 
routing and flow control algorithms are used. To enable 
point-to-point packet transportation the network station as
signs a code (label) to each repeater; the process of assigning 
such labels is referred to as "network initialization." The 
initialization procedure assumes that the network topology 
is not known a priori and is changing with time. Thus, the 
initialization procedure involves mapping of network topol
ogy, determining network structure (labels for repeaters) 
and transmitting labels to the repeaters. 

Notwithstanding its importance,t9 the problem of initiali
zation has not been studied extensively except in References 
5, 16, 17 and 18. 

In this paper we present a Markov chain model which 
enables one to obtain in closed form the optimal rates at 
which repeaters and station must transmit initialization 
packets and labels to minimize the network initialization 
time in a one-hop network, two buffer station. This is an 
extension of the work reported in References 17 and 18. 

In Reference 17 a Markov Chain model for initialization 
of I-hop packet radio networks was discussed; with this 
model the total initialization time must be obtained numer
ically by solving a set of linear simultaneous equations. For 
an m repeater network the number of such equations turns 
out to be O(m 3 ). Hence, this model is not applicable for 
analyzing large networks. 

The complexity of such models can be reduced by modi
fying the label queue management from a random selection 
discipline to a first-in, first-out (FIFO) discipline; the num
ber of linear simultaneous equations that need to be solved 
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can be reduced from O(m 3 ) to O(m2). In this case we can 
actually go a step further, and obtain closed-form solutions. 
In Reference 18 the exact solution for the initialization time 
with one station buffer for the label queue was derived. 

In this paper we formulate a new Markov Chain initiali
zation model based on FIFO queue management and we 
derive exact solutions for this new model when the station 
has two buffers for the complete interference case. Our most 
important result is that the network initialization time is 
relatively insensitive to the station transmission rate, but the 
repeater transmission rate must be carefully chosen to 
achieve rapid initialization. 

INITIALIZATION AND INITIALIZATION PROTOCOL 

Network initialization must be performed whenever the 
network resumes operation from cold, or whenever the net
work topology changes. Such topology changes may occur 
quite frequently; this may be due to decreases in repeater 
transmission ranges due to battery power drainage or equip
ment failure; or due to the severe variations in received 
signal strength caused by the topology of the terrain, man
made structures, foliage, multipath distortion and fading. In 
addition to this problem of monitoring RF connectivity, the 
potential mobility of the network must be taken into consid
eration; the initialization algorithm and its efficiency are 
particularly significant in such cases. 4 

The initialization procedure considered in this paper-and 
which is typical for this operation-consists of the following 
steps: a non-initialized repeater transmits Repeater-On
Packets (ROPs) informing the station of its existence and 
unique identification; a station program determines a label 
for the specific repeater and the station places a Label 
Packet (LLP) in its Label queue for transmission to the 
repeater. We refer to this queue as the station buffer. After 
the repeater has received the LLP and acknowledged its 
receipt, the repeater is considered labeled. The time required 
to initialize all repeaters is the network initialization time. 

We consider a PRNET with a single station and m repea
ters in which all devices can communicate directly; a slotted 
ALOHA access scheme is assumed. In such an environ
ment, the available channel is time slotted into segments of 
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duration equal to the packet transmission time, and devices 
are required to start transmission at the beginning of a time 
slot; if two or more devices transmit a packet in the same 
slot, none of the packets will be correctly received. When 
a packet is successfully received by a destination device, it 
is acknowledged with some acknowledgment protocol. An 
originating device retransmits its packet after a time-out if 
it does not receive the ACK. Thus if a collision occurs, after 
a preset time-out retransmission of the packets is scheduled 
at some randomly selected future slot. 

The initialization process begins with all m repeaters 
broadcasting Repeater-On-Packets (ROP) to request a label 
from the station; we assume that the repeaters will transmit 
the ROPs into a given slot with probability p. After the 
station receives a ROP, the station will prepare a label for 
the repeater and insert it into its label queue; we assume 
that this requires zero processing time. Duplicate ROPs re
ceived by the station are ignored. 

When the station label queue is non-empty, the station 
will transmit into a given slot with probability q. The label 
selected for transmission is selected with FIFO discipline 
from the basic queue. After the repeater receives a label 
packet from the station, it forwards one End-To-End Ac
knowledgment (ETE ACK) immediately, and halts all trans
mission. The station will not delete labels from the label 
queue until it correctly receives the corresponding ETE 
ACK. Upon receipt of the ETE ACK, the repeater is con
sidered to be labeled. We assume that repeaters will not 
forward ROPs or labels to other repeaters. 

It can be noted that at any time during the initialization 
process a repeater will have one of the following statuses: 

l. Transmitting ROPs, but has not successfully sent one 
to the station. 

2. Transmitting ROPs, but has already successfully sent 
one to the station. 

3. Having received label from station in previous slot, 
will forward ETE ACK to station in next slot. 

4. Awaiting another label from station. It has received at 
least one label from the station but the subsequent ETE 
ACK(s) were unsuccessful. In this case, the repeater 
is not transmitting ROPs since it has a label. However, 
the station did not receive an ETE ACK to the label; 
hence it will keep on transmitting the label to the same 
repeater. 

5. Completed initialization-Repeater has received label 
from station and forwarded a successful acknowledg
ment. 

The initialization process is begun with all repeaters hav
ing Status I and is completed when all repeaters have Status 
5. Figure I illustrates the relationship between the afore
mentioned statuses. 

Given the status of all m repeaters in the network, we 
define the state of a Markov chain at a particular time as 
the quintuple s=(m 1 , m2, m3' m.t, m5) where m; denotes 
the number of repeaters with status i at that time. From the 
assumptions it is immediately clear that: 

:> 

I mi = m m 2+ m3+ m4:52 m3+ m 4:51 
i=1 

(1) 

Transition probabilities for this model with complete in
terference are derived in Appendix A. 

MAIN RESULTS-STUDY OF INITIALIZATION TIME 
FOR TWO-STATION BUFFERS FOR FIFO LABEL 
QUEUE SERVICE DISCIPLINE 

In this section we present the closed form solutions for 
the initialization time when the station label queue has two 
positions, i.e., b=2. Furthermore, we study by numerical 
methods the optimum values of transmission rates by re
peaters and station which result in minimum initialization 
time as a function of number of repeaters and the interfer
ence between repeaters. Finally, in the fifth section, we 
compare the initialization time for one- and two-station buff
ers. 

T~1/0-station buffer case with FIFO service manaRement 

The total single hop m repeater initialization time (derived 
in Appendix B) is given by: 

1 1 2 m-2 
/= + + -- + ~ E[T] (2) 

mp(l_p)m-l q(l-p) I-q i~ i 

where 

1 
E[T;]= p(m-i-I )(I-q)(l- p )m-i-l+q(l- p )1+1W 

q(l- p)1+1W 
+ ., 

p(m-i-l)(l-q)(l- p)m-l-l+ q (1- p)1+1(1) 

'{I+ (l-q)(l_p)m-i-l 
(m- i-l)p(l- p )m-i-2 

+ [I - (I - q) (I - p )m - i -1 ] 

· [(m-i-l)p(l- p)m-!-2(1-q)+q(1- p Y(i) 

1 
+ . (1- p)m-I-l(1_q) 

(m-i-l)p(1-p)m-i-2(l_q) (3) 

(m - i-l)p(l- p )m-i-2(1-q )+q(l- p )lW 

· [ 1 + q (1 ~ P Y(i) ] ] } 

· {I- [1- (1-q)(l- p)m-i+l] 

q(1- p )l(i) }-1 
(m-i-l)p(l- p)m-I-2(l_q)+ q(l- p )l(t) 

+ (m-i-l)p(l-q)(l_p)m-i-l 
p(m-i-l)(1-q)(l- p)m-i-l+ q (l- p )1+I(i) 

{ 
1 1 

· q(l_p)1+IW + (l_p)m-i-l(1_q) 

.[1+[I-(1-p)m-i-l0 - q)] 1 .]} 
q(l- p)fCll 



Figure I-Statuses of a repeater during initialization and possible transitions 
from status I (non-initialized) to status 5 (initialized). 

and where: 

p=Repeater transmission rate 

q=Station transmission rate 

J(i)=Average number of interfering repeaters, given i re
peaters are initialized. 
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The expression is exact for complete interference, i.e., 
IU)=m-l-i. 

NUMERICAL RESULTS FOR THE TWO-STATION 
BUFFER CASE 

Figures 2, 3, and 4 depict the optimal parameter values 
and initialization time for complete interference, for J(i)=2, 
and no interference, respectively, for an m-repeater net
work. The optimal values were obtained by point-by-point 
search and are accurate to two significant digits. 

Figure 5 shows the initialization time as a function of m, 
parameterized on J(i). The initialization time for a one-buffer 
system is shown for comparison. 

The following can be observed: 

1. The optimal station transmission is nearly constant at 
q* =0.40, showing a slight tendency to decrease as m 
increases. 
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Figure 2-Complete interference. two buffers. 
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2. There is only a very small difference in the optimal 
station rate at low or high interference. 

3. For complete interference p*<I/m, and for large m, 
p* =0.7/ m (empirically determined). 

4. As the interference decreases, p* increases (as ex
pected); p<l/m and p*=0.8/m for large m. 

5. As the interference decreases, the initialization time 
decreases. There is a reduction of about 15 percent in 
initialization time as we go from complete interference 
to zero interference. 

COMPARISON OF ONE-BUFFER AND TWO-BUFFER 
CASES 

Single station buffer 

It was shown in Reference 18 that the initialization time 
for a single hop m-repeater packet radio network is giVen 

by: 

m-l{ 1 1 1= + ~o (m-i)p(1_p)m-i-l q(1_pY(O+l 

1 ([I-(1-q)(1_p)m-i-ll\} 
+ (l-q)(1_p)m-i-l 1+ q(1-p)f(i) ) 

(4) 

A comparison between the previous cases shows: 

l. The station's optimal transmission rate decreased 10 
percent as we went from one buffer to two buffers. 
This is explained by the fact that in a two-buffer situ
ation there is no pressing urgency to clear the one 
occupied buffer since another is available for accepting 
ROPs. 

2. The repeater's transmission rates are unchanged on the 
average, indicating that the repeaters can be ignorant 
of the station's buffer number. 
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3. The initialization time decreased as we went from one 
buffer to two buffers. Approximately 15 percent less 
time is required with two buffers than with one buffer. 

CONCLUSIONS 

Closed-form solutions for the initialization time of a single
lOP packet radio network were obtained. The solutions are 
for the case in which the station has one or two buffers for 
storing and sending labels and when it uses a first-in-first
out queue management strategy. The slotted ALOHA access 
scheme was assumed. The optimum values of repeater and 
station transmission rates as a function of the interference 
pattern of repeaters were experimentally obtained. These 
optimum rates result in minimum initialization times. 

The following conclusions emerge from the studies: 

1. The initialization time with two buffers at the station 

is approximately 15 percent smaller than with one 
buffer, for the same interference pattern and network 
size. 

2. The optiinal station transmission rate, q*, is nearly 
independent of m (number of repeaters), for both val
ues of the buffer size; however, q* decreased 10 per
cent as we went from one buffer to two buffers. Thus, 
q is a function of the station's architecture only. 

3. The optimal repeater transmission rates were inde
pendent of the buffer size on the average, indicating 
that the repeaters need not be aware of the station's 
buffer structure. 

4. The optimal repeater transmission rate increases about 
20 percent as interference goes from compiete to zero; 
the initialization time decreases about 15 percent as we 
go from complete interference to zero interference. 

5. In both cases for large m optimal repeater transmission 
rates were proportional to 1/ m where m is number of 
repeaters in the network. 
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Figure 5-Initialization time as a function of m, I(i) and h. 
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APPENDIX A-INITIALIZATION MODEL 

Transition probabilities 

Because of the assumptions of complete interference and 
FIFO it is easy to compute the state transition matrix. For 
the complete interference case, a packet is successfully re
ceived by the station, if all other repeaters and the station 
are silent. Similarly, for a packet to be received successfully 
by a repeater it is required that all repeaters be silent. 

We associate a status with each repeater during the ini
tialization process, as in the second section. The state of the 
system is defined by the number of repeaters in each status. 
Given the present state of the chain (ml' m2, m3' m 4, m s ), 
where mj is the number of repeater in the status i, the 
following list enumerates all possible transitions. We con
sider m3=0 and m3=1 separately. 

1. No repeater received a label in the previous slot 
(m3=0) 
a. Successful ROP when station queue is not empty. 

This requires m 1>0, 0<m2+m4<b. Transition to 
state (m1-l, m2+ 1, 0, m4, ms) occurs with 
probability (l-q)m 1 P(1- P )m1+m2-1=Zl'· 

b. Successful ROP when station queue is empty. This 
requires ml>O, m2+ m 4=0. Transition to state 
(ml-1, m2+1, 0, m 4, ms) with 
probability mlP(l-p)m1 +m2 -1=Zl". Since ZI' and 
Z I" represent probabilities of mutually exclusive 
events, we will use one notation Zl which will de
note Z l' or Z 1", depending on the event. 



c. Successful label to a repeater with status 2. This 
cannot occur in the present model unless m4=0. 
Transition to state (m 1 , m2-1, 1, m4, m 5) with 
probability Z2=(1- p)m1+m2q. 

d. Successful label to the repeater in status 4. This 
requires m 4>0. Transition to state (m 1, m 2, 1, 
m4-1, ms) with probability (1- pr1+m2q=Z3' 

e. Else remain in same state with probability 
l-Z 1-Z2-Z3 • 

2. Some repeater received a label in the previous slot 
(m3=1, m4=0) 
a. Successful ETE Ack. Transition to state (m 1 , m 2 , 

0, m 4 , m5+1) occurs with probability (1-
p )ml +m2(1-q). 

b. Unsuccessful ETE Ack; transition to state m 1, m 2, 

0, m 4+1, ms) with probability 1-(1-p)ml+m2(1-
q). 

3. If the present state is (0, 0, 0, 0, m) go to state (m, 
0, 0, 0, 0) with probability 1. 

It is elementary to verify that a unique stationary vector, 
(Ill, II 2 , ••• , IIn y, exists for this chain. Also, if the nth 
state is completely labeled state, (0, 0, 0, 0, m), then the 
expected inter-arrival time between visits to state n is 1/ 
II n -1. Hence, the expected initialization time is 1/ II n -1. 

APPENDIX B-DERIVATION OF SOLUTION FOR A 
TWO-BUFFER MODEL WITH FIFO SERVICE 
DISCIPLINE 

By a cycle of a Markov chain we mean a section of the 
state transition diagram. We consider cycies C j such that 

1. The CiS are disjoint. 
2. Any state of the chain belongs to one cycle. 
3. C j and C i+ 1, when considered as graphs, are iso

morphic for all but possibly the first and last case. 

The solution strategy involves computing the expected 
time to traverse one cycle, and then summing these over 
cycles 0,1, ... , m-1. 

General strategy 

It can be observed that ciosea-torm computations are 
relatively easy when the number of states by which one can 
enter a cycle is one. To achieve this, we define the following 
cycles: 

Cycle -1 

Cycle i 

Start with (m, 0, 0, 0, 0) 
End with (m-l, 1, 0, 0, 0) 
Start with (m-i-1, 1,0,0, i) 
End with (m-i-2, 1, 0, 0, i+1), i=O, 1, 

2, ... , m-2 
Cycle m-l Start with (0, 1,0,0, m-l) 

End with (0, 0, 0, 0, m) 

Exact Solution for the Initialization Time 881 

Note that Cycle -1 involves only the successful sending of 
a ROP to the station while the Cycle m-l involves only the 
labeling of the last repeater after all others have been la
beled, after this repeater has successfully sent a ROP. 

Thus at the beginning of Cycle i, ;=0, 1, ... , m-2, 
there are m - i-I repeaters with status 1, one repeater with 
status 2, and i repeaters with status 5. 

Figure 6 illustrates the states for a typical cycle 
0:S:i:s:m-2. SR, SL, SE, UE represent successful ROP, 
successful label, successful ETE ACK, and unsuccessful 
ETE ACK: respectively; notice that now there are three 
separate classes of routes which the chain can take to trav
erse the cycle. Each cycle starts with 1 ROP in the buffer. 
Either one of the following classes of routes can be taken: 

1. Another ROP is received by the station before a label 
is received by a repeate-r (fo-lww -the lower route pass
ing through states 4j, 51"> and possibly 6d. 

2. The label is received and acknowledged by the repeater 
before another ROP is received (upper route without 
cross over passing through states 2;, 0;, and possibly 
3j ). 

3. The label is dispatched several times but before it is 
successfully acknowledged another ROP is received 
(upper route with cross over passing through states 2;, 
3j, 6;, and 5;). 

Our calculations involve examining the expected time to 
traverse each of these classes of routes, and deciding with 
what probability each is chosen. 

Let E[T j ] be the expected time to go through cycle i: 
then the total expected initialization time is the sum of the 
expected times required to traverse each cycle: 

m-l 
1 = L E[T;] (B.1) 

;=-1 

Since Cycle -1, and m-l are different, we address these 
first. Throughout the analysis we use the fact that the geo
metrical distribution is memoryless; that is, if r is a geo
metrically-distributed random variable; then 

Prob (r>i+ jl r>i) = Prob (r> j) 

for i, j integers. 
In our case r is the time spent in a specific state of the 

Markov chain; the time to ieave any state is geometrically 
distributed. 

Consider the following particular scenario. The chain is 
in state A. If event E occurs transition to state B occurs; 
else if E (its complement) occurs go to state C. Remain in 
state C until some other event F occurs then return to state 
A. See Figure 7. Let E[TAB ] and E[T CA] be the expected 
time to go from A to Band· C to A, respectively. Because 
of the abovementioned memoryless property we obtain 

E[T ] = 1 + (1- p(E»E[T CA ] 

AB peE) 
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CYCLE i 

1m - i -1,1 ,0,0, i) 

SL 

••• 

SL 
[m-i-2,1 ,0,1, i+1] 

(m-i-2,2,0,0,i) 

(m-i-2,1,O,1,i) 
Figure 6--Cycle i, i=O, I, ... , m-2. 

Cycles -/ and m-/ 

Figure 8 depicts that section of the state transition diagram 
for cycle -1 and m-l. 

Evaluation of E[ T -1 ] 

This involves a SR, given that all m repeaters are unini
tialized; this requires one repeater to transmit and all others 
to remain silent. Thus the expected time of Cycle -1 is: 

1 1 
E[T -d= p-- = (1- )m-l 

0-1 10 mp p 
(B.2) 

Evaluation of E[ T m -1 ] 

Observe that, except for the number of unlabeled repea
ters, this section of the state diagram is the same as a cycle 

for a one-buffer problem. As in Reference 18 we obtain 

E[T m-l ]=E[T Im-l2m-l]+ E[T 2m-10m-I] 

1 
= q(1-p) (B.3) 

. 1 
+p 

2m-lOm-l 

{I + E[T 3m-12m-l ](1-P2m-lOm-l)} 

where P 2m - I Om - 1 =Prob (ETE Ack is successful.) 
Since every repeater is silent at this stage, we only require 

that the station be silent: thus, P2m-lOm-l =(1-q), giving the 
expected time for Cycle m -1: 

1 2 
E[T m-l J= -(.1--) + -1-q -p -q 

(B.4) 



Figure 7-Transition time under memoryless distributions. 

Evaluation of E[Td; i=O, 1, ... , m-2 

For a typical Cycle i, we are interested in quantifying the 
time needed to traverse it. Such time is made up of various 
components, indicated as follows: 

Computation of E[T l;lHl] 

To compute this expression, assume that at the current 
slot the state of the chain is 1;, then condition on the out
come of the next slot. It is easy to derive 

P 1;2;=Prob (go from Ii to 2;) 

=q(1-p)1+l(i) (B.5) 

P 1;4;=Prob (go from Ii to 4i) 

= (l-q)(I- p)m-i-1 p(m-i-l) (B.6) 

Then, referring to Figure 6, we see that 

[ loutcome Of] 
E T l;lHl next slot 

1 + E[T 2;1i+l ] 
if a label is 
delivered 

1 + E[T 4;1;+1 ] 
if a ROP is 

(B.7) 
received 

1 + E[T1;1;+I] 
if neither of 
the above 

where we have made use of the memoryless property pre
viously described. Unconditioning, we obtain: 

E[T 1;1;+1]= (1 + E[T 2;1i+l ])P 1;2; + (1 + E[T 4;li+l ])P 1;4; 

+ (1 + E[T l;li+l ])(1- P 1;2; - P 1;4;) (B.8) 
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CYCLE -1 

SR 

(m,O,O,O,O) (m-1,1,O,O,O) 

CYClE m-1 

[O,O,O,1,m-1) 

[O,1,O,O,m-1) (O,O,1,D,m-1) (O,O,O,O,m) 

Figure 8-Cycles -I and m - I. 

Solving for E[T l;li+l]' we obtain: 

(B.9) 

We notice that to proceed we need E[T 2j1i+J and 
E[T 4j1i+l]; we address E[T4i1i+l]next. 

Computation of E[T 4;Ii+l] 

Referring to Figure 6, we see that 

E[T 4; l i+l]= E[T 4;5;]+ E[T 5;1i+l] (B. to) 

We now evaluate the expressions on the right-hand side of 
Equation B.I0. It is quite simple to show that: 

1 1 
E[T4;5;]= P

4
;5; = q(1_p)l+I(i) (B.ll) 

since we require a successful label delivery from the state 
(m-i-2, 2, 0, 0, n. 

To obtain E[T5;1i+l] we must condition on the outcome of 
the next slot, namely whether the ETE Ack is successful or 
not. Using the analysis applied to the one buffer case we 
find: 

Note that: 

P5;I;+1 = (1- p)m-i-1(1_q) (B. 13) 

since we are in state (m-i-2, 1, 1, 0, 0, and the station 
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and all other unlabeled repeaters must be silent for the ETE 
to be successful. Also 

1 1 
E[T6;5;]= P 6;5; = q(1_p)lm (B.14) 

since one less repeater is now active after state 6; is reached. 
Finally: 

1 1 
E[T 4;1;+1]= q(I - p )1+/W + (I - p )m-i-1(l- q) 

{
1+[I-(l-p)m-i-1(1_q)] 1 .} (B.IS) 

q(1- p)l(I) 

Evaluation of E[ T 2;IH 1 ] 

Assuming the current state of the chain to be 2; and con
ditioning on the event of the next slot, namely whether the 
ETE Ack is successful, we immediately see 

[ I event Of] 
E T 2;1;+1 next slot 

~ f 1+E[T ~"+' 1 

11+ E[T3",+, 1 

Note that (see Figure 6): 

if ETE Ack 
successful 

if ETE Ack 
unsuccessful 

P 2;o;=Prob (ETE Ack is successful from state 2;) 

=(1-q)(1- p)m-i-1 

Unconditioning, we get: 

E[T 2;1;+1 ]=P2;0;(1 + E[To;l;+1]) 

+ (1 + E[T 3;1;+1 ])(1- P 2;0;) 

Since 

E[To;I;+I]= (m-;-l)p(1_p)m-i-2 

(B.I6) 

(B.l7) 

(B.I8) 

(B.19) 

(due to the fact that the station is automatically silent when 
the label queue is empty) we obtain: 

1 
E[T2;1;+1 ]=1 +P2;0; (m-i-l)p(1- p)m-i-2 

+ (1- P 2;0; )E[t 3;1;+1] (B.20) 

Thus, we need to find E[T 3;1;+1]. 

Evaluation of E[T3;1;-+-I] 

Note this calculation is more complicated than the single
buffer case because it is possible to transfer from 3, to- 6; , 

i.e.; another ROP is received before label delivery. Again, 
we condition on the next slot. 

[ I event Of] 
E T 3,1'+1 next slot 

_(I + E[T 2,1,+1]' if label successful 

- 1 + E[T 6;1;+1]' if ROP successful 

1 + E[T 3,1,+1]' if neither 

U nconditioning: 

E[T 3;1;+1]= (1 + E[T 2;11+1 ])P 3;2; + (1 + E[T 6;IHl])P 3;6; 

+ (1 + E[T 3;lHl ])(1-P 3;IHI - P 3;6;) 

where 

P 3;6; =Prob (ROP is successful from state 3;) 

= (m-i-I )p(l- p r- i - 2(I-q) 

P 3;2;=Prob (label is successful from state 3,) 

=q(1- p)lw 

Solving, we obtain: 

(B.2l) 

(B.22) 

(B.23) 

(B.24) 

E[T ']= 1 + P 3j2jE[T 2j1W]+ P 3z-6 jE[T 6jlW] (B.2S) 
3;IHl P 3;2; + P 3;6; 

E[T 6;lHl ] can be written as: 

E[T6;1;+1 ]=E[T6;5;]+ E[T5;1;+I] (B.26) 

where: 

E[T6;5']= q(l- p )/<il (B.27) 

and E[T5;11+1] was derived two sections ago. Hence, we 
obtained an equation for E[T3;IHI] in terms of E[T2;1;+I]. 
Together with the equation of the third subsection, we have 
a system which must be solved simultaneously. 

Evaluation of E[ T i J-The final result 

We now pull things together; from the beginning of the 
third subsection we have: 

[ ] 1 P t -2 - E[T ] 
E T l ;l;+1 = P +P + P ~p 2;1;-'-1 

1;2; 1;4; 1;2; 1;4; 

P t -4- ErT ] + -P ~p' L 4;11-'-1 
1;2; 1;4; 

(B.28) 



From the next subsection we have: 

E[T 4i1i+l]= E[T 4tSt] 

1 
+ -p- {I + E[T 6;5J(1- p 5;Ii+l)} (B.29) 

5;Ii+l 

We only need E[T 2;1;+1]' From the next two subsections we 
have: 

and 

[ ] 1 + P 3;2; E[ T ] 
E T3;Ii+l = p +p P +p 2;1;-'-1 

3;6; 3;2; 3;6; 3;2; 

+ P3j6j E[T ] E[T ] P P 6;5; + 5;1;+1 
3;6; + 3;2; 

(B.31) 

The following procedure is employed: 

1. Substitute E[T5;Ii+l] (which has just been computed) 
into Equation B. 31. 

2. Solve the system of Equations B.30 and B.31 
for E[T 2;1;+11 

3. The answer to 2 is in terms of E[ T 6;5; ], which was just 
derived; substitute this expression. 

We thus have E[T2;Ii+l]' namely: 
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{ 
. 1 

= 1 +(1-q)(1- p)m-l-l (m-i-l)p(1- p)m-i-2 

+ [1- (l-q)(l- p )m-i-l] 

[(m- i-l)p(1- p )m-~-2(1_q)+q(1- p )lw 

1 
+ (1- p )m-i-l(l- q) 

(m- i-l)p(1- p)m-i-2(1_q) 

(m- i-l)p(1- p )m-i-2(1_q)+ q(1- p)fw 

x [1 + q (1 ~ p )lw ] J} 

(B. 32) 

{ 
[1- (1 -q)(1- pyn-i-l]q(1- p)lw }-1 

. 1-
(m-i-l)p(1- p)m-i-2(1_q)+q(1- p)lw 

Substitute Equations B.29 and B.32 into Equation B.28; 
we obtain Equation 3, that is, 

E[T 1;1;+1]= E(T i)= Equation (3) 

Thus, we have accomplished our goal of determining the 
expected time to traverse a typical cycle. Summing over all 
cycles gives the total expected initialization time (Equation 
2). 





Fixing timeout intervals for lost packet detection in 
computer communication networks 

by ROBERT J. T. MORRIS 
Bell Laboratories 
Holmdel, N.J. 

INTRODUCTION 

In a packet-switched data communication network which 
provides internal packet accountability via an end-to-end 
positive acknowledgment protocol, it is necessary to include 
a mechanism for detection and retransmission of missing 
packets. In particular, a decision must be made as to how 
long a sending element should reasonably wait before de-

. claring an unacknowledged packet lost and initiating a re
covery action. This waiting time is one of a class of system 
parameters which have come to be known as timeout inter
vals. The choice of a timeout interval is a delicate problem. 1,2 

If it is too short, network capacity is wasted by frequent 
unnecessary actions for packets which are not lost but 
merely delayed. If the timeout interval is too long, lost 
packets cause needlessly prolonged delays before recovery 
is InItlated. 

Several recent papers have considered this problem. Sun
shine 2 considered a retransmission scheme where a packet 
P is retransmitted every T seconds, until an acknowledg
ment of P is received. He considered the quantities mean 
delay including retransmission and mean number of trans
missions. He illustrated the analysis by considering an Er
langian delay distribution with a defect representing packet 
loss. As T is varied, the curve mean delay versus mean 
number of transmissions exhibits a definite "knee." 

Fayolle, Gelenbe and Pujolle3 conducted an analysis of a 
related protocol. A packet P is retransmitted every T sec
onds until an acknowledgment of the last retransmittal of P 
is received. They derive individually optimal values of Tfor 
three separate performance measures: buffer throughput 
(maximized), response time (minimized) and loss rate due 
to buffer overflow (minimized). 

Butto, Colombo, Taggiasco and Tonietti4 conducted an 
analytic and simulation study of a nontrivial network and 
demonstrated that overall network performance could be 
severely degraded by employing too short a retransmission 
timeout interval. They identified the following interesting 
network phenomenon: if a network reaches a critically busy 
state, delays may be sufficiently long that timeouts contin
ually occur, resulting in a flooding of the network with 
retransmission traffic which in turn increases delays, causing 
unstable traffic growth until network saturation occurs. We 
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will discuss ways of averting this type of behavior in a later 
section. 

McQuillan and CerfS gave the rule of thumb: the timeout 
interval should be set equal to the round-trip delay plus a 
"fudge factor" to account for variance. 

The treatment we give here is distinguished by the follow
ing features: 

1. We begin by identifying what appear to be the perform
ance objectives of major importance in normal network 
operation. We use a simple model to produce a design 
method for the timeout interval which simultaneously 
satisfies each objective as well as possible. 

2. We are particularly interested in networks using fixed 
routes or virtual calls. In contrast to References 2 and 
3, we do not assume independently distributed packet 
round-trip times, since a packet and any retransmis
sions will normally foHow the same network path caus
ing highly correlated round-trip times. 

3. Despite the inevitably subjective nature of the problem, 
we defend our design rules by demonstrating the pres"" 
ence of an inherent generality in the approach. 

4. We consider the practical implications and caveats of 
the results. Of particular importance are the additional 
considerations which arise when we allow the possi
bility of abnormal network conditions caused by faults 
or congestion. It is shown that in order to obtain sat
isfactory operation, it is highly desirable that the time
out mechanism be made adaptive in an autonomous 
manner to the network and connection condition. 

A SIMPLE MODEL 

In this section we construct a simple model comprised of 
a network path characteristic and a rudimentary retransmit 
protocol. The model serves to identify some important per
formance issues which should be taken into account when 
fixing the timeout interval T in normal network operation. 

Consider a path between two nodes A and B of a packet
switched network. Packets are transmitted from A to B, and 
B returns individual acknowledgment packets to A. Suppose 
the probability that a packet is not acknowledged (forward 
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packet or acknowledgment lost) is L and if the packet is not 
lost, its round-trip delay (transmission to receipt of acknowl
edgment) is governed by a continuous distribution F with 
finite mean p, and complement FC= 1-F. 

Next, consider a retransmit protocol wherein a packet P 
is retransmitted every T seconds until an (any) acknowledg
ment of P is received. 

The main performance issues in choosing T are as follows: 

I. T should not be so short that frequent "false alarms" 
occur, i.e., frequent retransmissions of packets which 
are not lost but merely delayed. 

2. T should not be so long that a lost packet causes an 
unnecessarily prolonged delay in system recovery. A 
long recovery delay affects system performance in two 
ways. Firstly, delayed recovery causes prolonged re
tention of unacknowledged packets in the retransmit 
buffer, and consequently a wastage of shared buffer 
space. Secondly, the delayed eventual packet receipt 
at node B caused by a packet loss can cause a delay 
which is directly apparent to an application such as 
terminal to host computer interaction. 

Other performance issues related to abnormal network 
conditions are discussed later. 

We now quantify the above considerations. Rather than 
assume that the round-trip delays of a packet and its suc
cessive retransmissions are independent random variables, 
we adopt the following assumption which is appropriate for 
fixed-route or virtual call paths. 

Assumption A: 
No retransmitted packet will pass an earlier version of the 

same packet. 
Now let 

D=time from packet first sent until packet acknowledg
ment first received, i.e., effective round-trip delay. 

N=number of transmissions required to successfully de
liver one packet. 

F' =maximum round-trip delay of a packet which is not 
lost=sup{t: F(t)< I} 

Xi denote the ith retransmission of packet X 0' i= 1, 

Then 

2, .... 

E(N)= L i. Pr{Xo , ••. , Ai only sent} 
i=l 

=Li.Pr V{Xo, ... ,X}-llost; 
00 [i-l 

i=l )=0 

X j acknowledged in [(i-1)T, iT)}] , 

= _1_ + ~ Fe(iI') 
l-L i=l 

by Assumption A 

(2.1) 

and 

E(D)= L (p,+ iT) Pr{Xi first to be acknowledged} 
i=O 

= L (p,+ iT) Pr{Xo , ••• , Xi-I lost; 
i=O 

Xi acknowledged}, 

by Assumption A 

L (p,+iT)Li(l-L)=p,+TL/(l-L) (2.2) 
i=O 

We now go on to show how E(N) and E(D) are related 
to considerations I and 2, stated previously. 

Let us define transmission efficiency TJ as the reciprocal 
of the number of packets transmitted per successfully deliv
ered packet. A lowering of TJ causes an increase in effective 
network load which in turn leads to a depletion of the ca
pacity of the network to do useful work. Consideration I is 
embodied in the requirement that TJ=E(N)-l be kept high. 
Note that the maximum network "throughput" allowable 
for a given delay figure will be proportional to TJ. Thus our 
first stated objective is to choose T to keep E(N) small. 
According to (2.1), T should be chosen large. 

We now turn our attention to consideration 2. First note 
that E(D) describes the mean holding time in the sender's 
retransmit buffer. Assuming that the path throughput is con
stant, then it follows from Little's results that mean retrans
mit buffer occupancy is proportional to E(D). Attention to 
mean buffer occupancy is reasonable since buffer space at 
the sender is shared amongst many independent calls. Next 
assume (although this can be relaxed) that both packet 
round-trip delay and loss are approximately equally shared 
between forward and return paths and that L is small. Then 
the mean time to successful receipt of a forward packet is 
approximately E(D)/2. Thus both aspects of consideration 
2 are taken into account by requiring that E(D) be kept 
small. Hence our second stated objective is to choose T 
to keep E(D) small. According to (2.2), Tshould be chosen 
small, in conflict with our earlier requirement. 

In order to study this demonstrated conflict between the 
requirements of avoiding false alarms yet retaining short 
delays in the presence of loss, we examine more closely 
expressions (2.1) and (2.2). 

Assume for simplicity that L is non-zero and F(t) is 
strictly increasing for ts,F'. Then E(N) and E(D) are shown 
diagrammatically as T varies in Figures la,b. The "tradeoff 
curve" E(N) versus E(D) is shown in Figure lc. 

Considering the multiobjective optimization problem of 
minimizing both E(N) and E(D) by choice of T, we see 
immediately that any choice of Ts,F' is pareto-optimal (also 
known as efficient, noninferior, etc.). The specification of 
an "optimal" value for T requires precise knowledge about 
the relative costs of E(N) and E(D). In the absence of any 
such knowledge, one way of identifying the knee of the 
tradeoff curve, Figure lc, is to demand that the operating 
point be such that the relative degradations of both objec-
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tives from their respective individual optima are equal. 
Hence we define an equitable value of T denoted Te , by 

1 
E(N)Te - 1-L = E(D)T

e 
- p. 

p. 
(2.3) 

l-L 

Substituting from (2.1) and (2.2) yields 

~ Te =(1- L) I FC(iTe ) 
}-L p. i=l 

(2.4) 

The value of Te is shown in Figure lc and always exists by 
our assumption that F is continuous and L is non-zero. 
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We will be particularly interested in the case where L is 
small, so it is of interest to see what happens to Te as L 
approaches zero. 

Proposition I: 

lim Te(L)=F' 
£~o 

Proof' 

Assume first that F'<oo. Then Te$,F' or else (2.4) would 
be contradicted. Letting L~O, the lefthand side of (2.4) 
approaches zero. The only way for the righthand side of 
(2.4) to approach zero is for Te to approach F'. 

Now consider the case F'=oo. Pick LoE(O, 1). Then for 
L<Lo , Te(L) must be unbounded, for if it were bounded 
the righthan-d side of (2.-4) would-be- -bounded bela w, but the 
lefthand side of (2.4) cannot be bounded below unless Te(L) 
is unbounded. The observation that Te(L) increases as L~O 
completes the proof. D 

The effectiveness of the design decision T= Te naturally 
depends on the relative importance of the two objectives 
E(N) and E(D) and in turn the considerations I and 2. 
However, if the value of equation (2.4) is small then little 
improvement of either objective is possible, and then only 
at the expense of a worsening of the other objective. Thus 
when the value of equation (2.4) is small it would be difficult 
to find grounds on which to criticize the choice T= Te and 
for this reason the design can be considered sound. 

Hence it is of interest to note that for small loss probability 
L, the value of equation (2.4) is also small. 

Proposition II: 

Proof" 

lim ~ Te(L) =0 
£-+0 }-L p. 

Assume first that F' <x. By Proposition I as L~O, 
Te(L)~F' and the result follows. 

If F'=oo, then as L~O, Te(L)~oo. But 

which also approaches zero. D 
A natural question which now arises concerns the sensi

tivity of the performance objectives E(D) and E(N) to a 
variation of Taway from Te. We shall answer this question 
briefly for the case where L is small. By observation of 
Figures la and Ib, it is seen that if T is increased above Te, 
the degradation of E(D) will be negligible (since L is small) 
and the improvement of E(N) slight. On the other hand, if 
T is decreased below T p , there is a possibility of a serious 
worsening of E(N) caused by excessively many false alarms. 
We consider this possibility further in a later section. An 
observation of some general value is that for systems with 
low loss probability, if there is any uncertainty, T should be 
made longer rather than shorter. 
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ALTERNATIVE APPROACH AND COMPARISON 

Given a delay distribution and loss probability, we have 
given a technique for choosing a timeout interval. This tech
nique was based on an examination of overall system objec
tives. We now develop an alternative approach. 

We adopt the same mo~l as in the previous section and 
continue to employ Assumption A. 

Consider the first transmission of a packet. Denote by 
q(t) the conditional probability that the packet is lost given 
that it has not been acknowledged by time t. Thus 

L 
q(t)= L+ (1- L)PC(t) 

The curves q(t) and 1- q(t) are plotted in Figure 2. The 
significance of the point T d shown on the figure is that 

Pr{packet is lost Ipacket not acknowledged by T d} 

=Pr{packet is not lostjpacket not acknowledged by Td } 

and for t> T d, presently available information implies that 
the packet is more likely lost than delayed. Assumption A 
now implies that if the packet is delayed but not lost, there 
is nothing to be gained by retransmission. 

Thus, in the absence of further information, an appropri
ate time to declare the packet lost is at T d' Note that T d 

satisfies 

q(Td)= 1- q(Td ) (3.1) 
or 

(3.2) 

Equation 3.2 always has a solution if Lsi and F is contin
uous and it is clear that lim Td(L)=F'. 

L-+O 

The choice T= Td is, of course, inherently no less or more 
arbitrary than the choice T= Te . What is of interest is that, 
as we now show, there is a degree of consistency between 
the values T e and T d • 

We begin with a numerical example. 

Example 

Consider the case where F is an Erlangian distribution 
with 16 phases and mean JL. The values Te and Td obtained 
from equations (2.3) and (3.1) are shown as a function of L 
in Figure 3. 

1 
2 

L 

Td 

Figure 2 

10-3 10-5 10-8 

Figure 3 

A reasonable agreement between Te and Td is obse.rved. 
Note that for loss probabilities smaller than one percent, the 
value LTe /(JL(1- L» is sufficiently small that it may be 
argued that T e provides a sound design, in that little im
provement of E(D) or E(N) is possible with a different 
decision. 

For many delay distributions of interest (e.g., Erlangian, 
hyperexponential, exponential), it can be shown that 

lim Te(L) = 1 
L-+O Td(L) 

Sufficient conditions for (3.3) to be true are that 

a. F has density J satisfying lim inf J(t)/ Fc(t»O. 
t-+oo 

(3.3) 

b. FC is log-asymptotic to a log-concave complementary 
distribution. 6 

Thus, as well as the reasonable agreement evidenced in the 
example, it is observed that there is an intrinsic consistency 
between the two approaches. 

It is of interest to observe that if Equation 2.4 is replaced 
by 

_1_ Te =a(1- L) ~ FC(iTe ) 
1 - L JL i=l 

where a is arbitrarily positive, then under the above condi
tions (3.3) remains true. This implies that the asymptotic 
(small L) behavior of Te is independent of the relative costs 
attributed to the delay and efficiency objectives. 

Similarly, if Equation 3.1 is replaced by 

q(Td )=b[l- q(Td )] (3.4) 

where b is positive and allows a solution to (3.4), then under 
the above conditions, (3.3) also remains true. 

ABNORMAL NETWORK CONDITIONS 

In the two previous sections we have considered that a 
network path is characterized by a fixed delay distribution 



F and a fixed loss probability L. While this assumption is 
reasonable under normal network operation, F and L may 
be considerably altered during periods of network conges
tion or partial failure. A poor choice of timeout intervals can 
even contribute to a change in F and L. 

In the introduction we described an effect where too short 
a timeout interval T led to continual retransmission of a 
packet causing increased traffic load and in turn increased 
delay. Such an effect can lead to artificially-induced network 
saturation and it is necessary to incorporate some adaption 
into the timeout mechanism to prevent this hazard. The 
measurement of packet round-trip times by the sender for 
the purposes of detecting timeouts provides valuable infor
mation on the current network condition and T can be set 
using the method of the two previous sections, but taking 
into account recent observations of round-trip delay. How
ever, this does not provide complete protection, since a 
sudden change in path or network condition could result in 
a sudden increase in mean round-trip time. A transmitter 
should interpret the occurrence of a timeout as meaning that 
a packet has been lost, or, quite possibly, that an increase 
in round-trip delay has occurred. Thus the transmitter's 
response to a timeout should include a lengthening of the 
timeout interval as well as retransmission. This latter mech
anism provides an autonomous adaptation to a network con
dition that does not rely on the receipt of recent round-trip 
delay information. Automatic deflation of T occurs when the 
network problem subsides and round-trip times resume nor
mal values. Similar comments to the above apply in the case 
where a change in network condition causes an increase in 
L (perhaps to unity!); the appropriate action is a lengthening 
ofT. 

Thus we can identify three classes of inputs to an adaptive 
timeout setting algorithm: 

1. Setup parameters-Number and type of nodes in path; 
call priority. 

2. Observational corrections-Observed round-trip de
lays; congestion indicators. 

3. Autonomous corrections-Number of recent timeouts. 

One issue which has not been discussed concerns the 
relationship between timeouts and fault detection strategies. 
If the occurrence of timeouts is used as an input to a fault 
detection/diagnosis mechanism, this will provide another 
reason for not choosing T too large. 

SUMMARY AND CONCLUSION 

In this paper we have tried to isolate some of the most 
important underlying issues which arise when choosing a 
timeout interval. 
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We have observed in the second section the presence of 
several conflicting goals and that the solution we have pro
posed should be viewed as a pleasing compromise. It was 
demonstrated in the next section that our solution yields a 
result similar to that of a quite different design technique 
and in fact, that for small loss probabilities the solution is 
insensitive to the parameter representing the compromise. 
In the fourth section we have considered how the basic 
design should be modified to take into account the possibility 
of abnormal network conditions and to ensure that timeouts 
themselves cannot act as a source of network problems. 

It is likely that any real network and protocol will possess 
its own features and idiosyncrasies which require additional 
factors to be included in the timeout strategy. In the author's 
application, 6 a number of additional objectives and protocol 
details have been taken into account. For example, an effi
cient protocol will acknowledge groups of packets rather 
than individual packets. As a general network strategy, 
when a timeout occurs it may be desirable for the transmitter 
to send an inquiry requesting status of the receiver rather 
than simply retransmitting the original packet. In this case 
the essence of the model remains valid since these inquiries 
need to be repeated periodically so that recovery from a 
short duration fault (e.g., trunk fade) is accomplished au
tomatically. Another modification which can be accommo
dated in the above analysis arises from the consideration of 
block retransmit as opposed to the selective retransmit 
scheme we assume here. 
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Comparison of some end-to-end flow control policies in a 
packet-switching network 

by G. PUJOLLE 
IRIA-LABORIA 
Le Chesnay, France 

INTRODUCTION 

Various techniques may be considered' when it comes to 
setting up a communications system between computers. 
The "packet-switching" technique described by Davies l 

seems to be one of the best of existing approaches. In the 
following we consider only such a technique-users of a 
computer network communicate with each other by the in
termediate of a store-and-forward packet-switching net
work. 

The term host has been introduced in the Arpanet litera
ture. It has been used widely, although not always in the 
very same sense as in Arpanet. We use it here in some loose 
sense-a host is a source and a sink of packets. A subscriber 
is an entity which provides to the host the data to be trans
mitted through the packet-switching network (PSN). The set 
of subscribers attached to host i asks on the average the 
transmission of Ai packets per second. 

It is well known in a system where resources are shared 
that when the load increases, it is necessary to have a 
congestion tool to avoid a degradation of performance. Such 
a phenomenon has been pointed out in PSN. 2,3 Thus tools 
are necessary to prevent this degradation. They are flow 
control methods, namely procedures whereby the receiver 
allocates a potential transmission credit to the sender, no 
matter what the form may be to specify this credit. 

In the second section, we describe several types of spec
ifications in order to compare them in the fifth section. To 
do this, we shall introduce in the fourth section an unified 
mathematical model. This model will use a single source 
destination path taking into account intermediate interarri
vals. Two different node transmission procedures, intro
duced in the third section, will be used in the model. 

The main contribution of our paper is that we explicitly 
take into account most of the elements which characterize 
a packet-switching network-node-to-node and host-to-host 
protocol, retransmission policy, finite buffer size in nodes. 
Three flow controls are examined and their performance 
compared in detail under several working assumptions. 

We show that the maximum throughput allowed by these 
three types of flow controls are very different and the higher 
the throughput, the more important it is to control ade-
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quately the parameters of the system to avoid a thrashing 
phenomenon. 

FLOW-CONTROL TECHNIQUES 

Windol1' flow controL 

One of the best known techniques is the isarithmic 
scheme. l ,2 Under this control, there are a fixed number of 
credits circulating in the network. A packet is admitted into 
the network only if it can get hold of a free credit. The 
packet travels through the network accompanied by its 
credit. The credit is again free when the packet reaches its 
destination. Several policies can be followed to re-distribute 
the free credits. For example, they can be host-dedicated, 
namely, they return to the originating source when they are 
released. If they are host-to-host dedicated, the scheme cor
responds to a window flow control and the number of credits 
used for an host-to-host communication corresponds to the 
value of the window width. Our first flow control is exactly 
this last one-we shall name it WFC (Window Flow Con
trol). We shall assume first a fixed window width, with the 
possibility to render it variable in a later phase of this study. 

Rate flow controL 

An attractive scheme can work by a iimitation of packets 
entering into the network in the following way. As long as 
a destination is able to cope with the outgoing packets, there 
is no need to choke the sending host-sources. However, if 
there is an excess of traffic, queues will start building up, 
and will eventually block the nodes. It is convenient to let 
each host receive from each node the information of the 
maximum amount or packets it can accept. According to this 
knowledge, hosts can then limit their transmissions to a 
"good" number of packets per unit of time. This is an 
idealized flow control because propagation delay is assumed 
infinite. However, it is possible to anticipate correctly the 



894 National Computer Conference, 1979 

variations of flows in a network by a system of control 
packets. 

In a first step we shall assume a fixed threshold on the 
number of packets that can enter the network each unit of 
time. Then this number will vary with the state of the net
work. We name this technique the rate flow control (RFC). 

Flow control induced by the X25 recommendation 

X25 flow control is negotiated between two subscribers 
by a virtual channel. At the host level X25 flow control is 
viewed as a superposition of virtual connections. The flow 
control for a virtual connection is based upon authorizations 
from the receiver. The main means for this control is the 
Receive Ready indication which essentially consists of the 
sequence number of the last well received packet. For each 
virtual connection a window size specifies how many pack
ets may be transmitted from the sender host to the receiver 
host, related to the last correct Receive Ready indication. 
The difference with the window flow control is the existence 
of virtual circuits. Virtual circuits need establishment and 
release. The first packet opens the virtual circuit from the 
source to the destination and reserves special buffers at each 
node so that no possible overflow is possible. We shall name 
this flow control XFC (X25 flow control). 

SPECIFICATIONS OF THE PACKET-SWITCHING 
NETWORK 

Before we develop the mathematical model, it is necessary 
to define some specifications of the packet-switching net
work itself. We must define a strategy for dealing with pack
ets rejected because of overflow due to finite buffer size at 

Software· 

the switching nodes. We shall take into account two types 
of technique: 

• The most common technique, here called switch-re
transmission (used for example in ARPA) in which if 
a packet cannot be accepted by a switch, it is retrans
mitted from a back up copy held in the preceding 
switch . 

• Another technique which we call host-retransmission 
(used in the Cyclades network) in which the network 
drops a packet which arrives at a full switch, to be re
sent later by the source host. 

In the modeling of store-and-forward communication lines 
we have to know the behavior of nodes. This behavior is 
very dependent on the node-to-node transmission proce
dure. Two types of procedure can be allowed: 

I. Without look-ahead (window width = I) 
2. With look-ahead (window width> 1) 

"Send and wait" procedure 

The' 'send and wait" (SW) procedure4 belong to the first 
category. Before transmitting a new packet, the previous 
one must be acknowledged. We are going to analyze their 
behavior. On the time axis of Figure 1 we have represented 
the state of the sender and of the receiver during the trans
mission of a packet. 

Woo, W 10 are due to the task switching and software work 
of the packet. 

W 01' W II are the software delay of the writing on both 
systems. 

Overhead Transmission 
Sender 
Overhead 

Sender 

LA} 01 L/v 

Receiver 

Propagation delay 

Receiver Sotware. 
Overhead Overhead 

Transmission 
Of the ACK 

S = time for one transmission 

Figure I-The "send and wait" behavior. 
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CU 02, cu 12 are due to the propagation delay, and depend on 
the modems used and the line length (overhead 
due to modems are not negligible). 

L is the mean total length of packets to be transmitted. 
1 is the length of the control packet which returns the 

acknowledgment. 
v is the line capacity. 
T represents the time that the previous packet if any 

takes to finish its transmission. 

We denote by S ihe total time necessary for the transmis
sion of a packet. This mean service time is given by: 

For the various overheads we will use the following values 
measured on the Cyclades network ,5 

Woo= wlO=5ms , W01 = CUll =3ms 

For a 500 km line length W02=w12=3ms. We have to note 
the variation of T according to the load on the lines. If the 
load is weak, T=O almost surely. In heavy traffic on the 
average T is the transmission time of half a packet length. 

In the sequel, we assume a symmetric traffic and we 
denote by p the load on a line. If p=O then the service S is 
minimum and if p= 1 the service time is maximum. We shall 
adopt a linear variation of the mean service time S between 
its maximum and its minimum. 

Let Ca=1/v and Cb=WOO+W10+W01+Wll+W02+CU12+/v. 
We obtain the following simple expression for S: 

L 
S=CaL+Cb+Ca 2" p. 

If the line speed is 48 Kb/s, we have for a 500 km line length: 

S=20.8 L+26+ 10.4 Lp 

The quantity S we have defined is the time necessary to . 
transmit successfully one packet. Now if an error occurs 
during the transmission or if the packet is rejected by an 
overflow in the receiver node, a backup copy has to be 
transmitted after a time-out. We have shown in a previous 

Hardware Transmission 

Sehder Software 

paper«' that the performance of the node-to-node procedure 
is not sensitive to the probability of packets in error for 
usual values of this probability. Thus, we assume this prob
ability negligible. Let p be the probability of overflow of the 
receiver node. 

If we use the switch-retransmission (sr) , a backup copy 
is retransmitted after a time-out T with the probability p. So 
the mean real time for one transmission is (without the 
retransmission if the packet is lost): 

We assume T=200 ms for a 48 Kb/s line. 
For the host-retransmission (hr) the overflow is detected 

after the acknowledgement is sent (the overflow is detected 
by the switch). So the mean time for one transmission is 

SW CaL 
S hr (p)=CaL+Cb+ -2- p. 

HDLC procedure 

The HDLC procedure (High-level Data Link Control) 
which has been accepted as an international standard, be
longs to "with look-ahead" node-to-node procedure. Its be
havior is shown in Figure 2. 

Due to the parallelism of the processes, the effective time 
required for a transmission is difficult to calculate; it de
pends on the window width. However, it is shown in Ref
erence 6 that !h~ throughput is only limited by transmission 
times if the window width is chosen adequately (the window 
width has to be sufficiently large so that no blocking occurs). 

Thus we shall adopt for the mean effective transmission 
time the following values: 

S~DLC(p) =CaL(1-p) + Tp, or S~pLC(p) =CaL. 

THE UNIFIED MATHEMATICAL MODEL 

In this section, we consider a particular route inside the 
store-and-forward PSN. Such a route is modeled as a tan-

Propagation delay __________ ~ 

Softwar~ 
w] 0 WI 1 

Receiv~r Hardware 

Transmission 

Figure 2-Behavior of the HDLC protocol. 
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dem queueing network. The system consists of K + 1 queues. 
A customer (corresponding to a packet) goes through the 
system joining the (i + l)-th queue after the i-th device for 
O::si::sK-l. 

The first station 0, corresponding to the host, is assumed 
to have an infinite number of buffers. We assume that one 
packet and only one can be contained in one buffer. All the 
other stations have a finite number Mj of buffers (there is 
room for only Mj packets at station i). This finite size cor
responds to the storage facility of the output queues of nodes 
of a route. 

This mathematical model is shown in Figure 3. In Figure 
3, customers of station C represent the credits. If its queue 
is empty the host must wait for a credit before transmitting 
a packet. The number of credits in the packet-switching 
network is denoted by N. When a packet leaves the network 
a credit comes towards the host. It passes through the sta
tion R which represents if necessary the return time of the 
credit (and the positive ACK). When a customer flows from 
station 0 to station I a credit disappears. 

Our three flow control policies can be characterized as 
follows. 

In the window flow control, the total number of credits 
circulating in the PSN represents the window width. We 
have to note that if this number N of credits is less than or 
equal to Min(Mt.M2, ... ,MK), there is always a buffer 
available for a packet entering the network. This corre
sponds to the X25 flow control. If the total number of credits 
is greater than the sum Mt +M2 + ... +MK and assuming 
station R does not exist, we have a network without flow 
control. 

Finally, the rate flow control policy will be studied at the 
same time as the case without flow control because it cor
responds to a threshold on the utilization of the server of 
the host. 

In the applications. the mean service time will be chosen 
to be one of Ssrsw , SsrHDLC ,Shrsw , ShrHDLC according to the 
node-to-node protocol and retransmission strategy chosen. 

We shall denote by S this mean service time when the choice 
between several policies is possible. 

Solution of the unified mathematical model 

Several criteria can be used to evaluate the performance 
of the models. As we deal with flow control schemes we 
need an indicator of performance according to which the 
system is judged. This congestion measure can reasonably 
be chosen to be the throughput of the system versus the 
utilization of the server of the host. We have chosen this 
last parameter because it allows us to compare the different 
flow control schemes in an unified manner, and it is one the 
parameters used to control the traffic entering the packet
switching network. 

The solution of the unified mathematical model will be 
carried out in two steps: 

1. The model without station C and R. 
2. The model with station C and R. 

In order to solve this complex model some simplifying 
assumptions must be made: we describe them now. 

In a real PSN each packet maintains its length as it travels 
from node to node, and service times are not independent. 
Here we will make the independence assumption of Klein
rock7 and a new independent packet length will be chosen 
at each station. 

We assume that the distribution of service times of all the 
stations are identical and the average value is S(p) where p 
is the utilization of the server of the host. This assumes that 
all stations have the same utilization rates. This is accurately 
verified in balanced networks. 

Finally, our last assumption is to assume that a customer 
leaving a queue sees the system in an equilibrium state, 
namely the probability for a packet to be rejected is taken 
equal to the probability that the following queue is full. It 
has been shown8 that this assumption is quite accurate. 

r----~---I- -~---T-----~-----1 
r- ---I r---, I ,---+-1 

~ ~~~~ 
-~ ....... --t 

..... -~ ... 
Station 0 

host 
M = + ()O 

o 

l 

station 1 
r-1

1 
~ + 00 

Station C 

station 2 
M2 ~ + ()O 

Station R 

Packet switching networks 

Figure 3-The unified mathematical model. 
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The explicit computations are introduced in the Appendix. 
We just give an idea here-from a given utilization of the 
host p, we compute the probability p that a customer is 
rejected by the PSN and comes back into the host. Then the 
mean transmission time is obtained from S(p) whose value 
depends on the node-to-node protocol and the retransmis
sion policy. Therefore we obtain the total arrival rate A * as 
A*=p/S(p), This rate is the sum of external arrivals and 
recycling packets, therefore the throughput of the system 
will be: A=A*(1-p). 

Though computation can be carried out with a different 
buffer size at each node, we shall assume Mj=M, i=l, 
... ,K. 

RESULTS AND COMPARISONS 

For the SW procedure, we have compared the two re
transmission policies, In Figure 4, some curves have been 
drawn representing both the situations of node-retransmis
sion and host-retransmission, for a 48Kbits/sec. line and five 
or eight buffers at each output line, for s'ix stations in series 
(one host and five nodes). 

It is important to notice (this is true for all the following 
results) that the maximum throughput is reached for an 
utilization of the server of the host equal to 1. Namely, a 

6 

S 

4 

3 

Throughput 
packets/sec. 

0.6 0.8 

switch-retransmission 

host-retransmission 

6 stations, 8 buffers 

host-retransmission 

6 stations,S buffers 

swi tch-retra1lSJllission 

1 utilization 

Figure 4-Throughput versus the utilization rate of the host. 
line capacity=48 Kbits/sec. 
mean packet length = 1 Kbit 
packet length distribution=exponential 
procedure=SW 

throughput greater than this value cannot be reached without 
flow control. This implies that the points corresponding to 
higher throughput than for p = 1 are unstable points. 

Thus, we see in Figure 4, that without flow control, host
retransmission leads to a better throughput than switch-re
transmission. This can be easily explained-when we ap
proach saturation (p= 1) the switch-retransmission policy 
increases the congestion whereas the host-retransmission 
policy prevents congestion. This is even more explicit for 
the HDLC node-to-node procedure (see Figure 5). 

We can notice by examining Figures 4 and 5 that if a flow 
control policy exists and allows us to obtain a throughput 
near the optimal point (the highest point of the curve) 
switch-retransmission is better than host-retransmission. 
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ThrouBhput 
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Figure 5---Throughput versus utilization rate of the host. 
capacity=48 Kbits/sec. 
mean packet length = 1 Kbit 
packet length distribution=exponential 
procedure.= HDLC 
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Figure 6-Throughput versus the utilization rate of the host. 
line capacity=48 Kbitlsec. 
mean packet'length = 1 Kbit 
packet length distribution=exponentiaI 
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throughput 
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0.4 0.6 0.8 

3 st., 12 buffers, HDLC 

3 st., 8 buffers, HDLC 

3 st., 5 buffers, HDLC 
3 st., 12 buffers, SW 
3 st., 8 buffers, SW 
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Figure 7-Throughput versus the utilization rate of the host. 
line capacity=48 Kbits/sec. 
mean packet length=300 bits 
packet length dis.tribution=exponential 

This can also be easily explained-the optimal point is surely 
. obtained when there are only few retransmissions but when 
the lines are utilized at the maximum. In this case to come 
back to the host is worse than to reset from the previous 
switch. 

Since the purpose of this paper is to study and compare 
flow control methods, we limit ourselves to. the switch
retransmission case, which is the best retransmission pol
icy in this case. 

N ow we allow the packet length and the distribution of 
the service times to vary in Figures 6, 7 and 8. We have 
adopted a 48 Kbits/sec line and three or six stations in series, 
five, eight or 12 buffers per output line, and SW or HDLC 
protocols. 

The degradation predicted is very clear and more impor
tant with HDLC than with the SW procedure. As long as 
there is no degradation (namely the probability of retrans
mission is negligible) three or six stations in series give the 
same throughput. Thrashing is evidently stronger for six 
stations than for three stations in series. 

The degradation is so much important when mean packet 
length is short. The degradation is less obvious with constant 
packet lengths. These three figures give an idea of through
put that can be obtained between two hosts of a PSN. 

Rate flow control policy 

The rate flow-control policy using a threshold on the num
ber of transmissions per unit time can be studied with the 
previous results. This threshold corresponds to a value p* 
of the activity of the server of the host. In Figures 8, 9 and 
10 the maximum throughput is now obtained for the value 
of the throughput corresponding to p* and the parts of the 
curves on the right of p* cannot be reached. 

It is obvious that the quality of this flow control policy 
depends on the choice of p*. For the case studied in Figures 
6, 7 and 8 it is sufficient to take for p* the activity of the 
host corresponding to the optimal value of the throughput. 
However, in a general network, according to the destination 
of packets, the line capacities and the sizes of the pools of 
buffers, the optimal throughput does not correspond to the 
same -limitation. The-refore, an· eff-ICient estimatron.and. con
trol system is necessary to adjust the threshold according to 
the state of the nodes of the PSN. This control leads to high 
throughput, but the risk of a strong degradation of perform
ance exists as soon as the system is badly controlled. In 
Cyclades such a flow control is used and the rate defining 
the threshold varies according to the load of the lines of the 
system. 

In Figures 9 and 10 both the two other flow controls are 
examined using the solution of the second part of the Ap-

Throughput (packets/sec) 
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Figure 8-Throughput versus the utilization rate of the host. 
line capacity=48 Kbits/sec. 
mean packet length = 1 Kbit 
packet length distribution=Erlang 2 
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Figure 9---Throughput versus the utilization of the host for a. number of 
credits N-six stations in series and five buffers per station. 

line capacity=48 Kbits/sec. 
mean packet length = I Kbit 
procedure=SW 
packet length distribution =exponential 

pendix to solve the unified mathematical model. We look at 
the case of 48 Kbits/sec line, six stations in series and five 
buffers per output line of nodes. Figure 9 corresponds to the 
SW node-to-node protocol and Figure 10 to HDLC. N is the 
number of credits. If N =5, we obtain the XFC. For example 
we have a superposition of five virtual circuits between the 
two hosts with a window width equal to 1. If N =25, we find 
again the case without flow control or with RFC if a p* is 
given. Now if 5<N<25 we obtain a WFC. We assume that 
the queue R of the mathematical model does not exist. 

The advantage of the XFC is that no thrashing phenom
enon exists. Above a certain value of the activity of the 
host, the throughput is practically constant. However, this 
constant value is far from the maximum value. This assur
ance is counterbalanced by a low thr~ughput. 

The best value for the window width (if it is to be fixed) 
seems to be N = {I~1 M1+infj{M j »/2. In Figures 9 and 10 
this value corresponds to N = 15. In this case the maximum 
throughput (obtained for p= 1) is intermediate between max
imum throughput of RFC and XFC. Performance does not 
seem to be very sensitive to this parameter setting. Besides, 
means to regulate the value of the window width are easier 
than those used to throttle the rate for the RFC policy. 

The view of Figures 9 and 10 gives an idea of an efficient 
dynamical WFC-the use of the upper envelope of the 
curves. For example on Figure 9, as soon as p<0.8, N =75; 
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Figure 100Throughput versus utilization of the host, for a number of credits 
N-six stations in series and five buffers per station. 

line capacity=48 Kbitslsec. 
mean packet length = I Kbit 
procedure = HDLC 
packet length distribution =exponential 

if 0.8<p<0.9, N =20; if p>0.9, N = 15. When a threshold is 
exceeded no admittance is allowed until the number of pack
ets in the PSN is above the associated window width. 

As a conclusion of this comparison of flow control poli
cies, we have written on the side of Figure 10 the throughput 
that can be reached by each of the three techniques de
scribed previously. We see that the zone corresponding to 
the RFC goes from the highest to the lowest point. WFC is 
intermediate. A very precise throughput is associated with 
XFC. 

It has to be noted that the more we want to get high 
performance, the more the control of parameters must be 
sophisticated, otherwise the throughput will be very low. 

CONCLUSIONS 

First, we have shown that a flow control is necessary in 
PSNs. Without flow control schemes a thrashing phenom
enon occurs when the traffic rate reaches a value close to 
1. Several flow-control policies have been modeled and com
parisons of the results can be interpreted as follows. The 
XFC technique allows one to obtain a certain throughput 
which does not decrease with increasing input traffic even 
when the system is saturated. We are sure that whatever the 
traffic conditions, a certain amount of service will always 
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be rendered. However, the maximum throughput is very 
low in relation with the throughput obtained by other flow
control policies. 

The RFC (rate flow control) policy gives efficient results 
when it is easy to find accurate rate limitation corresponding 
to the optimal throughput. If the network is well balanced 
or very simple, such as a tandem queueing system, the value 
of the limitation can be obtained. But in a complex network, 
this rate limitation will have to change with the state of the 
network. A system of control packets must be created for 
the host to know the state of the system. The RFC policy 
will allow us to obtain large throughput; but a necessary 
condition is the need to have a sophisticated control system. 
Thrashing can appear here with bad management. 

The WFC policy can be considered as an intermediate 
method. The maximum throughput is not as high as in the 
previous scheme, but there-is· riofhrashing in saturation 
conditions. Moreover, the simplicity of this scheme can be 
a good reason for its implementation. 

Finally, the question that can be raised is the accuracy of 
the previous results. Some validations by simulations of the 
unified mathematical model results have been done and are 
available in Reference 9. It is shown that even when the 
model parameters are somewhat different, the form of the 
curves is identical and the conclusions of the comparisons 
are similar. 

A more widely available validation can be found in Ref
erence 10 where the predictions of a mathematical model 
(with the parameters used here) are compared to the results 
of a measurement compaign on the Cyclades network. The 
model being a queueing system in tandem, the very good 
accuracy of the mathematical model prediction is estab
lished. 
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APPENDIX 

Computation of the throughput as a function of the 
activity of the host 

The model without station C and R 

We recall the assumptions we have taken: 

-The independence assumption 
-The distributions of service times of all the stations are 

identical 
-A customer leaving a queue sees the system at steady 

state. 

Let /L-l and Ks be the mean and the squared coefficients 
of variation (SCV) of the service time distribution of each 
server. We show in Figure Al the model that we want to 
study (we have only depicted stations nand n+1). We de
note by An, Kan the rate and the SCV of interarrival distri
bution respectively to station n, (before rejection which oc
curs with probability Pn). 

AnaLysis of the switch retransmission model 

We will replace each station (for example station n) with 
its retransmission loop, by a simple queue with service time 
which represents the total time of the first retransmission 
and all retransmissions of the same packet. Let {Ln andKsn 
determine the distribution of the equivalent service time. 
D sing a convolution product we obtain: 

{Ln = /Ln(l-Pn+) 
KSn =Pn+1 + Ksn( I-py+) 

To compute the two first moments of the interarrival flow 
we must include all transmissions and retransmissions from 
station n-l; hence An=A/(l-Pn) and Kan=-I+Pn_12 

(Ksn- 1 + 1)+ (2pn-l + 1 + Kan-1)(l- Pn-l) where Pn =Anl {Ln. 
This last expression is a particular case of the SCV of the 
interarrival flow in a station computed in Reference 11 from 
a general network. 

To summarize, each station n is treated as a GIG/liMn 
system with a service time distribution determined by {Ln and 
KSn and an arrival time distribution by An and Kan. 

The probability that a packet is refused at this station is 
computed through a diffusion approximation: 8 it is the prob
ability at steady state that the queue is full. 

where 

Pn= e-'Yn(Mn-o-Pn2 

Pn=An/{Ln 

'Yn=2bn/an 

an=AnK~+{LnKsn 
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Figure AI-The tandem queueing model. 

and 

Note that Pn depends on Pn+1 by the intermediate of jLn 
and Ksn. But if we begin to solve the equations for the last 
station first, we have PK+1 =0 and so we can compute, one 
after another, the values of Pn for n=K to n=1. 

As we have assumed that the distributions of service times 
of all the stations are identical, we can suppose the mean 
service time equal to a time unit. We have to note also that 
PI is an increasing function of~ the normalized arrival rate 
(mean service time = 1) such that the value of the activity of 
the host determines an unique value of the external arrival 
rate ~. Therefore, for a given utilization p of the host, by an 
iterative method we can compute ~ and PI (for a given ~ we 
get step by step Pn, n = K to n = 1, thus PI; the exact value 
of ~ is obtained when the equality p=kil-Pl holds). Now 
the value of S(p) is derived as: 

CaL 
SsrSW(p)=(CaL+Cb+ --2- p)(l-Pt)+Tpl 

ShrHDLC(p)=CaL(l-Pl) +Tpi 

following the retransmission policy. 
Therefore, the total arrival rate is A * = pIS(p). As this rate 

is the sum of external arrivals and recycling packets, the 
throughput of the system is 

A=A *(l-p). 

Analysis of the host-retransmission scheme 

The arrival rate at station n + 1 is An+1 = An(l-Pn) for n = 1 
to K -1; if we conveniently denote by AK+I the departure 
rate from the last station, K, then the preceding equation is 
also valid for n=K. 

III~ 
( 
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host 

:> 

As we use the host-retransmission only with exponentially 
distributed service times, we develop the solution only in 
this particular case. An extension to general service times 
can be done through a diffusion approximation. 

The probability of refusal is obtained through the classical 
MIMI liMn queue: 

_ Mn I-p n h _ / 
Pn- P n 1 M +1 were p n- A nlIL n -Pn n 

We also know that the departure rate from the last station 
is equal to the external arrival rate into the network, i ,e 
AK+l =A. Thus, beginning with the last station, we can com· 
pute (An,Pn), for n=K to n= 1. The host is a M/M/I system 
with service time S(p) and arrival rate A*=A+ Ir=l PiAi. 

The service time S(p) depends on the node-to-node pro
tocol: 

CaL 
ShrSW(p)=CaL+Cb+ -2-

Shr HDLC( p) = CaL 

Therefore, for a given utilization rate of the host we obtain 
the total arrival rate A *=pIS(p), and the throughput of the 
system is obtained by an algorithmic method determining A 
when the following equality holds: 

K 

A=A T - L PiAj. 
j=l 

The solution is unique because the Pi'S are increasing with 
A. 

The model with stations Rand C 

The model has been shown in Figure 3, We are interested 
only by the switch-retransmission policy. 

IP IIII C8J 
\) (j ) 

\..., 
-V ./ 

packet switching networks 

Figure A2-The equivalent unified model. 
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The solution we propose is to use an equivalent station. 
The closed network representing the model of the PSN itself 
can be replaced by a single queue with a state dependent 
rate v(j), j=l, ... ,N (N is the total number of credits, 
namely the total number of packets in the PSN plus the free 
credits). We have to study a closed queueing network with 
finite buffer size. As no analytical method is available to 
study such a queueing system, we adopt a simulation just to 
compute the utilization AKj of the server K, when there are 
j customers in the closed network. We have assumed in this 
simulation that the service time of the credit queue equals 
the host service time. The equivalent service rate is obtained 
as v(j) = AKj, assuming the mean service time of each station 
is a time unit. 

The equivalent system is shown in Figure A2. 

The rejection probability p for a customer is always taken 
as the probability the second queue is full, so: 

p 

v(l)v(2) ... v(N) 
p= P pN 

1 + v( 1) + . . . + v( 1) . . . v(N) 

where p is the utilization of the host. 
Now the service time S(p) can be computed and is equal 

to either Ssr sw or Ssr HDCL following the node-to-node proto
col. 

The total arrival rate is A * = p/S(p), and the throughput of 
the system is 

A=A *(1-p). 
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INTRODUCTION 

Public and private packet-switching networks (PSNs) are 
being developed or planned throughout the world-for ex
ample in Canada (DATAPAC), the U.S. (TELENET), 
France (TRANSPAC), the U.K. (EPSS), Japan (DDX), 
Spain, Netherlands and others. 7 Such an explosive devel
opment of data communications services is one of the means 
for attaining the near-perfect availability required from fu
ture distributed information processing systems. 9 The rea
sons for this requirement are the increasing size, complexity 
and geographic dispersion of information processing sys
tems, and the increasing real-time dependence of users on 
these critical, distributed systems for the timely and effec
tive operation of their businesses. 

As a result, there is a sustained incentive towards im
proving the reliability and availability of PSNsl1 on the one 
hand and of information processing systems on the other. 
Both improvements use similar techniques, namely com
ponents of high reliability and redundancy of components. 
However, the reliability of the access path between the 
information system and the PSN is in some cases the weak
est link in the overall reliability of distributed teleprocessing 
systems. lO Using the same reliability techniques for the ac
cess path (namely redundant, reliable physical circuit con
figurations) is not sufficient as the access path connects two 
dissimilar logical entities, and the implementation of the 
access protocol governing their inter-communication has to 
be considered. 

This paper is concerned with the reliability of access from 
synchronous packet-mode Data Terminal Equipments 
(DTEs) through multiple physical circuits to X.25 packet
switching networks offering virtual circuit services. The 
techniques discussed in this paper are also generally appli-

* This paper is based on work done by R. J. Chung while with the Computer 
Communications Group of the TransCanada Telephone System in partial 
fulfilment of the requirements for his M.Sc. (Computer Science) degree from 
the Universite de Montreal. 
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cable to the reliable interconnection of X.25 networks via 
X.75. The reliability of access of asynchronous non-packet 
terminals using multiple dedicated physical circuits has not 
been identified as being cost-effective and can be adequately 
ensured by alternate dial-in facilities; it is not further dis
cussed here. 

Each subscriber DTE is connected to the PSN node by a 
local access circuit or local loop (LL) (see Figure I). The 
local loop is typically configured through a number of tele
phone central offices and is constrained to existing inter
office facilities. User data and control information are ex
changed across the interface between the DTE and the DCE 
(Data Circuit-Terminating Equipment, or the network side) 
according to the formats and procedures of the X.25 network 
access protocol, standardized by the International Tele
phone and Telegraph Consultative Committee (CCITT).14 
The X.25 network interface has been specified as a hierar
chical set of three separate functional protocol layers, 
namely a Levell (or the physical level protocol), a Level 
2 (or the frame level or link access protocol, LAP), and a 
Level 3 (or the packet level protocol). It should be noted 
that X.25 is purely a local interface to the virtual circuit 
service provided by the network. 13 A virtual circuit service 
is characterized by the establishment of a logical path and 
network association between two end-user DTEs for the 
purpose of exchanging data in the form of a network-main
tained sequenced flow of packets. For the purpose of this 
discussion, no particular hardware or software implemen
tation is assumed for the DTE. 

NEED FOR MULTIPLE PHYSICAL CIRCUITS 

Three common user reiiabiiiiy measures are Mean Time 
Between Failures (MTBF), Availability and Reliability. 4 The 
A vailability parameter (A) gives the probability that at any 
given time the access path is ready for use, but does not 
predict for how long -it will stay operational. The Reliability 
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Figure I-DTE X.25 single-circuit access to a typical packet-switching node. 

parameter (R) gives the probability that the access path 
maintains its correct operation during a selected time period. 
We note that Availability applies when the access path is to 
be used (e.g. during X.25 call establishment phase) whereas 
Reliability applies while the access path is being used (e.g. 
during X.25 data transfer phase). 

Since access circuit failures are not rare events and their 
probability of occurrence cannot be reduced to a negligible 
level. we define a third measure of reliability, namely Fault
tolerance, which may express future user concerns about 
the suitability of a PSN to meet their reliability require
ments. The Fault-tolerance parameter gives the probability 
that the access path continues to provide virtual circuit 
services without clearing calls and without external assist
ance in the presence of circuit (also called line) or link 
failures. Access path Fault-tolerance consists of three com
ponents: 

I. The probability of loss of virtual circuits during line 
failures. It is a function of the assignment of virtual 
circuits to lines, whether the allocation is fixed at sub
scription time, or dynamically assigned during call es
tablishment, or dynamical1y switched (i.e. floating) 
during data transfer phase. 

2. The probability of recovery of virtual circuits after line 
failures. This is a function of the availability of an 
alternative line and whether a call reconnect capability 
is implemented. 

3. The probability of loss or duplication of data during 
the recovery of virtual circuits. 

Thus. the Fault-tolerance of an access path can be char-

acterized by its capability to maintain or recover virtual 
circuits automatically, and by its robustness and adaptability 
against line failures. Whereas the Reliability measure ceases 
to apply at the first failure, Fault-tolerance recognizes that 
failures do occur and implies that built-in mechanisms exist 
in the system allowing it to continue to operate, though in 
degraded mode, by '"tolerating" the fault. It also depends 
on the implementation of automatic recovery software which 
may be distributed in different hosts or nodes. The Fault
tolerance parameter is not discussed further here but will be 
reintroduced in the fifth section where the reliability of a 
number of implementations are compared. 

For some applications, the failure of the telecommunica
tions system during information transfer and the subsequent 
loss of connection is inconvenient, but acceptable if the user 
is allowed to reestablish his connection. Examples are time
shared computing, message and reservations systems. 
Hence, these users put a higher premium on Availability 
than on Reliability. They can live with short, infrequent 
disruptions of service provided alternate facilities are readily 
available. For other applications, the loss of connection or 
disruption of service during information transfer cannot be 
tolerated or may have catastrophic results, for example real
time systems like remote process control or pipeline control, 
or, less critically, bulk data transfer or remote job entry. 
For such users, Reliability and Fault-tolerance are signifi
cant parameters. Availability may not be as critical since 
the user can try to establish the connection at some other 
time or to some other place. 

To meet user reliability requirements, the packet-switch
ing node to whkh the X.25 DTE is connected is designed to 
perform an network functions (e.g. control. switching and 
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terminal support) while ensuring the highest degree of avail
ability. It is typically a multi-processor (as in DATAPAC,3 
TRANSPAC,5 TELENET12). The multi-processor organi
zation of the DATAPAC SL-IO Network Processor is typical 
of current switch architectures designed for reliability, flex
ibility, reconfigurability, and expandability. 3 This organiza
tion is illustrated in Figure 1 and is used as the basis for this 
paper. It consists of at most 15 functionally different and 
separate processing units, interconnected by a common bus 
and communicating through a common memory module. 
Each customer circuit terminates on an individual line in
terface card (LC). The line processor (LP) has sufficient 
memory and processing power to control a number of sub
scriber synchronous and/or asynchronous circuits. The as
sembly of common memory, control processors, trunk pro
cessors and other related hardware is referred to as Common 
Equipment (CE). 

Communication networks and some computer systems are 
designed with built-in redundancy, bypass switches and fully 
duplexed components to guarantee an availability of at least 
0.998. On the other hand, the access circuit connecting the 

CONFIGURATION I: SINGLE CIRCUIT 

two has an average line availability of only 0.98 in the 
U .S.A.10 Typical analyses of leased line failures show that 
half the outages last for more than an hour. Consequently, 
multiple parallel physical circuits are used to make the re
liability of the access path comparable to that of the network 
and computer system. 

ACCESS PATH CONFIGURATIONS 

The current access to PSNs through the X.25 packet-mode 
interface is based on a single circuit using the High-Level 
Data Link Control (HDLC) procedures,2 standardized by 
the International Organization for Standardization (ISO), as 
the link access procedure. For greater reliability, the access 
path of a packet-mode DTE may consist of a set of circuits. 
These can be configured as shown in Figure 2, subject to 
the protocol and implementation considerations discussed 
in the next section. 

