
l' ,

:'''''h''::'':'::"';:A,,F I:,PS .j:fRES:S:;;t:';H ::
!,2JO SUMMIT . AVEN,UE,!,:,

MONTVALE, NEW JERSEYQ'645 ,

AFIPS
,,-;

CONFERENCE
PROCEEDINGS.
:;.

1977
NATIONAL
COMPUTER

CONFERENCE

June 13-16, 1977

Dallas, Texas

The ideas and opinions expressed herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1977 National Computer
Conference or the American Federation of Information Processing Societies,
Inc.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

© 1977 by the American Federation of Information Processing Societies, Inc.,
Montvale, New Jersey 07645. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

ii

Preface

by PORTIA ISAACSON
Conference Chairman
The University of Texas at DaLLas
Richardson, Texas

To chair the National Computer Conference is a rare opportunity to contribute
to one's profession. I could never have passed it by. As is common with
opportunities, however, this one has not been without its challenges. Those
challenges have been well met by the 1977 NCC Steering Committee. The
recruitment of that team of professionals has been by far my greatest contribu
tion to the 1977 National Computer Conference. Their dedication and enthusi
asm for the enormous task we faced surpassed even my expectations.

The National Computer Conference is unique in our industry-not just
because it is our largest conference-but because it does not restrict itself to a
narrow view of the industry; each year, it bends and reaches to point to new and
different directions. One of the most important challenges of each steering
committee, I believe, is to determine the directions of reach for the NCC in a
particular year, while retaining the broad base of the conference.

Thus each NCC is unique, bearing the imprint of the particular group of
people that brought it to fruition. The 1977 NCC is no exception. While
reinforcing the NCC tradition of providing a broad technical program, the 1977
NCC has added its own innovations. Among the unique features of this
conference are the program of Professional Seminars, the Programming Contest,
and the Personal Computing Fair and Exposition.

A National Computer Conference is an enormous project. Without the
hundreds of individual volunteers and many supporting companies, we could not
have such a conference. We must especially thank our Conference Steering
Committee, which is responsible for the design and much of the implementation
of the conference. AFIPS Headquarters' staff has provided top-notch support,
with an obviously successful exhibit sales program, innovative communications
plan.aud a.multitJ.lde of ather tasks. TheNCC &al"4.aaQ Nee ComAHllee,M.ve
generously donated their time to provide the overall guidance necessary to make
the NCC happen.

It is an especially difficult task to assemble a program of technical sessions
with sufficient breadth of coverage to be worthy of a conference that calls itself
the National Computer Conference. However, as difficult as it is, Dr. Robert
Korfbage has been more than equal to the challenge as evidenced by these
proceedings.

The National Computer Conferences have established a strong tradition of
excellence. We are proud to have contributed to that tradition.

iii

Introduction

by ROBERT R. KORFHAGE
Program Chairman
Southern Methodist University
Dallas, Texas

If you are ever tempted to project ahead a quarter century
or so, you should first look back an equal span of time, and
observe the changes that have taken place, particularly
within the world of computing, in that time. Each National
Computer Conference stands at this juncture between an
existing past, and an even more exciting future. Thus the
Conference not only represents computing as it has come to
be, but also projects an image of where we are going.

Where are we going? For better or worse, computing is
now involved in every type of human activity. Thus we
take it as the mission of the 1977 NCC Program to reflect
this involvement and to point out promising directions.
Gone are the "good old days" of the esoteric, highly
technical major conference. In the first place, the field has
expanded far too much for anyone to have a sound and
deep technical knowledge of all aspects. In the second
place, many highly specialized conferences now exist at
which various subsets of computer practitioners can discuss
the intricacies of their particular area of interest. Thus we
see the National Computer Conference as presenting a
broader view of computing-in a sense a "world's fair" of
computing, with presentations ranging from tutorials and
seminars aimed at those who have just heard of a given
topic, to technical presentations that will hold the interest
of those more deeply involved. We hope that you will see
the conference in this way. Not everything will interest
:)vli.Se1ecf v.:1iaf y 0U' v.ur':":""bul reuume ·i:>aper~, aliend [he
sessions, participate, and enjoy four days of the best in
computing!

Roughly half of the program this year is technical in
nature, with the major topics being computer architecture

v

and database management. This portion of the program is
well represented by papers in the Proceedings. The less
technical portion of the program is less heavily represented
within these pages. This is due to the fact that roughly one
third of this portion consists of "management briefings"
presentations without formal written papers, that are aimed
at present and aspiring managers in the computer field.
However, within this half of the program there are also
papers on management problems, on a variety of interesting
applications, and on the exploding field of personal com
puting.

Putting together a program for this large a conference
involves more than a thousand people. Most evident of
course are the speakers and the session chairmen. But we
tend to forget the other authors-both the coauthors who
never appear "on stage," and the authors whose work we
have not been able to use, despite the efforts that they have
put in. Hundreds of referees devoted many hours to reading
all of these papers. If, indeed, one benefits in proportion to
the effort put in, then the referees will gain much from the
Conference.

Finally, I would like very specially and personally to
acknowledge the work done by the small core of people
who have been involved in the entire program production
the Program Committee, my staff in Dallas, and the AFIPS
staff in Montvale. When we started this effort I told the
Pi-'o gl:a in Corn-rri'iitee dli:u' [hey wouIo ·i~et t'he' credli and'!'
would get the blame-and that's the way it is. Because of
the enthusiasm and hard work of this small core, the whole
production has gone very smoothly. The few difficulties
that we have had are indeed traceable directly to my desk.

CONTENTS

Preface .. .
Portia Isaacson

Introduction '.'
Robert R. Korfhage

DATA BASE ADMINISTRATION

Data base administration-Classical pattern, some experiences and trends
Jean-Paul De Blasis and Thomas H. Johnson

Data dictionary-More on the impossible dream
Michael Ehrensberger

COMPUTER SYSTEMS ARCHITECTURE

Fault tree analysis of computer systems
C. V. Ramamoorthy, Y. W. Han and G. S. Ho

An overview of fault tolerant digital system architecture .. .
Stephen Y. H. Su and Richard J. Spillman

COMPUTER SECURITY TECHNIQUES

The use of passwords for controlling access to remote computer systems and services
Helen M. Wood

A microprocessor selective encryption terminal for privacy protection
John H. Carson, John K. Summers and James S. Welch, Jr.

COMPUTER GRAPHICS

MIDAS-A compositional modeling system
James R. Warner

A system for automatic acquisition of three-dimensional data .. .
Henry Fuchs, Joe Duran and Brian Johnson

CLINICAL APPLICATIONS OF THE COMPUTER

Strategies for the successful introduction of computer technology in a mental health care setting-The problem
of change .. .

James H. Johnson, Thomas A. Williams, Ronald A. Gianetti and L. J. Schmidt

Database management for clinical trials
John M. Long and Joseph R. Brashear

Database management for clinical research .. .
W. L. Sibley, M. D-. Hopwood, G. F. Groner, W. H. Josephs and N. A. Palley

DAT A MODELS AND THEIR APPLICATIONS

Why restrict the modelling capability of CODASYL data structure sets?
Charles W. Bachman

The entity-relationship model-A basis for the enterprise view of data
Peter Pin-Shan Chen

vii

iii

v

9

13

19

27

35

39

49

55

59

63

69

77

Data architecture and data model considerations
Edgar H. Sibley and Larry Kerschberg

COMPUTER SECURITY RISK ASSESSMENT

Security risk assessment in electronic data processing systems
Robert H. Courtney, Jr.

Problem areas in computer security assessment .. .
Steve Glaseman, Rein Turn and R. Stockton Gaines

COMPUTER-BASED INFORMATION SYSTEMS FOR THE SMALL FIRM

Computer-based information systems for the small firm-Why? cost? caveats, functional needs, contracts
Frederick F. Newpeck

SELF-ORGANIZING/SELF-OPTIMIZING DATA BASES

85

97

105

113

Storage utilization in a self-organizing data base. 119
P. M. Stocker

Self-adaptive automatic data base design 123
Michael Hammer

SELECTION METHODS FOR A FAMILY OF COMPUTER ARCHITECTURES

Overview of the military computer family architecture selection .. 131
William E. Burr, Aaron H. Coleman and William R. Smith

Initial selection and screening of the CF A candidate computer architectures 139
Samuel H. Fuller, Harold S. Stone and William E. Burr

Evaluation of computer architectures via test programs. 147
Samuel H. Fuller, Paul Shaman, David Lamb and William E. Burr

An architectual research facility-ISP descriptions, simulation, data collection 161
Mario R. Barbacci, Daniel P. Siewiorek, Robert Gordon, Rosemary Howbrigg and Susan Zuckerman

Evaluation of the software bases of the candidate architectures for the military computer family 175
James Wagner, Edward Lieblein, Jorge Rodriquez and Harold S. Stone

Life cycle cost models for comparing computer family architectures. 185
John J. Cornyn, William R. Smith, Aaron H. Coleman and William R. Svirsky

MICROPROCESSOR ARCHITECTURES

A microprocessor architecture for digital device implementation
Thomas L. Boardman, Jr.

201

A hybrid computer interface for microprocessors. 207
Joseph P. Heid

PM/II-Multiprocessor oriented byte-sliced LSI processor modules 217
Mario Tokoro, Taisuke Watanabe, Katsura Kawakami, Jun Sugano and Katsuhiko Noda

An organization for optical linkages between integrated circuits. 227
G. Jack Lipovski

UNIX on a micro-processor .. 237
H. Lycklama

Using LSI processor bit-slices to build a PDP-II-A case study in microcomputer design
T. M. McWilliams, S. H. Fuller and W. H. Sherwood

SOFTWARE MANAGEMENT-PLANNING FOR A NEW SOFTWARE DEVELOPMENT PROJECT

Organizing and training for a new software development project-That big first step
Daniel Freedman, Donald C. Gause and Gerald M. Weinberg

viii

243

255

The choice of new software development methodologies for software development projects. 261
Edward Y ourdon

Software development tools-acquisition considerations. 267
·Leon G. Stucki

Understanding the developmental life cycle. 269
Ray Caudill

Management of large scale computer program production . 277
H. S. Woodgate

Test Planning 285
R. Dean Hartwick

COMPUTER SYSTEMS IN HEALTH CARE DELIVERY AND MEDICAL LABORATORIES

NODAS-The network-oriented data acquisition system for the medical environment , , .. , . , 295
Shelly I. Saffer, David J. Mishelevich, Shirley J. Fox and Victor B. Summerour

A system for priming a clinical knowledge base . 301
Randal L. Walser and Bruce H. McCormick

A proposed study to access the impact of microprocessors on health care delivery. 309
William Hyman and William M. Lively

ADVANCED CONCEPTS IN DATA BASE MANAGEMENT

Natural language knowledge processing. 3 I3
Christine A. Montgomery

The intelligence cycle-A differential perspective of information processing. 317
Peter G. W. Keen

EDUCATION FOR MEDICAL INFORMATION SCIENCE

Plans for a program in medical information science. 321
Allan H. Levy and Thomas T. Chen

The health care computer user-Where will we find the integrators?
Roger H. Shannon and Marion J. Ball

COMPUTER HARDWARE DESIGN

NAA-An approach to analyzing backpanel crosstalk
J. S. Hebhardt, C. F. Groves and R. Bardas

True liquid cooling of computers
E. A. Wilson

OUTPUT-RESULTS AND RHETORIC

327

331

341

GO System-Design and implementation of an output generator , , . 349
Roland R. Bonato and Kenneth C. Yang

A talking computer terminal .. 357
James A. Kutsch, Jf.

Hard-copy computer output and its future . 363
Irving L. Wieselman

DATA STRUCTURES

Variable-length hash area entries
M. H. McKinney

371

ix

Decomposition of data flow graphs on mUltiprocessors. 379
W. C. Brantley,.Jr., G. W. Leive and D. P. Siewiorek

Implementation and application of a function data type
Mark B. Wells

MAN-MACHINE INTERFACE

389

A general-purpose dialogue processor. 397
James L. Black

A study in man-machine interaction ... 409
Lawrence H. Miller

Responsive environments. 423
Myron W. Krueger

COMPUTER TECHNOLOGY IN THE INFORMATION/LIBRARY FIELD

Computer technology in data-base publishing . 435
D. B. Baker and R. E. O'Dette

Improving corporate information services in an automated word-processing network. 443
Henry L. Mayfield

A subject-content oriented retriever for processing information on-line (SCORPIO) 449
Charlene A. Woody, Michael P. Fitzgerald, Francis J. Scott and D. Lee Power

APPLICATIONS OF COMPUTER NETWORKS

Comparing equivalent network services through dynamic processing time prediction . 455
Sandra A. Mamrak and Stephen R. Kimbleton

A structured data base computer conferencing system ... 461
George W. Arnold and Stephen H. Unger

COMPUTER SYSTEMS-A GLOBAL VIEW

An analytic model for parallel computation .. " 469
Roger M. Firestone

Dominance relations in computing systems
Daniel G. Hays

CONTINUING EDUCATION FOR THE COMPUTER SPECIALIST

475

Structured training-A common sense approach to developing ADP skills for improved job performance. 481
Alexander P. Grant and Jack L. Stone

The role of a formal training program in attracting and developing computer professionals 487
Lawrence F. Lunetta, Jr.

PERSONAL COMPUTING-HISTORY AND FORESEEABLE FUTURE

Personal computing-An overview for computer professionals . 493
Jim C. Warren, Jr., Mark E. Deppe and James P. Fry

DATA BASE STRUCTURE AND ORGANIZATION

Operational software for restructuring network data bases. 499
Donald E. Swartwout

A multi-level procedure for design of file organizations
Eivind Aurdal and Arne Solvberg

x

I::{\{\
..JV7

SOFTWARE VALIDATION

An effective method for measurement and analysis of system software performance
John R. Rumsey and David W. Abmayr

523

The Navy Fortran validation system , ,. 529
Patrick M. Hoyt

A two-step approach to the validation of software engineering methodologies
Gruia-Catalin Roman

COMMUNICATION AND EDUCATION

Surveying the billion dollar chasm-How educational differences continue to force corporate and data

539

processing executives apart . 545
Robert S. Hoberman

A community of individuals-Cooperation and individualization in computer science education
Kenneth L. Modesitt

New perspectives for information systems education
Thomas I. M. Ho

DATA BASE APPLICATIONS

561

569

Petroleum data system-A network of energy information. 575
Patricia A. Tracy

Applications of SPARCOM data base concepts to a crime combating environment ... , , 579
Ron Ashany

Integrated data base concepts and structures for combat models . 595
William A. Bayse, Dean P. Risseeuw and Charles S. Matheny

INTERNATIONAL NETWORKS AND PACKET-SWITCHING

Routing and control in a centrally directed network ... 603
Joseph Rinde

TYMNET as a mUltiplexed packet network. 609
John Kopf

Packet switched network in Japan , 615
Toshiharu Takatsuki, Jiro limura, Masato Chiba and Masayuki Abe

PROGRAMMING LANGUAGES-HIGH-LEVEL PROGRAMMING FOR LOW-LEVEL MACHINES

Modular programming conventions in assembly languages. 623
Shy-Ming Ju

The design and implementation of a simple programming language for microcomputers . 629
J. C. Cleaveland and C. D. Satten

Cm*-A MULTI-MICROPROCESSOR COMPUTER SYSTEM

Cm*-A modular, multi-microprocessor .. , 637
R. J. Swan, S. H. Fuller and D. P. Siewiorek

The implementation of the Cm* multi-microprocessor ... 645
R. J. Swan, Andy Bechtolsheim, Kwok-Woon Lai and John K. Ousterhout

Software management of Cm*-A distributed multiprocessor. 657
Anita K. Jones, Robert J. Chansler, Jr., Ivor Durham, Peter Feiler and Karsten Schwans

xi

PROGRAMMING LANGUAGE THEORY

U sing assertions to improve language translators . 665
Arthur Pyster

A parser analyzer of empirical design for question-answering . 669
Abraham S. Ben David

Automatic generation of computer programs . 679
Noah S. Prywes

ARCHITECTURE FOR DATA BASE MANAGEMENT

Sorting with associative secondary storage devices. 691
C. S. Lin

A specialized architecture for textural information retrieval
Lee A. Hollaar and W. H. Stellhorn

FAULT-TOLERANT COMPUTING-I

Fault-tolerant modularized arithmetic logic units
T. R. N. Rao and H. J. Reinheimer