In order to develop a quantitative comparison of the re
liability of these configurations, we assume a mathematical 

L..--_D_T_E_----II--------L-L------1 LC HL-__ L_P __ ---IH~_C_E_----' 

CONFIGURATION TT • TT.\'"O CIRCUIT .1..1.. 

LL LC 

~ H DTE LP CE 
LC 

CONFIGURATION III: TWO-LINK, SINGLE NODE 

LC 

~ 
LP 

~ DTE CE 
LC LP 

I I , I 

CONFIGURATION IV: TWO-LINK, TWO NODE 

L---_DT_E_---I~t-------------I::: ~r---::-------,~r--:-:---, 
Figure 2-Access path confIgurations. 
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model in which physical components fail at random and the 
number of failures in a given time period depends only on 
its duration. That is, the probability of having failures in a 
given time period follows a Poisson distribution, and the 
probability that the times between failures are a given value 
follows an exponential distribution. A reliability analysis 
must consider, in addition to the local data loop (LL), the 
following components of a packet switch (see Figure 1): the 
line interface card (LC), the line processor (LP), and the 
remaining common equipment (CE). A failure of LP will 
lose all access circuits connected to it while a failure of CE 
will lose the circuits of all subscribers connected to that 
node. 

As an example of the type of simple calculations which 
may be useful, we apply classical multiple component reli
ability theory6 to the model just outlined to derive the A vail
ability, and the probability of failure-free operation during 
a given period, of each configuration in Figure 2. We assume 
all parallel components are identical and independent. The 
MTBF of LL has a wide variance as a result of the varying 
types of equipment used, e.g. analog or digital. We have 
therefore computed the Reliability of the different configu
rations over a month using a MTBF of 36, 24, 12, or 6 
months respectively for the local data loop and typical 
MTBF figures for the other components. The results are 
given in Table I. 

The following conclusions can be drawn from analyzing 
the preceding model: 

I. Two-circuits (II) increase the Reliability in a signiticant 
way (8-15 percent), especially when the local loop has 
the highest failure rate. 

2. Two-links (III) have a 5 percent better Reliability than 
Two-circuits (II) independently of the local loop failure 
rate. This result follows from the fact that the LP has 
a failure rate comparable to that of LL and LC, and 
the multi-link only uses independent LPs. We note that 
connecting Two-links to independent nodes (IV) only 
increases the Reliability by 1 percent compared to con
necting them on the same node (III). 

3. The Availability of the local loop reduces the A vaila
biIity of a single circuit significantly. 

The quantitative approach just outlined is adequate for 
evaluating reliability in most cases; it cannot, however, be 
used for the design of data communications systems which 
require extreme reliability. This is because the assumption 
of identical and independent components, particularly for 
the local data loop, rarely holds for common carrier equip
ment. 15 In fact, diversified routing of the access lines is very 
difficult and costly to obtain. The failures of different data 
communications lines are highly dependent because of the 
inherent sharing of the same multi-pair cable for local loops 
to the telephone central office and of short-haul or long-haul 
inter-office facilities. For techniques to handle these prob
lems in computing communications system reliability, refer 
to Reference 15. 

ACCESS PATH IMPLEMENTATIONS 

This section outlines the different implementation alter
natives possible in an X.25 network to support user access 
by multiple physical circuits. A DTE is said to be multi
homed if it is connected to multiple nodes by mUltiple au
tonomous links. A link is defined as a set of one or more 
physical circuits operating according to a single data link 
control procedure. 

For reliability calculations, the only access path parameter 
of interest is the number of physical circuits available for 
data transfer. However, in implementing any X.25-based 
access path, other protocol factors must be considered, in
cluding the administration of network addresses for routing 
during call establishment. and of logical channels for relating 
packets locally to virtual circuits. Furthermore, the ordering 
property of the virtual circuit service must be maintained. 
This sequencing can be achieved by an appropriate switch
ing function at either the physicallevel/frame level interface 
or the frame leveVpacket level interface of X.25. The prob
lem can be avoided by using each physical circuit as an 
autonomous X.25 link. Thus, the following access path im
plementations (Figure 3) can be distinguished for the mul
tiple circuit configurations shown in Figure 2: 

TABLE I-Reliability Results for Access Path Configurations* 

CONFIGURATION I CONFIGURATION II CONFIGURATION III CONFIGURATION IV 
LOCAL LOOP 

MTBF MTBF R A MTBF R A MTBF R A MTBF R A 
(months) (months) (month) (%) (months) (month) (%) (months) (month) (%) (months) (month) (%) 

36 4.74 .810 99.9575 9.01 .895 99.9932 19.49 .950 99.9989 27.11 .964 100 
24 4.43 .798 99.9575 8.26 .886 99.9932 19.09 .949 99.9989 24.13 .959 100 
12 3.77 .767 99.9575 8.11 .884 99.9932 13.77 .930 99.9989 17.75 .945 100 
6 2.85 .704 99.9575 6.29 .853 99.9932 9.90 .904 99.9989 10.96 .913 100 

ASSUMPTIONS: 
COMPONENT MTBF (months) A(%) 

LL 6-36 99.97 
LC 12 99.9943 
LP 12 99.9943 
CE 60 99.9989 

-.. ...,.-~ .. -..• .-~-... - .. ,-..... -

" See Figure 2. 



CONFIGURATION I: SINGLE CIRCUIT LINK 

DTE LL 

CONFIGURATION II: MULTI -CIRCUIT LINK 

LL 

DTE 

CONFIGURATION III: FLOATING MULTI-LINK 
LL 

DTE 

CONFIGURATION IV: AUTONOMOUS MULTI-LINK 
LL 

DTE 

Providing Highly Reliable Access to X.25 Networks 909 

H LAP PL ~ CE 
LC 

r-- LP ~ 

~ 
LC 

~ H LAPM PL CE 
LC 

~ LP ~l 

: 

LC 

~ 
LAP 

~ PL 
LC LAP 

I~ LP ~I I~ CE --.1 

LC HL--__ L_AP __ ----JH PL ~ 

LC H LAP H PL ~ 

LAP X25 FRAME LEVEL (LINK ACCESS 
LAPM= MULTI-CIRCUIT LAP MODULE 

~ LP PROCEDURE) MODU~E ----1 I~ CE--'I 
PL PACKET-LEVEL MODULE 
~ = SWITCHING FUNCTION 

i RECONNECT FUNCTION 

Figure 3-Access path implementations. 

1. A multi-circuit link (frame level) implementation of 
Configuration II. 

2. A floating multi-link (packet level) implementation of 
Configuration III with automatic alternate routing. 

3. An autonomous multi-link (packet level) implementa
tion of Configuration IV with an optional reconnect 
procedure. 

Each link of a multi-link implementation (i.e. III or IV in 
Figure 3) may be a uni-circuit or a multi-circuit link. A major 
concern of the multi-link packet level is failure recovery, 

namely to maintain virtual circuits after a link failure. This 
function is automatic in the floating multi-link but requires 
a reconnect procedure in the autonomous multi-link. 

Multi-circuit link implementation 

A multi-circuit link implementation (Figure 3(11» consists 
of parallel physical access circuits with the same network 
address and logical channel set statically assigned at sub
scription time to all of them. These circuits are attached to 
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uniquely different line interface cards on the same line pro
cessor in the same node. They are administered individually 
via a line level protocol and operate under a single multi
circuit link protocol. 

A line level protocol is required for a multi-circuit link to 
establish the actual configuration of the link at any time in 
terms of line status and characteristics. It performs the func
tions of connecting/opening, disconnecting/closing and su
pervising a physical circuit individually according to com
mands from a higher level. Thus, it permits circuits to be 
removed or added with no disruption to link operation. We 
note that the line level protocol does not concern itself with 
data integrity or sequencing. It only provides a mechanism 
below the X.25 frame level for switching frames onto mul
tiple physical circuits. 

The purpose of a multi-circuit link protocol is: 

I. To make a set of physical circuits appear as a single 
full duplex data link for better reliability and efficiency 
(throughput, delay). Thus, the physical characteristics 
of the link configuration (such as number of lines, line 
speeds, propagation delay, transmission media) are 
transparent to the higher-level protocols; frames are 
sent on the first circuit that is operational and not busy. 

2. To ensure the integrity of the exchange of packets 
without loss, duplication or out-of-sequence delivery. 

3. To detect circuit failures and control the link configu
ration by a line level protocol discussed above. Circuit 
failures do not impact the integrity or reliability of the 
link but only cause a graceful degradation of efficiency. 

A multi-circuit link protocol has been used in the experi
mental French RCP network since 1974, i.e. before the 
standardization of HOLC by ISO, and is planned for TRAN
SPAC.5,8 A second possibility would be the use of HOLC 
over mUltiple circuits. Both these are currently called mul
tiline procedures. We note that a third possibility, currently 
being studied, is the addition of a sequencing sublevel on 
top of a mUltiple circuit configuration where each circuit is 
operating under its own data link control procedure. 

A multi-circuit link has the properties of variable delay, 
loss, duplication and out-of-sequence delivery of data. This 
is the result of the disordering phenomenon inherent in the 
simultaneous transmission of variable size frames on mul
tiple physical circuits having variable line speeds, propaga
tion delays, and multiplexing delays. Therefore, the main 
problem is how to maintain a sequenced data flow and its 
relationship to control, supervisory or out-of-band signals 
on each virtual circuit 13 multiplexed over the physical cir
cuits. A solution is to use a sequence-preserving link level. 

Possible extensions and amendments necessary to the 
X.25 LAP or HOLC elements of procedure 2 to accommo
date multiple physical circuits are outlined below: 

I. I-frames (information frames carrying packets) re
ceived out-of-sequence should not automatically initi
ate REJ recovery. Instead. the receiver should buffer 
out-of-sequence frames and define a new secon.dary 

timer TS (see Figure 4(A», started on the reception of 
the first out-of-sequence I-frame. REJ recovery is ini
tiated only at the expiry of TS. 

2. The use of the REJ frame is inefficient (Figure 4(B». 
A selective retransmission optional facility through a 
SREJ frame to request retransmission of a single 1-
frame is more efficient since the secondary has already 
buffered out-of-sequence frames. 

3. To recover from lost I-frames, the primary retransmits 
its last unacknowledged I-frame after the expiry of 
primary TI timer. The most conservative TI value is 
twice the transmission time of the longest I-frame on 
the slowest line plus the transmission time of the long
est I-frame on the fastest line. Such a long TI value 
would ensure a high throughput but increases the delay 
in recovering from lost frames. However, this delay is 
minimized by the use of TS and SREJ at the secondary . 

4. When the secondary receives a P-bit set to 1 from the 
primary (after TI timeout), it should withhold sending 
an F-bit set to 1 until its own TS timer expires. Oth
erwise, after accepting the retransmitted I-frame with 
P-bit set, the original I-frame may arrive in the next 
numbering cycle and become an undetected duplicate. 

5. The receipt of an invalid NR field should not initiate 
the resetting procedure because it may be in a late 
frame. 

6. A window size less than the modulus of the sequence 
numbers minus one may be necessary to avoid ambi
guity as to the meaning of NR received from different 
numbering cycles. 

7. An extended numbering system using a modulus of 128 
is desirable to ensure high link throughput. 

8. To preserve link integrity, when a SARM (or VA) is 
to be transmitted all I-frames (or supervisory frames) 
in the process of being transmitted must be aborted. 
The SARM (or VA) should be transmitted only after 
the propagation delay of the last transmitted, still un
acknowledged I-frame (or supervisory frame). Other
wise, this may cause undetected loss and duplication 
of frames (Figure 4(C». 

Finally, the following OTE implementation considerations 
must also be taken into account: 

I. It is required that the multi-circuit link protocol be 
compatible with ISO HOLC procedures and X.25 LAP 
and LAPB. 

2. The investment made by the customer in his develop
ment of the X.25 link control software must be pro
tected by minimizing and localizing the impact of soft
ware changes. 

Floating multi-link implementation 

A floating multi-link implementation (Figure 3(111» con
sists of parallel links attached to different line processors on 
a node. At subscription time. all the links are assigned the 
same set of network addresses and logical channels. How-
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ever, the implementation may dynamically switch the logical 
channels between the links in a disciplined manner. This 
depends on considerations of virtual circuit integrity, link 
availability and load balancing. Each link is independent and 
may use a different data link control procedure. 

Logical channels are not statically fixed to links but float 
over all the links. To transmit a packet, it is queued to the 
link module on which there is an unacknowledged I-frame 
containing an outstanding packet for the same logical chan
nel; if no such link exists, then any link can be used. This 
simple technique maintains virtual circuit integrity, while 
avoiding packet level resequencing, by using the sequencing 
property of data link control procedures such as HDLe. 

A switching function is required between the packet level 
module and the various link level modules. Typically, it 
maintains a table giving the number of outstanding packets 
for each particular logical channel and the associated link 
module. This table is incremented when a packet is queued 
and decremented when an I-frame is acknowledged at the 
link level. When a link fails, all its unacknowledged I-frames 
are switched to another link module for initial transmission 
or retransmission, in the latter case creating duplicate pack
ets. 

Thus, after a link failure, the floating multi-link provides 
automatic alternate routing of virtual circuits but relies on 
the X.25 error procedures for handling duplicate packets. 
The maximum number of logical channels which may have 
to handle duplicate packets is equal to the window size (K) 
at the link level. There is no packet loss or requirement for 
extra resynchronization signals and procedures at the packet 
level. 

However. the effects of duplicate packets in X.25 need 
further study. For example, they can give rise to conflicting 
situations in which the DTE and the DCE do not agree as 
to the state of the interface for a particular logical channel. I 
The possibility of deadlock due to out-of-the-blue duplicate 
packets (when the DTE/DCE interface is in an ambiguous 
state) IS to be considered. These problems do not arise if 
extensions to HDLC or higher-level protocol procedures 
(e.g. using logical channel zero) would make it possible to 
exchange the HDLC receive state variable, VR, values be
tween the DTE and the DCE. An alternative approach is for 
the transmitter to number every I-frame, independently of 
the link, to enable the receiver to eliminate duplicates. This 
would introduce an overhead on every packet compared to 
an overhead only incurred during recovery in the former 
approach. 

The floating multi-link introduces an additional interaction 
between the packet level and link level (i.e. the implemen
tation has t~ keep track of the mapping of packets to links). 

Autonomous multi-link reconnect procedure 
implementation 

An autonomous multi-link implementation (Figure 3(1V» 
consists of several autonomous X.25 modules. At SUbscrip
tion time, each X.25 link is assigned its own node, and set 
of addresses and logical channels. 

A link failure in an autonomous multi-link implementation 
loses its associated virtual circuits. The simplest recovery 
is by the user establishing new virtual circuits on an alternate 
link to maintain his end-to-end connections. A potential 
alternative is a network-provided DTE-to-DTE reconnect 
procedure proposed to improve the fault-tolerance of an 
autonomous multi-link by implementing an alternate routing 
capability over the multiply-connected access path. 16 It re
fers to the capability to reconnect one end of a virtual circuit 
on an alternate link on any node. It then resynchronizes 
both ends of the access path and of the virtual circuit to 
recover from a link failure. 

We note that a reconnect capability only protects against 
the loss of a virtual circuit (VC) when its associated link 
fails; it does not guarantee against packet loss or duplication. 
The recovery process is left to the user as it is a function of 
the reliability requirements of his application. Hence, PSN 
administrations may offer the reconnect capability as an 
optional user facility aimed at increasing the VC-recovera
bility against access link and node failures. 

Virtual circuit reconnection can be accomplished by using 
a reset or a call packet with a facility field containing a 
parameter specifying it as a reconnection packet and another 
parameter identifying the virtual circuit to be reconnected. 
To identify a virtual circuit, it is sufficient for the ends to 
exchange their unique identification of the connection, 
namely a numeric connection identification (CID), when the 
call is created. Such a CID could consist of the (network 
address, logical channel identifier) pair which is the network
wide naming space at the DTE/DCE interface for identifying 
one end of a VC. Thus, Call Request and Call Accepted 
packets may contain a CID parameter field for the DTE to 
identify the local end of the virtual circuit. Call Connected, 
Incoming Call and Reset Indication packets may contain a 
CID parameter field for the DCE to identify the remote end 
of the virtual circuit. The CID field of a Call or Reset Re
quest "reconnection" packet will contain a CID for the 
remote end, and optionally another CID for the DTE to 
identify the new local end to which the remote end is re
connected. We note that this requires extension of the Call 
Accepted and Call Connected packet formats of X.25. The 
simplification of the procedure to use a single CID for both 
ends of the VC is a subject for further study. 

An example of the call "reconnection" procedure in a 
national call is shown in Figure 5. DTE I is connected to 
the network by link A whilst DTE 2 is connected by auton
omous links C and D. A virtual circuit is established through 
links A and C originally. When DTE 2 detects link C is 
down, it selects a free logical channel on link D and rees
tablishes the call by sending a Call Request packet with 
reconnection facility (REC). When the node servicing link 
A receives this packet, it checks the facility field. As it 
refers to the reconnection of a previously established call, 
the node does not generate an Incoming Call but resets its 
end of the virtual circuit instead. On completion of the reset, 
the node will initiate an abort of the process originally serv
ing the remote end (old logical channel). It also returns a 
confirmation that reconnection is completed to the new 
process (new logical channel) at the remote end. If the net-
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(A) CONFIGURATION 

LINK A DTE 1 
LINK C 

DTE 2 LINK D 

(B) CALL SET UP FROM DTE 1 (LINK A) TO DTE 2 (LINK C) 

CR (CID=a) 

CALL 
IC (CID=a) 

CA (CID=c) 

(C) DTE-INITIATED RECONNECTION BY DTE 2 AFTER LINK C FAILURE 

CR (REC, CID=a,d) 
CALL (REC, a, d) ~ 

RI (REC, CID d) 
I-

RC 
""- ACCEPT 

I 
.. -..Q..C ...-

(D) NETWORK-INITIATED RECONNECT ION AFTER LINK C FAILURE 

RI (REC, CID=a) 

RC 

LEGEND: CR= CALL REQUEST 
IC= INCOMING CALL 
CA= CALL ACCEPTED 
CC= CALL CONNECTED 
RI= RESET INDICATION 

IC (REC, CID=a) 

CALL (REC,a,d) CA (CID=d) 

ACCEPT 

RC= RESET CONFIRMATION 
CID= CONNECTION I.D. 
REC= RECONNECT PARAMETER 

* = INITIATE ABORT OF PROCESS 
FOR CID=c 
ON LINK C 

Figure 5-Illustrations of possible reconnect procedures. 

-

~ 
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work detects that link C is down and knows that there is an 
alternate link D, it may automatically reconnect as shown 
in Figure 5(D) on link D. 

The reconnect capability may be useful in the following 
application areas: 

1. Whenever fast re-establishment of calls is required., 
This is essential for real-time traffic or for commercial 
real-time systems, e.g. digitized voice, airline reser
vations. 

2. Whenever the context of the communication of the end 
users is to be kept. One example is in facilitating access 
control to data base systems. 

3. Whenever a specified quality of service (e.g. probabil
ity that a virtual circuit is not disconnected) is to be 
maintained. This is particularly relevant to permanent 
virtual circuits. 

·Software and addressing considerations 

Having outlined the implementation alternatives, it is im
portant to note that the node software organization and the 
internal operation of a PSN may impose constraints on the 
implementation of user access paths. In particular, multi
homing can be easily achieved only by the autonomous 
multi-link implementation since the other implementations 
need to coordinate the transfer of packets on the various 
physical circuits and links, and are restricted to a single 
node. 

Typically, the node control software of a PSN may be 
designed as a set of high-level subsystems consisting of 
hierarchically cooperating, functionally separate, and mod
ularly decomposed components. The distribution of the soft
ware components to the various physical processing units 
(i.e. LC, LP, CE) determines the circuit configurations 
which may be implemented. The line processor (LP) per
forms at least all link control functions, and its reliability 
would restrict the reliability of a multi-circuit link. 

A floating multi-link implies that packets for the virtual 
circuits are dynamically switched between links. If both the 
link and packet levels of X.25 are implemented in the LP, 
then a floating multi-link must have all its links connected 
to the same line processor and can be considered as an 
alternative for a multi-circuit link. However, if only the link 
level is implemented in the LP, then the links can be con
nected to different line processors and use the common 
memory for. communication and coordination. Such a soft
ware organization permits a floating multi-link with a still 
better reliability. 

An autonomous multi-link may not be constrained by node 
software structure. If the links are controlled by different 
LPs, the coordination and resynchronization (i.e. the recon
nect procedure) may be accomplished by the common equip
ment. However, for a multi-homed DTE, the addressing of 
access points on the network may impose constraints on the 
implementation. 

A network address is a unique identification for an access 

point in the network, and is used for routing calls during call 
establishment and for administrative purposes such as ac
counting, error reporting and directory listing. A multi
homed DTE is supported by assigning to it an autonomous 
multi-link with different addresses for the links. The sub
scriber usually prefers one or more addresses for his DTE 
independently of the number of links connecting it to the 
network. The subscriber may request an autonomous multi
link configuration in which the logical channel identifiers 
(other than zero) are partitioned over all the links for iden
tifying individual conversations uniquely. To the subscriber, 
a multi-homed DTE with a single address set is a useful 
reliable configuration. Because of network routing, tariff and 
accounting problems, the PSN administration may find it 
difficult to offer such a single address, multi-homed config
uration. 

In conclusion, each PSN administration will determine 
which access path implementations to offer depending on 
the software constraints of the particular switch architecture 
(i.e. single, dual, multi-processor) used in the network, and 
constraints due to the subnetwork system design (i.e. ad
dressing, routing, ... ). 

COMPARISON OF ALTERNATIVES 

This section contains a comparison of the access path 
configurations and implementations, described in previous 
sections, in terms of user reliability parameters, protocol 
features and implementation requirements. Th~ three alter
natives identified in this paper are: I) multi-circuit link, 2) 
floating multi-link, and 3) autonomous multi-link reconnect 
procedure. 

Reliability considerations 

The Reliability and Availability of the access path imple
mentations have already been quantitatively compared by 
referring to their associated configurations. However, we 
note that the Reliability of any associated virtual circuit 
depends on the characteristics of the protocol implemented 
on the configuration in a similar manner as does the Fault
tolerance. 

The multi-circuit link implementation has the best Fault
tolerance because its protocol is defined to consider the 
different physical circuits as a single transmission facility 
such that the failure of anyone physical circuit does not 
affect any virtual circuit. Virtual circuits are aborted only 
when all the physical circuits fail. The floating multi-link 
implementation has comparable Fault-tolerance in that it 
does not lose virtual circuits after a physical circuit or link 
failure. However, it requires a local recovery procedure 
which guarantees the integrity of the information transfer 
after a link failure. 

On the other hand, a link failure in an autonomous multi
link illlplell1t:lltatiun will lust: the virtual circuits associated 
to it. These virtual circuits can be recovered by re-estab-



lishing them on an alternate link. Hence, the autonomous 
, multi-link implementation has an acceptable Fault-tolerance 
only if the end-to-end reconnect procedure is implemented 
to resynchronize the virtual circuits in the event of a link 
failure. 

For the highest reliability achievable by multi-homing, the 
PSN administration may find it advantageous to offer an 
autonomous multi-link with multiple address sets. It should 
be stressed that a multi-link, implemented on independent 
line processors of a single node, with a single address set 
has slightly worse Reliability than a multi-homed multi-link. 
Furthermore, the Availability of the single node multi-link 
is better than that of the network. Thus, multi-homing does 
not bring any significant gain in overall reliability since the 
node is usually a multi-processor system. The high corre
lation between the failures of the different communication 
lines, connected to the same DTE, and the wide variability 
of their failure rates (3-4 orders of magnitude are common) 
would reduce the reliability gain still further. A more reliable 
and available access to an X.25 network may be better 
achieved by ensuring that the lines are really diversely 
routed, and as identical as possible, than by multi-homing. 

Protocol and implementation considerations 

To maintain compatibility with ISO, a multi-circuit HDLC 
protocol may be a desirable alternative for an X.25 interface. 
Major points left for further study in a multi-circuit HDLC 
protocol are semantics of SREJ, duration of time-out values 
and performance considerations. 

Two areas to be considered to make the floating multi
iink a viable proposal are: 

1. Link failure recovery procedures which avoid duplicate 
packets. 

2. Specification of the interaction between the frame and 
packet levels. 

The multi-circuit link and floating multi-link have the ad
vantage of having only local implications, e.g. multi-circuit 
requires the implementation of a new frame level protocol 
in both the DTE and the node. On the other hand, multi
link reconnect implies an end-to-end protocol affecting 
Level 3 of the DTE/DCE interface. This necessitates some 
implementation changes in the DTE and complex internal 
resynchronization mechanisms in the network. All these 
alternatives require the development of appropriate stand
ards. 

Multi-homing can be achieved by an autonomous multi
link configuration. Hence, the autonomous multi-link has 
potentially better flexibility than the multi-circuit or floating 
multi-link, but it is more attractive only with the provision 
of a reconnect capability. It is simpler to implement recon
nect for recovery from a link or a line processor failure than 
from a node failure. The implementation of reconnect by a 
PSN is constrained by its routing scheme and its assignment 
of network addresses to the multi-link. 
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CONCLUSIONS 

Users have different reliability requirements depending on 
their applications. A fault-tolerant data communications ser
vice is becoming more economically feasible because of the 
availability of cheap, reliable hardware components and new 
programming techniques to master software complexity. 
There are different multiple circuit configurations to meet 
these reliability requirements for the access paths between 
the DTE and the PSN. The implementation of these config
urations must take into account existing constraints in both 
the DTE and the PSN. It is recommended that PSN admin
istrations offer some form of multiple circuit access for 
DTEs which hides the network operational constraints from 
the users, e.g. hunt groups or preferably a multi-circuit link. 
The definition of a multi-circuit capability within HDLC by 
ISO and CCITT is urgently required. Finally, packet level 
procedures providing higher virtual circuit reliability should 
be studied within CCITT. 
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INTRODUCTION 

We are concerned here with the design of an interconnec
tion network for communication between terminals and 
computers in local distributed computer systems. By a local 
system, we mean one in which computers and terminals are 
concentrated in a relatively small area (e.g., with distance 
between terminals < 100 Km) and interconnected by com
munication links with relatively large bandwidth (e.g., up 
to 10 Mb/sec.). By a distributed network, we mean one in 
which the control of communication network is distributed 
among the computers and terminals. For our discussions, 
there is no need to distinguish terminals from computers 0 

Hereafter, we shall refer to them simply as stations. 
In recent years, several local networks have been de

signed and implemented. Among the better known ones are 
DCS (Distributed Computer System), Mitrix, Spider and 
Ethernet. 1-4 These networks, designed for different objec
tives (e.g., different intended applications), illustrate the 
different approaches taken to provide fast· and reliable 
communication. For example, in both DCS and Ethernet, 
reliable communication is achieved through the distribution 
of network access control to the stations in the network. In 
Ethernet, all stations are interconnected via a passive me
dium (a high bandwidth low loss bus called Ether.) Broad
cast packet switching discipline is used. The DCS is a ring 
network. A message from a source station addressed to a 
process residing in another station is placed on the ring and 
is transmitted in one direction to all stations connected to 
the ring. A station copies a message only if its interface 
finds that the destination process name contained in the 
message matches the name of a process residing in the 
station. The message is allowed to travel along the ring 
back to the source station and, there, is removed from the 

* This work was partially supported by Office of Naval Research No. 
NOOO 14-75-C-0982. 
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ring. Spider is a ring network containing several rings. A 
central switch is used to route packets destined for stations 
not in the same ring with the source stations. Similar to 
Spider, Mitrix is also a centralized network in which 
switching and bandwidth allocation functions are performed 
by centralized computers. 

We consider here a fault tolerant communication network 
in which multiple-link and subnetwork failures may occur 
due to natural or intentional damages. Application of fault 
tolerant networks can be found in shipboard communica
tion systems, and in traffic control and navigation systems 
where the growing use of digital sensors and computers 
requires large local fail-safe communication systems. Other 
application examples include networks linking process con
trol microprocessors, data acquisition terminals, central 
computers and other facilities in large manufacturing plants, 
and networks connecting intelligent terminals serving indi
vidual users for the purposes of text editing, managing 
personal data bases, providing controlled access to shared 
data bases, exchanging messages, etc. In these examples, 
an interconnection network must provide continuous com
munication linkage between stations. 

Assumptions on the overall local distributed network and 
our design objectives are summarized in the next section. 
In the third section, a routing algorithm, which guarantees 
finding a route from any source and destination pair as long 
as routes between them exist, is described. A network 
access protocol is described in the fourth section. The 
relatively small round-trip propagation'delays and wide 
bandwidth of the links are used in the design of this 
protocol. 

GENERAL ASSUMPTIONS AND DESIGN 
OBJECTIVES 

In the interconnection network considered here, the com
munication links are full duplex lines with bandwidths 
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identical to or larger than that required by any communi
cation station. Connecting to the intersections of two or 
more communication links are switch nodes. The switch 
nodes resemble outlets in power supply lines. Any station 
with the appropriate interface may be plugged into any of 
the switch nodes. Some of the switch nodes, therefore, are 
not connected to any station. Without a station attached to 
it, a switch node serves simply as a routing device. 

To assure that the stations remain connected with high 
probability, redundant connections are provided. We con
sider here the special case when the interconnection net
work forms a homogeneous array. Examples of such net
works are shown in Figure 1. The design of network 
topology for a given survivability criteria is a well known 
problem and will not be addressed here. We note that when 
successful communication between all pairs of communi
cation stations are equally important and switch nodes and 
links are identical, homogeneous networks are maximally 
reliable 5 (both in terms of being maximally connected net
works and having maximal survivability.) Simulation stud
ies 6 of large arrays show that in terms of the survivability 
(average fraction of stations which remain connected after 
damage occurred), a network in which each switch node is 
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Figure l-Examples of almost homogeneous arrays. 

connected to four or more of its nearest neighbors is almost 
optimal when all routes can be used. 

The communication links, switch nodes and stations may 
fail independently and at random. Moreover, multiply links 
and switch nodes may fail together due to natural and 
intentional damages. Changes in the network topology may 
also be caused by additions to and modifications of the 
network. However, links in a local network, not being 
exposed to conditions which affect long distance cables or 
radio links, are less susceptible to intermittent failures. 
Hence, we assume here that changes in network topology 
occur relatively infrequently. In particular, it can be consid
ered as fixed during the routing of a particular message. 

It is our objective to design a message routing algorithm 
so that the delivery of message from a source station to a 
destination station is guaranteed as long as there exist some 
paths from the source to the' destination. If no such path 
exists, this fact is detected sooner or later. Because of the 
relative shortness and wide bandwidth of the communica
tion links, it is not essential that messages be delivered via 
the shortest routes. We assume that each switch node is 
aware of the status of the links connecting to it and the 
status of the adjacent switch nodes. Only such local infor
mation on the condition of the network is used by the 
routing algorithm. 

As in the case of store-and-forward networks, a message 
being transmitted is error-checked by each of the switch 
nodes enroute. However, to minimize the complexity of 
the switch nodes, the messages themselves are not stored 
by the switch nodes. The requirement on the processing 
capability of these switch nodes is further reduced by 
carrying out the tasks such as buffering for flow control, 
message error control, duplication detection, etc., in the 
network interface inside the stations. (The description of 
this interface is in the fourth section.) 

ROUTING ALGORITHM IN A HOMOGENEOUS 
NETWORK 

The routing algorithm designed here guarantees the deliv
ery of messages between any pair of stations as long as 
there exist some paths between them. For the sake of 
concreteness, we confine our discussions to the case of the 
endless matrix network shown in Figure lao Generalization 
to other similar homogeneous network topologies is dis
cussed in Reference 7. 

Basic concepts 

A natural set of addresses for the switch nodes in the 
endless matrix is the set of ordered pairs (i j), i =0, 1, .. , 
m-I and j=O, I, .. , n-l. Because of the relative shortness 
of communication links between switch nodes, propagation 
delay severed by a message can be reasonably measured by 
the number of switch nodes along the route between its 
source and destination, The number of switch nodes along 
a route connecting two nodes is referred to as the distance 
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between the two nodes. For an m by n network, modulo m 
arithmetic for the x direction and modulo n arithmetic for 
the y direction allow the calculation of distances between 
switch nodes. 

When every switch node and link is operational, a routing 
algorithm that finds the shortest path can be obtained 
easily. For example, the shortest route from the switch 
node (ij) to the node (~, jd) shown in Figure 2 can be found 
by calculating the distances from row j to row jd along 
column i in both directions: Ud -j I or n - U -jd I and selecting 
to send the message in the shorter direction along column i 
to node (i, jd). From node (i, jd), the message is forwarded 
to column ~ along jd in the shorter one of the two direc
tions. We referred to this simple shortest route algorithm 
as Algorithm P. 
Howe~er, Algorithm P does not work when some switch 

nodes and tinks are down. H there is a switch node or link 
along the route chosen by Algorithm P fails, a detour 
around it must be found. To carry out this simple statement 
for all possible patterns of multiple link and node failures is 
not as simple as it first seems since switch nodes have only 
local information. Examples in Figure 3 illustrate some of 
the difficulties. The bold lines show schematically the links 
and/or switch nodes that are down, thus forming a "wall." 
Suppose that the wall forms a trap as shown in Figure 3a. 
Moreover, suppose that the entrance to the trap is only one 
row wide. According to Algorithm P, a message from S to 
D is sent from S to A and onward to the right. Clearly, the 
destination D cannot be reached in this way. As a matter 
of fact, in order to reach D, the message must be sent out 
of the trap, again through A. That is, the switch node A 
must relay the message to its right neighbor the first time 
but to its left neighbor the second time. Note that in both 
cases, the local information about the condition of the 
network for node A is the same. This fact implies that some 
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Figure 2-Illustration for the shortest route. 
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Figure 3-Examples of traps formed by failed lines and nodes. 

information in addition to the conditions of its neighboring 
nodes and links is necessary. 

Let us consider also the configuration in Figure 3b. 
Suppose that a message is sent along the shortest route 
from S to D. When the wall is reached, we may attempt to 
search for an opening in the wall to reach column id • The 
search is obviously fruitless since the wall forms a closed 
loop. (Hereafter, this type of loop is referred to as a iype I 
loop.) However, column id can be reached via the alternate 
route shown in the figure. On the other hand, the wall may 
form a loop (referred to as a Type II loop) as shown in 
Figure 3c. In this case, since there is no way to reach the 
destination D, this fact must somehow be detected. 

Wall-touching principle 

To get around the walls, we may use a version of the 
wall-touching procedure commonly used to find a way out 
of a maze. That is, one traverses along the wall always 
keeping the wall to the right (or left). Unless the wall forms 
a loop, a more desirable position win eventually be 
reached. 

In order to detect the existence of a loop, we need to 
check if a switch node of reference (say A) has been 
reached more than once. (Selection of the node of reference 
will be discussed later.) However, checking the position of 
the switch node reached is not sufficient as illustrated by 
the example in Figure 4. In this case, the switch node A is 
reached twice although the wall does not form a loop. 
However, it is clear from this example that a loop can be 
unmistakenly detected if we also check the direction in 
which the message is sent from the switch node A each 
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outgoing direction,the second time at A 
outgoing direction,the first time at A 
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Figure 4-An example. 

lime. In particular, the message is sent to a different 
neighboring node in each of the two times indicating that 
the wall does not form a loop. 

Expanded addressing scheme 

However, since there still is a path to the destination, 
even when a Type I loop exists, the wall-touching proce
dure must be modified to distinguish Type I loops from 
Type II loops. In order to do so, an expanding addressing 
scheme is introduced: In addition to the ordered pairs used 
for node addresses, the expanded node addresses contain a 
virtual network address portion as defined in Figure 5. The 
first 2-tuple in an expanded address of a switch node is 
referred to as its virtual network address, and the second 
2-tuple as its node address. Each of the m x n networks in 
the expanded network is referred to as a virtual network 
cell. The expanded addressing scheme allowed us to ad
dress an expanded network of 2m x 2n cells each containing 
mXn switch nodes. We note that the virtual network ad
dresses keep track of the number of times the path of a 
message wraps around the mXn original network as it 
traverses in the network. The range of the virtual network 
addresses is from (-m, -n) to (m,n) as illustrated in Figure 
5b. 

In the expanded network, the difference between Type II 
loops and Type I loops becomes apparent as illustrated by 
the examples in Figure 6. A Type II loop appears as real 

. loops repeated one per virtual network. On the other hand, 
a Type I loop appears as parallel lines. Hence, if a message 
starts from a node in the expanded network with node 
address (i J) and reaches another node whose node address 
is also (i,j), we conclude that a Type II loop exists (and 
hence there is no path between the source and destination) 
only when the virtual network addresses of the two nodes 
are the same. (From Figure 6a, we see that their expanded 
addresses are the same since they are the same node in the 
expanded network.) 
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0,-2 1,-2 2, -2 3, -2 

(a) Virtual Network Addresses 

at most m 

dL I"O~'.L (~ III I 

tillles l 
wi thout 
looping 

Actual path in the 
network 

Eouivalent path in expanded network 

Figure 5-Expanded network. (a) Virtual Network address [p,q]: p=No. of 
times the links (m-I, j)-(O, j) are crossed going right (p;:::O) or left (p<O). 
q=No. of times links (i, n-l)-(i, 0) are crossed going up (q;:::O) or down 

(q<O). 

Choice of destination 

In the expanded addressing scheme, there are many 
virtual destinations, one in each of the 4mxn cells. When 
a Type I loop is encountered, we must determine the virtual 
destination that can be reached. As shown in Figure 7, a 
Type I loop divides the expanded network into different 
regions. In particular, the wall forms either a horizontal 
division, a vertical division, or a multi-diagonal division as 
shown in Figures 7a, b, or c, respectively. To find the 
existing path, it is clearly necessary to determine the type 
of division formed by the loop. A look at Figure 7 tells us 
how to carry out this task. For example, as shown in 
Figure 7b, a message can be sent along a path parallel to 
the wall. When it reaches a node with the same node 
address as the one it started from, only a horizontal bound
ary of virtual network cell is crossed if the Type I loop 
forms a vertical division. Moreover, since the wall is al
ways to the right of the path, only the upper boundary is 
crossed as shown. Hence, a virtual destination is reachable 
by sending the message to the left neighbor and onward. 
Figure 7b and c illustrate the cases when the wall forms a 
horizontal division and multi-diagonal division, respec
tively. Table I enumerates the basic patterns that are rec
ognizable by right-hand wall-touching. Column 1 lists the 
number of times horizontal and vertical boundaries are 
crossed as one moves along the wall as illustrated graphi
cally in Column 2. The last column gives the directions in 
which the messages should be delivered. that is, the virtual 
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Expanded network address for node A: [0 ,OJ( i ,j) 
Expanded network address for node A': [O,O](i,j) 

(a) Type II loop 

Expanded network address for node A: [O,O](i,j) 
Expanded neblOrk address for node A': [l,-l](i,j) 

(b) Type I loop 

Figure 6-Examples of Type I and Type II loops. A~~~~A' shows a 
closed path traced during wall touching. 

destination that can be reached in each case. ("Left" 
means the cell to the left of the current position. "Up" 
means the cell on top of the current cell, etc.). 

Routing algorithm 

The routing algorithm is repeatedly carried out by the 
switch node enroute until the destination node is reached 
or the fact that there is no path connecting the source and 
the destination is ascertained. The routing algorithm is 
based on the minimal distance algorithm, to be described. 

Minimal distance algorithm 

When no loops are encountered, distance between the 
current node to destination node is calculated as in Algo-

rithm P. When a Type I loop is encountered, the distance 
between nodes [p,q](iJ) and [p' ,q'](i' ,j') in two different 
cells is given by d=(p'-p)m+(i'-i)I+I(q'-q)n+(j'-j)l. 

Let de,** denote the shortest distance to the destination 
from all switch nodes already reached so far. The node j 
whose distance to the destination is equal to de, is referred 
to as the closest node. It serves as the reference in detec
tion of loops. 

Minimal Distance Algorithm 
1. Calculate the distance from the current node to the 

destination, de, and compare with the curreni value of 

del' 
2. If de ~de" move to the neighboring node that is on the 

shortest route to the destination determined so far, if 
possible. Update the record for del and the address of 
the closest node. 

** When there is more than one node with distance to destination equal to 
de], the closest node is one reached last during routing. 

p 

o 

-) 

o 

o 

Ipl=lql 

TABLE I-Reachable Virtual Destination 
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(a) A wall forllling a 
horizontal division 

(b) AwallforlJlinqa 
vertical division 

(c) Walls fonlling lIlulti-didljOnal division 

Figure 7-Division of the network into different regions by the waIls. 

3. If de >de, or if de :s;de, but impossible to reach the 
neighboring node chosen so far, move according to 
the wall touching principle. A loop is detected when· 
ever a node is reached twice while traversing in the 
same direction. 

Description of the routing algorithm 

Starting in Phase 1. 

Phase J 

1. Repeat the minimal distance algorithm until the desti
nation is reached or a loop is detected. 

2. If the destination is reached, or Type II loop is found, 
terminate. 

3. If Type I loop is detected, determine the appropriate 
virtual destination in the expanded network as given 
in Table I and go to Phase 2. 

Phase 2 

4. Apply the minimal distance algorithm repeatedly, 
using the modified distance calculation for destination 
node until a loop is detected or the destination is 
reached. 

5. If the destination is reached, terminate. 
6. If a loop is detected (this loop will always be Type I if 

the network remains unchanged), change the wall 

touching parameter (from left to right or vice versa) 
and go to (4). If both left and right had been tried, 
terminate. * * * 

The algorithm is illustrated by the example shown in 
Figure 8. It is written in detail in [7] in a modified version 
of PASCAL language. Table II lists the information re
quired for routing a message from the source node to the 
destination node. This information is carried in the message 
and is updated by the switch nodes enroute. The node 
address and virtual network address of the closest node is 
used in the minimal distance algorithm, and also as refer
ence for loop detection. A current virtual address is needed 
for distinguishing the types of loops and also to calculate 
the distance in Phase 2. The entry in touch hand specifies 
whether left wall-touching or right wall-touching is being 
carried out. Sending direction specifies the direction in 
which the message was sent when the node is reached. 
This is used when testing for the existence of a loop. The 
total number of bits in the case of m=n= 16 is 50 bits. 

*** This case occurs when there are two or more Type I loops exist isolating 
the source from destination. 

left hand wall touching 

Path in 
righthand 
wall 
touchiny 

loop detected 

actual path in the network 

virtual 
des tina t i on 

-1,1 
r:hoc;en 

[1,lttl ,)S vif'wf'd in thf' flxJldnrlerl nptWOI'k 
Figure 8-Illustration of the routing algorithm. 

hand 
touchinq 
begins' 
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Address of destination 
«0,0) (m,n)) 

Virtual network address 
« -m, -n) to (m,n)) 

TABLE II 

Node address of closest node 
Virtual network address 

of closest node 
Current virtual network 

address 
Touch-hand 

(right, left) 
Sending direction a closest node 

(U, L. LEFT, RIGHT) 
Phase 

(1,2) 

length in bits 
(x = [l0lkm] + [lOg2n )) 

x 

x+2 
x 

x+2 

x+2 

2 

NETWORK PROTOCOL AND INTERFACE 

In the design of network protocol, we make use of the 
relatively small round-trip propagation delays and large 
bandwidth of the data links in a local network. Since 
changes in network topology occur relatively infrequently, 
a route from a source to a destination, once found, can be 
used until either it is no longer needed or corruption or 
disruption of data transmission is detected. Within the 
network, links which consistently corrupt data are said to 
be unoperational. A version of an ARQ (Automatic-Rep eat
Request) scheme is used for error control. We assume that 
source stations in the network either contain data buffers or 
are able to regenerate data as needed. 

The switching discipline used here is referred to as call
switching discipline. It resembles the scheme used in the 
telephone network where a path for audio signals is set up 
by sending a control signal during the call establishment 
phase. In our network, whenever a source station wants to 
communicate with a destination station, a network control 
message is sent from the source switch node for the pur
pose of establishing a route from the source to the destina
tion. When a route is found, the destination switch node 
sends a response message to the source to acknowledge the 
success of call establishment. Hereafter, messages contain
ing data from this source station to the destination station 
are sent along this route. 

From the viewpoint of the source station, the transmis
sion of a message proceeds according to Figure 9. To 
establish a route, the source station assembles an address
ing control message containing the destination address 
(switch node address plus device number) and transmits it 
to the switch node which serves the source device. Without 
loss of generality, the formats of communication messages 
are assumed to be as shown in Figure 10. For each address
ing control message sent, a response message is received in 
return. The source ~tation compares the address in the 
response message with the address of the destination node. 
When they match, this response is interpreted as an ac
knowledgment that a working route to the destination is 

found. The source station may begin to send data (using 
the data variant of the communication message format). 
Again, for each message sent, a response message is re
ceived. As long as the address in the response messages 
remains that of the destination node, data transmission 
proceeds. A response message containing a node address 
other than the destination node address is interpreted as a 
negative acknowledgment. When such a response is re
ceived, transmission is restarted beginning with the ad
dressing phase, by the source. To terminate the call, one or 
more terminator control messages are exchanged. Upon 
detecting the terminator control messages, switch nodes 
along the established route may delete routing information 
used during the call. 

The operations of the switch node are a little more 
complicated. Only the general operation of a node will be 
ex-plained heTe. A switch node services many links 10 other 
nodes plus zero, one or more (up to d) ports to devices and 
is capable of receiving messages on all device ports and 
link ports simultaneously. Upon receiving a message, the 
switch node either forwards the message toward the desti
nation within the time limit defined for receiver timeouts or 
returns to the sender a response message containing the 
switch node's own node address (plus a zero device code). 
This response message is used either when the node is too 
busy to issue a proper response in time, or when concurrent 
traffic makes it impossible to react to an addressing re
quest. 

Clearly not all requests for attention of the switch node 
can be serviced. The addressing mechanism resolves the 
switch node resource allocation problem. All contentions 
occur within the addressing phase. When an addressing 
control message arrives at a switch node where the re
sources to process it are not available, the node responds 
to the requestor with a response message containing the 
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S control node device Bit slot for Block S 
y 1 code address port routing when control sum y 
N code is 1 . N 

Network control message format 

S control Block S 
y 0 and node device Data y 

address port sum N N iSequencing 

Data message format 

Control code for network control message format 

00 - addressing control: emitted by the source node 
as part of the call establishment signalling. The 
address of the destination node is contained in the word. 

01 - addressing response: generated by switch nodes and 
returned to the source node as a ~sponse to each 
addressing control message processed and forwarded. 
The node address and device port form the address of 
the destination device address when addrp.ssino control 
message is correctly received and forwarded. ~The node 
address contains the address of the switch node when 
no response is received, or the response is erroneous, 
or when the switch node or its outgoing links are busy. 

10 - terminator: emitted by the source node to terminate 
the call. Node and device address in the word is the 
address of the destination. 

Figure I~Communication message for stations in the network. 

address of the node. The requestor then reissues his ad
dressing request. This process repeats until a working route 
is found. 

After a route to the destinaLion is found, the switch 
nodes' enroute keep track of the outgoing links on which 
messages to the destination are sent. A switch node acts 
like a relay point of messages in the network. It passes any 
messages received directly to outgoing links if the block
sum-check by the switch node does not find the message 
erroneous. For each message sent out over a link, the 
switch node expects a response message from the neighbor
ing node in return. No erroneous messages are relayed 
further. When an erroneous message is received, it is 
discarded without eliciting a response. If no response ar
rives, or if the received response is erroneous, the link is 
deemed unoperational. The switch node informs the source 
node this fact by sending a response message containing its 

own address. Thus, alternate route selection is invoked to 
find another working route. During addressing phase, when 
a response message is properly returned to a switch node, 
it is passed back to the incoming line and is the response 
which the source device will ultimately see. Thus the 
source device may monitor the progress made by the ad
dressing message at any time. The whole operation is 
analogous to remote controlled switching units, where each 
switch node sets up a connection to relay messages as it 
processes an addressing message and the connection from 
source to destination is built up one link at a time. 

The communication scheme presented above is distinctly 
different from packet-switching, and seems capable of sup
porting the demands of local communication networks. 
Future work includes (a) The determination of whether the 
network wil1 heh~ve deterministically. (That is the estab" 
lishment of one route does not lockout activities over 
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another.) (b) Performance evaluation to determine the ef
fective bandwidth of the network. (c) The design of ad
dressing scheme and protocol for broadcasting mode. (d) 
The design of diagnostic aids needed to maintain/repair the 
network. 
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An analysis of a distributed switching network with 
integrated voice and data in support of command and 
control 

by DANIEL SCHUTZER 
Navalex 
Arlington, Virginia 

INTRODUCTION 

The potential for increased transmission efficiency of mili
tary tactical command and control data links through voice/ 
data integration has increased in importance in recent years. 
With the introduction of even more sophisticated and au
tomated weapons systems, the requirement for on-line ex
change of data among tactically-embedded military com
puter systems has risen dramatically. Today we are faced 
with a proliferation of data link requirements for innumer
able military systems that span all the services. An already 
densely populated electromagnetic environment is faced 
with still greater demands for its scarce bandwidth re
sources. Adding to this situation is the fact that these very 
resources that are in such heavy demand are quite fragile in 
the face of military electronic warfare measures. And, with 
few exceptions, the means for countering these electronic 
warfare measures place still greater demands on the already 
scarce bandwidth resources. All of the above provide the 
motivation for exploring new avenues and techniques that 
achieve greater efficiency of transmission resources. Eco
nomically, the revolution in digital componentry makes 
more viable the consideration of a greater degree of voice/ 
data integration over tactical data links than would have 
been possible just a few years ago. Namely, competing sig
nal processing techniques-Digital LSI, CCDs and SAWs 
are pushing the boundaries of technologies and making eco
nomically attractive spread spectrum, time division mUltiple 
access data link systems and internal mUltiplexed data dis
tribution techniques which would simplify the integration of 
voice and data. Finally, with the increased sophistication of 
military weapon systems, the interrelationships and employ
ment of voice and data in the conduct of war becomes even 
more intertwined and requires in many cases careful re
evaluation and re-enumeration. 

Although there has been much analysis and study in recent 
years concerning the advantages and disadvantages of in
tegrating voice and data over commercial and military stra
tegic switching networks and long-haul data transmission 
systems, there has not been much analysis to date that has 
studied similar trade-offs for tactical data links. Tactical data 
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links can be thought of as a distributed form of switching 
where mUltiple users share a common transmission facility 
and where the associated mUltiplexing (time and frequency 
sharing), addressing and routing functions, rather than being 
implemented on separate multiplexers, concentrators and 
switches, are implemented directly in the data link terminal 
design. Two quite different examples of such a data link are 
the JTIDSl and the Fleet SATCOM TSCIXS links.4 

Interestingly enough, recent advances in the interconnec
tion of loosely coupled heterogeneous intra-nodal computer 
systems (systems co-located on a single platform or site) 
have resulted in bm~sing and networking schemes (such as 
the Farber ring, the experimental distributed processor 
(XDP), the Shipboard Data Multiplex System (SDMS), the 
Xerox Ethernet, the LCS net at MIT, and the Shipboard 
Integrated Processor and Display System (SHINPADS)) 
which can also exploit the advantages of voice/data integra
tion. 

In fact, there are distinct advantages to designing the 
intra-nodal and the inter-nodal networking protocols to be 
as similar as possible. This is discussed in more detail in the 
following section. 

VOICE/DATA INTERRELATIONSHIPS 

All command and control information is communicated 
either in the form of voice, data, narrative message or graph
ics. From these communications, data is extracted and in
formation derived. In the past, messages and the data ex
tracted from these messages were filed in storage cabinets, 
clipboards, etc. for later retrieval and for message account
ability. They were filed based upon content and were often 
cross-indexed on more than one subject. They were asso
ciated with one another in terms of the categories they were 
filed under and in terms of the data extracted and the infor
mation derived from the message. The data was retrieved, 
summarized and in some cases plotted. Although the media 
and the techniques have changed, the basic processes re
main the same even in the computer-to-computer case. 

Fundamentally, command and control involves the ex-
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change, storage, retrieval and manipulation of information 
to support command decision-making with respect to mili
tary plans, objectives, resource allocations and assignment, 
conflict resolution and combat direction and management. 
Consider the following two examples. 

At the National Command Authority level and the Fleet 
Command, or component command level, messages sum
marizing such information as the combat readiness, local 
weather and hostile units are prepared by the responsible 
organizations for electronic transmission, generally in for
matted message form, to the appropriate Command author
ities. There the messages are received and validated by 
computers. If validated, the entire message and/or the per
tinent data is logged, indexed and filed in digital computers 
by categories such as date-time-group and unit identity. 
Likewise, orders, plans and warnings are also prepared in 
formatted message form for electronic transmittal to the 
responsible authorities. The stored data and formatted mes
sages are later retrieved, sometimes with supporting com
putations based upon the retrieved data (information), to aid 
in situation assessment and command decision-making. On 
the other end of the spectrum, sensors (generally analog) 
are automatically processed and reduced to digitally for
matted sensor contact reports which are then, where pos
sible, automatically associated with earlier sensor reports to 
identify targets with sufficient location accuracy for assign
ment to an appropriate weapon system. These target as
sessments are transmitted directly to the appropriate 
weapon direction computer systems and there input auto
matically to the appropriate fire control solution. Human 
interaction is restricted to ambiguity resolution, validation 
and override types of activities. In all of these cases we find 
that the process can still be modelled by a basic message 
handling (message preparation, distribution and routing, val
idation, storage, retrieval and manipulation and presenta
tion) operation/system. 

In fact, all command and control inter-process data can 
be modelled as an n-ary relation, R, which has the proper
ties: 

1. Each row represents an n-tuple of R. 
2. The ordering of the rows is immaterial. 
3. All rows are distinct. 
4. The ordering of the columns is significant-it corre

sponds to the ordering Slo S2, ... , Sn, of the domains 
on which R is defined. 

5. The significance of each column is partially conveyed 
by labelling it with the name of the corresponding do
mains. The example in Figure 1 illustrates a relation of 
degree 4, called "position report," which reflects the 
location and status of a unit in a task force commander. 

POSITION 
REPORT 

Location in 
(Identification LAT-LONG 

63-50 
67-71 

Figure 1-A relation of degree 4. 

Time 
of 

Status Report) 

lO 

2 
0900 
1400 

A relation whose domains are all simple can be repre
sented in storage by a two-dimensional column-homogene
ous array of the kind just discussed. Some more complicated 
data structure is necessary for a relation with one or more 
non-simple domains. 

Consider, for example, the collection of relations exhib
ited in Figure 2. "Signature" is a non-simple domain of the 
relation "sensor report." The tree in Figure 2 shows these 
interrelationships of the non-simple domains. 

These more complicated relationships can, however, be 
normalized to a multiple relation over simple domains. Fig
ure 3 is an illustration of a normalized form of Figure 2. 

The simplicity of the array representation which becomes 
feasible when all relations are cast in normalized format is 
not only an advantage for storage purposes but also for 
communication of data between systems which use widely 
different representations of the data. The communication 
form would be a suitable compressed version of the array 
representation and would have the following advantages: 

1. It would be devoid of pointers (address-valued or dis
placement-valued) . 

2. It would avoid all dependence on hash addressing 
schemes. 

3. It would contain no indices on ordering lists. 

All inter-process communications could then be placed in 
either an informal narrative message format, or a formatted 
message in a normalized relational form. Similarly, all stor
age retrieval, computations and correlation of the received 
data can be shown to be defined in terms of operations on 
these relations and their domains. 

For example, correlation involves a matching operation 
on the sensor report relations ID, signature and location 
domains. Thus, the basic C2 processes of data dissemination, 
analysis, storage/retrieval and presentation can all be ex
pressed in terms of message handling. 

There are advantages to viewing the command control 
process in this manner. They are briefly summarized below: 

1. The message-handling process is fairly well understood 
with an extensive theoretical foundation2,3,5,6 and sup
porting analyses and simulations. Platforms and nodes 
can be quantitatively characterized in terms of their 
message-handling capabilities. 

Sensor Report 
name ID 

SENSOR REPORT 

Location 
(LOC) Signature 

Waveform 
Class 

Pulse 
Repetition 

Interval (PRI) 

Sensor report (Name, Report ID, Location, Signature) 
Signature (Waveform class, PRI) 

Figure 2-Unnormalized set. 



Sensor report' (Name, Report ID, Loc) 
Signature' (Report JD, Waveform class, PRJ) 

Figure 3-Normalized set. 

2. The message distribution and routing process forms a 
natural partitioning upon which the interface and com
munication among command and control processes can 
be based. 

3. Requiring ihe command and control process to com
municate exclusively by means of man-readable mes
sage exchanges allows for ease of human intervention 
and take-over of any command and control process. 
Of course, a degradation in processing time would be 
experienced under manual take-over. 

4. Inter-connecting command and control processes ex
~lu~ively by means of asynchronous variable length 
message exchanges simplifies the interfacing among 
processes, allowing for a generalized approach to proc
ess interfacing which does not distinguish whether the 
interfacing processes are program modules on the same 
processor, on different processors in the same local 
node, or are processors remote from one another. This 
results in a design flexibility which can easily accom
modate the addition and deletion of processors, new 
functions and capabilit'ies, and which permits the dy
namic remoting of functions. This enhances the prac
ticality of implementing a survivable nodeless recon
figurable system. It also serves to isolate and, thus, 
insulate the main portion of the application design from 
the particulars of any specific message format or struc
ture. 

5. The asynchronous, variable length nature of the mes
sage exchanges allows the system to work independ
ently of the reporting rates and the available commu
nications bandwidth. This allows one to reduce the 
reporting rate and/or the message content in response 
to decreases in available system processing capacity 
and in available communications capacity. Thus, a loss 
or denial of facilities (processing or communications) 
and/or a manual override can be accommodated with 
a graceful system degradation rather than an abrupt 
loss of capability. 

6. Restricting the communication between processes in a 
distributed processor network to' a message exchange 
format should ease the control and scheduling of these 
processes. Several systems have already been buiii and 
operate on these principles, the ARPANET and its 
associated TENEX services being a notable example. 
Recent research trends in distributed processor net
work operating systems also appear to support these 
notions. 7 

7. By couching the command and control process in mes
sage-handling terms, there is the potential for capital
ization of the software and concepts available from 
such rapidly growing commercial application areas as 
word processing, office automation and electronic 
mail. 
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On the negative side, there will be, of course, a loss of 
computer efficiency resulting from the requirement that all 
process-to-process communication be in man-readable mes
sage form and not through such mechanisms as common 
addressable blocks of memory or other such more tightly 
coupled program module inter-communication. But avail
able computer processing capacity and memory is now a 
relatively abundant commodity, and to achieve computer 
efficiency at the sacrifice of other now scarcer resources 
such as manpower is the last thing we should do. 

It shouid be noied, however, that the restriction of proc
ess-to-process communications via man-readable message 
format should not be misconstrued as prohibiting the 
compression and compaction of this message prior to its 
physical transmission over the communications media and 
its subsequent decoding and decompaction upon its recep
tion at the other end. This operation is transparent to the 
process involved, is conservative of communications- b-an-d
width, which is a relatively scarce resource, and is an ac
ceptable, indeed, a preferred approach. 

Such a model of the command and control process en
courages the ease with which voice and data can be inte
grated. In this model, voice and data are recognized as 
merely two different medias to support Command and Con
trol message (information) exchange and manipulation. 
Whereas voice requires greater bandwidth and exhibits less 
efficient information compression, it has the advantages of 
allowing for a rather informal, highly interactive and natural 
means for human communication. Data, on the other hand, 
exhibits more efficient use of communications bandwidth, 
and is a more natural medium for computer entry and for 
message storage, retrieval and manipulation. Both media are 
needed, and in fact, the employment of one over the other 
is highly dependent upon ihe situation. If the situation calls 
for complex team problem-solving, or is highly manual, in
formal voice is preferred. If the situation stresses conser
vation of bandwidth or communication with a highly auto
mated weapon system, then data is preferred. Since the 
military situation is highly dynamic where systems fail, are 
jammed and destroyed, the ability for easy and effective 
control and reallocation of the voice/data mix is desirable. 
A distributed switching network over which voice and data 
are integrated would greatly facilitate and enhance such a 
capability. In addition, there is a definite advantage perform
ance-wise in such an integration of voice and data. This is 
addressed in the following sections. 

PROBLEM FORMULATION 

The basic issue to be addressed can be reduced to the 
following question: 

Given a fixed available bandwidth, is it preferable (e.g. 
more efficient) to (I) Allocate this bandwidth among two or 
more radios on a relatively fixed basis with voice traffic 
restricted to some pre-selected portion of the total number 
of available radios and data traffic restricted to the remaining 
portion? (2) Share the ,entire available spectrum among both 
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types of services, voice and data, on a totally demand basis? 
or (3) Allocate along some hybrid scheme (partial dedicated, 
partial shared on a demand basis)? 

Furthermore, for the demand assignment model, is it pre
ferable to allocate on a voice silence, call-by-call, message
by-message basis or on a less dynamic reservation type of 
basis? 

The problem can be analyzed by studying the two statis
tical models illustrated in Figure 4 where Al equals the av
erage number of voice calls per second (the voice arrival 
rate), A2 equals the average number of data messages or 
packets sent per second, and J.LI' J.L2 represent the average 
service rates associated with a single voice-equivalent chan
nel, and nand m refer to the number of voice-equivalent 
channels available for voice and data respectively. The ar
rivals and servicing of the calls and data are assumed to be 
probabilistic (random variables) and not to be fixed con
stants. The service rate for voice is inversely proportional 
to the average length of a phone conversation, or speaking 
period (depends on integration approach). The service rate 
for data is directly related to the bandwidth (capacity) of the 
voice channel and inversely related to the message length. 

V oiee calls and data messages arriving at a faster rate 
than they can be serviced will experience occasions when 
there is no available channel. In the case of voice, the 
attempted call is assumed aborted (or interrupted) and the 
caller is required to try again (or repeat). In the case of data, 
the data message is assumed to be stored or queued in a 
waiting state until a channel that can service it is freed up. 

Case 1 is rather self-explanatory and straightforward. 
Voice traffic of average arrival rate Al and service rate (11 
average holding time) J.LI is allocated n voice-equivalent 
channels. 

Accordingly, the grade of service (GOS) or the probability 
of a lost call is given by the Erlang B distribution; equation 
1 of Figure 4 where: 

(~)n 

B(n~~l) n! 
(5) 

~ z~o J.L: 

x! 

Data traffic of average arrival rate A2 is allocated m voice
equivalent channels. The service rate is equal to the channel 
ba.ndwidth (measured in bits-per-second) divided by the av
erage message length (measured in bits). Accordingly, the 
average delay (seconds) is given by Equation 2 in Figure 4. 

Case 2 models an integrated voiceldata system as a single 
server system which provides real-time, uninterrupted trans
mission service for voice, and data transmission service with 
a lower preemptable priority. Figure 4 illustrates this model. 
Assumptions for this model are: 

1. Voice signals and data packets arrive in a Poisson 
fashion with mean arrival rates AI' and A2 respectively. 

2. No queueing is permitted for voice because of its real
time nature (i.e., as soon as a voice signal arrives, it 

preempts the use of a server for its immediate trans
mission). 

3. A data packet which was being served for its trans
mission and is preempted by the arrival of the voice 
signal will stand temporarily in front of the queue sta
tion of data packets until it is re-served (the whole 
packet is retransmitted). An exponentially distributed 
service time with a mean service time of 1/ J.L2 is as
sumed. 

4. Service time for the voice signal is also exponentially 
distributed with mean service time of 1/ J.LI seconds. In 
this case, the mean service time is not necessarily equal 
to the mean call holding time. It can be considerably 
less if a call is broken-up into talking and silent periods 
and the data packets sent during silent periods. 

This model was analyzed in Reference 2 and the results 
are shown in Figure 4 with Equations 3 for the voice grade 
of service, and 4 for the average data packet delay. Because 
voice is treated as a preemptive priority class of arrivals, it 
is assumed to be represented by the same Erlang B distri
bution, Equation 5, used for Case 1. 

Using Equations 1 through 5, Tables I-IV were computed. 

RESULTS 

From Tables I-IV it can be seen that it is generally more 
efficient for voice and data traffic to share voice-equivalent 
channels on a statistical contention basis than for voice and 
data to operate over separate dedicated data link voice
equivalent channels. 

More specifically, for example, two voice-equivalent 
channels available for dynamic sharing by both voice and 
data on a statistical contention basis (with voice served on 
a preemptive priority basis) results in the following perform
ance enhancements: 

For a voice traffic intensity equal to or less than .1 second 
of voiced periods for every available second of channel time 
(.1 erlangs), the "grade of service" improves from .09 to 
.005, and the data traffic responsiveness is enhanced over 
the dedicated or non-integrated channel scheme up to data 
traffic utilizations (throughputs) in excess of 70 percent. 

If the voice traffic density increases to ! second of voiced 
periods for every available second of channel time (.5 er
langs), an improvement in voice "grade of service" (prob
ability of a blocked call) from .34 to .08 results from this 

TABLE I.-Oata Packet Delay-Separate Channel 

1 . 
TDl = 1-0"2 =Average Time Delay (6) 

.\2 
P2=-

1'2 
.1 .3 .5 .7 .9 

TDl 1.11 1.43 2.0 3.33 10 
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Case 1 - Separate radio channels: one dedicated to voice 
one dedicated to data 

A (.-+ rur1I -
Data A2- I ml-'21 -

GOS=B ( n, ~:) (1); 
1 

TD\=-X; 
1--

1-'2 

Case 2 - Single radio channel servicing both voice and data on demand 

2 sec average call holding time 
200 b!ts average data message 

length 
16 kbps channel capacity 

(1-'2=8~ 
1-'1=.5 

P2 
P1 .1 .3 .5 .7 

.1 .22 .55 .81 1.02 

.3 .29 .78 1.25 1.72 

.5 .43 1.37 2.74 5.63 

.7 .85 5.31 

"~ i(m+n)" , I~GOs~ B ( (m+n). ~:) 

~ (1+2pl+PI
2
+Pl ::) 

A2-+ (m+n)1-'2 -+T~ -
1-'2(1+ P 1)(1- P 1 P2- P2) 

p=A 1/1-'1 

P2=A 2/1-'2 

Figure 4--Models of voice/data integration. 

TABLE n.-Data Packet Delay-Shared Channel 

2 sec average call holding time 
2000 bits average data message 

length 
16 kbps channel capacity 

(1-'2=8 ) 
1-'1=.5 

P2 
P1 .1 .3 .5 

.1 .36 .72 1.00 

.3 .48 1.02 1.55 

.5 .71 1.78 3.42 

.7 1.39 6.93 

.7 

1.25 

2.11 

6.91 

2 sec average call holding time 
200 bits average data message 

2 sec average call holding time 
2000 bits average message length 

length 
2.4 kbps channel capacity 2.4 kbps channel capacity 

(1-'2=12) 
1-'1=·5 

(1-'2=1.) 
1-'1=·5 

P2 P2 
P1 .1 .3 .5 .7 P1 .1 .3 .5 .7 

.1 .31 .66 .93 1.16 .1 1.23 1.78 2.25 2.70 

.3 .41 .93 1.44 1.97 .3 1.64 2.53 3.48 4.57 

.5 .61 1.63 3.17 6.43 .5 2.44 4.41 7.67 14.93 

.7 1.19 6.33 .7 4.78 17.17 

(2) 

(3) 

(4) 

(7) 
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TABLE IlL-Data Packet Delay-Shared Channel 

2 min. call holding time 
200 bits message length 
16 kbps channel capacity 

(#-1-2=80) 
(#-1-1=·009) 

P2 
PI .1 .3 .5 .7 

.1 11.36 29.49 43.60 55.15 

.3 15.10 42.06 67.37 93.41 

.5 22.48 73.31 148.23 305.15 

.7 43.98 285.08 

2 min. call holding time 
200 bits message length 
2400 bps channel capacity 

(f.L2= 12) 

(#-1-1=·009) 

P2 
PI .1 .3 .5 

.1 11.45 29.60 43.72 

.3 15.21 42.21 67.57 

.7 

55.29 

93.66 

.5 22.65 73.57 148.65 305.96 

.7 44.32 286.10 

voice/data integration and an accompanying increase (en
hancement) in data traffic responsiveness is still experienced 
if the data traffic throughput (for this example) does not 
exceed 30 percent channel utilization, or: 

a. 24 message packets/sec per channel for 200-bit average 
message length, and 16 kbps voice-equivalent channel. 

b. 1.2 message packets/sec per channel for 200-bit aver
age message length and 2.4 kbps voice-equivalent 
channel. 

II Trunks 
n 

2 

TABLE IV.-Probability of Blocked Voice Call 

.1 .3 

.09 .24 

.005 .03 

PI" 
n! 

B(n,PI)= -;;--; 
Le..L 

(8) 

.r=o x! 

PI = traffic intensity in erlangs 
n=1I trunks 

PI 

.5 .7 .9 

.34 .41 .49 

.08 .13 .17 

2 min. call holding time 
200 bits message length 
16 kbps channel capacity 

P2 
PI .1 .3 .5 

.1 11.50 29.66 43.79 

.3 15.28 42.30 67.68 

.7 

55.38 

93.80 

.5 22.75 73.72 148.90 306.43 

.7 44.52 286.71 

2 min. call holding time 
2000 bits message length 
2400 bps channel capacity 

(#-1-2= 1.2) 

(#-1-1=·009) 

pz 
PI .1 .3 .5 .7 

.1 12.38 30.72 45.04 56.83 

.3 16.44 43.81 69.61 96.26 

.5 24.48 76.36 158.15 314.46 

.7 47.90 296.94 

The contention scheme just analyzed requires the capa
bility for data to be interleaved with voice by transmitting 
only over quiet (unvoiced) periods in a voice conversation. 
If the interleaving is only done on a completed call basis, 
then Table III applies, call-holding times on the order of ~ 
hour result, and the resulting data packet delay becomes 
prohibitively large. 

The sensitivity of achievable data traffic throughput to 
data packet length is illustrated by noting that there is a 
tremendous loss in the efficiency (throughput) of the data 
traffic as one increases the length of the packet to be inter
leaved with voice signals over a common channel. Specifi
cally in Table II (2 sec average voice holding time) for a 
voice signal of .5 erlang traffic intensity over 16 kbps voice
equivalent channel, the data traffic throughput is 2.4 mes
sages/sec for 200-bit packets, and only .8 messages/sec for 
2000-bit packets. This represents a 300 percent improvement 
in data throughput efficiency when one interleaves on a 200-
bit basis as opposed to a 2000-bit basis. 

Based on this sensitivity of data traffic throughput to data 
packet length, it is clear that if voice/data integration is 
desirable (which it is) then word or short-packet (200 bit or 
less) interleaving is preferred and this interleaving should be 
done on a voice silent period basis rather than on a com
pleted call basis. 

The above analysis was based upon a scheme which as-



sumed that if a voice signal occurs during a data transmis
sion, the data transmission will be preempted by the voice 
signal and queued for later retransmittal. This was required 
because of the real-time nature of voice; voice signals cannot 
be randomly stored and forwarded without degrading its 
intelligibility. 

For some military applications, it is conceivable that there 
will be classes of message traffic for which it is preferable 
to interrupt a voice conversation and to allow for a real-time 
message delivery (no or negligible queue time). Such a ca
pability can be easily implemented. Although its impact on 
total system performance is not completely analyzed in this 
paper, it is clear that if this preferred class of messages 
appears sufficiently infrequently, this special message class 
can be accommodated with preferential preemption treat
ment, and performance advantages will still result over a 
wide practical range ()f traffic mixes for both voice and for 
lower-priority message traffic. For example, the impact on 
the performance of voice and lower priority messages, when 
practicing preferential preemption treatment for a select 
class of messages that represent less than one percent of the 
total channel capacity, can be approximated by increasing 
the traffic intensity, Pl' in Equations 4 and 5 by 1 percent, 
i.e., .1 worth of traffic will look like Pl,=.I1 worth of traffic. 

If one wishes, a hybrid scheme could be adopted where 
a thin-line capability is reserved for a special class of data 
and/or voice and where the remainder supports an integrated 
voice-data operation. The reserved channels can be dynam
ically increased or decreased in response to channel fluc
tuations in such a way as to guarantee a minimum acceptable 
threshold of performance. One such scheme, analyzed in 
Reference 3 for a circuit-switched network, is reformulated 
in the context of the tactical data link situation, and is now 
summarized. 

RESERVATION SCHEME 

It is desired to guarantee that for a select class of data 
messages, their delivery time will not exceed a maximum 
allowable value. One way this guaranteed performance can 
be achieved is by the originating data terminal transmitting 
this select class of data messages as packets, over pseudo
dedicated channels, previously reserved and connected to 
the destination data terminal processor. The originating data 
terminal may reject messages/packets over a critical length 
as the pseudo-dedicated line utilization reaches a pre-deter
mined threshold. Upon reaching this threshold, the data 
terminal must reserve additional voice-equivalent channels 
on a multi-channel basis if the guaranteed performance is to 
be maintained. 

Let us now determine how one may compute the value of 
the threshold at which the data terminal must reserve ad
ditional voice-equivalent channels in order to keep the max
imum message delay below some allowable value. This 
threshold is related to the maximum acceptable delivery 
time as expressed by Equation 9. 

(9) 
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where T D = maximum acceptable delivery time 
Q[ = input queue to originating data terminal 

expressed in packets 
Qo =output queue to the destination data 

terminal expressed in packets 
ttr = packet transmission time in seconds/packet 

Equation 9 can be rewritten as 

TD 
-1+ -=Qc 

t tr 
where 

(10) 

(11) 

If the average packet length is t bits, and a single voice
equivalent channel represents b o kbps, and if we reserve n 
voice-equivalent channels at a time, and if m pseudo-dedi
cated lines have already been reserved between the origi
nating and destination data terminals, then the average 
packet transmission time t tr, is at that instant of time 

t 
t --tr- mnbo 

(12) 

Substituting Equations 11 and 12 into Equation 9, we obtain 
the relationship that 

mnboTD -1=Q 
t c· 

This tells us that if: 

where AO = maximum arrival rate 
J.Lo = maximum service rate 
Q T = threshold queue 

t c = connect time 
then combining equations 13 and 14, we obtain 

mnbo ) 
QT= -t- TD-tc(Ao-J.Lo 

(13) 

(14) 

(15) 

The maximum resulting queue for which buffer space must 
be provided is Q MAX, where 

(16) 

The basic theory underlying the hybrid network then is to 
reserve an additional n voice-equivalent channels when the 
queue approaches some critical value, QT' 

As an example, consider that the output and input queues 
are equal. 

then from Equation 9 

Then for the maximum capacity queue, Qo = QMAX, and 

T D/ttr l-Q 
2 - - MAX 

(17) 

(18) 

From Equation 12, ttr=0.125, for t=2000 bits average mes
sage length, b o=16 kbps, n=l, and m=l. 
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From Equation 18, a maximum queue of seven packets 
(QMAX$,7 packets) results for a ttr=0.125 and a maximum 
allowable T D of 2 seconds. This technique for maintaining 
a maximum allowable T D is to monitor the queues, Qo and 
Q l' As Q 0 + Q 1 approaches Q T, one reserves more channels, 
thus increasing the capacity and reducing T D' 

The general conclusions to be made from the analysis 
presented in this section is that this reservation scheme is 
practical over a wide range of realistic values. More specif
ically, for messages of length 2000 bits or less, it is practical 
to maintain a delivery time under a pre-established allowable 
maximum of two seconds by adding more channel capacity 
on a reserve basis when a queue threshold less than seven 
packets, or 14,000 bits, is reached. 
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The exploratory system control model multi-loop network 

by DANIEL J. PAULISH 
Burroughs Corporation 
Paoli, Pennsylvania 

PURPOSE 

The Exploratory Systems Control Model (ESM) Multiloop 
Network consists of the original three-loop ESM network 
delivered in 1977 and the fourth Exploratory Systems Con
trol Model Development (ESMD) loop delivered in 1978. 
The ESM also includes a fifth loop supplied under the Mod
ular System Control Development Model (MSCDM) project. 
The ESM provides a flexible tool for simulating and com
paring a wide range of system control architectures and their 
related procedures and protocols. The ESM has been de
signed to model the class of the system control architectures 
that have the characteristics of decentralized operation, 
modularity, easy modification and upgrade capability, high 
reliability, high survivability and fail-soft operation. 

BACKGROUND 

The Defense Communications System (DCS) is a global, 
multiple-user system composed of leased and government
owned transmission media, relay stations and switching cen
ters deployed in support of the National Command Author
ities and the services, including command and control, in
telligence and early-warning, as well as administrative and 
logistical communications. In order to increase the reliability 
and availability of these DCS services, it is essential to 
improve the responsiveness and robustness of the System 
Control (SYSCON) process as much as possible. This re
quirement demands a DCS SYSCON subsystem possessing 
such design features as modularity and "fail-soft" operation. 
Modularity implies a subsystem that is capable of being 
upgraded, modified and reconfigured easily, and "fail-soft" 
implies a subsystem that tolerates partial failures, yet is 
relatively immune to total collapse. To afford these capa
bilities, the future DCS SYSCON subsystem is expected to 
consist of many semi-autonomous, mutually-supportive, 
geographically-dispersed control centers. 

During FY 75, Burroughs Corporation began development 
of an Exploratory System Control Model (ESM) \vhich cap
italized upon the inherent flexibility of mUltiple, intercon
nected data transmission rings and microprocessor-based 
host/ring interface nodes to provide an initial capability for 
experimental validation of various candidate SYSCON sub
system architectures characterized by distributed control 
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and graceful degradation under stress. This capability to 
model apparently dissimilar architectures is a consequence 
of the universal physical connectivity provided by the ring 
structure coupled with flexible protocols that permit defi
nition of different logical connectivities through selective 
routing of transmitted data. 

In the broader context of the DCS SYSCON Program, the 
longer-term joint purpose of this effort and the separate-but
related .. Modular System Control Architecture Study and 
Feasibility Development Model" is to provide DCEC with 
the necessary integrated means to evaluate through hybrid 
simulation a variety of candidate SYSCON subsystem the 
architecture(s) thereby identified as being suitable for im
plementation. The technical and performance information 
obtained from the unified hybrid simulation model will ul
timately be used in the preparation of performance specifi
cations for the future DCS SYSCON subsystem. 

LOOP OR RING COMMUNICATIONS SYSTEMS 

General operation 

A communications loop is a closed, ring-connected set of 
nodes providing data flow unidirectionally from one-node to 
the next. Each link between nodes is a single twisted pair 
of wires carrying a serial data stream in a self-clocking code. 
Full connectivity is achieved by associating a destination 
address with each packet of data carried on the loop. A 
node to whom a packet of data is not addressed acts simply 
as a "delayed repeater," having no effect on that data other 
than introducing some delay. The concept of a data ex
change loop has been described extensively in the literature 
of computer communications by Reames,l Jafari2 et al. 
Loops may be distributed such that each node contains its 
own power supply and cabinet and is located near the equip
ment it interfaces or locally such that all nodes are connected 
within a single cabinet with cable connections to interfaced 
equipment. 

A functional block diagram of a communication loop node 
is given in Figure 1. The Loop Interface Unit (LIU) is 
responsible for reading data addressed to the node and writ
ing data on the loop. The Control and Interface Processor 
(CIP) is a microcomputer that provides a data communica
tions interface to the external device. The memory is used 
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EXTERNAL 
INTERFACE 

CIP 

SECONDARY 
LOOP .-------~ ______ ~ 

Figure I-Communication loop node. 

PRIMARY 
LOOP 

for program storage, routing tables and intransit queue stor
age. The external interface provides a hardware connection 
to the external equipment to be connected to the loop. 

Modularity-adaptability features 

The basic Burroughs loop node is a module made up of 
the LIU, microprocessor CIP, memory and external inter
face. The nodes are identical except for the external inter
face and the external device interface software used to han
dle the protocol between the microprocessor and the 
external device. In the ESM external devices include pro
cessors (PDPII/40, PDPII170, B776), terminals (TD802, 
TD832), gateways (between the multiple rings) and data 
communication interfaces (SDLC, AUTODIN II, TCCF). 
The nodal external device interface software provides code 
conversion, flow control, intransit queueing, logical attach
ment capability and emulation of various communications 
protocols for the devices. The interfacing capability of the 
nodal modules provides communication capability between 
devices in the heterogeneous system. 