697

703

The design of self-checking multi-output combinational circuits ... 711
D. C. Ko and M. A. Breuer

REMOTE TERMINAL EMULATION

Remote terminal emulation in the procurement of teleprocessing systems . 723
Shirley W. Watkins and Marshall D. Abrams

Application of remote terminal emulation in the procurement process 729
E. J. McFaul

Remote terminal emulator development and application criteria. 733
Couley T. Arthur

SOFTWARE FOR USERS AND MANAGERS

A survey of structured programming practice. 741
I. St. J. Hugo

An interactive system for aiding management decision making. 753
Robert C. Gammill and Hebert J. Shukiar

ADP ACQUISITIONS-CONTRACTING, FINANCING, INVESTING, THIRD-PARTY MAINTENANCE

An overview of independent, third-party computer maintenance .. 761
Howard D. Ponty

A perspective of standard form contracts in the data processing industry
Stephen N. Hollman

765

Small computers and small investors. 771
George Kim Johnson

APPLICATION OF DIVERSE TECHNOLOGY AND ITS RELATION TO OCR SYSTEMS

Non dedicated interprocessor communications discipline. ... 775
David J. Bastyr

An approach to address identification from degraded address data
Viresh Seth

Signature and fadal image compression by boundary encoding
David P. Himmel

xii

779

785

TEXT PROCESSING SYSTEMS

An interactive text-editing system in support of Russian translation by machine
David A. Luther, Christine A. Montgomery and Ronald M. Case

Computer generation of conference presentations
Charles A. Belov

FAULT-TOLERANT COMPUTING II

Design of a diagnosable and fault-tolerant input/output controller
A. K. Bose and S. A. Szygenda

789

791

795

Modular redundancy without voters decreases complexity of restoring organ. 801
P. T. DeSousa and F. P. Mathur

A study of intermittent faults in digital computers 807
Omur Tasar and Vehbi Tasar

PERFORMANCE EVALUATION

A "calibration-prediction" technique for estimating computer performance
C. A. Rose

CPU-utilization and secondary-storage performance-The demand for a new secondary-storage technology
Peter Schneider

DISCRETE MATHEMATICAL MODELS

813

819

Non-linear parameter estimation for probabilistic finite-state automata. 827
Fred J. Maryanski and Kuang Chan Wu

A comparison between two paradigms of intelligent systems-An example. 833
Abraham Waksman

Concatenated group theoretic codes for binary asymmetric channels
Serban D. Constantin and T. R. N. Rao

DATA BASE-EXTENSIONS AND APPLICATIONS

837

The TICOM model-A network data b.ase appr?<z9ito review and .evaluation of internal control systems 843
James I. Cash, Jr., Andrew D. BaIley, Jf. -and ~ndrew B. Whmston

Design and implementation of an information base for decision makers . 855
Robert H. Bonczek, Clyde W. Holsapple and Andrew B. Whinston

APPLICATIONS OF COMPUTER SYSTEMS

Laboratory automation via a VM/370 teleprocessing virtual machine
Anthony A. Guido and James Considine

865

Computer typesetting of technical journals on UNIX .. 879
Michael E. Lesk and Brian W. Kernighan

The computer in manufacturing-Reduction of scrap by computer monitoring . 889
Patricia E. Gober

INFORMATION SYSTEMS-PERFORMANCE ORIENTED DESIGN AND EVALUATION

A methodology for multi-criteria information system design .. 895
John S. Chandler and Thomas G. DeLutis

Automated control of concurrency in multi-user hierarchical information systems. 907
Alan F. Sweet and Arthur E. Oldehoeft

xiii

COMPUTER ARCHITECTURE DESIGN

Techniques for requirements-Oriented design ... " 919
Kenneth J. Thurber

A mUlti-microprocessor approach to a high-speed and low-cost continuous-system simulation 931
Ryoichi Yoshikawa, Tatsuo Kimura, Yasuhiro Nara and Hideo Aiso

Instrumented architectural level emulation technology . 937
Harrison R. Burris

SPECIAL MEMORY ARCHITECTURES

ARES-A memory, capable of associating stored information through relevancy estimation
Tadao Ichikawa, Ken Sakamura and Hideo Aiso

947

Cache memory systems for mUltiprocessor architecture . 955
O. P. Agrawal and A. V. Pohm

THE COMPUTER IN MANAGEMENT AND BUSINESS

Choosing a medical billing system 965
Jeffrey Rothmeier

Designing software for the minicomputer business data processing environment-A case history 969
John M. Hemphill and Ronald L. Lancaster

What to look for in distributed (source) data processing. 973
W. Harry Vickers

SIMULATION METHODS

RESQ-A package for solution of generalized queueing networks. 977
C. H. Sauer, M. Reiser and E. A. MacNair

An approach to simulation of multilevel production systems. 987
J. F. Clark and D. M. Cohen

PERSONAL COMPUTING SYSTEMS

Low cost data acquisition and control systems for the computer hobbyist. 991
Ralph Tenny

Diskomania-A small-system floppy disk operating system. 995
Wayne Sewell

TRENDS IN COMPUTER STORES

Neighborhood computer stores-The answer to microcomputer marketing " 999
Paul Terrell

xiv

Data base administration-Classical pattern,
some experiences and trends

by JEAN-PAUL DE BLASIS
Centre d'Enseignement Superieur des Affaires
Jouy-en-Josas, France

and

THOMAS H. JOHNSON
The Wharton School
University of Pennsylvania
Philadelphia, Pennsylvania

ABSTRACT

This three part paper covers the growth and classical
patterns of data base administration along with a survey of
some currently practicing data base administrators. As a
result, some trends and evolutions of the data base adminis
trator position are presented.

After a brief historical introduction, the paper first sets
forth basic definitions and organizational considerations for
the DBA function. Interfaces, both internal and external are
defined and the associated problems are discussed. The
functions and responsibilities of the DBA are presented
along with the tools available for carrying them out as
recommended by various committees including CODA
SYL, GUIDE/SHARE and other reports.

Then, a survey of organizations utilizing data base admin
istrators is presented. The survey looks at organizations of
varying sizes and commitments to data base technology.
The results of the survey try to show how the previous
re~omm~~~~tio~.s are:. r~pect~d in. re~lity: An ~tt~mpt .to
rationalIze the plans and the actual status of the DBA in an
organization is carried out.

Finally, from the survey results and from projections
provided by the data base administrators themselves, some
trends in the evolution of their functions are outlined. In
light of these projections an attempt is made to review some
of the recommendations currently put forward.

INTRODUCTION

Does the data base administrator portrayed in the current
literature exist in practice? What are the differences, and
what are the trends for the DBA function? This paper
attempts to answer these questions by briefly reviewing the
literature, discussing actual practice, and outlining the
trends in the data base administrator's role.

We developed a central thesis from pre-screening inter-

views and literature search to focus our research on the
data base administrator. In testing this thesis, we uncov
ered areas for future research and application emphasis.
After posing the central problem, we reviewed the defini
tions and functions of the DBA as defined in current
literature to frame our discussion. Next, we focused on the
current state of the DBA, summarizing interviews of over
twenty practitioners. We present results in the form of
evolutionary trends occurring in this area and conclude
with. opportunities for research suitable to the support of
practitioners.

The central thesis is:

The data base administrator now, and in the future, is an
individual who performs the function of planning, design
ing, operating and controlling the data base of an organi
zation at both the policy and operational level.

In order to frame the results from our study, we must
fir,~t ~~tabli~h the d~finiti~n, .function and org~n.tl~tion
proposed for data base administrators. We have synthe
sized proposals and reports from both committees studying
the area and authors publishing in the area. Committees
include GUIDE-SHARE,12.13 CODASYL,6,7 and ANSI
SPARC.1 They are very active in the DBA area, especially
GUIDE-SHARE which has advocated recent expansions of
the DBA role to data administrator and put forward tech
niques for focusing on data resource policy.

DEFINITIONS AND FUNCTIONS

Definitions of the data base administrator's function

The individual introduced in both Codasyl and Share
Reports, called the data base administrator, is a person
meant to solve many of the problems in file integration and
in maintenance of any organizational data base. He is

2 National Computer Conference, 1977

supposed to be familiar with computerized systems, with
data management, and above all, with every aspect of the
corporate data base. The DBA function has been previously
defined as a human function, responsible for the coordina
tion of all data related activities. 4

,17 The following is an
extended definition specifying some of the generic areas of
the DBA's functional responsibility. The data base adminis
trator is the individual providing the coordination, perspec
tive, and administration of the data base by exercising
specific responsibilities. His responsibilities should include
the definition, organization, protection, efficiency, and doc
umentation of the data base. He should also be responsible
for defining the rules by which data is to be accessed and
stored.

To decide where to place the DBA involves trade-offs
almost always because of the distinct organizational charac
teristics in which every systems environment operates. The
answer provided by the literature is generally that the DBA
should report to the highest full-time information systems
manager. Ii ,20,21 Practically, however, there are very few
DBA's who are aligned this way, as shown by some field
studies. IO,14,19

Interfaces

The data base administrator generally interfaces directly
with three groups within the organization. The systems
administration group is the first. This group is concerned
with the operation, maintenance and performance of the
information systems equipment. This includes the perform
ance of data base management systems, as well as security,
recovery and re-start of these systems. They are also
concerned about the throughput of the system and the
running of production systems in the most effective man
ner.

Another interface exists between the data base adminis
trator and systems development. Systems development is
considered to include the planning, analysis, design, and
implementation of application processes. The data base
administration would participate in the design effort and
make determination of technical and economic feasibility in
seeking to satisfy the data requirements of the applications
processes. The data requirements of new systems may be
satisfied by using data already collected and stored or by
extending the definition of the data base to include new
data requirements.

In cooperation with users, the data base administrator is
supposed to seek to determine what data to collect and
store and the criteria to use in validating input data and
stored data. It has been suggested that the correctness of
data is the responsibility of the user, while the protection of
data is the responsibility of the data base administrator. 18 A
Diebold Research ReportlI notes a trend towards "placing
responsibility for data accuracy, validity, and so forth, in
the hands of the user who will be served by the data base."
The report suggests the appointment of a . 'Prime Responsi
ble Authority" (PRA) for each data base from its primary
user division. The PRA interfaces with all users on one side

and with the data base administrator on the other. In other
words, the "prime responsible authority," working in a
user division rather than in the data base administrator's
organization, would be responsible for content, integrity
and use of the data base with respect to all users within the
organization, both within and outside of his own using
organization.

An Auerbach document2 lists ten areas of functional
responsibility for the data base administrator as it can be
seen in Table I. Rather than discussing those ten areas, we
shall focus on the unique functions of data base administra
tion, which are: definition, storage and update of data;
making the data base available to the using environment;
informing and servicing users; maintaining data base integ
rity; and operations and performance.

Definition, storage, and update of data

The process of data definition begins in response to
stated data requirements from the using environment. The
first step in definition process is to design the logical data
structure, incorporating as much as possible of the natural
structure inherent in the data. In a sense, a logical data
structure should model selected aspects of the operations
and entities as they really exist. This is pointing out that to
date very little work has been done on developing formal
methodologies to aid in the process of data base design
which is really needed though, with perhaps the exception
of some current efforts in that direction being in progress.
Once the logical data structure is developed, it is formalized
in the Data Definition Language (DDL) of the particular
data base management being used. Things that the data
describe in logical data structure will eventually be stored
physically in the computer system. Having defined some
data to the system, the next step is to set up the mecha
nisms to acquire the new data and to bring it into the
system.

Finally, the last step in the process is to execute manage
ment policies regarding update of data. Even if the value of
data diminishes over time, it is not desirable to aggregate
older data. An updating mechanism should be set up to
store the older in off-line archival files for example.

Establishing data availability

One of the functions of the data administrator is to assist
users in their search for data to satisfy their application

T ABLE I-Areas of Data Base Administration Responsibility

I. Data Definition
2. Data Base Design and Implementation
3. Data Base Access
4. Data Base Standards Control
5. Documentation
6. Operations
7. Monitoring
8. Data Base Management Systems Enhancements
9. Education

10. Vendor Enhancements

requirements. He should maintain a Data Base Directory
(DBD), in which are recorded the record types, and set
types currently available to users. The DBD will then be
the initial source for information relative to data availabil
ity. If it happens some data elements are not available
within the confines of the existing data base, the data
administrator will arrange the interface with the necessary
data sources to satisfy the demands of the users. Such
demands, of course, should remain within the cost con
straints controlling the user and the data base administra
tor.

Some additional factors to be included when considering
data availability are the following:

1. Present form and location of data.
2. Access techniques to be used.
3. Intended use of data in relation to its present accu-

racy, completeness and timeliness.
4. Need for modification of data.
5. Present authorizing agent for use of data.
6. Cost of providing the data.

Maintain data base integrity

The protection of the data base is an essential responsi
bility of the data base administrator. The data base repre
sents a large dollar investment, and data contained in it is
vital to all who use it. Alteration, destruction or disclosure
of the data base may represent an enormous and irrevoca
ble loss in time and money. Although complete integrity
protection is never possible, a high level of protection
should be kept as much as possible.

The general problem areas in data base protection are:

1. Data base access and manipulation;
2. Data base integrity;
3. Safe recovery/restart.

Data base documentation

In addition to being an organizer and an administrator of
the data in the data base, the DBA is the prime documen
tarian and educator with regard to the Data Base Manage
ment System (DBMS) at his installation, and he should
provide for the recording of procedures, standards, guide
lines, and data base descriptions for proper use of the data
base. 3

STUDY RESULTS

Over twenty Data Base Administrators' groups have
been studied to date. Their companies ranged in size from
$3 billion to $20 million in revenues and data bases ranging
in size from 100 billion characters to a few hundred
thousand characters. Despite the range of application and
size of companies, we found remarkable similarities among

Data base Administration 3

approaches, problems, and successes. The results are pre
sented here in summary form to support the main thesis.
The detailed survey is being published in working paper
form. 14

Recall the primary thesis we set out to prove:

The data base administrator now and in the future is an
individual who performs the functions of planning, de
signing, operating, and controlling the data base at both
policy and operational levels.

Operations vs. policy

Critical in the thesis statement are the dual tasks of
operations and policy making. This conflict, we found, is
one area where the position statement breaks down. The
data base administrator is said to be responsible for the
definition, storage, and update of data; making the data
base available to the using environment; informing and
servicing users; maintaining data base integrity, operations
and performance. The data base administrator is also said
to be responsible for corporate data base policy; access
authorities; definition of data base content and organiza
tion; selection of data to collect and store input; criteria to
use in validating input; and conflict mediation among users,
system designers, and computer operations. 23

These latter functions required the DBA to be high
enough in the organization's management, so that the
position has authority to set and enforce policy. The former
functions, more operational, required less top management
involvement and usually meant a lower position in the
organization. Furthermore, the operational dimension
caused the DBA to bias the broader policy issues affecting
many groups in favor of his own operations.

Evolution of the DBA

As the study began, we uncovered another framework
,~h!ch shed u ~!idernbte!~6~:t ~TI the !)B.~.,A definYte
maturing of the DBA function occurs within an organiza
tion. The newer DBA's were often focusing on problems
that the more established DBA's had already resolved.
DBA's at different stages of development did not articulate
the stages that we observed. They related primarily to the
current problem and to a continuum they were currently
traversing.

Our formulation of these evolutionary steps made obser
vation of DBA's much simpler and more logical. First, it
helped separate the progress of a particular DBA group and
the progress of the field as a whole. By classifying each
DBA group according to their development stage, we could
study that group's state relative to the stage and not to the
general popUlation. For instance, the DBA just getting
started with a three person staff has significantly more
support than the DBA in the height of development with
three people. We then could ask if the problem definition

4 National Computer Conference, 1977

phase is receiving greater attention instead of observing the
gross state of the group.

We outlined five stages in the evolution of the data base
administrator function: Introduction, initiation, integration,
operation, and maturation.

Introduction generally took the form of either a study
group or a manager's individual recommendation and deci
sion to go with a data base management system. Although
we did not take much specific data on this phase, most
earlier introductions seemed to discover a need for a data
base administrator after using a DBMS, while more recent
introductions also discovered a need for the DBA to
parallel or precede a DBMS.

Next, the initiation of a DBA consists of developing one
or two data base systems. As much as total system design
or top down approach may be touted, the corporate data
base was never built in this phase, it was always started as
one or two application data bases. Most often the DBA's
speed of success rested on how well these applications
were performed (we say speed of success because despite
severe negative benefits in some systems, data bases are
becoming essential to most business organizations and the
question is generally how fast). It is in this stage lasting one
or two years that the DBA spends a considerable amount of
time and money to establish a base for future growth.
Correct choice of system, personnel, applications, etc. are
critical here.