When a module fails, the loop will recognize the failure 
and cut the failed module out of the system by forced loop
back from the module's nearest neighbors. The module may 
then be replaced and the loop will return to normal opera
tion. In the meantime, the other modules will still be in 
operation so that degradation will be graceful in that only 
the operation of the failed module will have been lost. 

Loop throughput capability 

Loop throughput (total number of message units that can 
be sent over the loop per unit time without undue message 
delay to the receiving modules) is a function of line speed, 
loop discipline and the definition of "undue" message delay. 
Various loop disciplines have been developed and com
pared. 

The Newhall loop which uses a special control packet 
called a Write Token can transmit only one message on the 
loop at a time and has the lowest throughput but has the 
advantage of simplicity and cannot be clogged by misdi-

rected messages. It also shows some advantage in ease of 
detection and deletion of certain types of faults. 

The Pierce loop which uses fixed size slots in which data 
packets can be placed can transmit mUltiple messages, but 
the small fixed packet size causes greater overhead than in 
the DLCN loop. 1 The DLCN loop uses queues within each 
LIU that can expand or contract to hold upstream messages 
in temporary storage. This allows packets of variable size 
to be transmitted and allows mUltiple transmissions. Loop 
clogging is possible in both cases, however, and special 
means must be employed to "declog" the loops under cer
tain error conditions. Loop clogging is the deadlock situation 
when packets cannot be written onto the loop until previ
ously written packets are removed. 

The Jafari 100p2 is a double loop, one used for control and 
the other for data. The data loop is segmented such that a 
switched point-to-point circ1)it is set up when requests for 
communication are issued on the control loop. 

The ESM uses a Newhall protocol at a loop frequency of 
one mega-baud. Simulation studies and queueing analyses 3 

indicate that this loop can support a throughput in excess of 
750K baud without undue delay. The Pierce, DLCN and 
Jafari throughputs can be even higher, due to simultaneous 
conversations. 

Suppose the average node writes 15 packets of 2000 bits 
each per second for a total of 30,000 bits/second. At that 
rate a Newhall loop can support 25 nodes. The worst-case 
time that a node will have to wait for a write token is given 
by 

T =MP 
WT C

L 

(Eq. l) 

where M is the number of nodes=25, P is the packet size-
2000 bits, and C L is the loop frequency of 1M bits/sec. Thus 
T WT is 50 msec. The average wait for a write token is given 
by 

(Eq.2) 

where p is the loop utilization=0.75 for our example, thus 
T=19 msec. 

Multiple loops-addressing schemes 

The ESM system has proved the capability for providing 
multiple loop systems and has acted as a vehicle for testing 
multiple loop addressing schemes. Figure 2 exemplifies a 
multiple loop system. Three loops are shown connected via 
gateway nodes. Gateway 2 of Loop I connects to Gateway 
I of Loop 2 via a hard-wire connection independent of the 
loops. Similarly, Loop I connects to Loop 3 and Loop 3 . 
connects to Loop 2 via gateways. Each loop is independent 
of the other loops/ 

The small boxes are nodes and the numbers within the 
boxes represent the "functional address" of the node. The 
functional address (FAD) is the local address unique within 
the loop. In addition, each node has a "'logical identifier" 
(LID) unique within the system. 
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LOOP 2 LOOP 3 

1 

'----______ ~T 

LID FAD ALT 

10 11 -
12 12 -
14 2 3 
16 2 3 

LID FAD ALT 

10 1 3 
12 1 3 
14 21 -

16 22 -

i:'J 
FAD ALT 

10 2 
12 1 2 
14 2 
16 2 

21 3 2 21 3 1 21 31 

24 3 2 24 3 1 24 32 

3 M I 21 10 ... I 31 M 21 10 

11 A 10 21 .. L1 A 10 21 

2 AM I 21 10 ~ 3 AM 21 10 - 31 AM 21 10 

i 
11 AA I 10 21 --- AA 10 21 -I 2 AA 10 2t 

Figure 2-Indirect method of addressing. 

An example of how alternate routing is implemented with 
a multi-loop architecture using indirect addressing is given 
in Figure 2. Let us assume that Host Processor A on Loop 
1 wishes to send a message to System Process 21. Host A 
sends a packet to its CIP with 21 as the destination LID and 
10 as its source LID. The CIP formats a packet using an 
F AD or loop address equal to 3. The packet is sent out onto 
the loop, bypasses Nodes 12 and 2 and is read by Gateway 
Node 3. Gateway Node 3 sends the information part of the 
packet across the 1-3 link. Gateway 1 in Loop 3 formats a 
packet having Loop Address 31. The packet bypasses Node 
2 and Node 31 reads the packet. An ACK packet is sent out 
on the loop using LID 10, and the packet is linked to the 
input queue for deliverance to Host A. 

If Node 11 had not received an ACK message after a 
specified number of retransmissions, it would utilize alter
nate routing. It would do this by marking the packet indi
cating that alternate routing was used and changing the loop 
read address (FAD) from 3 to 2. Gateway Node 2 in Loop 
1 would read the packet and send it across the 1-2 link. 

Gateway Node 1 in Loop 2 would use an FAD of 3. The 
packet would bypass Nodes 21 and 22 and be read by gate
way Node 3. The packet would be sent across the 2-3 link 
and gateway Node 2 in Loop 3 would use an FAD of 31. 
The acknowledgment message would be sent via the alter
nate route. 

Node 11 would also report to one or more network control 
processors who could remove the 1-3 link from service for 
repair. This wouid invoive sending special broadcast control 
packets to Loops 1 and 3 so that Link 1-3 would not be 
used. 

The above method of indirect addressing can be used for 
resource allocation such that processes could be moved 
around the network so that spare or less utilized processors 
can be utilized. For example, let us say that Host E is 
brought down for service and thus Process 21 is to be moved 
to another processor. Let us say that it is determined (pos
sibly by some bid-quotation scheme) that Host D of Loop 
2 is to handle Process 21. In order to move the process, 
control packets wouid be broadcast in each loop. 
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ESM/ESMD IMPLEMENTATION 

System elements and connectivity 

The ESM is a communications system used to intercon
nect devices (e.g., terminals, host processors, data com
munications lines) so that each device can interface with 
any other device for information transfer. To accomplish 
this, each ring is supplied with nodes that act as interfaces 
from ring to device and from ring to ring. The ring-to-ring 
nodes are called "gateway" nodes. Each node is the same 
physically as any other node except for a small amount of 
special separable hardware for each type of node. The major 
difference between nodes is in the software of the nodes. 
The nodes provide all the necessary communications func
tions of queueing, parity checking, ACKing, NAKing, re
transmitting, alternate routing, etc. The hosts and terminals 
need only supply the data processing functions and need not 
be concerned with the communications functions. 

The gateway node interchanges are via cables in the ESM 
configuration, but in principle can be via any communica
tions medium such as telephone, microwave relay, optical 
transmission or satellite relay. 

The terms "loop" and "ring" are interchangeable. Each 
loop is housed in a separate cabinet in this implementation, 
but this is not a necessity. A loop could, as easily, extend 
throughout a building or facility. 
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The ESM Multiloop Network is illustrated in Figure 3. 
Loops 1, 2 and 3 were delivered in 1977 as part of the ESM 
Contract. 4 Loop 4 was delivered as part of the ESMD Con
tract in 1978. 5 Loop 5 was delivered as part of the MSCDM 
Contract in 1979. 

Features of the ESM 

The ESM is designed to be transparent to the user. Re
gardless of the CRT used and the host on which a particular 
activity takes place, the activity will take place for the CRT 
that calls for it. When a message is transmitted from a CRT, 
suitable control bytes are added to the message by the CRT 
node and directed to the node of a nearby host. When the 
host receives the message, it will either handle the message 
completely if it can or it will pass it on to another host, via 
the ESM, for cooperative handling of the message. This is 
done under program control using the content of the CRT 
message and the added control bytes. The CRT will then 
receive a response from one of the hosts. A CRT can" AT
TACH" itself to any node in the network via user com
mand. 6 

Responses will generally be part of the "user language" 
which is designed to provide directions for further dialog as 
well as replies to previous messages. The language is de
signed to be modular so that it can be easily updated and 
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Figure b-ESM multi-loop network. 



enhanced. In addition CRTs can communicate directly with 
the operating system of the particular processor as if it were 
a local terminal. 

Messages are sent in the form of packets of length not 
greater than 256 bytes. As each packet is sent, the sending 
node holds it for acknowledgment (ACK) from the receiving 
node. When an ACK is received by the sending node, it 
frees the packet space. 

If a non-acknowledgment (NAK) is received, the message 
is resent or sent by an alternate route. Absence of an ACK 
or NAK after a timeout period is considered to be a NAK. 
After a suitable number of resends without an ACK, the 
message may be reported' 'not sent." Nodes automatically 
provide input and output queueing for the external device. 
Sufficient extra memory space is provided in each node to 
permit receipt of system control commands from the loop 
and to act OIl these commands. This.is done to prevent a 
deadly embrace condition within the node. If the input queue 
(from the loop to the external device) is full, new input 
messages are rejected. Room always exists for the receipt 
of ACKs and NAKs and other control messages. These are 
acted upon with dispatch so that they do not reside in data 
memory for a long period. If the output queue is full, the 
external device is prevented from sending to the node. 

The loop protocols are designed to be non-blocking and 
self-polling. Each node in the loop has its turn to write onto 
the loop and if any noise exists on the loop from prior 
transmissions, it is overwritten by the new transmission. 
Nodes share the polling activity and any loss of polling is 
restarted automatically. 

ACKs and NAKs are generated by end-user nodes when 
they receive packets. Each packet is tested against cyclic 
redundancy bytes in the packet. A good check results in an 
ACK and a bad check results in a NAK. 

Examples of use 

The ESM Multiloop Network is part of DCA's Hybrid 
Simulation Facility (HSF). The ESM provides DCA with a 
System Control Simulation Facility. The uses of the system 
are to be outlined. The various applications are in different 
stages of development; some of the system uses are a direct 
result of the original implementation, others require addi
tional modeling application and demonstration software. 

User language 

The User Language provides the human interface to the 
system and demonstrates many of its modeling capabilities. 
The User Language is an application program running on 
the various Host processors in the network. All loop con
nected terminals can communicate with the User Language 
on any processor. 

The User Language consists of four major modes of op
eration. The first mode, CRT-to-CRT, provides users with 
the capability to send messages to each other. This simulates 
communication between System Controllers at different 
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sites who must talk to each other in order to isolate certain 
faults. Mode 2, System Inquiry, allows the user to examine 
the nodal configuration tables; the tables are monitored on 
disk on a host computer. Mode 3, System Control, allows 
the user to modify the nodal configuration tables; this feature 
provides the capability to model different network architec
tures. Mode 4 implements a distributed data base on the 
PDP 11/40s. The TOTAL Data Base Management System 
is used to distribute records of files on the two processors. 
The data base appears to the user to reside completely on 
one machine. 

File transfer 

A file transfer utility has been written to transfer files 
between host processors. The program allows peripheral 
sharing by providing a capability to sendftles to anet-ber 
machine's disk, printer, or tape. Files can be obtained from 
another machine's disk. In addition, terminals can be AT
T ACHed to the various host processors in the system. 

Fail-soft operation 

The system is designed to tolerate partial failures. LIU 
failures result in automatic loop-back performed to remove 
the failure from the network. The failure is detected by the 
nodes and reported to a System Control Monitor node. Al
ternate routing is automatically performed when a node in 
another loop fails to ACK a packet after a specified number 
of retries. Failure to ACK a packet is reported to the Mon
itor node. Queue overflows are also reported to the Monitor; 
a queue overflow results from the failure of an external 
device to respond to the node. 

Security 

A demonstration of the use of a Security Monitor node is 
performed using Loop 4. A CRT-B776 conversation is mon
itored by a PDP uno to detect an invalid password. The 
node connected to the PDP 1InO is commanded such that 
it does a non-destructive read on packets addressed to the 
B776. Thus the data sent by the CRT is read by both the 
B776 and the PDP 11/70. The PDP 11/70 monitors the CRT-
8776 conversation. When a bad password is detected, the 
Security node sends control packets to the nodes directly 
upstream and downstream from the CRT node to perform 
loop-around, resulting in the CRT node being removed from 
the network. 

Network architecture 

The ESM can be used to study System Control network 
architectures. Since the logical connectivity of the network 
is maintained by the modifiable nodal tables, the system can 
be used to model other network architectures. Network 
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control problems such as automatic channel reconfiguration 
can be studied. 

Response time 

Since each loop frequency is independently modifiable, 
response-time studies can be done on the system. The loop 
rates are modifiable via switches on the clock generator 
cards. In addition for Loops 4 and 5, an external clock 
generator can be connected to drive the loop. 

Software development 

The ESM can be used as a general software development 
facility. Since each loop-connected terminal can A TT ACH 
to any processor, software can be written on a variety of 
machines with different operating systems and different lan
guage compilers. In addition, since files may be transferred 
between machines via the network, duplicate copies of files 
can be kept on different machines. Processors without cer
tain resources (e.g. line printers) can utilize the resources of 
other machines via the network. 

APPLICATION TO SYSTEM CONTROL 

The ESM Multiloop Network will be used as a DCS Sys
tem Control Simulation Facility. DCS System Control must 
accomplish the following functions 7: 

• Netl-vork control-Transmission and switched network 
configuration control, which includes network and ex
tension supervision, reconstitution, restoral and satel
lite configuration control. 

• Traffic control-Control ()f traffic routing and tr .. lie 
flow. 

• Performance assessment of the DCS and status moni
toring of the DCS resources . 

• Technical control-Includes quality assurance and 
monitoring, patching, testing, coordinating, restoring 
and reporting functions necessary for effective techni
cal supervision and control over trunks and circuits 
traversing or terminating in a facility. 
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Software reliability measures applied to system engineering 

by JOHN D. MUSA 
Bell Laboratories 
Whippany, New Jersey 

INTRODUCTION 

Boehm, Brown, and Lipow 1 have characterized the multi
dimensional nature of software quality in terms of a hier
archy of attributes. One of the high-level attributes is relia
bility, which they define qualitatively as the satisfactory 
performance of intended functions. This definition may be 
refined to the quantitative statement "probability of failure
free operation in a specified environment for a specified 
time." A "failure" is an unacceptable de~arture of program 
operation from program requirements, where, as in the case 
of hardware, "unacceptable" must ultimately be defined by 
the user. The term "fault" will be used to indicate the 
program defect that causes the failure. 

Several trends have recently combined to escalate the 
importance of quantitative software reliability measures: 

1. The large and growing number of real-time and inter
active systems has increased the operational and cost 
impacts of failures. 

2. The increasing number, size, and complexity of com
puter networks and distributed processing systems 
have multiplied the risk and effects of failure. 

3. The explosive growth of personal computing has cre
ated a demand for relatively foolproof software for 
unsophisticated users. 

Measurement is seen to be important as soon as one 
recognizes that in software as in hardware there can be too 
much as well as too little reliability. Improvement of relia
bility, of course, costs money, and usually impacts devel
opment schedules and system performance (in the case of 
software, through increased memory, processing time, and 
peripherals requirements). The system engineer and the 
manager have to make design tradeoffs among the foregoing 
factors and it is best that this be done in quantitative terms. 
The need for a quantitative reliability measure continues 
through0l!t the development process, particularly during 
test, since reliability is a valuable indicator of system status. 
Finally, reliability or mean-time-to-failure (MTTF) is a use
ful metric for characterizing system operation and for con
trolling change during the maintenance phase. This paper 
will focus on the system engineering application, but it will 
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also touch on monitoring the system test phase and con
trollingchC:inge during. maintenance. 

EXECUTION TIME THEORY OF SOFTWARE 
RELIABILITY 

Software failures are caused by design or coding faults, 
while the hardware failures dealt with by hardware reliability 
theory are caused by physical deterioration. However, soft
ware and hardware reliabilities are mathematically very sim
ilar. Thus they may be manipulated in similar fashion and 
they may be combined to yield system reliability. 

The basic concept of the execution time theory 2,3 is that 
execJtion (processor or CPU) time is the best practical 
measure for characterizing the failure-inducing stress placed 
on s )ftware. Execution time and calendar time can be re
lated because the relationship between the two is character
istically paced at any given time by one of the resources 
failure identification (test team) personnel, failure correction 
(debugging) personnel, or computer time. 

The execution time theory is based on assumptions that 
appear to be satisfactorily met by most executable programs 
and most development projects, assuming that testing is 
representative of the operational environment and that fail
ures are observed. 

A number of fundamental equations relating failures ex
perienced, present MTTF, cumulative execution time, ob
jective MTTF, failures to be experienced to reach the MTTF 
objective established for the project, and execution and cal
endar times required to meet the objective have been de
rived 2 and summarized. 3 

The equations mentioned above depend on four ciasses of 
parameters (described in detail in Reference 3, Section VI): 
program, planned, debug environment, and test environ
ment. The two program parameters, the total failures ex
pected during the maintained life of the software and the 
mean time to failure at the start of test, can be statistically 
reestimated (Reference 3, p. 436) as testing progresses. 

A portabie FORTRAN program 4,5 has been developed to 
re-estimate the program parameters and compute status 
quantities significant to the manager. The program requires 
as input the execution time intervals between failures ex
perienced, the MTTF objective, and the test environment 
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parameter. The debug environment and planned parameters 
are required only if it is desired to predict the test completion 
date. 

The program computes confidence intervals for the quan
tities it estimates. The 75 percent confidence interval has 
been found to be the most useful; it represents a good com
promise between high confidence and a narrow range of 
estimation. A sample report generated for an actual project 
is shown in Figure 1. The lower and upper confidence 
bounds are sandwiched around the "most likely" (maximum 
likelihood) estimates. Note that "999999" indicates "no 
upper limit." For the project illustrated on 10/6177, the most 
likely present MTTF is 66.7 hr and the 75 percent confidence 
interval for present MTTF is 36.3 hr or greater. The most 
likely date on which the 5000 hr MTTF objective will be 
reached is 11/22177 and the 75 percent confidence interval 
for reaching the objective is sometime between now (10/6/ 
77) and 12/23177. 

SYSTEM ENGINEERING 

The use of the execution time theory in system engineer
ing can be illustrated by looking at the tradeoffs that can be 
made between MTTF, cost, and schedules. These tradeoffs 
are made for the system test phase of the project. It is 
assumed that MTTF improvement is obtained by more ex
tensive testing, which of cour5 \ affects costs and schedules. 
Costs and schedules for other phases are assumed to be 
constant. This assumption is reasonable; reliability improve
ment techniques such as structured programming, design 
reviews. etc. are commonly implemented on a "yes-no" 
basis dependent on their cost effectiveness. One does not 
ordinarily trade off the degree to which structured program
ming is employed with MTTF. 

The procedures and formulas used for computing system 
test duration and cost will be described, since these two 
computations are central to the system studies to which the 
execution time theory of software reliability can be applied. 
An example of a system study will then be presented to 
suggest some of the kinds of questions that can be answered. 
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System test duration 

Estimates of system test duration (excluding the test plan
ning effort) may be made before testing begins as follows. 
The total inherent faults No is estimated from data on faults 
per source instruction at the start of system test. The total 
expected failures Mo may be equated to No unless the ratio 
of faults corrected to failures detected departs appreciably 
from 1 (in this case, a correction must be made-see Ref
erence 3, pp. 447-8). Data taken by the author and by Aki
yama6 and Endres 7 give a range of 3.36 to 7.98 faults per 
thousand source instructions for assembly language pro
grams at the start of system test; the weighted (by number 
of instructions) mean is 5.43 faults per thousand instructions. 
It is likely that these numbers are also applicable to higher
order languages, although the author does not currently have 
data on this. 

The initial MTTF Tn is estimated from 

1 
T,,= fKN

o
' 

(I) 

where f is the linear execution frequency of the program 
(the average object instruction execution rate divided by the 
number of object instructions in the program), K is a fault 
exposure ratio, and No is the total number of faults in the 
program. The fault exposure ratio relates fault exposure 
frequency to "fault velocity." The fault velocity is the rate 
at which faults in the program would pass by if the program 
were executed linearly. The fault exposure ratio accounts 
for: 

• Code is not "straight line" but has many loops and 
branches, except in very trivial cases, and 

• The machine state varies. and hence the fault associ
ated with an instruction mayor may not be exposed at 
one particular execution of the instruction. 

At present, K must be determined from a similar program. 
It may be possible in the future to relate K to program 
structure in some way. On six projects for which data is 
available, K ranges from 1.54x 10-7 to 2.99x 10-7

• 

The calendar time interval t consists of the sum of one to 
three periods. In each period, a different resource (indicated 
by the value of the index k: C-computer time, F-failure 
correction personnel, I-failure identification personnel) is 
limiting or produces the maximum ratio of calendar time to 
execution time for that period. Thus the duration of each 
period is computed separately based on its limiting resource, 
and then the durations are summed. We have 

t= L 8 Xk , 
k P"Pk 

(2) 

where 8Xk is the limiting resource requirement for the period 
(e.g., 100 person days), Pk is the limiting resource quantity 
available (e.g., 5 persons), and Pk is the limiting resource 
utilization factor. The resource utilization factor reflects the 
possibility [particularly for failure correction personnel (see 
Reference 3. pp. 432-3)] that <'Ill of <In <lv<'liJahle reo;;mlf<.'e 
cannot be usefully employed. 
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Each resource requirement during its limiting period is 
given by 

(3) 

where Ok is the resource expenditure per unit execution 
time, ILk is the resource expenditure per error, Ll'Tk is the 
execution time interval for the period, and Llmk is the num
ber of failures experienced in the period. 

The number of failures experienced in the period is given 
by 

The execution time interval may be determined from 

A _ MoTol ~ 
.:.1'Tk- C nT' 

kl 

(4) 

(5) 

where C is the testing compression factor* and Tkl and Tk2 
represent the MTTFs at the boundaries of the limiting re
source period. 

The boundaries of the different resource-limited periods 
T kl and T k2 are the present and objective MTTFs and the 
transition points 

T - C(Pk/Lk'Pk- PklILkPkl) 
kk'- pk, Pk' Ok- PkPkOk' 

(6) 

that lie within that range, where (k,k') have the values (C,F), 
(F,I), and (I,C). One must determine which resource-limited 
periods actually occur from an examination of the bounda
ries and a determination of the maximum calendar time/ 
execution time ratio for each period. The maximum calendar 
time/execution time ratio for each period is given by 

dt J- - l- !\T+CILkJ-
d'T -max P T ' 

max kPk 
(7) 

System test cost 

Estimates of system test cost are made as follows. Deter
mine the number of failures 

(8) 

that must be experienced and the associated execution time 

'T- -- n -- MoTo I GF) 
C To 

(9) 

* The testing compression factor C depends on the test environment and its 
relationship to the actual operating environment of the program. More spe
cifically, its value is related to the extent to which redundancy due to runs 
being made under identical conditions during the operation of the program is 
removed during the test phase. There is some indication that C is reasonably 
stable across similar test environments, but data from more projects is needed 
to verify this. The quantity C may be computed for a project after a sufficient 
period of operation has occurred following the test phase so that the opera
tional phase initial MTTF can be accurately estimated. If there is no good 
way of estimating C for a particular project, it is probably best to be con
servative and take C= 1. 

to increase the MTTF from To to the MTTF objective T F' 

Each of the three total resource expenditures Xi is given by 

(10) 

where j has the values C, F, and I. The Xi are multiplied by 
cost rates and the results totaled to yield overall cost. 

The foregoing approach -implicitly assumes that idle time 
for all resources during the project can be profitably em
ployed in other activities and should not be charged as a 
cost. If this is not true for any resource, the cost for that 
resource should be determined by mUltiplying t from (2) by 
the total number of personnel (or dedicated computers) and 
the resource rate. 

Sensitivity of results to parameter accuracy 

The reader may be concerned about the accuracy with 
which parameters on a particular project can be estimated. 
If this is a problem, one should note that inaccuracies usually 
affect absolute rather than relative values. Many and per
haps most system engineering decisions are concerned with 
relative values of alternatives. In any case, calculations can 
be performed with different values of a parameter to deter
mine the sensitivity of a decision to a parameter inaccuracy. 
As experience is gained and more data is available, it should 
be possible to determine parameters more accurately and 
hence improve the absolute accuracy with which costs, 
schedules, etc. can be estimated. 

Example 

Consider a cost optimization problem to illustrate the ap
plication of the foregoing concepts. An online system is 
being planned to process orders received by a business, 
generate bills, break down the work involved into tasks and 
write work orders on those tasks, order materials, etc. It is 
desired to establish the mean-time-to-failure (MTTF) objec
tive for the system that will minimize total system cost over 
an estimated lifetime of two years. Faults are not to be 
corrected in the field for this system; they will be fixed at 
the next release. Assume for simplicity that the hardware 
components of the system are much more reliable than the 
software and hence may be neglected in this analysis. Also, 
for simplicity, assume that the entire system test period is 
failure-correction-personnellimited. The system is expected 
to operate 250 days/yr, 8 hr/day. The average total cost 
impact of a failure (in terms of reduced efficiency, extra 
supervisory time and other work required to "straighten out 
the mess," etc.) is $10,000. The software consists of 100,000 
source (400,000 object) instructions.' Programmer loaded sal
ary is $30/hr and computer (CPU) time is $1000/hr. The 
system test team has eight members and there are 40 pro
gram designers available for debugging. The utilization fac
tor for failure correction personnel is 0.138 (computed from 
Reference 3, Equation (10), using a probability of 0.9 and a 
queue length of 3). Average instruction execution rate is one 
million instructions per second. On similar projects, a value 
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of fault exposure ratio K=2.4x 10-7 has been experienced 
and the average fault rate has been 6.25 faults per thousand 
instructions. Data taken in similar environments indicates 
that six person hours are required for failure correction per 
failure and that this effort is independent of amount of ex
ecution time. Similarly, four person hours of system test 
team effort and one hour of chargeable computer time are 
required per hour of execution time and two person hours 
of system test team effort and one-half hour of computer 
time are required per failure. Assume a testing compression 
factor C of one. 

We compute a value of M,,=N,,=625, using the program 
size and average fault rate. The linear execution frequency, 
determined by dividing object instruction execution rate by 
number of object instructions is 2.5 sec-lor 9000 hr- 1

• 

Hence from (I) we obtain T()=0.741 hr. Using (8) and (9) we 
find 

(11) 

and 

(12) 

Substituting the resource expenditure rates and (11) and 
(12) in (10) for each resource we obtain 

232 TF 
Xc=313-~ +463 In 0.741' (13) 

XF=3750- 2~~8, and (14) 

926 TF 
XJ= 1250-~ + 1852 In 0.741· (15) 

The cost of system test will be 

$343,000 
$ 1000 Xc+$30(XF+ XI)=$463,000- T F 

TF 
+$519,000 In 0.741" (16) 

The number of failures during operation will be the total 
4000 

operating lifetime divided by MTTF, or ~. Hence the 

f ~ ·1 ·11 b $40,000,000 Th . ~ h cost 0 lat ures WI e T F . e expressIOn lor t e 

sum of these costs, 

$463,000+ $39,~,000 +$519,000 In O~~I' (17) 

is of the form 
b TF 

a+ T-+c In T-. 
F () 

(18) 

A simple minimization using calculus yields 

(19) 

Thus we obtain a value of 76.5 hr for the MTTF objec,:tive 

that minimizes system life cycle costs. The cost of system 
test and operational failures for this value is $3,389,000 

To determine the duration of system test, note that since 
there is only one limiting resource period, (2) becomes 

(20) 

where XF is the resource expenditure for the entire system 
test period and is given by (10). Hence, using (14) in (20), 
along with the number of failure correction personnel and 
their utilization factor, we obtain 

t=679- 5~:. (21) 

At the minimum cost point, the system test period will 
require 672 hr or 84 eight-hr days. 

Sensitivity analyses can be conducted for each of the 
quantities involved in the calculation. For example, let K be 
1.6x 10-7 rather than 2.4x 10-7

• Repeating the calculations 
outlined above yields a value of 50.8 hr for the MTTF ob
jective that minimizes system life cycle costs. 

Another useful technique is to vary parameters that are 
under the control of the manager to determine the effects 
on schedules and costs. For example, suppose that the 
length of the system test period is unsatisfactory. Let us 
examine the effect of staffing with 60 rather than 40 pro
grammers for debugging. This will reduce the failure cOlTec
tion personnel utilization factor to 0.121 (from Reference 3, 
Equation (10), using a probability of 0.9 and a queue length 
of 3). Equation (21) now becomes 

t=517-
3
::. (22) 

The costs will remain unchanged, since the total resource 
expenditure required to reach a given MTTF remains the 
same. Thus minimum cost will still occur at the same value 
of T F. However, the time required for system test is reduced 
to 512 hr (64 days). 

The reader might suggest increasing the debugging staff 
still further to improve schedules. In actuality, possible im
provement is restricted. We have oversimplified the example 
for explanatory purposes by dealing with only one limiting 
resource period. The other periods would come into play 
and limit further reduction in system test duration. 

The reliability of the software for one day (eight hours of 
operation), assumirig the MTTF objective of 76.5 hr is at
tained, is given by 

R= exp (- ~) =0.90, (23) 

where T' is the period of operation and T is the MTTF. This 
figure can be combined with reliabilities of hardware com
ponents to give overall system reliability (Reference 3. pp. 
439-442). 



Software Reliability Measures Applied to System Engineering 945 

MONITORING TEST PROGRESS AND RE
ENGINEERING THE SYSTEM 

Recall that status estimates like those shown in Figure 1 
can be obtained throughout the system test period. One can 
therefore continually track present MTTF and its confidence 
bounds. The number of failures, execution time, and cal
endar time required to reach the MTTF objective are also 
computed. By use of (10) and cost rates, remaining system 
test cost can be computed. The estimates are usually better 
than those made before test, and they generally improve in 
quality as testing proceeds. 

The effects of changing the MTTF objective or various 
resources can be investigated if schedule or costs are un
satisfactory. 8 Consequently the manager can not only deter
mine the present status of his system test effort in terms of 
a parameter (MTTF) directly related to -operational reqtlir~ 
ments, but he can explore alternatives for accomplishing his 
objective or the effects of altering it. Thus the techniques 
we have discussed can be decision-making aids. 8 Many of 
the decisions represent a system re-engineering. 

A plot of MTTF history for an actual project is given in 
Figure 2. The dot-dashed center curve is the maximum like
lihood estimate and the solid outer curves delineate the 
bounds of the 75 percent confidence interval. Note the gen
eral upward progress with some downward swings. Al
though there may be some statistical variation, the down
ward swings have usually been found to be correlated with 
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Figure 2-Present MTTF history for Project 1. 

design changes or the introduction of new code. The present 
MTTF is very sensitive to remaining errors when only a few 
remain; hence its upper confidence limit can be noisy. 

SOFTW ARE MAINTENANCE 

Failures continue to occur (and usually, be corrected) for 
virtually all software systems of any size during the opera
tional phase. They may occur at increasing intervals, but in 
many cases, the MTIF of a system exhibits a general sta
bility about some value over the long term, although there 
are many swings about this value. This behavior is generally 
due to the periodic installation of design changes (with a 
resultant drop in MTTF) followed by periods of error re
moval, during which the MTTF improves. It is particularly 
true or operating- sYsfems ana 6t1lefsoftware provided· in 
computation centers; 9 this is illustrated in Figure 3. 

If the MTTF can- be tracked and plotted as illustrated and 
if service objectives can be set for the system, a quantita
tively-based mechanism for change control can be estab
lished. When MTTF falls below the service objective, the 
system is frozen until improvement occurs. The manager 
may use the amount of margin above the service objective 
as a guide to the size of the change he will permit at any 
given time. 
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Figure 3-Typical computation center software in operational phase. 
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CONCLUSIONS 

The theory outlined in this paper has proved to be a good 
framework for understanding, measuring, and predicting the 
reliability of computer programs. It constitutes an approach 
that is compatible with hardware reliability theory as to 
combination of components and thus permits reliability anal
ysis of hardware-software systems. The theory has been 
applied to several software development projects of different 
kinds and several operational systems. 3.9 Substantial experi
ence has been gained in its use. It can be used in system 
engineering, test monitoring, and change control of opera
tional software. As more data is collected from various pro
jects, it should be possible to improve the estimates of some 
of the parameters, due to added insight into how they vary 
with program environment factors. This would result in fur
ther improvement in the estimation of status quantities, par
ticularly completion date. Experience in application of the 
theory should lead to its further refinement and broadening, 
resulting in greater accuracy and wider utility. 
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Verification procedures supporting software systems 
development 

by GRUIA-CATALIN ROMAN 
Washington University 
St. Louis, Missouri 

INTROOUCTI-ON 

Particularly in the context of large software systems, pre
vention and early detection of errors during product devel
opment are critical factors in controlling cost and quality. 
Top-down design, structured programming, informal pro
gram verifications, and code inspection are some of the 
tools presently being used in order to reduce the probability 
of error. However, current methodologies fail to provide a 
systematic, comprehensive and well formalized error-detec
tion strategy. In response to this need, a new software de
velopment methodology is proposed. The approach, de
scribed in the next section, incorporates a cohesive set of 
verification procedures that enables the validation of each 
development stage, from requirements definition through 
individual program implementation. The description of the 
verification procedures is part of the third section, while the 
fourth section deals with some managerial aspects related to 
the practical implementation of the advocated techniques in 
an industrial environment. A summary and conclusions are 
presented in the fifth section. 

The approach described in this paper has already been 
adopted as standard practice by the MIS Department of the 
Monsanto Company of Saint Louis with the anticipation of 
considerable savings in software development and mainte
nance costs. Preliminary data already indicate widespread 
acceptance and significant qualitative improvements. How
ever, quantitative data that would allow for a complete eval
uation of the methodology will not be available for quite a 
while due to the considerable development time required by 
most systems currently being built at Monsanto. A detailed 
evaluation of the sociologic and economic impact of the 
method will be made public at a later date. 

THE METHODOLOGY 

The development of a software system typically has five 
stages: 

• Requirements definition 
• System architecture design 
• Program design 
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• Program implementation and testing 
• System integration and testing 

The high level of convergence on the basic issues is reflected 
in a wide variety of approaches. Differences in managerial 
procedures, company standards, specification techniques, 
and design strategies make each methodology unique (e.g., 
References 6, 8, 10 and 11). The methodology proposed here 
distinguishes itself by the strong emphasis it places on ver
ifiability, not on originality of design and specification tech
niques, which are described in the remainder of this section. 
The verification procedures will be presented separately in 
the next section. 

The requirements definition stage establisbes what func
tions are to be implemented by the target system. The func
tions reflect the user's needs and are the basis for the im
plementation. The requirements definition stage consists of 
a data-gathering phase (interviews with the user), a synthesis 
phase (formulation of a functional model) and an evaluation 
phase (study of feasibility, profits, user environment impact, 
resources, scheduling, etc.). The functional model supports 
the design process by providing a complete, precise, rele
vant and easy-to-access description of the problem at hand. 
Elements that relate to possible implementations rather than 
the problem description ought not to be included. 

The formalism chosen to specify the functional model is 
a set of top-down functional diagrams. Each diagram, whose 
graphic symbols are explained in Figure 1, results from the 
decomposition of a single function present on an immedi
ately higher level of abstraction. The "permanent record" 
symbol is used to indicate explicitly the memorization func
tion while "external input" signifies an interaction with the 
outside environment. The only interdependence that can be 
expressed between functions is the relation "function Fl 
provides information 112 to function F2." It was fo~nd that 
this particular relation is the only relevant one since it suf
fices both for the purpose of designing the system and for 
establishing its correctness. Figure 2 contains a sample func
tionai modeL Although an English narrative is required to 
accompany each diagram and to explain its items in order, 
the narrative was omitted for the sake of brevity. 

It is usually necessary to break down complex functional 
models into several parts describing related subsystems. The 
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a) Function that will be decomposed on 
~ level. 

b) Function that will not be further 
~ed. 

c) Information; each arc must include an 
information symbol. 

d) External input; the dotted line 
represents a feedback arc. 

e) Conditional flow of information. 

f) Permanent record; the information it 
saves may be used or updated. 

g) Fork. 

h) Join. 

--<=)--

Q 

Figure I-Functional diagrams symbolism. 

criteria listed below can assist in the selection of groups of 
functions that are to establish the requirements for each 
subsystem: 

• Parts of the functional model that are independent, 
having no connections, could represent separate sub
systems. 

• Functions that must be present concurrently on-line or 
satisfy other temporal and spacial relations should be 
part of the same subsystem. 

• Logically-related functions should be associated to
gether. 

• Subsystems that are too large are difficult and costly to 
develop, while those that are too small may be wasteful. 

• Few, simple and stable interfaces between subsystems 
assure a better chance for success. 

• The selection of subsystems should assure that the po
tential new links between functions (due to changes in 
specifications) either are confined to one subsystem at 
a time or may be achieved by a minimum number of 
changes in, preferably, one interface. 

The list given above is by no means complete. Furthermore, 
caution needs to be exercised in achieving a proper tradeoff 
among conflicting criteria. 

During the system architecture design stage, programs, 
flow of control, input-output devices, and relations between 
programs and data are identified. The system architecture 
specifies the manner in which the functions considered in 
the requirements definition stage are to be implemented. 
Top-down stepwise refinement was selected in order to gen
erate a set of top-downflow diagrams expressing the system 
architecture. The building blocks for the flow diagrams are 
shown in Figure 3, and examples of flow diagrams are pro
vided in Figure 4. The flow diagrams and the narrative that 
is required to accompany them cannot completely specify 
the system architecture; a detailed design of the data struc
tures needs to be included as a separate document. The 
relation between functional and flow diagrams will be iden
tified better in the section to come; however, it must be 
pointed out that the top-down nature and labeling conven
tions of the functional diagrams assure quick access to re
quirements information, which is critical for a fast and error
free design of the system. As the need for more detailed 
flow diagrams arises during design. additional decomposi
tion of the functional diagrams has to be carried out based 
on new interview data. 

It is necessary to split the development of large and com
plex systems into several stages which can be implemented 
serially or in parallel. (The method is highly advisable for 
smaller systems as well.) There are two basic ways to carry 
out this multi-staged development: 

1. Parallel development (also called system modulariza
tion). Parallel development is advisable primarily when 
working on a very tight timetable and should not be 
overused. The approach consists of dividing the system 
into several subsystems which are then developed in 
parallel. The key to success is to assure minimal need 
for communication and coordination between teams 
working on different subsystems. Therefore, in select
ing the various subsystems one should assure that: 

• The subsystems have very few interfaces. 
• The interfaces are simple in nature and unlikely to 

change. 
• The subsystems are conceptually independent and can 

be independently tested. 

2. Iterative development or system growth. A more effec
tive and safer approach to constructing large systems 
is the iterative method. This technique consists of de
veloping an i~tial incomplete system which is later 
augmented by incorporating new features. Selecting 
the initial system, called the core, is the critical aspect 
of this method. Here are the basic guidelines to be used 
in choosing the core system: 

• The core system must be general and highly flexible. 
• The core system should allow for extensive growth at 

very low cost. 
• Additions should not change the core (they may expand 

it) and should not affect its functions. 
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1. AIRLINE RESERVATION MODEL 

8
11 ~~rI~(~-------------------------------! 

clerk Reservation 1.1 RSVS I , 
--- reques t and I 

,,1(2 name : 

'~ Airline 11(5) ,I , Waiting eservation 
request Function I 

(3) name Transaction 

1.1 RSVS 

1.1 1 

____ +-__ Reservation 

function 

1 1 

function 

Inquiry 
----+--. function 

Cance11a-

name 
reserving 

canceled 

Figure 2-Requirements definition (function diagrams). 
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a) System component that 
needs to be further 
decomposed. 

b) Program (will not be 
decomposed any further). 

c) Devices (scope, card
reader, printer, tape, 
disk, etc.). 

input 
~ 

~t 

outPft 

flow of 
control 

flow of 
control 

DO 
d) Human decision or clock 

signal enabling a 
certain flow of control. ===::s::o:x=s =:::) 

e) Flow of control. 

f) Program call. shared 
data 

Figure 3-F1ow diagrams symbolism. 

• The growth should not severely impact the peIformance 
of the system. 

• Growth should be achieved primarily by creating or 
implementing new outgoing inteIfaces. 

• The number of "not yet implemented" incoming inter
faces should be minimal. 

• The core system should implement several key (unc-

tions which would allow for its early installation and/or 
convincing demonstrations. 

When the program design stage is entered, the various 
programs that make up the system have already been iden
tified and the detailed design of their inputs and outputs has 
been completed. During this stage the selection of the major 
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P.1 
1. AIRLINE RESERVATION SYSTEM 

Sl(l) 

V input \ 
commands 

~ )1 

1.1 A...l{S 

crash 
recovery 
program 

1.1(2) 

reservation 
program 

1.1 ARS 

single 
user 
airline 
reserva-
tion 
system 

G1.1(1) 

Pl(l) 
status and 
transaction 

history 

~ 

1.1(3) 

status and 
history 
printing 
program 

Figure 4-System architecture (flow diagram). 
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PROGRAM NAME: 1.1(2}" RESERVE 

MODULE NAME_: 1. CONTROL 

REMARKS: This is the top module of program RESERVE and is strictly 
an initialization and driver module. 

ACCESS: COMMAND, WAITLIST, RSVLIST. (These data structures are 
initialized here.) 

KEYWORDS: None. 

INPUT ASSERTION: COMMAND, WAITLIST, AND RSVLIST are initially empty. The 
file "SAVE" indicates which names have reservations and 
which ones are waiting. The "HISTORY" file is empty. 

Load WAITLIST and RSVLIST from the "SAVE" file. 
ASSERTION: WAITLIST and RSVLIST have been restored to their last known values. 

DO 
Read next command into COMMAND and put it on the "HISTORY" file. 
~ 
~ (print command) 
~ (reserve command) 
WHEN (wait command) 
~ (cancel command) 

~ (save command) 

WHEN (inquire command) 

~ (halt command) 
~ ( ) 

ENDCASE 

INVOKE (1.1(3) PRINT). 
CALL(l.l) RSV to put name in RSVLIST. 
CALL(1.2) WAIT to put name in WAITLIST. 
CALL(1.3) CANCEL to remove name from 

RSVLIST and WAITLIST. 
CALL(1.4) SAVE to save current RSVLIST 

and WAITLIST. 
~(1.5) INQ to print status of the 

name. 
~ 
print error--command not recognized. 

ASSERTION: A single command was fully processed. 
OD 

ASSERTION: A halt command was detected. 
~(1.4) SAVE to save the current RSVLIST and WAITLIST in file "SAVE" and 

to clear "HISTORY." 

OUTPUT ASSERTION: The last state of the reservation and waiting lists has 
been saved on the "SAVE" file. The."HISTORY" file is 
empty. 

Figure 5-Program design (pseudocode). 

program data structures and the algorithms that act upon 
them takes place. The program design is done top-down 
following generally accepted structured programming prac
tices. Pseudocode is used to formalize the flow of control. 
The data structures are described separately. A program is 
made up of several program modules or subroutines hier-

archically organized. The entry and exit points of each pro
gram module must include input and output assertions show
ing what is assumed to be true at the beginning of, and what 
should be true upon return from, the module. The assertions 
are important not only in understanding the algorithms but 
also in the process of establishing the correctness of the 
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design. For example, the reader is directed to Figure 5 which 
shows the design for the top module of a program identified 
in Figure 4. 

Program implementation and testing is perceived as a 
single process that is carried out top-down in the tradition 
of structured programming. The program design is used as 
the basis for implementation and testing. If the program was 
carefully designed, if a good set of implementation standards 
was selected, and if the design was shown to be correct, 
then the actual implementation and testing should require 
little effort. 

In its final form the program should exactly mirror the 
program design. One should be able to identify clearly the 
modules and the various levels of the top-down design. Each 
module should at all times be consistent with its design 
specifications. If, when coding, the need for changes in the 
design becomes apparent, the design-should be altered and 
reverified. Only then should one proceed to recode or mod
ify the module. Upon coding each module, one should verify 
that the module is in agreement with all implementation 
standards, and its correctness should be established by men
tal simulation before any testing takes place. 

The system integration stage will not be discussed here 
as it is outside the scope of this paper. 

VERIFICATION PROCEDURES 

In the context of the methodology presented above, the 
term "verification" needs to be understood as meaning 
nothing more than a convincing demonstration that a certain 
formalization describes, implements, or computes the sub
ject of that formalization, e.g., the agreement between the 
functional model and the user's needs. One would want to 
prove that the formalization is correct but, since such an 
approach is unrealistic at the present time, informal methods 
need to be used instead. The immediate objectives of the 
verification are to provide guidelines for the various stages 
of the development and to allow for effective and systematic 
reviews at preselected checkpoints. Ultimately, these pro
cedures establish a unique design and error detection strat
egy capable of significant impact upon the overall system 
development productivity. This being the case, some meth
odological details that have been omitted in the previous 
section will become apparent as the verification techniques 
are discussed. 

The number of checkpoints that one selects depends upon 
the personnel and the project involved. Nevertheless, there 
are four checkpoints that need be considered every time: 
(a) after the requirements definition is completed, (b) when 
the system architecture is entirely selected, (c) when the 
program design is finished, and last, (d) when the program 
is fully implemented. More checkpoints may be added in 
between, if the size of the project makes them necessary, 
without modification of the verification techniques. At every 
checkpoint one must verify that the formalization produced 
thus far is self-consistent and in accordance with the stand
ards. Furthermore, one needs to establish the consistency 
between the formalization being reviewed (e.g., flow dia-

grams) and the formalization that preceded it (e.g., func
tional diagrams) which, in part, describes the correctness 
criteria. Let us next discuss each checkpoint in detail. 

• Requirements Definition Checkpoint-At this check
point the verification is carried out in three distinct 
steps. First, the self-consistency of the functional dia
grams is checked. This step includes both syntactic 
(form) and semantic (content) analysis. Second, one 
must verify the fact that the functional diagrams indeed 
correctly reflect the analyst's understanding of the busi
ness environment which is being modeled. Last, it is 
necessary to assure that the model meets the cus
tomer's approval. 

Self-consistency check-It proceeds top-down starting at 
the root of the tree formed by the functional diagrams. 
1. Start with the top level functional diagram. 
2. Make sure that: 

a. The diagram is syntactically correct. 
b. One single function appears in the top diagram, call 

it Fo. 
c. All external inputs to the model are present and 

necessary. 
d. All externally visible permanent records generated 

by the model are present and necessary. 
e. Given the information available on the incoming 

arcs, the function Fo can generate the information 
described on the outgoing arcs. 

f. All information coming in from the external inputs 
is necessary. 

3. Move one level down. 
4. Consider the next not yet verified diagram on the cur

rent level. (Assume that (1) the diagram contains func
tions Fi with incoming information IN iP and outgoing 
information OUTiq and (2) the diagram is a refinement 
of the function F k whose incoming and outgoing infor
mation are referred to as INkm and OUTkn , respec
tively.) 

5. Make sure that: 
a. The diagram is syntactically correct and its incom

ing and outgoing information are in agreement with 
the description of the function F k which is being 
refined. 

b. Given the corresponding incoming information, 
each function Fi can generate the corresponding 
outgoing information. 

c. The information provided for each function Fi is 
indeed necessary. 

d. Each permanent record introduced in the current 
diagram contains the information that will be re
quired from it and nothing else. 

e. The current diagram is correct with respect to F b 

i.e., it is a correct refinement of the function Ft.:. 
6. If there is a not yet verified diagram on this level, go 

to 4. 
7. If there is a next level, go to 3. 
Completeness and accuracy check-The functional dia
grams are constructed based upon the information that 
has been obtained from the user or customer during re-
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peated interviewing sessions. Therefore, it is important to 
determine the fact that all that information, to the extent 
to which it can be incorporated into the functional dia
grams, was included. This may be verified by selecting, 
one by one, the functions identified during the interviews 
and searching for their presence in the flow diagrams
the top-down organization considerably reduces the 
search effort. 
User agreement-Regardless of the correctness of the re
quirements definition, its value is limited unless the user's 
agreement is secured. Since the user may not be sophis
ticated enough to follow and understand the functional 
diagrams, a simplified document, verified to be fully con
sistent with the functional diagrams, may need to be cre
ated and passed on to the user for approval. 
• Case Study for the Reader.-Let us consider a user 

that needs a small airline reservation system. From 
interviews it becomes apparent that the system is to be 
accessed by a single reservation clerk that can make 
reservations, put passengers on "wait," cancel their 
names from the reservation or waiting list, and request 
information about either one of the two lists. Further
more, the user specifies that a written record of all 
transactions needs to be saved. Based upon all these 
data the functional diagrams of Figure 2 may be con
ceived. As a simple exercise, the reader may want to 
verify the functional diagrams by employing the first 
two verification procedures. 

Consider, for instance, Step 2 of the first procedure: 

a. Diagram 1 is correctly constructed (standard sym
bols are used, on each arc there is an information 
box, etc.). 

b. The diagram contains a single function, RSVS. 
c. A single external input was specified by the user, 

the reservation clerk. 
d. The only visible permanent record is the transaction 

history. The reservation and waiting lists are inter
nal to the RSVS function and need not be intro
duced yet. 

e. Trivial. 
f. All information coming in is necessary, e.g., reser

vation request and name to be entered on the reser
vation list are needed in order to reserve. 

Similarly, Step 5 of the first procedure may be used to 
verify Diagram 1.1. 

In carrying out the second procedure, one establishes the 
"coverage" relation between the interview data and the 
functional diagrams: each function identified in the inter
views is covered by a subset of the functional diagrams. For 
instance, the canceling function is covered by function 1.1(3) 
from Diagram 1.1 (in conjunction with the information boxes 
11(3), 11.1(3) and 11(5). In general, the coverage relation is 
not necessarily one to one, but the verification is easier if 
that is the case. 

• System Architecture Checkpoint-The system architec-

ture poses for the designer a much more complex and 
varied set of problems. While the requirements defini
tion involved mostly the formalization of amorphous 
information, the conception of the system architecture 
is a complex creative process which must result in a 
product that possesses a large set of attributes, often 
in conflict with each other. The result is a more com
plex set of verification procedures, each reflecting the 
concern with specific system architecture viewpoints. 
Thus, besides establishing self-consistency, correctness 
with respect to the requirements definition and user 
approval, one must also evaluate the system architec
ture from the point of view of fault tolerance, hardware 
compatibility and anticipated performance. However, 
discussion will be restricted to self-consistency and cor
rectness, which form the main subject of this paper . 

Self-consistency check. 
1. Start with the top-level diagram. 
2. Make sure that: 

a. Only one system component is included. 
b. Each external input from the top functional diagram 

is covered by one or more devices. 
c. Each permanent record present in the top functional 

diagram is covered by some storage or output de
vice. 

d. Any other files present in the diagram (preferably 
on the lower side) are created and used by the 
system component and are important enough as to 
be identified at the top level. 

e. All inputs are necessary. 
f. All outputs are required and can be produced from 

the available inputs. 
(NOTE: This step assures that the top-level flow dia
gram covers the top-level functional diagram. This re
lation is not necessarily true for any subsequent levels.) 

3. Move one level down. 
4. Consider the next not-yet-verified flow diagram from 

the current level. (Assume that the diagram contains 
the system components C j with the inputs INPUTifJ 

and outputs OUTPUTjq and is a refinement of com
ponent C k with inputs INPUTkm and outputs OUT
PUTkn ·) 

5. Make sure that: 
a. The diagram is syntactically correct and its inputs 

and outputs are in agreement with the description 
of the component Ck which is being refined. 

b. Given its inputs, each component Ci can compute 
its outputs. 

c. No unnecessary inputs are provided. 
d. Each fIle is created by some component and the 

data is all there before being used. 
e. There are no unwanted loops in the flow of control. 
f. Each component that is marked as not being further 

decomposed can be implemented as a single pro
gram, (based on previous experience with problems 
of similar complexity). 

g. Every arc that indicates a call has associated with 
it a description of the global uata being shared be
tween the two programs. 
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h. The diagram faithfully implements Ck • 

6. If there is a not yet verified diagram on this level, go 
to 4. 

7. If there is a next level, go to 3. 
Correctness check-The system architecture is correct if 
it implements the model defined by the functional dia
grams. The verification procedure will determine the cov
erage relation, thus indicating what was left out as unim
plemented. 
1, Show that all external inputs are covered by some input 

devices. 
2. Show that each permanent record is covered by output 

devices, one or more files, or by being internal to some 
program. 

3. Show that each function, regardless of its position in 
the functional diagrams, is covered. 

4. Show that aD ireyrelationships--between f-unctions are 
preserved by the system architecture. 

• Case Study for the Reader-Figure 4 does not pro
vide enough information so as to allow for a conclu
sive verification of the self-consistency and correct
ness of the system architecture. The missing data is 
to be found in the narrative that must accompany 
each diagram and explain each item in the diagram, 
and in the detailed design of program interfaces 
(D1.I(1) and G1.I(I)). The relatively simple nature of 
the system described in Figure 4 allows the reader to 
supply the missing details. It may also be an inter
esting exercise to see under which assumptions the 
verification is successful and when it is not. 

However, before going any further, some interesting facts 
should be pointed out. First, when trying to establish the 
correctness of the system, the coverage relation is bound to 
point out that the crash recovery program does not cover 
any function appearing in the functional diagrams. The jus
tification for introducing that program is not in the problem 
being solved but in the means by which it is solved, the 
architecture. If the program had not been included, the fault
tolerance studies would have signaled the fragility of the 
system. Secondly, the reservation program covers more 
than one function, actually four, and also two permanent 
records. Such complicated coverage relations are by no 
means unusual and further point out the great distinction 
between functional and flow diagrams. 

Lastly, let us observe more closely the connection be
tween self-consistency and correctness. Self-consistency is 
a conclusive demonstration of the fact that the architecture 
is a viable one, could be actually implemented, and carries 
out the basic intent expressed in the top level functional 
diagram, but is not necessarily a true realization of the 
requirements definition. In contrast, the correctness check 
tries to identify the level to which the intent of the require
ments definition is reproduced under the assumption of self
consistency. Therefore, one can see that self-consistency is 
only a stepping stone, a weaker condition to be verified first. 

• Program Design Checkpoint-It is intended that the 
program design checkpoint determines the correctness 

of the program before the actual coding is started. The 
detailed design of its interfaces (accomplished during 
the system architecture design) in combination with a 
program abstract that indicates the input/output relation 
represent the criteria against which the program design 
is to be judged. The presence of assertions facilitates 
the verification and helps in the understanding. How
ever, the informal (and incomplete) nature of the as
sertions prohibits one from carrying out a formal proof 
of correctness. Therefore, as in previous steps, the 
procedure employed is informal and does not represent 
any guarantee that all errors have been eliminated. 

The verification ought to establish that: 

I. The program design paper is in agreement with the 
program design standards (the pseudocode is correctly 
used, the format -and organiiation standard, the level 
of detail adequate, etc.) 

2. The data structures have been designed properly. 
3. Each program module is correct with respect to its 

input and output assertions. 
4. The interfaces between program modules have been 

correctly designed and provide all the data required by 
each module. Also, there is agreement in the commu
nication signals. 

5. The program always terminates (if termination is de
sired). 

6. The proper relation between inputs and outputs is 
achieved. 

7. Adequate performance is to be anticipated. 
8. The overall design will result in a maintainable pro

gram. 
= Implementation Checkpoint-In the vedfication scheme 

proposed here, the last check takes place at the time 
when the program is being coded and tested. This code 
inspection (the term seems to have caught on lately) is 
designed to investigate four distinct problems: 

1. Compliance with the implementation standards. 
2. Consistency between the code and the design paper. 
3. Correctness of data structures implementation. 
4. Reevaluation of the correctness problem to a new level 

of detail. 
5. Proper trade-off between efficiency and maintainabil-

ity. 

Particular mention needs to be made of the fact that the 
process of establishing program correctness could benefit 
significantly from already available theoretical results. While 
it is doubtful that the average programmer could be asked 
to formally verify his product, informal use of formal tech
niques is bound to prove itself highly effective. Furthermore, 
informal correctness proving should not be very difficult to 
teach. 

IMPLEMENTING THE VERIFICATION 
PROCEDURES 

The existence of a well defined and systematic set of 
verification procedures plays a fundamental role not only in 
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the discovery of errors but also in the avoidance of them in 
the first place. The verification may be conceived of as more 
than a post-factum investigation, which has its own merits. 
It may be carried out as an integral part of the design itself. 
Since most verification procedures involve a top-down anal
ysis, it is only natural for the designer to employ them as 
the design progresses top-down. Furthermore, familiarity 
with the verification procedures and the prospect of an im
minent check are bound to generate questions in the de
signer's mind that otherwise would have passed unattended. 

Like any other methodology, the proposed verification 
scheme is worthless if it is not strongly enforced. The meth
odology as a whole was developed in such a way as to 
assure that auditing be economically feasible and humanly 
possible: a uniform approach to design including great em
phasis on standardization makes the documentation reada
ble, the consistent top-down approach assures fast access 
to information and a good organization of the material, and 
the verification procedures provide uniform and relatively 
precise evaluation criteria. Nevertheless, a very strong com
mitment of the management is absolutely necessary in order 
to overcome the initial resistance to such a novel approach. 
At the same time people need to be convinced that the audit 
is not going to be used as a means of evaluating personnel, 
but rather of evaluating or improving products. If this phi
losophy is truly implemented, supervisors should not be part 
of the team auditing the products of those under their au
thority. 

The solution that was finally adopted during the first im
plementation of this methodology is an audit team including , 
one of the authors of the document being reviewed, persons 
familiar with the project but not involved in that particular 
design aspect and complete outsiders to the project. Each 
member of the audit team is to carry out the verification 
independently and to reveal his finding during group discus
sions following the author's oral defense of the material. 
The task of the audit team could be simplified significantly 
by providing some adequate software support that would 
analyze the documentation, enforce the standards, ease the 
search for information and its retrieval, and perform some 
primitive self-consistency and correctness checks. Such a 
system is presently under consideration. 

SUMMARY AND CONCLUSIONS 

A relatively straightforward methodology for software 
systems development augmented by a systematic error dis
covery strategy, a set of verification procedures, was pro
posed and justified. It was also argued that the informal 
character of the verification procedures makes them both 
practical and effective. The discussion emphasized the role 
played by the verification procedures during software de
velopment. 

At the present time one large company has adopted the 
approach as standard practice due to the realization that the 
cost of carrying out the verification (especially when pro
jects tend to extend over three to five year\;) represents only 

a very small financial investment compared with the signif
icant benefits of early error detection. However, the reader 
is advised that more work needs to be done. First, the full 
impact of the methodology has to be established, which in 
tum should result in improvements to the verification pro
cedures as well as the audit methods. Second, the devel
opment of software supporting the enforcement of the meth
odology and the verification process is needed to further 
increase their effectiveness while decreasing the time spent 
during auditing. Third, research needs to be directed toward 
the development of more formal methods that would support 
partially-automated consistency and correctness checks. 

ACKNOWLEDGMENT 

This research was supported through a contract between 
the Management Information and Systems (MIS) Depart
ment of the Monsanto Company and the Computer Science 
Department of Washjngton University. The author extends 
his thanks to David R. Wilson and Edgar J. Kline of Mon
santo for reviewing the material and contributing ideas and 
for the efforts involved in introducing the approach to the 
MIS community. 

REFERENCE LIST 

I. Baker, F. T., "Structured Programming in a Production Programming 
Environment," IEEE Transactions on Software Engineering, Vol. SE-l, 
No.2, June 1975, pp. 241-252. 

2. Blazer, R., N. Goldman and D. Wile, "Informality in Program Specifi
cations," IEEE Transactions on Software Engineering, Vol. SE-4, No. 
2, March 1978, pp. 94-103. 

3. Belford, P. C., A. F. Bond, D. G. Henderson and L. S. Sellers, "Spec
ifications Key to Effective Software Development," Proceedings of the 
2nd Software Engineering Conference, October 1976, pp. 71-79. 

4. Enger, N. L., Documentation Standards for Computer Systems, The 
Technology Press, Inc., 1976. 

5. Hamilton, M. and S. Zeldin, "Higher Order Software-A Methodology 
for Defining Software," IEEE Transactions on Software Engineering, 
Vol. SE-2, No.1, March 1976, pp. 9-32. 

6. Hammer, M., W. G. Howe, V. J. Kruskal and I. Wladawaky, "A Very 
High Level Programming Language for Data Processing Applications," 
CACM, Vol. 20, No. 11, November 1977, pp. 832-840. 

7. Mills, H. D., "Syntax-Directed Documentation for PL360," CACM, Vol. 
13, No.4, April 1970, pp. 216-222. 

8. Myers, G. J., Software Reliability Principles and Practices, John Wiley 
and Sons, 1976. 

9. Roman, G.-C., "An Argument in Favor of Mechanized Software Pro
duction," IEEE Transactions on Software Engineering, Vol. SE-3, No. 
6, November 1977, pp. 406-415. 

10. Ross, D. T.,. "Structured Analysis(SA): A Language for Communicating 
Ideas," IEEE Transactions on Software Engineering, Vol. SE-3, No.1, 
January 1976, pp. 16-34. 

11. Tausworthe, R. C., Standardized Development of Computer Software, 
Prentice-Hall, 1977. 

12. Teichroew, D., and E. A. Hershey, "PSLIPSA: A Computer-Aided Tech
nique for Structured Documentation and Analysis of Information Pro
cessing Systems," IEEE Transactions on Software Engineering, Vol. 
SE-3, No.1, January 1977, pp. 41-48. 

13. Willis, R. R., "DAS-An Automated System to Support Design Analy
sis," Proceedings of the 3rd Software Engineering Conference, May 
l Q "78, rr 10Q 113. 



A language for distributed processing 

by RONALD 1. PRICE 
Perkin-Elmer Data Systems Group 
Tinton Falls, New Jersey 

INTRODUCTION 

The main question being addressed. -here is, what is a good 
way to program a multiple processor system (whether tightly 
or loosely coupled) to accomplish an integral distributed 
processing application? Writing concurrent programs for a 
uniprocessor is tough enough, but writing programs which 
interact and operate simultaneously in parallel can be a most 
difficult and frustrating experience. Opportunities abound 
for operational failures due to race conditions, for time
dependent bugs and for deadlock situations. 

Help is on the scene, though, in the form of new concur
rent languages as typified by Concurrent Pascal. 4 The new 
software technology embodied by these languages can be 
applied to multiple processor problems as a methodology 
regardless of the implementation mechanisms. 23,25 Never
theless, the utility of having an effective language is beyond 
question, even if only as a design tool. 

A key feature of Concurrent Pascal is the monitor con
struct that protects critical data regions shared among co
operating sequential processes. With a mutual exclusion 
mechanism, only a single process is permitted to access the 
critical region at any given time. This notion was first sug
gested by Dijkstra,11 formalized by Hoare,13 and imple
mented by Brinch Hansen in Concurrent Pascal. Monitors, 
or an equivalent construct or capability, have since been 
incorporated in many other languages. 

Although different linguistic variations are possible, Con
current Pascal was selected as a base for implementing dis
tributed processing programs because of its track record and 
extensive documentation. The language has proved to be a 
powerful and effective tool in practice for building structured 
concurrent programs. 5 Brinch Hansen recorded improve
ment in programmer productivity while building a complete 
operating system with his language, 6 and the utility of the 
language has been tested for many diverse applications. 29 

There has been some criticism of the language, however. 
For one thing, it depends on a run-time kernel facility that 
is invariant and built with a different language. 2o For an
other, critical system design decisions have been assumed 
by the language. 24 Researchers are also actively pursuing 
improved language constructs, most notably the manager 
concept,18,27 which ultimately may lead to simpler and even 
more reliable concurrent programming concepts. 

957 

The purpose of this report is to propose two fundamental 
modifications to Concurrent Pascal that not only will alle
viate many of the abuve concerns, but more impOI tand:y , 
will extend the language's applicability to distributed system 
environments. 

In many respects, the proposed changes are adaptations 
of principles incorporated in Wirth's real-time language 
Modula. 31 As presented in the next two sections, they would 
enable the kernel and system control operators (i.e., the 
lowest levels of an operating system) to be written in the 
language itself and would enable partitions of a global, dis
tributed multiprocessing program to be mapped to physical 
processors, but yet represented as an integral program. 

The last section of the paper summarizes the proposed 
concepts and applies them as a methodology for constructing 
systems-from kernels, across processor boundaries, and 
up through application programs. As such, the extended 
language is a systems description language in that it can be 
employed to describe the algorithmic behavior of a multiple 
processor system (not to be confused with a hardware de
scription language that prescribes physical circuits). It offers 
the systems designer a tool for: 

• Synthesis 
• Documentation 
• Modeling 
• Simulation 
• Verification 

and implementation if used directly as an implementation 
language. 

Although the emphasis of this report is on distributed 
processing, the proposed extensions increase the power of 
the language for solving complex operating system problems 
irrespective of the multiprocessing issues. For example, the 
following problem areas are difficult under Concurrent Pas
cal as defined, but are quite amenable with the modified 
language: 

• Data communications 
• Process creation 
• On-line system generation 
• Dynamic software restructuring 

The main intent of this paper is to justify and to explain 
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the benefits of the proposal, not to specify the language nor 
to suggest a method of implementation. Semantic details and 
the mechanics of integrating the new constructs within the 
language n_~ed further study and exposure to actual practice. 

The level of presentation assumes the reader is familiar 
with Concurrent Pascal, but the definition of a few items 
might be useful. A program that can be described by the 
language is called a concurrent program. It consists of sys
tem (or program) components defined as process types and 
monitor types (and class types not mentioned here); redef
inition of the monitor type and the definition of a' task 
component as a partition of a concurrent program are de
scribed. A Concurrent Pascal program includes a program
mable initial process that directs the initialization of the 
components in the program. The interpretation of concur
rency is the execution of mUltiple processes overlapped in 
time, either by multiplexing periods of execution on a single 
machine or by simultaneous execution on mUltiple ma
chines. When important, the latter connotation of true con
currency (i.e., parallelism) will be explicitly denoted in con
text; multiprocessing implies parallelism, for example. 

CONCURRENT PASCAL WITH A PROGRAMMABLE 
KERNEL 

As represented by Figure I, Concurrent Pascal is based 
on a virtual machine kernel that implements process switch-
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CONCURRENT PROGRAM 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

-+- _L 

VIRTUAL MACHINE INTERFACE 

- INIT PROCESSIMONITOR 

- ENTER/EXIT MONITOR 

- DELAY/CONTINUE PROCESS 

-I/O. ETC. 

KERNEL ROUTINES 

Figure I-Concurrent Pascal system. 

MONITOR 

Note: The arrows in Figure I and in the following ftgures that depict a 
concurrent program represent access rights as deftned in Concurrent Pas
cal, and not the flow of data. funher, dl'de~ lepiesenl processes and 
boxes represent monitors. 

ing, mutual exclusion on access to monitors, and the various 
control operators (DELAY, CONTINUE, etc.). The defi
nition of the virtual machine interface can be a problem for 
system builders interested in different kernel features and/ 
or in multiple machine operations. The problem is that the 
virtual machine has been abstracted away from the systems 
programmer to the point of existing literally in another world 
as defined by its unique language (typically assembly). 
Moreover, the line between the real and virtual machine 
might not be optimum for a given application. There are 
simply too many variables, parameters, factors and exten
uating circumstances to consider in general. 

In some situations, the programmer of the concurrent 
program would like to have an influence on the design of 
one or more of the virtual machine modules, sometimes 
even to interact with the internal machine dynamically. A 
prime example of this is programming interrupt service rou
tines. Interrupt handling (typically for 110 processing) is 
related more to an application than to central general pur
pose kernel routines; this is clearly so in dedicated systems. 

The handling of interrupts has historically caused untold 
grief and frustration for system programmers. The interrupt 
is an indeterminate and irreproduceable happening. Contem
porary systems researchers recommend against using it as 
a synchronization mechanism and avoid preemption in gen
eral. The notion of an interrupt does not even exist in Con
current Pascal. Instead, synchronizing primitives are pro
vided (DELAY and CONTINUE) that allow system 
programs to be designed with so-called cooperating sequen
tial processes. 

Unfortunately, the processes embodied by most periph
eral devices on even modem computers cannot be consid
ered cooperative. Modula was designed to handle them. 32 

But even if we stopped using the interrupt as a synchronizing 
mechanism, we still need it as a signal with which to measure 
time and to build real-time functions. 

So although we might want to hide the interrupt in some 
abstract way, we still have to deal with it. Today this is 
generally accomplished through the kernel. However, not 
only is the interrupt hidden by the kernel, it is also typically 
unaccessible to the high-level software in a direct manner. 
Brinch Hansen and Hoare point out that scheduling cannot 
rely solely on built-in abstractions and that high-level soft
ware should be in control of response times at the lowest 
level. 3 Indeed, the interrupt is the simplest form of low-level 
scheduling for machines that can switch an instruction 
stream automatically upon recognizing an external signal. 
(Some machines provide multiple priority states where an 
interrupt level may. be interrupted by yet another level, but 
for purposes of discussion, a single level is assumed here.) 

The ability to dispatch programmable service routines in 
rapid response to external signals and to manage them in a 
disciplined manner could be afforded to Concurrent Pascal 
by extending the language with a new construct that allows 
procedures to be called with interrupts disabled. To allow 
controlled sharing of the uninterruptable procedures and 
their data structures, they could be treated much like the 
ordinary "virtual-time" (i.e., interruptable) monitors. This 
new construct could then take the form of another system 



type in the language-a "real-time" monitor (for want of a 
better name). Generally speaking, the idea being presented 
here is to incorporate the real-time principles of Modula 
within the framework of Concurrent Pascal. Actually, we 
need not add a new system type to the language, but only 
have to redefine the monitor to include statements that ex
ecute in real-time. 

The use of "real-time" monitors for interrupt handling is 
illustrated in Figure 2. Different delay (wait-on signal) and 
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continue (send-signal) operators would be needed that are 
consistent with the real-time environment. With appropriate 
entry and exit mechanisms, processes could communicate 
directly with interrupt service routines without going 
through pre-defined intermediary kernel routines; even in
terrupt service handlers could directly intercommunicate. 

The "real-time" monitor construct would have far more 
application than just for programming interrupt handlers. 
For example, when multiprogramming a single machine, 

MONITOR INTERFACE·TO REST OF SYSTEM 

BUFFER MONITOR 

READ 

TERMINAL 
INPUT 

HANDLER 
(R-T MONITOR) 

CANCEL 

REQUEST/RELEASE REQUEST/RELEASE 

~l/ 
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Figure 2-Concurrent program with real-time monitors for terminal 110 handling. 
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mutual exclusion on access to a monitor is assured simply 
by having interrupts disabled. In fact, there can be no busy 
queueing of processes on a "real-time" monitor. Conse
quently, they could be used in certain situations as a more 
efficient substitute for the ordinary "virtual-time" monitors 
in Concurrent Pascal. 

Moreover, since the procedures in "real-time" monitors 
represent indivisible operations to their using program com
ponents, they can be employed to implement Concurrent 
Pascal's "virtual-time" monitors with the language itself. 
That is, in Concurrent Pascal a process does not directly 
call a monitor procedure. The call is actually intercepted by 
a kernel routine to perform mutual exclusion and busy 
queueing if necessary. This kernel intervention is installed 
by the compiler in a transparent manner to the programmer. 
Under the proposed language, this kernel routine would be 
programmed explicitly and not automatically installed by 
the compiler (except possibly by default as an implementa
tion-dependent feature). 

The various monitor operators and, for that matter, any 
kernel-like function the systems builder needs would also be 
programmed in a direct manner. Even conditional critical 
regions with different scheduling algorithms (guarded re
gionsB) can be implemented with this "real-time" construct. 
In other words, the "real-time" monitor is a means for 
implementing e"J)licit kernel routines, although the compiler 
could still support standard implicit kernel calls in a trans
parent manner. 

Figure 3 is an extension of Figure 2 with kernel modules 
illustrated. An important aspect of this viewpoint is that the 
full power of the language can be brought to bear on the 
construction of the lower-level software when it is included 
as an integral part of the entire system. Such capability is 
important for embedded systems, process control environ
ments, and data communications applications. 

Kernel-like functions could be "hidden" through levels of 
abstraction, but this would be up to the systems builder and 
not a condition of the language. In fact, no run-time pro
gram, nor a pre-defined kernel definition, is required to 
support the proposed language. 

The kernal can be treated as a concurrent program in its 
own right,19 and Figure 3 also illustrates this point. The 
Genesis process interacts with external processes in periph
eral equipment through real-time monitors. It also performs 
system initialization and takes on the role of the initial proc
ess of a concurrent program as per Concurrent Pascal, in
cluding in this case the explicit creation of the high-level 
abstracted user processes. The Kernel Services real-time 
monitor in this example provides the standard Enter, Exit, 
Delay, Continue, etc., procedures and a Dispatch procedure 
for mUltiplexing processes. The kernel might control private 
devices as illustrated, but interrupt handling for the higher
level software would also be supported (typically with con
siderable hardware assist) for dispatching processes in real
time monitors in response to interrupt signals. 

The Genesis process selects high-level processes to exe
cute with the Dispatch procedure and executes them much 
like a subroutine with interrupts enabled. So the high-~evel 
abstracted processes are in reality still the Genesis process 

in disguise. When the Genesis process recognizes an inter
rupt signal (presumably with hardware assist), it enters Ker
nel Services (with interrupts disabled) and takes appropriate 
action. In the event this action results in activating a waiting 
process, the Genesis process can decide whether to preempt 
(reschedule) the current running process or to schedule the 
waiting process. Typically, the action in response to an 
interrupt signal would be to dispatch the recipient process 
immediately in its real-time monitor which in turn would 
initiate scheduling actions as required. 

Many of these low-level functions could be implemented 
in hardware or firmware. Nevertheless, they can be accu
rately represented and programmed with the "real-time" 
monitor construct. 

Incorporating the real-time feature does not make the 
proposed language machine-dependent. From a language 
point of view, the new proposed construct simply represents 
the sequential state of the machine. However, escape mech
anisms would have to be provided in the compiler for pro
gramming machine-dependent features in the low-level soft
ware modules; or provide machine-dependent statements as 
an adjunct to the high-level machine-independent language. 

A MULTITASKING CONCURRENT PASCAL 

The representation of a kernel as a concurrent program 
becomes more important when we consider a multiple pro
cessor system. Figure 4 is an example expansion on Figure 
3 to illustrate kernels for a three-processor system; the sur
rounding higher-level software is not illustrated. The Inter
Kernel Communication (lKC) monitors are real-time moni
tors designed for exchanging information between kernels. 

As should be evident from the previous discussion, the 
Genesis process together with the support modules in each 
kernel's partition is actually a sequential program running 
on a sequential machine; parallelism is just an illusion to the 
higher-levels of software. Even in Saxena's verification of 
the monitor concept, 26 he had to represent the idle state of 
mUltiple physical processors with an idle process for each 
processor, the equivalent of the Genesis process. Conse
quently, in order to represent true concurrency (i.e., paral
lelism) we need a mechanism for representing the multiple 
processors, or at least the actions of their kernels. 

Even if we were to assume the prior existence of a col
lection of cooperating kernels on mUltiple machines that 
form a virtual mUltiple instruction, multiple data path ma
chine on which we somehow apply the high-level concurrent 
program, we still could not take full advantage of the parallel 
machine with Concurrent Pascal as defined. Loading and 
initialization of the program, for example, must take place 
sequentially, either on a single processor or in sequential 
phases on multiple processors because the initial process of 
the concurrent program is really the Genesis process of a 
single kernel. 

So we need a way of dividing the global concurrent pro
gram into logical partitions that can be delegated to separate 
processors for initiation and execution. Indeed, we have no 
viable alternative but to divide the program into physical 
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partitions if it is going to be run on a loosely-coupled con
figuration that does not share memory. 

The partitioning mechanism proposed here is to extend 
Concurrent Pascal with a task block structure somewhat 
analogous to module in Modula. The task construct, how
ever, defines a concurrent system component that contains 
a collection of processes and monitors. It specifically in
cludes an initial process for initializing the task. And tasks 
cannot be nested. A mUltiple task program represents par
allelism in that different tasks, via their initial processes can 
be dispatched and executed simultaneously by separate pro
cessors. In other words, a mUltiprocessing program can in
clude multiple initial processes which represent abstracted 
extensions of multiple kernels. 

Each kernel in Figure 4 would be represented by a sepa
rate task, and each would be dedicated to a specific proces
sor. T-he--hlghe-r--kv-el software could be implemented as ex
tensions of each kernel or as separate tasks. As one or more 
tasks on a tightly-coupled system, the high-level modules 
need not be dedicated to specific machines and could be 
dispatched by any of the three kernels. 

Each task is, in essence, an independent concurrent pro
gram and can be compiled into a separate load module. 
Tasks are linked at run-time to form a global system. 

The correctness of the system can be tested with an in
tegral compilation where the tasks interact through monitors 
at the interface of the task boundaries. The compilation of 
any given task, however, need only include its predecessor 
tasks in the system and not any task outside its view of the 
system. 

Regardless of the issue of being able to express parallelism 
in the language, the task construct is a tool for partitioning 
a multiprocessing system program. Access rights as imple
mented in Concurrent Pascal will assure a structured design. 

We can divide a concurrent program into sections by 
taking advantage of the isolation property of monitors. That 
is, processes intercommunicate and synchronize their op
erations through monitors, and consequently, they need not 
know anything about each other-even their existence. For 
example, in Figure 5 the User_B process need not know of 
the presence of the U ser.-A process when calling the Buff-2 
monitor, nor for that matter, even if multiple job processes 
interface the BufL2 monitor. Therefore, we can safely cut 
the program between monitors and processes as illustrated. 
The trick is to keep the access right arrows pointing in the 
same direction across the task boundary. (Whether task 
initialization is performed by a separate initial process or 
one of the application processes in each task is not relevant 
to this example.) 

Note that the system structure and hierarchical order of 
the program components, as required by Concurrent Pascal, 
is preserved if we define and initiate Task A before Task B, 
even if one physical processor dispatches Task A and an
other processor dispatches Task B. This would not be the 
case, however, if the Job_3 process were included in the 
Task A partition because then each task would have access 
rights to each other in a cycle. 

Sometimes the initial layout of a concurrent program does 
not lend itself to partitioning. For example, if we tried to 

A Language for Distributed Processing 963 

TASK A TASK B 

Figure 5-Partitioning a concurrent program. 

apply the tasks in Figure 6 to two different machines, the 
mUltiprocessing program could easily crash when started 
(even if one task is initiated before the other) because the 
design does not guarantee that the monitors will be initial
ized before being called. But then the program might not 
crash; the problem is a time-dependent race. condition. 

Start-up is only part of the problem. We also need orderly 
ways of stopping a multiprocessing program, and more im
portantly, mechanisms for detecting error situations across 
processor boundaries and recovering from them. This is 
what partitioning is about.. 

Figure 7 shows how we can take advantage of the insenion 
property of monitors to resolve this task layout problem. 
Here, a message exchange monitor and server process are 
inserted in the User.-A process access path. This gets the 
arrows pointing in the same direction across the task bound-

Figure 6-Invalid task partitioning. 
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TASK A TASK B 

Figure 7-Partitioning with insertion. 

ary. The server process acts in behalf of the U ser~ process 
in the Task B partition. 

A correct way to partition a mUltiprocessing program is 
to group logicaHy-related processes and monitor~ into s~p
arate tasks in such a manner that their access nghts pomt 
in the same direction across the task boundaries and by 
arranging the tasks in a hierarchy such that tasks which 
access other tasks are ranked below their predecessors, as 
in Figure 8. This ranking assures an orderly initialization 
(and termination) and eliminates race conditions and dead
lock situations that otherwise might occur with a cyclic 
control structure. 

In some arrangements, tasks, such as Task C in Figure 8, 
can be literally removed and brought back on-line without 
disturbing the rest of the system. The status of Task A does 
have to be known to Tasks Band C, however. In essence, 
the kernel tasks (not illustrated) and Task A form a virtual 
machine for Tasks Band C. This capability allows a system 
program to be generated and restructured dynamically. 

D 

TASK B TASK C 

Figure ~Hierarchical structuring of mUltiprocessing programs. 

DISTRIBUTED PASCAL 

A key feature of this proposal for implementing distributed 
programs is the ability to describe interface monitors be
tween processors. The characteristics of a given interface 
can be programmed with the' 'real-time" monitor construct. 
Parallel kernels can then be described with the task block 
structure where the legality of their interface monitors is 
tested with an integral compilation. Higher-level tasks are 
built on top of the kernel tasks. 

Interface monitors can be implemented in shared memory 
employing "thick-wire" communication techniques or in 
shared "thin-wire" I/O facilities. Mutual exclusion between 
machines is achieved by mutual cooperation in adhering to 
a protocol. 

In the thick-wire case, permission to access the data struc
tures is achieved by locking the monitor with a read-modify
write operation (e.g., Test and Set instruction) and then the 
data structures are manipulated in place. The logic for ma
nipulating the data (i.e., the monitor's program code) can 
also be located along with the data if the hardware config
uration allows code to be executed out of shared memory, 
or otherwise the logic can be replicated in the private mem
ory of each processor. 9,25 

In the thin-wire case, data are physically copied from one 
location to another. Although Concurrent Pascal's monitors 
cannot be directly supported across a thin-wire boundary, 
an abstracted user's environment illustrated by Figure 9a 
could be supported by an underlying message communica
tions system as depicted by Figure 9b. This software mes
sage system is conceptually the same thing implemented in 
hardware to support shared memory; however, the flexibil
ity of a thick-wire emulation in software has to be highly 
constrained because of the limited bandwidth and long re
sponse times of the communication facilities. 

A good case can be made for adopting a standard thin
wire communication technique for mUltiple processor sys
tems which is adaptable to networks as well as to tightly
coupled architectures. 15,22,30 The overhead normally associ
ated with a message-based system can be ameliorated by 
implementing message exchange facilities in hardware. 16,28 

Special languages have been proposed for message sys
tems,1,21 but Concurrent Pascal is a very suitable language 

MESSAGE • • EXCHANGE • • 
• MONITOR • 

Fi~ure 9a-Mess3.f,te-hased concurrent program 
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COMMUNICATIONS 
MONITOR 

USERS USERS 

BEND 

MESSAGE • 
.-a 

MESSAGE • 

~r;~:~;:GRE I EXCHANGE • 
MONITOR • 

.-0 
Figure 9b-System implementation of message communications. 

for expressing networked systems,7 including the commu
nications protocol. 2,9 Moreover, the language offers the flex
ibility of general monitor designs where appropriate in ad
dition to any built-in message exchange monitors of the 
communications system. 

In any case, Concurrent Pascal as proposed to be modified 
is open-ended in the sense that both communication ap
proaches can be accommodated. For example, if an opera
ting system built with the language establishes a message
based inter-process communications protocol for conven
tional system use, the underlying implementation can still 
be based on thick-wire techniques where appropriate and 
more efficient. 

Figure 10 depicts a multiple-task, multiple-processor sys
tem employing both thick-wire and thin-wire communica
tions. The kernels dedicated to the processors in each 
tightly-coupled dual processor complex interface through 
multiple real-time monitors in shared memory, whereas the 
two complexes interface through a single real-time monitor 
over a communications channel. Kernels are represented by 
tasks and form the lower levels of the system. Higher-level 
tasks in the global system intercommunicate through moni
tors in a hierarchical fashion, as well. It is important to note 
that the different levels do not necessarily imply physical 
levels; that is, virtual kernels that emulate process switch
ing, interrupts, etc., on top of real kernels is not a require
ment to support high-level concurrent programs. 

The point being made here is that this total system can be 
described with a single program (although part of it might 
be implemented in hardware). The program consists of a set 
of cohesive routines (program components) that implement 
the behavior of the global system. Indeed, the whole system 
operates as a harmonious confederation of cooperating se
quential processes, some of which may run in parallel. 

Even if the language is used only as a modeling tool, it 
can help us to design reliable systems by applying computer 
programming technology to their construction. This is so 
because Concurrent Pascal is based on proven software 
engineering techniques. 

When building the "THE" multiprogramming system, 
Dijkstra suggested employing hierarchical levels of abstrac
tion as a methodology for dealing with the complexity of 
operating systems; 10 that is, modules are built on top of 
others with well defined interfaces and interactions. This 
technique, actually a formal method of structured program
ming, is an invaluable aid for proving program correctness 
and is an inherent capability of Concurrent Pascal. 

The axiomatic definition of Pascal 12 and the treatment of 
critical regions (e.g., monitors of Concurrent Pascal) and 
other research efforts have led to many proofs of program 
correctness relevant to concurrent programming (e.g., Ref
erences 8, 14, 17,26). These principles are now being applied 
in attempts to discover simpler, more flexible and more 
reliable techniques for constructing monitors and by enlist
ing the aid of the compiler itself. 

The fact that formal constructs can lead to provably-cor
rect programs may sound academic in reality. However, 
they actually do in practice lead to rapid program synthesis 
and to program correctness by inspection. Testing becomes 
much more systematic and takes on more of a verification 
role than a debugging operation. Modification and mainte
nance are also assisted. 

By maintaining the consanguinity of Concurrent Pascal as 
proposed, we can apply these formal constructs to the con
struction of distributed systems. The language serves as a 
synthesis aid by enabling the system designer to decompose 
a system in terms of task components which in tum are 
decomposed into logically-related processes and monitor 
components; this can be illustrated in diagrammatical form. 
Moreover, the language allows a system to be designed in 
incremental stages, and it can be used to simulate and to 
evaluate different implementation strategies. In paiticular, 
the system designer can describe proposed solutions as 
models that accurately represent the physical environment 
and that can be demonstrated to run correctly. The language 
can also serve as a vehicle for documentation and testing. 
Finally, it becomes a piece-part of the end product where it 
is employed as an implementation language. 
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CONCLUSION 

Changes to the language Concurrent Pascal are proposed 
that enable it to be used to: 

1. Describe the algorithmic behavior of the physical sys
tem. 

2. Express the physical parallelism of a distributed mul
tiprocessing program. 

As such, the new language acquires the connotation of Dis
tributed Pascal. 
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Automatic program transformations for virtual memory 
computers * 
by W. ABU-SUFAH, D. KUCK and D. LAWRIE 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 

INTRODUCTION 

Improving the behavior of virtual memory systems is a pop
ular subject, as evidenced by the vast number of papers in 
the literature. Typically, attempts to improve behavior fall 
into two areas-those which accept existing locality prop
erties of programs and attempt to modify system parameters 
(e.g., memory allocated, window size for the working set 
policy, etc.), and those which attempt to reorganize programs 
in some way. The first approach treats programs behavior
istically, i.e., without any attempt to change the original 
behavior of the program. This type of research generally 
attempts to deal with space allocation policies and replace
ment algorithms in order to improve the performance of the 
system, given the original behavior of the programs. The 
work of Denning,12,13 Belady, 8 Chu and Opderbeck,9 
Smith,21 Trivedi22 and many others has contributed greatly 
to the evoiution of operating systems and hardware for vir
tual memory systems. 

Yet the second approach promises even more significant 
improvement. Early work in this area 11 indicated the impor
tance of program reorganization, and more recent research 
(e.g., References 17 and 15) has borne out this promise. Our 
work belongs to this latter group, but with an important 
difference. We reorganize programs-automatically-by ex
amining their structure at the source code level where more 
information about the program is available. The papers by 
Elshoff14 and Trivedj23 describe some similar techniques but 
left the restructuring to the programmer. 

In the next section of this paper we present a brief de
scription of our program transformations. By detailed anal
ysis of the program, we reorganize the loop structure of 
programs in an attempt to ensure that once a page is used, 
as much computation as possible is done on that page before 
it is discarded and replaced by a new page. The result of 
our transformations is a program whose locality is better 
controlled. Our presentation will be through examples. For 
a formal description of the transformations, implementation 
problems and theorems related to the correctness of the 
transformations see References 3 and 1. 

* This work was supported in part by the National Science Foundation under 
Grant Nos. MCS76-81686 and MCS77-27910, and the Department of Com
puter Science, University of Illinois at Urbana-Champaign. 
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In the third section we present a summary of some pre
liminary experimental results which we obtained by applying 
our transformation"s to a collection of FORTRAN programs. 
As we will describe in that section, we have obtained good 
results so far in our work. We have seen more improvement 
in space-time product over standard paging from our source 
level transformations than we see in going from a non paging 
system to paging. 

In the final section we will present some concluding re
marks. 

BRIEF DESCRIPTION OF THE TRANSFORMATION 

Throughout this paper we will be concerned only with 
data paging. Moreover, we will ignore references to scalar 
variables. Similar assumptions were made by other re
searchers. 6,5 The storage of each array will start on a page 
boundary. Moreover, we are primarily concerned with sci
entific programs; it is usually the programs with large arrays 
which cause serious problems for virtual memory com
puters. 14 

One of our principal transformations is distribution of DO
loop control. In order to see how this improves paging be
havior, consider Program 1. 

Program 1 
DO 1 1=1, N 

A(I) =B(I)+C(I) 
X(I) =A(I)*X(I-l)+ D(I) 
E(I) =2*X(I)+ F(I) 

Consider first a non-paged versus a paged machine. If allot
ted seven data pages, this loop will run completely through 
each of seven array partitions between page fault bursts. If 
each array occupied a total of p pages, then about 7p page 
faults would be generated in total, whereas a non virtual 
memory machine would have to allot a total of tpz words 
of memory to its execution (z is the page size, in words). 
Thus, the memory-saving due to paging is a factor of p. 
Generally, however, paging will increase the I/O activities 
over a non-paged system, because some pages may be re
fetched several times. Note that in programs containing ~~v-
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eral loops, the same space can be used for each loop so the 
total space saved by standard paging is proportional to the 
product of p and the number of loops in the program (as
suming that distinct loops reference distinct pages). 

Program 2 
DO 1 1=1, N 

A(I) = B(I) + C(I) 
DO 2 1=1, N 

2 X(I) =A(I)*X(I-l)+D(I) 
DO 3 1=1, N 

3 E(I) =2*X(I)+ F(I) 

Suppose that Program 1 is rewritten as Program 2 by loop 
control distribution. This version can be run with an allot
ment of only three pages and stilI not generate page faults, 
except at the end of processing each set of pages. Note that 
in this case loop control can be distributed down to the level 
of individual statements. 

Program 3 
DO 1 1=1, N 

X(I) = Y(I-I)+A(I) 
Y(I) =X(I)*Y(I-I)+ B(I) 

In general, loop distribution is possible down to the level 
of cyclic data dependence graphs (called 7T-blocks l 9) for in
dividualloops. The nodes of a cyclic data dependence graph 
(each node representing a statement) are connected by di
rected arcs which form a cycle. An arc is drawn from one 
node to another if, at some instance, the statement repre
sented by the first node must be executed before the state
ment of the second node. Thus. the loop of Program 3 cannot 
be further distributed since its two statements form a data 
dependence cycle and hence constitute a single 7T-block. 
Since such cycles seldom contain more than two statements 
in practice, the improvement in memory space of this 
method over standard paging is a factor proportional to the 
number of statements in the longest loop in a program. Note 
that in practice this may be comparable to the improvement 
obtained by standard paging over non-paged memory 
schemes, although I/O activities may increase in general. 

In the past, a great deal of work has been done on the 
problem of extracting array operations from standard pro
grams for purposes of compiling for high-speed array ma
chines. Is Based on this, we have implemented a comprehen
sive FORTRAN program analyzer for speeding up 
FORTRAN programs, and have found that a very high per
centage of FORTRAN loops can be broken into array 
expressions and linear recurrences by loop distribution (as 
in Program 2). An important key to our success has been in 
obtaining very accurate data dependence tests for sub
scripted variables inside loops. While a number of earlier 
attempts to solve this problem used only array names or 
simple subscript tests, we now use tests that in most cases 
are exact,7 i.e., we have necessary and sufficient tests for 
the data dependence of one subscripted variable on another, 
subject to a loop index set. This allows us to ohtain a data 
dependence graph that has many fewer arcs (and more 7T-

blocks) than would be obtained by more naive tests and, in 
particular, allows the breaking of many false cycles. Thus, 
control in most graphs can be distributed to the level of 
individual assignment statements. 

An outline of the complete transformation algorithm is 
shown in Figure 1. The first step, analysis, is done auto
matically by the FORTRAN program analyzer. During this 
step, data dependences are determined, and certain simpli
fying transformations are performed (e.g., DO-loop initial 
value and bound normalization). 

Following analysis, statements are clustered depending on 
common data elements. Consider, for example. Program 4. 
Statements S 1 and S 3 are clustered together because array 
B is common to both statements. Clustering is done only 
within a loop however, so statement S4 is not clustered with 
S 2 (yet) because they belong to different loops. Each cluster 
is called a name partition (NP). Loops are now distributed 
over NPs, as shown in Program 5. Notice that the loop could 
have been further distributed over the NP (S 1, S 3)' How
ever, while this would reduce the space requirement for 
each loop, it would increase the page faulting since each 
page of B would have to be fetched twice. 

Following clustering, an attempt is made to fuse different 
loops together. Observe that the data in S 4 of Program 5 is 
a subset of the data of S 2 . Thus, these two loops can be 
fused (as shown in Program 6) without increasing the space 
required in the loop, but allowing a decrease in the total 
number of page faults. 

Program 4 
DO S3 1=1, N 

SI A(I) =B(I)+C(I) 
S2 D(I) = E(I) + F(I) + X(I) 
S3 G(I) = B(I) + H(I) 

DOS4 J=I,N 
S4 E(J) = D(J)*F(J) 

.u. Clustering 

Program 5 
DO S3 1=1, N 

SI A(I) =B(I)+C(I) 
S3 G(I) = B(I) + H(I) 

DO S2 1=1, N 
S2 D(I) = E(I) + F(I) + X(I) 

DO S4 J=I, N 
S4 E(J) =D(J)*F(J) 

.u. Fusion 

Program 6 
DO S~ 1=1, N 

SI A(I) =B(I)+C(I) 
S3 G(I) = B(I) + H(I) 

DO S4 1=1, N 
S2 D(I) = E(I) + F(I) + X(I) 
S4 E(I) =D(I)*F(I) 

Since eventually we will distribute the loop control of an 
NP on its rr-blocks, our next step is to simplify the data 
dependence graph of each NP by breaking any dependence 
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. arcs due to assignment statements to scalar variables. We 
use one of two techniques to handle such assignment state
ments--forward-substitution or scalar expansion. As an ex
ample, consider Program 7a. 

Program 7a 
DO S3 1=1, N 

Sl T =(A(I)*C(I»/2 
S2 D(I) =D(I)**2-T**.5 
S3 F(I) =T*<A(I)-C(I»+ F(I)/C(I) 

Because of S 1 , the data dependence graph of this NP is 
cyclic and there is one 7T-block. For this NP, the amount of 
memory allotment needed to obtain minimum I/O activity is 
four page frames. By substituting the right-hand side expres
sion of S 1 in S 2 and S 3 , we can eliminate S 1 and we will 
have two 7T-blocks: 7Tl =S2 and 7T2=S3. Note that the mem
ory needed for each of these 7T-blocks is three page frames. 
Thus the space requirement of Program 7a can be dropped 
by a factor of ~ by forward-substitution and then distributing 
the control on the 1T-blocks as in Program 7b. 

Program 7b 
DO S2 1=1, N 

S2 D(I) =D(I)**2-«A(I)*C(I»!2)**.5 
DO S3 1=1, N 

S3 F(I) =«A(I)*C(I»/2)*(A(I) - C(I» 
+ F(I)/C(I). 

In other situations, forward-substitution might be impossible 
or undesirable (e.g., if it increases the space requirement of 
the program). In such cases, we use scalar expansion as 
shown in Program S. 
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Program 8a 
DO S3 1=1, N 

Sl T =T+A(I)*E(I) 
S2 A(I) = B(I)*C(I) 
S3 B(I) =T + F(I)/D(I) 

II Scalar expansion and 
-U- loop distribution 

Program 8b 
DOS l 1=I,N 

Sl T(I) =Ti(I - i)+ A(I)*E(i) 
DO S2 1=1. N 

S2 A(I) = B(I)*C(I) 
DO S3 1=1, N 

S3 B(I) =T'(I)+ F(I)/D(I) 

Note that for Program Sa the memory requirement is six 
page frames while for Program Sb it is four (the maximum 
of the space requirement of the three 7T-blocks). Rules to be 
used in choosing between forward-substitution and scalar 
expansion (when both are possible) are discussed in Refer
ence 3. 

As mentioned earlier, distributing the control of an NP on 
its 7T-blocks will increase the page fault rate if the arrays 
referenced are multi-page arrays. To prevent this from hap
pening, we apply the page indexing transformation to such 
loops. Program Sc shows the page-indexed distributed ver
sion of Program Sa. Basically, this transformation ensures 
that a page that is referenced in different 7T-blocks of an NP 
will not be removed from memory until it is used by all 
relevant 7T-blocks. (Additionally, by page-indexing we have 
reduced the size of the scalar expansion array in Program 
Sc to only z words instead of N.) 

Program 8c 
DO S3 IP= 1, fN/Zl 

ILB = 1 +(IP-1)*Z 
IVB =MINIMVM(IP*Z, N) 

DO Sl I=ILB,IVB 
Sl T'(I MOD(Z)+ l)=T'(1 MOD(Z» 

+A(I)*E(I) 
DO S2 I=ILB, IVB 

S2 A(I) = B(I)*C(I) 
DO S3 I=ILB,IVB 

S3 B(I) =T'(1 MOD(Z) + 1) + F(I)/D(I) 

Page indexing can be applied only to NPs which have 
basic 7T-blocks. A basic 7T-bLock is one with all of its state
ments at the same loop nesting depth. However, we have 
an algorithm for transforming non-basic 7T-blocks into basic 
7T-blocks. 3 After this is done, page-indexing is applied as 
before. Program 9a is a non-basic 7T-block (this is a Gaussian 
elimination program). In Program 9b, it is transformed to a 
basic 7T-block. Page-indexing is applied as shown in Program 
9c. We use the same storage scheme for all multidimensional 
arrays of a program, the sub matrix storage scheme. 10 This 
is because this storage scheme has inherent advantages over 
the row or column-wise storage schemes as was shown in 10. 
We have developed tests to check the correctness of the 
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page-indexing transformation. a Currently, we are looking 
into storing arrays using different schemes when the arrays 
are referenced in different uniform ways in the program. 

Program 9a 
DO S2 11=1, N-I 
DO SI 12=(11+ I), N 

SI A(l2,ld =A(l2' 11)/A(lI' II) 
DO S2 la=(11 + I), N 
DO S2 14=(11+ I), N 

S2 A(l4' la) =A(l4' la) 

Program 9b 

.u. -A(l4' 11)*A(lI' la) 
Non-basic to basic 

7T-block 

DO S2 11=1, N-I 
DO S2 12=(11+ I), N 
DO S2 la=(li + I), N 
DO S2 14=(11+ 1), N 

SI IF (la.EQ.(lI+ 1).AND.I4.EQ.{lI+ I» 
A(l2' 11)=A(12, II)/A(II' Id 

S2 IF (l2.EQ.N) 
A(l4' la) =A(I4, la) 

-A{l4' II)*A(lI' la) 
.u. Page indexing 

Program 9c (Note we have substituted K for I I, J for 
la, andl for 12 • We assume RZ divides N.) 

RZ=Z**.5 
NP=N/RZ 
DO S2 KP=I, NP 

KLB= 1 +(KP-l)*RZ 
DO S2 JP=KP, NP 

JLB= 1 +(JP-l)*RZ 
JUB=JP*RZ 
DO S2 IP=KP, NP 

ILB= 1 +(IP-l)*RZ 
IUB=IP*RZ 
IF (lP.EQ.KP) KUB=KP*RZ-! 
IF (IP.NE.KP) KUB=KP*RZ 
DO S2 K=KLB, KUB 

IF (lP.EQ.KP) ILB=K + 1 
IF (JP.EQ.KP) JLB=K + 1 
DO S2 J=JLB, JUB 

DO S2 I=ILB, IUB 
IF (J .EQ.JLB.ANDJP.EQ.KP) 
A(I, K)=A(I, K)/A(K, K) 

S2 IF (J .LE.JUB) A(I, J)=A(I, J) 
-A(I, K)*A(K, J) 

PRELIMINARY RESULTS 

We define performance in terms of three criteria-space 
(m), time (measured in terms of page faults, f(m», and 
space-time product (f(m)m). Notice that for simplicity we 
assume that computation time is negligible relative to the 
time for a page fault, so we can measure time in terms of 

the number of page faults. In fact, our transformations do 
increase the CPU time for a program due to increased loop 
control overhead, redundancy (from forward-substitution of 
scalars), etc. However, much of this is invisible due to. 
control-execution overlap, and the total increase in CPU 
time is generally negligible when compared to disk access 
time. 

We define mr to be the amount of memory required by a 
program in order to produce the minimum space-time prod
uct. More specifically, for the untransformed program this 
value is mo , and for the transformed program it is mt. Our 
choice of a memory allotment that minimizes space-time 
product is somewhat arbitrary, but is based on the intuitive 
idea that this will lead to maximum throughput and minimum 
turnaround in a multiprogrammed environment. In such a 
system, throughput and turnaround time are related by 

Th h 
_ average number of jobs present 

roug put - . b d . average JO turnaroun tIme 

Roughly speaking, reducing page allotments as much as 
possible maximizes the average number of jobs present. 
Since reducing each job's page faults reduces the average 
job turnaround time, the transformations we carry out tend 
also to maximize throughput. Thus, for the fixed memory 
allotment case discussed above, our techniques improve 
both turnaround and throughput. In fact, however, mr does 
not always lead to minimum page faulting as we shall see. 
Thus, in an UO bound system, rnr may not produce optimal 
results. We shall discuss this problem in more detail later. 

Regarding space, it is intuitively clear that if one can 
transform a program into a form that contains a set of 7T
block computations, then each of these 7T-block computa
tions can be broken into a sequence of page-sized loops 
(using the page indexing transformation). The net effect 
would be to reduce the necessary page allotment for an 
entire transformed program to that required for the largest 
7T-block computation in the program, rnt. The simplest 7T
blocks might be expected to contain one or two distinct 
arrays, while the maximum number per 7T-block in a program 
might be six or eight. Thus if one were successful, perhaps 
any program could be run with a data page allotment of at 
most eight pages. 

Another important program characteristic is page faulting 
and how it would be affected by such transformations. For 
any given program loop, the number of page faults per it
eration equals the number of arrays referenced in the loop, 
unless all pages are left in main memory for the entire loop 
execution, in whicb case page faulting occurs only after a 
number of iterations proportional to the page size. In this 
case the page allotment for the original program, rn o , would 
at best be equal to the largest number of arrays referenced 
in any loop in the program, in contrast to the rnt for the 
largest 7T-block obtained above. At worst, many more pages 
than array names would be required. For example, a matrix 
multiplication loop has three array names but needs an entire 
row and column of pages. Thus, one would expect that the 
number of required pages for any program to run well would 
be less for a transformed program, i.e., rn/<rn o • 



By a combination of automatic and manual transforma
tions, as well as a tracing program that handles FORTRAN 
programs compiled for the IBM/360, 370, we have obtained 
preliminary statistics for 17 FORTRAN programs, compris
ing a total of almost 1600 cards (excluding comments). These 
were selected from about 300 programs we have collected 
for various studies. The 17 programs contained a total of 
200 DO-loops whose limits were supplied by users. The 
program generated over 1.4 million array element refer
ences. Most of the programs are numerical in nature but 
they are drawn from diverse application areas. One impor
tant criterion in our selection process was that the programs 
not contain too many statements, as our analysis procedures 
were rather time-consuming. 

We have observed average values of mo=25 and mt=4. 
Thus, a space-saving of greater than six could be expected 
fOT these programs. H-owever, s-in-ce page faulting GGe.s in
crease somewhat for the transformed programs, the space
time product improvement is only about three or four (the 
mean is four and the median is three). Nevertheless, this 
implies a potential increase in throughput of a factor of three 
or four for a multiprogrammed system. Furthermore, for our 
programs the average space-time product improvement of 
standard paging over a non-paged main memory (one that 
allocates sufficient space for all arrays) was only a factor of 
about 2.5 (mean and median). Thus, the performance in
crease of our transformations over standard paging is com
parable to (in fact, greater than) the performance increase 
of standard paging over a non-paged system. 

It is important to realize that our mo values were obtained 
by direct observation of the space-time product of our sam
ple programs over a wide range of memory allotments. The 
difficulty of directly observing mo (say, by compiler meas
urement) has been discussed in Reference 20, where possible 
correlation with the number of array names in a loop was 
rejected as impossible in practice. On the other hand, for 
our transformed programs there is a strong correlation be
tween the number of array names and mt; the two are almost 
equal in most 7T-blocks. 

In Figure 2 and Figure 3 we show typical page fault versus 
memory allotment and space-time product versus memory 
allotment curves, respectively. Note that both page fault 
curves approach approximately the same low level of page 
faulting. The transformed program approaches this low level 
much earlier than the original program. This, in tum, causes 
the space-time product of the transformed program to be 
substantiany less than that of the original program over a 
wide range of memory allotments. Note that the transformed 
program's space-time product decreases monotonically to a 
minimum at m t , then increases to meet the minimum for the 
original program at mo and then both increase together as 
useless memory is allotted. However, the space-time prod
ucts of original programs usually vary a great deal between 
one page and rna' thus making the operating system's (OS) 
page allotment job nearly impossible unless mo pages are 
allotted (the difficulty of knowing mo was discussed above). 
Of course, allotting each program an efficient amount of 
space would also complicate the overall scheduling job of 
the OS. However, the transformed programs are much bet-
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Pages of Real Memory 

Figure 2-Page faults vs. memory allotment. 

ter behaved, and any allotment in the region of mt, say from 
four to eight pages will give a reasonably good space-time 
product for any of the programs we observed. 

To compare averages using ideal memory allotments (mo 
and m t ) is rather pointless because of the difficulty of 
achieving mo allotments in practice. More realistic is a com
parison of the performance of the original and transformed 
programs given fixed allotments, ma , which are not neces
sarily optimal. This reflects the situation where space is 
allotted by an OS that does not know the optimal allocation. 
(N ote, however, that it may be easier for a compiler to 
estimate mt even though estimation of mo is known 
to be difficult.) We have tabulated the ratio ma fo(m a )/ 
6· ft(6), for 16:sma::::;A8 with ma increasing by increments of 
four. For ma = 16 the space-time product of transformed 
programs is improved over untransformed programs for all 
but one of the 17 programs (where it drops by a factor of 
.75), with an average improvement by a factor of 8.8. Fur-
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Figure 3-Space-time product vs. memory allotment. 
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thermore, in all but three cases, both space and page faults 
decrease (in two of these the page faults increase very 
slightly). As rna increases, several other programs reach rno 
and need no more pages, but averaging over those that need 
28 pages (14 programs), the average space-time product im
provement reaches a maximum of 12.9 with a median of 
seven. In fact, over the entire range of rna and using four, 
six, or eight pages for the transformed programs, we achieve 
an average space-time product improvement over untrans
formed programs in the range of seven to over 12. Thus, we 
feel safe in concluding that by using our transformations, 
operating systems that use fixed memory allotments can 
achieve a decimal order of magnitude improvement in space
time product over standard paging techniques for the data 
of ordinary FORTRAN programs. 

The above studies assumed a fixed memory allocation and 
a least-recently-used (LRU) page replacement algorithm. 
We have done similar studies assuming paging is done ac
cording to the working set policy, WS. For transformed 
programs, there was no difference between the cost of ex
ecution under LRU and WS. Moreover, several programs 
exhibited the working set anomalies. 16 For more discussion 
on the results under WS, see References 3 and J. For de
tailed measurements of the working set anomalies in FOR
TRAN programs, see Reference 2. 

CONCLUSION 

In this paper we presented an overview of compiler trans
formations which are aimed at the enhancement of the lo
cality property of programs. Moreover, we presented a sum
mary of preliminary experimental results which show that 
our techniques have good potential for achieving their goals. 
These results indicate that transformed programs are 
cheaper to execute, easier to manage, and simpler to model. 4 

For example, using simple and practical memory manage
ment policies, we observe a factor of 10 improvement in 
space-time cost over untransformed programs. 
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Analysis of data flow models using the SARA graph model 
of behavior* 
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Los Angeles, California 

A number of investigators have continued to discuss appli
cation of asynchronous techniques to rmprove the compu
tational power of computing systems. 2.12,5,9 In fact the need 
for asynchronous design techniques arose in the earliest 
machines 26,6.2o which introduced parallel handling of bits in 
a number and overlapping of independent operations. The 
concept of distributed autonomous concurrent processors 
was essential to the visionary architecture proposed by Hol
land16 to support "operating programs floating in a sea of 
hardware." The importance of such concurrent and asyn
chronous systems has increased recently because of the 
availability of entire processing units on one or a few chips 
and the potential cost reduction of those units. Moreover, 
it is expected that work on VLSI technology will permit 
even more complex systems to be reduced to silicon if their 
design and market analysis have been validated sufficiently 
to justify the cost. The need for validation prior to costly 
physical implementation has increased the value of methods 
and tools which support modeling and analysis. 

SARA (System ARchitects Apprentice) is such a sup
ported methodology particulary applicable to multilevel 
modeling of concurrent systems. Dennis has proposed com
putation structures for concurrent system design which have 
aroused considerable interest. This work shows how SARA 
tools may be used to analyze data flow models utilizing 
Dennis' computation structure. This work refers to the latter 
as the Dennis Data Flow (DDF) Model. 

In the first part of this paper we establish relationships 
between primitives of two models-the Dennis Data Flow 
Model and the SARA Graph Model of Behavior (GMB). 
The second part of the paper presents an example showing 
how SARA tools can be used to construct and simulaie a 
data flow model. The discussion and the example should 
help to increase the reader's understanding of both models. 

This opens the way for application of supported multilevel 
design methodologies, like that supported by SARA,8 to 
higher-level design of systems incorporating devices which 
implement data flow primitives. 

* This research was supported by the U.S. Department of Energy, Contract 
No. EY-76-S-03-0034, PA214. 
** Formerly UCLA Computer Science Dept., now at Laboratorio de Siste
mas Digitais, Depart. de Eng. Electrica, Escola Politecnica-U.S.P. Caixa 
Postal 8174-S.P. 30000 Brasil. 
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RELATIONSHIP BETWEEN DDF AND GMB 

Token flow models' 

The Graph Model of Behavior (GMB)ll and the Dennis 
Data Flow (DDF) ModelS can be considered token flow 
models which were invented to help synthesize asynchron
ous concurrent systems. A token flow model uses a directed 
graph composed of nodes' and arcs to describe the static 
component of a system behavior. Tokens, which are initially 
placed on the arcs, flow through the graph, activating and 
deactivating nodes. In this way, selected dynamic behavior 
of a system can be modeled and observed. Such models are 
most suitable for describing the behavior of concurrent and 
asynchronous systems in which some events may occur 
concurrently, but those occurrences must be controlled to 
satisfy constraints, i.e. precedence and frequency .. 

The GMB was developed in a search for a natural, simple 
and powerful method for describing and analyzing the flow 
of data and control in systems. The GMB was derived from 
the bigraph model of computation (GMC) 13 which formalized 
earlier work at UCLA.7,18 The GMB was influenced by the 
LOGOS work at Case Western Reserve. 24 

A simple data flow model was studied in the basic work 
by Karp and Miller.17 Dennis and Rodriguez23 developed 
program graphs which were later revised and analyzed as a 
form of parallel program schema. A chain of investigators 
in Dennis' information structure group has continued explo
ration of fundamental data flow primitives and architectures. 
In this paper we concentrate on the data flow model devel
oped by Dennis. Other noteworthy data flow models have 
been reported in the work of Adams, 1 Arvind - Gostelow, 15 

Bahrs3 and Kosinski. 19 

Dennis' data flow primitives 5 

A data flow language is a machine language for expressing 
computations in which an instruction executes when and 
only when all operands needed for that instruction become 
available. The instructions, at whatever level they might 
exist, are purely functions and produce no side effects. Den
nis' data flow language seeks to define a scheme of repre-
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sentation that exposes concurrency while maintaining a 
guarantee of determinacy. This language considers only pro
grams that compute a set of output values from a given set 
of input values and that define the functional dependence of 
output values on input values. 

An elementary data flow program can be represented as 
a bipartite directed graph where the two types of nodes are 
called links and actors. The arcs of a data flow program 
should be regarded as channels through which tokens flow 
carrying data values. A data flow token is a primitive con
cept. It is better described as a pair (e 1" v ); e l' is an enable 
flag and v is a data value. The enable flag signals the pres
ence of the token which carries a data value to be used in 
the computation. 

A DDF link cannot have more than one incident arc, 
whereas it may have more than one emanating arc. A dis
tinguished input link is one that has no incident arcs; a 
distinguished output link has no emanating arcs. There are 
two kinds of link nodes-data link and control link. Figure 
1 shows the kinds of actor nodes from which elementary 
data flow programs are constructed. The T~gate, F-gate and 
Merge actors are called control actors. The Or, And and 
Not actors are called boolean actors. 

The execution of a data flow program is described by a 
sequence of snapshots; each snapshot shows the data flow 

LINKS: 

DATA LINKS 

CONTROl.. ACTORS: 

Figure J-DDF nodes. 

DATA LINK CorlTROL LINK 

Figure 2-Firing rules for link nodes. 

program with tokens and associated values placed on some 
arcs. "In the case of control arcs, the associated values are 
of the type truth={trueJalse}; for data arcs, the values are 
of the types integer, real or string. Execution of a data flow 
program advances from one snapshot to the next through 
the firing of some randomly selected link or actor that is 
enabled in the earlier snapshot. Except for the Merge actor, 
a node is enabled when all input arcs have a token and there 
is no token on any output arc. The Merge actor is enabled 
if there is no token on the output arc and either it has a 
token with value true on the input control arc and a token 
on the true arc input or it has a token with value false on 
the input control arc and a token on the false arc input. 
When a node fires it removes all enabling tokens from its 
input arcs and places tokens on its output arcs. An exception 
is made for the T -gate and F -gate. If the token value on the 
input control arc of a T-gate is False, the token on the input 
data arc is removed but no token will be placed on the 
output data arc. The same happens with an F-gate and a 
True value on the input control arc. 

The value associated with an output token is a function 
of the values of the enabling input tokens. Firing an Operator 
applies the function denoted by the symbol written in the 
Operator to the set of values associated with the tokens on 
the input arcs and associates the resulting value with the 

OPERATOR 

DECIDER 

Figure 3-Firing rules for operators and deciders. 



token placed on the output arc. Firing a Decider has a similar 
effect, but the symbol in the Decider denotes a predicate 
and a control value is associated with the output token. 
Figures 2, 3 and 4 show the effects of firing. 

Relating the two models 

In the most general terms, information processing systems 
can be considered as flow and transformation systems. Bas
ically, there are two commodities which flow during a pro
cessing activity in those systems-one is the control over 
resources and data and the other is the data itself. 

The Graph Model of Behavior (GMB)10,21,22 is a funda
mental model incorporated in the SARA (SystemARchitects 
Apprentice) met-h-oOOlogy 8 for multilevel design of concur
rent systems. The GMB tools provide languages for mod
eling the behavior of a digital system in three related do
mains-control, data and interpretation. 

The control domain is concerned only with the control 
flow aspects of the system. It utilizes a directed graph (called 
the control-graph) where nodes model steps in the compu
tation and arcs model precedence. Tokens flowing through 
the control graph establish activation conditions for control 
nodes. A node is activated if a simple function (a combina
tion of +, * and a weight) holds for the tokens on the 
incoming arcs. Activation amounts to removing the activat-

~> 
~ .F~E. 

1 
IERGE 

T -GATE 

Figure 4-Firing rules for control actors. 
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ing tokens and, upon completion of the activated process, 
adding tokens to the outgoing arcs according to a similar 
simple function. 

The data domain describes flow of data and access ca
pability constraints. A directed bipartite graph (called the 
data graph) is used to show how input data streams can flow 
through the system and where they are transformed (proc
essed) in order to generate output data streams. The data 
graph describes the organization of data places (called data 
sets) and computation points (called processors). Data arcs 
describe allowable directed data paths between processors 
and data-sets. 

The third domain, the interpretation, defines the format 
of data-sets, the format of data which flows along the data
arcs and the specific procedures to be carried out by acti
vated processors. The current implementation of the GMB 
sillHliat-Or uses an interpretation language which is an exten
sion of PL/l (called PLIP), but different interpretation lan
guages could be introduced to enhance flexibility, 

The three domains are associated as follows: Each control 
node is associated with at most one controlled processor in 
the data graph. Each controlled processor is associated with 
a unique (non-empty) set of control nodes in the control 
graph. The activation of a control node implies the non
preemptable activation of the associated controlled proces
sor (if any). All concurrent· activations of control nodes that 
are associated with the same controlled processor imply a 
sequence of activations of that controlled processor. The 
order of these activations is random. Segments of interpre
tation define the data structure associated with each data 
arc and the specific computation that is executed by each 
controlled or uncontrolled processor. 

The GMB operates as follows: The "token machine" ac
tivates enabled nodes in the control graph. Control nodes 
activate controlled processors in the data graph while 
changes in the distinguished inputs activate uncontrolled 
processors in the data graph. The controlled and uncon
trolled processors cause execution of code segments in the 
interpretation domain. The code segments cause data tran·s
fers (possibly with transformations) between data sets. Con
trolled processors may feed information back to the control 
domain to determine choice of output branching of the as
sociated control nodes. The G MB can be used in a flexible 
way for the following purposes: a designer may choose to 
explicate more or less control flow; a designer may choose 
to vary the amount of data flow abstraction; a designer may 
choose to utilize different interpretation languages offering 
different powers of abstraction. Tables 1 and 2 tersely sum
marize properties of the current set of structural and behav
ioral modeling primitives. Table 3 summarizes properties of 
proposed extended primitives. 25 The SLl, GMB and PLIP 
languages (which support multi-level modeling) and a sim
ulator (which supports analysis) are implemented at both 
UCLA and MIT-MULTICS. 

In order to illustrate and make more meaningful compar
ison between the two models, let us first express the data 
flow primitives in terms of GMB primitives. Subsequently, 
some GMB constructs are expressed in terms of data flow 
primitives. 
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TABLE I.-Modeling Primitives 

STRUCTURAL PRI,U TIVES TYPE 

A NAMED fo«lDULE REPRESENTS AN OBJECT WHOSE INTERNAL, FULLY-NESTED 
S TRUCTuREl'SiiIDOn: FROM THE nUTS I DE. A MODULE'S ONL Y POSS I BLE 
COMMUNICATION WITH THE OUTSIDE Ie; THROUGH A· SOCKET. OTHERWISE. 
A J«>DULE I S NAME IS KNOWN ONLY TO THE STRUCTURE WITHIN WHICH IT IS 
NESTED. 

~: THE MODULE. CALLED" NAME COl. IS COMPOSED OF J«>DULES 
"A" AND "B". -

A NAMED S'lCKET IS PART OF A fo«lDULE BUT THE SOCKET'S NAME IS KN~N 
BOT'" INS I DE AND OUTS I DE OF ITS HOS T MODULE. 

EXAMPLE: THE J«>DULE "NAME COl IS COfIIOSED OF J«>DUlES A WITH SOCKET SA. B 
--- WITH SOCKET SB AND C WITH SOCKET SC. 

A :-lAMED INTERCONNECTiON IS A STRUCTURE flHICH CONNECTS TWO OR !«IRE 
SOCKETS. 

EXAMPLE: AN INTERCONNECTION CALLED "LINK" 
--- A@SA. B@SB, AND C@SC. 

CONNECTS THE SOCKETS 

M:.!! b!!!!!!. y-a
2 

!l1! y-al 

GT: .!! b ~ Y-a 

SF: .!!,b then v-a 

Figure 5-DDF to GMB using uncontrolled processors and data links. 

GRAPHICAL MACHINE PROCESSABLE 
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Expressing data flow primitives in terms of G MB 
primitives 

In general, any DDF can be abstracted into an uncon
trolled processor where the interpretation of this processor 

DDF: 

GMB: 

6 
1_- .... 

Figure 6--A GMB representation of a DDF token. 
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TABLE H.-Behavioral Modeling Primitives 

BEHAVIORAL PRIMITIVES 

A NAMED CONTROL NODE REPRESENTS A STEP IN A PROCESS BEING MODELED. 
A CONiROLLED DATA PROCESSOR (SEE BELOW) MAY BE ASSOCIATED WITH A 
NODE TO PROVIDE INTERPRETATION OF THE PROCESS. 

EXAMPLE: A NODE Nl HAS A SINGLE ENTRY ARC S AND A SINGLE EXIT ARC X. 

A NAMED DIRECTED CONTROL ARC REPRESENTS NON-VOLATILE PRECEDENCE 
RELATIONS BETWEEN SETS OF NODES. IF THERE IS MORE THAN ONE SOURCE 
OR DESTINATION NODE THE ARC IS CALLED C~PLEX; OT'n£RWISE IT IS CALLED 
SIMPLE. AN ENABLING TOKEN IS PLACED ON AN ARC EITHER AS A STARTING 
STATE DR UPON TERMINATION OF ANY OF ITS SOURCE NODES. WHEN A NODE IS 
INITIATED, ITS ENABLING TOKENS ARE ABSORBED. 

EXAMPLE: A2 AND X ARE SIMPLE CONTROL ARCS. Al IS A COMPLEX CONTROL 
ARC WHOSE SOURCE SET IS NODES Nl, N2 and N4 AND WHOSE 
DESTINATION SET IS N5. S IS AN INCOMING COMPLEX ARC WHOSE 
DESTINATION SET IS Nl, N2, AND N3. IF THERE WERE AN INITIAL 
TOKEN ON S, THE TOKEN MACHINE MECHANISM WOULD NON-DETERMINIS
TICALLY ENABLE Nl OR N2 OR N3 AND THE TOKEN WOULD BE ABSORBED. 

INPUT CONTROL LOGIC 

A LOGICAL RELATION AMONG THE INPUT ARCS TO A NODE SPECIFIES THE 
PRECEDENCE CONDITIONS THAT MtJST BE SATISFIED BY TOKEN STATES FOR THE 
NODE TO BE INITIATED. TOKENS FROM THE INITIATING ARCS \oIlICH SATISFY 
THE INPUT RELATIONS ARE ABSORBED BY THE TOKEN MACHINE. TOKENS ARE 
ABSORBED FROM ONE OF AN INITIATING ARC SET GOVERNED BY AN OR RELATION 
IN A MANNER ESTABLISHED IN THE TOKEN MACHINE AND FROM ALL MEMBERS OF AN 
INITIATING ARC SET GOVERNED BY AN AND RELATION. 

EXAMPLE: IF ENABLING TOKENS EXIST ON EITHER Al OR A2 AND ON EITHER 
--- A3 OR A4 THEN Nl CAN BE INITIATED. 

OUTPUT CONTROL LOGIC 

A LOGICAL RELATION AMONG THE OUTPUT ARCS SPECIFIES WHICH ARCS HAVE 
TOKENS PLACED UPON THEM WHEN A CONTROL NODE IS TERMINATED. WHEN AN 
EXCLUSIVE OR OUTPUT RELATION HOLDS, A DATA PROCESSOR INTERPRETATION MUST 
DECIDE \oIlICH ARC RECEIVES A TOKEN. WHEN AN AND RELATION HOLDS ALL OUTPUT 
ARCS RECEIVE TOKENS. -

EXAMPLE: WHEN Nl TERMINATES, ITS ASSOCIATED CONTROLLED DATA PROCESSOR 
WILL HAVE DECIDED WHETHER TOKENS ARE TO BE PLACED ON Bl AND 
B2 OR ON B3 AND B4. 

A NAMED CONTROLLED DATA PROCESSOR REPRESENTS A DATA TRANSFORMATION OBJECT 
WHICH IS ACTIVATED WHEN AN ASSOCIATED CONTROL NODE IS INITIATED. E.G., 
PROCESSOR Pl IS INITIATED WHENEVER EITHER Nl OR N2 IS INITIATED. WHEN 
PROCESSOR Pl TERMINATES IT CAUSES TOKENS TO BE PLACED ON OUTPUT ARCS OF 
THE CONTROL NODE WHICH INITIAin IT. AN INTERPRETATION OF THE DATA 
TRANSFORMATION AND OTHER PARAMETERS SUCH AS ilrlE DELA¥ OR RESOURCE 
REQUIREIENTS CAN BE ASSOCIATED WITH THE DATA PROCESSOR. 

EXAMPLE: r~6Si~RA P~u~t¥ -fN ~~~I:~ Y T~sg~~~~6r m~H I hRRI ES THE 
BUR[l£N OF GUARANTEEING THAT N1 AND N2 ARE ENABLED IN A DESIRED 
SEQUENCE. OTHERWISE THEY WILL BE ACTIVATED IN A NON-DETERMIN
ISTIC ORDER AND THE SIMULATOR WILL SHOW POSSIBLE CONTENTION. 

A NAIED UNCONTROLLED DATA PROCESSOR REPRESENTS A DATA TRANSFORMER WHICH 
PROVIDES, AT ITS OUTPUT, STATED FUNCTIONS OF ITS INPUTS INDEPENDENT 
01' CONTROL NODE STATES. IN THE DATA GRAPH AN UNCONTROLLED PROCESSOR IS 
IDENTIFIED BY PROVIDING AM EXPLICIT DEClARATION. AN INTERPRETATION OF 
THE DATA TRANSFORMATIONS AND OTHER PARAMETERS MAY BE ASSOCIATED WITH IT 
IN AN IDENTICAL MANNER TO THE CONTROLLED PROCESSOR. 

A NAIED DATA SET REPRESENTS A PASSIVE COLLECTION OF DATA. DATA 
STRUCTURE MAY BE ASSOCIATED WITH A DATASET. ALL FL/i DECLARATIONS NCT 
CONTAINING SCOPE OR STORAGE CLASS ATTRIBUTES ARE ACCEPTED AS DEFINITIONS 
OF DATA SETS. CHARACTER STRINGS CANNOT HAVE THE VARYING ATTRIBUTE. 

EXAMPLE: THE DATASET Dl IS A SIX-DECIMAL-DIGIT COMPLEX FLOATING POINT 
-- NUMBER. 

A NAIED DATA ARC STATICALLY BINDS DATA PROCESSORS AND DATASETS. A DATA 
PROCESSOif1iFlirAD OR WRITE ACCESS TO A DATA SET I F THE ARROW POINTS TO 
OR FROM THE DATA PROCESSOR RESPECTIVELY. 

EXAMPLE: PROCESSOR Pl IS INITIATED BY CONTROL NODE N1. Pl READS DATA 
FROM DATASETS 02 AND D3 AND WRITES THEIR SUM INTO DATASET 01. 

Al A2 A3 A4 

B1 B2 B3 B4 

MACHINE PROCESSABLE 

(!ICONTROL GRAPH; 
@NODrS N1; 
(!IARCS S,X; 
Nl (S:X); 

(!lEND; 

(!ICDNTROL GRAPH: 
@NODfS N1,N2,N3,N4,N5; 
@ARCS S,A1,A2,X; 
Iii (S:Aij; 
N2 (S:Al); 
N3 (S:A2); 
N4 (A2 :A1); 
N5 (A1 :Xl; 

@END; 

INPUT: OUTPUT CONTROL LOGIC 

@CONTROL GRAPH; 
@NOOES N1; 
(!IARCS A l,A2 ,A3 ,A4 ,B1 ,B2 ,B3 ,B4; 
N1((A1+A2) * (A3+A4): 

(B1+B2) * (B3+B4); 
@END; 

@DATA GRAPH; 
@PROCESSOR Pl (Nl ,N2); 

(!lEND; 

PLl P INTERPRETATION 

@PROCESSOR Pl; 
DCL lRAND ENTRY(FIXED BIN(31) 

FIXED BIN(31))RETURNS 
(FIXED BIN(31»); 

I*RANDOM , GENERATOR*/ 
DeL NUMBER FIXED BIN( 31); 
NUMBER=IRAND(l,2) 

/*PICK AN INTEGER: 1 OR 
2*/ 

IF NUMBER=l THEN (!lOUT PUT ARCS= 
'B1,B2'; -
ELSE @OUTPUT ARCS=' B3 ,B4' ; 

@DELAY=IRAND (10-:-100); 
/*PICK RANDOM DELAY FROM 
10 TO 100*/ 

@ENDPRDeESSOR; 

@DATA GRAPH; 
@UNCONTROLLED PROCESSORS U1; 

@END; -

@DATA GRAPH; 
@DATASETS 01; 

(!lEND; 

MTA GRAPH; 
IilPROCESSORS Pl(Nl); 
@DATASETS 01, 02, 03; 
@ARCS DA 1, DA2, DA3; 

~Nn· 

DA3 (D3:P1); 
DA2 (D2:P1); 
DA1 (P1 :01); 

Pl'jp'INTERPRETATION 
@TEMPLATE (DA 1, DA2, DA3) 

T' FIXED BIN(31); 
(!IPROCESSOR P1; 

@READ 03 @FROM DA3; 
@READ 02 @FROH OAf; 
01 = 02+03; 
I!lWRITE 01 liTO DA 1 MFTER 10; 

ENDPROCESseR, 

979 
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TABLE IlL-Extended GMB Primitives 

DESCRIPTION 

A data link is a directed path between structured 
processors. A structured processor WRITES to a data 
link only immediately before its termination and READS 
from a data link ol'lly immediately after its activation. 
A data link may be used to build a connection between 
two structured processors by connecting a data link 
followed by a dataset followed by a data link. We 
refer to the composite as also being a data link 
between processors. 

A message link is a directed path between two 
processors that provides a fully interlocked mechanism 
to exchange messages. The processors are able to 
synchronize control and to exchange data. A message 
link is said to be active whenever the two processors 
are synchronized and ready to exchange data. A 
message link can be viewed as an input/output/ part 
for the involved processors. Only processors that 
can be active at the same time can be connected 
~ough message 11nks. 

single instantiation: involves only one message 
link, two processors 

complex instantiation: involves several message 

DDF: 

~ 
CONTROL LINK 

GMB: 

A 

links at same time; requires 
arbitration. See [RUGG78] 
for more details of this 
model. 

-< 
DATA LINK 

k 
Figure 7-GMB representation of data and contrn) )ink~ 

Pl: 

WRITE 0; 
END Pl; 

S: D:=a; 
F:=TRUE; 
while F do 
endwhile; 

GRAPHICAL 

Data Link Between 
Processors 

Equivalent D.G. 

P2: READ 01; 

END P2 

.--0 ~Single Message 
R Between 
~ors 

~L Equivalent yro 6MB 

R: while F do 
endwhile; 
b:=D; 
F: =Fal se; 

is the data flow program. The behavior described by this 
data flow interpretation can be immediately translated into 
the GMB Control Graph (CG) and Data Graph (DG). 

One approach is to define extended primitives to express 
data flow behavior only in the DG using for example, un-

DDF: 

Gtt3: 

Figure 8-Expli..:it acknuwkJge Lukens. 



m!E: 

GMB: 

DDF: 

G'1B: 

e. 

Figure 9---GMB representation of an elementary actor. 

e .. 
! -

L 
'( 

T-GATE 

1 

T: 

F: 

B: 

c:-a; 

MOP: 

if b then OUT_ARctr); 

else OUT_ARC(s); 

Figure lO-GMB representation of a GATE actor. 

Analysis of Data Flow Models 981 

controlled processors and data links (see definitions in Ta
bles 2, 3) as shown in Figure 5. The GMB data links have 
internal storage, are written into just before termination of 
a processor and are read from only immediately after initi
ation. Another approach is to describe the data flow behav
ior by separating the control and the data parts into a GMB 
CG and a GMB DG respectively. For the rest of this section 
we assume the latter approach because it gives more insight 
into the properties of the two models. For practical pur
poses, a data graph-oriented description of a DDF is usually 
preferable, (and is used in the demonstration exampie of 
Part B); however, the control-oriented description is more 
suitable for analysis purposes. In a data flow program the 
flow of control and the flow of data are shown together in 
the same graph. 

As shown in Figure 6, the DDF enabling flag, e r is, in 
GMB terms, an input token for a node 11 in the control 
graph. It signals the presence of a data value v in a data-set 
d. A controlled processor pn associated with a control node 
n then has read access to the data-set d. 

Let us consider, in a data flow program a link node I with 
one input arc and m output arcs (Figure 7). The equivalent 

II 

DDF: 

G"IB: 

~ J' 
F i ~ 

MERGE 

F: d - fi 

T: d· to 

d 

B: if b 

then OUT~RC( r); 

else OUT_ARC(s); 

Figure JJ-GMB representation of a MERGE actor. 
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.J • f(t) 

F 

DOF: 

Figure 14-DDF representation of GMB switch construct. 

Figure 12-DDF representation of GMB fork construct. 

'2 

j • 1(1) 

w.: 

OOF: 

JQI-----o (7) 

Figure 13-DDF representation of GMB join construct. Figllre 1 "-DDF repre"entation of GMB Ilnion construct. 



representation in GMB will have 

• A data set d with one input data arc and m distinct 
output data arcs. 

• A control node n with one input control arc and m 
output control arcs related by an "*,, operator in the 
output logic expression of n . 

• If m is equal to "1," node n does not need to exist. It 
is reduced to just a control arc. 

• The coniroi node n does not have any controlled pro
cessor associated with it in the data graph. 

Except for control actors, all elementary DDF primitives 
can be represented in GMB using only one control node and 
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one controlled processor. The DDF control actors represent DDF: 

more complex compttt-ations. 
The DDF interpreter requires an elaborate operation to 

decide which node to activate next. It needs some kind of 
acknowledge token which flows internally in the interpreter. 
In order to effect the same behavior in GMB, the acknowl
edge tokens may be shown explicitly in the control graph 
(see Figure 8), may be included in every GMB processor 
interpretation or may be placed as a burden on the token 

~, 
(0 

DDF: 

Figure 16-DDF representation of GMB ILThen---.Else construct. 

Figure 17-DDF representation of GMB ParbeginJarend construct. 

machine. The last approach would make the token machine 
equivalent to the DDF interpreter. 

The use of explicit acknowledge tokens in a G MB makes 
the description much less readable. In the remainder of this 
section, we neglect the acknowledge tokens required in the 
GMB equivalent expression of the DDF primitives so as to 
focus attention on the relationship between the two models. 
Figure 9 shows how actors, except for control actors, are 
represented in GMB. Figures 10 and 11 show the represen
tation of Gate and Merge control actors respectively. 

The GMB representation of a Gate actor shows clearly 
(Figure to) that this primitive has a control flow description 
which is not properly terminating. 13 In GMB terms, the Gate 
actor is not considered "well behaved" and its presence 
may complicate the verification of a DDF model. 

Finally, we should observe that there is no need to distin
guish between data for different data types (boolean and 
numeric) in a GMB model. 

ExpresSing some G MB constructs in terms of DDF 
primitives 

We do not attempt the expression of non-deterministic 
GMB constructs in terms of DDF primitives because the set 
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Gte: 

WHIL£ p(x) DO x • f(.lcl 

OOF: 

Figure 18-DDF representation of GMB Do_While construct. 

Figure 19-GMB solution of the root ofJby Newton approximation, 
X, -<-l =x,-fix,)/ ((x,), 

of programs intended to be expressed by the DDF language 
includes only deterministic programs. But, we should point 
out here, that the lack of non-determinism is one of the main 
weaknesses of DDF language when applied in a real-time 
programming environment. Some important problems in 
real-time processing such as mutual exclusion, synchroniz
ation and resource management, are in essence non-deter
ministic problems. The complex control arc is the general 
form of expressing non-determinism in a GMB program. 

Now let us see the equivalent expression, using DDF 
primitives, of some deterministic GMB constructs. Figures 
12-18 show respectively the Fork, Join, Switch, Union, 
If_Then~lse, ParbeginJarend and Do_While constructs 
in terms of DDF primitives. 

The equivalent expression of the Union construct (Figure 
15) (which is another form of non-determinism in GMB) 
presented a problem when described in DDF terms-namely 
the control input of the Merge actor was not defined. This 
does not seem to be a problem in deterministic programs, 
because this construct should be used as shown in the 
If_ Then~lse and Do_While constructs (Figures 16 and 18). 

Looking at Figure 18, where a sequential construct is 
presented, we note flexibility of the GMB program in in
cluding all the sequential processing inside of a controlled 
processor. To describe this purely sequential construct in 
DDF we need the full DDF interpreter mechanism, which 
was designed to handle concurrent operations. The capabil
ity to embody segments of sequential code in elementary 
primitives, without involving the elaborated mechanisms of 
the token machine, represents a great advantage for G MB 
programs. The programmer may specify the use of an extra 
processor only when the problem really requires it, i.e., 
when there are some concurrent operations to be performed. 

Figure 20-DDF solution of the root ofJby Newton approximation, 
.Tt 1 = T t - j(T;)! !(.Ti) , 



DEMONSTRATION EXAMPLE 

A deterministic program in GMB and DDF 

In this section we present the solution of a simple com
putation expressed in GMB and in DDF languages. The 
problem to be used as an example is the calculation of a root 

The following is a semple of a session with the SARA system. 
The system is a set of design arxl modelling tools which are im
plemented on the MIT-Multics canputer system. This demonstration 
is intended to acquaint all interested persons with the state of 
implementation of the SARA system. All the demonstrated tools 
are available to any user with access to the MIT-Multics system. 

The exemple shown here is a GIS model Simulating Arvirxl arxl 
Gostelow's [605T75] data-flow model for the calculation of the 
roots of a function by Newton-Raphson approximati on. 

In the session, all user input is preceded by the SARA sys
tem prallpt ">"; all other information is output by the SARA sys
tem (except where otherwise noted). Several canments are includ
ed to describe the session, they are surrounded by """ and """. 

The SARA cOlllDallds are generally divided into two categories: 

System Conmancls (preceded by &) 
These are cClllllarxls available at any level of input arxl 
wi thin all tools. They allow the user to alter the SARA 
input' output envirorment arxl additionally to request assis
tance (&help). 

SARA ConInarxls (preceded by @) 
All non-System camnarxls are preceded by @. This is a stan
dard observed by all SARA tools, as well as the tool Selec
tor. 

In addition to the above camnarxls, a "?" may be entered at 
any point of input (including at the end of an incanplete input 
line) to receive assistance in several of the SARA tools, includ
ing the Selector. 

" The following Multics canmarxl must be entered to " 
" begin a SARA session. It is often abbreviated " 
" "SARA" by use of Multics abbreviation facilities " 

ec >udd>SARA>SARA system>ec>sel 
SARA Selector septer.ber 20, 1978 
New or modified news: 
no news changes 
>&saratree 

SARA 

1 : : 
req structure behavior lib:ary util~ty ccmnent news 

I : --r--T : : ; 
dcds sol query u print edit list delete 

: : I 
trans 1 plip sim linker 

SARA 
>&library >udd>SARA>SARA library>dataflow 
working library now >udd)SARA>SA.RA _library>dataflow 

>? 
expecting sara COIIIIl3rx1 
starts wi th one of the following: 
n:~~ne @END ~urT I1EXEC @BE'rl grr @SL1 

>" The first step is the creation of the gmb-equivalent of " 
>" the data-flow model using the GIS translator. The source " 
>" for the GIS model resides in a file arxl will be read in " 
>,- using the "&input" ccmnand " 

>@behavior 
SARA. Behav ior 
>@p 
SARA. Behav ior • GIS 
>@translator 1 
SARA. Behavior .QID. Translator 
gmbplex size factor = 7 
GMB Translator V. 15m June 1977 
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of a function f by the NEWTON-RAPHSON approxima
tion.4 This method involves the successive calculation of 

given the initial value Xo, the maximum number of iterations 
n and the precision e to be achieved. 

Models of the solutions were designed trying to express 

>" This is the GIS translator. The size factor is an " 
>" indication of the size of thE' :nc.del being created. " >" Since thE' source will be read in fran a file, it " 
>" is necessary to request that the input be echoed " 
>" to the terminal. " 

>&output ' +input echo 
output destination ' for message warning error listing trace pro 
mpt input echo classes 
>&input newton .gmb 
input source is >udd>SARA>SARA library>dataflow>newton.gmb 
@contr'ol graph -
@end -
@data graph 

@liicontrolledJocessors m1,m2,m3,mlI, gl,g2,g3.g4,g5 
@U'1controlledJll"ocessors-l1,12,13,14,l5,16, p1,p2 
bcontrolled_processors fl,f2,f3,f4, f5, f6,n 

@datasets nO,nl,n2,n3,n4 
@datasets cO,c1,c2,c3,c4,c5 
@datasets bO,b1,b2,b3,b4 ,b5,b6,b1, 

bS,b9,b10,b11 
@datasets vO,v1,v2,v3,v4,vS, v6,v1, 

v8,v9,vl0,v11,v12,v13 
@datasets eO,el,e2,e3,e4 
@datasets r 

@arcs daonO,dain1,daonl ,dain2,da0n2 ,dain3,daon3,dain4,daon4 

@arcs daocO,daicl,daoc1,daic2,daoc2,daic3,daoc3,daic4, 
daoc4,daic5,daoc5 

@arcs daibO,daobO,daib1,daob1,daib2,da0b2 
@arcs daib3,daob3 
@arcs daib4 ,daob4 ,daib5 ,daobS ,daib6,da0b6 
@arcs daib1,daob7,daib8,da0b8,daib9,da0b9 
@arcs daib10,daob10,daibl1,daobl1 

@ares daovO,daivl,daovl ,daiv2,caooJ2 
@arcs daiv3,daov3 ,daiv4 ,daov4 ,daivS,daovS 
@arcs daiv6,daov6,daiv7 ,daov7 ,daiv8,daov8 
@arcs daiv9,daov9,daiv10,daov10,daiv11,daovl1 
@arcs daiv12,daov12,daiv13,daov13 

@arcs daoeO,daiel,daoel,daie2,daoe2 
@arcs daie3 ,daoe3 ,daie4 ,daoe4 

@arcs dair 

" arcs source-set arxl destination-set specification 

daonO + (nO, ml) 
dainl + (ml, n1) 
daonl + (n1, 11) 
dain2 + (11, n2) 
daon2 + (n2, g1) 

daie4 + (g4, e4) 

daoe4 + (e4, m4) 

dair + (gS, r) 

@end 
>&output ' -input echo 
output destination' for message warning error listing trace pro 

~; ~~:~~: model will be stored for use with PLIP and the " 
>" GMS simulator " 
>@Store newton 
model stored 
>@end 
percentage of gmbplx tables used = 92.6' 
eoo cf Q1B tran31ati~!"! 
no translation errors 
SARA. Behavior.GlS 

Figure 21-UCLA SARA (System Architect's Apprentice) demonstration. 
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>/. Now we use PLIP (PLII Preprocessor) to define the ./ 
>/. attributes of the ()4B dataarcs and the intf'l"pretations ./ 
>1* for the ()4B processors. The interpretations for the ./ 
>/. processors were produced frCII te!lplates Iotlich corres- ./ 
>/. pond to the various data-flow prilllitives. Similarly,./ 
>/. the attributes for the dataarcs were produced fran a ./ 
>/. template which gives each dataset a "value" and a ./ 
>/. "present" flas. The "present" flag is used to mark ./ 
>1* the presence or absence of a data-flow token. The ./ 
>1* initial state of the !IOdel is given boy the initial ./ 
>1* state of the dataarcs •• / 
>/. To save ~.Q!2!1. one ~ of each dataflow primitive is included in ./ 
>/* this paper, ~ twO ,g-!!2!teiiiplated'eCIBrations!!:! SiicMn. '/ 

>@plip newton 
SARA. Behav ior • ()4B. PLI P 
GHB PL 1 Preprocessor October 5, 1978 

>/* As before, the SOlrce for PLIP resides in a file and ./ 
>1* it is necessary to request that the input be echoed ./ 
>/. to the terminal •• / 

>&output • +input echo 
output destination • for Jlessase warning error listing trace pro 
mpt input echo classes 
>&input newton.pl1p 
input source is >udd>SARA>SARA library>dataflow>newton.plip 
fteilplate (daonO) -

1 n init, 
2-value fixed bin init(20), 
2 present bite 1) init( "1 lib) j 

@tellplate (daibO daobO daibl daobl daib.2 daob2 daibli dao~ 
dalb7 daob7 daib9 daob9 daibl0 daobl0 daibll daobll) 

1 boolean, . 
2 value bit( 1) , 
2 present bit(1) init("O"b)j 

@processor .1 
/. llerge node ./ 

linclu:le iotypesj 
linclu:le iOputs; 
declare rc fixed bin (15)j 

@read n 1 @from dain 1; /* first, check the presence of tokens on ./ 
if "nl.present /. the output arcs ./ 
then do; 

@read b3 @frau daob3j 
if b3.pre:sent /. check presence of inputs */ 
then dOj 

if b3.value /. b3 carries a boolean ./ 

then dOj 
@read nil @frOID daon4; 
if n4.pre:sent 
then dOj 

nl = nil j 
b3.present, n4.pre:sent = "O"b j /. rellOYe input tokens ./ 
rc = pu t ("IDerge 111 fired", i otype.l1sting); 
rc = pu-t (" nil -> nl", i otjpe.trace)j 
@write "1 @to dainl @aft" Tj 
(/wri te n4 @to da0n4 j 
(/write b3 @to daob3j 

end ; 
end j 
ehe dOj 

@read nO @from daonOj 
if nO. present 
then dOj 

nl = nO j 
b3.present, nO.present = "O"b j /. remove input token ./ 
rc = pu t ("merge .1 fired", i otype • listing) j 
rc = pu-t (" nO -> nl", i otjpe.trace)j 
(/write "1 @to dainl @after I; 
@write nO @to daonOj 
@write b3 @to daob3j 

end; 
end 

endj 
end j 

@endprocessor j 
@processor pl j 

@endprocessor 

/. decider nod ... / 
l" decider node is identical to operator ./ 
/. node with the operands of type boolean ./ 

t'processor gl j 
/. gate node ./ 

linclu:le iotypes; 
I1nclu:le iOputs j 
declare rc fixed bin (15); 

@read nil @frOlD dainll; 
if "nII.present 
then do; 

@read bIi @frOlD da0b4; 
@read n2 @frOID da0n2; 
if (~.present & n2.pre:sent) 1* check presence of inputs ./ 
then do ; 

if b4.value /. ~ carries a boolean token ./ 
then nil = n2 ; 
n2.present, b4.present = "O"b j /. reKWe input tokens ./ 
rc = pu t ("gate gl fired", i otype.l1sting)j 
rc = pUt n (" n2, b4 ->", I otype.trace); 

if b4.valUe -
then rc = pu t (" nil", i otype.trace); 
else rc = pu-t ("", i otjpe.trace); 
@write n4 ftO dainll 6fter 1; 
@write n2 @to da0n2; @write b4 @to daobll j 

end ; 
end ; 

@endprocessor ; 
@processor f1 ; 

/. operator node ./ 
linclude iotypesj 
linclude ioputsj 
declare rc fixed bin (5)j 

@read c2 @from daic2; 
if "c2.present /. check presence of token on output arc ./ 
then do ; 

@read cl @from dacel; 
if cl.present then do; /. check presence of inputs ./ 

c2.value = cl.value + 1 ; 
cl.present = "O"b ; 
c2 • present = "l "b ; 
rc = pu t ("operator f1 fired", i otype.l1sting); 
rc = pu-t (II cl -> c2", i otype:trace)j 
@write C2 @to daic2 @after 'j 
kite c1 @to daocl; 

end 
end j 

@endprocessor 
@processor 11 

/. link node ./ 
li~lude iotypes; 
linclude ioputs; 
declare rc fixed bin (15); 

@read n2 @from dain2; /. check tokens on output arcs ./ 
if "112. present 
then dOj 

@read n3 @f'raD dain3; 
if "n3.present 

then do ; 
@read n 1 @from daon 1 ; 
if n1.present then do; 

n2, n3 = nl j /. copy input onto ouput arcs -/ 
nl.present = "O"b ; /- rf!llOVe token from input arc ./ 
rc = pu t ("Unk 11 f1red" , i otype.l1sting); 
rc " pu-t (" n1 -) n2, n3",-i otype.trace); 
kite "1 @to daonl; -
kite n2 @to dain2; kite n3 @to dain3j 

end; 
end ; 

end j 
@endprocessor j 
>&output • -input echo 
output destination • for messase warring error listing trace pro 
IIIpt classes 
>lend 
- 0 errors 
••• 0 warnings 
Do you want to ccnpile the PLIP output? (y or n»y 
PLII compilation In progress 
I'L/I 
End of GHB PL 1 Preprocessor 
SARA. Behavior.(Hl 
>1* The !IOdel has been preprocessed by PLIP and then ./ 

>/. canpiled by the ftlltics PL/l cc.apiler ./ 

Figure 21 (continued) 

the parallelism existent in the problem. Figure 19 presents 
the GMB model and Figure 20 represents the DDF model. 
Both models should be viewed as if they were part of a 
SARA closed design universe. i.e .. the model of the system 
to be designed is enclosed by a module structure and. can 

interact with other modules only through specified sockets. 
It is assumed that outputs from other modules initialize the 
model and provide the four inputs at the top of the figure. 
It is assumed that the outputs at the bottom are re~eived by 
other modules and possibly tested for error. 



Among the SARA tools there is a GMB translator which 
can accept descriptions of the control graph and data graph 
and a PLIP translator which accepts interpretations. Both 
produce an internal representation usable by the GMB sim
ulator. In order to demonstrate the power of the GMB in 

>,- The GIS model is nc.w ready for simulation. -, 
>Esim newton 
SARA. Ilehavic.r .GlB.Simulator 
GMB Simulator V. 10m April 1978 
)/" Exami..,e the initial stateo c.f the mcdel. */ 
>@list ds nO, cO, vO, eO, b3, b5, b6, b8 
nO.valUe= 20 
nO.present="l "bi 
cO.value= 0 
cO.present="l"bi 
va. v al ue= 1.00000000e+OOO 
va. present="l "bi 
eO. v al ue= 1. OOOOOOOOe-002 
eO. present="l "b; 
b3.value="0"b 
b3.present="1"bi 
b5.~ value-:"6"b
b5.present="l"bi 
b6.value="O"b 
b6. present="l"b; 
bS.value="O"b 
bS • presen t="1 "b; 
>,- Since there is no control-graph, only break-time and -, 
>t- break-time-interval breakpoints can be used to monitor -, 
>t- the simulation. -, 
>t- Set a break-point after 3, a, and 15 time lA'lits -, 
>@break time 3,8,15 . 
>@starC 
merge mil fired 

eO -> el 
merge m3 fired 

va -> vl 
merge ra2 fired 

cO -> cl 
merge ml fired 

nO -> nl 
link 111 fired 

el -> e2, e3 
link 13 fired 

vl -> v2, v3, vII, v5 
operator fl fired 

cl -> c2 
link 11 fired 

nl -> n2, n3 
operator f2 fired 

V1 -> v6 
operator f3 fired 

vII -> v7 
break time breakpoint 
time = 3.0000000e+OOO 
>@continue 
link 12 fired 

c2 -> c3, cll 

decider pl fired 
cll, n3 -> bO 

operator fll fired 
v6, v1 -> v8 

link 15 fired 
vB -> v9, vl0 

operator f5 fired 
v9, v5 -> v12 

operator f6 fired 
vl0 -> vl1 

break time breakpoint 
time = 8. OOOOOOOe+OOO 
>,- c3 is thP. step count and v2 is the root approximation -, 
>@list ds c3, v2 
c3.valUe= 
c3.present="1"bi 
v2 • v al ue= 1. OOOOOOOOe+OOO 
v2.present="1"b; 
>econtinue 

,- To conserve ~!! ~ ¥EletiiB mc.st ~ ~ -, 
,- SIrulation trace QUi/it. hosp nterested in mc.re detail -, 
,- can write ~ the ~ ~.!!:X.!!: ~ MIT-'RiilITCS-rr-
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representing DDF models, the DDF computation structure 
shown in Figure 20 was selected for translation into an 
equivalent GMB model. Although many different GMB 
models can be constructed, only uncontrolled processors 
were used in this example, thereby avoiding the need for a 

end of simuliltion, tim~= 6.5000000e+00l 
improper termination of control graph 
>t!list_ds r ,- root -', vl1 ,- erro!'" -, 
r.value= 2.00313750e+OOO 
r .present="l "b: 
vl1.vC'lue= 3.132531112e-003 
vl1.present="0"bi 
>t- Examine final state -, 
>@list_ds b3, b5, b6, ba 
b3.value="0"b 
b3. present="l "bi 
b5.value="O"b 
b5.present="l "b; 
b6.value="O"b 
b6 • present=" 1 "bi 
b8.value="O"b 
bfi.-Present.=" t"ll; 
>@ffId 
no simulation errors 

SARA. Behavior .Cl'IB 
>@end 
SARA. Behav ior 
>@end 
SARA 

>,- The followi~ is an example of how to enter ccmnents _, 
>t- on the use of SARA -, 
>@conment 
SARA. Canaent 
enter YO"- CCJIIDent 
enter • carriage return in column 1 to end 
>This is lotIere canments to SARA des'igners are logged for 
>perusal' action. 
>. 
COIIIIIent recorded 
SARA 

>,- The followi~ is an example of how to use the SARA news _, 
>t- system to locate and read news items regardi~ the _, 
>t- tools in the SARA system -, 
>@news 
SARA. News 
News System September 23, 191a 
>? 
expecting ccmmand 
starts wi th one of the following: 
new_line i MMJ @PRINT @END 
>@lrii!nu 9'30 ,- list all news items entered since Sept. 30 _, 
newJllip 10'10na 
>@print new pUp 
news item: new_plip author: Razouk modified: 10'10na 

A new version of I'Ll P has been installed •. 
The new version is SLR(1) Version 1.1, Author: Vernon. In order 
to find out the differences between this new version and the 
old version look at the news item "experimental pUp". The 
~~d t;:r!!~~ :rec~~cessed by usi~ "_0" as t~ version~option 
>@end 
End of News System 
SARA 
>@end 
SARA 
End of SARA Selector 
,- SARA session terminated -, 

Figure 21 (continued) 
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control graph. Templates for PLIP interpretations were used 
to make each uncontrolled processor behave like the cor
responding DDF primitive. The resulting GMB description 
representing the DDF model was then translated and simu
lated by SARA at MIT-MULTICS via the ARPANET. The 
dialogue between user and SARA was captured and is in
corporated in Figure 21 to complete the body of this section. 
In the interest of space, some details have been removed 
and comments have been added to notify the reader. 

CONCLUSIONS 

This paper has attempted to describe two token models 
which have been used to explore architectures taking ad
vantage of concurrency. The primitives of the Dennis Data 
Flow Model and the SARA Graph Model of Behavior have 
been described and further understanding of their relation
ships was obtained by expressing one set of primitives in 
terms of the other. It was then demonstrated that data flow 
architectures could be explored making use of existing 
SARA tools. In particular, some investigators have found 
that developing a DDF model is very much like low-level 
design of a hardware system. The multi-level modeling sup
ported in SARA gives some hope of expressing functions at 
a high level and refining them systematically. 
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Software metrics for aiding program development and 
debugging 

by N. F. SCHNEIDEWIND 
Naval Postgraduate School 
Monterey, California 

INTRODUCTION 

Computer program graphs have proven very useful because 
they illuminate the structural characteristics of a program. 
Structural characteristics, as a representation of program 
complexity, have been shown to be strongly related to pro
gram development time, program quality and difficulty of 
debugging. 1-3 The use of graphs for these purposes is not 
widely known or understood in the data processing com
munity. It is the aim of this paper to provide an introduction 
to graphs as they apply to program representation and to 
show examples of their use in program design and debug
ging. 

GRAPH DEFINITIONS AND PROPERTIES 
DEFINITIONS 

The following definitions are due to Chan: 4 

Graph 

A graph is a set of line segments called edges (eJ and 
points called vertices (Vi) which are the end-points of the 
edges, interconnecting in such a way that the edges are 
connected only to the vertices. A non-directed graph has no 
orientation of the edges; a directed graph does have edge 
orientation in the form of arrows. Figure la shows a directed 
graph G. 

Degree of a vertex 

The degree of a vertex is the number of edges incident 
with that vertex. The degree of Vs of Gis 3. 

Sub-graph 

A portion of a graph, containing a subset of the edges and 
vertices of the graph is called a sub-graph. Two sub-graphs 
of G, G1 and G2 , are shown in Figure lb. 

989 

Path 

If a set of edges e 1 , e2, ... , ei can be ordered in the 
form e 1 (VI' V2), e2(V2, V3)' ... , ei(Vi, Vi+1), where VI 
and Vi+ 1 are the terminal vertices and all vertices are dis
tinct, then the set of edges forms a path. In G, the set of 
edges a, d, e forms a path. It is important to note that by 
this definition vertices may not be revisited. Thus, the se
quence of edges a, b, c, d in G is not a path because V 2 

appears twice in the edge sequence. In graph theory this 
sequence is called a walk. However, since iteration is an 
important characteristic of computer programs, we will 
modify the above definition of path to include walks in order 
to avoid using two terms when describing a program graph. 
When the edges of a path have consistent orientations, the 
path is directed. The above paths are directed. 

Circuits 

If the two terminal vertices of a path coincide and the 
remaining vertices are distinct, this path is a circuit. A di
rected circuit has all edges with the same (clockwise or 
counter-clockwise) orientation. Thus G 1 and G2 are circuits 
but only G1 is directed. 

Connected graph 

A graph is connected if there is at least one path between 
every pair of venices. G, G 1 and G2 are connected. 

Tree 

A tree T of a connected graph is a connected sub-graph 
that contains all vertices of the graph but no circuits. The 
edges contained in a tree are called branches, The comple
ment set of edges T'; that is the remaining edge·s of the 
graph, are called chords. One of the trees of G is shown in 
Figure lc, where T=(a, b, d, e, f, g, h, i, k) and T'=(c, 
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m 

1 

Figure la-Graph G. 

j, [, m) are the branch set and chord set, respectively. If 
we let E and V represent the number of edges and number 
of vertices, respectively, the number of branches and chords 
is equal to V-I and E - V + 1, respectively. 

c 

Figure Ib-Sub-graphs G) and G2 • 

MATRIX PROPERTIES 

Adjacency matrix 

The adjacency matrix X= [xu lof a directed graph with V 
vertices is a V· V matrix consisting of 0, 1 elements, where 
Xu= 1 if there is an edge directed from Vi to Vj, and 0 
otherwise. 5 The rth power of the adjacency matrix xr is 
equal to the number of directed paths of length r edges 
between each pair of vertices V i and v j. Shown in Figures 
2a, 2b and 2c are X, X2 and X3 of G, respectively. Thus 
Figure 2b shows that there are two paths of length 2 from 
V6 to V9; these consist of edges g and i and hand j (see 
Figure la). A directed path of length 3 from VI to VlO is 
indicated in Figure 2c; this is a path from start to terminal 
vertices consisting of edges a, d and I. If Vt designates the 
terminal node of a graph and recognizing that the maximum 
possible path length is r=E edges, the matrices X, ... , XE 
with non-zero entries in the 1, t cells will enumerate all of 
the paths which start at v 1 and terminate at v t • 

Fundamental circuit matrix 

A fundamental circuit matrix, 4 with respect to a tree T 
of a graph G of V vertices and E edges, is the matrix Bf of 
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Figure Ie-Tree T. 

order (E - V + 1). E with each row identified by a fundamen
tal circuit Cj (with respect to T) and each column by an edge 
e j, where bij = 1 if e j is in C i and has the same orientation 
as chord in Cj, bij= -1 if ej is in Cj and has opposite ori
entation of chord in Cj, bij=O if Cij is not in Cj. The Bf for 
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Figure 2a-Adjacency matrix. 
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Figure 2b-Square of adjacency matrix. 