Integration, the joining of several systems together into
the corporate data base, is a development phase of several
years duration. It really never stops, but we have estab
lished an (arbitrary) turning point into maturity when the
DBA has control of data base's definition, design, access,
and standards along with having a large majority of DP
application systems on the DBMS. This points out the two
maturation phases going on during integration phases. One
is the actual integration of data into the data base, the other
is the acceptance of the DBA as the group in control,
mainly operational control, of the data base.

Maturity sees the focus of effort move from development
to operations. It also means a focus of the DBA role as the
center of data base systems responsibility from design to
operation. Some organizations might believe they have
matured with only one or two subsystems operating, but
until the DBA is involved from the beginning in all data
base work and also has the final power to make the
operational decisions, the group has not matured. 22 In fact,
during our survey we found very few mature groups.

General experiences

For the study, we outlined several questions to help us
establish a more logical pattern to our research. Some
questions were posed directly to the subject; others were
broken down in more detail and synthesized here.

• Is there a measure of the size of the DBA's organiza
tion?

• What are the qualifications needed to fill the DBA
position?

• Which of the ten functions does the DBA perform?
• Where does the DBA report in the organization?
• What is the cost of the DBA and where are the

economies?
• What is the biggest problem faced by the DBA?

Size of DBA function

The size of the DBA group is proportional to the size of
the data base up to a point. With one exception, the DBA
group increased with the size of the data base. The increase
was not linear, because the high initial cost to support the
system causes a rapid growth initially followed by a more
gradual but noticeable increase. The largest group inter
viewed had 14 people in the DBA group; the smallest had
one. Economies of specialization and scale took over as the
data base grew, and the staff became organized, usually
functionally, but sometimes in project teams. We learned
that the start-up. effort can be substantial. The analyst!
programmer training consumed a large portion of the
DBA's time during the first two years of operation, but fell
drastically after user acceptance. In many cases, training
and marketing DBMS went together, so the work load
further increased start-up staff size.

Once application systems arrived at an operational level,
the group did not shrink because of required data base and
program updates and other support functions. Surprisingly,
all those interviewed who had been operational for some
time, sighted more man-hours consumed on system prob
lems than data structure updates. As major applications
became operational, the role of the DBA staff grew more
operational and tended to increase, usually in support
personnel.

There was one strategic milestone for staffing which
passed quickly in some cases and never in others, and that
is commitment to data base technology. With the commit
ment given, staff size no longer was a problem. Without it,
the DBA found mustering resources, like staff, difficult. A
few groups were able to overcome this obstacle by per
forming well despite resource constraints; one group dis
banded, several more are not beyond this milestone.

Two final notes: first, staff size is not a measure of the
quality of a data base group, but it can be a measure of the
data base size. There may be a relationship between the
size/complexity of a data base and the size of the DBA
group.14 Next, there appears to be little relationship be
tween the type of DBMS and the size of the DBA group.
Though this finding came as a surprise since different
technologies would require different staffing, it now seems
logical because the technologies are not all that different
and the major problems requiring staff are fairly similar.
There may also be a measure of technology improvement
and staff size if these findings are verified.

What are the requirements for a DBA

It was felt by those interviewed that the primary require
ments for a person to be a DBA or join the DBA group

were both technical skills and knowledge of the company,
administrative capability ranked a weak second.

Sixty percent of the current administrators had lengthy
experience within their companies' DP department, not
necessarily with DBMS. The others were DBMS experts
brought in for the job. The overwhelming majority of the
administrator's non-clerical staff were technically trained in
DBMS. The large majority of administrators suggested that
their replacement should have both technical training and a
minimum of two to five years with the company. Their staff
members were required to have a strong technology back
ground before being considered for hiring or transfer from
an application area being implemented under the DBMS.

The technical skills requirement was even more pro
nounced in the more mature groups. They were finding a
greater demand on the part of analysts and users for more
detailed systems assistance. In all of the mature groups,
the DBA group found themselves spending a large amount
of time in the system support function. Frequently, they
were supporting applications programmers as systems pro
grammers because the applications people considered the
data base part of the operating system.

Administrative skills were secondary qualifications to
three-fourths of the DBA's. A person with a Master's in
computer sciences and with company acquired skills is
much preferred as a DBA over someone having a Master's
in Business with technical skills. It was felt that administra
tive skills could be learned on the job. This opinion held for
the very large DBA groups and the very small ones.

DBA JOB FUNCTION

The DBA function among organizations is remarkably
similar in the long run, but start-up situations were crucially
different. The actual job descriptions, the 30 percent we '
were able to see, came directly from the DBA literature.

We were very surprised that generalization about the
DBA function could be made between different-size compa
nies using different DBMS products. Each company and
p!!('k~ rnt¥e dtffiet!tt~ ~ to rt~" btlt h~ori~,
problems, and operational organizations were similar. The
literature explained the functional areas for setting up
operation, and the DBA's generally read these major
sources for advice. The DBA groups we found were pri
marily operational functions whose objectives were techni
cal support for applications analysts. The organizations
tended to grow more support-oriented with time.

Of the ten tasks outlined earlier, implementation, access,
DBMS enhancements, education, and vendor' enhance
ments were the five major areas of concentration found in
young groups, in the initiation phase. In this phase, data
definition and design were not relinquished by the applica
tions analysts. Control, documentation and monitoring
were not institutionalized very well in the DBA functions.
Operations were almost always delegated to the company's
operations department under advisory relationships with
the DBA. Often backup recovery was a major headache for

Data base l\dministration 5

the newly initiated data base group until operations had
accepted responsibility for its execution.

These young DBA groups were brought in at the last
stages of applications development to "make this a data
base system." The applications analyst would have done all
the work, built the system, and as a last touch, attached the
DBMS. Education, in the form of data base techniques and
data base design principles, became a major consumer of
the DBA group's time. The education served three pur
poses: sell DBMS as a concept, sell the need for involve
ment of the DBA early in the application design, and teach
the analyst how to use the DBMS.

The evolution towards involvement of the DBA in appli
cation design became evident in the large majority of
mature systems. The groups generally gained this involve
ment via user acceptance, not by fiat. As the groups
matured, internal controls, documentation and monitoring
became a part of daily operation. Backup and security was
one area of responsibility serviced from the start. The
DBMS generally voided normal file backup operations, yet,
the operation was required. The DBA set up procedures for
the operations group to follow to back up the DBMS.

Vast differences did occur in initiating the DBA function
and bringing it to mature operation. These differences
appear in organizational consideration, top level commit
ment to the DBA's, and interfaces with operations, applica
tions, development and users. There is genuine need for
further research in this area to support the start-up and
evolution of a DBMS and the DBA, especially relating to
these areas.

Where the DBA report in the organization

Data base administrators rarely report to the highest
systems' administrator, but more frequently report to the
manager of systems analysts.

Current authors in an attempt to improve the DBA
position's strength have an extensive list of policy roles for
the group to play. These roles do not yet occur in the
pmcticn!' '".vend. Being the mediator arrd dtrect ad\i'~0r tc
the chief systems administrator on data policy has been
recently proposed.14,19,24 In practice, we have not seen this
occurring in the person of the data base administrator. The
DBA is most frequently a senior analyst or group leader in
applications or systems development organizations. In only
two cases did the data base administrator report to the top
level of systems management.

We recognize the need for better data base policy in
organizations. But from the history of current DBA's, this
policy maker would probably be another individual with the
DBA serving as an important part of policy implementation.
In fact, historically, there generally was an individual or
group of individuals who took on this policy role. They
instituted or supported the policy to use a DBMS and to
initiate the DBA function. The creation of a position to plan
and control the use of data resources is one way to institute
data base policy. The formalization of a committee is

6 National Computer Conference, 1977

another way to institute policy. Either way, it appears to be
ajob separate from the DBA's job.

Cost and economies of the DBA

Two facts stood out in our survey in this area. First, the
organizations had little idea what the direct cost of the
DBMS or the DBA were. Second, the organizations recog
nized that they required a DBMS and the DBA to economi
cally operate their data processing system.

It is astounding how poorly the cost and economies of
DBMS are measured, for that matter it is astounding how
poorly the computer resources are measured. In general, an
astute applications group within these companies should
immediately take advantage of the DBA and attempt to use
the data base because the charges for these resources were
not accounted for directly. In some cases operations cost,
computer run time, was charged back to the user, and
served as a deterent to using the data base. But generally
the DBA groups were an overhead item, a necessary
expense to keep the system operational.

The rush to be ' 'on the data base" did not occur.
However, the costs or economies were rarely the reason
given for not using the DBMS.

No good data about the economies of these data base
systems came out of the study. At most it can be said that
they are expensive to build and to run. A DBMS needs a
group of experts, the DBA, to run and maintain it in order
to keep the unaccounted for costs down to some unknown
amount. Organizations are willing to pay some proportion
of the budget to support the systems and the staff. And, the
organizations who had committed to the use of a DBMS felt
they were getting good results from the change.

The major problem stated by the DBA

Administrative problems, or organizational issues sur
faced as the most important problems in the great majority
of groups studied. After insisting on technical people to
staff the group, the DBA manager cited his critical prob
lems occurred in a variety of administrative areas. These
problems were often a function of the point of evolution of
the group.

The groups just starting up cited top management sup
port, cooperation from user groups, and training or educa
tion as their most frequent problems. The more mature
groups cited control and coordination problems along with
evolving technology difficulties. The young~r groups gener
ally felt satisfied with the technology, but felt constrained
by the environment, while the older groups although still
bothered by administrative problems had technical difficul
ties as frequently mentioned as organizational ones.

For the DBA in the initiation phase the major problem
revolved around either introducing a new technology into
the organization or the creation of this cross organization
body that the DBA represented, We expected to find these
groups were highly critical of the technology or with an

extensive list of needed advances. 24 Instead we found
general satisfaction with the DBMS product they used and
frustration with its users. Sometimes the problems ap
peared to be the overanxiousness of the DBA who had been
mandated to put in an application and was trying to install
the total corporate system. More often the reasons were
problems with the education and training of others outside
the DBA on proper approach. Most typically the young
group was seeking the responsibility for design and devel
opment instead of just the programming of the DDL or
DML. This interface with the users, the establishment of
educational programs, the convincing of top management
was the slowest and most painful effort, yet generally a
successful one.

The mature groups had achieved these responsibilities
and were established as a necessary component in any new
development. Here we did find complaints about technol
ogy: a lack of a data dictionary, or better recovery control,
or a solution to the on-line update problem. We also found
more administrative control problems surfacing. Their con
cerns about participating in system change decisions and
about data control problems were more pronounced. There
was a distinct interest in establishing responsibility for the
data but at the same time an unwillingness to take the
responsibility. They also expressed concern about control
over changes to the data base and its structure. Finally they
were searching for people with the qualifications and the
ability to work in the DBA group.

CONCLUSION

The DBA is a necessary part of any data base management
system effort. No corporation should attempt to form a
"corporate data base" without this individual or group to
manage its internal operations. The DBA is not however
the policy maker that we see in the literature. Corporations
do not really view data as a resource nor do they view the
DBA as a manager of a valuable corporate resource.

The DBA's we surveyed are highly qualified technical
teams or individuals that first bring a new technology to
bear on data processing problems and then make the
technology operate with the maximum effectiveness possi
ble. They are in a unique position of bridging various
applications and have an extraordinarily difficult time
bringing the available capabilities to potential users, but
they seem to perform this job reasonably well. The DBA
group now and in the future needs well qualified technical
people who can interface with their users and colleagues.
At the same time they need to attract those individuals who
have a knowledge of the organization's problems and who
can interface with the users from a different perspective.

The DBA is an entity with a future. We see it as a
training ground for managers who need a broad view of the
company's information system problems, yet who need to
have the technical capabilities to manage some user groups.
The DBA seems to naturally focus more and more on the
technical issues which are within its control and which
grow as the position grows. The DBMS technology is being

applied to more and more problems in more and more
organizations. As the organizations continue to utilize in
formation systems the DBA will provide the data base
support necessary, probably on a more expanded technical
front.

As far as data base policy is concerned, we see a
different individual or group becoming concerned with this
problem. The DBA would be the most important implemen
ter of the policy, but not the policy maker. The corporate
information managers will need staff or support people who
can advise them on policy matters without the vested
interest of the DBMS implementation. These policy makers
would be concerned with the data resource as one of the
corporate resources. They would draw on the DBA group
for talent and individuals to move into the advisory wing,
but this would probably not be the same group.

The DBA will be involved with technology growth prob
lems as well as the growth of his data base. The systems
studied showed that most DBMS systems operate in batch
oriented systems. Of those that don't, only a few allow
sophisticated on-line update and access to the data base.
Most of the systems were not using the operational data for
more expanded MIS purposes, either. We expect the de
mand for on-line update, and the demand for more MIS
applications to grow along with the introduction of more
sophisticated data base techniques like distributed data
bases. s The DBA's technology growth will also force the
group to become highly technical in nature and highly
specialized.

Further research and assistance is needed for the DBA
and the user, who will be interfacing more with the DBA in
the future. More automated design tools must be developed
for the user to be able to present his design to the DBA in a
clear manner both at initial development and at operation
time. Very few of the DBA's had the time to monitor and
optimize the use of the data base. More research into
modeling and optimizing would aid in this area. The prob
lem of an MIS still has not been solved in these systems.
The data bases become so complex that managers are more
lost than ever, and research on an effective way for true
management use of complex DBMS systems is needed. 19

'Researcn in lbe economi~~ uf DBMS arId lfttir staffing i~
clearly needed. Organizational issues and administrative
structuring seem to be a must for expanded research. For
those who claim that data is a resource the last two issues
are clearly a critical area to justify that position. Finally,
the impact of the new technologies on the DBA must be a
constant concern.

Data base Administration 7

REFERENCES

1. ANSIIX3/SPARC, "Study Group on Data Base Management Systems,"
Interim Report 75-02-08, FDT-Bulletin of.4.CM-SIGMOD, Vo!' 7, No.
2, February 1975.

2. Auerbach, "Data Base Administrator," Part 1, Doc No. 3-06-04, Auer
bach Publishing Company, Philadelphia, 1975.

3. Cagan, c., Data Management Systems, J. Wiley, Inc., New York, 1973.
4. Canning, Richard G., "The Data Base Administrator's Function," EDP

Analyzer Vol. 10, No. 11, November 1972.
5. Canning, Richard G., 'The Cautious Path to Data Base," EDP Analyzer

Vol. II, No.6, June 1973.
6. CODASYL Programming Committee, "Data Base Task Group Report,"

ACM, New York, April 1971.
7. CODASYL Systems Committee, "Feature Analysis of Generalized Data

Base Management Systems," ACM, New York, May 1971.
8. Comba, Paul G., "Needed: Distributed Control," Proceedings of the

International Conference on Very Large Data Bases, ACM, New York,
September 1975.

9. Date, C. J., An Introduction to Data Base Systems, Addison-Wesley,
Reading MA, 1975.

10. De Blasis, J. P. and T. H. Johnson, "Data Base Administrators: Review
of Current Recommendations vs. Current Practice," Decision Sciences
Department Working Paper 76-03-03, The Wharton School, University
of Pennsylvania, Philadelphia, 1976.

II. Diebold Research Program, "Organizing for Data Base Management,"
The Diebold Group Inc., Doc. S16, New York, December 1974.

12. Guide-Share Data Base Requirements Group, "Data Base Management
System Requirements," Share Inc., New York, November 1970.

13. Guide-Share, "The Data Base Administrator," Data Base Administra
tion Project, IBM DB/DC Systems Center, Palo Alto CA, November
1972.

14. Johnson, T. H. and J. P. De B1asis, "Data Base Administrators: A
Report From Survey," Decision Sciences Working Paper 76-04-04, The
Wharton School, University of Pennsylvania, Philadelphia, 1976.

15. Johnson, Thomas and J. P. De Blasis, "Very Large Data Base Adminis
tration: Organizational Implications From a Survey," Decision Sciences
Working Paper 76-04-06, The Wharton School, University of Pennsylva
nia, Philadelphia, 1976.

16. Katzan, Harry, Computer Data Management and Data Base Technol
ogy, Van Nostrand, New York, 1975.

17. Lyon, John K., "The Role of the Data Base Administration," Data Base
Vol. 3, No.4, ACM-SIGMOD, New York, Winter 1971.

18. Martin, James, Computer Data Base Organization, Prentice-Hall Pub
lishing Company, Englewood Cliffs NJ, 1975.

19. Morgan, Howard L., "Report on The Very Large Data Base Confer
ence," Communications of the ACM, New York, November 1975.

20. Nolan, Richard L., (Editor), Managing the Data Resource Function,
West Publishing Company, 2074.

2.1. Sanders. Donald H..CatnpJ.l.te.r"s and Managelll.en.t, M~G(aw.~HiU~.Nt;,w
York, 1975.

22. Sanfield, Stuart H., "Data Base Administration: One Approach," Inter
nal Report, Wyeth Laboratories, Philadelphia, 1976.

23. Secrest, Richard, "The Data Base Administrator," in The Information
System Handbook by F. W. McFarland and R. L. Nolan (Ed.), Dow
Jones, Irwin, Homewood IL, 1975.

24. Weldon, Jay-Louise, "Data Base Administration: Theory and Practice,"
NYU Working Paper 75-75, New York, 1975.

Data dictionary-More on
the impossible dream

by MICHAEL EHRENSBERGER
Cincom Systems, Inc.
Cincinnati, Ohio

ABSTRACT

This paper discusses the role of Data Dictionary software in
the computing function. It specifically discusses the evolu
tionary process which brings about the need for a Data
Dictionary. It goes on to describe the major components
and requirements of Data Dictionary software along with its
interaction with data base and the data base administration
function.

The advantages, benefits, and potential drawbacks from
the misuse of this software are also examined.

INTRODUCTION

Since the initiation of computing, the data processing
industry has been preoccupied with hardware selection,
programming techniques, project management, and the like.
Computing, like other emerging disciplines, tended to orient
its management philosophies around the physical hardware
rather than the function the hardware performs. Recently,
this concept of computer management has taken on a new
meaning. The computing industry is no longer preoccupied
with computing; rather, it is concerned with the manage
ment of a vital corporate resource-data. For that reason,
whenever we speak about management in the context of
data processing or computing, it's important that we realize
that data is the thing that we're managing.

This paper will deal with the acceptance of a new tool
used to control that data-The Data Dictionary. At the
same time, it will try to address managerial techniques
whereby we can more effectively manage the data within
our own department.

Over the last four to five years the whole concept of data
base and data communication systems has emerged. This
particular philosophy has been adopted by a majority of the
data processing installations throughout the United States.
Because of the tremendous acceptance of data base and
data communication systems, the amount of processing
required of a computer has expanded geometrically. At the
same time, data, standards, procedures, programs, sys
tems, reports, and personnel within data processing opera
tions have also expanded at a geometric rate. The manage-

9

ment of the computer operation itseif is an increasingiy
challenging job and one which calls for new and different
skills. A new position has been established to deal with the
management of data-that of the data base administrator. A
key tool of a data base administrator is the Data Dictionary.
It is the intent of this paper to try to deal with the role of
the Data Dictionary in the management of the computing
function. In order to achieve that, the following topics will
be covered:

1. The evolution of the need for Data Dictionary
2. Management needs to be addressed by the Data Dic

tionary
3. The advantages and benefits of the Data Dictionary

THE EVOLUTION PROCESS

Computing and data processing is not unlike the growth
of other disciplines in business today. You might reflect
back on the emergence of such disciplines as production
control, manufacturing management, and the like. It was
only after the intensive studies of people like Frederick W.
Taylor and Henri Fayol that manufacturing management
gained wide acceptance throughout industry in the U.S. At
the same time, itwas not untIl the ~introduction of dOUble
entry accounting systems that consistent accounting con
trols were established. Computing and data processing, like
other management disciplines, is now recognized as an
important part of the organization. This recognition has not
been sudden; rather, there have been various stages of
development. These stages have been described by Dr.
Richard Nolan of Harvard University. The question of
"when Data Dictionary" can be answered by determining
what stage of development a particular data processing
operation has achieved.

According to Dr. Nolan, there are four, possibly five,
development stages. The first stage of growth is the initia
tion stage when we first acquired the computing power
within our organization. During this initial stage, the appli
cations are primarily oriented towards accounting; the
personnel we hire are oriented towards the effective use of
a particular piece of hardware; and the management itself,

10 National Computer Conference, 1977

typically, is management contained within the functional
area which approved that piece of computing power. Dur
ing this initiation stage, the computer is an under-utilized
piece of capital equipment, probably only used 50 percent
of the time. This under-utilization provides the rationale for
entry into the second stage. During the second stage, we
begin to expand. Applications are proliferated in all areas;
the personnel within data processing become highly special
ized in programming languages. With respect to manage
ment, we are oriented towards selling computing services.
It is obvious at this stage that we are managing a piece of
hardware-the computer itself. There is also a dramatic rise
in the budget associated with data processing. This increas
ing cost led us to the third stage.

The third stage is the stage of control. Typically, no new
applications are done; rather, existing applications are
rewritten in a native mode or to be more efficient. From a
personnel point of view, this is the age of the operating
systems. Emphasis is placed on systems programming and
the fine tuning of hardware/programs. From a managerial
point of view, there is tremendous upheaval, i.e., reorgani
zations, centralization, de-centralization, etc. It is also
during the stage of control that people recognize the vital
importance of data processing within an organization. It is
at this point that users begin to ask data processing to
modify existing systems, to enhance systems, etc. Conver
sion is fast becoming a way of life as users recognize the
importance of data. The integration of data, systems, and
programs brings about the fourth stage and the need for
new, sophisticated tools. It is at this point in time that some
new concepts are introduced, i.e., the concepts of data
base/data communications. Along with these concepts
comes a dramatic change in the role of computing within the
organization. Management of the computing function is
now a key job in the organization. This is certainly true
when you take a look at the effect that this partiCUlar
function can have on the overall profit and loss of a
corporation. Companies who are cognizant of this are well
into the fourth stage. The fourth stage is characterized by a
recognition that the responsibility of data processing man
agers is the management of data, not management of the
computer. It is not unlike the basic recognition of the
production manager that his role is not the management of
machines; rather, it's the overall management of produc
tion.

THE NEED FOR A DATA DICTIONARY

The Data Dictionary is designed to manage the data
within the data processing department. Like the story of the
cobbler who made shoes for his family only after he had
satisfied the needs of the villagers, the Data Dictionary
provides to data processing the same needs that data
processing has historically provided to user departments,
i.e., the management of their data.

The onset of integrated data management brought with it
a more complex environment and an environment which
required ne\v and different tools. Data Base provides func-
tional integration while the Data Dictionary provides the

control of that Data Base. Data Dictionary like Data Base is
a prerequisite for evolution into the fourth stage. The Data
Dictionary should contain information about, and the rela
tionships among the entities within the realm of data
processing. These include:

Data Files Reports Departments Personnel
Data Fields Systems Projects Standards
Programs Users Transactions Source Documents
Data Bases Security Levels

The Data Dictionary should provide utilities to automati
cally generate information about the above. Utilities which
scan existing programs or libraries could be used to gener
ate a good deal of the required information. Other informa
tion will need to be researched and/or established with
human intervention.

The Data Dictionary should also play an active role in the
day to day operations. For that reason, a Data Dictionary
should include the following features:

Automatic program set-up

A programmer should not be concerned with coding a
"data division" or "I/O" areas within a program. This
information should be stored within the Dictionary and
automatically copied or invoked at compile time. This
feature substantially reduces programming and maintenance
time while insuring security and control over the data
available to programs.

DBMS interface to the data definition language

Data Base Management Systems and Data Dictionaries
must fit hand in glove. For that reason, the Data Definition
required for each data record, data set, and data base
should be stored within the Data Dictionary and automati
cally generated on request. Once again, this feature is a
necessity for effective data base administration.

On-line data dictionary access

The trend toward cardless systems requires that the
Dictionary provide on-line editing and update. Currently
on-line editing and validation is built into each on-line
program. Access to the Dictionary would all but eliminate
this redundant programming effort. The savings are ob
vious. On-line updates of the Dictionary allow dynamic
changes to editing criteria, security levels, passwords, etc.
With the advent of tighter privacy legislation, this capability
will be required.

Automatic report generation

The Data Base Administrator will need various reports
about the Dictionary. Current information and relationships
about systems, applications, fields, records, files, pro-

grams, users, terminals, etc., are required. The report
feature should be an embedded part of the Dictionary. In
addition to ihe siandard reports, the Dictionary should be
constructed such that non-standard, ad hoc reporting is
possible.

Data base documentation support

This rather nebulous sounding characteristic may well be
the most important. In essence, it allows a DBA to enforce
data base usage and programming standards. This is accom
plished through a comprehensive description of a com
pany's data base. It encompasses the following compo
nents:

• Complete Attribute Description of All Entities.
As an example, the attribute description of a data field
should include its name, description, alias, programs
which manipulate or require the field, source docu
ments and reports which contain the field, editing
criteria, field length, usage, decimal point placement,
occurs, password, security level, date of last update,
program which last updated, data set(s) which contain
that field, record type in which field is located, dis
placement within the record, etc.

• Automatic Relationships Between Entities.
As an example, the Dictionary should automatically
link or relate a data field to programs, data sets,
reports, editing criteria, source documents, users,
alias.

• Data Base Status and Version Control.
For security reasons, the Data Dictionary should con
trol the version or view that a program has of the data
base.

Security support

The Dictionary should provide for security in two areas.
Entity security applies to the protection of data files, fields,
programs, etc. Data Dictionary security applies to the
pw1ection of "the Data Dictimlar.y. itself~ At< awiWmwD
level, entity security should provide for password security
by program, terminal location, and individual. Security
levels should also be assigned to certain entities; i.e., fields,
files, programs, reports. Security of the Data Dictionary is
more complex. The Data Dictionary files, the actual code,
the execution of Dictionary programs, Dictionary reports,
etc., all require a level of security.

Integrity support

Integrity support encompasses edit and validation func
tions for both batch and on-line, the ability to generate test
data and test data bases, and the ability to support distrib
uted data bases. The distributed data base concept is an
idea whose time has come. For that reason, support for
multiple dictionaries, traffic routing, multiple DBMS instal
lations, and extensive directory features are needed.

Data Dictionary 11

DATA DICTIONARY-ADVANTAGES, BENEFITS,
POSSIBLE DRAWBACKS

Each of us in data processing has been faced with a user
requested change, i.e., the addition of a new field to an
existing record, the expansion of an existing field, a change
in a report format, etc. Timely response to such requests
are a measure of our managerial capability. Not only for
ourselves but also from a planning point of view, it is
important in the effective management of our data centers
that we be able to accurately determine and quantify the
impact of user-requested change. A Data Dictionary, as
previously defined, provides answers to these questions.
Interestingly enough, the ability to accurately assess the
impact of change is a key indication of the level of
development of any management discipline.

EDP audits are always in vogue. Consistent documenta
tion and standards are an important aspect of such audits.
The Data Dictionary eliminates much of the manual labor
associated with documentation while substantially upgrad
ing the quality of the documentation. The cataloging of
entity attributes provides programming standards, naming
standards, data base standards, security, and integrity. It
also provides a common repository of data about the data
base thus allowing tight control by a Data Base Administra
tor.

Possibly, the one drawback of the Data Dictionary is in
the overhead associated with day-to-day operations. If all
access to data requires an additional access to the Diction
ary, then the overhead could be substantial. Like many new
concepts, the Data Dictionary should be used with enthusi
asm but with a measure of discretion. As new technologies
emerge, the overhead of accessing data will probably re
duce to core-to-core transfers. At that point, the full
concept of data base-data dictionary-can and will be a
reality.

In conclusion, it is my opinion that data processing had
indeed emerged through four stages. In fact, Dr. Nolan has
now published a new article indicating the fifth stage of
development. The fourth and fifth stages are obviously
dependeD1~ '~.tookr4l~yi~Uw ~~w~·
ment of those stages. Data base/data communications are
keys to the success and transition through stages four and
five. The Data Dictionary is a key ingredient to this
success. From all indications, the major corporations in the
U. S. will be adopting the concepts of Data Dictionary in the
next year. In our opinion, it is a key ingredient to manage
rial success in the computing function.

REFERENCES

I. Ehrensberger, M. J., "Data Base-The Solution to the Impossible
Dream," Proceedings vf the 19th College and University Machine
Records Conference, May 5-8, 1974.

2. Flynn, R., "A Brief History of Data Base Management," Datamation,
August, 1974.

3. Nolan, R. L., "Managing the Computer Resource: A Stage Hypothesis,"
Communications of the ACM, Vol. 16, No.7, July, 1973, pp. 399-405.

4. Ferone, W., "Data Dictionary-A Competitive Analysis," unpublished.

Fault tree analysis of computer systems

by C. V. RAMAMOORTHY and G. S. HO
University of California, Berkeley
Berkeley, California

and

Y.W.HAN
Honeywell, Inc.
Minneapolis, Minnesota

ABSTRACT

Fault Tree Analysis (FT A) is a well developed technique
for the reliability and safety analysis of complex systems
such as nuclear power plants and weapon systems. In this
paper, we apply FT A to analyze the reliability and the
performance of computer systems. An approach to detect
the sequence dependent faults in computer systems is
proposed and exemplified. Based on the fault tree analysis,
guidelines for up-grading the system can be developed.

INTRODUCTION

Fault Tree Analysis (FT A) has been used extensively to
analyze the reliability and safety of complex systems such
as nuclear power plants and weapon systems. 1 It identifies
faults in a system design that may cause potential accidents
and helps to eliminate costly design changes and retrofits.
In this paper, we discuss the application of FT A to com
puter systems. For completeness, a brief summary of fault
tree analysis techniques is given in the next section. In
~!'de!" tco!mt 'the :eaders of this paper, BCJtcan .:\.tgcbta is
used for explanation. In later sections, applications of PTA
to analyze the reliability of computer systems are dis
cussed; both hardware and software issues are addressed;
and application of FT A to protection in computer systems
is discussed. The unique aspects of sequence dependent
faults are revealed and exemplified. Examples are used
extensively in the paper for illustrating the concepts.

INTRODUCTION TO FAULT TREE ANALYSIS

Fault Tree Analysis was first conceived in 1962 by H. A.
Watson of Bell Telephone Laboratories, for an Air Force
contract studying the Minuteman launch-control system.
Further development and refinement of the technique re
sulted from the efforts of A. B. Mearns and the Bell study
team. They successfully solved the problem of determining

13

the likelihood of the unintentional launching of a missile.
The Boeing Company analysts later modified the fault tree
technique so that simulation was possible using high speed
computers. D. F. Haasl, R. J. Schroder, W. R. Jackson and
others contributed to this important development. 9 In the
mid-1960's, Fault Tree Analysis had been used extensively
in aerospace industries and weapon systems.

To begin the description of FT A, let us introduce the
terminology and symbolisms used. Component state or,
more generally, basic event is the failure situation which
results when the functions performed by the system ele
ment deviate from its specified limits. The Top Event which
appears at the top of the Fault Tree is the undesired
(usually catastrophic) event under consideration. By con
vention, basic events are represented by circles and the top
event by a rectangle. With a given Top Event, the fault tree
can be constructed by recursively decomposing the causes
of the faults. A simple example will illustrate the concept
clearly.

Suppose we have a system as shown in Figure la. The
system is considered functioning properly if there exists a
path from node s to node t that does not contain a bad
node. A 'Fault Tre'e for the 'system '~ith T~p'Ev~nt 'a~'
"Improper Operation" is shown in Figure lb and Figure lc.
If Triple Modular Redundancy, Figure 2, is implemented in
node a, the Fault Tree can then be extended to Figure 3 for
more detailed analysis. Extensive analysis techniques for

Figure la

14 National Computer Conference, 1977

System fails
(improper operation)

Figure Ib

Ff A have been developed. Some important results relevant
to this paper are summarized below.