1 2 
o 
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o 0 o 0 0 
o 0 o 0 1 
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o 0 o 0 0 0 
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() 0 0 () 

Figure 2e-Cuoe of adjacency matrix. 

9 10 
o 1 
o 0 
o 1 
o 0 
2 0 
o 2 
o 0 
o 0 
o 0 
Q. 0 

G is shown in Figure 3. The chord set T' = (c, j, 1, m) forms 
a unit matrix on the left. The branches of T are on the right. 
Circuits are formed by adding one chord at a time to T. 
Thus the circuits are: b c, g h i j, e f g i k 1 and 
a d e f g i k m, corresponding to C 1 , C 2 , C3 and C4, re
spectively, where Cl and C4 are directed circuits. Funda
mental circuits have the property that no circuit in the set 
can be obtained by a linear combination of other circuits in 
the set. The number of fundamental circuits in a graph is 
gi ven by E - V + 1, the number of chords. Once B f has been 
determined, all circuits in a graph, comprising the circuit 
matrix B a , can be generated by performing all possible ring 
sum (Exclusive OR) operations indicated by (EB) on the rows 

Chords 

c i I m a 

[

0 0 0 0 
o 1 000 
o 0 1 0 0 
o 0 0 I 1 

Branches 

b d ef g h 
1000000 
o 0 0 0 -1 1 -1 
o 0 -1 -1 -1 0 -1 
o 1 1 0 

Program 
Construct 

While Do 
If Then Else 
If Then 
Main Line 

Figure 3-Fundamental circuit matrix B, of G. 
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1 2 4 6 7 8 9 10 

1 0 1 1 1 1 1 

2 0 
3 0 1 1 'I 

4 0 0 0 0 1 I 

R=5 0 0 0 0 0 1 

6 0 0 0 0 0 0 1 1 
7 0 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 

Figure 4-Reachability matrix R of G (with no edge from 10 to 1), 

of B f' if the negative signs in B f are ignored. A ring sum 
operation on two rows of B f will generate either another 
circuit in G, whose edges are either in one of the original 
circuits but not in both, or an edge disjoint union of circuits: 5 

the latter are ignored. Thus from Figure 3, C 2EBC 3 will 
generate circuit e f h j k I and C 2EBC 4 will generate circuit 
a d e f h j k m. Program constructs, which will be de
scribed later, are shown on the diagram. 

Reachabilit), matrix 

The reachabili ty matrix R = [r ij] has a value r ij = 1 if a 
directed path exists between Vi and Vj and 0 otherwise [6]. 
The R matrix for G is shown in Figure 4. This matrix does 
not include the edge m, because this would result in R 
having all ones, a special case where each vertex can be 
reached from every other vertex (strongly connected graph). 

PROCEDURE TEST_CONDITIONS; 

APPLICATION OF GRAPHS TO PROGRAM 
DEVELOPMENT AND TESTING 

Directed graph representation of computer programs 

The use of a directed graph to represent a program will 
now be demonstrated. In fact, the connected graph G which 
has been discussed in the examples is the graph of the 
ALGOL procedure in Figure 5. The circled numbers in this 
figure correspond to the vertex numbers in Figure la; edges 
correspond to ALGOL statements between vertices. The 
program constructs (e.g. If Then Else) of this procedure are 
shown in Figure 6. The four constructs (While Do, If Then 
Else, If Then and Main Line) are connected sub-graphs. The 
part of the procedure corresponding to no iterations and the 
satisfaction of all true conditions is called the Main Line. 
Each of the constructs can be obtained from the tree in 
Figure 6 by adding a chord to the tree. These chords are c 
for While Do, j for If Then Else, I for If Then and m for 
A,Jain Line. Each of the constructs is an independent l:irl:uit 
as previously defined. Edge m is an artificial edge which has 
been added to the graph for the purpose of obtaining the 
Main Line construct as an independent circuit; it is not part 
of the ALGOL procedure. Using Main Line allows edges a 
and d, which do not appear in the other three constructs, to 
be represented in the set of independent circuits. The in
dependent circuits in matrix form (Bf ) are shown in Figure 
3. The extent of branching at a vertex is given by the degree 
of the vertex. For example the beginning of the If Then Else 
construct is at Vs. This vertex has degree 3, corresponding 

COMMENT TEST ALL CONDITIONS FOR MEMBER IDENTIFIED BY CURRENT NODE; 
COMMENT IF ALL CONDITIONS HOLD ADD MEMBER TO LINKED LIST; 

CD 

BEGIN 
INTEGER A, I; 
LOGICAL FAIR; 
FAIR:=TRUE; 
I:=l; 
WHILE «REQUEST (I) -1 ="Q") AND ( FAIR 

BEGIN 
FAIR:=MATCHING(I); 
I:=I+1; 
END; 

IF FAIR = TRUE THEN 

o 

TRUE» DO 

BEGIN 
A:=ALLOCATE1; 
IF LIST POINTER NIL THEN LIST POINTER:=A 
ELSE SETCDRl(LAST,A); 
LAST:=A; 
SETCDR1(LAST,NIL); 
SETCAR1(LAST,CDR2(CURRENT_NODE+1» ; ® END; 

~ END TEST CONDITIONS: 

Figure 5-ALGOL procedure corresponding to graph of Figure la, 
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\rIhtle Do If Then Else Maln Line 

c 
\ , 

\ , 
\ 
\ 

If Then , 
, 

I 
1 / 

Figure 6-Decomposition of Figure la structure. 

to the entry, Then and Else branches. Vertex degree is one 
indicator of program complexity. 

Implications of graph properties for program development 
and testing 

Program constructs 

A program graph can be partitioned into its constructs by 
first identifying a tree and then adding a chord at a time as 
shown in Figure 6. Each construct is a basic unit of a pro
gram which must be tested. The number of constructs or 
independent circuits is called the cyc10matic number. This 
was previously given as E - V + 1. This quantity has been 
shown to be highly related to difficulty of debugging. 1,3 

Program paths 

The Adjacency Matrix and its derivatives provide program 
path information. This information can be used to identify 

the various paths whose correct execution should be veri
fied. Two elementary program paths are given by Figure 2b, 
where it is shown that there are two paths of length 2 from 
Vs to V9; these correspond to the If Then and If Then Else 
branches. It should be noted that path length as used in 
Figure 2 refers to number of edges and not to number of 
source statements. 

Complete paths from v 1 to v 1{) can be obtained by per
forming ring sum operations on the independent circuits of 
matrix Bf , as explained previously. The six possible paths 
so obtained are 

a d e f g k 
a d e f h k 
a d 
a b c d e f g k 
a b c d e f h k 
a b c d I 

These are paths from start vertex to terminal vertex which 
should be tested. 
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Code reachability 

The reachability matrix can be used to ascertain whether 
any program code is not used. This would be indicated by 
one or more zero rows in R. The relative importance of 
vertices cae also be ascertained by examining R and noting 
the number of ways a given vertex can reach other vertices. 
A high number indicates that the vertex and the edges com
prising the paths to the other vertices are relatively impor
tant for correct execution of the program and should be 
accorded corresponding emphasis in testing; V2 is such a 
vertex in Figure 4. 

Reachability may also be defined as the summation, over 
all vertices, of the number of ways in which a vertex can be 
reached. Average reachability can be obtained by dividing 
this figure by number of vertices. This is the way reacha
bility was calculated in Table I, which will be described 
subsequently. 

To make the use of directed graphs practical for program 
representation and complexity measurement, it is necessary 
to significantly automate the production of the various mat
rices and complexity measures from a definition of the pro
gram graph. Even the latter can be generated, if the problem 
has been put in the form of a decision table. Several auto
mated tools exist for directed graph manipulation. 

PROGRAM CO!\1PLEXITY MEASURES OBTAINED 
FROM DIRECTED GRAPHS 

The data in Table I show the results of an experiment 
conducted at the Naval Postgraduate School involving four 
ALGOL programming projects, where average values of 
four complexity measures were computed for programs with 
and without detected errors [3]. Three of the measures (cy
c10matic number, number of paths and reachability) were 
obtained from directed graphs and were discussed previ
ously in this paper. Complexity measure values were signif
icantly lower for the no-error case, suggesting a set of quan
titative measures for program quality control and error 
avoidance. 

TABLE I-Software Error Experiment 
Complexity Measure Comparison 

Procedures With No Errors vs. Procedures With Errors 

No Errors Errors 

Mean Number of 
Value Procedures 

Mean Number of 
Value Procedures 

Cyclomatic Number 
Number of Source Statements 
Number of Paths 
Reachability 

SUMMARY 

1.699 

9.361 
2.671 

10.1 

83 
83 
82 
82 

4.74 
27.23 
27.1 

120.3 

31 
31 
20 
20 

Several directed graph properties which are useful for 
program representation and complexity measurement were 
described. These were then applied to a small ALGOL pro
gram. Evidence was then presented suggesting that directed 
graph properties can provide quantitative measures of pro
gram qUality. 
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IMPORTANCE OF COMPLEXITY 

In recounting the e6pietls-reas-ens---er- eK-£-HSC-S f-Gfour tr-a-di
tional problems in developing and maintaining computer 
software, many authorities have mentioned complexity 
(e.g., References 2, 8, 15). The complexity pointed to some
times is the inherent complexity of the jobs the computer is 
to do; sometimes it is the complexity of the systems or 
programs that direct the computer to do the jobs. 

Yet thoughful observers have also long noticed that the 
inherent complexity of jobs may differ greatly from the ap
parent complexity of the software for those same jobs ~ e.g., 
References 26, 29). Anyone who has had the opportumty to 
study the diversity of approaches, designs, and codes re
sulting when different people independently produce soft
ware for the same job, keenly senses the difference between 
apparent software complexity and inherent job complexity 
(e.g., Reference 25). 

Intuition and common sense generally agree that software 
which appears simple is superior to software that appears 
complex, whatever the inherent complexity of the job (e.g., 
Reference 20). This position is in fact incorporated in the 
appraisal guidelines of structured design as "simplicity. " 23,24 

But applying intuition and common sense is not really suf
ficient to obtain consistently simple software. What is 
needed is objective, quantitative, reliable, valid and conven
ient ways of measuring either the complexity or the simplic
ity in software. To that end, a number of proposals have 
been advanced. 1,7,11,12,17,19,21,22,26,32 

This paper proposes an alternative measure of software 
complexity. The background of the measure is briefly given, 
and its computational procedure described. Then it is ap
plied to a given software design of a small modular struc
tured program. Mterward, the measure is compared with 
other alternative measures and with programmer ratings of 
the program. The paper closes with a discussion of the 
validity of the proposed measure of software complexity. 

BASIS OF MEASURE 

The proposed measure of software complexity, Q, is an 
index of the difficulty people have in understanding the 
function implemented by the software. The proposed meas-_ 
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ure is quantitative, highly reliable, shows reasonable validity 
and is easily computed from system and program documen
tation. Since source code is not required, the measure can 
De appnea-lo aeslgnsoeIofe\vfitingTIfesource (>ode;-a-stong 
as they display soine modularization. 

The theoretical basis for the proposed Q measure springs 
from the set theoretic definition of function. The function is 

, what the software is to direct the computer to do. Briefly 
put, a function is a correspondence between sets of i~put 
data of specified domains, and sets of output data of speclfied 
ranges. Hence, any difference in functions must be ex
pressed as differences in the input or in the output or both. 

These differences may take two forms-differences in the 
membership in the sets, or differences in the domains and 
ranges. Changes in domains-that is, the legal, allowable 
values the input may take for which the function is defined- -
and in ranges, are usually of smaller impact in the specifi
cation of a function than are changes in the component sets 
of the input or output. Thus, expanding the domain of a 
function such as "find a square root" from a domain of one
and two-digit positive integers to a domain of one-, two- and 
three-digit positive integers is usually a minor matter. But 
changing the components of the input or output to include 
a new variable, such as the natural log of the root as -an 
additional output, usually makes a non-trivial change in the 
function of the software. At the loss of some validity, the 
proposed measure of software complexity ignores domains 
and ranges, and concentrates on the components of the sets 
of input and output. 

A listing of the sets of input and output define the function 
coarsely. A more refined specification is possible if the role 
of the data is recognized. 5 Some input data are needed for 
processing (role "P" data)-that is, for the production of 
ouiput daia. The data changed, created, or modified (mle 
"M" data) in value or identity by the performance of the 
function are the output data. The data used to select or 
decide which functions to perform serve in a controlling role 
(role "C" data). Or, data may pass through (role "T" data) 
a function unchanged in value and identity, when a function 
of the software is to communicate data from one part of the 
software to another part, as from one module to another. 

To improve the validity of the proposed measure, data 
roles are recognized in it. Data in a C or control role con
tribute the most complexity. Data in an M or modified role 
are major contributors. Data in the P or processing role 
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contribute some complexity. The T role data that are only 
passed through contribute the least to software complexity. 

The modules or segments of the software can be visualized 
as communicating data among themselves. 20 Such intermo
dule data exhibit a simple life history. They start as M role 
data in one module, become T role data as they are com
municated through other modules, and then terminate as C 
role or P role data in a using module. 5 If only two modules 
are involved in the communication, then the data skip the 
T role. But the more modules involved in communicating 
any item of data, the higher is the apparent complexity of 
the software. 

The data communication among modules may be further 
complicated by the presence of iteration. In modularized 
programs and systems, the iteration control is observed to 
be the psychologically most difficult aspect of the "interior" 
complexity. 30 Modularization can reduce most kinds of "in
terior" complexity, but makes no reduction in iteration com
plexity when more than one module is involved. l8,l9 

If the duration or extent of iteration is determined by C 
or control role data arising outside of the loop exit module, 
the complexity of the software increases, but not in a linear 
manner. This non-linearity at first is of little importance, but 
becomes critical as the number and arrangement of the C 
role data become larger and more diverse. This is approxi
mated in the computation of the proposed Q measure by a 
conversion formula involving the square of one-third of a 
weighted count. . 

In review, the proposed Q measure appears, because of 
its stress on function, to reflect the "exterior" rather than 
the "interior" complexit·,~. This appearance is deceptive for 
several reasons. First, as Halstead has pointed out with his 
"n2*'" the externals place a lower limit on the potential 
interior complexity of a module. ll Second, assuming the 
presence in the module of an algorithm that avoids work 
redundant and extraneous to the function within the module, 
the data (as noted in the input-output table) with their as
sociated domains and ranges, place an upper limit on the 
interior complexity of a module. And third, the process of 
identifying modules, apportions the interior complexity of 
a system into the programs' component modules, and their 
interrelationships. Both what is apportioned where, and the 
interrelationships, are described by the data flow among the 
modules, and are reflected in the proposed Q measure of 
complexity because of its stress on function. 

COMPUTATION OF MEASURE 

The high reliability of the proposed measure arises from 
the simple computational procedure used on the documen
tation for the program or system. A measure is reliable when 
different people using the same computational procedure 
consistently come to the same result. 28 

The ten steps in the computational procedure for the pro
posed measure Q are: 

1. For each module, count in the input-output tablc~ or 
the equivalent, the number of data items shown in C. 

P, or T roles as input, and in M or T roles as output. 
When one data item appears in mUltiple roles or has 
multiple sources or destinations, each is to be 
counted. Data serving as program-wide or system
wide constants or literals are not counted. The reason 
for distinguishing the roles of data was described ear
lier. 

2. Multiply for each module the total count for each role 
by the appropriate weighting factor W, as follows: 3 
for C, 2 for M, I for P, and !t2 for T. The reason for 
the weights was described earlier. 

3. Sum the weighted counts by module. 
4. Assign an initial E of 0 to all modules. Then examine 

the documentation to determine which modules are to 
contain the exit tests for iterations where subordinate 
modules are part of the iteratively-invoked loop body. 
The tree structure chart usually shows this most con
veniently.4.20 The loops or iterations are ignored when 
they are to be performed entirely within a module 
with no subordinate modules iteratively invoked. The 
reason for the concern with iteration control was de
scribed earlier. 

5. For each iteration-exit module identified in Step #4, 
examine the C items to determine which are to serve 
in the exit test for the iteration of the subordinate 
modules that comprise the loop body. Determine 
where these C data come from. If they come from 
within this module only, or are constants, add 0 to E 
for each such C data item. If they come from within 
the subordinate loop body, add 1 to E for each such 
C data item. If they come from outside of the loop 
body, add 2 to E for each such C data item: An 
example (starting with E as 0) is an item of data which 
is initialized to a starting value outside of the loop 
(add 2 to E), and also modified within the loop body 
(add I to E to total 3). Note that E for anyone module 
cannot exceed three times the count of the number of 
data items serving in a C role for determining the exit 
from iteration. 

6. Convert E for each module into a repetition factor R 
by adding I to the square of one-third of E. For ex
ample, if E is 6, then one-third of E is 2, and 2 squared 
is 4, 4 plus 1 is 5. Hence R is 5. The reason for this 
formula was described earlier. R values for common 
E counts are: E of 0 gives R of 1.00; E of 1 gives R 
of 1.11; E of 2 gives R of 1.44; E of 3 gives R of 2.00; 
E of 4 gives R of 2.78; E of 5 gives R of 3.78; E of 6 
gives R of 5.00; and E of 7 gives R of 6.44. 

7. Multiply the sum of the weighted counts from Step 3 
by the modules' respective R values. 

8. Find the square root of the products from Step #7. 
This is Q, the index of module complexity. The com
putation in this step is easily done on most pocket 
calculators, and effectively is a computation of the 
geometric mean of the total weighted counts and the 
inter-module iteration control. 

9. Calculate the Q of the program by finding the arith
metic mean (average) of the component modules. This 
is a simple averaging computation. 



10. Calculate the Q of the system by finding the arithmetic 
mean of the component modules within the compo
nent programs, or by weighting the programs' Q from 
Step #9 by the relative sizes (in terms of modules) of 
the programs. Note that if in execution a system will 
iterate the execution of a program, then the E of the 
module containing the loop exit c~ntrol is rarely zero. 

The practical lower bound on module complexity is 1.0. 
The exception with a lower bound of zero is a module that 
has no C, P, T, or A1 role data-a module that does no 
function! However, in some delayed-time software, such 
modules may appear as the· root of a system implemented 
at the root (top) level with JCL (Job Control Language). No 
upper bound exists for Q, but values beyond 11.0 are un
common with structured programming and structured de
sign. 

. EXAMPLE OF COMPUTATION 

Figure 1 provides a tree structure chart of a program 
designed with structured programming techniques. The input
output tables are shown in Figure 2. The computation of 
module Q and program Q are summarized later. Figure 3 
lists in its leftmost column, the identifications of the module. 

8-2 8-3 
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The numbered paragraphs to follow refer to the step num
bers described previously. 

5-1 

1. The counts from the input-output (1-0) tables are 
shown in the second through fifth column of Figure 
3. Thus, for instance, Module S-4 has one C item, one 
P item, two M items, and two T items of data shown 
in Figure 2. These counts are the "raw counts" en
tries for line S-4 in Figure 3. 

2. The raw counts are multiplied by the weights. Thus, 
for 8-4, ihe count of 2 for M is multiplied by the 
weight W of 2 to give 4. 

3. The sum of the weighted counts is shown as W-TOT 
in Figure 3. Thus, for Module S-4, the total of 9 is the 
sum of the weighted counts of 3 + 1 +4+ 1. 

4. A review of Figure 1 shows Modules S-3, S-4 and S-
7 to contain iteration exits. The broken ring flags 
them. If the documentation were less speCific, other 
clues would "have to be used to locate repeated func
tions, such as the reading or writing of records. 

5. In S-3, iteration exit items as flagged by a dot in the 
input-output table are the Record Key East, Record 
Key West, and Out of Sort. In S-4, it is a Bad End 
Switch. In S-7, no evidence appears from the input
output table about what the iteration control might 

8-4 8-5 

Figure I-Tree-structure chart for example. 
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Figure 2-Input-output tables for example. 

be. It probably is internal within this S-7 module. Care 
should be taken in such non-appearances to verify 
them to be reasonable, and not oversights in preparing 
the input-output tables. In the case of S-7, since the 
validation appears to be done in S-7 itself, no explicit 
loop exit data appears reasonable. Hence, E is 1 for 
all modules except S-3 and S-4. 

In S-3, each of the three C items identified comes 
from a subordinate module which is within the loop 
body (hence, E is 3). But one C item (Out-of-Sort) 
also comes from outside the loop. Hence, E totals to 
5 for the module S-3. In S-4. the Bad End Switch 
comes from the subordinate (loop body) module. 
Hence, E is I for S-4. 

6. The E to R conversion for all modules is very easy 
for all but two modules. Since E is 0, R is 1.0. For 
module S-3, it is 3.78, and for S-4, it is 1.11. by 
applying the formula. 

7. The column PROD is the product of the entries in the 
W-TOT column times the corresponding entry in the 
R column. Thus, for row S-4, the product of 9 times 
1.1 is 9.9. 

8. The square roots of the entries in the PROD column 
are entered in the Q column. Thus, the square root of 
9.9 is 3.1, which is the Q entry for module S-4. The 
Q entry is the complexity index for a module. 

9. The sum of the Q entries for the modules is 35.2, 
which when divided by 12, the number of modules, 
yields a program complexity index of 2.9. 

10. Since this example system consists of one program, 
the system index of complexity Q is also 2.9. 

The interpretation of the Q measure is easy. Low-com
plexity is indicated by a low Q. But also, a relatively even 
distribution of the complexity is desirable among the mod
ules. Software prepared using the ideas of both structured 
design and structured programming show low complexity 
compared to traditionally prepared software. The highest 
complexity in the structured software is usually along the 
main branches of the tree-like structure. But even there, the 
Q rarely exceeds 11. Leaf modules rarely exceed a Q of 5. 

Traditionally prepared software usually shows a higher 
average complexity. If the software is modular in design, 
the Q can be fairly easily determined. If it is not modular, 
two alternatives are open. When source code is available. 
the modules may be taken to be equivalent to the lexical 
units used to group code, such as paragraph, section, sub
routine, procedure, block, etc. Or when no source code is 
available, the design documentation may be examined, bro
ken arbitrarily into pieces, and input-output tables prepared. 
This is rarely an easy process if done in an attempt to 
highlight and separately recognize functions jumbled to
gether in skimpily-documented traditional designs . 

COMPARISON OF COMPLEXITY MEASURES 

Five major measures of software complexity have been 
proposed. McCabe has offered a graph-theoretic measure, 13 
which others have elaborated. 7,12,22,31 An application of it to 
the same example presented earlier in this paper is given in 
the McCabe column in Figure 4. McClure has offered a 
carefully-thought-out and well tested measure .18,19 An ap
plication of it is given in the McClure column in Figure 4. 
Myers has given a basis for the measurement of software 
quality.23,24 While not labeling it a complexity measure, his 
connectivity matrix measure can be not unreasonably inter
preted in that way. An application of it is given in the Myers 
column in Figure 4. A group of entropy-based measures 
have been proposed1.9,11,26 but are not shown in Figure 4. 
The Zolnowski measure has been claimed by Zolnowski to 
be not applic~ble to an individual program and to individual 
modules as it has been presented thus far. 32 An adaptation 



A Measure of Software Complexity 999 

RAW COUNTS WEIGHTED COUNTS 

S# C p M T C P M T W-TOT R PROD Q 

1 1 0 1 10 3 0 2 5 10 1.0 10.0 3 . 2 

2 0 0 3 0 0 0 6 0 6 1.0 6.0 2.4 

3 3 0 3 14 9 0 6 7 22 3.8 83.6 9.1 

4 1 1 2 2 3 1 4 1 9 1.1 9.9 3.1 

5 0 1 0 0 0 1 0 0 1 1.0 1.0 1.0 

6 0 3 0 0 0 3 0 0 3 1.0 3.0 1.7 

7 7 7 6 8 21 7 12 4 44 1.0 44.0 6.6 

8 0 1 2 0 0 1 4 0 5 1.0 5.0 2 . 2 

9 0 2 0 0 0 2 0 0 2 1.0 2.0 1.4 

10 0 0 1 0 0 0 2 0 2 1.0 2.0 1.4 

11 0 0 1 0 0 0 2 0 2 1.0 2.0 1.4 

12 0 3 0 0 0 3 0 0 3 1.0 3 . 0 1.7 

N = 12 = number of modules Program complexity index 2.9 

Figure 3-Computation of proposed complexity index Q for the example shown in Figures 1 and 2. 

of it to modules and programs by McTap21 is shown in the 
Mx Z column in Figure 4. The Q column in Figure 4 is the 
measure proposed in this paper. 

A comparison of these other measures with the measure 
proposed here reveals both similarities and differences, as 
well as supports the validity of the proposed measured. All 
of the measures provide an overall indicator of software 
complexity suitable for making complexity comparisons be
tween systems, programs and modules. But each measure 
requires a different interpretation. 

The McCabe graphic-theoretic has 1.0 as a lower bound, 
but has no upper bound, and grows faster than the number 
of modules, because a module never adds less than 1 to the 
total. The Zolnowski measure shows no consistent relation
ship to program or system size. The Myers connectivity 
matrix measure can not exceed 1.0 in value. In practice, for 
structured programs and systems, the Myers measure typi
cally declines as program or system size increases. The 
proposed Q measure has a lower bound (zero), no upper 
bound, and shows a tendency to increase slowly as program 
or system size increases. 

The McClure measure has well defined limits, depending 
on the number of control variables (C role data items). But 
as system or program size increases, larger numbers can be 
expected. This is intuitively reasonable (the growth gener
ally is less than in the McCabe graph-theoretic measure), 
but a measure that gave "complexity density" would prob
ably be more useful than just "complexity extent." The 
proposed Q measure does do this. 

At the module level, all the measures are suitable for 
making comparisons between moduies from different pro
grams and systems. The McCabe graph-theoretic measure 
reflects primarily the amount of logic expressible as condi
tional transfers in the flow of control. In any modular ap
proach, this is a useful type of complexity to control during 
design, implementation and maintenance. 

The McTap.:.Zolnowski features-measure of complexity 
depends for its interpretation on the pariicuiar features in
cluded. A high measure indicates that some of the features 
are present to an important degree. 

The Myers connectivity-matrix measure reflects the rel
ative dependence of the modules. The higher the measure, 
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McTAP -
MODULE McCABE ZOLNOW8KI McCLURE MYER8 Q GROUP 

8-1 7 6. 5 2.20 0.70 3 . 2 2 

8-2 1 0.0 0.55 0.70 2.4 5 

8-3 3 6.5 2.75 0.65 9.1 3 

8-4 2 2.5 0.55 0.55 3.1 4 

8-5 1 4. 8 0.55 0.30 1.0 10 

8-6 1 1.0 1.10 0.25 1.7 7 

8-7 5 7 . 5 3.74 0.65 6.6 1 

8-8 1 1.0 0.00 0.65 2.2 8 

8-9 1 1.0 0.00 0.25 1.4 6 

8-10 1 1.0 0.72 0.25 1.4 11 

8-11 1 1.0 0.72 0.25 1.4 12 

8-12 1 1.0 0.92 0.55 1.7 9 

PROG 24 5.5 1.25 0.58 2.9 

Figure 4---Comparison for the example of some measures of complexity, 

the more interdependent are the modules. But a high meas
ure may also reflect functional variety and code packaging. 

The proposed Q measure reflects what will take the form 
of actual code complexity in implementation because the 
more data that are used and produced, the more likely is the 
processing to be complex. Complexity is harder to achieve 
with only a few items of data going in and out! 

The McClure measure is the most sensitive to the use of 
data for directing the flow of control. Historically, this has 
been the source of the toughest bugs in our software. And 
the McClure measure reflects well the complexity of the 
patterns of use and value-assignment for the data serving for 
control. 

All of the measures can be used with modular designs 
characterized by properly nested functions. The Zolnowski 
measure does not require it. The McClure measure requires 
it, making provision for only one exception, the equivalent 
of the job abort. The Myers connectivity matrix and the 
proposed measures do not require it, but are enhanced by 
it. More significant for both of them is the size of the module. 
Both work best for relatively small (less than about 68 im
perative instructions expected for the implementing code) 
and fairly even-sized modules. The McCabe graph-theoretic 
measure is comparatively independent of the design' and 

implementation philosophy and practice. In fact, it can be 
used to limit the size of modules for the aid of the other 
measures (such as not more than an expected 10 measure 
and only rarely over an expected 8 measure for the mod
ules). 

Some usage difficulties and conveniences distinguish the 
measures of complexity. For the Zolnowski measure, they 
depend upon the features selected. The entropy and McCabe 
graph-theoretic measures are almost always an understate
ment of the ultimate complexity until the design has been 
carried fully to debugged code. 9,ll But by then, it is usually 
too late to take much corrective action. This can be offset 
by a tight early discipline in design, but few designers wel
come it. 

The preparation of the Myers connectivity matrix is a 
separate additional step-not a normal by-product of design. 
With experience the matrix preparation can be done fairly 
rapidly, and it does not require either source code or detailed 
charts to be available. A tree-structure chart4 may be suffi
cient, but the availability of input-output tables S strengthens 
the preparation of the connectivity matrix, 

To use the McClure measure takes the same detailed 
review of the design as needed for the Myers connectivity 
matrix. But the factors looked for are far more objective in 



the McClure measure than in the Myers measure. Yet the 
McClure measure, like the McCabe measure, is a retros
pective measure of the complexity already present in the 
design. By contrast, the proposed Q measure can be used 
on-the-fly during design, implementation and maintenance. 
It does not require source code. It rarely misstates the final 
complexity of the software as coded if the input-output ta
bles were conscientiously prepared. 

A more serious limitation for the McClure measure and 
to a lesser extent the Myers connectivity matrix measure, 
is a failure to define data usage consistently. Use of the 
input-output tables helps reduce the problem but lacking 
good definition, the effect is to understate the complexity 
for all of these measures. The McClure measure requires a 
full and precise anticipation of the C and M roles in every 
module of every item of data used anywhere for control. 
The p±-OpOsed Q method requjres that any item of data tobe 
accessed or assigned a value in any module be separately 
identified, such as a record and the key field within that 
record. But this is only a statement in data terms of the 
function of the module. And that is knowledge available to 
the designer. 

The complexity measures differ considerably in compu
tational convenience. The most difficult is the Zolnowski 
measure because it requires extensive data gathering, com
putation, measurement and further computation. Somewhat 
easier is the McClure measure because it involves fewer 
operations to gather the needed data and fewer computa
tional steps. The next easiest is the Myers connectivity 
matrix. While the arithmetic is easy, the estimates of strength 
and coupling involve significant human judgments. Some of 
the entropy measures, such as the Halstead, are as easy to 
compute, and are free of the need for such extensive judg
ments. The McCabe graph-theoretic is still easier, and would 
be the easiest were it not for the difficulty in obtaining firm 
counts for the lines, the nodes and branches. The proposed 
Q method is clearly the easiest of all to use if input-output 
tables 5 or the equivalent, or code, or Chapin charts,6 be 
available, since simple objective counts and simple arith
metic then yield the proposed Q measure. HIP014 can be 
used but adjustments are needed since a HIPO detail chart 
is not limited in its view to a single module except at the 
leaf position in the tree. When input-output tables are avail
able from the design effort, the proposed Q measure can be 
calculated by someone without even a knowledge of com
puters or data processing. 

DISCUSSION 

The validity of any proposed measure of software com
plexity cannot be assessed with precision. As Zolnowski has 
well pointed out,32 people view software differently and see 
its complexity differently. In general, an index is said to be 
valid if it measures what it purports to measure. 28 Thus, 
changes in what it purports to measure should be reflected 
faithfully in the measure. The validity of some measures is 
open to question or left unaddressed. 10,16,27,31 

Comparing the proposed Q measure against four of the 
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other measures cited offers a measure of validity, as shown 
in Figure 4. On that basis the proposed measure seems as 
good as any of the others in terms of validity. The column 
in Figure 4 identified as GROUP represents the rank of the 
average rankings of the modules in the example by 206 
programers and analysts who had access to a full set of 
documentation. A rank of 1 represents the most complex, 
and of 12 the least complex. A ranking does not discriminate 
the extent of the differences in complexity. Thus, modules 
S-lO and S-ll were ranked virtually identically. The module 
S-1 includes a four-way CASE structure which some people 
regarded as complex. Module S-l nearly tied for second 
place with module S-3 in the rankings. No ranking was made 
of the program overall. 

It is surprising that the theory of computational complex
ity, long a part ofthe mathematical side of computer science, 
has contributed _ so little to measuring softwC:l.fe complexity. 3,13 
Perhaps in the future, some contribution will be forthcoming 
to help assess the validity of measures of software complex
ity. In the meantime, field experience can help evaluate the 
contribution in the development and maintenance of systems 
and programs, of the use of measures of complexity. 
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MOTIVATION 

It is no longer a surprise that program maintenance domi
nates the total cost of a large software system over its 
lifetime. In response to these costs, the emphasis in program 
design has largely shifted from the time and space issues of 
machine efficiency to issues of clear and flexible program 
structures that can be easily maintained. 

The goal of this project is to identify measurable program 
properties that influence maintainability. More precisely, we 
examine the effect of various program characteristics on the 
subsequent frequency and magnitude of program errors. 

PROGRAM MAINTAINABILITY 

This paper presents a study of 123 PLiI program modules 
from a business data processing application. The modules 
fall roughly into three categories: high-level control, numer
ical and data base management. The maintenance record of 
each module was followed for approximately one year. 

We characterize the maintenance performance of a pro
gram module by two values-the total maintenance time 
spent on the module and the number of maintenance changes 
made to the module. We considered a module in "mainte
nance" from ,the time it left the development programmer 
and entered system testing. The maintenance performance 
data came from two sources: 

1. Informal (and incomplete) time records, recorded by 
hand, that include time spent on and cause of mainte
nance activities. 

2. A formal (and complete) maintenance activity data 
base, recorded automatically when a program is 
changed, that does not include time spent per activity. 

In this paper we present an analysis based upon the in
formal time records, chiefly: 

1003 

• The number of errors per program module. 
• The total time spent repairing those errors. 

PROGRAM MEASURES 

Our starting hypothesis was that maintenance perform
ance for a program depends upon: 

• The complexity of the algorithm coded. 
• The clarity of the coding. 

(It is beyond the current scope of this work to consider 
influences on performance beyond the program itself, such 
as frequency of execution or instability of user require
ments.) 

Based upon previous work 1,4,17 and upon programming 
folklore we compiled a set of program properties for which 
the qualifiers complex and clear might have meaning. The 
list includes: 

• Complexity of program control flow. 
• Clarity of program control structure. 
• Clarity of program data usage. 

The next step was to develop measures to quantify ihese 
properties. Two primary criteria were adhered to in devel
oping the measures: 

1. Each measure should be largely language-independent. 
2. Each measure should be noncoercible. 

A measure is ianguage-independent if: 

• It can be meaningfully and consistently applied to pro
grams written in several programming languages. 

• The ordering the measure assigns to a set of algorithms 
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remains roughly constant when the algorithms are 
coded across languages of similar power. 

One language-dependent measure that has been used to 
characterize programs is a count of the GOTO statements 
appearing in a module. 1,13 Counting GO TO statements is 
language-dependent because the practical meaning of GOTO 
changes as control structures change across languages. One 
language may require a GO TO to implement an innate con
trol structure of another language. 

A measure is noncoercible if it in fact measures the un
derlying program property of interest. Identifying program 
characteristics that may coincidently vary with a fundamen
tal property tells us little about the property. 

Coercible measures that have been used to characterize 
programs include calculating the mean length of variable 
names as a measure of name meaningfulness, 13 and counting 
the number and length of comment blocks as an indicator of 
program documentation. 13,15 We have called these measures 
coercible since they can (quite easily) be influenced without 
any corresponding effect on the property they seek to meas
ure. 

Measuring the complexity of program control flow 

Program control flow was characterized by measurements 
taken from the control flow graph for each program. A 
control flow graph is a directed graph with nodes corre
sponding to the simple clauses of a program and arcs indi
cating the sequence of control. The graph is connected, 
unreachable clauses are ignored. And the graph is single
entrance-single-exit-an entry node points to all entry points 
and an exit node is pointed to by all exit points (Figure 1). 

Two simple graph measures were included for study: 

• A count of the nodes in the graph. 
• The ratio of binary decisions embedded in the graph to 

total nodes. (The number of binary decisions at a node 
is one less than the number of outgoing arcs from the 
node.) 

Two other graph measures, sensitive to the configuration of 
the graph, were also studied: 

• A count of the possible paths through the graph. 
• The mean number of decisions per path through the 

graph. 

We define a path through a graph to be a sequence of nodes, 
from the entrance node to the exit, such that no cycle is 
repeated. Even with this restriction the number of paths 
through a typical graph can be very great. For the more 
complex programs the total path count was estimated by a 
lower bound, and the mean path length was estimated from 
a sampling of the paths, 

°1 DO WHILE yes < no; 

G)I'F vote = ',' II THEN ,85=,85+ I; I(!) 
(VI ELSE IF vote = 'n' II THEN no=nO+I;j® 

CD I ELSE abstain == abstain + 1 ; 

®I END; I 

Figure I-A control flow graph. 

Measuring the clarity of program control structure 

Structured programming has evolved as a guide to writing 
more easily understood programs. It is generally agreed that 
well structured code is composed from blocks, each with a 
single entrance and a single exit. In the strictest sense, the 
lowest level block can be taken to be a simple clause in a 
program, a node in the control flow graph. A simple reduc
tion rule exists to collapse graphs of strictly well structured 
programs to a single node: 

1. Choose a node n that has at most one incoming arc and 
at most one outgoing arc. 

2. Replace n by an arc, preserving direction, that con
nects n's neighbors (m is a neighbor of n if there is an 
arc between m and n). 

3. Remove any redundant arcs: 

• Two arcs in the same direction between the same 
nodes is a redundancy. 

• An arc from a node to itself is a redundancy. 

The three steps are repeatedly applied until they are no 
longer applicable (Figure 2). 

After applying the reduction rule to a graph, some 
subgraph wil1 remain. The ~llhgn'ph will he a single node for 



REDUCTION RULE 

STEP A: COLLAPSE ANY NODE THAT HAS AT MOST ONE INCOMING ARC 
AND AT MOST ONE OUTGOING ARC 

STEP B: REMOVE ANY EXTRANEOUS ARCS 

REPEATEDLY APPLY EACH STEP UNTIL NEITHER IS APPLICABLE 

APPLY STEP A 

./' STEP A 

o --
STEP A 

Figure 2-Reducing a Graph. 

strictly well structured programs; the subgraph will be more 
complex for other programs. We characterize the degree to 
which a graph can be reduced by the ratio of binary decisions 
embedded in the subgraph to binary decisions embedded in 
the original graph. 

Measuring the clarity of program data usage 

One characteristic of data usage is the degree to which 
variable use has been localized. Measuring the span of a 
variable is one indicator of localization. A span of a variable 
is one plus the number of intervening statement clauses 
between two successive references to the variable. The av
erage span of a variable is the sum of all spans for the 
variable divided by the number of spans. The variable span 
for a program is the sum of average variable spans for all 
the variables within the program (Figure 3). 

Software science measures 

The field of software science is attempting to establish 
meaningful relationships among the primitive components of 
algorithms-operators and operands (Figure 4). Work by 
others 10,16 has indicated that some of the software science 
variables suggested by Halstead 9 may reliably characterize 
the overall complexity of a program. 

In our analysis we studied six software science variables. 
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All can be derived from counts of: Unique operators (n l), 
unique operands (n2), instances of operators (N/), and in
stances of operands (N2). 

• Length-Nl +N2. Length is a program size measure of 
finer granularity than a count of program statements or 
clauses. A virtue of length is that it is largely insensitive 
to horizontal (deeply-nested expressions) versus verti
cal (simple expressions) programming style. 

• Expected length-(nl logit/)(n2 logit2). Empirical 
studies have shown expected length and length corre
late highly for published, hence presumably well pol
ished, programs. 2,8 We used the calculation (length-ex
pected length)/length to indicate the agreement 
between length and expected length. 

• Volume-Length log2(nl +n2). Volume is an estimate 
of theminimumn.umberof bits needed to represent the 
executable statements of a program. 

• Level-(2/n/)(n2IN2). Level is a measure of the match 
between the operations performed by a program and 
the primitive operators and functions used by the pro
gram. In a program at the highest level the operation 
performed is implemented by a single operator. 

• Effort-Volume/level. Intuitively, effort is a function of 
the quantity of information represented by a program 
and the power of the 'statements with which the infor
mation is encoded. Effort rises with increasing infor
mation content and with decreasing statement power. 

DATA ANALYSIS 

An analysis of 12 carriers, or independent variables, and 
two responses, or dependent variables, is presented here. 14 

Figure 5 summarizes the range of values for each of the 
carriers. 

The carriers were first studied singly and in pairs. Normal 
quantile-quantile plots 6 for each carrier revealed that most 
had non-normal, asymmetric distributions. Transformations 
(usually the natural logarithm) were carried out which ren
dered the distributions approximately normal and symme
tric. We used the carrier node count as a simple measure of 
module size. Scatter plots of the eleven other carriers versus 
node count revealed that seven were highly correlated with 
module size and four were not (Figure 5). 

In order to determine whether there was a significant 
stratification of the modules according to size, the hierar
chical clustering algorithm of Johnson, using Manhattan dis
tance and the complete linkage method,5,lO was used for the 
123 modules according to the eight standardized size-related 
carriers. A dendogram of the result is shown in Figure 6. 
The figure shows strong clustering. If the tree is cut at a 
distance of 9.0, there appear to be six clusters. 

An attempt was next made to relate the response time to 
repair errors to module size. Program maintenance data 
showed that there were a total of 124 errors on 45 modules. 
The 124 errors were classified into six groups according to 
the assignment of the modules with errors to the six s!ze 
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Figure 4-Software science primitives: operators and operands. 

clusters. Average node count was calculated for each group, 
and the times to repair (in quarter-hour units) were plotted 
versus average node count (Figure 7). (A random normal 
deviate from N(O, e) was added to each of the x and y co
ordinates of every point so that the density of points in each 

group could be seen.) A striking dependency can be seen; 
the spread of time to repair increases with node count. 

Actually, since at node counts of 50, 100 and 220 there 
appear to be one or two points quite separated from the rest 
(the observation of 15 hours at node count 220 is not a 
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Figure 5-Carrier summary, 

mistake), it is not unreasonable to hypothesize two mecha
nisms in operation here. Figure 7 suggests a model for such 
a phenomenon superimposed on the data. The model says 
that there are two types of errors that occur, easy-to-repair 
and difficult-to-repair. The easy-to-repair errors occur with 
large probability and the difficult-to-repair with small prob-

ability. Points that might have come from the difficult-to
repair distribution have been circled in Figure 7. An expo
nential fit was estimated for these points, but this estimate 
may be very unreliable because of the small number of 
points. Nevertheless, the model does provide an interesting 
framework to study the dependency of time to repair on 
module size. 

An important question addressed next in the analysis was 
whether there might be some residual or second-order effect 
of the seven size-related carriers other than node count on 
the responses. Size-adjusted variables were created for the 
seven carriers by performing simple linear regressions of the 
log carrier on log node count. Simple linear regression ap
peared to be adequate for each case. The seven sets of 
residuals about regression formed new adjusted carriers that 
were relatively free of node count. 

A hierarchical clustering of the 123 modules according to 
the standardized residual carriers was conducted using Man
hattan distance and the complete linkage method. A den
dogram is shown in Figure 8. The dendogram appears to 
show reasonably strong clustering. If the tree is cut at a 
distance equal to 8.5, 13 clusters result. As a check, clus
terings using different methods and different metrics were 
tried. It was seen that modules combined in the tree at 
different heights and in slightly different orders, but the 
basic grouping remained stable. In the analysis that follows, 
only the response error density will be considered. Error 

~ r-----------------------------------------------------------------------------------------~ 

w 
() 
z « 
l
e/) 

Ci 

If) 
N 

If) ..... 

(g 

9.0~_r----_;--------_r~r_----~~~--._--~--------~----+_----

I 6 I 5 4 2 
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density is defined as the total number of errors for a group 
of modules divided by the number of modules in the group 
which contain errors. 

The seven residual carriers were next investigated for 
multi-collinearity. A principal components analysis of the 
correlation matrix 7 of these carriers revealed that only three 
of the seven carriers were not collinear since the first three 
principal axes accounted for 99% of the total variability. 
Before proceeding further, the multi-collinearity of the car
riers was removed. Weighted (by reciprocal variance) av
erages of residual length and volume and residual path count 
and average path length were taken, thereby reducing the 
number of carriers to five. Next, the first and fourth carriers 
of the five-carrier set were eliminated. These carriers had 
the lowest simple correlation with the response error den
sity. This leaves as carriers residual level, residual expected 
length, and a weighted average of residual path count and 
residual average path length. A principal components anal
ysis for these three variables showed no singularity. 

One approach to relating the error density to the carriers 
is to group the modules with errors according to the 13 
clusters found previously, calculate average error density 
for each group, and regress these averages on representative 

values of the adjusted carriers for each group. The repre
sentative value for each group was taken to be the centroid 
of the final three adjusted carriers. Since each group has a 
different number of modules with errors, the average re
sponses are based on differing numbers of items and 
weighted regression is appropriate. In carrying out this 
grouping-averaging process, regression analysis was used in 
its classical sense of estimating the mean of the conditional 
distribution of the response, conditional on values of the 
carriers. There was a large amount of inherent variability in 
the original data, in part because the data was not collected 
as part of a designed experiment. The averaging carried out 
above reduced this variability and allowed the marginal ef
fects of an adjusted carrier to be seen more clearly. 

Next we formed a regression model of error density and 
our three-carrier set. However, it might be possible for the 
carriers to affect the response interactively. To account for 
this, we included cross-product terms in the regression 
model. When this is done, six carriers result (Figure 9). 

In order to select usable models containing combinations 
of the six carriers, the Cp statistic 3 was calculated for each 
possible regression containing the carriers. These statistics 
were plotted against p, the number of terms in each regres-
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Figure 8-Clustering of standardized residuals from regression on node count using manhattan distance. 

sion, and are shown in Figure 10. Here the maximum p 
equals seven because a constant term was added in each 
regression. The line Cp=p was added in order to indicate 
good results. Any combination of variables that lie on this 
line are good models for the regression. A dashed line was 
drawn to show reasonable models for the data. We consid
ered a model reasonable if it had a mean square error at 
least as small as the model with all the terms in it. All the 
models include variable 1, residual level, which by itself 
almost provides a reasonable model for the data. Notice that 
some of the candidate models include interaction terms with
out containing the corresponding main effects; such models 
were not considered acceptable. One of the best and most 
plausible models comprises the terms 1, 2, 3, and 4. These 
are residual level , residual expected length, their interaction 
and the residual path carrier. The result of this analysis 
shows that there is an apparent residual effect of three of 
the seven original carriers. 

I. Residual level 
2. Residual expected length 
3. Weighted average of residual path count and residual mean path length 
4. Cross product of carriers I and 2 
5. Cross product of carriers I and 3 
6. Cross product of carriers 2 and 3 

The regressions for models that were considered reason
able were all significant at the a= .01 level but are not strong 
enough for accurate prediction (the multiple R 2 is less than 
.40 for regressions performed on the raw, unaveraged data). 
However, they do provide ideas for future experiments and 
food for thought. 

SUMMARY OF FINDINGS 

Both the data collection and analysis are at an early stage; 
yet a few results are evident. 

1. Most of the variables we studied have a large size 
component. 

2. Module size, by itself, appears to be a good indicator 
of maintenance performance for the module, though 
we have not studied the tradeoff of many small modules 
versus fewer large modules. 

3. When adjusted for size, level appears to be a fair in
dicator as to how a group of modules will perform. 

While we do not expect to predict the maintenance per
formance of a single module based upon a static analysis as 
presented here, we do expect to find program properties 
characteristic of poor performance. Such properties would 
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lead us to firmer ground for establishing guidelines of good 
programming practice. 
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INTRODUCTION 

Structured programming is the single most important tech
nique currently used in developing software which is both 
reliable and inexpensive. 11.27 It has been observed by various 
researchers that programmer productivity can be vastly im
proved if the development of software is split into two, 
equally important phases. 

1. The design phase, and 
2. The implementation phase. 

In this paper we present PSEUDO LANGUAGE (PL)-a 
program design tool enforcing the functional programming 
concept discussed in References 4, 10, 13, 17, 21, 22 and 
28. A PSEUDO LANGUAGE PROCESSOR (PLP) is also 
described. The PLP is a translator which examines source 
programs in PL and provides a listing of these programs 
together with a variety of messages. These messages can be 
used by the programmer both during the design and the 
implementation phase. 

A PL program is aprogramjorm which represents a broad 
class of possible implementations in any of the standard 
programming languages. PL program forms resemble pidgin 
English and are therefore very readable. It is easy to pro
gram in PL since the programmer can ignore the messy 
details necessitated by actual implementation languages 
(FORTRAN, PASCAL, PL1, COBOL, etc.). An important 
characteristic of the PL design language is that it requires 
the programmer to explicitly identify the functional com
ponents of the programming task at hand. The implemen
tation details of these functional components may be ignored 
by the programmer. Instead the programmer can concen
trate on the logical interaction between these components. 
PL is designed to enforce structured programming tech
niques. A PL program can serve as the documentation for 

* This research was supported in part by NSF Grant Number MCS77-02470. 
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the implementation version of the program. The advantages 
of PL mentioned above should also result in better com
munications between programmers in a team and contribute 
towards increased programmer productivity. 

The PLP described here is constructed realizing that it is 
cheapest to correct errors during the earlier stages of soft
ware development. This is mainly due to the fact that fewer 
corrective changes have to be made to debug a design pro
gram. The messages generated by the PLP indicate errors 
in the PL program forms and list the functional components 
in the program form which have already been implemented. 
In order for the PLP to provide these messages, the PL 
program forms must have a recognizable structure. The def
inition of PL given here attempts to strike a balance between 
allowing program forms with too little syntactic structure 
and too much syntactic structure (as in implementation lan
guage programs). 

Existing design tools for structured programming can be 
generally categorized as a variation of flowcharting (for ex
amples refer to References 6, 8, 9 and 26) or as English 
sentences with keywords which identify the control flow in 
the program. 7 Both types of design tools concentrate on the 
control logic of the programming task. pL programs also 
contain fixed control structures and in addition restrict the 
English sentences to "commands." This restriction on the 
English sentences forces the programmer to identify the 
functional components of the programming problem. At the 
same time, this restriction allows the PLP to employ algo
rithms for validating PL programs. PLP performs extensive 
static analysis on PL program forms and uses this analysis 
to print out messages that can be used by the programmer 
for validating and debugging the program forms. 

The next section introduces the syntax for PL, and the 
third section discusses how PL enforces structured program
ming. PLP functions are outlined in the fourth section and 
the final section presents conclusions and suggestions for 
future work. 
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DEFINITION OF PSEUDO LANGUAGE (PL) 

PL requires that the declarations preceed the "executable" statements as in FORTRAN or PASCAL. Using somewhat 
informal syntax notation we have 

a. (program) ~ (introduction) (body) 
b. (introduction) ~ (directives to PLP) (title) 

INPUT PARAMETERS: (noun list) 
OUTPUT PARAMETERS: (noun list) 
READ INTO: (noun list) 
PRINT FROM: (noun list) 
DICTIONARY: (noun description list) 

c. (noun list) ~ (noun list), (noun) 
I (noun) 

d. (noun description) ~ (noun) 
/ (noun) ATTRIBUTES: (attribute list) 
I (noun) ATTRIBUTES: (attribute list) 

INITIAL VALUE: (constant list) 
e. (noun description list)~ (noun description list); 

(noun description) 
/ (noun description) 
I (empty) 

f. (noun) ~ (identifier) 
I (subscripted identifier) 
I (structured noun) 
I (empty) 

g. (structured noun) ~ (structured noun) (constant) (identifier) 
I (constant) (identifier) 

h. (attribute list) ~ (attribute list), (attribute) 
I (attribute) 

The syntax of the introduction may be modified to allow declarations for general data types. 20•21 We now give an example of 
an (introduction) for a Bubble Sort program. Comments on any line are preceeded by a double slash (II). 

Example 

Ilintroduction 
SORT IN ASCENDING ORDER 
INPUT PARAMETERS: SIZE_OF _T ABLE, TABLE 
OUTPUT PARAMETERS: TABLE 
READ INTO: 
PRINT FROM: 
DICTIONARY: 
SIZE_OF _TABLE 
NO~NTERCHANGE 

FIRST~TEM 

SECOND~TEM 

TABLE 
EACHJAIR 

ATTRIBUTE: INTEGER; 
ATTRIBUTE: FLAG 
INITIAL: I; 
ATTRIBUTE: POINTER; /1 TO 
TABLE 
ATTRIBUTE: POINTER; II TO 
TABLE 
ATTRIBUTE: ARRAY; 

As illustrated in the previous example, (directives to PLP) 
can be empty. ATTRIBUTES: can be followed by any num
ber of words describing the noun. The syntax for (constant 
list), (identifier) and (constant) are as in stand~rd program
ming languages. The syntax for the (body) of a PL prowam 

follows. We shall think of the body as being composed of 
statement forms which specify the control flow in the im
plementation program and statement forms which specify 
the executable, functional components of the implementa
tion program. We shall loosely say that the body of the 
program form is executable. 

I. (body) 
j. (statement 

list) 
k. (statement) 

~ BEGIN (statement list) END 
~ (statement list); (statement) 

I (statement) 
~ (assignment) 

/ (compound statement) 
/ (if statement) 
/ (case statement) 
I (while statement) 
/ (repeat statement) 
/ (for statement) 
/ (cycle statement) 
I (with statement) 
I (cobegin-coend statement) 
/ (I/O statement) 
I (expression) 
I (command) 

The fundamental executable components of a program 
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form are assignments, commands and expressions. The con
trol structures specify the manner in which the fundamental 
components are to be executed. The non-terminal (state
ment) goes to the fundamental components and to the con
trol structures containing sequences of fundamental com
ponents. Standard (PASCAL-like) syntax details of the 
control structures are given in the appendix. It should be 
noted that concurrent execution of statements may be spec
ified by PL. Hence PL allows the design of program forms 
for a wide variety of applications. In fact, (statement) may 
be sent to any of the structures supported by the various 
languages currently in use. Syntax for exit statements, 
GOTOs and labels may be easily added to the above gram
mar but this is not done in the grammar presented here. 

The fundamental executable component of interest is the 
command. The following productions give its syntax. 

1. (command) (verb) 
I (verb) (comments) (noun) 

Example PL program form for SORT 

I/(body) 
BEGIN 

IF SIZE_OF _TABLE> 1 
THEN 

WHILE 
DO 

NOJNTERCHANGE 
NOJNTERCHANGE=O 

(comments) (noun) 

(comments) (noun) 
I (verb) (comments) (noun) 
(comments) (noun) 

(comments) (noun) 
RETURN 

(comments) (noun) 

(comments) (noun) 

(verb) is to be semantically interpreted as any English 
language verb. The non-terminal (comments) is to be inter
preted as a sequence of English language words (usually 
prepositions and conjunctions) which add to the readability 
of the command. Finally, (noun) is to be interpreted as a 
data structure dedared in the introdttetionof the l'l-ogram 
form. The body of the SORT program form introduced ear
lier is given in the following example. 

FOR EACHJAIR=1 TO SIZE_OF_TABtE-l 
/ / (command) 

END 

OD 

DO GET FIRST JTEM IN TABLE; 
/ / (command) 

GET SECOND~TEM IN TABLE; 
IF FIRSTJTEM IN TABLE>SECOND_ 
ITEM IN TABLE 

THEN 

OD 

BEGIN 
//(command) 

INTERCHANGE FIRSTJTEM IN TABLE AND 
SECOND ITEM IN TABLE; 
NOJNTERCHANGE= 1 
END 

PRINT TABLE 

Examine the first command GET FIRSTJTEM IN TABLE. This command begins with the verb GET and it operates on 
the nouns FIRSTJTEM and TABLE. The word IN functions as a comment which makes the command easier to read. 
Similarly, INTERCHANGE is the verb in the last command of the above program. INTERCHANGE operates on the nouns 
FIRST JTEM, SECONDJTEM and TABLE. More specifically, 

//(verb) (noun) (comment) 
INTERCHANGE FIRSTJTEM IN 

//(noun) 
TABLE 

//(noun) 
SECONDJTEM 

(comment) 
AND 

(comment) (noun) 
IN TABLE 

INTERCHANGE is the abstraction of a routine which has as inputs FIRSTJTEM, TABLE, and SECONDJTEM. 
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The actual FORTRAN implementation for even the simple sort program is much harder to read. The FORTRAN subroutine 
is given below. 

Example 

SUBROUTINE SORT (lSIZE, TABLE) 
DIMENSION TABLE (100) 
IF (lSlZE.LE.I) GO TO 99 

2 INTER=O 
DO 201= I, ISIZE-I 

IF (TABLE(I).LE.TABLE(I+I»GO TO 20 
INTER=I 
TEMP=TABLE (I) 
TABLE (l)=TABLE (l + 1) 

TABLE (I)=TEMP 
20 CONTINUE 

IF (INTER. EQ. I) GO TO 2 
99 WRITE (6,30) (TABLE (1),1=1, ISIZE) 
30 FORMAT (5x2, 10 (F8.3, 2x» 

STOP 
END 

Note the PL program form for the above SORT given in the next example suppresses the details of TABLE, INTER
CHANGE, GET and PRINT. 

Example 

SORT IN ASCENDING ORDER 
INPUT PARAMETERS: SIZE_OF_TABLE, TABLE 
OUTPUT PARAMETERS: TABLE 
PRINT FROM: TABLE 
DICTIONARY: SIZE_OF_TABLE; NO-.-.INTERCHANGE; 

FIRST -.-.ITEM; SECOND-lTEM: TABLE: 

BEGIN 

END 

IF 
THEN 

EACHJAIR 

SIZE_OF __ TABLE> I 
WHILE NO-.-.INTERCHANGE 
DO NO_INTERCHANGE=O 

OD 

FOR EACHJAIR=I TO SIZE_OF_TABLE-l 
DO GET FIRST-.lTEM IN TABLE; 

GET SECOND-.lTEM IN TABLE: 
IF FIRST_ITEM IN TABLE> 

SECOND-.-.ITEM IN TABLE 
THEN BEGIN 

INTERCHANGE FIRST -lTEM IN 
TABLE AND SECOND-.-.ITEM IN TABLE; 
NO-.-.INTERCHANGE= 1 
END 

OD 
PRINT TABLE 

STRUCTURED PROGRAMMING USING PSEUDO 
LANGUAGE 

concerned with the details of TABLE or its elements. In an 
implementation, the TABLE may be a file and its elements 
may be employee records. Also, GET and INTERCHANGE 
may he complicated, machine-dependent subroutines. Here 
again the PL SORT program form is not concerned about 

Note that the PL SORT program form implies the hier
archical structure of Figure 1. The PL program form is not 
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SORT 

INTERCHANGE 
Figure 1 

the- details of algorithms implementing the functions GET 
and INTERCHANGE. SORT is written assuming GET and 
INTERCHANGE work. The logic of the SORT program 
form is easy to check out. Therefore, if GET and INTER
CHANGE work reliably, then SORT works reliably. To 
reiterate, SORT TABLE might be the main goal. This goal 
is refined by the PL SORT program form which in turn calls 
for two functions, GET and INTERCHANGE. The data 
structures (or nouns) on which the two functions operate 
are completely specifted: in the commands in which they 
appear in the SORT program. 

PL forces the programmer to identify the verbs (or func
tional components) of the program during the design phase. 
This ensures the program form can be implemented. Design 
languages which allow flexible English language statements 
cannot ensure that the design algorithm can in fact be im
plemented by a process. Another feature that PL has in 
common with the existing design tools is that control struc
tures must be identified. 

The functional components in the PL SORT program form 
may themselves be implemented by other PL program forms 
calling on still other functions (verbs). This stepwise refine
ment can continue until a level is reached where all the 
verbs are implemented in a desired implementation lan
guage. It is easy to see that the resulting implementation 
program should be well structured. 

PSEUDO LANGUAGE PROCESSOR (PLP) 

PL syntax is designed so that PL programs are amenable 
to both structural and symbolic (static) analysis. The PLP 

currently being implemented is divided into three logical 
components-the scanner, the structure analyser and the 
message generator. PLP is designed to generate a variety of 
messages. The classes of messages generated are listed 
below together with a brief discussion of how the messages 
in each class are generated. 

• Messages detecting violations of standard design prac
tices-The structural analysis of the PL program, by 
the parser, detects omissions in the introduction and 
improper use of control structures in the body. 1,27 

• Cross-reference tables-Tables indicating variable 
usage are determined during the three PLP phases and 
printed out appropriately. 

• Global references are listed-All nouns in the intro
duction which have a global attribute are listed. This 
allows uses of critical, global -resources to be moni
tored. 

• Messages indicating anomalies in the use of varia
bles-PLP uses various current techniques of high-level 
data flow analysis techniques on the parse tree to detect 
anomalies in the use of variables. 2,5,12,14-16,18,19,24,25 The 
appearance of a variable in the introduction identifies 
it as a noun. This information is used by the semantic 
routines to distinguish the nouns in a command from 
other words which serve as comments. The first word 
in a command is always a verb. If a noun follows the 
keyword RETURN it is taken to be defined in the 
subprocess named by the verb. See Figure 2 for an 
illustration. 

• A list of possible sub-processes from the PLP library 
which may be used by the programmer-An elementary 
component of the PL program is the command. Each 
command is a directive to the computer to operate on 
some nouns (data structures). The verb contained in 
the command must be implemented by a routine sup
plied either by the programmer or provided by the PLP 
library. Consider the PL statement 

IF 
THEN 

FIRST~TEM IN TABLE > SECOND~TEM IN TABLE 
(verb) (noun) 

INTERCHANGE FIRST ~TEM 
(noun) (noun) 

IN TABLE AND SECOND~TEM 
(noun) 

IN TABLE 

Suppose the verb INTERCHANGE is already implemented 
by a FORTRAN (or PASCAL) or even another PL routine 
in the PLP library. PLP will list INTERCHANGE as a 
possible implementation of the verb. The programmer can 
examine a copy of INTERCHANGE. After an examination, 
if the programmer so directs, the library implementation of 
INTERCHANGE can be used as shown below. PLP library 
implementation of INTERCHANGE may contain the state
ments 

TEMP= FIRST ~RGUMENT 

FIRST ~RG UMENT = SECOND~RG U MENT . 
SECOND~RGUMENT=TEMP 

Based on the programmer's directive, INTERCHANGE in 
the PL statement above will be considered as a call to the 
library routine called INTERCHANGE and the resulting 
statement synthesized will be 
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(Introdoction) 

I 

I 
/ 

I 

I 

I 

I 
·1 

Figure 2 

r: reference 
u: undefined 

- - ..... : Flow of information 
in the parse tree 
for a PL program. 

IF 
THEN 

FIRST~TEM IN TABLE>SECOND~TEM IN TABLE 
CALL INTERCHANGE 

(T ABLE(FIRST ~TEM), 
T ABLE(SECOND~TEM» 

The PLP facility just discussed is especially useful when the 
verbs are implemented by complicated routines. In such 
cases considerable programming effort is saved and the pro
gram itself is more structured. A drawback of this PLP 
facility is that the programmer may use a verb which is 
implemented and contained in the PLP library under a dif
ferent name. To overcome this, a document containing the 
implemented verbs may be provided to the programmers. 

• Messages on the misuse of a sub-process-The intro
duction of each sub-process provides a detailed de
scription of the input parameters and the output param
eters of the sub-process. When PLP links together sub
processes or when it recommends (or uses) a particular 
implementation of a verb, it will check to see whether 
the actual parameters in the calling sub-process are 
compatible with the formal parameters in the definition 
of the sub-process. At the same time PLP will check 
access rights of each sub-process. These checks will be 
made semantically by examining the introduction of the 
two sub-processes involved. 3 

The last two PLP capabilities listed are currently heing 
designed. The remaining capabilities are being implemented. 

Finally, PLP uses the structural analysis of a PL program 
for creating an output listing with proper indentations. 

CONCLUSIONS 

A design language called PSEUDO LANGUAGE (PL) 
has been presented. Programs written in PL are called pro
gram forms. Program forms avoid implementation details 
and are therefore easily readable and understandable. PL 
also forces the programmer to identify the control structures 
as well as the functional components of the program system 
during the design phase. 

The cost of finding an error in software increases as the 
software development comes nearer to completion. Errors 
found during specification are relatively inexpensive to cor
rect as compared with errors found during total system in
tegration. 23 The PSEUDO LANGUAGE PROCESSOR 
(PLP) , currently being implemented, is an automatic tool for 
analysing specifications written in PL and printing out mes
sages that indicate 

• Viol::!tiom of good design practices 
• Errors 
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• Incorrect interfacing between programs 
• Existing, potentially useful sub-processes that the pro

grammer can use 

Current research involves developing the theoretical 
framework for modeling the translation of PL program forms 
to implementation programs. Work is also proposed on the 
PL syntax. There may be many different implementations 
of a verb in the PLP library. Therefore, the syntax should 
allow a verb to be further qualified. For example, BUB
BLE.SORT implementation would differ from 
MERGE. SORT. PLP can be designed as an interactive sys
tem which aids program form validation and implementation 
program synthesis. Valuable statistics on the usage of verb 
implementations can be obtained by the PLP. This would 
point to verbs that perhaps could be implemented by hard
ware. 
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APPENDIX 

k.O (statement) ~ (assignment) 
/ (compound statement) 
/ (if statement) 
/ (case statement) 
/ (while statement) 
/ (repeat statement) 
/ (for statement) 

< cycle statement) 
(with statement) 
(concurrent statement) 
(command) 

k.l 
/ (I/O statement) 

(compound statement) ~BEGIN (statement list) 
END 

k.2 (if statement) 

k.3 (case statement) 

k.4 (while statement) 

k.5 (repeat) 

k.6 (for statement) 

k.7 (cycle statement) 

~ IF (expression) 
THEN (statement) 
ELSE (statement) 
CASE (expression) OF 
(constant) : (statement 
list) ; 

END 
~ WHILE (expression) DO 

(statement) OD 
~REPEAT (statement list) 

UNTIL (expression) 
~FOR 

(identifier) = < expression) 
TO (expression) 
DO (statement) 
OD 

~ CYCLE (statement list) 
END 
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k.8 (with statement) 

k.9 (command) 
k.lO (concurrent 

statement) 
k.l1 (I/O statement) 

~ WITH (variable), 
(variable), ... DO 
(statement) 
as in text 

~ COBEGIN (statement list) 
COEND 

~PRINT (noun list) 
READ (noun list) 

The terminals of PSEUDO LANGUAGE are the under
lined symbols, the special characters (:, :, " =) and the 
digits. The nonterminals, which are not defined in the above 
syntax, are described below. 

(title) : any title 

(directives to PLP) 

(attribute) 

(identifier) 

: list (possibly empty) of directives 
to the PLP processor 

: any relevant attribute 
Example-real, integer, bit, 
array, etc. 

: as in standard FORTRAN but no 
length limit 

(subscripted identifier) : as in standard FORTRAN but no 

(number) 
(constant) 
(expression) 
(verb) 
(comment) 

length limit 
: as in standard FORTRAN 
: integer 
: as in FORTRAN 
: any verb in the English language 
: any group of English language 

words which are not verbs or 
nouns 



First-year results from a research program on 
human factors in software engineering 

by SYLVIA B. SHEPPARD, BILL CURTIS, PHIL MILLIMAN, M. A. BORST, and TOM LOVE 
General Electric Company 
Arlington, Virginia 

INTRODUCTION 

For the past two years the Software Management Research 
U nit at General Electric has been investigating several areas 
of human factors in software engineering with support from 
Engineering Psychology Programs of the Office of Naval 
Research. There have been two major thrusts in this re
search. The first thrust investigated the effects of several 
modern programming practices on programmer efficiency. 
The second thrust investigated the prediction of programmer 
performance from software complexity metrics such as 
those proposed by Halstead and McCabe. This research 
program consisted of separate experiments on the under
standing, modification, debugging, and construction of soft
ware, each using professional programmers. Each experi
ment investigated both the effects of experimentally 
manipulated programming practices, and the values of com
plexity metrics computed from the programs employed. 

Structured coding techniques, mnemonic variable names 
and commenting are programming practices which suppos
edly reduce the complexity of software. Dijkstra4 contended 
that program construction should proceed in a structured, 
top-down fashion. By limiting the control structures al
lowed, he assumed that the simplified control flow would 
make functions performed by the program easier to trace. 
Mnemonic variable names supposedly simplify the cognitive 
task of understanding a program by reducing the memory 
load on a programmer. The inclusion of comments purport
edly simplifies modification tasks, although there are differ
ent methods of commenting. Global comments preceding a 
program summarize what objectives are accomplished, 
whiie in-line comments deiineate how and where the objec
tives are fulfilled. 

In 1972 Halstead first published his theory of software 
physics (renamed software science) stating that algorithms 
have measurable characteristics analogous to physical laws. 
These characteristics provide one assessment of program 
complexity. According to Halstead, 13.14.16.18 the amount of 
mentai effort required to generate a program can be calcu
lated from simple counts of distinct operators and uperands 
and the total frequencies of operators and operands. From 
these four quantities Halstead derives the number of mental 
comparisons required to generate a program. Correlations 
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often greater than .908 have been reported between Hal
stead's metrics and such dependent measures as the number 
of bugs in a program,2.7.9 programming time,11.17 and the 
quality of programs. 1,6.15 

More recently, McCabe 21 developed a definition of com
plexity based on the decision structure of a program. 
McCabe's complexity metric is the classical graph-theory 
cyclomatic number which represents the number of regions 
in a graph, or in the current usage, the number of linearly 
independent control paths comprising a program. Simply 
stated, McCabe counts the number of elementary control 
path segments. When combined these segments generate 
every possible path through the program. 

This paper reports results from the experiments on un
derstanding and modification conducted during the first year 
of this research program. The first experiment investigated 
the effect of structured coding and mnemonic variable names 
on program comprehensibility. The second experiment stud
ied the effects of structured coding and global versus in-line 
comments on modification tasks. 

METHOD 

Participants 

In each experiment 36 programmers were tested in several 
General Electric locations. Participants in Experiment 1 had 
working knowledge of FORTRAN and averaged 6.8 years 
of professional programming experience (SD = 5.8). In Ex
periment 2 the participants had an average of 5.9 years of 
professional programming experience (SD = 4.0), a working 
knowledge of FORTRAN, and none had participated in the 
previous experiment. The majority of participants came 
from an engineering background. 

Procedure 

In both experiments a packet of materials was prepared 
for each participant with written instructions on the exper
imental tasks. As a preliminary exercise, all participants 
were presented the same short FORTRAN program and a 
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brief description of its purpose. In Experiment 1 they studied 
this program for 10 minutes and were then given 15 minutes 
to reconstruct a functionally equivalent program from mem
ory. In Experiment 2 all participants were asked to modify 
the same short FORTRAN program. They were given a 
brief description of its purpose and were allowed unlimited 
time to complete a specified modification. This introductory 
program provided a common basis for comparing the skills 
of participants and diminished learning effects prior to the 
experimental tasks. This latter point is important since a 
pilot study24 indicated that learning may occur during this 
type of task. 

Following the initial exercise, participants were presented 
in turn with three separate programs comprising their ex
perimental tasks. In Experiment 1 they were allowed 25 
minutes to study each program, during which they were 
permitted to make notes or draw flowcharts. At the end of 
the study period, the original program and all scrap paper 
were collected. Each participant was then given 20 minutes 
to reconstruct a functional equivalent of the program from 
memory on a blank sheet of paper, but was not required to 
reproduce the comment section. In Experiment 2 one mod
ification was requested for each of the three programs and 
was described on a sheet accompanying the program listing. 
Participants worked at their own pace, taking as much time 
as needed to implement the modification. A break of 15 
minutes occurred before the last program was presented in 
each experiment. 

Independent variables 

Program class. Three general classes of programs were 
used in Experiment I: engineering, statistical, and non-nu
merical. Three programs were employed from each class 
with lengths varying from 36 to 57 statements. These nine 
programs were selected from among many solicited from 
programmers at several locations and were considered rep
resentative of programs actually encountered by practicing 
programmers. All experimental programs were compiled and 
executed using appropriate test data. Experiment 2 used 
three of the nine programs from Experiment 1. 

Complexity of control flow. Three control flow structures 
were defined for each program in both experiments. Struc
tured control flow was generally consistent with the tenets 
of structured programming described by Dijkstra .• When the 
rules for structured programming are applied rigorously, 
awkward constructions may occur in standard FORTRAN 
such as DO loops with dummy indices. 25 In a second version 
of each program, these awkward constructions were largely 
eliminated with a more naturally structured control flow. 
These conventions included mUltiple returns, exits from DO 
loops, and judiciously used backward GO TO's. In the un
structured version of each program, the control flow was 
not straightforward. Expanded DO loops, arithmetic IF's, 
and unrestricted use of GO TO's were allowed. 

Variable name mnemonicity. In Experiment 1 three levels 
of mnemonicity for variable names were developed. The 

programs were shown to several non-participants who were 
asked to assign names to the variables. The names chosen 
most frequently were used in the most mnemonic condition. 
The medium mnemonic level consisted of less frequently 
chosen names. In the least mnemonic condition, names con
sisted of one or two randomly chosen alphanumeric char
acters. 

Comments. Three levels of commenting were tested in 
Experiment 2: global, in-line, and none. Global comments 
provided an overview of the function of the program and 
identified the primary variables. In-line comments were in
terspersed throughout the program and described the spe
cific functions of small sections of code. 

Modifications. Three types of modifications were selected 
for each program in Experiment 2 as typical changes a pro
grammer might be expected to implement. The level of dif
ficulty for seven of the nine modifications increased as more 
lines had to be added to the original code, and the hardest 
modifications for each program required the most additional 
lines. 

Experimental design. In order to control for individual 
differences in performance, a within-subjects 34 factorial 
design was employed in each experiment. 12 In Experiment 
I three types of control flow were defined for each of nine 
programs, and each of these 27 versions was presented in 
three levels of variable mnemonicity, for a total of 81 pro
grams. In Experiment 2 three levels of control flow were 
defined for each of the three programs. Each of these nine 
versions was presented with one of three levels of docu
mentation. Modifications at three levels of difficulty were 
developed for each program, generating a total of 81 exper
imental conditions. The first 27 participants in each experi
ment exhausted the total of 81 programs. The additional nine 
participants repeated 27 of the previous experimental tasks. 
Programmers at each location were randomly assigned to 
experimental conditions in order that they would experience 
each level of each independent variable. That is, within their 
three tasks they worked with a program from each class, 
with each type of control flow, and at each level of docu
mentation (variable mnemonicity or type of commenting). 
Each of the first 27 participants experienced unique com
binations of these levels across their three experimental 
tasks. The order of presentation of the three programs was 
assigned randomly to each participant. 

Covariates. In order to obtain a measure of programming 
ability related to the experimental tasks, scores on the pre
liminary tasks in both experiments were used as a covariate. 
Participants reported their type of programming experience 
and the number of years they had been programming profes
sionally. Order of presentation was a situational covariate. 

Complexity measures 

Halstead's E. Halstead's effort metric (E) was computed 
precisely from a program (based on Reference 22) whose 
input was the source code listings of the 27 distinct programs 
in each experiment. Programs differing only in variable mne-



monicity or type of commenting were not considered distinct 
programs in this analysis. The computation formula was: 

where 

E= 'Y1lN2 (N l+N2) log2 ('Y1l+112) 
21'12 

TJl =number of unique operators 
TJ2=number of unique operands 
N 1 = total frequency of operators 
N2=total frequency of operands 

McCabe's v(G). McCabe's metric is the classical graph
theory cyclomatic number defined as: 

v(G)=# edges-# nodes+2 (# connected components). 

McCabe pre~~nts two simpler methods of calculating v(G). 
His metric equals the number of predicate nodes plus 1. 
Values of v(G) can also be computed from a planar graph of 
the control flow by counting the number of regions. 

Length. The length of the program was computed as the 
total number of FORTRAN statements excluding com
ments. 

Dependent variables 

Experiment I. The criterion for scoring the programs in 
Experiment 1 was the functional correctness of each sepa
rately reconstructed statement. Variable names and state
ment numbers which differed from those in the original 
program were counted as correct when used consistently. 
Control structures could be different from the original pro
gram so long as the statements performed the same function. 
The score on each experimental task was the percent of 
statements correctly recalled. Three judges scored each pro
gram independently. Interjudge correlations of .96, .96, and 
.94 were obtained across the three sets of scores. The av
erage of the three scores (percents of statements correctly 
reconstructed) for each program was the dependent variable 
in the data analysis for Experiment 1. 

Experiment 2. The dependent variables for Experiment 2 
were the correctness of the modification and the time taken 
by the participant to perform the task. The individual steps 
necessary for correct implementation of the requested mod
ifications had been delineated in advance and assigned equal 
weights, That is, prototypes of each program with each 
modification correctly implemented were established as the 
criteria against which participants' work would be com
pared. A percentage score reflecting the correctness of each 
modification was computed by comparing participants' 
changes with the criteria. The time to write a modification 
was measured to the nearest minute by an electronic timer. 

Analysis 

Results were analyzed in two phases. The first phase 
investigated the effects of experimentally manipulated var-
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iables, while the second phase evaluated the performance 
predictions of the software complexity metrics. The exper
imental effects of programming practices were analyzed in 
hierarchical regression analyses. In these analyses domains 
of variables were entered sequentially into a mUltiple regres
sion equation to determine if each successive domain added 
significant prediction to that afforded by domains already 
entered. Effects related to pre-existing differences among 
participants and programs were entered into analyses prior 
to evaluating the effects of programming practices. The var
iables representing the different condiiions of experimentally 
manipulated variables were effect coded. l9 

Analyses investigating relationships among Halstead's E, 
McCabe's v(G) , number of statements, and performance 
were conducted with Pearson product-moment correlation 
coefficients. 

RESULTS 

Experimental manipulations 

Experiment I. Table I presents the results of the hierar
chical regression analyses for Experiment 1. Figures pre
sented in this and succeeding tables indicate the unique 
percent of variance contributed to the prediction of perform
ance by a variable domain when added into the analysis with 
preceding domains. Significance levels identified by aster
isks indicate the likelihood (expressed as a proportion) that 
a prediction of this significance could have occurred by 
chance. 

An average of 50 percent of the statements were correctly 
recalled across all programs and experimental conditions. 
Pretest scores accounted for 17 percent of the variance 
among scores on the percent of statements correctly re
called. No relationships were observed for type and length 
of programming experience or job location. 

Differences among the program classes accounted for 8 
percent of the variance in performance scores in addition to 
that accounted for by individual differences among partici
pants. Engineering programs were the most difficult (41 per
cent of the statements correctly recalled), followed by sta
tistical (52 percent), and non-numeric (57 percent) programs. 
When the specific program was taken into account, an ad
ditional 20 percent of the variance in performance was ex
plained. However, this result was not strictly a function of 
differences among programs, because variance related to 

TABLE I.-Hierarchical Regression for Percent 
of Statements Correctly Recalled 

Variable domain 

Pretest 
Class of program 
Specific program 
Control flow complexity 
Variable mnemonicity 
Total R2 

Note: n = 108. **p :s.01. ***p :s.001. 

.17** 

.08** 

.20** 

.07** 

.01 

.53*** 
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specifi: programs was confounded with variance related to 
participants. That is, each participant saw only three of the 
nine programs. Overall, 45 percent of the variance in per
formance was accounted for by differences among partici
pants and programs. 