Minimum cut set

A cut set is a set of basic events whose occurrence
causes the top event to occur.2 A cut is minimal if it cannot
be reduced and still insures the occurrence of the Top
Event. By enumerating all the min cut sets, the system
failure characteristics can be revealed. The weakest aspects
of the system can be identified and up-graded. In a complex
system, the Fault Tree will be very large and it is hard to
generate all min cuts by inspection. In this case, we first
formulate the Boolean representation of the occurrence of
the Top Event. By expanding the expression into disjunc
tive normal form and deleting all replicated literals in a
product term, all min cuts sets (product terms in the

The sys tern fa i1 5

Figure Ie

Figure 2

expanded Boolean expression) can be generated. For exam
ple, the Fault Tree of Figure 3 can be represented by
[m+(a1a2+a1a3+a2a3)]+bc+d. After expansion, we have
m+a1a2+a1a3+a2a3+bc+d. The Fault Tree contains six min
cuts, namely m, a1a2, a1a3, a2a3, bc and d. If there are no
event replication among min cut sets and basic events are
statistically independent, the probability of occurrence of
the top event can be computed by

r

P(Top Event)= 1- [J (1- [J <Ii)

where n = # cut sets

Ks=the sth cut set

s=l iEKg

qj =probability of occurrence of basic event i

For the Fault Tree of Figure Ic,

Prob(improper operation)

= 1-(1-qrn)(l-qalqa)(1-qalqa3)(l-qa2qa3)

. (l-qbqc)(l-qd)

In complex systems, e.g., electronic computers, the correct
operations of the system require stringent synchronization
and co-operation of all the units in the system. The assump
tions made above in computing Prob(Top Event) are not
likely to hold. In fact, if there are replicated terms in the

Figure 3

min cut sets, it has been proven that the computation for
Prob(Top Event) is NP-complete. 5 Fortunately, fast algo
rithms giving dose bounds on the Prob(Top Event) using
the concepts of min cut sets and min path sets of the Dual
Fault Tree have been developed. 1 Using these algorithms,
the failure characteristics of the system can be predicted
and guidelines for up-grading the system can be formed.

ESTIMATION OF COMPUTER SYSTEM RELIABILITY

Fault tree representation can be considered as a system
atic management tool. In comparison with tabIe.s and dic
tionaries, the tree structure is more convenient and natural
to express a system hierarchically. We can delineate mixed
levels of detail easily and flexibly with a fault tree. If
necessary, a basic event can be extended as another fault
tree at a lower level as demonstiated in the previous
section. As an approach to safety and reliability analyses,
FT A is extremely powerful. Usually, a system is designed
to work. Using FTA, we view it from the other end: how it
may fail. From this angle, failure combinations which
otherwise might not have been recognized can be uncov
ered.

The analysis of computer system reliability shares many
common problems with the analysis of the other systems'
reliability to which FTA has been applied successfully.
Naturally, we may ponder the applicability of FT A to
computer reliability.

Application of FT A to hardware faults in a self-repaired
computer has been studied by Jack Goldberg3 and several
problems have been identified for this application, namely
the difficulties to represent time dependent fault conditions
and to estimate the probability that a basic event occurs. In
this section, we shall discuss this approach further, espe
cially on the application of Ff A to analyze both hardware
and software reliability together.

Both the hardware and the software have to be consid
ered in evaluating the reliabi1ity of a computer system.
People may think software does not fail. But, unfortu
n'!~.e.I~?llP. tono\,\'.l J~ereh e?Ci~t~",no . ve.rifjc.:~t~on _or.,~~~tJn.g
method to prove the correctness of large software systems.
For instance, a considered-to-be-thoroughly-tested software
for the Apollo 14 turned up 18 discrepancies during the 10-
day flight, and every release of the IBM OS/360 contains
roughly 1,000 bugs. 4 To deal with these hardware, software
or both hardware and software reliability problems, we
definitely need a systematic management tool. Ff A is a
well-suited method for analyzing both hardware and soft
ware reliabilities involving high interdisciplinary principles.
However, we anticipate some problems in using FT A and
they will be discussed below.

One major problem is the difficulty to estimate the
probability of occurrence of the basic events, that is, to find
the failure rates or the error distribution functions of the
system units. The failure rate of the hardware is usually
obtained through statistical inference based on the circuitry
package, the fabricating technology, density, complexity,
working environment of the system, etc. Statistical infer-

Fault Tree Analysis of Computer Systems 15

ence is used because by the time sufficient data on a
product are collected, the product may have become obso
lete. To quantify the reliability of a software program is by
no means an easier task than to quantify hardware reliabil
ity. Although there exists no rigorous measure of the
reliability of a program, based on the length, graph struc
ture, data structure, programming language used, and num
ber of tests passed, we can assign a figure of merit to
approximate a program reliability. With a structured, high
level language we usually generate programs more reliable
than those written in an unstructured, machine level lan
guage. Usually business programs with very simple data
structures are more reliable than real-time programs which
often have complicated data and control structures and
therefore are error-prone. With the estimated probability of
the basic events, the error behavior of the system can De
predicted. Although the analysis of a system using FTA is
incomplete, PTA can be very valuable in guiding engineer
ing decisions, analyzing consequences and providing design
guidelines.

One major aspect of applying FT A to computer systems
is that there are cases in computer systems, in which the
consequences depend on the order of events. For example,
event A preceding event B may cause a different conse
quence from the one caused by event B preceding event A,
although both events A and B occur. To analyze these
order-dependent event sequences, the construction of a
fault tree has to include all the scenarios in which the
precedence plays a role. The precedence relationships
among these events have to be represented in the fault tree.
These techniques are illustrated by an example in the next
section.

APPLICATION OF Ff A TO PROTECTION IN
COMPUTER SYSTEMS

Frequently, a computer system is designed and imple
mented to satisfy certain multiple requirements such as fast
throughput rate (good performance), high reliability, high
<;l.vaH,abilily .. ,,lo.w. ~.Qst,.,go,Qd, ..pro1ect.W~ awj, .~y.ja.a,
resource-sharing environment, etc. FTA can be used as a
top-down management tool to handle these problems. In
this section, we shall give a simplified, hypothetical exam
ple of using a fault tree to analyze the protection mecha
nism of a computer system. Subsequently, the application
of Ff A to the performance issues will be investigated.
Finally, we shall outline, in general, how to apply fault tree
techniques to mUltiple requirements.

Let us consider a hypothetical protection example which
contains order-dependent events, as explained in the pre
vious section.

In a resource-sharing environment, protection is needed
to preserve the privacy of every user, as well as to limit the
propagation of errors caused by faulty system hardware,
software, or users' programs. In a protection system, the
information about the rights (called access capabilities) of
an active program to the resources which are not open to all
users are usually kept in an access matrix in Figure 4 a

16 National Computer Conference, 1977

protected memory. The access capabilities here can be
classified as: READ (including COPY), WRITE, EXE
CUTE, DELETE and APPEND. To reduce the overhead,
the set of programs having the same capabilities are
grouped as a subject in the access matrix. Resource can be
either virtual or physical: files, privileged instructions,
segments of memories or channels, and programs. Simi
larly, a set of resources is grouped as an object if the set
can share the same identification as far as protection is
concerned.

The system works as follows. Suppose a program re
quests to READ a certain privileged file. An internal
interrupt is generated. The system is switched to the system
mode and the system examines the access matrix to check
whether the program (subject) has the READ capability of
the file (object). If it has the capability, the process will be
continued, otherwise the request will be denied.

To handle a chain of requests correctly, we propose
tracing the first subject of the chain of requests. We will
assume that the capabilities of the first subject determine
whether requests of the (N + l)th subject which is also the
Nth object, N2':l, can be proceeded. As an example, if A
executes B and before the end of this execution, B requests
to WRITE on C, then this request should not be allowed.
This is because A is the first subject of the chain and it does
not have the implied capability.

Now, suppose the software system design has a loop
hole. Instead of tracing the first subject of a chain of
requests, it only checks the entry determined by the current
subject and the current object from the access matrix. We
further assume that the system has a watchdog timer for
limiting the total time spent by a chain of requests as a
check and error detectors for checking the privileged mem
ory which stores the access matrix and logic units which
handle the requests. Then, the breaches of the protection
can be represented by the fault tree shown in Figure 5.
Note that a hardware or software failure may not lead to a
protection breach if the detectors can detect the breach.

U sing Fault Tree Analysis for performance analysis is a
dramatic extension to the current applications of FTA,
since it is usually applied for safety and reliability prob
lems. There are many real-time tasks which must fit a

A

B

A B

E,R,W E

E,R,W

where E denotes EXECUTE,

R denotes READ

and W denotes T.TDTrrV
Wfi.1..L.L:.o

Figure 4

c

W

The time The timer
limit system
does not fails
exceed

The The
critical associated
hardware detectors
fails do not

catch it

occurs, before
completing the
execution, B
write on C

The time
limit
does not
exceed

Figure 5

Event 1 Given

The timer
system
fails

Event 1
occurs,
before
completing
the exe
cution, B
writes on
itself

stringent performance requirement. Specifically, we may
consider the top event as a task which cannot be finished
within a pre specified turnaround time. To generate the fault
tree, two main factors which determine the turnaround time
will be considered: (1) current available resources, and (2)
characteristics of the task.

The available resources can be hardware buses, proces
sors, memory, or data which can be the results of other
computations. In a multiprocessing environment, the situa
tion is further complicated by the problems of resource
contention. For a preemptively scheduled system, the turn
around time of a task also depends on the other tasks
which will have come before the completion of this task. In
short, this factor is determined by the other processes and
the host machine. But even with a system dedicated to this
task, the turnaround time is still not deterministic in many
cases; it may be input data dependent. For example, the
number of comparisons needed to sort n elements by
Quicksort ranges from O(nlogn) to 0(n2), depending upon the
ordering of the input elements. As another example, as
mentioned previously, there exists a very fast algorithm to
calculate the probability of the top event for a fault tree
with no basic events replicated, but it can be proven that, in
general, there exists a worst case which is very time
consuming (i.e., it is NP-difficult).

To perform the overall performance analysis, the top
down management tool (FT A) facilitates the representation
and thus the simulation and analysis of the real computer
system.

To apply FTA to a system designed to satisfy mUltiple
requirements, fault tree analysis is performed on each
requirement. These requirements are arranged in a priority
order according to their importance. For example, if a

computer is used as a controller for an electric power
system, the priority may be in the order of safety of the
power system, reliabiiiiy of the computer, and performance
of the computer. The priority list for a computer used in a
banking system may be protection of the customers' pri
vacy, reliability of the computer, and performance of the
banking system. A fault tree is constructed for each re
quirement either during the design stage before it is com
mitted to implementation or for updating an existing system
to satisfy a more stringent requirement due to a changing
environment. From the fault tree, we identify the critical
conditions and thus help to redesign the system to meet the
requirements.

The sequence of constructing these fault trees follows the
order in the priority list, i.e., the trees are constructed and
then reconstructed for the first priority, then the second,
and so on. If we cannot find a fault tree that satisfies the nth
requirement, we shall backtrack to the (n _l)th requirement
and construct a new fault tree for it. This suggested process
is similar to the depth-first branch and bound method. 8

CONCLUSIONS

Analysis of the overall behavior of a computer system is a
very complicated task. Fault Tree Analysis provides a top
down hierarchical procedure to analyze the reliability of the
system at different levels. A basic event, if necessary, can
be extended further as the top event of another fault tree.
Well-developed algorithms for identifying the crucial condi
tions (min cuts) of the tree and for calculating the prob(top
event) are available. Despite the existence of some difficul
ties in applying FTA to computer systems, mentioned

Fault Tree Analysis of Computer Systems 17

earlier, we believe it is a good analysis tool to predict the
fault behavior of a system and is worthy of research. One
direction is the automatic construction of the fault tree of a
system. To facilitate the automatic construction, one ap
proach is to represent the hardware system, software
system and controlled processes as a labeled graph.7 The
concurrency and synchronization of the events can then be
indicated dynamically, and all the sequence-dependent be
havior can be revealed. However, more work has to be
done before such an approach becomes practical.

REFERENCES

1. Barlow, R. E. and J. B. Fussell, "Reliability and Fault Tree Analysis,"
SIAM, 1975.

2. Fussell, J. B. and W. E. Vesely, "A New Methodology for Obtaining Cut
Sets," American Nuclear Society Transactions, 15, No. I, 1972, pp. 262-
263.

3. Goldberg, J., "A Survey of the Design and Analysis of Fault-Tolerant
Computers," Proceedings of the Conference on Reliability and Fault
Tree Analysis, Berkeley, CA, 1974. It is Ref (I), pp. 687-732.

4. Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1973, pp. 48-59.

5. Rosenthal, A., "A Computer Scientist Looks at Reliability Computa
tions," Proceedings of the Conference on Reliability and Fault Tree
Analysis, Berkeley, CA, 1972, pp. 133-152.

6. Mazumdar, M., "Importance Sampling in Reliability Estimation," Pro
ceedings of the Conference on Reliability and Fault Tree Analysis,
Berkeley, CA, 1974, pp. 153-163.

7. Miller, R. E., "A Comparison of Some Theoretical Models of Parallel
Computation," IEEETC, Vol. C-22, No.8, August 1973, pp. 710-717.

8. Garifinkel, R. S. and G. L. Namhauser, Integer Programming, Wiley
Interscience, 1972.

9. Haasl, D. F., "Advanced Concepts in Fault Tree Analysis," Proceedings
of the System Safety Symposium, Seattle, 1%5 (The Boeing Company,
Seattle, 1%5).

An overview of fault-tolerant
digital system architecture

by STEPHEN Y. H. SU and RICHARD J. SPILLMAN
Utah State University
Logan, Utah

ABSTRACT

With the increasing use of computing systems in such
crucial areas as medicine and space, there has come a great
need for computers that remain operational in spite of
hardware failures. This paper provides a brief overview of
several approaches to fault-tolerant computing. Five hard
ware redundancy techniques are reviewed: static, dynamic,
hybrid, self-purging and the reconfiguration scheme. In
addition, the advantages and disadvantages of error cor
recting codes and software fault-tolerant systems are out
lined as well as bi-duplexed systems, alternating logic, fail
soft and shared logic systems. It is suggested that perhaps
the best fault-tolerant system employ a combination of
hardware redundant techniques and software protection.

INTRODUCTION

Since the early 1940's when the first relay computers were
developed, the question of how to insure reliable computer
operation has been an important one. Today, when com
puters are used in critical space missions, millions of miles
from their human operators, and in biomedical systems
where a human life depends on their correct operation,
tWefH't ,~!tJ.J ~~, et"of"fW o~oflf"~ ",0 ~~ .~~ ~

life or millions of dollars of equipment and years of re
search. Under such conditions, the design of computing
systems which can operate correctly in spite of hardware or
software failures is important. Such systems are called
fault-tolerant systems. Specifically, fault-tolerant comput
ing has been defined as the ability to execute specified
algorithms correctly regardless of hardware and/or software
failures. 1

The first step towards a fault-tolerant system is to build
as much fault-tolerance into the system as possible. 2 Fault
intolerance is the procedure whereby the reliability of the
system is increased by avoiding the causes of system
failures. This is achieved before the final system is con
structed, in the design phase. Only the most reliable com
ponents are selected, software is completely tested before it
is released, and fault detection and ease of repair considera
tions are introduced at the beginning of the design process

19

and considered at every succeeding step. Fault-intolerance,
however, can only postpone the occurrence of faults, it can
not eliminate them entirely. Hence, the second step to
wards a fault-tolerant system requires protecting the system
from faults.

There are several approaches to fault protection including
hardware redundancy where extra components are intro
duced into the system, error correcting codes such as parity
checkers, or software fault-tolerant systems where special
software procedures are used to recover from an error. In
this paper, all three approaches will be briefly reviewed and
their advaritages and disadvantages outlined. Specifically,
sections of this paper will examine five redundancy tech
niques: masking, standby, hybrid, self-purging, and reconfig
uration; will review error correcting codes; software fault
tolerant procedures will be outlined; a number of new
approaches to fault-tolerance will be reviewed; and will
draw some conclusions and offer some suggestions for
future research.

REDUNDANCY TECHNIQUES

The effects of hardware errors can be overcome through
the use of protective redundancy. 3 Hardware protective
redundancy is defined as the use of additional components
v\liidlaTIulhTn.t; ~};reIil[o \:;:unliiiil~Cuvpel;ale l:orrecii"y in
the presence of hardware faults. The cost of the extra
components was, at one time, a strong argument against the
use of redundancy. However, since the advent of LSI and
MSI and the reducing cost of digital hardware, redundancy
has become an important means of implementing fault
tolerant systems. There are three classifications for the
conventional redundancy techniques: static, dynamic, and
hybrid. In addition to these three, two other approaches are
discussed separately in this paper, self-purging redundancy
and reconfiguration scheme redundancy which will intro
duce different ideas from the previous three.

Static redundancy

Static redundancy involves the use of extra components
such that "the effect of a faulty circuit, component, subsys-

20 National Computer Conference, 1977

tem, signal, or program is masked instantaneously by
permanently connected and concurrently operating cir
cuits." 4 It is also called masking or massive redundancy.

The simplest static redundancy technique is triple modu
lar redundancy (TMR). This technique was first studied by
John von Neumann. 5 It is implemented using three identi
cal modules operating in parallel as shown in Figure 1. The
output of each module passes through a majority voting
system whose output agrees with the majority of module
outputs. TMR could be expanded to include any odd
number of redundant modules to produce an NMR (N
Modular Redundancy) system, where N is an odd number.

An NMR can tolerate (N -1)/2 module failures. The three
major advantages of static redundancy are:

(1) The corrective action is immediate, the faulty module
never effects the circuit.

(2) There is no need for fault detection procedures.
(3) The conversion of a non-redundant system to a static

redundant one is easily undertaken. Simply construct
(for a TMR system) two new copies of each non
redundant module.

It is important to remember the primary assumption
behind the use of static redundancy. That is, a failure in one
module is independent of the other modules. This assump
tion is not valid within an LSI or MSI package and hence,
static redundancy is ineffective at the logic gate level within
LSI or MSI.

Dynamic redundancy

Dynamic redundancy involves only one unit operating at
a time with several spares waiting to replace the unit if a
fault is detected. Obviously, this system requires both a
method of switching the new module into the circuit to
replace the faulty unit and a method of detecting the fault in
the circuit. There are two possible switching procedures,
logic switching and power switching. In logic switching, all
the spares are powered up and operating, when a fault is
detected the output of the next spare in line is switched into
the circuit and the faulty modules output is switched out.
This is equivalent to enabling or disabling a gate between
the module's output and the system output. Power switch
ing requires that only the operating unit be powered up.

I--____ O~UTPUT

Figure I-Triple modular redundancy (TMR)

When a fault is detected, the faulty units power is switched
off and the next spare in line is switched on. The power
switching procedure isolates the spares from the circuit and
does not waste power on spares which are not performing
useful operations.

The fault detection procedure is more complicated and
could include either concurrent or periodic techniques. 6

Concurrent fault detection is a continuous fault detection
technique which utilizes coding and redundant signals.
Periodic fault detection requires testing the circuit at certain
points in time with a special diagnostic routine. This
involves stopping the normal operation of the circuit to
conduct the tests, however.

If a working fault detection system can be constructed,
there are several advantages to a dynamic redundant sys
tem:

(1) All the spares can be used and the system can
tolerate as many faults as there are spares.

(2) The number of spares is easily adjusted to allow for
later increases in reliability if needed.

(3) If power switching is used, the spares are isolated
from the system so the independent fault assumption
applies.

Hybrid redundancy

Hybrid redundancy combines the static and dynamic
redundancy approaches. Static redundancy, used to pro
vide fault detection, is combined with a set of spares to
replace any faulty module in the static system. The basic
hybrid redundancy system is the TMR + spares system
(Hybrid (3,S) system) shown in Figure 2.10

In the Hybrid (3,S) system, if a fault occurs (the output of
one of the gates does not agree with the output of the other
two) the faulty gate is switched out and one of the spares is

Detector

Figure 2-Hybrid (3,N) system

switched in. The system is then reduced to a Hybrid
(3,S-I). If all the spares are used up, the system reduces to
a Hybrid (3,0) or just a standard TMR.

The hybrid system possess all the advantages of dynamic
redundancy without the problem of constructing compli
cated fault detection procedures. In addition, the voting
circuit of a hybrid system masks the effect of any fault.
However, the switching system in hybrid redundancy is
more complex than either static or dynamic redundancy
switching systems. Hence, hybrid redundancy is prone to
switching system failure which could bring the entire sys
tem down.

Sieworek and McCluskey8 have suggested the use of an
iterative cell switch. They found that an iterative cell switch
could save 25 percent and in some cases 80 percent of
switch complexity over standard hybrid switching systems.
Ogus26 has also studied fault-tolerant design of iterative cell
switches. Use of the iterative cell switch, then, would lead
to further improvements in hybrid redundancy reliability.

As with the TMR, a hybrid system with a TMR core can
not handle mUltiple faults. 8 For example, if two active
modules in a Hybrid (3,S) are faulty, then the voting gate
will incorrectly switch the one fault-free gate out and switch
a spare in. The voting circuit will then determine that the
spare is in the minority and replaces it with another spare.
This process will continue until all the spares are used up
and the system crashes. Ramamoorthy and Han9 have
suggested a modification of the hybrid system in which
each module's output passes through its own error detector
circuit as well as the voting circuit. Called a detector
redundant system, this circuit could detect an error and
determine which modules are in error. Only the faulty
modules would be switched out, hence, this circuit would
not be subject to the catastrophic consequences of multiple
failures that plague standard hybrid redundancy. However,
such error detection circuitry would increase the complex
ity of the control system.

If just single faults are assumed, the Hybrid (3,S) system
performs very well. A Hybrid (3,S) with N units (N - 3
spares) can tolerate N-2 single faults using power switching
whereas a NMR (a static system with N units) can tolerate
unly\'N"-Ij/2 modUle faiiul~es. A dynamIc system w'ith· N
units can tolerate (N-I) failures, one more than a Hybrid
(3,N-3). However, the dynamic system requires a compli
cated fault detection procedure, which in general lowers its
net reliability. In addition, dynamic faults are not masked.
So the gain of tolerating one additional module failure is
outweighed in most applications by the loss of flexibility in
the dynamic system.

Mathur and A vizienis 10 found that in adding another
module to a Hybrid (n,S), a hybrid system with a nMR core
and S spares (where N =n+S), the largest gain in reliability
is made if the new module is added to the set of spares.
That is, the reliability of a Hybrid (n,S+2) is greater than
the reliability of a Hybrid (n+2,S). Therefore, in a hybrid
system, most of the redundancy should be in the spares and
n should equal 3.

The optimum value of S in a Hybrid (n,S) can also be
calculated. Cochi ll assumed that the reliability of the

Fault-Tolerant Digital System Architecture 21

switching system used to switch the faulty module out and
the spare in is a function of n+S. He found a method for
calculating an optimum value for S, the number of spares.
It depends upon the reliability of both the switching system
and the individual units.

Self-purging redundancy

Self-purging redundancy7,12 is sometimes considered a
form of hybrid redundancy. However, its approach is
different enough from hybrid systems to offer some real
advantages in certain applications. In self-purging redun
dancy, all of the modules are initially connected to a
threshold voter through a switching circuit as shown in
Figure 3. If an error occurs in a module, its switch is turned
off, forcing a logic 0 on its output. In effect, the faulty
module is removed from the voting.

The major advantage of the self-purging system over the
standard hybrid approach is the simplicity of the switching
mechanisms. The self-purging switching circuit only has to
tum a faulty module off, whereas the hybrid switching
system has to tum off the faulty module, locate an unused
spare and then tum the spare on. Because of the simplicity
of the self-purging switch, it is possible to include the
switch as part of the module forming a modified module. 12

In addition, because of the simplicity of the switching
mechanism, it is easy to duplicate the switches such that
each module's output passes through two switches. The
number of inputs to the voter is doubled. The reliability of
the switching system, which is the weak point of any
redundancy scheme, is thereby increased through this use
of redundant switching. Such redundant switching is only
possible because of the simplicity of the self-purging
switching system. 12

In systems where multiple failures are likely, most redun
dancy schemes break down. For example, consider a self
purging system with 5 modules and the threshold of the
voter is 3. The output of this system is given by
Z=1 1(l2(l3+ 14+ 15)+ 1314+ 1415)+ 12(1314+ 1315+ 1415)+ 131415.
If two modules fail. say 11 and 12 then 11 = 12= 0 and
Z"" ! a!415. Su, the n:lajLIl~t) galt: be~uine; an ANT; gale.
Hence, the system can no longer tolerate any stuck-at-O
fault. If the threshold is 2, then the self-purging redundancy
system cannot tolerate a double stuck-at-I fault. 14 How-

Figure 3-A self-purging system

22 National Computer Conference, 1977

ever, Losq13 has developed self-purging systems which
have a high probability of recovering from mUltiple faults,
yet Losq's system is not the standard self-purging system
shown in Figure 3.

Reconfiguration scheme

Su and DuCasse14 have suggested a hardware reconfigur
ation technique for tolerating logic failures. Their scheme
begins with a basic SMR (static redundancy with five
modules), it will reconfigure into a TMR under single or
double failures. If just a single fault occurs in the SMR, the
system will reconfigure to a TMR with a spare. The
equation for TMR can be obtained by substituting any
variable, I j by 0 and any I j by 1 where j#i. If the ith
module is faulty, Su and DuCasse's scheme forces the
output of the faulty module to be stuck at 0 and the (i + 1)th
module's output to be stuck at l. This creates a TMR plus a
spare. If another fault occurs, the faulty module's output is
set to 0 and the spare module, which had its output stuck at
I, is brought back into the voting. The remaining system is
a pure TMR. If two simultaneous faults occur in the SMR,
then the system will reconfigure directly into a TMR.

The basic SMR system can tolerate only two failures. A
five module Hybrid (3,2) can tolerate three single failures
but any mUltiple failure will be catastrophic. However, the
SMR reconfiguration scheme can tolerate either three mod
ule faults occurring sequentially or a single fault following a
double fault. Also, if three faults occur sequentially and the
system is reduced to a TMR with one faulty module.
Assuming that the probability of a stuck-at-I is the same as
the probability of a stuck-at-O fault, there is a SO percent
chance of the system tolerating a fourth module failure. 14

Hence, in some applications the SMR reconfiguration
scheme offers a greater fault tolerance than even the hybrid
system.

Another advantage of the SMR reconfiguration scheme
over hybrid redundancy is the surprising simplicity of the
switching system. Su and DuCasse14 designed a switching
mechanism which will perform the necessary reconfigura
tion function in the 5MR scheme with only five gates and
one flip-flop. It has also been shown that the reconfigura
tion scheme can be generalized to provide a fault-tolerant
system for multiple-valued functions. 14

It is possible to design NMR reconfiguration systems
where N>5. However, the switching system for a NMR
reconfiguration scheme (N)S) is no longer as simple as the
5MR reconfiguration switching mechanism. In fact, the
complexity of the switching system is a function of N.
Hence, as N increases, the reliability of the NMR reconfig
uration scheme decreases.

Comparison of redundancy systems

All five redundancy approaches have their own advan
tages and disadvantages. There always will be some sort of
trade-off in selecting one scheme over another. McCluskey,

Wakerly and Ogus6 offer three guidelines for choosing a
particular technique:

(I) For extremely short mission times static redundancy
is optimal.

(2) For mission times whose duration is of the same
order of magnitUde as non-redundant system mean
life, self-purging redundancy provides the best per
formance.

(3) For very long mission times, hybrid redundancy is
best, unless unpowered modules have the same fail
ure rate as powered modules-in which case self
purging redundancy should be used.

McCluskey, Wakerly and Ogus did not analyze the reconfig
uration scheme, so a fourth guideline could be added to
the list:

(4) For systems where multiple-faults are likely or where
hybrid redundancy is used, the reconfiguration
scheme may be optimal.

In the next two sections, error correcting codes and
software systems are briefly discussed as alternatives to a
hardware fault-tolerant system. In practice, however, it is
probably best to use them in conjunction with one of the
hardware redundant schemes.

ERROR CORRECTING CODES

Error correcting codes refer to a set of transformations
on the digital representation of data and an associated set of
checking and correcting algorithms. The transformation
could be adding redundant bits or actually changing the
form of the data depending upon the nature of the checking
and correcting algorithms. 15 These codes provide concur
rent fault diagnosis and correction. In a sense, they perform
the same masking function of static redundancy with,
however, some loss in processor time. There are a number
of such codes and reviewing them all is beyond the scope of
this paper. Instead a few brief comments on the general
nature of error correcting codes will be made.

The encoding process introduces redundant bits, requir
ing additional hardware in the form of longer word lengths.
This also requires additional hardware in the memory,
processor, and data transfer systems. In addition, the
encoding process is performed by a given algorithm which
may be fairly complex. Thus the encoding process in
creases processor time and hardware requirements.

The checking and correction system also requires addi
tional hardware and computing time. Also there is some
concern, as with the switching systems of redundancy
schemes, for the reliability of the checking and correction
hardware. An error in this hardware would be catastrophic
for the fault-tolerant abilities of the system.

Thus, the error correcting code process increases the
hardware requirements of the system as well as slowing
down the computing speed of the system. The speed of the

system is decreased since it now has to convert data to the
coded form and reconvert it on output as well as check the
code for errors. These factors must be considered in
comparing error correcting codes to hardware redundancy
processes. Yet, these codes are very useful in providing
concurrent correction along data paths, especially between
peripheral units and the main systems.

SOFTWARE FAULT-TOLERANCE

Another approach to fault-tolerant computing is to build
the fault-handling capabilities into the software. In other
words, the system software operates in such a manner as to
allow the system to recover from hardware failures. Such a
software system works best against transient faults. There
are two advantages to a software approach to fault-toler
ance. First, fault-tolerant capabilities can be placed in the
system after the hardware has been designed. Second, the
fault-tolerant capabilities of the system are easily changed
at a later date. No hardware rewiring is required, the
software is just rewritten to allow for changes in fault
tolerant needs. On the other hand, there are several disad
vantages to software fault-tolerance. Assuring that the
software will operate correctly in the presence of a hard
ware fault is the major one. In addition, software now
represents a much larger percentage of total system cost
than hardware. The development costs of additional soft
ware for fault-tolerance could be excessive. The additional
software would also require extra storage and in some cases
redundant storage.

The major software fault-tolerant approach is called roll
back and recovery. 16 Sometimes called time redundancy,
this system involves some sort of fault detection procedure
and program restarts after a fault occurs. In its simplest
form, rollback and recovery involves just instruction retry.
If a fault is detected after an instruction is executed then
the instruction is reexecuted. More complex forms of
rollback and recovery require checkpointing. A checkpoint
is a point in time when the system stops its normal
processing of user jobs and saves all relevant information in
the current state of the system. A checkpoint may be static
iIi \\1'i;dlaH~<1...1ic~Kpuiilb u.;~ui< al the same time every riay
or it may be dynamic in which the checkpoints occur at
different times dependent on system load and other factors.
If any error is detected, the system rolls back and starts
reprocessing everything done since the last checkpoint.

There are several questions which need to be considered
before installing a rollback and recovery system. For exam
ple, how many checkpoints are needed? If too many
checkpoints are used, the availability of the system de
creases since it has to stop processing the normal flow of
jobs to complete the checkpoint. If the checkpoints are too
far apart, then the recovery time will be high since the
system has to reprocess everything since the last check
point. Chandy16 has reviewed several rollback and recovery
models and has calculated the optimum intercheckpoint
time which depends on the use of the system. O'Brienli has
also studied a number of different checkpoint insertion
strategies.

Fauit-Toierant Digital System Architecture 23

It is important to remember that with software fault
tolerance, a single permanent hardware fault could cause
the system to crash. Hence, software fault-tolerance works
best in a hardware fault-tolerant environment as a supple
mental system used to improve fault-tolerant reliability. In
addition, software fault-tolerant systems work especially
well in providing individual protection to large data bases.

NEW APPROACHES TO FAULT-TOLERANT DESIGN

In the last few years a large research effort in fault
tolerant design techniques has been going on. 18 This re
search has led to the development of a number of promising
alternatives to the standard fault-tolerant design procedures
already mentioned. This section will briefly examine sev
eral of these alternatives.

Bi-duplexed systems

Courtois 19 has suggested that safety may, in some cases,
be a more important concept than reliability. Safety is the
probability of not sending incorrect data. This is especially
true in biomedical systems. In such systems it may be
better for a computer to stop operating rather than to take
an incorrect action or give out incorrect data on a patient.
Courtois found that a bi-duplexed (BDR) redundant system
has better safety than hybrid systems and it is less complex
than hybrid systems. The BDR operates with 4 units whose
outputs pass through exclusive-OR gates which stop the
operation of the incorrect modules. In Figure 4, the stop
signal is generated only if both exclusive-OR gates are 1.
Otherwise, the output box selects the output from the
modules which have an exclusive-OR output equal to one.