The complexity of the control flow affected performance, 
accounting for 7% of the variance in addition to that ac
counted for by differences among programs and participants. 
As expected, unstructured programs were the most difficult 
to reconstruct. A post hoc analysis 23 showed the means for 
naturally structured and unstructured programs (56 percent 
versus 42 percent, respectively) to be significantly different 
(p :5 .05). Performance on structt;tred programs fell between 
these two. No differences occurred among levels of variable 
mnemonicity. 

Experiment 2. Across all experimental conditions, an av
erage of 62 percent of the steps for each modification were 
accurately implemented. The 108 accuracy scores ranged 
from five scores of 0 percent to 24 scores of 100 percent and 
were negatively skewed. The average time to complete the 
modifkations was 17.9 minutes, ranging from 2 to 59 minutes 
with a positive skew. Accuracy and time were uncorrelated. 

Table II presents hierarchical regression results for the 
accuracy of the participants' modifications. Only 19 percent 
of the variance in accuracy scores could be predicted by the 
variable domains studied. However, there were substantial 
differences in the degree to which performance on each of 
the three programs could be predicted. On two of the pro
grams, 35 percent of the variance in accuracy scores was 
accounted for, while results for the third program were in
significant. 

Order of presentation accounted for 5 percent of the var
iance in accuracy scores. Participants made more complete 
modifications in less time with each succeeding experimental 
task. However, the two programs on which performance 
proved most predictable were more frequently presented 
second or third in order. Thus, random assignment of pres
entation orders failed to counter-balance the number of 
times each condition appeared in each position order. 

The difficulty of the modification accounted for 9 percent 
of the variance in accuracy scores on the two most predict
able programs. Performance was poorer on modifications 
which required more lines of code to be inserted. The com
plexity of the control flow accounted for 7 percent of the 
variance in accuracy scores on the two programs for which 

T ABLE II .-Hierarchical Regression for Accuracy of Modifications 

AR2 AR2 
Variable domain (3 programs) (2 programs) 

Pretest accuracy .05* .05 
Presentation order .05* .13** 
Program .02 .01 
Modification difficulty .02 .09** 
Control flow complexity .04 .07** 
Type of commenting .01 .00 
Total R2 .19 .35*** 

Note: n=108 for 3 J1rogram~ and n=72 for 2 rf()gr::tm~ *p<.05. "*p~.Ol. 
**;'p :S.001. 

TABLE IlL-Hierarchical Regression for Time 
to Completion 

Variable domain 

Pretest time 
Presentation order 
Program 
Modification difficulty 
Control flow complexity 
Type of commenting 
Total R2 

Note: n=108. **p:s.OI. ***p:s.OOI. 

.03 

.06** 

.01 

.15** 

.02 

.01 

.28*** 

accuracy was most predictable. Modifications made to 
structured programs were more accurate than those made 
to unstructured programs. Accuracy scores did not differ 
among programs, nor among the type of comments included 
in the program. 

Table III presents hierarchical regressions for time to 
completion. Across all three programs, 28 percent of the 
variance in the time required to complete the modifications 
could be accounted for by variables studied here. Time to 
complete the modifications was more easily predicted than 
accuracy scores across all three programs. 

Results of the hierarchical regression for time were gen
erally similar to the results observed for accuracy. The spe
cific program and type of comments were unrelated to the 
criterion. Significant variance was accounted for by both the 
difficulty of the modification and the order of presentation. 
Again, however, the interpretation of the effect for this latter 
variable is confounded. Neither the pretest scores nor con
trol flow complexity were significantly related to time, al
though they had been modestly related to accuracy. 

Further inspection verified that the number of additional 
statements required in the code to accurately complete a 
modification was related to the time required to insert them. 
Fitting a curvilinear function to these data using least 
squares procedures resulted in a curvilinear correlation (sec
ond order polynomial) of .80 (p :5 .05) and a standard error 
or estimate of 2.53 minutes. No such relationship was found 
for accuracy. 

Software complexity measures 

Since different levels of variable mnemonicity and type of 
commenting neither affected performance, nor caused any 
change in the value of the complexity metrics for a particular 
program, the data reported in this section were aggregated 
over the three levels of mnemonicity in Experiment 1 and 
type of commenting in Experiment 2. This procedure re
sulted in 27 data points for each experiment. Each datum 
represented the average of at least three performance scores. 
Table IV presents the correlations among the three com
plexity measures in both experiments. Correlations in the 
lower triangle are from Experiment 1; those in the upper 
triangle are from Experiment 2. Generally these correlations 
were quite large in hnth experiments. 

Table V presents correlations between the complexity 



TABLE IV.-Intercorrelations among Complexity Measures 

Complexity Measure 

Halstead's E 
McCabe's v(G) 

Length 

Note: n=27. **p::5.01. ***p::5.00l. 

E 

.84*** 

.47** 

v(G) 

.88*** 

.64*** 

Length 

.92*** 

.89*** 

measures and performance criteria in both Experiments 1 
and 2. In Experiment 1 the correlations between perform
ance and each of the complexity measures were all negative, 
indicating that fewer lines were recalled as the level of com
plexity represented by these three metrics increased. Per
formance was moderately related to length and McCabe's 
v(G), but not to Halstead's E. 

Most of the significant correlations with performance in 
Experiment 2 were observed for measures computed- on 
correctly modified rather than unmodified programs. Cor
relations reported in Table V were for measures computed 
on modified programs. All three measures were moderately 
correlated with time to complete the modification, while 
only length and McCabe's v(G) were significantly related to 
accuracy. 

The complexity of the control flow moderated the rela
tionships between performance and the complexity metrics 
in both experiments. That is, while insignificant correlations 
were observed when the control flow was structured or 
naturally structured, this was not the cas.; for unstructured 
code. Correlations with percent recalled correctly in Exper
iment 1 of - .55 (p ~.001) and - .45 (p ~.01) for v(G) and E 
were observed on unstructured programs. In Experiment 2 
correlations relating time with Halstead's E went from .08 
in the structured code, to .28 (p~.05) in naturaHy structured 
code, to .38 (p ~.05) in unstructured code. No such moder
ating effects were observed for McCabe's v(G) , nor for 
either metric with accuracy scores. 

Correlations between the complexity metrics and per
formance criteria in Experiment 2 were also moderated by 
the type of commenting. When no comments were included 
in the program, significant correlations on modified pro
grams for both Halstead's E and McCabe's v(G) were ob
served for both accuracy (r=-.34 and -.35, p~.05) and 
time (r=.47 and .44,p:'5.01). Insignificant correlations were 
usually observed when either global or in-line comments 
appeared in the code. 

The amount of professional programming experience pro
foundly moderated the relationships observed between the 
complexity measures and percent of statements correctly 

T ABLE V.-Correlations between Complexity and Performance Measures 

Compiexiiy meiric 

Halstead's E 
McCabe's v(G) 

Length 

Note: n=27. *p::5.05. **p::5.01. 

Percent 
Recalled 
(Exp.1) 

-.13 
-.35* 
-.53** 

Accuracy 
(Exp.2) 

-.29 
-.36* 
-.34* 

Time 
(Exp.2) 

.44** 

.38* 

.46** 
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recalled in Experiment 1 and time to completion in Experi
ment 2. For programmers with three or less years of profes
sional experience in Experiment I, correlations of -.47 
(p ~.001) for McCabe's v(G) and -.35 (p ~.05) for Halstead's 
E were observed. Insignificant correlations were observed 
for programmers with more than three years experience. 
For time to completion in Experiment 2, correlations of .55 
(p ~.001) for Halstead's E and .52 (p ~.OOl) for McCabe's 
v(G) were observed for programmers with three or less years 
of professional experience, while no correlations above .20 
were observed for programmers with more than three years 
experience. 

DISCUSSION 

Experimental manipulations 

Several factors were consistently related to programmer 
performance. Individual differences among participants and 
the complexity of the control flow were found to influence 
programmer performance in both experiments. In Experi
ment 2 the difficulty of the requested modification and the 
order of presentation influenced both the accuracy and 
speed of implementing modifications. Each of these factors 
contributed independently to predicting program compre
hension. Contrary to expectations, however, mnemonic var
iable names and types of commenting did not influence per
formance. 

Control flow complexity was significantly related to both 
the percent of statements correctly recalled in Experiment 
1 and the accuracy of the modifications on two of the pro
grams studied in Experiment 2, but not to the time spent 
implementing modifications. In Experiment 1 naturally 
structured code was more easily comprehended than un
structured code. In Experiment 2 more accurate modifica
tions were made to structured rather than unstructured code. 
It is not clear from the results of these two experiments 
whether rigidly structured code or code structured with a 
more natural control flow for FORTRAN can be maintained 
more efficiently. However, both of these control flows 
proved superior to unstructured code in at least one of the 
experiments. 

Differences among programs played an important, but 
difficult-to-explain, role in these experiments. Effects on 
performance attributed to these differences may have re
sulted from some familiarity factor specific to the samples 
of programs and programmers studied. Further, effects due 
to differences among specific programs were confounded in 
Experiment 1 with effects related to individual differences 
among participants. 

It is not surprising that the difficulty of a modification in 
Experiment 2 was related to the time required to implement 
it. The significant factor in the time spent implementing a 
modification was the number of new lines to be added rather 
than the number of in-line changes, such as deletions or 
substitutions. The difficulty of a modification also affected 
the accuracy with which it was implemented. Greater cog-
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mtlve difficulty appeared to be involved in creating new 
code than in merely deleting or altering it. 

The inclusion of mnemonic variable names and either 
global or in-line comments were expected to improve pro
grammer performance. The surprising lack of effects for 
documentation aids in both experiments may have occurred 
for several reasons. First, in Experiment 1 variable mne
monicity was manipulated and global comments were pro
vided with all programs. In Experiment 2 type of comment
ing was manipulated and mnemonic variable names were 
provided in all programs. Thus, the existence of one type of 
documentation may have reduced the additional information 
available from the documentati0!1 aid being experimentally 
manipulated, reducing its impact on performance. 

A second possibility is that documentation aids do not 
contribute significantly to performance for programs of the 
modular size (35-55 lines) employed here. In large systems 
with many modules and thousands of lines of code, docu
mentation may have more impact on performance because 
of the increased amount of information programmers must 
remember. Thus, program size may moderate the relation
ship between documentation and performance. 

Finally, although mnemonic variable names did not affect 
performance in Experiment I, many participants seemed to 
prefer them. That is, they used their own, more meaningful 
names when reconstructing the least mnemonic versions of 
the programs. For the medium and most mnemonic versions, 
they tended to use the original names supplied. Thus, the 
contribution of mnemonic variable names is supported by 
anecdotal rather than statistical evidence. 

Results for the modern programming practices studied 
here were probably conservative due to the small size of 
programs studied. The cognitive load placed on program
mers attempting to understand or modify approximately 50-
line programs did not require the amount of'assistance pro
vided cumulatively by structured coding, mnemonic variable 
names, and comments. While the information provided by 
these practices was not necessarily redundant, the task 
could be mastered with less information than presented. In 
a larger system composed of many modules, however, the 
cognitive burden of implementing modifications may be so 
great that each of these programming practices may contrib
ute significantly to efficiency. Thus, future research needs 
to assess the independent benefits of these practices in sub
stantially larger programs. 

Software complexity metrics 

The two experiments comprising this study produced em
pirical evidence that software complexity metrics were re
lated to the difficulty programmers experienced in under
standing and modifying progr"l.ms. Deeper analysis 
indicated, however, that the Halsread and McCabe metrics 
predicted programmer performance only on certain pro
grams. Programs on which significant prediction was ob
served were characterized by the absence of programming 
practices such as structured coding or commenting which 
provided assistance in understanding the code. These com-

plexity metrics were more predictive of the performance of 
less experienced programmers. A more complete presenta
tion and discussion of these results is presented by Curtis, 
Sheppard, Milliman, Borst, and Love. 3 

Assessment of the psychological complexity of software 
appears to require more than a simple count of operators 
and operands or basic control paths. Many programs have 
characteristics unassessed by these metrics which may 
heavily influence psychological complexity. For instance, 
the use of structured coding techniques or comments may 
reduce the cognitive load on a programmer in ways unas
sessed by the complexity metrics. Further, complexity met
rics may not be capturing the most important factors for 
predicting the performance of experienced programmers 
who may either be conceptualizing programs at a level other 
than that of operators, operands, and basic control paths, 
or who can fit the program into a schema similar to one with 
which they have had previous experience. 

Even though moderating effects were observed in these 
data, stronger relationships with performance may have 
been masked by the effects of differences between individ
uals and programs which were enhanced by limitations in 
the economical multifactor designs employed. Uniformity in 
the sizes of programs studied may also have limited these 
results. The range of values assumed by complexity metrics 
computed on these programs may have been insufficient for 
correlational tests 5 to detect the strong relationships re
ported in other verifications of these theories. Studies re
porting higher correlations for Halstead's E usually involved 
a broader range of program sizes. 8•18 

Further work in the area of software complexity should 
identify a set of cognitive principles relevant to programming 
tasks. Metrics could then be developed which would assess 
the qualities of software which are most closely related to 
these principles. Such an exercise might not only lead to 
improved metrics for assessing software complexity, but 
might also identify programming practices which could lead 
to more easily maintained software. 
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The use and abuse of a software engineering system 

by D. J. PEARSON 
Bell-Northern Research 
Ottawa, Ontario, Canada 

In 1969, International Computers Limited of England set 
about the design of its 2900 Series which was to unify the 
primary thrust of the company and was to provide a hard
ware and software architecture which was, at least, state
of-the-art.l The systems also had to sell. Therefore, they 
had to satisfy the then market requirement for rich facilities 
and generally neat features. If ICL was seriously to compete 
with IBM (in Europe at least) the operating system, subse
quently called System VME/B, would have to be compara
ble with the IBM products. ICL could not afford the stag
gering investments made in the 360 software systems. On 
the other hand, its recent track record had been less than 
outstanding for such software development. Faced with this 
dilemma, a project was set up to develop a system capable 
of minimizing the problems of software development by 
harnessing many of the current software engineering philo
sophies in order to aid management, reduce error rate and 
increase productivity. This system was subsequently called 
CADES (Computer Aided Development and Evaluation 
Systems). This paper describes briefly the major facets of 
this system and then goes on to discuss six years of product 
development experience with a software engineering system 
which was, by the standards of the day, state-of-the-art. 

THE SOFTWARE ENGINEERING SYSTEM 

The original CADES system was based on System 4 and 
was implemented between 1970 and 1972. All the original 
VME/B software was itself implemented on the System 4 
and written in a high-level language based on Algol 68 called 
S3. It was not until 1973174 that a real transition to 2900 
architecture took place as far as the product development 
activities was concerned. CADES itself was redesigned and 
reimplemented on 2900 during the period 1974-76. CADES 
consists of the following elements: 

1. Formal Design Methodology 
2. Design Definition Language 
3. Product Data Base 
4. Formal Data Capture and Control 
5. Product Data Base Applications 

1029 

FormaL design methodology 

A methodology called Structural Modeling was defined 
and adopted. It was based on a formalized top-down, levels 
of abstraction approach with great emphasis being placed 
on the data-driven emergence of design, and attempting to 
quantify the iterative nature of design. Instead of the "design 
until you understand the problem, code until you realize you 
don't, then iterate" approach to design, the entire process 
was quantified and documented, with all the possible itera
tion paths identified and priorities assigned to them. 

U sing Structural Modeling, the designer was constrained 
first of all to analyse the problem in terms of information 
flow and to structure this information analysis into a tree
form, each level on the tree defining an abstract machine. 
One of the lower levels of abstract machine would map onto 
the S3 compiler data structures. This was the implementa
tion leveL. After this information analysis, a function tree 
was constructed, compatible with the information tree, each 
level on this function tree representing the functional defi
nition of that abstract machine. This was called the holon 
tree (holon, from Koestler, Reference 3; in this context a 
holon is defined as a unit of further design). 

A lower level of the holon tree would map onto the con
cept of an S3 module. This was the implementation level. 
When both trees were compatible, that is, complementary 
from an abstract machine, levels-of-design point of view, 
the top-down design process was commenced, expressing 
the functional design of each holon, level-by-Ievel, in terms 
of the information items at the corresponding level in the 
data tree and its interactions in terms of its peer-holons. 
These designs were defined in terms of the design definition 
language. Techniques were built into the modelling process 
to preserve the data and functional modularity, and to min
imize the functional and data connectivity across the system. 

Design definition language 

The emerging design was expressed in a formal System 
Descriptive Language, SDL. The structure of SDL was 
based on that of the implementation language S3. However, 
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it was provided with facilities to express design concepts 
such as an 'event' and a 'virtual machine,' and it contained 
no facilities for implementation concepts such as data struc
tures and procedure declarations. An SDL definition dealt 
exclusively with the items defining the abstract machine 
under definition, and the conditions and assertions govern
ing its function in terms of the recognized design concepts. 
When the designer, during his top-down design activities, 
reached the implementation level and started to define that 
in SDL, an automatic code generator was initiated and S3 
code automatically generated from an SDL definition. 

The advantages of using SDL were fourfold: 

1. It ensured a formal, complete definition of the entire 
design. 

2. Design definitions were machineable and could be cap
tured in a data base. 

3. Automatic code generation increased productivity. 
4. Automatic code generation dramatically reduced fin

ger-trouble error. 

Product data base 

One of the primary intentions of the CADES system was 
the construction of a product data base which would contain 
the entire set of information defining the VME/B product, 
from earliest design statement, S3 code and load able ver
sions, product releases, bug reports and fixes. One major 
reason for this was in order to be able to relate problems 
discovered in the field to the appropriate earlier design de
cision and hence define accurately the scope of such prob
lems, rather than adopting the fire-fighting, piecemeal ap
proach to product maintenance. The greater the contents of 

the product data base, the more valuable it was in terms of 
information inversions. It reached maximum value at prod
uct release, and subsequently proved to be invaluable 
throughout all product maintenance activities. The data base 
itself is able to contain all types of VME/B product defini
tion, as shown in Figure 1. 

Updates were made to the data base using the formal data 
capture mechanism and expressed in SDL. Similarly, re
trieval requests were expressed in SDL. The code generator, 
compiler, construction, loading and maintenance tools in
teracted directly with the data base. This interaction enabled 
the mapping between 'types' of operating system represen
tation to be carried out consistently. Note that the mapping 
between high- and low-level design representations is carried 
out by the designer. When a change was made to the data 
base, entries were recorded in queues for action by the 
appropriate tools. The tools themselves return information 
such as sizes and indications of success to the data base. 
This return information itself might then cause further en
tries to be made on the queues for appropriate processing. 
In this way a degree of automation was achieved, human 
interventions, and hence error rate, decreased. 

Formal data capture and control 

As will be explained in the next section, the size of the 
project team was large. Data base information integrity in 
such an environment is very important, and yet very diffi
cult, to achieve. In order to achieve the necessary level of 
integrity we were forced to implement a semi-batch interface 
for data capture, with a rigorous control scheme to validate 
every piece of information to be inserted into the data base. 
This level of control was achieved by associating an au-

Data Capture/Retrieval 
Facilities 

/ I 1 \~ 
I 
I 

Product Database 

I : 
I Loadable 

: 
High Level 
Design 
Representation 

Low Level 
Design 
Representation 

Implementation 
Level 
Representation 

Construction 
Representation I 

I 
I 

Representation 
Maintenance 
Representation 

~7f ~ ~ 
Designer Code Generator Compilation 

System 

Figure I 

I 
I 

~ ~ 
Construction 

System 

\1 , 
Maintenance 

System 



The Use and Abuse of a Software Engineering System 1031 

INPUT ANALYSER 
PRODUCT 

INFOPl1ATIO}1 SYSTEH 

DESIGNER 

CODE GENERATION 
AND 

COHPILATION 

CONSTRUCTION 
AND 

MAINTENANCE 

RELEASE 

CADES PRODUCT DATABASE SYSTEM 

I D M S 

CADES 
PRODUCT DATABASE 

Figure 2 

thorization form with every type of input to the data base 
system. The designer coded the proposed insertion (tree, 
SDL, management information, etc.), completed the appro
priate authorization form and then collected the approval 
signatures of his team leader, chief designer and project 
manager before he was able to pass the update to a CADES 
service project for processing and return of an update ac
knowledgment. Although this system sounds horribly inflex
ible and bureaucratic it did achieve two things-the level of 
data integrity in the product data base after five years' use 
was very high, and it augmented and reinforced the project 
management mechanisms to a considerable degree. In fact, 
these controls placed on the development group for the sake 
of data integrity more than justify themselves purely in terms 
of rigorous software management techniques. 

Product data base applications 

Figure 2 gives an idea of the CADES system as a wh01e. 
The four applications shown, Input Analysis, Product In
formation System, Code Generation and Compilation, and 
Construction and Maintenance were the most significant in 
terms of impact, and certainly in terms of success. Less 
successful applications such as simulation and test program 

generation were attempted and then subsequently fell into 
disuse due to lack of support. 

The Input Analyzer was responsible for the syntax and 
semantic analysis of the design. It ensured that standards 
had been adhered to, that correct versions had been used, 
that the connectivity of the proposed design update was 
acceptable, etc. Less than full use was made of this checking 
stage. It would have been possible to code very rigorous 
and comprehensive checks in the Analyser, and for the 
project manager to choose what levels of validation he was 
prepared to accept in a trade-off against expediency. This 
would have been possible and would have led to some in
teresting results, However, time always seemed to preclude 
this level of 'luxury. ' 

The Product Information System presented an easy to use 
retrieval interface to the designers, in either interactive or 
bulk-data mode. The service project was the main users of 
this interface to regularly supply managers and designers 
with current product details and statistics. The interface also 
provided answers to 'what if ... ,' 'who uses .. .' and 'how 
did this happen' type of questions. 

The Code Generation and Compilation application had a 
great impact throughout the product development. The ap
plication started from design specification in SDL at the 
implementation level, formed an S3 source code module 
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from macros and primitives in the product data base, com
piled it, and stored the subsequent S3 object code in the 
data base for subsequent collection. Because the designer 
did not deal with any sort of declaration and because he was 
constrained to make maximum use of the primitive macros 
stored in the data base, code production rates were in
creased very considerably and error rates dramatically re
duced. Other advantages were that the code generator au
tomatically inserted error checking and tracking code, and 
it, of course, imposed its own standards on the entire prod
uct coding. 

The Construction and Maintenance application was driven 
by the master product version/release plan built into the data 
base. From this the system was able to construct from the 
object code modules, architectural details, etc., a set of load 
modules for export to a specific user site. The system kept 
track of user configurations, trouble reports, etc., and au
tomatically correlated the most recent updates and fixes 
with the version currently in use on site. 

THE ENVIRONMENT 

Before discussing the results of using this CADES system 
on the VME/B product development, it will be useful to 
look at the target product and project involved. 

VME/B is a facility-rich operating system with great em
phasis placed on data management and job control language 
facilities. It supports a virtual machine architecture and is 
protected by 15 levels of hardware-implemented protection. 
A current typical release of VME/B reprC?sents, in total, 
between two and three million lines of S3 source code. 
Detailed design of the product was started in 1971 and the 
first version was running on 2900 architecture in 1973. The 
first customer release was made in 1975. The software was 
initially developed on System 4 machines, and then con
verted to run on a 2900 hardware simulator (i.e. 2900 archi
tecture, old technology), before finally appearing on a true 
2900 machine in 1974. 

Until 1974 the project, about 200 people, was split over 
two sites which were two hundred miles apart. As the size 
of the project peaked the software engineering disciplines 
proved insufficient to handle this geographic split and the 
two teams were moved into one site. At anyone time the 
CADES development and service group, including compiler 
development, represented about 15 percent of th~ total pro
ject team. 

In the view of the above environment, and in view of the 
late 60s experiences by ICL in terms of operating systems 
development, the software engineering system was initially 
developed and controlled in order to promote the following 
VME/B attributes: 

1. Highly structured, that is high modularity and low con
nectivity. This requirement initially dominated the per
formance requires. 

2. Ease of maintenance and enhancement. 
3. High predkta hility and reliability. 

4. Strong management and technical control over a large 
project team. 

5. Subsequent performance improvements. 

The next section describes how these attributes were 
achieved in practice. 

THE PRAGMATICS 

(Pragmatic-'practical as opposed to idealistic' (Webster's 
New Collegiate Dictionary).) 

When we set out to formulate and create the CADES 
philosophy and system we attempted from the start to be as 
practical as possible. We certainly adopted a rather basic 
engineering, rather than scientific, approach. This approach 
is described in detail in Reference 5. For instance, the form 
of the design language was based more on the facilities we 
wanted to remove from the programming languages as far 
as the designer was concerned than on more esoteric con
siderations concerning concise, formai definiiions of the 
evolving design. It had to be usable, capable of quick, error
free production and easy to learn. Hence it ended up as 
being rather inelegant. But we could express emerging de
sign in it, and we could generate S3 from it. 

This approach to life pervaded the entire CADES sys
tem-methodology, language, data base, applications and 
service. The goal was to save the company as much product 
development money and lead times as possible. We set out 
early in 1970 not knowing a great deal about how we were 
going to do this and learned a great deal during the next 
seven years-both in a controlled learning way and also by 
bitter and expensive mistakes and experience. Some of the 
lessons are discussed below. 

Economics and productivity 

Over the seven-year period, the CADES system produced 
significant increases in programming productivity. At the 
end of the seven year period we were much better at pro
ducing code than at the beginning. Fred Brooks! quotes 
'typical' IBM code production rates classified by the com
plexity of the product being generated. These are: 

Very few interactions-l0,000 instructions per man-year. 
Some interactions-5,OOO instructions per man-year. 
Many interactions-I,500 instructions per man-year. 

He also quotes Corbato's (MIT's project MAC) overall 
production rate on MULTICS of 1200 lines of debugged PLI 
I per man-year. During the last three years of VME/B pro
duction when CADES represented a fully familiar, estab
lished and stable product, the production rate for the entire 
development team was around one module per man-month 
(four weeks). After generation, the average S3 source mod
ule was around 350 lines of code, derived from, perhaps, 
100 lines of SDL. This represents a debugged programming 
rate of arouml 4500 S3 lines per man-year. This compares 
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favourably with the MULTICS rate and with the IBM rate 
for complex software. Hence, in terms of individual pro
ductivity CADES would appear to be at least a qualified 
success. 

However, there is a more fundamental point here. In view 
of the ultimate size of the product and of the project, the 
experiences of the other manufacturers on products of sim
ilar size, and the problems we ourselves had during those 
seven years, it is very unlikely that the VME/B product 
could have existed at all without the CADES system, or an 
approach very akin to it. The power of CADES was that it 
forced software development activities, and in particular 
quantified design activities, into close proximity with rig
orous management mechanisms. They presented sociologi
cal problems which will be discussed later. It did, however, 
provide us with an extremely well controlled and regulated 
large"scate·-software·-development. 

Connectivity controls 

One of the initial intentions in the CADES philosophy 
was to minimize and then subsequently control the evolution 
of the connectivity of the system. Connectivity is a major. 
factor influencing the structure of a software product, the 
other being its modularity. Lehman4 has compared software 
structure to negative entropy in his Program Growth Dy
namics studies. The Law of Increasing Entropy states: "The 
entropy of a system (which is the cross-product of connec
tivity and the reciprocal of modularity) increases with time 
unless specific work is executed to maintain or reduce it." 

. This is another statement of the well known Structural 
Decay phenomenon in which the difficulty of system mod
ification increases with system release number. I beiieve 
that the secret of maintenance and enhancement, and hence 
economic product longevity, lies in mechanisms to monitor 
and control connectivity evolution. CADES had such mech
anisms built into its methodology and database applications. 

A measure of how successful we were can be gained by 
looking at a system attribute called Ripple Factor (RF) and 
calculating this for VME/B release sequences. The term 
Ripple Effect was defined by F.M. Haney2 and occurs most 
noticeably in systems with a large number of components. 
An enhancement or fix in one component causes, as a side 
effect, further necessary changes in other components, and 
possibly itself. The RF is the factor by which the work 
increases relative to that planned. Haney, via various sample 
systems, quoted RF of around 10 as being representative for 
a maturing software system of medium-to-high complexity. 
When a similar study was made of VME/B releases in 1975 
the derived RF was found to be 1.4. It represents a remark
able improvement if Haney's figures are taken as repre
sentative. Subsequent experience in VME/B maintenance 
and enhancement would tend to confirm the fact that it is 
indeed relatively economic to enhance and develop now that 
it has reached a steady-state maturity. It remains to be seen 
whether the management controls will remain sufficiently 
rigorous to present the Law of Increasing Entropy finally 

dominating. The current signs are, however, that connectiv
ity is still under control. 

Law of management futility 

Lehman4 states a law which he calls the Law of Statisti
cally Smooth Growth. I prefer to call it the Law of Man
agement Futility, and to state it thus: 

Growth trend measures of global system aUributes may appear 
stochastic locally in time and space, but statistically are cycli
cally self-regulating with well-defined longer-term trends. 

I believe that this law is a very fundamental one and 
explains why so many large-scale software developments go 
astray because of too much ITlisdir~_l;;ted, rather ~han too 
little, management attention. Lehman's law, and my expe
rience, state that management fire-fighting at any stage in 
the software development process is likely not to work. The 
fighting and extinguishing of a local bush fire will only raise 
the temperature of, and the pressure on, another area, prob
ably more critical and expensive, downstream in the devel
opment process. 

CADES recognized this phenomenon and prevented its 
abuse in two ways. Firstly, the product data-base was based 
on a comprehensive, complex schema which defined the 
entire development process, from statement of market re
quirements through to steady-state product maintenance, 
and defined in great detail the entire set of interrelationships 
existing throughout the life-cycle. As a result, little manage
ment action could be taken in isolation without its down
stream impacts being automatically defined in a suitable 
degree of detail. I believe this schema, and its evoiution in 
future systems, is fundamentally important and says very 
significant things about the very nature of the software de
velopment process. 

Secondly, the CADES system itself, and its control over 
VME/B production, had a noticeable inertia to violent 
changes in direction by management dictate. The greater 
was the proposed change, the more noticeable was the in
ertia of the system. This may not seem to be a positive 
attribute of the system. However, Lehman's law says oth
erwise. Management actions should be smooth, controlled 
and fully cogniscent of the downstream implications of cur
rent action. The CADES system ensured this was true to a 
marked degree. 

Sociological implications 

It was obvious early in our formulation of the CADES 
principles that a large team would ultimately be employed 
on the VME/B development program. This one fact had a 
strong influence on the entire CADES system-its meth
odology, language and software. A decision was made that 
all aspects of the system would impose a rigid discipline and 
control over the project team, even at the expense of flexi-
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bility and ergonomics. Indeed, one of the constraints on 
CADES development was that the entire system should 
"mechanize' as much as possible of the software develop
ment process, either with machinery (i.e. software tools) or 
by formal disciplines and procedures which attempted to 
take as much arbitrariness out of the process as possible. 
As a result, initially, some designers felt that their creativity 
was being stifled and their intellectual freedom curtailed. In 
some ways they were correct and, as a result, in the first 
two years of operation, a few designers left the project 
specifically because of the technology. Perhaps five percent 
of the workforce left over this two year period, ostensibly 
for this reason. However, at the. end of the two years, the 
management team was able to agree that, if we had had to 
shed five percent because of redundancy or whatever, there 
would have been a close correlation between the two sets 
of five-percents. As the system proved itself during 73-75, 
designers and managers joined the project ostensibly for the 
same reasons. 

Multiple l'ersiolls 

In the first version of CADES we were so intent on solving 
difficult, important problems that we completely underesti
mated the magnitude of the multiple versions problem for 
large systems development. As a result, in the new CADES 
version on 2900 we had to include comprehensive and pow
erful mechanisms for multiple version handling down to the 
local procedure and data item level. This consumed a sig
nificant amount of effort in the second CADES develop
ment. I believe such a mechanism is fundamental to the real 
usability of any production software engineering system. 
Not only should multiple, limitless versions of almost every
thing be allowed, but also automatic 'inheritance' mecha
nisms have to be implemented between these mUltiple ver
sions in order to accurately reflect the way software systems 
are developed in practice. 

On bridging data bases 

The final observation does not refer directly to software 
engineering or operating systems development at all, but 
rather to database administration. James Martin once told 
me that he had no knowledge of a successful migration of 
the entire contents of a large database from one database 
system to another. At the time I failed to understand the 
subtlety of the point. I now fully appreciate its meaning. In 
1976 we were faced with the conversion of the CADES data 
base contents from the initial data base system, an in-house 
transposed file system, to the Cullinane IDMS system. The 
initial data base size was modest, about 60 MByte. The 
strategy was very simple; extract the information from Data 
Base 1, process these files into user input language for Data 
Base 2, and then input it to Data Base 2. The activity was 
at least four times as expensive as planned. 

The reason was very simple. Data Base 1 had been in 
daily production use for four years. Although tight controls 

had always been placed on the integrity of data submitted, 
it was inevitable that' semi-corruptions' would creep in from 
time to time. As the Data Base 1 evolved and was supported 
by the service group, it 'learned' to handle these semi-cor
ruptions (such as missing information) and still give adequate 
service. However, Data Base 2 and the bridging software 
knew nothing of this acquired knowledge and as a conse
quence fared badly when faced with less than 100 percent 
perfect information. Fortunately, the corruptions were 
minor and Data Base 2 made a good, but expensive, recov
ery. 

CONCLUSIONS FOR THE FUTURE 

I think that I have to conclude that CADES was at least 
a qualified success in its control of and contribution to the 
development of VME/B. The very existence today of VMEI 
B would support this. Its use on this project did, I contend, 
save the company money running into millions of dollars. 
However, I doubt that the CADES system as it stands today 
will ever be even approximately repeated. 

Mainframe manufacturers have now recognized that add
ing more and more people to a project does not reduce its 
risk of failure. Indeed, it can have quite the reverse effect. 
Although software is still getting more complex, teams are 
getting smaller. The software engineering systems of the 
future will reflect this. Such systems will become increas
ingly important and central to the well-being of even modest 
projects. However, they will reflect a greater emphasis on 
ergonomics and less on rigorous management and adminis
trative control. This is the approach being taken at Bell 
Northern Research Laboratories in Ottawa in our develop
ment of a new-generation system called ISES, Integrated 
Software Engineering System. This system, the prototype 
of which has just entered trial use, combines many of the 
lessons learned from the CADES exercise with current, 
state-of-the-art thinking in software engineering. Some of 
the features embodied in the ISES system are: 

Requirements engineering 

In a commercial, industrial or government environment 
concerned with the development of high-quality, complex 
software destined for a highly-competitive marketplace, the 
rigorous definition and acceptance of product requirements 
is the Achilles' heel of the product development group. In 
this environment it is not enough to develop high-quality 
designs and efficient, timely implementations-they also 
have to be appropriate. Without a formal approach to prod
uct requirements definition and its total integration into the 
product-development and life-cycle process there is no 
quantified manner in which to assess this appropriateness 
until the customer receives, or refuses, his product. ISES 
includes an approach to definition of product requirements 
which is as quantified and integrated into the development 
process as are other. more accepted. aspects sllch as unit 
and integration testing. 
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Graphical design language 

I identified one of the . 'weaknesses" of CADES as being 
its gross approach to the control of Chinese-Army-type op
erations. The industry has moved on. Large teams become 
less . and less the norm. So must software engineering 
evolve. Textual design languages are weak for describing 
the back-of-envelopes design activity. They demand com
pleteness of expression. During the early stages of concep
tual design completeness tends to be very low on the list of 
priorities, rightfully so. In this context, we need to be able 
to support the expressionism associated with the highly
dynamic, creative thought processes and decision making of 
our most experienced, creative designers. To do this, ISES 
provides the designer with a powerful abstract symbolic 
interface supported by an intelligent color raster graphics 
system. With tbis interl-ace the designer can sk-etch out his 
design and architectural ideas in close to a random fashion 
whilst the system interprets these into more orthodox design 
representation, placing this into the global context of the 
current ISES data base. 

Software metrics 

The more one formalizes and captures the total software 
life-cycle process with systems such as ISES and CADES, 
the more able one is to develop the physics of large software 
systems, or Software Metrics. 7 A large proportion of the 
software engineering community is striving to understand 
the nature of large-scale, complex software systems. We 
need to be able to define the parameters of these systems, 
the relationships governing these parameters, and how best 
to optimise them. The power of a system such as ISES in 
this context is that it controls and contains the total flow of 
information associated with a product's life-cycle. Hence, 
there is a level of activity-monitoring architecture within 
ISES-the system monitors its own usage and is able to 
evaluate and refine in-built metric models as a result of this 
day-to-day usage. It is a powerful step towards combining 
the worlds of theoretical and practical software engineering. 

Hardware CAD compatibility 

In many product development situations the position of 
interfaces between the levels of hardware and software im
plementation is arbitrary to a large extent. The factors which 
dictate the divisions are tactical ones and include flexibility, 
maintainability and timing criteria. In hardware engineering 

this arbitrary nature is well illustrated in the division of a 
design between custom and silicon chips and printed circuit 
boards. Indeed, several manufacturers now adopt the tech
nique, with the aid of advanced computer-aided design sys
tems, of prototyping their products in PCB technology and 
then, once proven, reducing these PCB's each to a single 
custom chip. This flexibility should also extend to the outer 
software-implemented levels of a product. In order to aid 
efficiency in critical areas a manufacturer may want to re
implement a software function, or series of functions, in a 
chosen hardware technology. Today, this is a highly com
plex, risk-laden task. The transfer into hardware usually 
stops at the firmware level. ISES, on the other hand, is 
being implemented as part of a total-technology CAD sys
tem. Eventually this system will be driven exclusively by 
technology-independent requirement and problem statement 
languages. The ultimate system will provide complete flex
ibility to the designer in terms of how his design is imple
mented, and freedom to move between technologies for a 
single piece of design. Thus this CAD system, which con
tains ISES, will support the fundamental concept of the 
Implementation Technology Independence of the holon de
sign unit. 
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The integrated control/distributed power 
software development shop 

by JEAN-PAUL RENAULT 
CIT-Alcatel 
Velizy-Villacoublay, France 

INTRODUCTION 

In the constantly expanding spectrum of microprocessor 
applications, there is a large class of systems which used to 
be implemented with large or minicomputers, in which new 
software engineering problems have emerged. Typically, 
these systems involve quite a few hierarchical micropro
cessors-they perform fairly sophisticated control functions, 
and must comply with stringent reliability and availability 
demands. Though the distribution of functions significantly 
reduces the complexity of some of the technical problems 
usually encountered in such systems, the volume of software 
to be developed remains large, and system tests are still a 
problem. 

Furthermore, the development systems offered on the 
market by microprocessor manufacturers or independent 
vendors are very well adapted to the development of small 
applications which involve a unique microprocessor and a 
limited volume of code, but they are insufficient for the 
development of large systems. The system builder engaged 
in distributed system development will, therefore, have 
problems to solve, until the ideal support software and hard
ware are made available on the market. 

SOFTWARE DEVELOPMENT REQUIREMENTS 

General requirements 

What a programmer expects from a development system 
is now well understood for large and mini- computer soft
ware development, and since it has to do mainly with the 
way the user sees the system, or with the way he gains 
access to it, and not with the way it is built, there is no 
reason, no matter how different the target processor may 
be, that the same rules should not apply to microprocessor 
software development. 

The qualities assumed of a development system have to 
do with ease of use and access, the overriding consideration 
being, therefore, that the system should be terminal-ori
ented. This should give the user unrestricted access to all 
system facilities from his desk. In addition, it should limit 
the need to handle media; cards should be completely aban-
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doned, listings should not be used as the support of run 
resuTts,- but as referehceonty, when a program has reached 
a satisfactory level of completion, and magnetic media 
should be handled for archives, deliveries, etc .. , by the 
system itself, and not at all by the programmer. Even cas
settes or diskettes, though handy, can create a great amount 
of confusion. 

From his terminaL the user should have access to a certain 
number of programming aid facilities: 

• Program handling aids such as text editors, library man
agers. 

• Documentation support facilities, including document 
entry, document updating, document editing and print
ing, either directly on listings, or through phototype
setting for quality printing. 

• Programming aids-Compilers, link editors, loaders, 
debugging facilities, etc. 

Another extremely important feature of the development 
system is the command language it offers. It should be rich 
(i.e. it should offer many functions), and easy to use, which 
in fact means that it should be easy to invoke from a ter
minal, both directly through system commands and indi
rectly, through catalogued procedures built by the user to 
help him perform frequently repeated complex operations 
by means of simple commands. 

Specific microprocessor requirements 

Programming probiems are noi significantly different in 
distributed systems, even large ones, from those encoun
tered in others. Programming proper is not a problem-high
level languages, when available, are perfectly suited for dis
tributed system programming, and the fact that some spe
cific microprocessor features are not accessible through 
them will never justify going back to assembly languages, 
except, maybe, in a few sections where performance is crit
ical. This is true, in fact, of any system and of any high-level 
programming language. On the other hand, in some areas, 
programming will be even simpler. The kernels which op
erate the microprocessors are generally message-oriented, 
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and support only fairly static processes and connections 
between processes, which makes them easy to understand 
and develop. Even reconfiguration mechanisms, generally 
quite sophisticated in other systems, tend to be rather simple 
in a distributed environment, at least from the programming 
point of view. 

The problems associated with unit testing are of the same 
order of magnitude as those traditionally found in systems
depending on the detailed internal architecture, it will be 
more or less practical and economical to create an environ
ment which lends itself to unit tests. 

System testing is, however, a completely different prob
lem in distributed systems-simulation works mainly for 
unit testing. The complexity of interactions, and the number 
and variety of components at work, generally make simu
lators uneconomical in such environments. The only eco
nomical means is to test software on prototypes, equipped 
with the appropriate hardware and software probes con
nected on the microprocessor, the memory and maybe some 
other critical points. Besides, these tests should be run in 
interactive mode under a system offering the right kind of 
debugging facilities, such as traces, breakpoints, snapshots, 
at the symbolic level. 

CURRENT SOFTWARE DEVELOPMENT SYSTEMS 

In a system development house, the approach first se
lected for the development of software for microprocessor 
systems is to use the existing computer facility. Typically, 
such a facility is a medium-to-Iarge computer system oper
ated in time-sharing (see Figure Ja). For the benefit of mi
croprocessor software development. existing tools for sys
tem and program design, program management and 
documentation management may be used without problems. 
However, two questions do have to be answered: What 
"programming system" should be used? How should testing 
be done? 

In this environment, as far as program translation is con
cerned, the only possibility is to develop a compiler or adapt 
an existing one to generate the target code, and to develop 
a linkage editor and other loader utilities as required by the 
microprocessor hardware. Further, a microprocessor test 
simulator has to be developed for unit tests. 

When it comes to system testing, programs in load format 
have to be output on an external medium, which can be ' 
used as an input to the prototype system~ but, for'efficiency, 
debugging facilities have been implemented on the prototype 
system to fulfill the requirements stated previously. Though' 
such a development system can work, it has many disad
vantages: 

1. Development of a cross compiler and of the other pro
gramming facilities may be a costly proposition for. 
after its development, it will have to be maintained and 
enhanced as required, adapted when new micropro
cessors have to be used, etc. Even if such a line of 
translators can be found on the market, adaptation to 
new microprocessors will generally introduce delays. 

2. Simulators have to be developed. 
3. Transfer of programs on an external medium is gen

erally not satisfactory because: 
• There is not always a compatible medium on the 

development system and test system. 
• When an error is found, binary patches will be used 

on the prototype instead of source corrections, be
cause of the time otherwise involved in updating, 
compiling, linking and transferring a program. Such 
a practice is potentially harmful and costly. 

4. A debugging facility on the prototype system has to be 
developed. This may be expensive, if it is to perform 
symbolic debugging in an interactive mode. 

S. When going to other microprocessor compilers, linkage 
editors, simulators and debugging aids will have to be 
extensively adapted. 

The main advantages are the use of: 

I. Existing systems. 
2. Existing language-independent software tools, such as 

design aids, program librarians and documentation 
aids. , 

3. If a standard implementation language exists in the 
user organization, it can still be used on microproces
sors at a certain cost, even though it might not give 
enough visibility to some of the processor functions. 

Some of the problems just mentioned, especially in 3, can 
be alleviated by connecting all consoles to both the devel
opment and the test systems. This might be done as shown 
in Figure J b, using a concentrator to which both the devel
opment system and one or more test systems would be 
connected via transmission lines. The transfer of programs 
can then be done automatically, and the user may have 
access from his console to all resources, whether develop
ment or test. 

In a development facility equipped with a programmer's 
workbench,3 the situation is not significantly better. A cross 
compiler, a linkage editor and a simulator would have to be 
developed for a "Programming Machine" (see Figure Ic), 
leaving the program and documentation-handling facilities 
on the programmer's workbench, which is essentially a file 
machine, and does not look like the right system in which 
to place compilers and simulators unless its configuration is 
expanded. But then it becomes a conventional system, like 
those described earlier. The programmer's workbench does 
not help to solve the system test problems any better either, 
since the required aebugging facilities again have to be de
veloped on the prototype system. 

Another variant of this type of software development sys
tem is the Interactive Session Monitor,2 in which micropro
cessors are connected directly to the existing development 
system (Figure I d). Programming tools are run under time
sharing on the development system, and tests can be done 
either in simulation mode, or by executing the program on 
the microprocessor. This system again does nul solve the 
problems discussed, since cross-compilers and simulators 
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have to be developed, and execution on the microprocessor 
offers only limited possibilities. 

MICROPROCESSOR DEVELOPMENT SYSTEMS 

Software development systems offered by microprocessor 
or independent vendors can be used instead of an existing 
facility. For example, the software development facilities 
for the 8080 line of microprocessors found on the INTEL
LEC system are: 

• A "Programming system", including 
-A text editor, to enter, update and inspect text. 
-Compilers, for high-level languages. 
-An assembler. 
-Link/loader facilities. 

• A simple file system, to store programs in various for
mats. 

• A debugging system, for unit tests on the system. 
• An in-circuit emulator, for testing of a microprocessor 

program within the prototype environment. 

The peripheral configuration consists of a single keyboard 
console, dual floppy disk -drives, and optional printers and 
other peripherals. 

The vendors' systems support their microprocessors only, 
but some independent suppliers offer systems which support 
several microprocessors. Indeed, microprocessor software 
development systems offer a very adequate range of func
tions for program development. However, the tools or util
ities found on large or minicomputers are entirely missing; 
there are generally no program library managers (the file 
systems offered are insufficient in this respect), no docu
mentation aids, no design aids, no project control utilities. 
Performances are limited-compilations are slow, printing 
is slow and secondary storage on floppy disks is limited in 
throughput and capacity. 

The advantages, however, are: 

I. The programmer has easy access to the system (a ratio 
of one system to two programmers is generally used). 

2. These systems are relatively cheap (in the vicinity of 
$20,000). 

3. In-circuit emulation, which allows one or more pro
grammers to debug on the prototype system, is gen
erally very good. 

In large projects involving more than a few programmers, 
where the volume of code to be produced exceeds 50,000 to 
100,000 lines, the investment in development systems is no 
longer negligible, diskettes on which programs are stored 
proliferate and large compilations for system integration hit 
the limits of the development system, in terms of speed and 
secondary storage capacity. 4 

INTEGRATED CONTROL, DISTRIBUTED POWER 

The relatively low cost of microprocessor development 
systems, the programming facilities they offer, the easy ac-

cess to the system resources they provide and their in-circuit 
emulation functions make them hard not to use. Their short
comings can be overcome by using a two-level system (Fig
ure 2): 

1. A centralized level, or "Central System," performing 
all functions of concern to the project as a whole, and 
offering services to the programmer where the micro
processor development system is insufficient. 

2. A decentralized level, consisting of microprocessor de
velopment systems connected to the central system by 
transmission lines. 

Microprocessor development systems 

The following functions are performed at this level: 

I. Program preparation-Program entry, update and in
spection, and program translations, compilation/as
sembly, link editing. 

2. Unit testing on the development system. 
3. System testing on the prototype, using the in-circuit 

emulation facility. 

Large volumes of input, such as the initial entry of large 
programs in source format, are performed on the central 
system, as is program library management. Typically, the 
user has his private work library on as limited a number of 
diskettes as possible, and access in read-only mode to the 
central library. To prepare his work he may request, from 
his console, transfer over the transmission line of any num
ber of programs/files, as needed for his own work. 

Individual programmer's programs are included in the 
central reference library, according to rules depending on 
the project, the system integration philosophy, and other 
considerations, but at times that guarantee enough visibility 
of the state of the work of each individual, throughout the 
project. A decision to include a new program in the reference 
library is, however, always an explicit project management 
decision. 

Central system 

Each microprocessor development system is seen by the 
central system as a time-sharing terminal, thus giving the 
user access to all central system resources. 

The central system can be regarded as afile machine and 
spooling machine. 

As a file machine, it manages program and documentation 
libraries; as a spooling machine, it performs all volume inpuU 
output-card input, listing and documentation editing. In 
fact, no card reader or printer of any sort need be connected 
on any microprocessor development system-all input/out
put can go through the central system. In addition, simple 
keyboard terminals can be connected for functions such as 
program or documentation cntry,'updatc,'inspcction,whidl 
can be done at the central level or elsewhere. Any other 
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utilities needed, e.g. a source code formatter, a macrogen
erator, a test data generator, can be implemented singly on 
the central system, rather than on the several development 
systems. 

The central system plays very much the same part as the 
programmer"s workbench, except that the latter is a "front
end"" processor, whereas here it is the microprocessor de
velopment systems that are front-end processors. 

Advantages and disadvantages 

What we have described is not ideal, but it does combine 
the advantages of centralized systems with those of micro
processor software development systems. 

Its residual shortcomings are: 

t. The file transfer rate over transmission lines is limited. 
Most time-sharing terminal throughput is limited to 
9600 bauds, which means that the practical maximum 
transfer rate is around 1000 characters/so This limita
tion is quite acceptable for a small program, but if a 
program of 10,000 lines of source code has to be trans
mitted over a 4800-baud line, transfer will take between 
20 and 30 minutes. In practice, this is not really a 
problem, because: 
a. Modules are stored in source and object format. 
b. Modules are kept fairly small. 
c. Source is transferred only when it is to be modified. 

2. The programming languages and debugging systems 
are those offered by the vendor with the microproces
sor development systems. This precludes the standard
ization of a single implementation language on all mi- . 
croprocessors within an organization-at least at the 
present time-and makes the client organization en
tirely dependent on any decision the vendor might 
make to enhance, abandon or maintain the correspond
ing products. Though this is not a satisfactory situa
tion, it is not unusual either. 

In compensation, however, it may be noted that the sys
tem described offers the advantage of being able to use 
tools, methods and techniques normally used in software 
development on computers other than microprocessors, thus 
yielding the kind of technical proficiency and managerial 
control that the state of the art in computer software engi
neering permits. Compared to other types of development 
systems, the flexibility and costs of this system are attractive 
features. 

It is generally easy to connect a development system to 
a system running under time-sharing, so that, if various 
microprocessors are being used, it will be possible to con
nect the various corresponding development systems offered 
by the vendors, or some independent vendor. Further, for 
operations of general interest not requiring compilation, like 
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program or documentation entry, such as gathering infor
mation concerning library status, simple time-sharing ter
minals may be used. With a single central system it will 
therefore be possible to develop, manage and test programs 
for microprocessors of various origins. 

This set-up, in fact, offers other interesting possibilities. 
For instance, concerning programming, although the system 
is clearly geared to perform compilations on development 
systems, it does not preclude using cross compilers. As 
reported in Reference I, software for microprocessor A 
might be developed using a programming language available 
on the development system M (B), designed to program 
microprocessor B. Program entry, compilation and unit test
ing are carried out on Ail (B)~ then a cross compiler on the 
central system is used to generate code for microprocessor 
A. The development system M (A), or an independent sys
tem, will be used to perform system tests using A on a 
prototype. Though this process seems fairly involved, it can 
be made fairly easy in practice, since M (B) and M (A) can 
both be connected to the central system. 

Costs 

The load generated at the central system in such an ap
plication is fairly low, in terms of CPU usage, since most 
operations are file or terminal operations. A medium-to-Iarge 
minicomputer should therefore be perfectly suitable. More
over, actual connect time should be fairly low, since it is 
essentially determined by the frequency and durations of 
transfers or other operations requested from the central sys
tem. 

It is assumed here that a minicomputer in the $300,000 
range (hardware only) could provide simultaneous support 
to 25 to 30 users, 3 and therefore that up to 50 microprocessor 
software development systems could be supported. The ac
tual cost (purchase price) of the total system, per develop
ment station, would therefore be about $6,000, plus the price 
of the development system itself, which is about $20,000. If 
it is assumed that one development system can fulfill the 
needs of two programmers, that the central system has a 
lifetime of five years, that a development system will be 
obsolete after three years and that the cost of operating the 
central system is the same as the cost of hardware, the cost 
per programmer, per year should be in the vicinity of $5,000. 

The service thus provided should be of ,very good quality, 
combining those of a minicomputer-based time-sharing sys
tem with those of microcomputer development systems. The 
cost of computer time as assessed above should be com
pared to figures used for many system developments. Typ
ically, on a system such as a 370/158 where an average of 
two hours of CPU time per programmer, per month is con
sumed, the cost per year and per programmer is around 
$10,000. An overall cost reduction of around 50 percent can 
therefore be expected with respect to conventional systems. 

With respect to stand-alone microcomputer development 
systems, the concept presented increases the hardware cost 
by around $6,000 per development system, plus operating 
costs. But it is pointed out that: 

I. Printers on the development systems are no longer 
necessary, since printing is done at the central site 
(typical cost of a printer is $2,000-4,000). 

2. Extra diskettes are no longer necessary, since a large 
disk capacity is accessible on the central system (an 
add-on, double density dual diskette costs around 
$5,000). 

3. Extra services such as library maintenance, documen
tation aids, etc., and fast I/O devices are accessible on 
the central system. 

CONCLUSION 

This approach is being progressively implemented at CIT
Alcatel for the development of distributed microprocessor
based switching systems. InitiallY, INTELLEC systems 
were connected to CII-IRIS 80 as Remote Batch stations 
giving access to all development tools available for other 
developments, then, to improve access conditions and re
sponse times, they were connected to a CS 40 (a computer 
developed by CIT-Alcatel for switching systems), as time
sharing consoles. Replacement of the CS 40 by a minicom
puter, to further reduce the costs of the system, is now 
being considered. 

The system described offers distinct advantages with re
spect to developments on large systems, or on stand-alone 
microcomputer development systems, although in its pres
ent form the overall services offered are limited by the 
performance of the individual development stations, and by 
the transfer rates. 

Nonetheless, the services offered and the flexibility gained 
make the system the real solution to the software develop
ment problem for the builders of large systems who want to 
use commercially available development products. 
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INTRODU-CTION 

One of the most serious problems for vendors of software 
is pressure from users to enhance and extend their prod
ucts.! One important type of enhancement is the change in 
language form aimed at improving user productivity by mak
ing the system easier to learn and use. Ideas for this sort of 
enhancement appear regularly in such publications as Sig
plan Notices. As evidenced by the correspondence in that 
publication, there are many opinions on the quality of these 
proposals. However, little is known about the actual fate of 
enhancements that have been added to existing software 
systems and released to users. When a new feature is re
leased with the best of intentions and the usual fanfare of 
documentation and instruction, its acceptance by program
mers may have little to do with the sincerity of the request 
or the quality of the feature. 

This paper reports on one experimental study of the fate 
of enhancements to existing software systems. Features 
whose desirability was established by a survey of the user 
community were added to an established and heavily used 
text and program editor. The enhanced editor was then 
released to replace the old editor for a part of that commu
nity, and the reaction was monitored. The remainder of this 
paper details the experimental method, gives the results, 
and draws conclusions on the fate of software enhance
ments. 

EXPERIMENTAL METHOD 

The experiment used to test the fate of user-requested 
enhancements to software systems proceeded through sev
eral distinct phases. In this section, I explain what was 
involved, beginning with the choice of software system and 
user community. 

The system used in the experiment was the text editor of 
the UNIX** time-sharing system. 2

,3 The editor is the main 
too] for program and document developments on the system. 
It falls within the QED family of editors tracing back to 
Deutsch and Lampson's editor. 4 It is line-oriented and 

* Present address: Sperry Univac. Blue Bell, PA. 
** UNIX is a trademark of Bell Telephone Laboratories. Inc. 
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biased towards the execution of single commands in isola
tion and identification by a pattern of strings to be--mOOifieO-:--

The programming organization involved in the experiment 
was the Switching Operations Systems Laboratory of Bell 
Laboratories in Columbus, Ohio. The laboratory produces 
minicomputer-based real-time systems for the telephone net
work. The laboratory employs more than 150 people. Over 
100 have some involvement with programming. Within the 
laboratory, large amounts of program and document devel
opment are regularly done with the text editor. 

The experiment began with a set of proposed enhance
ments consisting of Features 1 through 5 listed in Table I. 
Included in the laboratory is a group specifically responsible 
for operating system support including dealing with user 
problems with the editor. The majority of ideas for enhance
ments were drawn from their experience. Each feature was 
aimed at making the system easier or safer to use by sup
plying faciiities either significantly more complex to access 
or not available in the existing editor. Feature 1 allows the 
reduction of a sequence of two or more commands to a 
single step. Features 2, 3, and 4 allow savings in the size of 
commands. With Feature 2, surrounding characters need 
not be included in order to identify a string meant for sub
stitution. With Feature 3, a repeated string of characters can 
be identified by a shorter string. With Feature 4, repeated 
replacement strings can be identified by even simpler means. 
Feature 5 is meant to protect against loss of information by 
premature exit from the editor. Hence, each feature made 
a positive contribution to the use of the editor. Features 3, 
4, and 5 were suggested by the members of the support 
group, and Features 1 and 2 were developed with their 
assistance. All the additions were upward-compatible from 
the current editor, with the exception that the special char
acter used in Feature 4 would take on a different meaning 
in a single context. 

The entire laboratory then evaluated the proposals 
through a formal survey which detailed the enhancements. 
Respondents were asked to identify their usage of the text 
editor, to rate the proposed features in terms of helpfulness 
in their own work, to estimate their likely rates of usage, 
and to rank the features in terms of desire in seeing them 
implemented. 

Based on the survey, Features 2, 3, and 4 were chosen 
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TABLE I.-List and Description of Enhancements Used in Study 

No. Description 

A command to interchange two groups of lines. 
The ability to identify for substitution specific instances of 

matches of patterns within a line. Previously, either the first or 
all matches had to be substituted for. Now, individual matches 
or sets of matches could be specified. 

The ability to define simple macros within an editor session. 
4 The ability to use a special character to stand for the second and 

subsequent references to a string when inserted by consecutive 
substitute commands. 

A special warning when exiting from the editor without writing 
out the work space to a permanent file. 

6 The ability to append the work space to the end of an existing 
file. 

for implementation. The special character in Feature 4 was 
changed to a less-used symbol. In addition, another feature 
suggested by a member of the support group, No.6 in Table 
I, was chosen for implementation. This feature allowed a 
sequence of editor and UNIX control language commands 
to be replaced by one editor command. The four features 
were implemented without noticeably changing the editor's 
performance characteristics. 

The testing phase saw the extended editor replace the 
original on two selected computers within the laboratory. 
Two common methods of release were used. The editor was 
first released on the computer used for systems development 
by a group of nearly 50 people, herein called Group I. Each 
person received extensive documentation on the new fea
tures, including examples of the features' usefulness. Group 
1 was also alerted to the change in the editor by a message 
that appeared on its terminals whenever the UNIX system 
was entered. At a later date, Group 1 received replacement 
pages for the programming manuals describing the extended 
editor. Consulting was made available on the features during 
the first week after release. Announcement of the existence 
of the features also appeared several weeks later in an in
ternal UNIX users' newsletter. 

The extended editor was also installed on the development 
computer for another project involving a dozen people, 
herein called Group 2. The small size of this group allowed 
special attention to be given to the programmers, including 
a half-hour introductory lecture given to the entire group 
upon release, and individual follow-up sessions two weeks 
later. The same introductory memo and message used with 
Group 1 was used on the day of release to Group 2. The 
new manual pages were also distributed on that day. At that 
time, the newsletter had already been issued. 

The evaluation of the features involved both automatic 
monitoring of editor usage and further surveys. All uses of 
the existing editor were monitored for a time prior to release 
of the extended editor to obtain a basis for comparison. 
After release, usage of the new features was monitored for 
an extended period of time. The monitoring dates are given 
in Table II. Group 1 had an initial monitoring period lasting 
over three months. Between 317 and 1151 editor sessions 
were recorded, with an average of 651 sessions per .time 

period. Total commands monitored numbered over 375,000. 
With Group 2, monitoring was done over the three weeks 
following release. Between 132 and 481 sessions were re
corded for each full day; the average was 277 sessions. Total 
commands numbered over 53,000. All information was ob
tained while both groups were carrying out normal duties. 

Approximately eight months after release of the revised 
text editor, a follow-up survey was distributed to the users 
to obtain their impressions of the helpfulness of the new 
features, especially with respect to other features in the 
editor. The users were also asked to estimate their familiar
ity with different features in the editor. A final monitoring 
period covering 1200 sessions and over 110,000 commands 
was employed for Group 1 (see Table II). At that time, 
Feature 3 had been removed from the editor (due to the 
preliminary interpretation of the results given in the follow
ing section). 

To summarize the method employed, the user community 
was first consulted on the choice of enhancements. The 
usage of the editor was then monitored both before and after 
the release of the new features. Further polling was done 
after the user community had the opportunity to use the 
features. Some further monitoring completed the survey. 
The results of the experiment are given in the following 
section. 

RESULTS 

The pre-implementation survey served as a check on the 
users' desire for the proposed enhancements. The monitor
ing and the follow-up survey established the fate of the 
enhancements. This section presents the quantitative results 
of these efforts. 

The choice of enhancements was clear after the pre-im
plementation survey. Fifty-six users returned completed 
surveys; 27 were from Group 1 and 8 from Group 2. Ninety 
percent of the respondents indicated regular use of the edi
tor. A high level of interest in the survey was reflected in 
the more than two dozen extra comments and suggestions 

TABLE n.-Dates and Working-Days with Associated Time Period Labels 
on which Editor Usage was Monitored for Each Experimental Group 

Group I Group 2 

Working Working 
Time Period Dates Days Dates Days 

Base 8/31-9/6/77 4 10/17-10/25/77 6.5 
I 9/7-9/8/17 2 10/25/77 0.5 
2 9/9-9/12/77 2 10/26/77 

9/13-9/14/77 2 10/27/77 
4 9/15-9/18/77 2 10/28- 10/30/77 
5 9/19-9/20/77 2 10/31/77 
6 9/21-9/22/77 2 11/1/77 
7 9/23-9/26/77 2 11I2/77 
8 10/12, 10/18/77 2 11/7/77 
9 11/3-11/4/77 2 1119/77 

10 11116/77 I 11110177 
II 12/19-12120/77 2 

Final 6/2-6/10/78 6 



TABLE III.-A verage Estimates of Helpfulness of Each Proposed Feature 
Obtained from Preimplementation Survey. Indexed by Groups 

Features 

Group 2 4 

Entire Lab 3.04 2.64 2.59 2.45 3.15 
Group 1 3.00 2.89 2.65 2.44 3.30 
Group 2 2.62 2.75 2.62 2.43 3.75 

NOTE-Scale for point values show: I=Very Helpful: 2=Helpful: 
3=Somewhat Helpful: 4=No Help: 5=An Impairment. 

concerning the text editor that were returned with the sur
vey. Table III shows a near-uniform evaluation of Features 
2, 3 and 4 as the most helpful. Table IV shows the three 
features as being the most preferred for implementation. 

R-es-pen-Ge-llts predicted a rugh usage of these features. 
They had the choice of predicting use as follows: 

1. Every Session 
2. Every Few Sessions 
3. Occasional Sessions 
4. Rare Sessions 
5. Never 

In Group 1, for example, 54 percent of the 26 respondents 
predicted use in the highest 3 categories for Feature 2. Sev
enty-six percent of 25 respondents chose these same cate
gories for Feature 3. Eighty-one percent of 27 respondents 
did the same for Feature 4. We can conclude that the users 
see these features as desirable. With the monitoring results, 
it is easy to determine the accuracy of these predictions. 

The surveys were completed by the end of July 1977. On 
September 7, the expanded text editor and documentation 
were released to Group 1. The actual usage of the features 
versus time periods is shown in Figure 1. The scale of the 
horizontal axis is proportionate for the first three work
weeks. The last four monitoring periods do not maintain the 
scale. However, results for these periods are approximately 
the same. The editor was released to Group 2 on October 
25, 1977 at the same time the introductory lectures were 
given. The use of the features by Group 2 is shown in Figure 
2. The horizontal axis in this figure is linear. The follow-up 
visit to Group 2 was on Day 11. 

The two figures are very similar. Initially high usage rates 
decreased quickly. Figure 1 differs by showing a large 
"spike" for Feature 6. Figure 2 shows apparent recovery 

TABLE IV.-Average Rank of Each Proposed Feature on a Preference
For-Implementation Ordering Obtained from Pre-implementation Survey, 

Indexed by Group 

Features 

Group 2 4 

Entire Lab 3.30 2.75 2.50 2.15 3.45 
Group 1 3.35 2.92 2.36 2.30 3.80 
Group 2 3.14 2.29 1.33 3.00 4.29 

NOTE-A rank of 1 indicates highest preference; 5 indicates lowest. 
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TABLE V.-Comparison of Uses Per Session and Usage Rate Categories 
of New Features and Eight Selected Old Features. a-h, with Values 
Established by Base and Test Period Monitoring. Indexed by Group 

Group 1 

Uses Per Usage Rate 
Features Session Category 

a 2.807 I 
g .841 1-2 
d .178 2-3 
e .115 3 
L .082 3 II 

c .075 
2 .030 4 
4 .026 4 
6 .025 4 
b .019 4 
f .008 5 

.005 

Group 2 

Uses Per Usage Rate 
Features Session Category 

a 
g 
d 
e 
h 
b 
2 
c 
6 
4 
f 

1.036 
.458 
.343 
.111 
.060 
.017 
.009 
.006 
.004 
.001 
.000 
.000 

3 
3-4 
4 

4-5 

5 

NOTE-Values for older features established during base period. except for 
feature h in Group I which was from test period. Values for new features 
established by use in Time Periods 6 to i I for Group I, and Time Periods 6 
to 10 for Group 2. Features a-h represent a typical assortment of commands. 
e.g., the substitute and change commands, and features of commands. e.g .. 
end-of-line marker and changing all matched strings. 

from low values for Features 2 and 6 late in the period 
monitored, but a decrease on the last day. Also, Figure 1 
has generally higher usage rates throughout than Figure 2. 
The data, therefore, indicates that the special attention given 
to Group 2 did not improve acceptance. 

To get a better insight into the acceptance of the enhance
ments, their usage rates can be compared to that of older 
features obtained during the base period. This is done in 
Table V through a comparison with eight commands and 
features whose usage are representative of the distribution 
of rates for all features. In order to obtain fair values for the 
new features, usage rates are taken from the last half of the 
time periods monitored-Time Periods 6 through 1 1 for 
Group 1, and Time Periods 5 through 10 for Group 2. To aid 
in comparison with the categories on the pre-implementation 
survey, a "usage rate category" obtained from a scale 
shown in Table VI is used to characterize the information. 
Two numbers show rates between categories. In either eval
uation, the usage of the new features is towards the low end 
of the usage rates. 

Individualized rates were also low. Counting individual 
logon identifiers as distinguishing individual users, there 
were 45 users in Group 1 throughout the experiment. During 
Time Periods 6 to II, 16 percent used Features 2 and 4 more 
frequently than at the "Rare" level. Eighteen percent used 

TABLE VJ.-A Numerical Interpretation of Usage Rate Categories Used 
on Preimplementation Survey 

No. U sage Rate Categories Sessions Per Use Uses Per Session 

1. Every Session 1 or less I or more 
2. Every Few Sessions 2-4 .5-.25 
3. Occasional 8-16 .125-.062 
4. Rare 32-64 .031-.016 
5. Never 128 or more .008 or less 
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Sessions 
per 
Use 

3-

4-

8-

16-

32 -
64_ 

128-

Uses 
per 

Session 
.350-

.280-

.210-

.140-

.070-

Feature No. 1 ------
Feature No. 3 ------
Fea1ure No. 4 -----
Fea1ure No. 6 

2 3 5 6 7 8 9 10 11 

Time Periods 
Figure I-Usage of new features with respect to time by Group I. 

Feature 6 at that level. No one used Feature 3 at that level. 
This places the usage of Features 2, 3, and 4 well below 
those predicted on the pre-implementation survey. 

Table VII gives another view of individual usage rates 
through the number of users accounting for percentage of 
use. It shows how many users in Group 1 accounted for 50 
percent, 75 percent, 90 percent and 100 percent of all uses 
of the four new features during Time Periods 6 to 11. Since 
the total number of users on the system at the time was 45, 
no feature was used by a majority of users. Feature 3 is 
obviously lightly used (it was deleted shortly after this data 
was obtained). Feature 6 has the fewest users accounting 
for the most usage. Over the entire test period, two users 
accounted for 88 percent of its use. The spike seen in Figure 
I is a side effect of this since the heavy users concentrated 
their use of the feature on several isolated days. All three 
of the features that were used show a sharp decline in num
bers of users as lower percentages of use are considered. 
Hence, a few users account for most of the usage. 

For comparison, individual contribution to the use of four 
established features and the sum of all commands during the 
Base Period were analyzed for Group 1. This produced the 
same type of distribution seen in Table VII. Among other 
facts, this indicates that there are a few very heavy users of 
the text editor. Interestingly, these users do not substantial1y 

contribute to use of the enhancements. One is among the 75 
percent usage group of Feature 2, and another is among the 
75 percent usage group of Feature 6. None fit in any 50 
percent group. 

Analysis of the individuals who used the new features 
showed that there is little overlap among users of the new 
features. Only two users account for usage in more than one 
feature at the 50 percent or 75 percent levels. In terms of 
usage per session, there are 12 different users in Group 1 at 
the Occasional level or higher for at least one feature. The 
same type of variation is seen among users of the four older 
features analyzed. Hence, both the style of use of the editor 
and the changes in style resulting from the enhancements 
differ widely. 

TABLE VII.-Number of Users Accounting for Percentage 
of Use of New Features During Time Periods 6 to II for 

Group I 

Features 

Percentage 2 4 6 

100 13 10 II 
90 6 6 6 
75 4 4 
50 2 3 



Sessions 
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4-
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16 -

32 -
64 -

128-
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Session 
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.210 -

.140-

.070-

Days 
Time Periods 

Feature No. 2 
Feature No. 3 
Feature No. 4 
Feature No. 6 

2 3 4 
2 3 4 
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------
- ------
------

5 6 7 8 9 10 11 12 13 
5 6 7 8 9 10 

Time 
Figure 2-Vsage of new features with respect to time by Group 2. 

The follow-up survey was distributed a few months after 
obtaining these values. At that time, I was inclined to think 
that the features were rejected. However, the response given 
in Table VIII indicated a different conclusion. Users who 
were in the two experimental groups at the time of the first 
survey clearly rated Features 2 and 4 more helpful than they 
did on the pre-implementation survey. Ignoring the votes of 
those who stated they were unfamiliar with the features, the 
popularity of these two enhancements is even higher. Fur
ther, users found Features 2 and 4 as helpful as the majority 
of the older features considered. Users therefore had ac
cepted at least two of the four features. 

In order to see if the acceptance of the features translates 
into new levels of usage, the results of the Final Period of 
monitoring of Group 1 can be analyzed. In some ways, rates 
are changed. Usage rates of Features 2 and 4 are .057 uses 
per session and .089 uses per session, respectively. This is 
nearly double and more than triple the earlier rates. Feature 
2 is now near the top of the Occasional-To-Rare category, 

while Feature 4 is well into the Occasional category. At the 
same time, Feature 6 is now in the Never category with a 
usage rate of .005 uses per session. As opposed to increases 
in usage rates, the number of users of the features has not 
substantially increased. There were 52 on the text editor 
during the period. Features 2, 4, and 6 were used by 14, 11, 
and 8 users, respectively. Table IX shows that the identity 
of the users of Features 2 and 4 during the earlier and later 
periods is often the same. The level of use is also similar. 
In particular, few users drop to the Never category. This 
shows that users have some loyalty to tools they have begun 
to use, but it also shows that the increases in overall usage 
rates of Features 2 and 4 are not matched by other increases. 

DISCUSSION AND CONCLUSION 

To summarize the preceding section, it can be seen that 
the study produced several distinct results. Users responded 
positively to a set of features presented to them through a 
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TABLE VIII.-Average Evaluation of Helpfulness of New Features and 
Selected Old Features, with Number Responding as Not-At-AII Familiar 

with Each Feature, and Average Evaluation of Only Those Familiar, 
Indexed by Groups and Obtained from Follow-Up Survey 

Feature 

a 
e 
h 
d 
4 
g 
c 
2 

6 
3 
b 

Feature 

a 
h 
c 
g 
2 
d 

4 
e 
6 
3 
b 

Average 
Helpfulness 

1.00 
1.24 
1.33 
1.55 
1.95 
2.00 
2.00 
2.14 
2.35 
2.43 
3.00 
3.38 

Average 
Helpfulness 

1.00 
1.00 
1.43 
1.71 
1.71 
1.71 
2.00 
2.00 
2.82 
2.86 
3.20 
3.33 

Group 1 
(22 respondents) 

Number of Respondents 
Not-At-AII Familiar 

0 
0 
0 
0 
2 
2 

5 
5 
2 
5 
5 

Group 2 
(7 respondents) 

Number 'of Respondents 
Not-At-AII Familiar 

0 
0 
0 
1 
1 
0 
1 
0 
0 
1 
3 
4 

A verage Helpfulness of 
Those Familiar 

1.00 
1.24 
1.33 
1.55 
1.79 
1.79 
1.89 
1.75 
1.80 
2.26 
2.67 
3.10 

A verage Helpfulness of 
Those Familiar 

1.00 
1.00 
1.43 
1.50 
1.50 
1.71 
1.83 
2.00 
2.82 
2.66 
2.67 
2.50 

NOTE-All respondents were members of laboratory at the time of the Pre
implementation Survey. Scale for point values show: 1 =Very Helpful: 
2=Helpful; 3=Somewhat Helpful; 4=No Help; 5=An Impairment. 

survey. A high usage rate immediately after release quickly 
decreases to well below predicted levels and below the levels 
of use of most other features. The group receiving special 
instruction shows no higher usage rates. The effect of the 
enhancements on individual usage styles varies considerably 
and the style of the heaviest users of the system are less 
affected. A degree of loyalty to tools is evidenced by users. 
In addition, users' subjective evaluation shows greater ac
ceptance of the features. These features were clearly desired 
by users. Assuming that these results are an example of the 
general reaction to software enhancements, it is important 
to understand their underlying causes and to consider the 
consequences the pattern has on computing. 

Peter Naur5 and many others have commented on the 
difficulty of new programming languages gaining accept
ance. A guess at one reason for this is that people and 
organizations, through their personal commitment of re
sources, have developed strong usage habits. I believe that 
similar habits. those dictating the way in which people use 

a particular language, are what produces the pattern that 
this experiment has uncovered. 

There are a number of points that lead me to favor this 
explanation. Probably the most striking evidence is the pe
culiar distribution of users over both old and new features, 
and their loyalty to the features they have adopted. This 
points to the existence of well developed styles on a level 
that would interfere with acceptance of new features. The 
lack of agreement between reality and subjective observa
tion can be explained by the tendency for habitual activities 
to be performed without conscious recognition. This lack of 
agreement is found in the users' evaluation of features ver
sus their actual use. It also was evident in discussions with 
Group 2 where several users indicated they were using new 
tools more heavily than what concurrent monitoring 
showed. Finally, habit can be seen in the rejection of the 
enhancements by the heaviest users. These users are likely 
to depend most on habit to achieve their high usage rates. 

Whether or not habits are the reason for the results arrived 
at,the consequences of the results must be considered, 
These consequences must differ with the perspective 
brought to the problem. As a vendor, the goal is to satisfy 
user demands. Since subjective evaluation can be high with
out correspondingly high usage rates. enhancements can be 
successful. As a user, or better yet, as the party who bears 

TABLE IX.-Number of Users in Group 1 of Features 2 and 4 Compare ... 
by Usage Rate Categories: Time Periods 6-11 vs. Final Time Period 

1-2 
Usage Rate 2 
Category in 2-3 
Time Periods 3 

6-11 3-4 
4 
4-5 
5 

1 
1-2 

Usage Rate 2 
Category in 2-3 
Time Periods 3 

6-11 3-4 
4 
4-5 
5 

3 

1 1 
1 1 

1 1 

X 1 1 
5 4-5 4 3-4 2-3 2 1-2 

1 

I 
X 

Usage Rate Category in Final 
Time Period 

a, Users of Feature 2 

1 
1 

1 2 1 

1 1 
I 

1 
5 4-5 4 3-4 2-3 2 1-2 

Usage Rate Category in Final 
Time Period 

b. Users of Feature 4 

N.A, 

N.A. 

NOTE-N.A. (~ot Applicable) columns and rows identify users not recorded 
as q<;ing the text editor during given lime paiuJ, X iliJil.:ales ihat no values 
are given for constant nonusers, 



the expense of the enhancements, these same arguments 
can be presented. However, it is more likely that people will 
want to see some resulting usage. The experiment has shown 
that scattered usage is possible. This may be enough to 
justify the enhancements. There are, however, cases where 
as general an adoption as possible is desired; for example, 
when the enhancement is a software tool that will improve 
productivity. In conclusion, let's consider what to do in 
these situations. 

The problem is to get as many users as possible to use a 
new feature. New arrivals to a system do not, of course, 
have established programming habits. Securing their ac
ceptance of the desired feature should be easier. An envi
ronment that approaches that of a new arrival to a system 
appears achievable by revolutionary change in a program
ming environment. For example, a group at the Columbus 
laber--atery r-€pmi-edsu-ccess at changing their programming 
style when they changed from one programming language to 
another, from FORTRAN to "C." 6 At the same time, peo
ple already using the target language had a more difficult 
time adjusting. 

In addition, there may be ways to reach users in evolu
tionary situations. The experiment shows that the habits of 
established users cannot generally be changed by simply 
presenting information. Even the more elaborate process 
employed with Group 2 failed. However, from my discus
sions with that group, one possible tactic emerged. Several 
people liked the features but did not remember them when 
they used the editor. Similarly, many people who had been 
in the two groups at the time of release noted on their 
surveys that they were Not-At-All familiar with some of 
them. Several commented that they would use one feature 
or another now that they knew it was available. For these 
users, the problem is not learning but remembering; typical 
aids to memory such as opcode cards, lists of features at 
work sites, and suggestions for use generated by systems 
are promising tools. 

One final possibility is change via software project man
agement. People respond to guidance. Weinberg and Schul
man 7 have experimental evidence that programmers will dra
matically alter the style and structure of the programs they 
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produce in response to guidance. Hence, in achieving gen
eral adoption of a software enhancement, there is the pos
sibility of managing its adoption. 

In summary, this paper has reported on a case where 
desired software enhancements were not generally adopted 
when introduced into an existing programming environment. 
I maintain that this indicates the presence of well established 
habits and suggest the need for more vigorous acceptance 
methods to ensure that new software tools produce changes 
in programming style. I conclude that it must be the task of 
sofiware engineers not only to discover enhancements to 
software systems but also to discover better methods of 
ensuring their use. 
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Experiences in building and using compiler validation 
systems 

by PAUL OLIVER 
E.D.S. Federal Corporation 
Washington, D.C. 

INTRODUCTION 

Software Validation 

For purposes of this discussion, the term "software vali
dation" refers to the process of testing a completed software 
product in its operational environment. The scope of this 
paper is further limited in the following ways: the experi
ences described are not applicable to applications software; 
the validation systems discussed must be capable of func
tioning on a variety of dissimilar hardware and operating 
systems; the staff performing the validation is not involved 
in the development or the maintenance of the products being 
tested; and the result of a validation could impact the eligi
bility of the product for procurement. This environment 
imposes unusual and stringent requirements on the porta
bility of the validation systems and the auditability of the 
validation. 

The methodologies available for software validation are 
few. Design simulation 1 can and is being used, concurrently 
with software system design, to evaluate the effects of var
ious system requirements or design alternatives once the 
system has been defined and modeled. Problem statement 
languages l provide a formal syntax and semantics with 
which to communicate needs of users to analysts, and are 
applicable during the system definition and design phases of 
a software development effort. Neither design simulation 
nor problem statement languages are applicable to the test
ing of a completed product. The experiences of the Federal 
COBOL Compiler Testing Service (FCCTS) suggest that 
functional testing2- 4 is the most thorough technique pres
ently available for testing a completed software product. 

Functional Testing 

Functional testing is the process of executing a series of 
generally independent tests designed to exercise the various 
functional features of a software product. The examples 
discussed in this paper win address the testing of compilers, 
but the findings and conclusions are applicable to system 
software in general. The exclusion of application software 
is not meant to suggest that such software is not amenable 
to functional testing, but is, rather, a reflection of the general 
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inadequacy of specifications for applications software. It is 
difficult to test for the valid implementat-ionm f-un-etioo-s
when the functions themselves are ill-defined. This is of 
course a subjective observation, and it is also true that the 
specifications of a compiler's architecture (generally, the 
standard) often leave much to be desired. 

Functional testing can be used to test characteristics of 
software such as performance and integrity, but is most 
commonly used for specifications testing. Thorough func
tional testing requires a complete test plan, systematic con
trol of the testing effort, and objective measurements of test 
coverage. Functional testing is applicable during implemen
tation (verification), during evaluation (validation), and dur
ing the maintenance phase of a software product's life-cycle. 

This applicability to all phases of test activities is a prin
cipal advantage of functional testing. Furthermore, the thor
oughness of testing is measurable in terms of number of 
functions tested, and the revision and evaluation of test 
specifications is relatively simple. Also, functional testing 
offers a high degree of visibility to a customer, and is apt to 
be well understood by that customer. 

With these advantages come some disadvantages. The one 
most frequently cited is that it is generally not possible to 
assure that all possible features or decision points of a soft
ware product are in fact tested. With regard to compilers it 
is certainly true that it is not practical to test all possible 
combinations of language components and data types. We 
have not, however, found this to be a serious shortcoming, 
since it is certainly possible to test all reasonable combina
tions. What is "reasonable" is admittedly a subjective judg
ment, but such subjectivity regarding test limits is hardly 
unique to software testing. A more serious problem, from 
the FCCTS experience, is that functional testing can only 
be as good as the specifications being tested. Thus, it is an 
unfortunate fact that many important features of a compiler 
cannot be tested because the pertinent language specifica
tions are ambiguous. 

THE FCCTSEXPERIENCE 

The Federal COBOL Compiler Testing Service has, dur
ing the years 1973-1978, performed official validations of 
over four dozen COBOL and FORTRAN compilers,5 in 
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support of Federal Government procurement regulations. 
What follows are descriptions of some of the results of these 
activities, a summary of the resources expended in perform
ing such validations, a description of the technical problems 
encountered, and suggestions as to what future work re
mains to be done in this area. It is the intent of this paper 
to present data on specific experiences which can hopefully 
lead to useful generalizations regarding functional testing. 

Validation of FORTRAN and COBOL Compilers 

The importance and utility of higher-level languages is, in 
this writer's opinion, no longer at issue in data processing. 
The steady decline in hardware costs, a growing awareness 
of the importance of programmer productivity and software 
reliability and maintainability, and improvements in the 
quality of code produced by compilers have nearly termi
nated arguments regarding the relative effectiveness of 
lower- and higher-level languages. 

This trend has made the compiler the most visible com
ponent of system software. To many programmers, the com
piler is the system, since it is the tool which is most fre
quently used in building a'piece of software. It is therefore 
important that the compiler conform to its specification. For 
some compilers, most notably COBOL, FORTRAN, and 
PLlI, these specifications (at the functional or architectural 
level) are embodied in a standard. 

The software development manager is faced with a mul
titude of problems. The productivity of his average program
mer ranges from three to nine lines of code per hour, and 
has been increasing at a rate of only about 3 percent per 
year. 6 Furthermore, the quality of his product is not too 
good, and he may require as much as 75 percent of his 
resources just to maintain the product once it is developed. 7 

These are not very encouraging figures. Thus, it is para
mount that the manager, and his programmers, at least be 
able to have some faith in the tools of their trade. In partic
ular, it is not unreasonable to expect that a compiler conform 
to existing standards in its translation of programs written 
in standardized languages. There are of course limits to how 
much a standard can do. A language standard is not like 
most engineering standards. The state of the art in software 
technology (or the level of maturity of the data processing 
industry) is not yet at the point where such precision is 
possible. Furthermore, rightly or wrongly, most, standards 
still allow quite a bit of latitude to the implementor with 
regard to the meaning of certain language constructs. Never
theless, a language standard can and should provide a frame
work for a workable, well-disciplined approach to software 
development. This is in fact the fundamental contribution of 
a language standard. It is important to recognize this because 
one commonly hears dubious claims made on behalf of 
standards-the most frequent of which is that the presence 
of a language standard makes program conversion (within 
the language, e.g., COBOL-COBOL) costs disappear. This 
is simply not true. Programming practices, imprecise stand- , 
ards, and environmental factors (e.g., operating system dif
ferences) all contribute to keeping the cost of conversion 

fairly high. An analysis performed by the FCCTS of some 
32 COBOL-COBOL conversions reveals, for example, that 
the conversion cost of one line of COBOL code can range 
from $.50 to $6.00, and this suggests that conversion costs 
are still high, even for programs written in "standard" 
COBOL. 

To repeat-the principal purpose of a language standard 
is to provide a disciplined, predictable, efficient framework 
for software development. To fulfill this goal, a compiler 
must perform according to the standard. Testing is required 
in order to determine conformity. 

The FORTRAN and COBOL Compiler Validation Systems 

The FCCTS has performed functional testing of FOR
TRAN and COBOL compilers since its inception in 1973. 
This testing has been done using the COBOL Compiler 
Validation System (CCVS)8 and the FORTRAN Compiler 
Validation System (FCVS).9 A detailed description of these 
systems can be found in the references; only a brief sum
mary is presented here. The CCVS74 (COBOL 74) consists 
of nearly 219,000 lines of COBOL code which collectively 
exhaust the meaningful constructs in the COBOL language. 
The FCVS 78 (FORTRAN 77) consists of over 62,000 lines 
of FORTRAN code, and represents a subset of the full 
standard. The FCCTS has also produced a HYPO-COBOL 
Validation System and an FCVS for FORTRAN 66, but the 
size of these projects was so small (12,000 and 38,000 lines 
of code, respectively) that data derived from them would be 
misleading. The interested reader is referred to References 
9 and ]0. 

The Validation Systems consist of syntactically correct 
programs and an executive routine. The executive routine 
'is used to perform certain text editing (e.g., specification of 
implementor names), for program and test selection (hard
ware dependent language elements may not be testable), and 
for the generation of job control language statements appro
priate to the host operating system. Furthermore, an audit 
log of these actions is produced. These functions are neces
sitated by the environment in which the FCCTS operates
portability of the validation systems and auditability of the 
test procedures may not be required for in-house testing 
(although they are not bad features to have). 

The Validation Process 

The Compiler VaJidation Systems used by the FCCTS are 
necessarily generalized products, almost in the sense that 
an operating system is generalized when it is first delivered 
to a customer. A system generation process must take place 
to produce a product which is tailored to the installation in 
which it is implemented. In the case of the Compiler Vali
dation Systems, this generation process consists of inserting, 
through the executive routines, implementor names in the 
source code, generating operating system control state
ments, and deleting (actually, not generating) tests which 
the compiler is unable to process at alJ, e.g" language fea-



tures which the compiler does not implement. This genera
tion process is performed by the organization whose com
piler is being validated, with some assistance from the 
FCCTS. 

Validation is performed by the FCCTS staff, and consists 
of executing the audit routines on site, reviewing the result
ing raw data, and producing a Validation Summary Report. 5 

Results 

Experiences with COBOL compiler validations were re
ported by Baird and Cook. 10 It is encouraging to note that 
many of the anomalies reported in 1974 have disappeared 
from compilers today. Errors reflecting sloppiness or poor 
judgement, such as performing syntax correctness checks 
on comments, no longer occur. Errors in simple constructs 
such as ADD, ~ACT; and -c-o-PY-- statements in 
COBOL are no longer prevalent. There is little if any justi
fication for such errors, and their disappearance suggests 
that the availability of an independently-administered vali
dation service has had an impact on compiler developers. 

Table I illustrates the downward trend in both the average 
and the maximum number of errors discovered during a 
validation. It should be noted that the failure to implement 
a particular language feature is regarded as an error by the 
FCCTS. While this type of error is irritating to a programmer 
who wishes to use the feature it is not as serious as the 
presence of a feature which is incorrectly implemented, 
since this latter type of error is deceiving. We are finding no 
strong patterns in the errors found-i.e., our data does not 
reveal any meaningful distribution of errors according to 
language elements. The distribution according to modules is 
what one might expect-65 percent of all errors were found 
in the Nucleus, while 29 percent were found in the I/O 
modules. It is perhaps surprising that only 1 percent of all 
errors occurred in the remaining modules. We do note that 
a large number of "errors" are in fact caused by purposeful 
implementation decisions on the part of compiler devel
opers, particularly in input-output functions, data represen-

TABLE I.-Validation Errors Summary 

(1) Average number of errors found for COBOL 68 compilers 
(1973) 18 

(2) Maximum number of errors found for COBOL 68 compilers 
(1973) 50 

(3) Minimum number of errors found for COBOL 68 compilers 
. (1973) 0 

(4) Average number of errors found for COBOL 74 compilers 
(1977) 9 

(5) Maximum number of errors found for COBOL 74 compilers 
(1977) 30 

(6) Minimum number of errors found for COBOL 74 compilers 
(1977) 

(7) Average number of errors found for FORTRAN 66 compilers 
(1977) 

(8) Maximum number of errors found for FORTRAN 66 compilers 
(1977) 2 

(9) Minimum number of errors found for FORTRAN 66 compilers 
(1977) 0 
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tation, and other language areas which are closely related to 
operating efficiency of the total data processing system. This 
seems to suggest that implementors, when faced with the 
decision of implementing a feature correctly or efficiently, 
will chose efficiency. Given a community of users which 
traditionally has favored ·'efficiency" over correctness this 
is not surprising; but it is not desirable. The misconception 
that a rigorous standard inhibits efficient implementation is 
still a prevalent one. 

Finally, it should be noted that the reduction in errors 
found in COBOL compilers took place during a period of 
transition from COBOL 68 to COBOL 74. This makes the 
error trend even more significant since it took place in a 
development rather than a maintenance context, and oc
curred in the face of an expanded, more complex version of 
COBOL. 

A less encouraging trend has been the number of language 
features- w-hiCh me PCCTS has-heen unabte-to-inclttde---ifl--its
Validation Systems. The FCCTS COBOL Validation Sum
mary Reports list 24 language elements which are fully or 
partially implementor-defined. Some, such as "computer
name" in the COBOL SOURCE-COMPUTER paragraph 
are innocuous and acceptable. Others, such as the represen
tation of a valid sign in certain forms of numeric tests and 
the number of positions carried for intermediate results of 
arithmetic statements are, in this writer's opinion, indicative 
of a poorly-defined standard. 

A typical result is that one recent COBOL Validation 
Summary Report listed 15 results "for information only," 
i.e., applying to tests whose results are not well-defined by 
the standard. Six of these referred to input-output functions, 
and four to computation or comparisons. Thus, a COBOL 
programmer cannot use such common and useful statements 
as COMPUTE with any degree of certainty as to what the 
results are to be from one compiler to the other. This is 
perhaps to be expected in a language which is defined by a 
committee, whose national standard is set by a second com
mittee, and whose Federal standard is set by a third com
mittee. 

The results of FORTRAN compiler testing are not so 
dramatic. This is due partly to the fact that testing to date 
has been with respect to the 1966 FORTRAN standard. The 
features contained in this standard are but a subset of most 
FORTRAN dialects, and have remained stable over the past 
12 years. Furthermore, FORTRAN is a simpler language 
than COBOL. It is therefore not surprising that the error 
rate found in FORTRAN compilers has been much lower 
than that found in COBOL compilers . 

Two generalizations come to mind. One is that methodi
cally and independently applied functional testing of com
pilers has produced meaningful and beneficial results. The 
other is that functional testing is limited by the quality of 
specifications. 

Resources Required 

Table II summarizes workload and resources expenditures 
data compiled by the FCCTS during the 1974-1978 period. 
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TABLE n.-Validation Projects Data 

CCVS FCVS FCVS 
74 HCVS 66 78 

(I) Lines of delivered source 218,560 12,000 37,839 63,188 
code 

(2) Calendar months 49 J3 11 20 
expended 

(3) Man-hours expended 11,200 781 1,959 4,600 
(4) Lines produced per man- 19.5 15.4 19.3 13.7 

hour 
(5) Time distribution 35/42/23 36/48/16 40/37/26 50/30/20 

(percent) Design/Codel 
Test 

The CCVS74 elapsed time data is somewhat misleading. The 
49 months given for the development of CCVS74 were really 
devoted to development of three distinct versions of the 
product, each of which was really a distinct, usable product 
in itself. Thus, periods of relative inactivity are included in 
this timespan. The reason for this approach is that devel
opment of the CCVS had to be coordinated with develop
ment of COBOL compilers, and these were developed and 
released incrementally. The first releases of COBOL 74 
compiler implemented subsets of the language, and therefore 
the audit routines tested only these subsets. It is a peculiarity 
of compiler testing that development of the test tool must 
rely on the compiler; it fact many vendors used portions of 
the CCVS74 in testing their compilers during development. 
The 49 months cited were therefore caused by a continuing 
mutual "piggy-backing" of compiler-audit routines devel
opment. 

Productivity was quite high on all the validation systems 
development projects. This is due to a variety of reasons
the product specifications were to some extent already in 
existence (the standard represents specifications for audit 
routines as much as for compilers), the PCCTS staff was 
recruited for the specific purpose of software testing from 
the inception of the FCCTS in 1973, and the experience 
factor of the staff is quite high. Also, although a validation 
system may be quite large, as with the CCVS74, it really 
consists of a large number of relatively small, relatively 
independent modules. Productivity in developing this type 
of system will naturally tend to be well above average due 
to the lowered incidence of interpersonal communication 
required. 

The project time distributions show a greater percentage 
of the development effort is devoted to coding than one 
would generally expect. Again, this is attributable to the 
nature of the product being developed. The major phases of 

TABLE III.-Validation Time Requirements 

Personnel TypelPhase 

Professional/Preparation 
Professional/Site Visit 
Professional/Report Production 
Clerical/Report Production 

A verage Hours Required 

4.0 
20.0 
18.0 
7.5 

design, coding, and testing are not as distinct in this type of 
product as they are generally. The modularity and module 
independence of the audit routines make it convenient to 
combine much of the documentation and unit testing activ
ities with the code production phase in a way which makes 
it'impossible to separate the time associated with each. 

Table III summarizes the FCCTS resources expended for 
validations. We believe that a good portion of the profes
sional time presently spent in the report production could 
be shifted toward clerical time, and are taking steps to do 
this. 

A few observations regarding the makeup of the staff 
might be of interest. The FCCTS was formed in 19735 and 
performs some of its functions in support of Federal pro
curement regulations. Previous experience with compiler 
validation existed,8 but much remained to be learned. Re
cruitment and staffing therefore leaned toward experienced, 
highly competent personnel, and the positions established 
were fairly senior. This was wise at the time, but it is not 
the optimal staffing pattern once some experience has been 
gained, nor is it optimal outside the Federal procurement 
support environment. Development of validation systems 
requires a high level of skill, ingenuity and maturity during 
the design stages of the product, and for the development 
of certain support functions such as the executive routines 
and code generators; but the coding and testing processes 
bear such a resemblance to a production line that high-cal
iber personnel is simply neither required, nor desirable. 
Rather, such a project should be staffed along the lines of 
a Chief Programmer Team, with some obvious modification 
(it perhaps should be called a "chief designer team"). The 
project manager should also act as the chief designer, with 
the primary responsibility for developing the test specifica
tions. A software specialist should be responsible for de
veloping support software such as the executive system. 
The coding task can be relegated to junior programmers. 
Ideally, a single individual should be responsible for com
puter-based testing. It has been found very useful to have 
programmers visually review each other's code-the simple 
structure of audit routines makes this practice very cost 
effective. Documentation can be voluminous; the validation 
system itself should be self-documenting, but such docu
ments as user guides should be produced by a literate tech
nical writer. Finally, a "librarian" is both feasible and use
ful. 

Technical Problems 

It was indicated earlier that lack of completeness can be 
a problem in functional testing. It has not been a problem 
in compiler validation. The reason is that the potentially 
combinatorial number of logic paths which should be tested 
in application software (whose inputs are unpredictable) is 
not a factor when testing a compiler. Ensuring that all mean
ingful language constructs are tested may tax the patience 
of the developer, but not his intellect. The problem is further 
alleviated by limiting the tests to correct language con
SlWClS. i.e .. we do not insert erroneous code in the audit 



routines. This decision is motivated by the environment in 
which the FCCTS functions. If we were developing tests for 
an in-house product we would very likely want to introduce 
erroneous code in the tests. We would then be faced with 
the traditional question of what errors to introduce, at what 
frequency distribution, and by whom should they be intro
duced. 

A problem we have encountered is that of properly iden
tifying the building blocks of the audit routines. This is a 
problem unique to validation of compilers. Since the audit 
routines must be compiled by the compiler which is being 
tested it is necessary to identify certain language constructs 
for which correct compilation is taken as a set of axioms, in 
the sense that if these features are not correctly implemented 
there is no point in continuing the validation. An example 
of this building block approach can be seen from the FOR
TRAN C6mpl1erVatlOatlon System (FORTRAN 77}. Some 
ofthe assumptions we have made regarding the Subset FOR
TRAN are: 

1. Six (6) character symbolic names and five (5) digit 
statement labels are permitted. 

2. Comment lines do not affect a program in any way. 
3. Execution of the unconditional GO TO statement 

GO TO s 
causes the statement identified by the statement label 
s to be the next statement executed. 

4. Branching to a CONTINUE statement causes the 
statement following the CONTINUE statement to be 
the next statement executed. 

5. The arithmetic assignment statements 
variable = constant 
variable = variable 

function correctly. 
6. The arithmetic IF statement functions correctly: 

IF (e) sl, s2, s3 
where e is any arithmetic expression of the form 

variable + constant 
variable - constant 

and s 1, s2 and s3 are statement label s. 
7. The character assignment statements 

character variable = character constant 
character variable = character variable 

function correctly. 
8. The logical expression 

IF (character relational expression) executable 
statement 

where the form of the character relational expression 
is 

character variable . EQ. character constant 
functions correctly. 

9. The following form of the WRITE statement functions 
correctly: 

WRITE (u, f) iolist 
where u is a unit specifier, f is a FORMAT identifier, 
and iolist is an input/output list containing arithmetic 
or character variables. The format statement contains 
nR edit descriptors, X edit descriptors, numeric ed
iting descriptors and/or A edit descriptors. 
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10. In order for the output report to have the correct 
format, the use of the first character of a formatted 
record for vertical spacing on a printing device must 
function correctly. 

The two characters which are used in printing the 
report are: 

Character 
1 

blank 

Vertical Spacing Before Printing 
To first line of next page 
One line 

11. The system output device has at least 56 characters 
per line. 

12. An integer datum consists of at least 16 bits of which 
one bit is a sign bit. 

13. A real datum contains at least 16 bits in the mantissa 
and eigllt bits- in the exponent. 

14. A character datum of length 14 is permitted. 

These assumptions are necessarily subjective-a different 
designer might have made different choices. The point is 
that choices must be made, and that the validity of the 
choices must be determined prior to full testing. 

Because the type of validation systems we are discussing 
consist of a large number of small independent modules, and 
because the high-level specifications are a "given" (i.e., the 
language standard) there is a tendency to bypass the design 
phase (after having determined the "axioms") and to plunge 
immediately into the coding phase. The danger with this 
approach is not that the resulting product will be a faulty 
one, but rather that it will be an unnecessarily voluminous 
one. We have found it useful to develop general specifica
tions which define in a broad way a set of tests for a given 
language module or construct (e.g., arithmetic expressions), 
and to follow these with a set of detailed specifications 
which define each test. The general specs allow us to refine 
the estimates of time and resources required for the project, 
and to ensure completeness "in-the-Iarge," while the de
tailed specs provide thorough documentation and enable the 
actual coding to be done by relatively junior personnel. 12 

Audit routines should be self-checking. The volume of 
output is far too large to be eyeballed. We have also found 
it useful to be able to suppress printed outputs during the 
testing phase of a validation system development. 

We have encountered two problems which are unique to 
an outside testing group which is testing a product on dif
ferent systems. One is portability of the validation system; 
the other is auditability of the test process itself. We must 
be able to execute the audit routines on any compiler-op
erating system-hardware combination, and we must be able 
to assure the consistency of our testing procedures. The 
executive systems allow us to fulfill both the goals. In-house 
testing would require no more that a good text-editor and a 
library management function. Additional details of the val
idation process using the executive routines are to foilow. 

Although our productivity has been high we believe that 
it is necessary to improve it. We would like to be able to 
develop a validation system for a new language, e.g., PLlI, 
in six months or less, while limiting the project staff to, say, 



1056 National Computer Conference, 1979 

five people. This is not yet possible. We have taken some 
steps to increase our productivity. One has been to adopt 
very stringent and precise development procedures, so that 
tasks are completely interchangeable among project staff 
members. These are described in greater detail below. We 
have also found it useful to use the COBOL Compiler Val
idation System executive routine in developing the audit 
routines. This not only ensures consistency but also pro
vides us with a useful and complete log of all significant 
development tasks. Our major effort at improving produc
tivity has been the development of a pre-processor, or gen
erator, as part of our FORTRAN validation system project. 

The generator is used to speed up production of "boiler 
plate" material and repetitive code which changes only with 
regard to statement labels. Specifically, the generator is used 
to: 

I. Produce standard comments which appear, unchanged, 
before each grouping of tests or before each individual 
test. 

2. Produce code to be executed when a test is passed, 
failed, or deleted. 

3. Produce "standard" variables declarations. 
4. Generate statement labels which render the common 

code segments unique. 

While the generator has been useful. it should be noted 
that it is not used to generate the test code itself. We have 
given this possibility serious thought for over three years, 
and have concluded that while test code generation is fea
sible, it is not productive. Such an attempt would be useful 
if either of these conditions were true: 

I. We needed to produce mUltiple but differing versions 
of a validation system for a given product. 

2. The generator could be used to produce validation sys
tem for different languages or products. 

The former condition does not exist, while the latter is not 
feasible except for the most simple-minded languages. We 
are therefore faced with the uneasy feeling that we are reach
ing a practical limit on productivity with regard to validation 
systems development. 

We do expect to achieve some improvements through a 
refinement of our programming practices. Our standard de
velopment rules presently specify the following: 

• Symbolic name conventions 
• Assumption or axioms 
• Statement label conventions, particularly in distin

guishing among test, pass, fail, delete, verify, and I/O 
code 

• Convention for external unit identifiers 
• File naming and contents rules 
• Composition and organization of routines and tests 
• Phases in the development cycle 
• Use of the generator 

We hop~ to find additional ways of expanding and using the 

generator. but are skeptical as to the chances of making 
quantum improvements in our productivity. 

The Executive Routines 

The executive routine is used to control the generation of 
a specific Validation System, to control the generation of 
job control language statements, and to perform updates. 
System generation consists of program selection, identifi
cation of options to be used and the validation environment, 
and the control of report outputs. 

Job control statements are generated for a given operating 
system through a "higher-level language" which is used to 
indicate the need for accounting statements (e.g., JOB or 
RUN), for the invocation of processors such as compilers 
and collectors, and for the initiation of execution. 

Finally, a simple set of text-editing statements is available 
for replacing, adding, or deleting source statements. As was 
indicated earlier, the need for an executive system is pred
Icated on the degree to which the validation system itself 
must be portable. 

FUTURE WORK AND UNRESOLVED PROBLEMS 

Much of our thinking during the past few years has been 
directed at determining the feasibility of automating the test 
generation process. Our motivation has been to increase the 
rate at which we can produce compiler validation systems. 
Others have been motivated by the perception of additional 
problems: 13 

I. Lack of a formal construction method 
2. No reference to measures of test effectiveness 
3. Manual preparation resulting in uneven product qual

ity. 
4. High costs 

We believe, based on our experiences, that rigorous pro
cedures, augmented by some support tools, adequately ad
dress the first three problems. We furthermore do not be
lieve that cost is an inhibiting factor. The cost of CCVS74 
has been approximately $400,000 (including maintenance), 
or somewhat under $2/line of code. This is an almost insig
nificant cost compared to development costs in general. 
Naturally, the fact that we act as a central service facility 
whose testing product is applied to many compilers reduces 
the relative cost-$400,000 spent to test 40 compilers is a 
less disturbing figure than $400,000 spent to test one com
piler. 

Our experience to date suggests to us that attempts at 
using a formal notation for the specification of programming 
languages as the means by which a language's syntax and 
semantics may be described, and by which tests may be 
generated, are ill-conceived. This approach is certainly fea
sible. But, as anyone familiar with syntax-directed compi
lation knows, this approach will not significantly reduce the 
time required to produce compiler validation systems. The 



reason is simple enough-it is no easier to specify a test 
using a formal notation than it is to specify it in the pro
gramming language directly. Furthermore, the differences 
among languages are great enough to preclude using a single 
test specification to generate multiple tests, each in a differ
ent language. We have not closed the door on this approach, 
but we have become very skeptical of its merits. 

A more serious problem, in our opinion, is that of the 
poor quality of language specifications. It is in fact some
what fruitless to concern oneself with the completeness of 
a test vehicle when so many significant language features 
are ill-defined. This is a solvable problem, but its solution 
will require a "consumer movement," whereby users be
come more critical of what is handed to them by standards 
committees. As of now, inadequate language specification 
represent the most significant limitation on function valida
tion. The PLII Standard is a majorstep forward in fioore-sslog 
this problem, despite the criticism it has received. 

A related problem has to do with the stability of the 
product being tested. The FCCTS receives numerous com
plaints that we often insist on revalidating a compiler be
cause of new releases of the compiler or of its operating 
system. Our rejoinder is that we will drop our requirement 
for revalidation when offerors of compilers stop putting out 
a new release every six months. The industry as a whole 
has standards of software quality control that would embar
rass most other professions. 

Finally, more attention needs to be given to the devel
opment of specifications languages, so that the process of 
testing the specifications, producing a product from these 
specifications, and producing a testing system with which to 
test the product could be a largely automated, coordinated 
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effort. We are aware of the work that is under way in this 
regard, but results have been very meager. 
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Automatic program synthesis via synthesis of loop-free 
segments* 

by JOE W. DURAN 
The University of Texas at Dallas 
Richardson, Texas 

INTRODUCTION 

Work on theorem-proving-based automatic program synthe
sis (see Lee, e t ai.,1 for example) has been neglected iately. 
In their 1971 paper, Manna and Waldinger8 covered one of 
the main reasons why-the difficulty of synthesizing pro
gram loops within the current state of the art of automatic 
theorem-proving.· However, there is a great deal of contin
uing work in theorem-proving, and it is important that mo
tivating work in related areas such as program synthesis not 
be neglected. 

Most theorem-proving-based synthesis systems attempt 
to constructively prove theorems of the form, "for all input 
values satisfying the desired input predicate I, there exists 
a corresponding set of values of output variables which 
satisfy the desired result predicate, R." The resulting pro
gram (if any) is correct with respect to the input and output 
predicates. In general, inductive proofs are needed to syn
thesize the loops within a program. This causes difficulty, 
and in fact previous work has not been notably successful 
with loops. To quote Manna and Waldinger, " ... these 
systems have been fairly limited; for example, either they 
have been completely unable to produce programs with 
loops or they have introduced loops by underhanded meth
ods." Since most interesting programs contain loops in some 
form, this is a crucial problem for successful synthesis. We 
will limit our discussion to iterative loops. 

Manna and Waldinger outlined an approach to automatic 
synthesis which attacked the problem of iterative loops, and 
discussed the use of various forms of induction for reducing 
synthesis to the proving of loop-free (i.e., induction-free) 
lemmas. However, they were dissatisfied with the large 
number of equivalent induction principles required by their 
approach. In fact, only a single rule is needed. Loop invar
iants can be used to provide a single, general rule for ex
pressing the synthesis of loops in terms of loop-free lemmas. 

We consider only input and output predicate pairs, I and 
R, which make sense in the context of program synthesis; 
i.e., they must be decidable and "define" a nontrivial re
cursive function, in the sense that 3F{I(v )~R(v,F(v»} is 
true. If a recursive function is "defined" by an I,R pair, 

* This work was partially supported by NSF Grant No. GJ-36424. 

1059 

then there exists a program for computing the function. We 
show that such a pi'ogr-am canbe--s-yntfies-tzea via sy-ntfies-is 
of only loop-free program segments. The necessary formu
lations are constructed by using loop invariants associated 
with while--do loop forms to state these loop-free lemmas, 
which can take the standard forms expected by many syn
thesis systems. 

DECOMPOSITION INTO LOOP-FREE SEGMENTS 

If a program P, correct with respect to an input predicate 
I and a result predicate R, can be found, then it computes 
a function F p, such that 

(1) 

where Vin is the vector of values of the program's input 
variables. For a large class of recursive functions, there 
exist natural decompositions of the form 
F n (F n - 1 ( • •• F 1 (v) .. . »==F(v), n>l, where Fis the orig
inal function and v is its argument. This form of the decom
position still holds for any function for the trivial cases 
where one of the Fi is F and the rest are identity functions. 
Let us consider some decomposition of our function F p, 

such that 
F n(Fn- 1(· •• (Vin) .. . »=Fp(Vin) (2) 

Let P j be a program for computing Fj • A program comput
ing F p may be constructed by concatenating the programs 
PI' ... , P n • Though the decomposition (2) may be trivial, 
for most programs there will exist non-trivial ones.:;:* Now 
consider the set of all P j satisfying the decidable input and 
resuit predicated defined as foHows: 

for 2:Sj:sn, 

def 
and Rj(v,v')={v'=FJ(v)}. 

o\ny concatentation PIP 2 ••• P n of PiS satisfying these 

** It will be recognized that this decomposition is included in the very well 
known concept of stepwise refinement in program construction (see Mills'). 
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predicates will produce a program which computes F", 
provided that each P j is constructed to terminate. The pro
gram so produced will thus be correct with respect to I and 
R. 

We proceed to show that, under this scheme, there will 
always be a satisfactory set {P l' P 2, .•• , P n} such that 
each P j contains at most one loop. Since any computable 
function can be computed by a program with a single loop, 
each F j can be computed with at most a single loop. Each 
such single-loop program has an associated loop invariant 
which is sufficient for a Floyd-type correctness proof. This 
follows from the loop invariant existence proofs in Refer
ences 2 and 4. Therefore there will always be a satisfactory 
set of PjS such that each one contains at most one loop, 
which can always be of the form "(initialization) while B do 
(loop body)." F f' can thus be computed by a concatenation 
of single loop program segments which have associated loop 
invariants. We will use this fact to complete the analysis 
leading to our characterization of general program synthesis 
in terms of loop-free lemmas. 

Manna and WaldingerM considered synthesis in terms of 
the proof of first-order theorems of the form 

(3 ) 

where v i1l is the vector of input variable values, and V OIII the 
vector of output variable values. Let us now consider any 
arbitrary single loop program with while--do loop form, 
correct with respect to input and result predicates I and R. 
Such a program has two segments-the initialization code 
and the loop body code-and has a 10 }p control predicate, 
B, and a loop invariant, Q, such tha.' QI\-B~R. We can 
synthesize the two segments separdely and then use the 
two segments to assemble the program into its while--do 
structure. 

Initialization code must produce output satisfying the loop 
invariant whenever the input predicate is true. Thus the loop 
invariant acts as the result predicate of (3) and initialization 
can be stated in terms of the induction free lemma 

\;j v ill{I(v in )~3 Vo[Q(Vo, Vo )]}, (4) 

where v is the vector of all program variables, with Vo 

representing its initial value. 
The input conditions for loop body code entry are that the 

loop control predicate, B, is true and that the loop invariant, 
Q, is true. The desired output of the loop body code must 
satisfy the loop invariant. Further. since we wish to synthe
size programs which terminate, we require that the input to 
the loop body code, which satisfies B, must be transformed 
into output which is closer to not satisfying B. The predicate 
ensuring this, denoted by P(v,v'), is essentially Dijkstra's 
variant function. 3 (Here v is the program variable vector 
before loop execution and v' is the updated value after 
execution.) The complete result predicate is thus (QI\P) 
and the loop body code lemma is stated as 

\;jvo\;jv{B( v)I\Q( Vo. v )~3 v'r Q( Vo. v ')I\P( v. v ')1, (5) 

SYNTHESIS 

Existing first order synthesis systems can be applied to 
the above lemmas after they are generated for a given prob
lem. For instance, Lee, et a/.,1 have presented a resolution 
based algorithm for producing loop-free programs which is 
proved to generate correct programs. Their system con
structively proves theorems of the form 

\;j Vin \;j v OIlI{R(Vin, VOIII )~AN S(V OIII )}. (6) 

The predicate AN S (V OIlI ) is used to record the unification 
substitutions which take place for V OIII during a resolution 
proof. To use their methods, lemmas 4 and 5 are converted 
to the form of (6). Our desired result predicate for initiali
zation is Q, and for loop body code is Q!\P. Although Lee, 
et aI., make no explicit mention of input conditions, clearly 
these can be included in their form. Thus (6) can be used 
for initialization by letting R={B!\Q(vo,v)!\Q(vo,v')I\P}, 
giving us 

\;j Vin \;jVO{I(Vin )I\Q(Vo, Vo )~AN S(vo)} (7) 

and 

\;j vo\;jv\;j v' {B(v )I\Q(vo, v )I\Q(vo, v ')I\P(v,v') 

~ANS(v')}. (8) 

If the assumptions (or axioms) that I(vin), B(v), and Q(vo,v) 
are true are added, (7) and (8) can be shown to be logically 
equivalent to (4) and (5). Thus we have logical equivalence 
where I, B, and Q are true. which is the only real case of 
interest. 

The following example illustrates our approach in con
junction with resolution based loop-free synthesis as in Ref
erence 7. 

Example I: Factorial Function 

I={N2:0} R={z= f(N)} 

f is the factorial function, defined by f(O)= 1 and 
f(x+ 1)= (x+ 1)* f(x). We choose Q(z,k)={z= f(k)}, 
-B(k,N)={k=N}, and P(k,k')={k<k'}, so that 
QI\-B~R. (The non-active elements in Vo and v are 
suppressed in the above argument lists.) 

• Initialization code-From (7), the theorem to be 
proved is \;j N\;jz\;j k{I(N)!\Q(z,k)~AN S(z,k)}, or 
\;j N\;jz\;j k{N2:0I\z= f(k)~AN S(z,k)}. 

From f(O)=I, we have Q(1,O). Expressing the theorem 
in clause form appropriate for performing resolution, we 
have 

(a) -I(N)V-Q(z,k)VAN S(z.k). 

The axioms specifying I and Q. as required for resolution. 



are 

(b) I(N) (since we are interested only in cases where I is 
true) and 

(c) Q(1,O) (by definition of factorial). 

Resolving clauses (a) and (b) yields 

(d) -Q(z,k)VANS(z,k). 

Resolving clauses (c) and (d) yields 

(e) ANS(1,O). 

The unification substitutions, carried in ANS, are l~z and 
O~k. From this, initialization code is z:=I; k:=O. 

• Loop body code-From (8) the loop code generation 
theorem may be stated as the clause 

(a) -B(k,N)V-Q(z,k)V-Q(z' ,k')V-P(k,k') 
VANS(z',k'). 

From the definition of factorial, we have the axiom 

(b) -Q(z,k)VQ(z*(k+l),k+l). 

From the hypothesis that control is still in the loop, since 
that is our condition of interest, we have 

(c) B(k,N), which is the condition, "B is true", and 
(d) Q(z,k), which means, "the loop invariant holds." 

The axioms needed to specify the progress requirement 
predicate, P= {k< k '}, are expressed by the clauses 

(e) -P(O,L)VP(M,M+L) and 
(0 P(O, 1). 

A string of resolutions leading to isolation of AN S(z' ,k') is 
as follows: 

(g) Q(z*(k+1),k+ 1), from (b) and (d) 
(h) -B(k, N) V -Q(z, k) V -P(k, k + I) V ANS(z * 

(k + 1), k + 1), from (a) and (g) 
(i) -Q(z,k)v-P(k,k+ 1)VANS(z*(k+ l),k+ 1), from (c) 

and (h) 
(j) -P(k,k+ I)vANS(z*(k+ l),k+ 1), from (d) and (i) 
(k) --':P(O,l)VANS(z*(k+l),k+l), from (e) and (j) 
(1) ANS(z*(k+ l),k+ 1) from (0 and (k) 

Thus the loop body code, derived from the substitutions for 
ANS arguments leading to (1), is z: =z*(k+ 1); k: =k+ 1. 

Example 1 illustrates a difficulty with resolution-based 
methods-the fact that rather oblique axiomatization is nec
essary to define Q and P. 
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It is desirable to have an automatic (or semiautomatic) 
synthesis system which parallels good programming meth
odology. Thus we might wish to carry out the necessary 
theorem proving by the use of "natural deduction" rather 
than resolution. An interactive approach. allowing human 
intervention, is the best immediate hope for a practical syn
thesis system. Natural deduction systems, by definition, 
retain theorems and intermediate steps in a form near to that 
which humans usually use. The deductions are kept reason
ably close to the rules of inference usually used by humans. 
Additionally, such systems have much of the necessary ax
iomatization built into their deductions. definitions. and re
write rules. This greatly simplifies setting up a synthesis 
problem, compared to resolution. Of course, natural deduc
tion systems are usually incomplete, but this is not expected 
to be a practical handicap. Bledsoe and BrueHl have pre
sented a system, called PROVER, which combines natural
deduction-like theorem proving with a capability for man
machine interaction. PROVER has been modified for use in 
a practical correctness proving system (Good, London and 
Bledsoe6). Much of this adaptation should be useful also for 
synthesis proofs. 

The lemma schemata (4) and (5) are already in natural 
form. Example 2 shows the form applied to the integer 
multiplication problem and illustrates a natural deduction 
style proof, after the methods of PROVER. 

Example 2: Integer Multiplication 

1={y~O/\z;:::O} 

Q={x+c*d= y*z} 

• The initialization theorem is 

R={x= y*z} 

-B={c=O} 

(i) \ly\lz{y~O/\z;:::0~3x3c3d[x+c*d= y*z]} 

The quantifiers are removed by treating universally quan
tified variables as constants, identified by the SUbscript (), 
as in Yo' Existentially quantified variables are left as is. 
Thus we have 

(ii) yo~O/\zo~O ~x+c*d= Yo*zo' 

The 0 subscript indicates that no value substitutions can be 
made. Since Yo and Zo are general constants, any substitu
tion for x, c, d which satisfies (ii) will satisfy (i). Thus, for 
our purposes, (i) and (ii) are logically equivalent. In the 
PROVER system, an hypothesis of the form in (ii) is re
moved and added to the axiom list, leaving the basic theorem 
to be proved as 

(iii) x+c*d= Yo*zo. 

A key problem for synthesis proofs is existential infer
ence, as necessary to satisfy (iii). A natural deduction sys
tem will certainly require heuristic methods for guessing 
these inferences, which can then be checked for validity 
within its deductive framework. For instance, (iii) can be 
solved by term matching to get x=O, c= Yo, and d=zo as 
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the desired substitutions, which is easily shown to be valid 
by current formula manipulation and simplification systems. 

• The loop body code theorem is 

VyVzVcVd{c=l=O!\x+ c*d 

= y*z~3x'3c '3d'[x' + c '*d'= y*z!\c' <cn. 

Eliminating quantifiers yields 

(i) [c Q=I=O!\xQ + c Q*dQ= YQ*zQ ]~[x' + c '*d' 
= y Q * Z Q!\ c ' < c Q ]. 

The splitting heuristics of PROVER yield the subgoals 

(ii) [cQ=I=O!\xQ+cQ*dQ=YQ*zQ]~x'+c'*d'=YQ*zQ and 
(iii) [cQ=I=O!\xQ+cQ*dQ=YQ*zQ]~c'<cQ' 

which must be proved under the restriction that (ii) and (iii) 
must be satisfied by the same set of substitutions. 

The simplest solution to subgoal (iii) is c' = C Q - 1. Trying 
this in (ii) yields co*O!\xo+co*da=Yo*zo~x'+ 
cQ*d' -d'= yo*zQ' Matching expressions across .. ~., gives 
xQ+cQ*do=x'+cQ*d'-d' as a necessary and sufficient 
condition for validity of (ii). A solution to this is x'=x+ do 
and d'=dQ. 

Example 2 indicates that heuristics similar to those pre
sented for second-order synthesis in Reference 5 will be 
helpful to a PROVER-like system. We are currently con
structing a PROVER-based synthesis system to use such 
heuristics. 

CONCLUSION 

A program P can be synthesized as a set of programs 
{P 1, . '.' , P n} so that the concatenation PI' ... , P n com
putes Fl" We have demonstrated that a satisfactory set 
{P 1, . • . , P 71 } exists such that each member has at most a 
single loop of the while-do form. Therefore, the synthesis 
of each Pi requiring a loop can be stated in terms of proving 
lemmas of the form of (4) and (5) (or (7) and (8» for each Pi' 

Any loop-free PiS can be directly synthesized from the form 
of (3) without the need for inductive proofs. If nested loops 
are desired, the synthesis can be performed hierarchically 

to expand operations considered primitive during higher
level synthesis. 

We have not addressed the problem of mechanically (or 
otherwise) arriving at a good decomposition and finding loop 
invariants and variant functions. It has, however, become 
part of the general lore of programming methodology that it 
is desirable for a programmer to perform such decomposi
tions before writing programs, and Dijkstra and others have 
recommended that the loop invariant and variant function 
be discovered by a programmer before he actually writes a 
program loop. Thus a successful synthesis system which 
operates from a specification of the decomposition and as
sociated loop invariants and variant functions is a very de
sirable goal. 
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Semantic similarity analysis-A computer-based study of 
meaning in noun phrases 

by LYNN L. PETERSON 
The University of Texas Health Science Center at Dallas 
Dallas, Texas 

INTRODUCTION 

The purpose of this paper is to present a method by which 
a computerized data base which contains phrases of natural 
language information can be created and interrogated in the 
semantic domain for multiple uses and users. The method 
takes into account both the individual user's needs and con
cepts of similarity in meaning of textual material represented 
by the stored data. The method is applicable to arbitrary 
bodies of natural language text which occur in the syntactic 
format of the noun phrase. The method was developed and 
tested, however, using noun phrases of medical text since 
its capabilities are directly applicable to needs in that area. 

Data base containing medicaL text 

Ways of dealing with a data base which contains natural 
language information from medical text warrant examina
tion because of the nature of medical records. There are 
several objectives the medical recording process should ful
fill. 1 The first and most important in the present usage is to 
serve as a self-reminder for the responsible physician. How
ever, in the modern hospital, the medical record has an 
equally important task-it is the primary channel of com
munication between many individuals working together as 
a team. In either case, computer-based files of patient data 
are generated and maintained first and foremost to improve 
health care delivery for the benefit of the patient. The same 
files should also be available for retrieval of that part of the 
patient information useful and accessible for research and 
educational purposes. 

Integral parts of these files of medical records are non
numeric and best expressed as natural language, e.g. admit
ting diagnosis, operative procedures, etc. In fact, compo
nents of a problem-oriented medical record are normally 
expressed as noun phrases using large vocabularies. 2 The 
non-numerical component of the medical record serves the 
function of interpretation of the numeric data, as wen as the 
recording of observations and the communication among 
medical staff. 3 As such, this natural language component of 
the stored data needs to be handled appropriately. 

The simple noun phrase is the construct of which the vast 
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majority of entries in a problem-oriented medical record are 
compose-d. 4Jt is theref-Ofe-appropriate that the simpl~_no!!n __ _ 
phrase serve as the focus of attention in the consideration 
of a procedure which would be applicable to a data base 
containing medical text. 

A data base of medical information will characteristically 
be created and interrogated for multiple uses and users. This 
requires a procedure for semantic analysis which can deal 
accurately with the meaning of words and the relationship 
between words, and can recognize and use the distinction 
between synonyms and near-synonyms. According to Pratt, 
in medicine, the distinction between synonyms and near
synonyms is important for the proper interpretation of the 
medical record, and remains one of the major problems 
which will have to be resolved to produce effective systems. 5 

Presently we can make things that mean the same thing 
fall together; we wish to be able to recognize when things 
mean nearly the same thing, to quantify this semantic near
ness in a meaningful and useful way, and to use this knowl
edge to aid in the retrieval from the dc~.ta base of semanti
call y -related information. 

IndividuaL concept of similarity 

A basic premise of this approach is that similarity in mean
ing between two pieces of medical text is not an absolute 
notion. On the contrary, this approach recognizes that (a) 
one user's concept of similarity may differ from that of 
another user, i.e., things may not mean the same thing to 
two different people, and (b) an individual user's interests 
may differ from one retrieval request to another. At one 
time a user of the data base may wish to retrieve all those 
records which contain the same operative procedure ignor
ing all differences in other areas, i.e., similarity sufficient to 
retrieve requires an exact match on operative procedure and 
ignores differences in, say, topography. At another time, 
however, the user may care very much what anatomical 
area is involved, i.e., similarity of records will require the 
involvement of an anatomical area close to the one specified. 
Thus, by applying different weightings, sets of records can 
be grouped into different "semantic subspaces," stressing 
or ignoring features based on their perceived importance to 
the user. 
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SEMANTIC SIMILARITY ANALYZER 

To address the objective of permitting a data base con
taining noun phrases of text to be created and interrogated 
for multiple uses and users, a Semantic Similarity Analyzer, 
SSA, was constructed. Significant features of the system are 
highlighted. 

M I:.AN INGI:.X-based sJ'stem 

The system called MEANINGEX, developed by Mishel
evich in 1970,4 takes the simple noun phrase and performs 
on it a "semantic analysis." This semantic analysis is com
posed of (a) a lexical phase in which each input word or 
term is recognized and then mapped to a standard term and 
a part of speech, (b) a syntactical phase in which the head 
term or main noun is identified, the remaining terms are 
treated as adjectives, and (c) a semantic parse, or "sparse," 
phase in which a tree is constructed with the head term as 
root and the structure of the remainder of the tree deter
mined from entries in a "tree directory" for the head term 
and its modifiers. The sparse phase is generative of semantic 
information in that entries in the tree directory supply re
lated and relevant terms which are not physically part of the 
normalized text. 

As an example, let us consider the simple noun phrase 

MODERATELY SEVERE PNEUMOCOCCAL 
ARTHRITIS OF THE LEFT KNEE. 

The normalized text produced by the lexical and syntactical 
phases 

SEVERE,ACUTE,PNEUMOCOCCUS,LEFT,KNEE 
ARTHRITIS. 

is produced by using a lexicon whose relevant section is 
shown in Figure I. The section of a tree directory which 
shows the relationships among the head term in this phrase 
and its modifiers is shown in Figure 2, where two types of 
terms on next node are indicated: 

(a) An inclusive node in which all the terms are used. 
(b) A selector node. indicated by the *, in which only one 

of the choices is selected. 

The tree generated by MEANINGEX from the phrase of 
normalized text is then shown in Figure 3, where levels of 

TERM 

MODERATELY SEVERE 
SEVERE 
PNEUMOCOCCUS 
PNEUMOCOCCAL 
ARTHRITIS 
ARTH. 
ACUTE 

STANDARD TERM PART OF SPEECH 

SEVERE 
SEVERE 
PNEUMOCOCCUS 
PNEUMOCOCCUS 
ARTHRITIS 
ARTHR IT IS 
ACUTE 

ADJ 
ADJ 
ADJ 
ADJ 
NOUN 
NOUN 
ADJ 

Figure I-The section of the lexicon dealing with "arthriti<;" in tht' Origimll 

MEANINGEX. 

TREE DIRECTORY TERM 

ARTHRITIS 

BACTERIAL 

DEGREE 

DURATION 

ETIOLOGY 

INFECTIOUS 

INFLAMMATION 

JOINT 

JOINTNAME 

LOCATION 

SIDE 

TERMS ON NEXT NODE 

JOINT 
INFLAMMATION 
*GONOCOCC US 
*MENINGOCOCCUS 
*PNE UMOCOCC US 
*MILD 
*MODERATE 
*SEVERE 
* AC UTE 
*SUBACUTE 
*CHRONIC 
*INFECTIOUS 
*OSTEO 
*RHEUMATOID 
*BACTERIAL 
*VIRAL 
DEGREE 
DURATION 
ETIOLOGY 
LOCATION 
JOINTNAME 
SIDE 
*SHOULDER 
*FINGER 
*HI P 
*KNEE 
*TOE 
*POLY 
*JOINT 
*CAVITY 
*ORGAN 
*LEFT 
*RIGHT 
*BOTH 

Figure 2-The section of the tree directory dealing with ""arthritis" in the 
Original MEANINGEX. Two types of nodes, depending on the terms on the 
next node, are indicated: an inclusive node in which all terms are used and 
a selector node (indicated by *) in which only one of the choices is selected. 

ARTHRITIS= 
JOINT= 

JOINTNAME= 
KNEE= 

NULL= 
SIDE= 

LEFT= 
NULL= 

INFLAMMATION= 
DEGREE= 

SEVERE= 
NULL= 

DURATION= 
NULL= 

ETIOLOGY= 
INFECTIOUS= 

LOCATION= 

BACTERIAL= 
PNEUMOCOCCUS= 

NULL= 

JOINT= 
JOINTNAME= 

KNEE= 
NULL= 

SIDE= 
LEFT= 

NULL= 
Figure 3-The sparse tree in the Original MEANINGEX for the phrase 
MonFRATEl Y SEVERE PNEUMOCOCCAL ARTHRITIS or THE 

LEFT KNEE. 



indentation indicate levels of hierarchy. The tree constitutes 
the primary output from the MEANINGEX semantic ana
lyzer. From the tree, a linear string of the nodes of the tree 
can be constructed by reading the tree bottom up. The string 
of nodes, which can then function as descriptors or keys for 
information retrieval, is as follows from the current example: 

INULL/LEFT/SIDE/NULL/KNEE/JOINTNAMEI 
JOINT/LOCATION/NULLIPNEUMOCOCCUSI 
BACTERIALIINFECTIOUS/ETIOLOGY/NULLI 
DURATION/NULLISEVERE/DEGREEI 
INFLAMMATION/NULL/LEFT/SIDE/NULLI 
KNEE/JOINTNAME/JOINT/ARTHRITISI 

Obviously, then, the information which determines the 
resultant semantic parse of a piece of medical text via 
MEANINGEX is found primarily in the tree directory. Ad
ditionally, however, a synonyms list is made available to 
MEANINGEX showing terms to be considered to have a 
meaning equivalent to that of a term already recognized, 
and an implications list is included to indicate how the pres
ence of one or more recognized terms, Boolean fashion, 
implies the presence of another term. The generative prop
erties of the semantic parse come about as a result of the 
semantic information imbedded in the tree directory and the 
synonyms and implications lists. 

The original MEANINGEX system was implemented in 
1970 in assembly language for the CDC 3300 computer at 
The Johns Hopkins University. Published material6- 9 indi
cates that the system was applied to semantic analysis of 
medical records and to bibliographic indexing, but the ap
proach to semantic analysis was sufficiently general to admit 
other applications. Retrieval aspects were not addressed by 
the originai MEANINGEX per se, but the iinear string of 
descriptors generated by MEANINGEX was in the proper 
format for processing by the generalized data management 
system in use at Johns Hopkins. 

In 1976 a new MEANINGEX system was implemented 
on the DECsystem-IO computer by Steve Bush at The Uni
versity of Texas Health Science Center at Dallas 
(UTHSCD). The concept and functional description are the 
same as those of the original MEANING EX but the new 
computer system is interactive and has added several fea
tures which increase its usefulness in the study of generated 
meaning. It was implemented primarily in the FORTRAN 
language, using in addition some well-documented macro
string manipulation routines, adding a measure of trans
portability to the MEANINGEX system. 

The new MEANINGEX, called UTHSCD MEANIN
GEX, preserves the basic concepts of the original MEAN
INGEX system. The domain of semantic interest, i.e., the 
set of terms used in the natural language phrases to be 
considered together with the relationships among the terms, 
is specified by the input lexicon, implications list, and syn-· 
onyms list. However, in the new system, this information 
can be entered from the keyboard or from a file. Further
more, additions can be made to the implications and syn
onyms list from the keyboard, adding a dynamic aspect to 
the management of this information. Figure 4 shows the list 
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@COMMENT 

PORTION OF LEXICON DEALING WITH ARTHRITIS 

@LEXICON 

ARTHRITIS == JOINT INFLAMMATION 

BACTERIAL ==* GONOCOCCUS MENINGOCOCCUS PNEUMOCOCCUS 

DEGREE ==* MILD MODERATE SEVERE 

DURATION ==* ACUTE SUBACUTE CHRONIC 

ETIOLOGY ==* INFECTIOUS OSTEO RHEUMATOID 

INFECTIOUS ==* BACTERIAL VIRAL 

INFLAMMATION == DEGREE DURATION ETIOLOGY LOCATION 

JOINT == JOINTNAME SIDE 

JOINTNAME ==* SHOULDER FINGER Hip KNEE tOE POLY 

LOCATION ==* JOINT CAVITY ORGAN 

SIDE ==* LEFT RIGHT BOTH 
Figure 4--The section of a lexicon dealing with "arthritis" in the form for 
input to UTHSCD MEANINGEX. The presence of the * indicates a selector 

node as in Figure 2. 

of statements used to convey to UTHSCD MEANINGEX 
the same specifications shown in Figure 2 for the "arthritis" 
example of the original MEANINGEX. 

The SSA utilizes the semantic analysis procedures of 
UTHSCD MEANINGEX and thus also makes use of the 
input scheme shown in Figure 4. A tree directory can be 
output by the SSA in a graphic form shown in Figure 5 
which is then available for study, elaboration and correction. 
The tree of knowledge represents a composite view of the 
terms and hierarchical relationships active in the domain 
under consideration. The display itself opens for study the 
details of construction of such a hierarchical directory for 
a specific domain. 

Context weightingsluser profiles 

Fundamental to the understanding of semantic similarity 
is the notion that the meaning of a phrase may differ from 
individual to individual or even within an individual as times 
or purposes differ. In order to permit differing values of 
importance or interest to be attached to terms in the vocab
ulary in a domain of semantic interest, the facility of context 
weightings is used. 

The SSA allows a user of the system to associate with 
each term in the tree directory a numerical value represent
ing its weight. In some situations, weights are actually as
signed by the user to all or only some of the terms in the 
domain with weightings for the remaining terms derived by 
inheritance from parent nodes to which weights were as
signed. All weights are determined by the user input and the 
placement of terms relative to others in the tree representing 
the domain, i.e., the context, so the weights are called "con
text weights." The entire set of weights then, in a sense, 
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Figure 5-The section of the tree directory dealing with "arthritis" utilizing display techniques of the SSA. 

represents the user's notions of importance of or interest in 
the terms. For this reason, the set of weights together with 
a short narrative description of the set is called a "user 
profile. " 

Numerous methods of specifying weights have been con
sidered during the development of the SSA and two general 
methods are in use now. The methods fall into the general 
categories of explicit weighting, or direct generation of the 
weighting set, and implicit weighting, or generation of the 
set of weights from general information presented to the 
system by the user. 

Explicit lI'eighting 

The most straight-forward method of generating a weight
ings set is to have the user explicitly provide the numerical 
weights to be used. In this method of generating a set of 
context weightings, the user will actually traverse the tree 
directory for the entire domain of semantic interest by means 
of an interactive display. Each node is displayed in turn, 
showing its already established context weight and the 
names of each of its subnodes. The user is then asked to 
enter a weight for each of the subnodes. Thereafter the 
context weight for each node is the product of the context 
weight of its parent node and the user-entered weight. By 
this means, context weights are generated for all nodes in 
the tree directory. As an example, consider a situation in 
which a user is interested in those childhood illnesses usually 
accompanied by a rash. Within this context, then, we will 
wish to carry out the retrieval of those strings similar in 
meaning to a reference string. To create this context via a 
weightings set, a dialog such as that shown in Figure 6 would 
ensue. The result of this dialog is the establishment of a set 
of context weights and a narrative description of the set. 
represented thereafter by the user profile "RASH." 

However, some drawbacks to explicit weighting do exist. 
The method does require the user to interact with the SSA 
via a terminal for a significant period of time before even 
the simplest retrieval can be tried, if he wishes to use his 
own user profile. However, it is true that the unit weight 
option can always be selected, that is. all weights can be 

*****NOW TO SET UP CONTEXT WEIGHTINGS 
TYPE (D) TO DO (CONSTRUCT) A SET OF WEIGHTS 

(U) TO USE UNIT WTS ON ALL TERMS 
(G) TO GET (USE) AN EXISTING WEIGHTING SET:D 

WANT FULL DISPLAY PLUS RECAP?:NO 
**NODE:CHILDHOOD ILLNESS -- WT= 

TYPE 
DEGREE 
SYMPTOMS 

ENTER WT FOR EACH TERM 
TYPE : 2 
DEGREE :1 
SYMPTOMS : 1 

*-NODE: SYMPTOMS WT= 
SWOLLEN PAROTID GLANDS 
FEVER 
COUGH 
RASH 
VOMITING 
CONJUNCTIVITIS 
LYMPHADENOPATHY 

ENTER WT FOR EACH TERM 
SWOLLEN PAROTID GLANDS :0 
FEVER :0 
COUGH : 0 
RASH :10 
VOMITING : () 
CONJUNCTIVITIS :0 
LYMPHADENOPATHY :0 

*-NODE: DEGREE WT= 
MILD 
MODERATE 
SEVERE 

ENTER WT FOR EACH TERM 
MILD : 1 
MODERATE :2 
SEVERE :1 

*-NODE: TYPE WT= 2 
MEASLES 
MUMPS 
CHICKEN POX 
RUBELLA 
SCARLET FEVER 
WHOOPING COUGH 

ENTER WT FOR EACH TERM 
MEASLES : 10 
MUMPS : () 
CHICKEN POX :10 
RUBELLA :10 
SCARLET FEVER :0-
WHOOPING COUGH :0 

STORE THIS WT SET UNDER USER PROFILES?:YES 
TYPE USER PROFILE: RASH 
SHOULD THIS REPLACE-XW-EXISTING PROFILE:NO 

Fig1lff' f>-ni~l()g eri~,ling 1~ the SSA ;~ 115('d to create a wcightings set via an 
explicit \veighting procedure. l'ser responses are underlined. 



assigned the value 1. Also, certain user profiles are provided 
in the SSA system for illustration. Secondly, this method 
requires the user to "'pick numbers out of the air" to assign 
as weights, to actually enter numeric values, a task which 
may be unpleasant to some users. So the explicit weighting 
method has not been felt to be entirely successful in provid
ing a way for a user to generate a user profile. 

Implicit weighting via profile-capturing 

The difficulties encountered in explicit weighting have led 
to a second method which involves an implicit determination 
of the numerical weights and the terms to which the non
unit weights should be assigned. Methods of implicit deter
mination of weights have been utilized in a variety of theo
retical and practical settings, and have been referred to by 
the general title "policy capturing." An admittedly sexist 
yet easily understood illustration of "policy-capturing" can 
be seen in the fable of the king who, once upon a time, 
decided to select a harem larger than King Solomon·s ..... 

So the word went out, and soon thousands of young girls 
were arriving from the various provinces to seek the king's 
approval. 

Early one morning the king began his selection process. 
As each girl filed by, he looked her over carefully and 
then expressed his judgment. 

"Excellent!" he would say. "This one is very pleasing to 
my eye." Or perhaps he would hum and haw with inde
cision. Many times he would show his disapproval in no 
uncertain terms. "Never!" he would say. "'Pass on! Pass 
on!" 

In each instance, the Court Recorder attempted to quan
tify the king' s degree of approval by checking the appro
priate level on a nine-point scale which had been devised 
especially for the occasion by the Chief of the Royal 
Psychometricians. 

By suppertime the king had considered some 300 girls. 
His eyes and his imagination were beginning to tire. 

"Most High First Counselor," he said, "you've been 
watching me all day, and by now you should know my 
likes and my dislikes. I've decided to leave the selection 
of my harem in your hands. But take care! If your choices 
do not please me, it will be your head!" 

After the king retired, the Most High First Counselor 
summoned the Chief of the Royal Psychometricians, ''I'm 
passing the job on to you," he said. "If you fail to please 
the king, your head will roll along with mine." 

The Chief of the Royal Psychometricians called his staff 
together and explained the situation. 
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"'We must not fail," he said, "or it will be all of our 
heads. " 

"How shall we proceed'?" asked one of the young staff 
members who was fresh out of the Royal Academy. 

"Well," responded the Chief, "we know how the king 
rated the first 300 girls. Right?" 

"Right!" 

.. And we can see everything the king saw when he looked 
at the girls. Right?" 

"Right!" 

"Then all we have to do is to uncover the characteristics 
considered by the king and determine how he weighted 
them in his judgment. .... HI 

The point was to use the knowledge or approximation to the 
knowledge of how the process was carried out to continue 
to carry out the process. Since the goal of utilizing a policy
capturing technique in the SSA is the determination of a 
"user profile," the general technique of determining a pro
file in this implicit way is called "profile-capturing."' 

Several profile-capturing methods were tried for use in 
the SSA. The method currently used makes use of the ca
pabilities of MEANINGEX to process a natural language 
phrase. Phrases are elicited from a user in response to one 
or more questions about what the user is or is not interested 
in. In each of these phrases, the MEANINGEX analysis 
determines the terms which should be weighted, with the 
actual weights being assigned by the SSA relative to a user
selected maximum weight. A sample profile-capturing dialog 
is shown in Figure 7. 

It appears that in practice the profile-capturing method of 
weight determination may not provide enough ability to dis
criminate between sets of records which are intended to fall 
in different "semantic subspaces." It may be in practice 
that some combination of profile-capturing as a first cut and 
explicit weighting for finer discrimination will become the 
weighting method of choice. 

Similarity measures 

The determination of the semantic similarity of a pair of 
natural language strings in the SSA basically involves the 
application of a type of function called a "similarity meas
ure" to a pair of vectors representing the semantic charac
teristics associated with each of the natural language strings. 
The semantic characteristics relevant in any application of 
a similarity measure to a pair of strings are the terms or 
nodes of the smallest tree generated by the MEANINGEX 
semantic analyzer which still includes the meanings con
tained in both phrases. Since MEANINGEX is generative 
of semantic information, the full context surrounding the 
meaning of both phrases is included in the set of semantic 



1068 National Computer Conference, 1979 

*IIIINOW TO SET UP CONTEXT WEIGHTINGS 
H[HLP),U[UNIT),C[CHNG),D[DO),S[STOR),G[GET),P[PRO),R[RTN):P 
TO DESCRIBE YOURSELF AS A USER OF THE SSA, -

TYPE PHRASE DESCRIBING WHAT TERMS 
YOU ARE MOST INTERESTED IN 

II'M INTERESTED IN THE RESPIRATORY SYSTEM 
TERMS SELECTED FOR WEIGHTING ARE: -----

RESPIRATORY OK?(YES,NO,SEE 
DETAILS):SEE DETAILS 
TO DESCRI~YOURSELF AS A USER OF THE SSA, 

TYPE PHRASE DESCRIBING WHAT TERMS 
YOU ARE MOST INTERESTED IN 

·RESPIRATORY SYSTEM 
Tree = 
ORGAN SYSTEM 

OS2 
RESPIRATORY 

*UNKNOWN 
TERMS SELECTED FOR WEIGHTING ARE: 

RESPIRATORY OK?(YES,NO,SEE 
DETAILS) : YES 
ENTER MAXIMUM WEIGHT: 
5 
ANYTHING ELSE TO TAKE INTO ACCOUNT?(YES,NO):YES 

TYPE PHRASE WHICH DESCRIBES WHAT TERMS 
YOU'RE ALSO INTERESTED IN 

*INFLAMMATION OR NECROSIS 
TERMS SELECTED-rOR WEIGHTING ARE: 

NECROSIS 
INFLAMMATION OK?:YES 

ANYTHING ELSE TO TAKE INTO ACCOUNT?(YE~O):NO 
ANYTHING YOU DON'T WANT TO HEAR ABOUT?(YES,NQ):YES 
TYPE PHR.~SE I)ESC~!!3ING Wl·!.~'!' '!'E~~S -

YOU DON'T WANT TO HEAR ABOUT 
*DON'T CARE ABOUT PARASITIC INVOLVEMENT 
TERMS SELECTED FOR WEIGHTING ARE: 

PARASITIC OK?:YES 
ANYTHING YOU DON'T WANT TO HEAR ABOUT?TYES,NO):NO 
WANT TO DO MORE WITH WEIGHTS?:NO --

Figure 7-Sample profile-capturing dialog which results in a weightings set 
in which the term "respiratory" and all terms below it in the tree (all its 
subnodes and sub-subnodes) are assigned a maximum weight-in this case, 
5. Secondly the terms "necrosis" and "inflammation" and all terms below 
them in the tree are assigned a weight of approximately one-half the maximum 
value-in this case, 2. Finally, the term "parasitic" and all terms below it 
are assigned a weight of 0, to decrease in importance any phrase which 
contains a component of meaning in this area. Weighting of all terms in the 

tree directory not affected by these phrases remains at I. 

characteristics used to construct the vectors. The elements 
of the vectors forming a pair are then 0 or 1 depending on 
the presence or absence of each semantic characteristic as 
part of the generated tree for the phrase it represents. Cer
tain terms are considered to be "structural" nodes while 
most are "content" nodes, carrying meaning; an element of 
the vector wiII always be 0 if the corresponding term is a 
structural node. It is on vectors constructed in this way that 
the similarity measures operate. 

The class of similarity measures in use can be character
ized as correlation measures, as indicators of the interde
pendence of the semantic characteristics of the two strings. II 
We do not claim or require that these functions measure the 
similarity of the two strings in an absolute sense but serve 
as indicators of the association in meaning between the two 
strings. 

The specific similarity measures currently in use in the 
SSA are derived from some of those most extensively used 
in bibliographic retrieval according to Salton!2,13 In some 
cases, a weighting scheme has been imposed on a familiar 
similarity measure to yield a measure more appropriate to 
the needs of an individual user or a specific type of retrieval 
request. The form of several of the similarity measures is 
shown in Figure 8. 

For each retrieval request. a determination is made of 

similarity between an input string and the set of stored 
strings using a similarity measure chosen from the set of 
built-in similarity measures. A stored string is then retrieved 
if the calculated similarity index is sufficiently high, that is, 
exceeds a threshold value which is specified by the user 
based on the selected function and the degree of interde
pendence required. 

Some of these functions have proven more useful than 
others in similarity determination based on subjective no
tions of similarity. As utilization of these functions proceeds, 
it is anticipated that additions and changes will be made to 
the set of similarity measures built into the SSA, working 
toward enhancing their utility. However, it is not anticipated 
that a selection of the "best" function would ever be made. 
The use of anyone function in retrieval or comparison 
studies obviously depends on what the user wishes to con
sider as the criteria for similarity determination. Hence it is 
the philosophy of the SSA to present the features of func
tions which accomplish similarity determinations based on 
a variety of criteria and let the user select the one or ones 
which best meet the current needs. 

Structure of the semantic similarity analyzer 

The structure of the SSA containing the features just de
scribed is shown in the diagram in Figure 9. The SSA System 
code and Reference Manual are available on request. 

Function 111 

L wt ( i) • v 1 (i) * v2 ( i) 

Function 112 

where v1 (j) = 1 - v1 (j) is the complement of v1 (j) and N is 

the number of elements in the vector. 

Function '3 

Lwt( i) *v1 (i) *v2 (i) 

Lwt( i)*v1 (i) + Lwt( i)*v20) - Lwt(i)*Vl( i)*v2( i) 

Figure S-Several similarity measures used in the SSA. In each case, VI and 
V2 are binary vectors representing the semantic characteristics associated 
with each of the natural language strings, WT is the vector of weights, and 
the summation is over all elements of the vector. Function # I is a weighted 
vector product representing the sum of the weights of the characteristics 
occurring in both natural language strings. Function #2 is the unweighted 
function which counts the numher of matching pffl)"erties divided hy the total 
number of such characteristics. Function #3 is a weighted normalized meas-

ure. 
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Figure 9-System Components of the SSA System 

EXAMPLE OF SEMANTIC SIMILARITY ANALYSIS 

The Division of Veterinary Pathology within the 
UTHSCD Department of Pathology handles the examination 
and analysis of animals and animal tissue from laboratory 
specimens and animals brought to the Health Science Center 
from other sources. This environment obviously generates 
a great deal of data, much of which is descriptive and is best 
handled in natural language form. Because of the need for 
effective recording of the procedures in the Animal Disease 
Laboratory and because of the teaching function which 
stems from the Division·s affiliation with the Southwestern 
Medical School, a record-keeping system for Veterinary Pa
thology records which will allow effective information re
trieval is essential. 

A Veterinary Pathology Record Retrieval System is being 
developed to collect specified data items, to produce reports 
for the investigators from whom the animal material came, 
and to provide for the storage of appropriate information. 
Much of the data to be handled in the system is in the form 
of noun phrases of natural language form. Obviously, one 
of the primary considerations in the design of the system is 
the handling of this natural language data. 

The application of the SSA to this data is to be independ
ent though parallel to the development of a workable storage 
and retrieval system for Veterinary Pathology records. 
However, the consideration of the retrieval problem for this 
data base using semantic similarity techniques can poten
tially provide the conventional retrieval s~'stem being de
veloped with the benefit of experience if not also techniques 
for the handling of the data being stored. 
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We have defined the domain of semantic interest in this 
case to be the lesion description which occurs in natural 
language form in UTHSCD Animal Disease Laboratory Re
ports. The phrases actually used to describe lesions are in 
a rather stylized format illustrated by several examples: 

MAMMARY GLAND: FIBROSIS AND CYSTIC 
HYPERPLASIA 

LUNG: BRONCHIOLAR HAMARTOMA 
LUNG; FOCAL GRANULOMATOUS PNEUMONIA 

The phrases in general describe a lesion by giving informa
tion regarding the organ or organ system affected, the dis
ease process or lesion type involved, and possibly the le
sion· s cause or etiology. They are treated merely as natural 
language phrases and the SSA does not make use of the 
structured nature of the phrases. The vocabulary consists of 
the list of all terms recognized as being meaningful in de
scribing the lesions, or contributing information regarding 
the organ system, lesion type or etiology. 

As a first look at how well phrases describing lesions were 
being handled, a set of phrases from randomly chosen An
imal Disease Laboratory Reports were processed by the 
SSA. In this case, the processing consisted of the storing of 
the phrases for later retrieval. Part of the storing process is 
the generation of the "tree" for that phrase, like the one 
seen for the arthritis example, which is normally displayed 
on the terminal screen. The user is then invited to review 
the tree to determine if the major components of meaning 
are represented. If not, the user can respond by making 
additions to the synonyms or implications list and then re
turning to re-store the tree. If all major concepts are present, 
the user can indicate acceptance of the siring. The string 
and generated tree which is stored is shown by the following 
example. 

* * * * * * * * 
MAMMARY GLAND: ADENOCARCINOMA 

LESION TYPE 
NEOPLASIA 

ADENOCARCINOMA 
ORGAN SYSTEM 

OS} 
GENITAL 

GENI 
MAMMARY GLAND 

A review and modification of the ·'tree directory" was 
part of a planned iterative process. However, at some point 
the ·'tree directory·' must be fixed and other changes han
dled via the implications and synonyms capabilities until a 
full-scale revision of the lexicon is undertaken. By such an 
iterative process, it is possible to "teach" the system details 
of the vocabulary and the relationships it should recognize 
and utilize. 

Once the vocabulary and set of relationships were estab
lished, the system was given a set of 65 natural language 
phrases taken from the lesion description section of ran
domly selected Animal Disease Laboratory Reports from 
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which to build a data base. Sample retrievals from this data 
base demonstrate the differing retrievals resulting from dif
fering specifications of conditions such as user profiles. 
Given the reference string 

ACUTE INFLAMMATION OF THE LUNG 

the SSA was asked to find and type out all strings in its data 
base similar to the reference string, in the sense defined by 
the conditions set at the time retrieval was initiated. The 
results showed that the SSA runs efficiently on the DEC
system-IO, processing the storage of strings in this domain 
in from 0.8 to 1.0 CPU seconds and handling a retrieval 
request from this data base yielding three to seven strings 
in 2.0 to 2.5 CPU seconds. For this reference string, the set 
of strings retrieved differed as the choice of retrieval func
tion changed, as was to be expected. In particular, for a 
function which focused on the occurrence of matching con
cepts in the pair of phrases, the pattern of retrieval was 

all equal/.v Rood matches 
LUNG: FOCAL GRANULOMATOUS 

PNEUMONIA 
LUNG: MODERATE SUPPURATIVE 

PNEUMONIA 
LUNG: MILD BRONCHOPNEUMONIA 
LUNG: INTERSTITIAL PNEUMONIA, 

MODERATE 

For functions which penalize the similarity index values for 
mismatches, the pattern changes to show: 

best match 
LUNG: INTERSTITIAL PNEUMONIA. 

MODERATE 
next best matches 
LUNG: FOCAL GRANULOMATOUS 

PNEUMONIA 
LUNG: MILD BRONCHOPNEUMONIA 
also good matches 
LUNG; MODERATE SUPPURATIVE 

BRONCHITIS 
LUNG: PULMONARY EDEMA 

Secondly, a consideration of a single function as user pro
files change shows the way in which the weighting system 
operates in carrying out weighted retrieval. Utilizing a 
weighted vector product measure, Function # I in Figure 8, 
and a weighting system in which all weights are one results 
in the retrieval of the strings 

best match 
LUNG: ACUTE EDEMA AND 

HEMORRHAGE WITH BACTERIAL INVASION 
next best matches 
LUNG; FOCAL GRANULOMATOUS 

PNEUMONIA 
LUNG; MODERATE SUPPURATIVE 

PNEUMONIA 
T ,f rNG: MILD BRONCHOPNEUMONIA 
LUNG; INTERSTITIAL PNEUMONIA, 

MODERATE 

However, using a weighting profile which assigns a weight 
of five to "bacterial etiologic agent," a weight of two to 
"inflammation," a weight of zero to "non-bacterial etiologic 
agent'· results in the retrieval of the strings just shown with 
the addition of the following strings as additional good 
matches: 

TRACHEA; MILD SUPPURATIVE TRACHEITIS 
TRACHEA; NONSUPPURATIVE 

TRACHEITIS, MODERATE 

representing inflammations of another part of the respiratory 
system. 

What is retrieved in a request to find all strings similar to 
a given string is dependent on what is important to a user 
of the system and how the user wishes the retrieval function 
to operate. A user-responsive, functionally directed retrieval 
technique as part of a system which admits natural language 
input can therefore be applicable to a real situation. 

Hence, in the Semantic Similarity Analyzer, it appears we 
have a system which meets the overall objective of permit
ting a data base containing phrases of natural language in
formation to be created and interrogated in the semantic 
domain for multiple uses and users. The system is being 
applied to the Veterinary Pathology Record Retrieval Sys
tem currently under development at UTHSCD, and the use
fulness of the technique in practice will continue to be eval
uated in this setting. 

REFERENCES 

I. Barnett, G. 0., R. A. Greenes and J. H. Grossman, "Computer Pro
cessing of Medical Text Information," Methods In! Med., Vol. 8, No. 
I. 1969, PI'. !77-182. 

2. Weed, L. L., "Medical Records that Guide and Teach," N. Eng. 1. 
MEd .. Vol. 278, 1968, pp. 593-600, pp. 652-657. 

3. Wong, R. L., and P. Gaynon, "An Automated Parsing Routine for Di
agnostic Statements of Surgical Pathology Reports," Methods In! Med., 
Vol. 10, 1971, pp. 169-175. 

4. Mishelevich, D. J., "A Computer-Based Semantic Analyzer for Noun 
Phrase Statements with Examples from Medical Text," Ph.D. Diss., The 
Johns Hopkins University, Baltimore, MD, 1970. 

5. Pratt, A. W., M. G. Pacak, M. Epstein and G. Dunham, "Computers 
and Natural Language," 1. Clin. Comput., Vol. 3, 1973, pp. 85-99. 

6. Mishelevich, D. J., .. MEANINGEX-A Computer-based Semantic Parse 
Approach to the Analysis of Meaning," Proc. AFlPS NCC, Vol. 39, 
AFIPS Press, Montvale, NJ. 1972, pp. 271-280. 

7. Mishelevich, D. J., "Computer-Based Semantic Analyzers," Int. 1. Com
put. Inf. Sci., Vol. I, No.3, 1972, pp. 267-286. 

8. Mishelevich, D. J., "Semantic Analysis of Medical Records," Bio-Med. 
Comput., Vol. 3, 1972, pp. 163-179. 

9. Mishelevich. D. J .. "The Application of the MEANINGEX Semantic 
Parse Analysis to Bibliographic Indexing," in Adv. Cybernetics Sys, J. 
Rose (ed.), Gordon and Breach Sci. Pubs., Inc., New York, 1973, pp. 
309-317. 

10. Christal, R. E., "Selecting a Harem-and Other Applications of the 
Policy-Capturing Model," 1. Exp. Educ .. Vol. 36. No.4. 1968. pp. 35-
41. 

II. Kendall, H. G .. and A. Stuart, The Advanced Theory of Statistics, Vol. 
II, 3rd edition, Hafner Publishing Co., New York, 1973. 

1'] Salton, G "Altf('matic Informati,)11 OrguJli<..ulitJl/ <lIiu' Rt:'Irit:vll/. McGraw
Hill. New York, 1%8. 

13. Salton. Goo "Automatic Text Analysis," Sdcl7('f;" Vol. ~68. 1970. pp. 335-
343. 



Heuristic control of design-directed program 
transformations 
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INTRODUCTION 

This paper describes a class of semantic source-to-source 
program transformations called design-directed program 
transformations (DDPT) for use in a transformational imple
mentation (TI) approach to programming. A methodology is 
developed for applying such transformations based on sym
bolic evaluation and experimental computation of programs. 
A DDPT is a cognitive model of source-to-source transfor
mations; it knows what it is trying to accomplish and con
tains a strategy of how to accomplish it. A DDPT is more 
than a syntactic pattern replacement rule; it is a semantic 

, program transformation which is intuitively closer to one 
that a good programmer would invoke in transforming his 
program. 

DDPTs are a natural extension to TI systems. 1,6,7,8.10,12,13 

The importance of a TI approach to programming has been 
made earlier, most notably by Balzer et. al. 1 In a TI envi
ronment, the user interactively constructs and modifies a 
program by applying "correctness-preserving" transforma
tions. Viewed as a programming methodology, this approach 
strives to relieve the user from worrying about the details 
of the actual implementation, thereby transforming his role 
to one of .. designer" and "optimizer," delegating the role 
of "implementer" to the TI system. 

To date, TI systems provide only syntactic transforma
tions. A syntactic transformation can usually be represented 
by a production-like pattern replacement rule of the form 
"LHS-pattern::>RHS-replacement-pattern.'· (LHS is left
hand side, RHS is right-hand side.) The user seLects a par
ticular rule. The TI system tries to match the LHS-pattern 
with a portion of the program to be transformed (called the 
target program). If successful, the RHS-replacement-pat
tern is substituted for the matched portion of the program. 