Alternating logic

Systems designed using alternating logic design proposed
by Reynolds and Metze20 possess built-in fault detection
capabilities. Hence, such systems, while not in and of
~h~~· ffiHtk~ef"~. ('AttM~I't'Il't~y.f" ,~ <~('"

redundancy or any of the other redundancy schemes al
ready reviewed. The fault detection is attained through a

Figure 4-Bi-duplexed system

24 National Computer Conference, 1977

redundancy in time by successive execution of the function
and its dual. Reynolds and Metze have shown that any
combinational circuit can be realized using alternating logic
design techniques. Since every input to a circuit is an
alternating binary sequence of the form (d,d), the circuit
operation is slower. It must process both d and d which
represent the same information. A fault is detected if the
output is not an alternating sequence.

Fail-soft

A concern for high availability of a computing system
prompted the development of fail-soft approaches to fault
tolerance. A fault in a fail-soft (graceful degradation) sys
tem results in a reduction in system performance. The
system remains available to users. An example of a fail-soft
system is the PRIME computer system. 21 PRIME has a
distributed architecture with four module types: intelligence
modules, interconnection modules, memory modules and
storage modules. 22

The University of California at Irvine also has a fail-soft
system called the Distributed Computing System (DCS).23
The DCS distributes hardware, software, and control of the
system over a network. The hardware is in the form of a
ring of processors (modules) with a software nucleus in
each processor. The rest of the software is spread through
out the system. This DCS can tolerate a module failure and
continue operation at a lower performance level, that is
with fewer processors. Figure 5 shows a DCS with six
processors.

Shared logic

For TMR systems to operate correctly the assumption of
fault independence is important. This assumption is vio
lated if any of the modules in a TMR share the same logic
gates. Hence, three complete copies of each module must
be constructed. Osman and Weiss,24 however, have devel
oped a means of allowing modules to share the same logic
called (n,m,r)-basis realizations. They found that a TMR
implemented with logic sharing using (n,m,r)-basis realiza-

P = Processor
I = Processor Inte-rfClce

Figure 5-A DeS with six processors

tions would retain the same fault-tolerant characteristics.
Yet, the logic sharing means that three copies of each
module do not have to be constructed. This results in a
considerable savings in hardware.

Fail-safe

In the discussion of the bi-duplexed system the concept
of safety was introduced in which a system will stop
operating rather than generate incorrect data. Fail-safe
systems operate under a similar concept. They take into
account the fact that an incorrect output of one value may
be worse than an incorrect output of another value. That is,
the damage caused by outputting an incorrect 1 may be
greater than the damage caused by outputting an incorrect
o. In such a case a fail-safe system would produce a 0
output whenever a failure occurs. Hence, an output of 1
would always be correct, an output of 0 mayor may not be
correct. Such a system is called a 0 fail-safe system. 27 A 1
fail-safe system could be defined in a similar manner. Fail
safe systems are important in biomedical applications
where an error resulting in an unnecessary call for a
doctor's assistance is not as harmful as not calling for a
doctor when the patient has an urgent need for medical
treatment. Also, in military systems, an incorrect signal
resulting in the launching of a missile can do more damage
than the failure to launch a missile when needed. Fail-safe
systems for biomedical and military applications would be
designed such that if a failure occurs the least harmful
output is produced. Hence, a fail-safe system is defined as a
system that produces safe-side outputs when failures oc
cur. 28

Fail-safe systems are subject to problems under mUltiple
fault conditions. A "masked" fault could occur which is a
fault that does not affect the output but which could break
the fail-safeness of the circuit when another fault occurs.29
Mukai and Tohma29 have developed a method of designing
asynchronous circuits in which "masked" faults do not
occur. In addition, Chuang30 has also developed a new fail
safe asynchronous design procedure. Chuang's system can
handle mUltiple-input changes which ordinarily could cause
a fail-safe machine to produce non-safe-side outputs under
certain conditions.

A fail-safe system usually requires twice as much hard
ware as a non-fail-safe system. This raises some questions
on circuit reliability since the more components in a system
the higher the chance of a circuit failure. However, Swain31

has examined this problem and produced a design proce
dure that will reduce the amount of hardware required to
achieve a fail-safe system.

CONCLUSIONS

The need for fault-tolerant computing cannot be under
stated, especially in light of the role computers now play in
medicine, space, and other highly critical areas. This paper
has briefly reviewed several methods of achieving fault-

tolerance. They all have their own advantages and disad
vantages. Perhaps the best overall approach to a truly
fault-tolerant system would be some combination of the
techniques reviewed in this paper.

In fact, several computing systems have been proposed
or are in the process of being constructed which utilize a
combination of the fault-tolerant procedures suggested in
this paper. For example, the STAR (Self Testing And
Repairing) computer at the Jet PropUlsion Laboratory uses
the following methods of tolerance: 32

(1) Dynamic redundancy technique with unpowered
spares is used. Replacement is implemented by power
switching.

(2) Error correcting codes are used for all data and
instruction words with concurrent fault detection.

(3) Fault detection, recovery and replacement are
achieved with special purpose hardware.

(4) Software recovery techniques are used in the event of
a memory failure.

(5) The processor is protected with hybrid redundancy
with three active units.

The design of the StAR computer is constantly being
updated but it always employes several different fault
tolerant techniques to achieve optimum fault-tolerant per
formance. Hopkins33,34 has proposed a fault-tolerant com
puter for space vehicles which also uses several fault
tolerant techniques. He suggests a mUlti-processor system
for fail-soft behavior. Each processor unit consists of
duplicated processors for error detection plus a triplicated
scratch pad memory. The memory unit is protected with an
error detection and correction code. Several different re
dundancy techniques are also used in the system.

Wensley, Levitt, and Neumann,35 after studying several
fault-tolerant architectures, concluded that it is economi
cally feasible to build systems using several different fault
tolerant techniques and achieve a mean time between
failures greater than 10 years. For the same cost as duplica
tion they also concluded that it was possible to achieve a
mean ~ime. ~etween failure§ in e;xcte,s~ qf 100 ye_a(s, Ye.t.
they did tInd significant deficiencies in the state-of-the-art
of fault-tolerant design. Hence, additional research into
fault-tolerant computing is vital. Several areas need further
investigation. For example, hardware redundancy systems
will reject a module even if the detected fault was only a
transient. Retry procedures need to be developed so that
otherwise "good" modules (modules with just transient
faults) will not be switched out of redundant circuits.
Goldberg25 has suggested several other areas for future
research. Such as the study of systems that can tolerate
faulty human operators, or the application of artificial
intelligence to achieve highly flexible fault-tolerant systems.

REFERENCES

I. Avizienis, A. "Fault tolerant computing-An overview", IEEE Trans.
Compt., vol. 4, January 1971, pp. 5-8.

Fault-Tolerant Digital System Architecture 25

2. Avizienis, A. "Architecture of fault-tolerant computing systems," Di
gest of the Fifth International Symposium on Fault-Tolerant Computing,
Paris, France, June 1975, pp. 3-i6.

3. Avizienis, A. "Design of Fault-Tolerant Computers," AFIPS
Conference Proceedings, Vol. 31, pp. 733-743, AFlPS Press, Montvale,
New Jersey, 1967.

4. Carter, W. C. and W. G. Bouricius, "A Survey of Fault-Tolerant
Computer Architecture and Its Evaluation," pp. 9-16, Computer, Jan!
Feb. 1971.

5. von Neumann, J. "Probabilistic logics and the synthesis of reliable
organisms from unreliable components," Automata Studies, C. E.
Shannon and J. McCarthy, eds., pp. 43-98, Princeton University Press,
New Jersey, 1956.

6. McCluskey, E. J., J. F. Wakerly and R. C. Ogus, "Center for reliable
computing: Current Research," Stanford Digital Systems Lab Technical
Report 100, Oct. 1975.

7. Chandy, K. M., C. V. Ramamoorthy and A. Cowan, "A framework for
hardware-software tradeoffs in the design of fault-tolerant computers,"
AFIPS Conference Proceedings, Vol. 41, pp. 55-63, AFIPS Press,
Montvale, New Jersey, 1972.

8. Sieworek, D. P. and E. J. McCluskey, "An Iterative Cell Switch Design
For Hybrid Redundancy," IEEE Trans. Compt., Vol. c-22, March 1973,
pp. 290-297.

9. Ramamoorthy, C. V. and Y. Han, "Reliability analysis of systems with
concurrent error detection," IEEE Trans. Compt., Vol. c-24, Sept. 1975,
pp. 868-878.

10. Mathur, F. P. and A. Avizienis, "Reliability analysis and architecture of
a hybrid-redundant digital system: Generalized triple modular redun
dancy with self-repair," AFIPS Conference Proceedings, Vol. 36, pp.
375-383, AFIPS Press, Montvale, New Jersey, 1970.

II. Cochi, B. "Reliability modeling and analysis of hybrid redundancy,"
Digest of the Fifth International Symposium on Fault-Tolerant Comput
ing, pp. 75-80, Paris France, June 1975.

12. Losq, J. "A Highly Efficient Redundancy Scheme: Self-purging redun
dancy," IEEE Trans. Compt., Vol. c-25, June 1976, pp. 569-578.

13. Losq, J. "Redundancy scheme for optimum multiple faUlt-tolerance,"
Technical Note no. 33, Digital Systems Laboratory, Stanford Univer
sity, Stanford California, Jan. 1974.

14. Su, S. Y. H. and E. DuCasse, "A reconfiguration scheme for tolerating
mUltiple failures in digital systems," Proceedings of International Com
puter Symposium, 1975, pp. 216-222.

15. Avizienis, A. "Arithmetic error codes: Cost and effectiveness studies
for application in digital system design," IEEE Trans. Compt., Vol. c-
20, Nov. 1971, pp. 1322-1331.

16. Chandy, K. M. "A survey of analytic models of rollback and recovery
strategies," Computer, May 1975, pp. 40-47.

17. O'Brien, F. "Rollback point insertion strategies," Proceedings of The
Sixth International Symposium on Fault-Tolerant Computing, Pittsburgh,
Penns,lvania, June 1976, pp. 138-142.

18. ",Sp~ciaUssues OIl E.a.u1t"loAerant ~." l~ lffllM. CflIff.'"
Nov. 1971, March 1973, July 1974, May 1975, June 1976.

19. Courtois, B. "On Balancing Safety and Reliability of Hybrid and
Biduplexed systems," Proceedings of the Sixth International Sympos
ium on Fault-Tolerant Computing, Pittsburgh, Pennsylvania, June 1976,
pp. 53-57.

20. Reynolds, D. and G. Metze, "Fault Detection Capabilities of Alternating
Logic," Proceedings of the Sixth International Symposium on Fault
Tolerant Computing, Pittsburgh, Pennsylvania, June 1976, pp. 157-162.

21. Baskin, H. B., B. R. Borgerson and R. Roberts, "PRIME-A modular
architecture for terminal-oriented systems," Proceedings of the Spring
Joint Computer Conj., 1972, pp. 431--437.

22. Borgerson, B. and R. Freitus, "A reliability model for gracefully
degrading and stand by-sparing systems," IEEE Trans. Compt., c-24,
May 1975, pp. 517-525.

23. Rowe, L., M. Hopwood and D. Farber, "Software methods for achiev
ing fail-soft behavior in the distributed computing system," Record of
the 1973 Symposium on Computer Software Reliability, New York,
April 1973, pp. 7-11.

24. Osman, M. and C. Weiss, "Shared logic realizations of dynamically self
checked and fault-tolerant logic," IEEE Trans. Campt., Vol. c-22 ,
March 1973, pp. 298-306.

25. Goldberg, J. "New problems in fault-tolerant computing," Digest of the

26 National Computer Conference, 1977

Fifth International Symposium on Fault-Tolerant Computing, Paris,
France, June 1975, pp. 29-34.

26. Ogus, R. "Fault-tolerance of the iterative cell array switch for hybrid
redundancy," Digest of the Third International Symposium on Fault
Tolerant Computing, Palo Alto, California, June 1973, pp. 107-112.

27. Mine, H. and Y. Koga, "Basic properties and a construction method for
fail-safe logical systems," IEEE Trans. Compt., Vol. EC-16, June 1967,
pp. 282-289.

28. Tohma, Y., Y. Ohyama and R. Sakai, "Realization of fail-safe sequen
tial machines by using a k-out-of-n code," IEEE Trans. Compt., Vol. C-
20, November 1971, pp. 1270-1275.

29. Mukai, Y. and Y. Tohma, "A masked-fault-free realization of fail-safe
asynchronous sequential circuits," Proceedings of the Sixth Interna
tional Symposium on Fault-Tolerant Computing, Pittsburgh, Pennsylva
nia, June 1976, pp. 69-74.

30. Chuang, H. Y. H. "Fail-safe asynchronous machines with mUltiple-input
changes," IEEETC. Vol. C-25, June 1976, pp. 637-642.

31. Swain, D. H. "Fail-safe synchronous sequential machines using modi-

fied on-set realizations," Digest of the Fourth International Symposium
on Fault-Tolerant Computing, pp. (3-7)-(3-12), Urbana, Illinois, June
1974.

32. Avizienis, A., G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr,
and D. K. Rubin, "The STAR (Self Testing And Repairing) computer:
An investigation of the theory and practice of fault-tolerant computer
design," IEEE Trans. Compl., Vol. C-20, November 1971, pp. 1312-
1321.

33. Hopkins, A. "A fault-tolerant information processing concept for space
vehicles," IEEE Trans. Compt., Vol. C-20, November 1971, pp. 1394-
1403.

34. Hopkins, A. and T. B. Smith, "The architectural elements of a symmet
ric fault-tolerant multiprocessor," IEEE"Trans. Compl., Vol. C-24, May
1975, pp. 498-504.

35. Wensley, J. H., K. N. Levitt, and P. G. Neumann, "A comparative
study of architectures for fault-tolerance," Digest of the Fourth Interna
tional Symposium on Fault-Tolerant Computing, Urbana, Illinois, June
1974, pp. (4-16)-(4-20.

The use of passwords for controlling access
to remote computer systems and services*

by HELEN M. WOOD
National Bureau of Standards
Washington, DC

ABSTRACT

The widespread use of remote computer resources has
made the problem of personal authentication most urgent.
This paper examines the use of passwords for controlled
access to these resources. Password techniques, ways of
protecting passwords, and attendant cost considerations are
discussed. Similarities between passwords and data encryp
tion keys are noted and general recommendations for the
use of passwords are presented.

INTRODUCTION

With the growth of timesharing and other forms of com
puter networking, the use of remote computers and their
resources has become widespread. However, with this ease
of access have come increased operational risks.

Systems without adequate access controls are vulnerable
to threats including theft, fraud, and vandalism. Potential
losses range from unauthorized use of computing time to
unauthorized modification or access to massive amounts of
data. Perpetrators of such abuse may be otherwise honest
individuals wishing to play a few computer games, or
iGpbisti_aled. ~lNeu~;e~"ffi~~~'~~"
or acquire the list of a competitor's top ten accounts. (See
Reference 1 for a more complete treatment of computer
abuse perpetrators.) Current privacy legislation and in
creased public concern with the integrity and protection of
data in computer systems have made the problem of
personal authentication most urgent.

AUTHENTICATION

Typically when a user wishes to access resources on a
remote computer system, he or she ~tates a claimed iden-

* This work is a contribution of the National Bureau of Standards and is not
subject to copyright. Certain commercial products are identified in this paper
in order to adequately specify the procedure. In no case does such
identification imply recommendation or endorsement by the National Bureau
of Standards, nor does it imply that the material identified is necessarily the
best available for the purpose.

27

tity, perhaps through typing a user identification number.
The user is then required to authenticate the claimed
identity. This latter process is referred to as personal
authentication.

There are three basic methods by which a person's
identity may be established for the purpose of allowing
access to a remote computer system:

• something the person knows
• something the person has
• something the person is.

The first category includes techniques and items such as
passwords and lock combinations. Badges, ID cards, and
keys are among the items falling into the second category;
while "something a person is" includes physical and be
havioral characteristics such as one's appearance, voice,
fingerprints, signature, and hand geometry. The advantages
and limitations of these types of authentication techniques
have been discussed extensively elsewhere. 2

-
4

The actual authentication techniques selected for a given
systein'~hould be determined by a risk analysis. This is a
~op§i.~~niltiQn.Qfj),otenliaLthre.ats .. ~~~ .. px.Qbabilit~ of.~
threats occurring, and the expected losses resulting from a
successful penetration of the system.

Password systems cost less at present than many of the
other techniques for personal authentication. Consequently,
it appears that passwords, perhaps in combination with
other techniques such as badges or keys, will continue to be
heavily utilizoo for some time.