A DDPT is not so easily described as a syntactic replace
ment rule because the LHS and RHS patterns are not "one
to-one" with the statements in a programming language, 
i.e., they contain user-supplied descriptions of what the 
program fragment is doing such as "update," "put," etc. 
Further, the RHS-replacement-pattern cannot always be 
specified a priori. It is instead dynamically generated based 
on the interaction of the specific target program and the 
specific DDPT. Consequently, a DDPT is defined by I) an 
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input patlan whose language is semantically rich and 2) a 
procedure which derives instances of the RI:IS-replacement
pattern. This pattern instance encodes the underlying strat
egy of the transformation. In the next section, we give a 
detailed example of a DDPT definition called BYPASS
LOOP. 

What distinguishes the DDPT method from the more syn
tactic approach is 1) the goal-directedness of a specific 
DDPT (e.g., "bypass" a looping computation if possible), 
2) the nature of the input pattern (e.g., pattern elements 
contain descriptive annotations such as "update," "put," 
etc.) and 3) the synthesis of replacement program fragments 
which when substituted into the program, achieve the over
all goal of the transformation (e.g., bypass a loop for special 
cases). 

Considering only syntactic transformations leads to sev
eral operational difficulties. 1 They include I) Size-An enor
mous number of transformations exist. How can their num
bers be reduced? 2) Selection-How are transformations 
selected/accessed? 3) Control-How are transformations ap
plied, i.e., in what order should they be tried and how are 
they invoked? In this paper we show how these problems 
can be alleviated in some instances using DDPTs. 

Summar)' 

In the next section, we present several examples of de
sign-directed program transformations, and compare the de
sign-directed paradigm to a more traditional syntax based 
paradigm. In the third section we relate this work to others 
and in the fourth section we give our conclusions. 

DDPT EXAMPLES AND COMPARISONS 

I n this section, we define the steps of the transformation 
process. Based on these steps, and using detailed examples 
for illustration, we compare the syntax based pattern-re
placement rule paradigm with the design-directed paradigm. 

The process of manipulating a program can be factored 
into four steps. They are selection, matching, substitution 
and repLacement. A transformation "rule" is selected (either 
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automatically or by the user), and matched to a program 
fragment. If the match is successful, the variable portions 
of the matched part are substituted for the variable portions 
of the replacement pattern. Finally, the replacement pattern 
replaces the matched target program fragment. In the next 
two examples, we show how the DDPT approach extends 
each of these steps by making them more "computational" 
in nature. 

BYPASSLOOP DDPT 

This example illustrates how the DDPT method extends 
the matching and substitution processes. We first look at 
the syntactic approach. 

Consider the sequence of syntactic transformation rules 
necessary to transform the program fragment 

(a) while is;n do (b[i]:=b[i]+p>i«i-/); i:=i+/) 

into the program fragment 

(b) if p=O then i:=n+1 
else while is;n do (b[i]:=b[i]+p>l{i -I); i:=i + I). 

This transformation takes advantage of the special case for 
which the loop does no "significant" processing, i.e., for 
. 'p =0." Figure 1 defines six transformation rules, T 1 
through T6, to transform (a) into (b). 

In this approach, TI is applied to the target program (a) 
by matching the LHS-pattern of TI to (a). The result of this 
match is a list of (argument,value) bindings. e.g .. 

(A: (b[i]: =b[i]+ p*(i- 1)) 

Next, the value for A is substituted in the RHS-replace
ment-pattern. Note that the predicate "p =0" which is 
bound to R in the RHS-replacement-pattern must somehow 
be specified by the user. The RHS-replacement-pattern 
replaces the matched portion, producing a new program 
fragment to which T2 will be applied, etc. The program 
fragment (b) above is the result of applying TI through T6 
to (a). 

The problems inherent with this method are: 

I. The overall goal to "bypass the loop for the special 
case that the no computation path is taken," is com
pletely obscured by the details of invoking the correct 
sequence of applicable transformations. 

2. Six transformation rules are invoked in this case, but 
these six are not necessarily the only sequence of 
syntactic rules which would transform (a) into (b). 
How do we select the applicable ones, and how do we 
know which ones are available for selection? 

3. The user is completely responsible for the selection of 
a correct sequence-the system merely carries out 
each selection by matching the appropriate code seg
ment and accomplishing a straightforward replace
fnent. 

4. The user is also responsible for discovering properties 
of the program which might be derivable automatically 
by a more intelligent system, such as the predicate 
"p =0," and the action .. i: =n + 1" in the example 
above. 

In comparison, the design-directed approach has a single 
DDPT called BYPASSLOOP, whose strategy is to bypass 
a looping computation for the special cases in which the 
loop does no "significant" processing. 5 We call this strat
egy the abstract design of the DDPT. It is abstract in that 
it does not specify the "details" of the target program to 
which it applies. It does, however, specify the necessary 
constraints of the transformation. The abstract design spec
ifies that the target loop has a "no computation" path, but 
it does not specify the specific action sequences of that 
loop. This strategy is encoded as the procedure which 
generates the replacement program fragment for a DDPT. 

A DDPT is defined by giving: I) An input pattern, and 2) 
A replacement fragment constructor procedure which con
structs an incompletely specified replacement program frag
ment based on the given target program and the underlying 
strategy or goal of the transformation. It contains both 
COllcrete, or known actions and predicates and abstract or 
unspecified actions and predicates. The concrete parts are 
derived from the matched input pattern; the abstract parts 
are exactly those portions of the yet-to-be-transformed 
program which must be synthesized to achieve the overall 
goal of the transformation. 

For BYPASSLOOP, the input pattern is: 

do; (transient-updates I non-transient-updates); od 

where "do; ... ; od" is a pattern which denotes a looping 
computation, "(transient-updates I non-transient-updates)" 
is an alternation pattern which denotes one of two special
izations of "update." (A transient variable is one with a 
non-repetitive value structure, e.g., anon-array. Hence a 
transient-update is an assignment to a transient variable, 
e.g., i:=;+I.) Note that the input pattern for BPL is consid
erably more abstract than the patterns T 1-T6 in Figure 1. 

The BPL replacement fragment constructor procedure 
may informally be stated as: 

I. Let M be the matched portion of the target program 
and the input pattern. Let TV be the transient varia
bles, and NTV be the non-transient variables. Create 
a conditional statement such that: 
(a) The else branch is M 
(b) The true branch is TV: = F(TV), 
(c) The predicate condition is r 
~ "ifr then TV: = F(TV) else M' 

2. Define r to be exactly that abstract predicate which is 
true for the bypass path to be taken. That is, 
P{M}{F.>Pand r{TV: = F(TV)}Q. 

3. Define TV: = F(TV) to be those update actions which 
may be expressed as non-looping computations. For 
all x in TV. F(x) is the value x would h~vf," had on exit 
from the loop if the loop had executed. 
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RULES: 

Tl: P{A}Q => P{if R then A else A}Q 

T2: P{if R then A else B; C}Q => P{if R then A;C else B;C}Q 

T3: Partial evaluation, i.e., symbolic evaluation of the result of sub
stituting known values for variables, actual parameters for formal 
parameters in procedures, etc. 

T4: P{x:=x}Q => P{noop}Q 

TS: P{while R do if S then A else B}Q => 
P{if S then (while R do A) else (while R do B)}Q 
when S{A}S and S{B}S. 

T6: Computing linear relationships and values of variables. 

TRANSFORMATIONS: 

let target program fragment = while i<=n do (b[i]:=b[i]+p*(i-l);i:=i+l); 

=> Tl 

=> 
T6 

while i<=n do (if p=O then b[i]:=b[i] + p*(i-l) 
else b[i]:=b[i] + p*(i-l); 
i:=i+l ) 

while i<=n do (if p=O then (b[i]:=b[i] + p*(i-l);i:=i+l) 
else (b[i]:=b[i] + p*(i-l);i:=i+l» 

while i<=n do (if p=O then (b[i]:sb[i]+O;i:=i+l) 
else (11[i] :=b[i]+p*(i-l);i:=i+l» 

while i<=n do (if p=O then i:=i+l 
else b[i]:=b[i] + p*(i-l);i:=i+l} 

if p=O then while i<=n do i:=i+l 
else while i<=n do (b[i]:-b[i] + p*(i-l);i:-i+l) 

if p-O then 1:=0+1 
else while i<=n do (b[i]:=b[i] + p*(i-l};i:-i+l) 

Figure I-The transformation process using syntactic pattern-replacement rules. 

Figure 2 shows the DDPT method applied to BYPAS
SLOOP. The first step matches the input pattern to the 
target program fragment, "while iSn do ... " The second 
step invokes the BPL replacement fragment constructor pro
cedure above. This results in an incompletely-specified pro
gram fragment whose abstract eiements r and TV: = P(TU) 
are constrained by the BPL strategy. Finally in Step 3, these 
abstract portions are synthesized with p=O for rand i: = n+ 1 
for TV: = F(TV). (The details of the synthesis procedure are 
beyond the scope of this paper.) 

The advantages of this approach are: 

1. The overall goal (to bypass the loop) directs the trans
formation process. 

2. Once BYPASSLOOP is selected, any "low-level" 
analysis is carried out automatica!!y (e.g., partition 
variable assignments into types). 

3. The system derives properties such as the predicate 
p=O, instead of requiring the user to specify them. 

4. The input pattern and replacement fragment construc-
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input pattern : "do; (transient-updates f non-transient-updates); od" 

target program: while i<= n do (b[i]:=b[i]+p*(i-l);i:=i+l) 

1. MATCH BPL input pattern to target program. Analyze statements in 
loop. Partition variable assignments into transient and non-
transient updates. (See section 2.1.) 

=> <do; ••• ;od : while i<=n do ••• > 
<transient-updates : i:=i+1> 
<non-transient-updates : b[j]:=b[j]+p*(j-1), l<=j<=n> 

2. INVOKE BPL replacement fragment constructor procedure. 
(a) Bind M to value of <do; ••• ;od> 
(b) Bind TU to {i} 
(c) Bind NTU to {b} 
(d) CREATE-CONDITIONAL(pred = "r", truepart "TU:=F(TU)", elsepart 
M) 

=> "if r then TU: =F (TU) else M" 

3. SYNTHESIZE abstract parts "r", and "TU:=F(TU)". 
(a) Compute F(TU), the final values of x in TU. 

=> i:=n+1 

(b) Compute predicate "r". Let xi denote the ith value 
each non-transient variable x, for each iteration i, 
predicate r i = AE (xO.= xn). (AE is abstract evaluation 
Let r = r 1 and r 2 and ••• and rn. 

=» AE(b
O

[l]-b
n

[l]) and ••• and AE(bO[n]=bn[n]) 

=» AE(b
O

[l]=b
O

[l]+O) and ••• and AE{b O[n]=bO[n]+p*(n-1» 

=» T and p*I=O and ••• and p*(n-1)=O 

(c) Return fully instantiated program fragment. 

-> "if p-O then i:-o+l else while i<-n do ••• " 
Figure 2-DDPT method applied to BYPASSLOOP. 

of x. For 
construct a 
[BIGG77a] .) 

tor procedure of the transformation applies to a large 
class of target program fragments. 

Callcel DDPT 

A general selection procedure is yet another important 
aspect of our system which is illustrated in this example. 
We are experimenting with automating this step of the trans
furmatiun plU~ess by using the program annotations sup-

plied by the programmer for clarity. A database of related 
annotations is maintained. For example, "loop," a syntactic 
program control structure element, and' 'update," a descrip
tive action verb element, are related by a relation R-BPL. 
The selection procedure essentially constructs a list of those 
related elements contained in a target program which are 
related in the database. Each relation (e.g., R-BPL) is 
suggestive of one or more DDPTs (e.g., BPL). Hence the 
selection procedure returns a list of potential transforma
tions to be tried. 
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The program in Figure 3 processes characters given in an 
array text [O:n]. In and out are two integer pointers such 
that during execution of the main loop, 

(a) text[l: out] is the text processed "'so far," and 
(b) text[l: in] is the output or "'saved" text. 

The text processing 1) replaces linefeeds by blanks, 2) re
moves redundant blanks and 3) removes non-alphabetic 
characters. (This is an example discussed in Reference 1.) 

Abstractly, the main loop of the program is: 

while moretext do 
(get next character from input; 
put charaeter in output; 
case on character type: 
linefeed: (replace character by blank; 

if redundant blanks then remove character 
from output); 

blank: if redundant blanks then remove character 
from output; 

alpha: 
else: 

noop; 
remove character from output); 

In Figure 3 we "'fill in the details" of this abstract program; 
the abstract operations above are left as annotations. 

An applicable DDPT is the CANCEL transformation. 2 

Intuitively the strategy of this transformation is to rearrange 
the action sequences so as not to have to "undo" or "can-

procedure processtext(var text:array[O:n] of char); 
var ch:char; in,out:integer; 
begin 

in:=out:=O; text[O]:=" /** initialize **/ 
while out<n do 
begin 

1** get next character from input **/ 
out: =out+ 1; 
ch:=text[out]; 
/** put character in' output **/ 
in:=in+1 ; 
text[ln] :=ch; 
/** case on character types **/ 
case ch in 
linefeed: begin 

space: 

alpha: 
else: 

/** replace character by blank **/ 
ch:=text[in]:=' '; 
/** test for redundant blanks **/ 
if text [in-1] = 
then i** remove character from output **/ 

in:=in-1; 
end; 
begin 

/** test for redundant blanks **/ 
if text[in-1] = ' , 
then /**remove character from output **/ 

in:=in-1 ; 
end; 
begin i** noop **i end; 
/** remove character from output **/ 
in: =in-1; 

end; /** case **/ 
end; /** while out<n **/ 

end; /** procedure pro~es~text **/ 

Figure 3-Program to process characters. 

cel" any previous action. In this case, CANCEL will elim
inate action sequences such as ["put": ... ; "remove"'] by 
replacing the "puts" and "removes" with "noops"', i.e., 
["'put"; ... ; "'remove"]:;{"noop"; ... : "noop"]. Ap
plying CANCEL to the abstract program above yields the 
transformed abstract program: 

while moretext do 
(get next character from input; 
noop: 
case on character type: 
linefeed: if not redundant blanks then put blank in out

put; 
blank: if not redundant blanks then put character in 

alpha: 
ets-e: 

output; 
put character in output: 
ItODPJ 

Those portions in italics are program parts affected by the 
transformation. The complete program is shown in Figure 
4.- In this version, note that the "puC is done only when 
needed: the "replace"' and "'remove" actions have been 
eliminated. 

How can one use the program's annotations in Figure 3 

procedure processtext(var text:array[O:n] of char); 
var ch:char; in,out:integer; 
begin 

in:=out:=O; text[O]:=' '; /** initialize **/ 
while out<n do 
begin 

/** get next character from input **/ 
out:=out+1; 
ch:=text[out] ; 
/** case on character types **/ 
case ch in 
linefeed: begin 

space: 

alpha: 

/** replace character by blank **/ 
ch:=' '; 
/** test for redundant blanks **/ 
if text [in] -
then begin 

end; 
begin 

/** put character in output **/ 
in:=in+1; 
text[in]:=ch; 

end; 

/** test for redundant blanks **/ 
if text [in] -
then begin 

end; 
begin 

/** put character in output **/ 
in:=in+1; 
text [in] : =ch; 

end; 

1** put character in output **/ 
in:=in+1; 
text[in]:=ch; 

end; 
else: beg in .I ** noop ** I end; 
end; 1** case **1 

end; 1** while out<n **1 
end; 1** procedure processtex~ **/ 

Figure 4-Processtext modified by DDPT CANCEL. 
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to select the CANCEL DDPT? If the program contains a 
"put" followed by a "remove," then there is a chance that 
the CANCEL transformation is applicable. A database of 
relationships is maintained for potentially related annota
tions. The system searches the program, constructing a list 
of these related elements. For this example, there are several 
instances of a relationship named R-CANCEL. In the first 
abstract program above, there are three paths containing the 
sequence [put; ... ; remove]. The pair (put, remove) is 
contained in the database under the relation R-CANCEL. 
The system collects three instances: 

R-CANCEL: 
{(PUTOOI,REMOVEOOI),(PUTOOI,REMOVE002), 

(PUTOOl,REMOVEOO3)} 

The presence of these related annotations in the program 
causes the corresponding DDfYf, CANCEL, to be selected. 
Later, these annotations are used to locate the specific in
stances of these actions in the match input pattern step of 
the transformation process. The CANCEL replacement 
fragment constructor procedure analyzes the target pro
gram, reorders and eliminates the offending action se
quences, and produces an incompletely specified replace
ment program fragment (as with BPL). The synthesizer fills 
in those remaining abstract portions producing the program 
shown in Figure 4. 

In addition to automating more of the transformation proc
ess, the advantages to having the transformation system aid 
in the selection part include 

I. Elimination of the problem of "pointing" to the places 
within the program text where the transformation is to 
be applied-these places are pointed to by the anno
tations and remembered by the system. 

2. The program is manipulated at the semantic level, e.g., 
manipulate the verbs "put"' and "remove," rather than 
at the syntactic level, e.g., manipulate "text[in]: =ch" 
and "in:=in-I.·' 

Other DDPTs 

Many program manipulations fall naturally into the design
directed paradigm, because of the ability to analyze the 
"matched" portion of the program in order to synthesize 
replacement program fragments-the replacement fragment 
constructor procedure built into each DDPT can be quite 
general. 

In this section, we list a number of DDPTs of interest. 
The reader is referred to Reference 9 for more details. 
FLAG-MONITOR-Replaces an arbitrary boolean test with 
an equivalent boolean flag variable which "monitors" the 
original condition. 
DO-EITHER-Generates (synthesizes) "special case" pro
gram fragments from a specification of the "general case." 
GENERALIZE-Synthesizes "general case" program frag
ments from a sequence of "special cases." 
EXTEND-Data structure exten"lion. 13 (A form of GEN 
ERALIZation. ) 

RELATION TO OTHER RESEARCH 

As noted earlier, most other transformation systems are 
syntax-based and two "rule-types" have emerged. One is 
the production-like syntactic pattern replacement rules 
shown earlier; 1,8,10,12,13 the other is a system of rules which 
manipulate recursive programs. 6 ,7,11,14 The restrictions im
posed by these methods have been pointed out in the second 
section. Mostly the problems center on control and the de
gree of complexity allowed in transformations. 

The major differences between our rules and their syntax
based counterparts rests in the degree of flexibility in spec
ifying the "patterns" associated with the transformation 
process. Our matching mechanism allows for more general 
pattern matching; the substitution and replacement mecha
nism is more computational in nature, and we provide a 
mechanism for automatic selection based on the program's 
annotations. The syntactic rules are both useful and neces
sary in a TI system; we simply extend the type of rules 
available to the user. 

Design-directed transformations extend the work of Big
gerstaff and Johnson, 3,4 in which automatic program synthe
sis is viewed as a process directed by known abstract pro
gram designs. 

CONCLUSIONS 

The design-directed approach to program transformations 
is a natural extension to other, more syntactic-oriented ap
proaches. DDPTs are shown to have more general selection, 
matching and replacement procedures than their syntax
based counterparts. The advantages of this generality are 

• Higher degree of automation. 
• Each single transformation has a larger scope (it affects 

a larger target program fragment). 
• Transformations are intuitively closer to ones a good 

programmer would select in transforming his program. 
• Reduction in the number of transformation rules at the 

user level. 
• Makes use of system's ability to analyze and reason 

about programs (e.g., using symbolic evaluation and 
program synthesis). 

• Each transformation applies to a large class of target 
programs. 

We are currently implementing these transformations and 
several others in LISP on a DEC 2020, at the University of 
Washington. 
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A data flow evaluation system based on the concept of 
recursive locality* 

by A. L. DAVIS 
University of Utah 
Salt Lake City, Utah 

INTRUDUCT10N 

In an attempt to increase the performance of computing 
machines, there appears to be two main approaches-(l) to 
use faster components in existing architectures and (2) to 
design new architectures which are capable of exploiting 
some form of concurrency. The first approach is inherently 
limited in that the effects of reduced integrated circuit ge
ometry, new process technology, and new logic families can 
be expected to increase overall system performance by only 
a couple of orders of magnitude. While this is initially im
pressive, it does not allow the desired machine performance 
projected to be necessary to solve large physics problems, 
or needed for accurate weather prediction. 16 The second 
approach, while being a considerably more difficult organi
zational problem, is inherently unlimited in nature. There 
are numerous levels at which concurrency can be exploited 
in digital computers, i.e. multiple data paths, more concur
rent realization of low-level circuit functions, overlap and 
pipeline processing within a single processing element, mul
tiple processors, etc. In developing any new "fast as pos
sible" machine, it is important to attempt to implement all 
of the above suggestions. However the work reported here 
will mainly be concerned with solving the problem of how 
to utilize and organize systems containing large numbers of 
independent processors. 

In attempting to escape the fundamental performance 
bounds imposed by von Neumann architectures, it is insuf
ficient to modify only a few aspects of the von Neumann 
style system ideas. Alternative proposals to the "clock-dri
ven" von Neumann architectures are numerous. There are 
at least two areas which have some promise. One is the 
"demand-driven" approach espoused by Friedman and 
Wise, 10 Backus3 and Berkling. 5 Another is the' "data-driven" 

'" The work reported in this paper was supported by Burroughs Corporation. 
DDMI is an operational hard-wired data-driven machine, and was completed 
in juiy i9i6 at the Burroughs Interactive Research Center in La Jolla. Cali
fornia. Many of the early systems ideas were developed in conjunction with 
Robert S. Barton. Gary Hodgman, Lawrence Rogers, and Karl Boekelheide 
were instrumental in the conceptualization and implementation of the actual 
machine. An improved version of DDMI now resides at the University of 
Utah. where the project continues under the support of the Burroughs Cor
poration. 
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apprQa_(*.t~~en by Dennis,8 Bahrs, 4 Davis 6 and Arvind, Gos
telow and PI~uffe: 2 The work ctescrlbednei"e"is·· of tlle·Oata~ 
driven variety due to the feeling that the demand-driven 
approach does not support intra-process pipelining very 
well. In addition, the propagation of demands takes time, 
and while demand-driven programs do allow for increased 
expressive power, the emphasis here is on performance. 
The data-driven approach naturally describes both pipe lined 
(vertical) concurrency and independent operation (horizon
tal) concurrency. 

The intent of this paper is to present an overview of the 
,. Utah approach" to data-driven computation. The major 
emphasis will be on the architectural aspects of an existing 
machine, DDM 1 (Data-Driven Machine # O. Details of the 
method by which data-flow programs are evaluated on 
DDMI will also be discussed. The major differences (and 
motivations for these differences) between the Utah ap
proach and other published data flow groups will be consid
ered. Part of the material presented here has been published 
elsewhere in a less general and more detailed form. 6,7 The 
new topics presented here are principally concerned with 
automatic resource allocation, and the flow balance during 
pipelined processing. 

It is evident that any machine architecture intended to 
have a general commercial appeal must be feasible with 
respect to the changing constraints of integrated circuit tech
nology. For architectures which fit nicely into the VLSI 
realm, the advantages are numerous. Among these are lower 
cost, increased reliability, increased speed and decreased 
power consumption. 

The actual machine language of DDM 1 is a linearized 
encoding of a directed graph schema called data-driven nets 6 

or DDNs. DDNs are very similar to the data flow nets of 
Dennis 8 and Rodriguez. 15 The asynchronous nature of DDN s 
makes it easy to decompose a given net into a set of con
current subnets, which can then be allocated to independent 
physical resources. The main distinction between the Dennis 
nets and DDNs is that in DDNs no distinction is made 
between the net tokens which are used for control purposes, 
and other net tokens. All DDN tokens are considered to be 
data items, and no explicit distinction is made to distinguish 
between classes of tokens. Another difference is that the 
primitive DDN cell types are slightly more high-level than 
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the Dennis nets. Finally, some primitive activities which are 
explicitly specified in the Dennis schema are implicit in 
DDNs. An example is the Dennis "link" which serves as 
both a transmission and copy site. The functions of such 
links are implicitly incorporated into the output mechanism 
of DDN operators. The result is that both the DDN and 
Dennis schemas share the same properties with respect to 
ease of program verification, ease of program conceptuali
zation and ease of machine evaluation. Due to slightly 
higher-level primitives and a less explicit schema, a DDN 
program graph will typically have less vertices (cells) and 
arcs (data paths) than a functionally equivalent net in the 
Dennis schema. This difference is mostly one of style and 
is not particularly significant, although the differences are 
reflected in the respective architectures. 

The only sequencing constraint in DDNs is that of data 
dependence, and since no weaker sequencing constraint ex
ists without doing non-productive computation, 14 DDNs are 
naturally a maximally concurrent representation of a given 
algorithm. While such concurrency may add to the "natu
ralness" of the programming experience, it is operationally 
useless as a speed-up mechanism unless it can be mapped 
onto a set of physical resources capable of exploiting this 
concurrency. If this mapping is done at run-time, then the 
time to map must not overshadow the speed-up attained as 
a result of the concurrent execution. The attitude about how 
and when this mapping gets done marks a major difference 
in the Utah approach and that of other data-driven compu
tation projects. 

Lastly, a number of additional goals for the machine struc
tures presented here are felt to be desirable. Namely, it is 

. intended that these machines be general purpose, extensible, 
reliable, easily programmable, support very high levels of 
concurrency and also be economical with respect to their 
performance and existing technology. In particular, this ef
fort is not concerned with one of a kind or special purpose 
machines. Special purpose machines are perhaps ideal for 
a given environment, but suffer from inherent limits in their 
applicability to other problems. 

THE IMPACT OF VLSI 

The advantages of high density integrated circuit technol
ogy are so overwhelming that the constraints of VLSI must 
be considered as a primary force on future architectures, 
the global influences of which are summarized here. Due to 
the tremendous commercial emphasis on MOS VLSI, the 
following discussion will mainly be concerned with the prop
erties of MOS device integration. 

The most highly publicized VLSI benefits are those in
volving cost. A single custom VLSI chip (64-pin package) 
currently costs about $80,000 to $300,000 to produce. Even 
then, production typically must be guaranteed for about a 
quarter of a million parts at an additional cost of $7 to $ 10 
per part. This clearly indicates that VLSI cost advantages 
can be obtained only if any given chip can be used in very 
large volumes. If a part does not have universal (lppe(ll, then 

the use of such a part in a new architecture brings about 
some high-pressure constraints. Either the part must be used 
a large number of times in a single system, or a single system 
must have a very high sales volume, or some combination 
of the two. The number of part types in a given system is 
also a major concern in that it becomes a mUltiplicative 
factor in the system development cost. 

Another factor heavily influenced by a VLSI implemen
tation is speed. The dominant speed factor is due to the 
capacitive effects on a given transmission path. Typical off 
chip loads are on the order of 100 picofarads, while on chip 
loads are approximately one picofarad. Since delay times 
are proportional to the capacitive load (for constant drive 
current), this implies that signals which can remain on the 
chip will be driven about two orders of magnitude faster 
than those which must be driven to destinations off the chip. 
Additional speed-up can be obtained from the decreased 
geometries of switching elements and conductor path 
lengths. This is a very strong argument for architectures 
which attempt to maximize locality of processing. For ar
chitectures in which processing and local storage cannot be 
done at the same locality, massive delays must be incurred 
as a result. The only way around the slow off chip drive 
problem is to drive more current off the chip. This requires 
a series of relatively large output drivers, which are ex
tremely costly in terms of chip real estate and power con
sumption. In addition, locality of processing will reduce the 
amount of contention for a given system transmission path. 
This contention is important in a highly parallel system in 
that the resultant sequencing will yield reduced system ef
ficiency. 

The number of pins is an important VLSI metric. If chip 
types are used in sufficient quantities to amortize the initial 
layout cost, then the physical cost to manufacture a machine 
becomes approximately linear with pin count. In addition, 
increasing the number of pins on a particular chip causes 
decreased yield due to bonding problems. Increased pin 
count also implies that even more silicon area must be al
located to connection pads and pin drivers. 

VLSI implementation also yields the more commonly dis
cussed advantages such as (I) increased system reliability 
due to reduced part count, (2) decreased system power con
sumption since voltages on a given chip scale with physical 
feature size and (3) decreased system maintenance cost as 
chip replacement policies become more effective in highly 
integrated systems. 

The extent to which these VLSI advantages can be real
ized is proportional to the logic/pin ratio of the proposed 
system modules. If the logic/pin ratio is relatively small then 
the situation is very much that of an SSI machine. If the 
logic/pin ratio is very high then true VLSI advantages can 
be obtained. This is a challenge to architects to devise sys
tems which can be modularized into high complexity mod
ules which communicate with their environment infre
quently, using relatively few signal paths. Furthermore, as 
integration technology advances causing feature sizes to 
shrink even more, these new architectures must remain vi
able. 



ARCHITECTURAL PRINCIPLES 

The VLSI constraints indicate that future architectures to 
support very high levels of concurrency should consist of a 
set of processing sites capable of performing localized stor
age and computation of a reasonable complexity. These sites 
should be essentially the same physical module, which ide
ally can be constructed as a single part type. An additional 
goal of the architecture presented here is that of extensibil
ity. More specifically, the architecture should be extensible 
without bound in the following way: 

1. Machine power should be enhanced by the addition of 
more modules (i.e. allow greater concurrency due to 
the increased number of processing sites). 

2. The addition of new modules should not require any 
change to the existing operating system in order to 
manage the resulting larger system. 

3. Additional resources should be added simply by "plug
ging in new modules" without any special tuning of the 
existing hardware to create consistent system timing 
and communication for the expanding system. 

4. The extension should be available in small quantums. 

The first and last points indicate that a user should be 
able to purchase only the power needed and not much more 
or much less. The other points indicate that the manufac
turer should need to support only a single module, rather 
than a large number of system configurations. 

Systems such as these cannot be implemented in a syn
chronous, centrally controlled manner. Central control of 
arbitrarily extensible systems implies that the control must 
be able to function on an arbitrarily large amount of state 
information, which either slows the control drastically or 
requires controller modification to access the new state in
formation. In an arbitrarily extensible synchronous system 
the problem of unbounded clock skew (maximum difference 
in the perceived clock time between any two processing 
sites in the system) will cause failure. The systems described 
here will therefore be asynchronous, fully distributed sys
tems. Fully distributed systems are defined here to have the 
following characteristics: (1) no module of a fully distributed 
system can determine the total system state, and (2) no 
module of a fully distributed system can enforce simultaneity 
in other modules. Holt13 has shown that the notion of total 
system state in complex asynchronous systems is counter
productive. Furthermore, the enforcement of simultaneity 
in physically separate, asynchronous devices is impossible. 

There are many ways to organize an extensible set of 
modules in a distributed control system. The advantages of 
hierarchical organizations are (1) reduction in the amount of 
complexity to be dealt with at a given level, (2) verification 
by inductive methods can be done for uniform hierarchic 
systems and (3) the superior-inferior relationship can be 
utilized to resolve problems such as contention and deadlock 
in multi-resource systems. It will be seen that hierarchy also 
facilitates a nice resource allocation policy. Recursive hier-
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archies are of particular interest in that they imply that the 
same module can be used at each level: 

Recursive systems are nicely extensi~le. A recursively 
structured machine is one which has exactly the same struc
ture at every level. Clearly physical recursion must termi
nate at some point. This point will be seen to be the deepest 
set of resources in the physical hierarchy. Additional ad
vantages of recursively structured systems have been dis
cussed by Glushkov. 11 It will be shown that the width of a 
level in these recursive hierarchic structures can be used to 
execute independent operations, while the depth of the hi
erarchy will be used to facilitate pipelined operations. 

THE ARCHITECTURE OF DDMI 

The architecture consists of a set of asynchronous mod
ules whiCh communicate by passing messages. Theba-sic 
computational unit of the architecture is a processor-store 
element (PSE). A PSE consists of a processor module (P) 
and its associated local storage module (S). Any PSE can 
execute any machine language program, providing that it 
has a sufficient amount of local storage. No module that is 
not a PSE can perform this function. The architecture is a 
recursively organized set of these PSEs. The recursive def
inition of the structure is 

(PSEn ):: = (Pn) (Sn) 
(Sn):: = (ASUn) 
(Pn):: = (APn)I(APn)(PSE.GROUPn+ 1 ) 

(PSE.GROUPn+1 ):: = (PSEn+1 )I(PSEn+ 1 )(PSE.GROUPn+ 1 ) 

Subscripts denote the recursive level at which the module 
physicaily resides. (AP) is an atomic processor module, 
which has no further sub-structure (contains no PSEs). Sim
ilarly an atomic storage unit (ASU) has no PSE substruc
ture. The width of a (PSE.GROUP) has a physical bound. 
For DDMI this bound is eight. The structure is depicted in 
Figure I. 

This structure allows for a hierarchical distributed storage 
organization. Any S or ASU may consist of an arbitrary 
amount of storage of any desired medium. Higher levels of 
PSEs are considered logically superior to lower-level PSEs. 
It is advantageous if higher-level stores (ASUs) are slower 
and larger than the stores of lower levels. The interface and 
functional ability of any ASU (regardless of size, speed and 
level) is the same. The structure also allows for an arbitrary 
number of processors that can be used concurrently. It is 
important to note that all APs are identical regardless of 
level. However, the processors at higher levels will be more 
powerful, in that they contain more PSE substructure than 
the processors at lower levels. More substructure implies 
more internal concurrent processing capability. 

When viewed non-recursively this structure is simply a 
tree structure with a singie root and a possibility for up to 
eight sons at any node. Each node of the tree is a PSE and 
is capable of executing any machine language program. The 
leaf nodes have no substructure and therefore consist of an 
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Figure I-Recursive definition of PSE at level 11. 

AP and an ASU. At each node the fan-out is fixed but the 
depth of the tree is arbitrary. In this manner the architecture 
allows any desired number of PSEs to be configured for a 
given machine. The desired goal is for machine performance 
to improve with the addition of more PSEs. 

There are a number of ways to enforce this logical tree 
structure onto a collection of PSEs. All involve some form 
of a connection network to implement the desired commu
nication paths. A number of general interconnect networks 
have been considered-busses, crossbars, Banyan nets 12 

and permutation networks. 17 For tree-like machines, full 
connectivity is not required. The expense of crossbar 
switches vary as the square of the connected elements. Bus 
conflict could drastically reduce actual parallelism in the 
machine. Permutation networks present a tremendous prob
lem in that they may need to be totally reconfigured when 
a single new connection is necessary. This is difficult to do 
reliably in a multi-path distributed control environment. 
Banyan networks have some merit, but do not easily allow 
for the desired hierarchic pipelined communication. There
fore, in DDMI a simple one-to-eight-switch was chosen as 
the interface unit between successive levels of PSEs. The 
result is that the physical and logical recursive structures 
are the same. The structure is fixed and cannot be dynam-
ically changed. , 

Information is passed between PSEs as messages which 
are variable length character strings. Upward traveling mes
sages are passed on by the switch in an arbiter-like manner. 
Downward going messages contain header fields which in
dicate their destination. This header is deleted by the switch 
as the message is passed. Downward and upward messages 
are dealt with by independent hardware, and therefore are 
controlled concurrently. This character serial nature of the 
machine has the following advantages: 

I. Hardware modules are made simpler and more appli
cable for VLSI implementation due to the reduced pin 
count. 

2. Hardware communication paths are more general in 
that variable length information units can be transmit-

ted as varying numbers of fixed-width base characters. 
This facilitates a hardware substitution strategy for 
modules. Each module can interpret the variable length 
message and perform the indicated function. 

These advantages aid in greatly reducing the cost of the 
hardware modules. Some low-level performance is lost by 
doing everything serially. The philosophy is to regain that 
lost performance many times over by providing a systems 
organization that allows for highly concurrent levels of ac
tivity. 

Physical queues are placed between levels of PSEs in 
order to facilitate pipelining and increase physical module 
independence. Without queues, the sender of a message 
would need to wait on receiver availability. If a queue be
comes full, only then must the sender wait until the receiver 
has freed up some queue space. If queue sizes are adjusted 
so that a sender is rarely required to wait for space, then 
the system would be well tuned for efficient processing. 
Optimal queue size depends on the average message length. 
It is therefore impossible to guarantee that no waiting will 
occur. Strict hierarchical control and a restricted process 
structure insures that the system does not deadlock. A block 
diagram of the PSE structure is shown in Figure 2. All 
DDMI paths, except for the path between the ASU and the 
AP, consist of six wires (a two-wire request-acknowledge 
control link and a character-width data bus; in the DDMI 
prototype four-bit characters are used). 

The variable length, character serial message structure 
and DDN representation indicate that the ASU should be a 
highly flexible storage structure. Further requirements are 
that the ASU deal with pipelining of data items and their 
continual destruction upon cell firings. In order to increase 
efficiency of the PSE, all storage management functions are 
performed internally by the ASU. The ASU appears as a 
variable field length file system, which directly executes 
commands, such as initialize, skip, insert, read, write, delete 
and index. The free space is managed automatically by the 
ASU. 

This PSE structure allows for a high degree of processing 
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Figure 2-PSE structure. 

locality in that any PSE can execute any DDN program 
(assuming that there is sufficient storage in its local ASU). 
In addition, the PSE admits nicely to VLSI implementation. 
The one-to-eight-switch can be implemented using a set of 
one to two switches of similar function. Using 1: 2 switches, 
DDMI module complexities (pin and gate count) are shown 
in Figure 3. The pin counts include pins for power, ground, 
initialization and extension. The indicated module pin counts 
are rounded up to coincide with standard package sizes. 

These complexities are all within reason for current VLSI 
designs, and are attractive with respect to the logic/pin ratio. 
Approximately 30S0 of the AP and ASU gates are used in 
statistics and maintenance circuits. 

AUTOMATIC RESOURCE ALLOCATION AND 
EVALUATION 

When a message corresponding to a DDN program enters 
a PSE at any level, the PSE may take one of two actions: 

1. Decomposition and allocation-If the PSE has sub
structure and if there exists some set of concurrent 
subnets in the DDN process, then the PSE may split 
the DDN and send concurrent subnets to PSEs at the 
next lower level. 

2. Execution-If the PSE has no subresources, or if there 
is no exploitable concurrency in the DDN, then the 
PSE executes the DDN at that level. 
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To aid the decomposition process, a structural descriptor 
may precede the incoming DDN in the message structure. 
This additional storage can greatly reduce time required for 
decomposition decisions in the PSE. In addition, each PSE 
must contain information about the number of available 
PSEs and the sizes of their respective stores. Problems 
would result if a DDN were sent to a PSE that was too large 
to fit in its local store. Only the local store sizes of immediate 
subresources are known. This ensures the recursive nature 
of the decomposition process. 

The decomposition process takes some time. It is impor
tant that the speed-up gained by the extra concurrency re
sulting from decomposition is not overshadowed by the time 
to decompose. Experiments have indicated that a "first fit" 
decomposition is almost always better than a "best fit" 
decomposition strategy. It also appears not to be generally 
worthwhile to decompose the DDN structure completely on 
this ar-eh-itectur€. At:fin€ gmnula1ities.,.theslowdown result-_ 

ing from loss of locality is not regained by the concurrent 
execution of very small subtasks. The exception to this rule 
is in the case of pipelining, where subtasks remain allocated 
for relatively long periods of time and sustain high activity 
at each site. 

If decomposition and resource allocation occur at run
time, it is important that they be simplified as much as 
possible. It is possible to perform these tasks completely at 
compile-time. This however is inadvisable since it depends 
on knowing the run-time availability of PSEs in the system. 
In a system containing large numbers of PSEs, the proba
bility is high that some PSEs will fail or be busy doing other 
things. In addition, large portions of a process may only be 
evaluated conditionally. A compile-time allocation would 
have to allocate tasks which may never be executed. The 
strategy is taken here to split the decomposition task into 
two phases-( 1) at compile time do all of the resource and 
condition independent work and (2) at run-time, dynamically 
make the actual allocation of executable tasks to available 
physical resources. 

DDNs are quite randomly structured graphs and DDMI 
is a very regularly structured set of resources. Direct run
time allocation would be too slow, due to the structural 
disparity between program and machine. At compile-time, 
the two-terminal DDN process structure is transformed into 
a well structured and functionally equivalent series parallel 
graph (SP-graph). Two-terminal means that the graph con
tains a single "first" cell and a single "last" cell. This 

Module Gate Count Pin Count 

lQ, OQ (lK Characters) 3,000 16 
Ap 20,000 64 
ASU (4K Characters) 47,000 64 
1 : 2 Switch 2,000 40 
Ap + ASU 67,000 64 
Ap + ASU + 1Q + OQ 73,000 64 

Ap + ASU + Switch 69,000 64 
PSE 75,000 64 

Figure 3-PSE module complexities. 
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facilitates the determination of net termination and initiation. 
SP-graphs are acyclic, two-terminal, directed graph struc
tures which can be formed by successively combining cells 
and/or SP-graphs in series or in parallel. The SP-graph struc
tures are then allocated as necessary at run-time. Data flow 
graphs in general admit nicely to arbitrary restructuring due 
to their asynchronous and local control characteristics. 

A detailed description of the compiler algorithms to con
vert a DDN to a functionally equivalent SP-graph is too 
lengthy to be presented here. An English description of the 
process is given, describing the nature of the algorithms. 
The first steps are: 

I. Encapsulate all cycles at the outermost level into single 
cells. The result is a two-terminal acyclic graph at the 
outermost level. This can be done since DDN s are 
required to have well nested cycles. 

2. Remove all transitive paths. That is if there exists a 
path from A to B, B to C, and A to C, remove the A 
to C path and cause it to pass from A through B to C. 
This requires the semantics of cell B to be modified 
slightly. The original inputs are treated the same, while 
the new inputs are merely passed on unmodified when 
the cell fires. These new inputs are known as the pass 
set and may be attached to any cell as a result of this 
phase of compilation. At this point the graph is a lat
tice. 

For a lattice to be transformed into a functionally equiv
alent SP-graph, some degree of freedom must be given. 
There are two meaningful freedoms investigated so far
work and time. If time is free to be changed, then work 
remains fixed and the resulting graph is called the least-work 
SP-graph. Conversely, if work is the degree of freedom, 
then the result is a least-time SP-graph. "Least" is not used 
in any formal sense but only to indicate that the resultant 
work or time is equivalent to the original lattice net. Work 
is defined to be the number of cells which must fire to cause 
the net to terminate. It will be seen that some additional 
synchronization cells will need to be executed to enforce 
the SP topology in the least-work nets. Time is defined to 
be the critical path length from the first to the last cell at the 
outermost level (inner levels being those which were encap
sulated in Step I). 

For the least-work transformation: 

I. Number of paths from the first to the last cell. 
2. Make a cut across all paths of equal number. 
3. Place a synch cell across all cuts which are not already 

SP. ,Non-SP cuts are those which have (1) a set of 
sender nodes S={s, . .. SIl} and a set of receiver 
nodes R={r, ... rm} such that n>1 and m>1 and (2) 
there exists a pair of sender cells s i, s j and a pair of 
receiver nodes ra, rb such that there are at least three 
connection paths between {si, sj} and {ra, rb}. The 
result at this point is a least-work SP-graph. 

For the least time net. an SP-graph i~ built [rum ~tHJtj-

receiver relationships in the lattice graph as follows: 

1. Clear the TODO and SENDER lists. 
2. Place the last cell in the TODO list and in the 

L TSPGRAPH list. 
3. Place all cells (which send messages to cells in the 

TODO list) into the SENDER and L TSPGRAPH lists. 
4. For every cell in the SENDER list which is the only 

sender to the set of cells {riI, ... rik}=Ri in the 
TODO list, and where si sends to no cell outside of 
Ri, build links in the LTSPGRAPH list from si to ril, 
... rik. 

5. Delete {ril, ... rik} from TODO list and si from 
SENDER list. 

6. For all remaining cells s j in the SENDER list, add 
n -I copies of s j to the L TSPGRAPH list, where n is 
the number of output paths of cell sj. Build links in 
L TSPGRAPH from senders s j to the receivers s j such 
that each copy of sj has only one outpath. (This step 
performs the typical node splitting operation which is 
done in finite state machine reduction. The idea is to 
duplicate work in order to regularize the structure in 
a least-time fashion.) 

7. Clear the SENDER and TO DO lists. Place the T list 
cells into the TODO list. Clear the T list. 

8. Repeat the process starting at Step 2 until all cells in 
the original lattice graph have been processed. The 
resulting LTSPGRAPH list is the desired least-time 
net. 

Examples of the lattice to least-time and least-work SP
graphs are shown in Figure 4. 

It is interesting to note that the algebraic SP expressions 
in Figure 4 can be (1) shown to be functionally equivalent 
and (2) transformed from one form to the other, using tech
niques similar to algebraic factorization and distribution (of 
the series and parallel relations). In DDM 1 the decision to 
produce the least-time or least-work SP-graph is made at 
compile-time by the user. It would be nice to make this 
decision at run-time based on resource cost and availability. 
This, however, would increase the run-time overhead to a 
level which is currently felt to be excessive. The previous 
procedures are applied recursively to the levels defined by 
loop encapsulation, and are performed down to the desired 
granularity. 

The allocation of SP-graphs onto tree-structured physical 
resources is an easy task. If the SP-graph of Figure 5 is 
folded back onto itself about the middle, the result is a tree
structured SP-graph. The SP-graph, its folding, and the al
location onto a tree of physical resources are all shown in 
Figure 5. 

In this way full upward and downward communication 
can be carried on concurrently to achieve pipelining. Hori
zontal parallelism can be achieved by spreading independent 
subtasks across a given level of the architecture. Resource 
allocation is performed automatically by the hardware in 
DDMI to achieve very high degrees of parallelism. The 
amount of obtainable concurrency is a function of available 
hardware resources and the program structure. 
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Figure 4-Lattice to least-time and least-work SP-graphs. 

middle 

ii) folded SP-graph 

i) SP-graph 

Figure 5-The allocation of SP-graph programs onto a PSE tree. 
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CONCLUSIONS 

An architecture and evaluation scheme for data-flow pro
grams has been presented. The architecture exploits recur
sive hierarchy to reduce complexity and allows for the ar
bitrary expansion of system resources. Physical resources 
are organized such that they can be used to exploit both 
pipelined and independent tasks. The system exploits the 
notion of locality that is important for both increased speed 
and decreased cost aspects of a VLSI implementation. This 
notion of locality also indicates that this system is not in
tended to exploit concurrency at the lowest possible level. 
It is felt that the additional overhead involved to do this 
would actually reduce overall performance levels. 

Current status of the project is that DDM I is operational 
and executes DDN programs. DDMI communicates with a 
DEC-20/40, which is used to support conventional software 
tools such as compilers, simulators, and measurement pro
grams. The current programming language is a statement 
description of a DDN. An interactive graphical programming 
language is in the works (in both a high-level and a low-level 
form). A simulator is being written on the DEC-20 which 
will manage any specified tree of resources (virtual) and use 
the DDM I for actual evaluation. A number of large appli
cation programs are being written for DDM I. Detailed sta
tistics will be taken during the execution of these programs 
to aid in formal evaluation of the DDMI hardware. 

The main points of departure of the" Utah" approach and 
that of Dennis9 is the use of a recursive hierarchy of physical 
resources, the exploitation of physical locality to decrease 
message frequency and increase the speed of VLSI imple
mentations, dynamic hierarchical resource allocation, the 
lack of specialized functional modules to reduce the chip 
type count and a slight difference in the structure of the low
level schema. The architecture of DDM 1 differs from that 
of Arvind and Gostelow 1 in that it does not try to achieve 
concurrency at all possible levels (because of the locality 
issue), the interconnection scheme is much simpler and no 
bus contention is possible, no special address space man
agement needs to be done, allocated tasks may consist of 
many cells rather than just a single operation, and tasks are 
allocated only when all of their necessary input operands 
are present. 

The disadvantages of the system described here are: 

I. The current AS U design is not nicely extensible to 
allow more storage capacity to just be "plugged in." 

2. The fixed, hard-wire tree structure is not flexible and 
results in certain PSEs in one subtree remaining idle 
when another heavily loaded subtree badly needs more 
resources. 

3. There is currently not enough empirical data from test 
runs on very large programs to accurately quantify the 
overhead involved in decomposition. 

4. Failure of a PSE will cause the entire subtree below 
the failure to become unusable. In general, the issues 
of fault tolerance have not been properly attended to. 

5. Certain "perverse" SP-graph topologies can not be 
allocated such that full pipelining can be supported. 
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Data flow languages 

by WILLIAM B. ACKER~.1j1 .. N 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

There are several computer system architectures which have 
the goal of exploiting parallelism-multiprocessors, vector 
machines and array processors. For each of these architec
tures there have been attempts to design compilers to optim
ize programs written in conventional languages (e.g. "vec
torizing" compilers for the FORTRAN language). There 
have also been new language designs to facilitate using these 
systems, such as Concurrent PASCAL for multiprocessors, 6 

and languages that utilize the features of such systems di
rectly, such as GL YPNIR for the Illiac IV array processorl9 

and various "vectorizing" dialects of FORTRAN. These 
languages almost always make the multiprocessor, vector, 
or array properties of the computer visible to the program
mer-that is, they are actually vehicles whereby the pro
grammer helps the compiler uncover parallelism. Many of 
these languages or dialects are "unnatural" in that they 
closely reflect the behavior of the system for which they 
were designed, rather than reflecting the way programmers 
think about problem solutions. 

Data flow computers also have the goal of taking advan
tage of parallelism. As will be seen below, the parallelism 
in a data flow computer is both microscopic (much more so 
than in a mUltiprocessor) and all-encompassing (much more 
so than in a vector processor). Like the other forms of 
parallel computer, data flow computers are best pro
grammed in special languages. In fact, their need for such 
languages is stronger-most data flow designs would be 
extremely inefficient if programmed in conventional lan
guages such as FORTRAN or PLiI. However, languages 
suitable for data flow computers can be very elegant. The 
language properties that a data flow computer requires are 
beneficial in their own right, and are very similar to some 
of the properties that are known to facilitate understandable 
and maintainable software, such as the absence of undiscip
lined control structures and module interactions. In fact, 
languages having many of these properties have been in 
existence since long before data flow computers were con
ceived. The principal property of a language suitable for 
data flow is freedom from side effects, which will be de
scribed below. The (pure) LISP language 20 is the best known 
example of a language without side effects. The connection 
between freedom from side effects and efficient parallel 
computation has been known for over ten years. 25 

1087 

To see why data flow computers require languages free of 
side effects, we m-u-s-t exam-tfle t-henature of dat~ flow-.com:
putation and the nature of side-effects. A detailed descrip
tion of the mechanism of data flow computers is beyond the 
scope of this paper. The interested reader is referred to 
References 2, 12, 15,21,22,23. 

There are three "data flow" languages that will be dis
cussed in this paper. VALl and ID3 were developed by the 
data flow projects at the Massachusetts Institute of Tech
nology and the University of California at Irvine, respec
tively. LUCID4 was developed for program verification, not 
for programming data flow computers. It nevertheless is a 
suitable language for data flow computation. 

Let us begin by examining a simple sequence of assign
ment statements written in a conventional programming lan
guage such as FORTRAN: 

1 P=X+Y 
2 Q=P/Y 
3 R=X*P 
4 S=R-Q 
5 T=R*P 
6 RESULT=S/T 

A straightforward analysis of this program will show that 
many of these instructions can be executed concurrently, as 
long as certain constraints are met. These constraints can 
be represented by a graph (see Figure 1) in which nodes 
represent instructions and an arrow from one instruction to 
another means that the second may not be executed until 
the first has completed. So the permissible computation 
sequences include, among others: 

(l,3,5,2,4,6) 
(1,2,3,5,4,6) 
(1, [2 and 3 simultaneously], [4 and 5 simultaneously], 6) 

This type of analysis (commonly called data flow analysis, 
a term which long predates data flow computers) is fre
quently performed in two situations-at run-time in the 
arithmetic processing units of high performance conven
tional computers such as the IBM 360/91. and at compile 
time in optimizing compilers. In optimiZing compilers, data 
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Figure I 

flow analysis yields improved utilization of temporary mem
ory locations. For example, on a computer with high-speed 
general purpose or floating point registers, this program can 
be compiled to use the registers instead of core memory for 
p, Q, R, Sand T, if it can be determined that they will not 
be used again. (This determination is very difficult, princi
pally because of GO TOs, which is one of the reasons why 
it is very difficult to write optimizing compilers for languages 
such as FORTRAN.) 

In the graph representation, an instruction can be exe
cuted as soon as all the instructions with arrows pointing 
into it have completed. On a multiprocessor system; we 
could allocate a processor for each instruction, with appro
priate instructions (such as semaphore operations l 3) to en
force the sequencing constraints, but execution would be 
hopelessly inefficient because the parallelism of this example 
is far too "fine grained" for a multiprocessor. The overhead 
in the process scheduling and in the wait and signal instruc
tions would be many times greater than the execution time 
of the arithmetic operations. A data flow computer, on the 
other hand, is designed to execute algorithms with such a 
fine grain of parallelism efficiently. In these machines, par
allelism is exploited at the level of individual instructions, 
as in the previous example, and at all coarser levels as well; 
in most programs there are typically many parts, often far 
removed from each other, at which computation may pro
ceed simultaneously. 

To exploit parallelism at all levels, the instruction se
quencing constraints must be deducible from the program 
itself. Let us refer again to the previous program to see how 
this may be done. 

The sequencing constraints in Figure 1 are given by ar
rows. It is not difficult to see that these arrows coincide 
with data transmission from one instruction to its successor 
through variables. In fact, the graph could be redrawn with 
the arrows labeled by the variables that they represent. as 
in Figure 2. 

p 

RESULT 
Figure 2 

In a data flow computer, the machine level program is 
represented essentially in this form-a graph with pointers 
between nodes, the pointers representing both the flow of 
data and the sequencing constraints. Each instruction is kept 
in a hardware device (an extremely simple "processor") 
that is capable of ""firing" or executing an instruction when 
all of the necessary data values have arrived, and sending 
the result to the processors that hold destination instruc
tions. * 

The programming language for a data flow computer must 
therefore satisfy two criteria: 

I. It must be possible to deduce the data dependencies of 
the program operations. 

2. The sequencing constraints must always be exactly the 
same as the data dependencies, so that the instruction 
firing rule can be based simply on the availability of 
data.** 

There are two general properties of a language which 
make it possible to meet these criteria: locality of effect and 
freedom from side effects. 

* Although the language" concepts presented in this paper assume that the 
computer exploits parallelism at a microscopic level, not all "data flow" or 
"data driven" computers do so. Designs of data flow computers that exploit 
parallelism only at the subroutine level may be found in References 10 and 
24. 
** Not all designs for data flow computers accept the second of these criteria 
or its consequences. The LAU language 9 is intended for execution on a data 
flow computer, but it was designed to support data base updating and re
trieval, so it has side effects on certain operations. The sequencing of these 
operations must therefore be constrained by means other than data depend
encies, and so it does not satisfy lht! st!cuud criLeriun. The extra constraints 
in LA U are specified by path expressions 7 written into the source program 



LOCALITY OF EFFECT 

Locality of effect means that instructions do not have 
unnecessary far-reaching data dependencies. For example, 
the FORTRAN program fragment given previously appears 
to use variables P, Q, R, Sand T only as temporaries. A 
similar program fragment appearing elsewhere in the pro
gram might use the same temporaries for some unrelated 
computation. The logic of the program might be such that 
the two fragments could be executed concurrently were it 
not for this overuse of names. (Unfortunately, many con
ventional languages encourage this style of programming.) 
Any attempt to execute the program fragments concurrently 
would be impossible because of the apparent data depend
encies arising from overuse of these temporaries, unless the 
compiler can deduce that the conflict is not real and remove 
it by ming·cliff-erent.se-ts oft€mpm:aries-.-

In languages such as FORTRAN and PL/I, this is not so 
easy to determine. A reference to a variable in one part of 
the program does not necessarily imply dependence on the 
value computed in another part-the variable might be ov
erwritten before it is next read. Careful analysis is required 
to determine whether a variable is actually transmitting data 
or is "dead." This analysis is made much more difficult if 
unrestricted GO TOs or other undisciplined control struc
tures are allowed. 

The problem can be simplified by making every variable 
have a definite "scope," or region of the program in which 
it is active, and carefully restricting the entry to and exit 
from the blocks that constitute scopes. It is also helpful to 
deny procedures access to any data items that are not trans
mitted as arguments, though this is not really necessary if 
global variables are avoided and procedure definitions are 
carefully "block structured" as in PASCAL. 

SIDE EFFECTS 

Freedom from side effects is a necessary property to en
sure that the data dependencies are the same as the sequenc
ing constraints. It is much more difficult to achieve than 
locality of effect. This is because locality only requires su
perficial restrictions on the language, whereas freedom from 
side effects requires fundamental changes in the way the 
language's "virtual machine" processes data. 

Side effects come in many forms-the most well known 
examples are procedures that modify variables in the calling 
program, as in the following PASCAL example: 

procedure GETRS(X, Y:real): 
begin RS:=X*X+Y*Y 
end: 

(* RS is declared in 
an outer block *) 

Absence of global or "common" variables and careful 
control of the scopes of variables make it possible for a 
compiler to prohibit this sort of thing, but a data flow com
puter imposes much stricter prohibitions against side ef
fects-a procedure may not even modify its own arguments. 
In fact, in a sense nothing may ever be modified at all. 
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To determine what kind of prohibitions against side effects 
are needed to achieve concurrent computation, we must 
examine programs that manipulate structured data such as 
arrays or records, since the problem does not arise when 
only simple data values are used. 

Consider the following procedure which modifies its ar
guments by a conventional' 'call by reference" mechanism. 
SORT2 is a procedure to sort two elements, J and J + 1, of 
array A into ascending order by exchanging them if neces
sary. 

procedure SORT2(var A: array[l .. 10] of real: 
J: integer): 

var T: real: 
begin if A[J]>A[J + 1] then begin 

T:=A[J]: 

end; 
(1) SORT2(AA, J): 
(2) SORT2(AA, K); 

(3) P:=AA[L]: 

A[J]: =A[J + 1]: 
A[J+ 1]:~T: 
end 

Statements 1 and 2 might interfere with each other and 
with Statement 3. Since the values of J, K, and L are not 
known to the compiler, it must assume that the statements 
will conflict, and execute them in the exact order specified. 
Any attempt at parallel execution might result in the incor
rect results, depending on J,. K, L, and unpredictable fluc
tuations in timing. 

A phenomenon known as "aliasing" makes the problem 
even more difficult. This occurs when different formal pa
rameters to a procedure refer to the same actual parameter, 
that is, they are "aliases" of each other: 

procedure SORTREAD(var A, B :arrayll .. 10] of real: 
I, J : integer): 

begin SORT2(A, I): (* SORT2 is defined above"') 
RESULT:=BLJ]: 

end: 

In this program it would appear that, since A and Bare 
different arrays, the invocation of SORT2 and the reference 
to B[J] could proceed concurrently. However, if this were 
part of a larger program and SORTREAD were invoked in 
the statement 

SORTREAD(Q,Q,M,N): 

the arrays A and B would actually be the same. Languages 
such as FORTRAN and PLlI, in which external procedures 
are not available to the compiler when the calling program 
is being compiled, make the problem harder still. Facilities 
for manipulating data structures by pointers, such as the 
. 'pointer" data type in PL/I and the record manipUlating 
operations of PASCAL make it possible for all of these 
problems to arise without using procedures. 
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Even if procedures and pointers are not used, the se
quencing constraints may be far from clear. as in 

(I) A[J]: =3; 

(2) X: =A[K]: 

If the convention is made that any statement modifying any 
element of an array constitutes a "writing" of the array, 
then Statement 1 clearly passes array A to Statement 2. But 
then a statement such as the assignment in 

for J:= 1 to IO do 
AIJ + I]: =A[l]+ I: 

depends on itself! 
The inescapable conclusion is that, if arrays and records 

exist as global objects in a memory and are manipulated by 
statements and passed as procedure parameters, it is vir
tually impossible to tell. when an array element is modified, 
what effects that modification may have elsewhere in the 
program. 

One way to solve some of these problems is to use "call 
by value" instead of the more common "call by reference." 
This solves the aliasing problem and the problem of proce
dures modifying their arguments. In a "call by value" 
scheme, a procedure copies its arguments (even if they are 
arrays). This way it can never modify the actual argument 
in the calling program. Call by reference has traditionally 
been used instead of caIl by value because it is a more 
natural way of thinking about computation (and is more 
efficient) on von Neumann computers. 

APPLICATIVE LANGUAGES 

For data flow languages, a scheme is used which goes far 
beyond calI by value: all arrays are m/ues rather than ob
jects. and are treated as such at all times, not just when 
being passed as procedure arguments. Arrays are not mod
ified by subscripted assignment statements such as 

A[J]:=S: 

Instead, they are processed by operators which create new 
array values. The simplest operator to perform the nearest 
equivalent of modifying an array takes three arguments-an 
array, an index, and a new data value. The result of the 
operation is a new array, containing the given data value at 

function SORT2(A, J) 

if AlJ]<A[J+I] then A 
else (A[J : A[l + 1 ]])[J + 1 : A[J]] 

end 
end 

Note that the array construction operator may be composed 
with itself and with other operators in the same way as 
arithmetic operators. 

Figure 3 

the given index, and the same data as the original array at 
all other indices. 

In the VAL language,l the syntax for this elementary 
operator is 

A[J: S] 

In the ID language. 3 it is 

A+[J]S 

This operation does not mod(f\' its argument. Hence, in this 
VAL program: 

(1) B:=A[J:S]: 
(2) C: =A[K: T]; 
(3) P: =A[L]: 
(4) Q:=B[M]: 
(5) R: =C[N]; 

Statements 1 and 2 do not interfere with each other or with 
array A. Statement 3 may be executed immediately, whether 
1 and/or 2 have completed or not, since they would have no 
effect on Statement 3 anyway. Statement 4 can he executed 
as soon as Statement 1 completes, whether Statement 2 has 
completed or not. The sequencing constraints are shown in 
Figure 3. 

Note that this situation is similar to the one in the simple 
FORTRAN example of the first section. The sequencing 
constraints are exactly the same as the data dependencies, 
which is the property we seek for data flow. 

An operator-based handling of arrays and records auto
matically accomplishes call by value. As in a call by value 
scheme, a routine such as SORT2 would not accomplish its 
purpose. SORT2 must return the new array as its value. It 
could be written in VAL (omitting type declarations) as: 

o/c No temporary needed during this 
7c exchange because A is not modified. 

In conventional languages, procedures do most, if not all. 
of their work through side effectli-:'1 procedure might be 
designed to alter dozens of variables in the calling program. 



Functions, on the other hand, are typically limited to re
turning a single value, which typically may not be an array 
or record. To make functions as powerful and flexible as 
procedures in conventional languages, applicative languages 
often allow functions to return several values, or entire 
records or arrays, or both. If a function returns several 
values, its call can be used in a "multiple assignment"' such 
as 

X,Y,Z:=FUNC(P,Q,R) % FUNC returns 3 values 

Treating arrays and records as values instead of objects 
is perhaps the most profound difference in the way people 
must think when writing programs in data flow languages 
instead of conventional languages. The customary view is 
of arrays as objects residing in static locations of memory, 
and being manipulated by statements that are executed in 
some S-eqHeOC-€. -As we have seen,. this view is incompatibJe 
with detection of parallelism among the statements. The 
correct view for data flow is of arrays and records as values 
manipulated by operations just as simple values (integers, 
reals) are. Then the parallelism among the operators can be 
deduced from the data dependencies just as for simple val
ues. 

The value-oriented approach to arrays is confusing to 
some at first, but it need not be. An integer array should be 
thought of as a string of integers, just as an integer can be 
thought of as a string of digits. If J has the value 31416, the 
statement 

K:=J-400: 

leaves K equal to 31016: no programmer would expect the 
value of J to be affected. If A is an array with elements 
[3,1,4,1,6], the statement 

B:=A[3 :0]: 

is completely analogous; it leaves B with elements [3,1,0,1,6] 
and of course does not change A. 

Languages which do all processing by means of operators 
applied to values are called applicative languages, and are 
thus the natural languages for data flow computation. The 
earliest well known applicative language implemented on a 
computer is LISP.20 (It is applicative only if RPLACA, 
RPLACD, and all other functions with side effects are 
avoided; this subset of the language is often called "pure" 
LISP.) The connection between applicative languages and 
the detection of parallelism has been reproted by Tesler and 
Enea25 and by Friedman and Wise,14 The development of 
LISP and other applicative languages, and the Tesler/Enea 
paper, all predate the data flow computer concept by several 
years. The concept of computation by applicative evaluation 
of expressions goes back to the invention of the lambda 
calculus in 1941. 8 

EFFICIENCY CONSIDERATIONS IN APPLICATIVE 
LANGUAGES 

Applicative languages have recently given rise to contro
versy concerning their time efficiency in practical situations. 
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It is claimed that many algorithms cannot be executed as 
efficiently in applicative languages as in conventional state
ment-oriented languages. The issue is only one of exploiting 
parallelism, not any fundamental limitation in the computing 
power of applicative systems. This is because any program 
written for a conventional von Neumann computer can be 
rewritten in an applicative language by treating the entire 
memory space as one array. Statements that manipulate the 
memory then become operations on that array. The array 
must be passed from each operation to the next, so execu
tion in such an applicative system must be strictiy sequen
tial-no parallelism can be exploited. However, in the orig
inal program written in a conventional language, a 
knowledgeable programmer might be able to explicitly spec
ify parallelism, making the program run more efficiently than 
in the applicative system. 

Consider the conventional program 

(1) AlJ]: =S 
(2) A[K]: =T: 
(3) P: = A[M]; 
(4) Q:=A[N]: 

If the programmer knows that the set of indices for the array 
A can be divided into two disjoint sets, with J and M in one 
set and K and N in the other, then Statements 1 and 2 could 
be executed simultaneously, 3 would only need to follow I, 
and 4 would only need to follow 2. If the programmer has 
the ability to control parallelism explicitly (say, by sema
phores, monitors, or path expressions), he could specify 
exactly those constraints. This is not possible in a data flow 
language without some additional mechanism. However, the 
problem can often be avoided by dividing the array into 
separate parts, manipulating them separately, and combining 
them only when necessary. For example, suppose array A I 
contains only those elements that J and M are known to 
index, and A2 contains those that K and N index. Then 

Bl:=Al[J: S]: 
B2:=A2[K:T]; 
P:=BllM]; 
Q:=B2[N]: 

exploits the parallelism exactly. There are other ways of 
overcoming the tendency for arrays to limit parallelism, 
which will be discussed later. The question of how to exploit 
parallelism in applicative languages for a wide variety of 
programming problems is an active area of research. 

DEFINITIONAL LANGUAGES AND THE SINGLE 
ASSIGNMENT RULE 

Having accepted an applicative programming style and a 
value-oriented rather than object-oriented execution model, 
we next examine the implications of this style upon the 
meaning of assignment statements. 

Except in iterations, (which will be discussed later), an 
assignment statement has no effect except to provide a value 
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and bind that value to the name appearing on its left hand 
side. The result of the assignment is accessible only in sub
sequent expressions in which that name appears. If the lan
guage uses blocks in which all variables are local to the 
block for which they are declared, the places where a vari
able is used can be determined by inspection. If the expres
sion on the right hand side of an assignment is substituted 
for the variable on the left hand side in all places where that 
variable appears within its scope, the resultant program will 
be completely equivalent. 

S:=X+Y: 
0:=3*S: 
E:=S/2+F(S): 

is equivalent to D:=3*(X + V): 
E:=(X+Y)/2+F(X+ V): 

(The program on the left is clearly more efficient, requiring 
only two additions instead of four. We are not proposing 
that the substitution be made in practice.) 

Now this situation is the same as a system of mathematical 
equations. If a system of equations contains "S=X+Y", it 
is clear that" 3*S" and .. 3*(X + Yr' are equivalent. Hence 
the statement 

S:=X+Y: 

means the same thing in the program that the equation 
"S=X + Y" means in a system of equations, namely that, in 
the scope of these variables, S is the sum of X and Y. The 
correspondence can be thought of as holding for all time; it 
is not necessary to think of the statements as being executed 
at particular instants. (In fact, perhaps the word "variable" 
is an inappropriate term.) Of course, the addition of X and 
Y to form S must take place before any of the operations 
that use S can be performed, but the programmer doesn't 
need to be directly concerned with this. 

Hence the statement S:=X+Y should be thought of as a 
definition, not an assignment. Languages which use this 
interpretation of assignments are called definitional lan
guages as opposed to conventional imperative languages. 
Such languages are well suited to program verification be
cause the assertions one makes in proving correctness are 
exactly the same as the definitions appearing in the program 
itself. In conventional languages one must follow the flow 
of control to determine where in the program text assertions 
such as "S=X + Y" are true, because the variables S, X, 
and Y can be changed many times. Assertions must there
fore be associated with points in the program. 

In a definitional language the situation is extremely sim
ple: If a program block contains the statement 

S:=X+Y; 

then the assertion S=X + Y is true. Of course, care must be 
taken to prevent circular definitions such as 

X:=Y: 
Y:=X+3: 

We can either have the compiler allow definitions to ap-

pear in any order as long as there is some consistent order, 
or we can require them to appear in a consistent order. A 
consistent order is one in which no name is referred to (on 
the right hand side of a definition) before it is defined. This 
condition is easily checked by a compiler. So the actual 
proof rule is: If a program block contains the statement 

S:=X+Y; 

and the program compiles correctly, then S =X + Y is true. 
Strictly speaking, it is only true in the statements after the 
one defining S, but, since S does not appear in any earlier 
statements, the assertion can be treated as being true 
throughout the block. 

The power of definitional languages for program verifi
cation is well known outside of the data flow field. LUCID4 
is an example of an applicative definitional language de
signed expressly for ease of program verification. 

There is a problem that could ruin the elegance of defi
nitional languages-multiple definition of the same name. 
Definitional languages almost invariably obey the single as
signment rule: A name may appear on the left hand side of 
an assignment (definition) only once within its scope. The 
single assignment rule prevents program constructs which 
imply mathematical abominations, such as 

J:=J+l; 

Since the appearance of J on the right hand side precedes 
the definition of J, it implies an inconsistent statement se
quencing that the compiler would diagnose. The prevention 
of such abominations is of course necessary if the definitions 
in the program are to be carried directly into assertions used 
in proving correctness, because the assertion "J =J + 1" is 
absurd. 

It is not actually necessary that a data flow language 
conform to the single assignment rule. A data flow language 
with mUltiple assignments could be designed in which the 
scope of a variable extends only from its definition to the 
next definition of the same variable. The next definition in 
effect introduces a new variable that simply happens to have 
the same name. A program written in such a way can be 
easily transformed into one obeying the single assignment 
rule: simply choose a new name for any redefined variable, 
and change all subsequent references to the new name. 
However, the advantages of single assignment languages, 
namely, clarity and ease of verification, generally outweigh 
the "convenience" .of re-using the same name. 

ITERATIONS 

There remains one area in which statements such as 

1:=1-1; 

or 

A:=A[J:X+Y]: 

seem to be necessary, explicitly or implicitly. in conven-



tionallanguages, and that is in iterations. The technique of 
renaming variables to make a program conform to the single 
assignment rule only works for straight-line programs: If a 
statement appears in a loop, renaming its variables will not 
preserve the programmer's intentions. For example: 

for I: = 1 to 10 do cannot be for I: = 1 to 10 do 
11:=J+l: J: =J + 1; transformed to 

If the language allows general GO TOs, with the resulting 
possibility of complex and unstructured loops, the problem 
is indeed difficult. However, data flow languages generally 
have no GO TO statement, and require loops to be created 
only by specific program structures such as the 
"while ... do ... " and similar statements found in PL/I and 
PASCAL. This makes the problem easy to solve, and makes 
it possible to give iterations a very simple and straightfor
ward meaning. 

To develop the data flow equivalent of a "while ... do ... " 
type of iteration, we must consider what the "do" part of 
such a structure contains. Since there are no side effects, 
the only state information in an iteration is the bindings of 
the loop variables, and the only activity that can take place 
is the redefinition of those variables through functional op
erators. An iteration therefore consists of 

1. Definitions of the initial values of the loop variables. 
2. A predicate to determine whether, for any given values 

of the loop variables, the loop is to terminate or to 
cycle again. 

3. If it is to terminate, some expression giving the value(s) 
to be returned. These values typically depend on the 
current values of the loop variables. 

4. If it is to cycle again, some expressions giving the new 
values to be assigned to the loop variables. These also 
typically depend on the current values of the loop var
iables. 

An iteration to compute the factorial of N could be written 
(omitting type declarations) in VAL as follows: 

for I, J: = N, 1: % Give loop variables I and 
% J initial 
% values Nand 1 
% respectively. I will 
% count downward. J will 
% keep 
o/c accumulated product. 

do if 1=0 o/c Decide whether to 
% terminate. 

then J % Yes. final result is current 
%J. 

else iter I, J:=I-l, hI; 
% No, compute new values 
% of 1 and J, 

end % and cycle again. 
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It could be written in ID as follows: 

initial I~N: J~1 
while 1=1=0 do 

new I~I-l: 
new J~J*I: 

return J 

Its representation in LUCID is similar to that in ID. 
Although the values of the loop variables do change, they 

change only between one iteration cycle and the next. The 
single assignment rule, with its prohibition against things 
like "1=1-1" is still in force within anyone cycle. All 
redefinitions take place precisely at the boundary between 
iteration cycles (though they need not actually occur simul
taneously). This is enforced in VAL by allowing redefini
tions only after the word iter, whle-fi is tfie e-e-mm-aoo to 
begin a new iteration cycle. In ID and LUCID, the "new" 
values become the "current" values at the boundary be
tween cycles. 

Since the single assignment rule is obeyed, and names 
have single values, within anyone iteration cycle the math
ematical simplicity of assertions about values still exists. 
The assertions typically take the form 

"In any cycle, S=X + Y" 

Assertions used in proving correctness of an iteration are 
usually proved inductively. Because assertions take such a 
simple form, such proofs are usually simpler than in con
ventionallanguages. For example, the assertion 

J2:0 and J*(I!)=N! 

is used to prove correctness of the previous program. The 
basis of the induction is that it is true for the initial values 
I=N and J = 1. (We assume N2:0.) The induction step is that, 
if another cycle is started with the values 1- 1 and J * I, they 
will obey the assertion, that is, 

which is clearly true if we observe that a new cycle will only 
be started if 1>0 and hence 1-12:0. 

ERRORS AND EXCEPTIONAL CONDITIONS 

Locality of effect requires that errors such as arithmetic 
overflow be handled by error values rather than by program 
interruptions or manipUlation of global status flags. If an 
error occurs in an operation, that fact must be transmitted 
to the destinations of that operation and nowhere else. This 
can be easily accomplished by enlarging the set of values to 
include error values such as overflow, underflow, or zero
divide. 

If the intention is to abort the computation when an error 
occurs, this can be achieved by making the error values 
propagate-if an argument to an arithmetic operation is an 
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error, the result is an error. When an error propagates to 
the end of an iteration body, that iteration always terminates 
rather than cycling again. In this way the entire computation 
will come to a stop quickly, yielding an error value as the 
result. If the computer keeps a record of every error gen
eration and propagation, that record will provide a detailed 
trace of when and where the error occurred, and what it
erations and procedures were active. 

If the intention is to correct an error when it occurs (per
haps keeping a list of such errors in some array), that can 
be accomplished through operations that test for errors. For 
example, a program to set Z to the quotient of X and Y, or 
to zero if an error occurs, could be written in VAL as 
follows: 

ZZ:=X/Y; 
Z: =if is_error(ZZ) then 0 else ZZ end; 

METHODS OF OBTAINING MAXIMUM 
PARALLELISM 

To achieve the greatest parallelism, it is necessary that 
computations not be performed sequentially unless neces
sary. The iteration constructs described previously imply a 
sequential execution of the various cycles. If the values of 
the iteration variables in one cycle depend on those of the 
previous cycles (as they do in the factorial example given 
previously), nothing can be done about it, although a data 
flow computer can often execute part of a cycle before the 
previous one has completed. If the values in one cycle do 
not depend on those of the previous cycles, the cycles can 
be performed in parallel. In VAL this is accomplished with 
a/orall program construct which does not allow one cycle 
to depend on the others, and directs the computer to perform 
all cycles simultaneously. In ID the same effect is achieved 
automatically by tagging the values of the iteration variables 
with their cycle number, and allowing them to be processed 
out of sequence, or simultaneously, whenever they do not 
depend on each other. 

Another potential "bottleneck" in data flow computation 
is the requirement that all elements of an array be computed 
before any element of that array may be accessed. If func
tion "F" creates an array value by filling the array one 
element at a time, and then passes the array to "G:' which 
reads the elements one at a time, G cannot begin until F 
completes. In many instances this delay is unnecessary, and 
various techniques have been proposed for eliminating it 
without departing from the principle that the sequencing 
constraints are exactly the data dependencies. One method, 
mentioned in the fifth section, is to explicitly divide the 
array into pieces, or use separate data items instead of an 
array. This method is quite general, but it requires specific 
calculation by the programmer of which parts of the array 
are needed at which time. 

Streams 

A metiwJ of uvercoming the array bottleneck is the use 
of "streams." 2.1 1.2t: A stream may be thought of as an array 

that is fragmented in time and is processed one element at 
a time. 

In the previous example of F creating an array one ele
ment at a time and passing it to G, a stream would be the 
natural way to do this. G would receive each element as 
soon as F created it, so G would be processing the Nth 
element while F computes the N + lSI, resulting in parallel 
"pipelined" computation of F and G. 

The constraint that stream elements be created and con
sumed in strict sequence may be enforced by placing some 
restrictions on the source program to prevent· 'random ac
cess." A program to manipulate streams may be written in 
a recursive style,11,26 in which a stream is treated like a list 
in LISP, or in an iterative style 3 in which the rebinding of 
an iteration variable denoting a stream causes that stream 
to advance to the next element. Either method enforces the 
sequencing constraint if certain rules are followed regarding 
the permissible recursions or iterations. 

When streams are viewed not as temporally separated 
arrays but as sequen~es of Jala itt:m~, functions that process 
streams have a few interesting and useful properties that 
pure mathematical functions do not have: they can emit 
more (or fewer) outputs than their inputs, and they can 
exhibit" memory" from one element to another. This makes 
stream functions suitable for "on-line" applications such as 
updating a data base. Stream functions are also useful for 
operations normally performed by coroutines, such as a 
function to remove all (newline) characters from its input, 
or insert a (newline) after every 80 characters. A stream 
function is equivalent to a coroutine that communicates by 
transmission and reception of data values. A data flow pro
gram using streams is a network of parallel communicating 
coroutines, a computational model that has been of some 
theoretical interest in the last few years. IS-Ill 

Streams and input/output operations 

Streams form a natural mechanism for handling input and 
output. By treating the sequence of characters read in from 
an external medium as a stream, it is possible for a program 
to operate on the data as it is read in. The program can 
generate an output stream, which is printed as it is produced. 

CONCLUSION 

There have recently been calls for the abandonment of 
the traditional "von Neumann" computer architecture as a 
good way of realizing the enormous potential of VLSI tech
nology.5 There has also been widespread recognition that 
proper language design is essential if the high cost of soft
ware is to be brought under control, and that most existing 
languages are seriously deficient in this area. 

Fortunately, the implications of these trends for language 
design are similar-languages must avoid an execution 
model (the "von Neumann" model) that involves a global 
memory whose state is manipulated by sequential execution 
of commands. Such a global memory makes realization of 



the potential of VLSI technology difficult because it creates 
a "bottleneck" between the computer's control unit and the 
memory. Languages that use a global memory in their exe
cution model also exacerbate the software problem by al
lowing program modules to interact with each other in ways 
that are difficult to understand, rather than through simple 
transmission of argument and result values. Future language 
designs based on concepts of applicative programming 
should be able to help control the high cost of software and 
to meet the needs of fuiure computer designs. 
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