The technique of using passwords to authenticate a user
to a resource sharing computer system is well-known.
However, the simple use of passwords is not sufficient to
guarantee system security from unauthorized users. Cotton
and Meissner suggest that passwords for most timesharing
systems are "notoriously easy to obtain.' '2 There are,
however, a number of ways to improve the resistance of
password-based security systems to penetration. The intent
of this paper is to consider the generation of passwords and
their effective application to the problem of controlling
access to computer resources.

28 National Computer Conference, 1977

USES OF PASSWORDS

Personal authentication may be required at any number
of points along the path to accessing data. Such points
include

• entry to building
• entry to terminal room
• enabling terminal
• encryption interface unit
• login
• file access
• data item access

Physical devices (e.g., cards, keys) are commonly used at
the first three access points. While passwords, alone or in
conjunction with other techniques, may be used at any of
these points, the primary emphasis of this paper is the use
of passwords in an on-line environment. Thus we shall only
consider the utilization of passwords at login, file access, or
data item access time.

Data encryption keys and the banking community's Per
sonal Identification Number (PIN) are equivalent to pass
words. An encryption key controls the algorithmic transfor
mation (encryption) performed on data symbol-by-symbol.
The PIN is typically a four-to-six-digit number assigned by
the bank or selected by the cardholder. It is used in
conjunction with a magnetically encoded card. Throughout
this paper analogies will be drawn among encryption keys,
PIN's, and passwords.

PASSWORD SCHEMES

Password schemes differ according to

• selection technique
• lifetime
• physical characteristics
• information content •

In this section the types of password systems are discussed
along with the threats they are most effective against.
Examples are presented.

Password selection

A password may be chosen by the system user or
assigned. User-selected passwords usually are less secure
since people tend to pick words or numbers that have some
personal meaning (e.g., birthday, child's name, street ad
dress) and consequently are easy to guess. 6 Of course the
primary advantage of a user-chosen password is ease of
recall, alleviating the need for writing the password down.

Passwords may be assigned to users by the system
security officer or by the computer system itself. Although
they are generally more secure than user-selected codes,
the benefits of assigned passwords may be nullified if they

are written down by the user, taken from a master list
which is discovered,7 or generated by an algorithm that is
deducible. 8

Johnson examined the use of pseudorandom numbers as
passwords and discovered that various "logistically attrac
tive" periodic password generation systems are in fact
vulnerable to simple number-theoretic analysis. The gener
ating systems he considered were of the type

xn +1=axn+b(mod 2U), u=40,

where a and b are selected constants and Xn is the nth
password generated. This type of generating system would
be considered attractive, for example, in a large databank
system in which it is not practical to use complex password
schemes.8

Another example of a computer-generated password
scheme is the random word generator developed to run on
Honeywell's Multiplexed Information and Computer Sys
tem (Multics).9 The random word generator forms pro
nounceable syllables and concatenates them to create words.
This system was developed to enhance the security of some
Multics installations, such as the Air Force Data Services
Center (AFDSC), where classified information is pro
cessed. Installations such as these cannot risk the
compromise of users' passwords.

In his chapter on principles of computer security, Bush
kin includes the following principle:

No passwords or other user authentication data shall
have been or shall be created or generated either by the
human user who will use them or by a non-human agent
(e.g., a program) of his creation or under his control ...

Although it is not claimed that such a principle applies to
each and every system, it is apparent that such nonhuman
generation of passwords is the preferred method for en
hanced system security. 10

Password lifetime

Current password schemes allow password assignments
to be used for an indefinite period of time, for fixed
intervals of time (e.g., one month), or for a single use only.
The length of time that a password remains in effect is
called the password lifetime or period.

Passwords that remain effective indefinitely are the most
susceptible to compromise. Due to the length of the pass
word period, these passwords are especially vulnerable to
exhaustive testing. Making the password appropriately
long, locking-out log-on attempts after several (e.g., three)
tries,l1 and enforcing time delays between log-on attempts
are some deterrents "against exhaustive enumeration at-
tempts. 12

0 ,

Another shortcoming of passwords with indefinite life
times is the difficulty in detecting a successful compromise
of the password. Some systems prohibit a user from being
logged onto the system from more than one terminai at a
time. 6 However, even if such system constraints are pres-

ent, the odds of a system penetrator and the legitimate user
attempting to use the same account at the same time
depend upon the frequency of access of each. Thus, when
fixed passwords of indefinite lifetime are used, a masquer
ader can penetrate another user's files over a long period of
time with a low probability of detection.

Obviously more frequent password changes are desira
ble. i,13 An example of a system which requires password
updates at fixed intervals of time is the Air Force Data
Security Center. In this system, users are required to
change their passwords every six months. The enforcing
mechanism is the operating system.

Passwords that can only be used once are recognized as
generally providing a higher level of protection. 12 - 14 Suc
cessive passwords may be selected by the system from an
internal list, 12 generated by a program,8,9,15 or selected from
lists or cards previously distributed to authorized users. 6,14

Andersonl3,16 suggests an open, one-time password
scheme. He contends that if passwords are changed each
time they are used there is "no more risk in writing down
the password than in carrying a key to a locked room."
Should loss or theft occur, prompt reporting would mini
mize the risks involved.

As a means of further reducing the risk of carrying a
password openly, Anderson mentions the possibility of
encoding the new password on a magnetic cardY The
feasibility of this technique was investigated by Richardson
and Potter. Ii The major disadvantage of such a technique is
the cost of the magnetic card reader/writer.

Major drawbacks to the use of one-time passwords are
the cost and difficulty associated with the distribution of
lists to large numbers of users16 and with the support of
users who get "out of step" in a system with a heavy
workload.6

It has been noted by Petersen and Turn that one-time
password schemes alone are not effective against the threat
of between-lines or piggyback entry. For protection against
these threats, message authentication via attachment of
one-time passwords to each message would be required.
Encryption at the terminal level is also an effective protec
tiQ,nroec.hani.sm ,in this s.itllatj0J;1,5,

Physical characteristics

Physical characteristics refer to the size of a password
and its makeup (i.e., the "alphabet" from which it is
made). The number of different passwords possible in a
given scheme is called the password space. For example,
given a password of length L that is formed using any of the
26 letters in the English alphabet, there are 26**L possible
words that could be generated. Enlarging the alphabet
increases the password space accordingly. Including non
printing characters in the alphabet not only increases the
password space, but provides some additional protection. ll

Of course, when conditions such as pronounce ability are
added to the scheme, then some fraction of the total
number of possible words would comprise the password
space.

Use of Passwords for Controlling Access 29

Meissner4 emphasizes that, in order to adequately assess
the security of a given password scheme, one must consider
the number of allowable combinations for valid passwords,
rather than simply the theoretical number of combinations
based upon the size of the alphabet and the generated
password.

In Reference 13, Anderson considers passwords gener
ated as random strings of letters or numbers. He presents a
formula for determining the random password length re
quired to provide a given degree of protection against
systematic testing. The assumption is that tests occur at the
maximum line transmission rate, as would be the case if
another computer were attempting penetration by exhaus
tive enumeration. In his formula, the password size is found
by solving

(RlE)4.39x 104(MlP):5AS (1)

for S, where S is the password size in characters. Here, R
is the transmission rate of the line in characters per minute,
E is the number of characters exchanged in a log-on
attempt, P is the probability that a proper password will be
found, M is the period over which the systematic testing is
to take place, and A is the size of the alphabet from which
the password is made.

As an example, Anderson determines the password size
drawn from the English alphabet that gives a probability of
no more than 1/ 1000 of recovery after three months of
systematic testing. He assumes a line speed of 300 charac
ters/minute, and an exchange of 100 characters during a log
on attempt. The computation is as follows:

~~~ x4.39x 1Q4x3x 1()3:526s (2) 

3.951 x lOS:526s (3) 

26s=3.089x lOS for S=6 (4) 

268 =8.03 x 109 for S=7 (5) 

Therefore, in this example S=7 is the reasonable choice. 
Note that increasing the alphabet to 128 characters (e.g., 
for 7-bit A~C~I) redu~e~ S to 5. 

Information content 

The password may provide information in addition to 
personal authentication. The University of Western On
tario's generalized information retrieval sytem (GIRS) in
corporates the use of assigned, functional passwords whose 
contents reveal the users' authorization levels. 18 In this 
system an additional password is needed to effect the initial 
log-on to the computer system. The functional password is 
only used by the information retrieval system. 

Besides imparting authorization information, it has been 
suggested that passwords could be constructed to contain 
check digits or some other sort of self-checking code. 
"Check digitry" is already being successfully used in other 
environments, as discussed in a series of articles by Alan 
Taylor. 19-21 Techniques such as these, combined with some 
elementary analysis, could help more sophisticated pass-



30 National Computer Conference, 1977 

word systems discriminate between entry-errors (such as 
transpositions of digits) and actual penetration attempts, 
especially attempts via exhaustive testing. 

This idea is similar to that embodied in Kaufman and 
Auerbach's general model of an electronic funds transfer 
(EFT) system. Their system incorporates the use of crypto
graphic check digits derived from the PIN. 22 

Other schemes 

Many of the disadvantages associated with password 
systems are minimized or cease to exist altogether if 
authentication is accomplished via the successful execution 
of an algorithm. Such procedures are often referred to as 
"handshaking" or "extended handshakes. "6,23 Some of 
these procedures directly involve the use of passwords; 
others can only marginally be considered password 
schemes. 

The ADEPT-50 time-sharing system incorporates a hand
shaking scheme. 12 In order to gain admittance to the 
system, the user must supply information items including 
user identification, passwords, and accounting data. The 
terminal identification is also compared against the terminal 
id list for which the user was franchised. 

In several systems handshaking is accomplished by a 
dialog between the system and the user. In such procedures 
the user may be required to answer personal questions 
(e.g., child's name, brand of mouthwash) asked in a semi
random fashion, or to supply additional passwords and/or 
account information. 24 

In another variation, credited to Les Earnest by Hoff
man,25 the system presents the user with a pseudorandom 
number and requires that the user perform a mental trans
formation T on that number. The result is then sent back to 
the computer, which performs an appropriate transforma
tion and compares the results. Thus, the user has per
formed T on a number x and transmitted y=T(x). Conse
quently, an eavesdropper monitoring the transmission 
would at most see x and y. 

Hoffman asserts that even simple Ts such as 

T(x)=[( L digit i of x)3/2]+(hour of the day) 
i odd 

raise the work factor in breaking the scheme significantly. 

PASSWORD PROTECTIOl'i 

The previous section has been concerned with the selec
tion of a password scheme that, in addition to being 
convenient to use, is secure from discovery through guess
ing or exhaustive enumeration. However, regardless of the 
password scheme implemented, protection of the password 
is vital. 

The three times during which the password must be 
protected, are during 

• initial distribution 
• storage 
• transmission. 

In this section we shall address the requirements for 
guarding the passwords against potential threats that might 
occur at such times. 

Initial distribution 

The initial distribution of passwords to users is a special 
case of password assignment, selection, and transmission. 
Two items must be considered in this situation: 

• user identification 
• distribution method. 

It is usually the practice that first-time users of a system 
make application in person for authorization to to use the 
system resources. At that time a temporary password, 
assigned by the system security officer, can be given to the 
user. The user then has the responsibility for logging onto 
the system and changing the password to one known only 
to him. 

In another form of password distribution, more useful 
when users are great distances from the computing facility, 
the password is transmitted by mail to the user. PIN's are 
normally distributed in this manner. If more assurance of 
receipt is required, registered mail or special messengers 
can be used. 

Initial distribution of encryption keys could be handled in 
a similar manner, with the magnetic stripe card bearing the 
first key being sent via registered mail. 

Password storage 

Passwords may be stored in the computer system (e.g., 
on a disk), or by users (e.g., on paper or magnetically 
encoded on a card). Dangers inherent in writing down 
passwords have already been addressed. The storage of 
passwords on the system and on cards is considered in this 
section. 

Most password schemes employ the use of tables or lists 
which contain the current password for each authorized 
system user. (A notable exception would be the user
transformation scheme described above.)25 As these tables 
and lists are perhaps the most vulnerable part of a password 
system, efforts should be taken to protect them. Internal 
lists from which one-time passwords are assigned should 
likewise be guarded. 

R. M. Needham is credited with being the first to 
recognize the vulnerability of password lists. An encipher
ment algorithm attributed to him has been implemented at 
Cambridge, England. The cipher produced by this algo
rithm is a "one-way cipher." This is a cipher for which no 
simple deciphering algorithm exists. In such a scheme, the 
user's password is encrypted as soon as it is received by 
the system, and the transformed password is then com
pared with the encoded table entry. 26 

A discussion of Needham's system and the merits of 
various others can be found in Reference 27. Purdy28 also 



describes the Needham scheme, discusses the selection of 
good one-way ciphers, and suggests the use of polynomials 
over a prime modulus. 

There are still potential threats involved in such schemes. 
One is the interception of passwords prior to encryption, 
and another is the selection of a poor cipher. The first 
problem will be dealt with in the next section. 

An example of a poor cipher would be one that is highly 
degenerate (i.e., one in which many combinations encrypt 
to the same value).29 Under such a scheme the simple 
exposure of the encrypted list could give enough informa
tion to a would-be penetrator to allow him to, if not break 
the algorithm, at least access the files of any users whose 
passwords in their encrypted form were identical to his. 

As a part of their Multics vulnerability analysis the Air 
Force considered the threat of exposure of password files. 30 

Their report asserts that accessing the system password file 
is of minimal value to a system penetrator. Assuming that 
the password file is the most highly protected file in the 
system, anyone who succeeded in accessing this file could 
conceivably penetrate any other file in the system! Further
more, if the password list were enciphered, then it would be 
much easier to simply ignore it than to attempt to decode it. 

For completeness the Air Force study did analyze the 
"non-invertible" encipherment scheme used at that time by 
the Multics system. In a report soon to be published the 
details of their successful penetration of that scheme will be 
detailed. 31 

In some systems using magnetic stripe cards the PIN 
itself is stored on the card in an encrypted form. When 
discussing the threats to bank card systems presented by 
the underworld,32 Industrial National Bank Vice President 
Ernest Northup described the components of a card-based 
electronic funds transfer system and noted that the "use. of 
a standard PIN scrambling technique or algorithm for bank 
interchange would require that its elements be widely 
known, at least among equipment vendors. This increases 
its vulnerability." 

In Reference 22, Kaufman and Auerbach present a com
prehensive set of security principles for EFT systems. 
~~!1~~~itlg th~ .~to~!~ 9f PIN) !,h~Y .~t~t~.th~! "there 
should be no way to derive the PIN from information on the 
card," although they observe that many current schemes 
are based upon such risky techniques. 

Password transmission 

Passwords are vulnerable to several threats during their 
transmission from terminal to computer. Potential threats 
include wiretapping, electronic eavesdropping, and piggy
back infiltration. The password may also be discovered 
later in the trash if a hardcopy terminal was used, or 
observed on a CRT screen immediately after entry. These 
latter two problems are usually dealt with by masking (the 
over-printing or under-printing of a series of characters) or 
echo-suppression. However, as pointed out by Carroll and 
McLellan ,33 in general the "use of a mask affords no 
protection to users on CRT visual display terminals." 

Use of Passwords for Controlling Access 31 

Another method sometimes used incorporates non-printing 
characters as a part or all of the password.4,11 

In a discussion of piggyback infiltration, Carroll and 
Reeves described a situation in which unsuspecting termi
nal users could be "exploited by a process which mimics 
the real system long enough to obtain a password .... "34 
Of course, echo-suppression and masking are of no help in 
countering this type of threat. If a more intelligent device 
than a terminal is used to intercept the conversation, then 
non-printing characters also lose their effectiveness. 

The user-transformation schemes described by Hoffman25 

and Carro1l35 are one way of effectively shielding the 
password in transit. Here the user, when presented with a 
random number, performs a pre-determined transformation 
on it and transmits the result back to the computer for 
verification. The incorporation of a date-time group into 
this transformation is recommended to provide additional 
protection against piggyback infiltration.35 

Optimal protection of the transmitted password, as with 
any data, can be realized by encryption of the communica
tions link during the entire conversation. 15,36 The NBS 
encryption algorithm would be suitable for this purpose.37 

Brandstad notes that encryption keys and authentication 
codes may be in effect the same item. In his proposed 
network access control machine, these keys are never 
transmitted through the network, but rather are loaded 
simultaneously by interface units into a primary encryption 
device. Thus, authentication can be considered complete at 
that level (at least) if a message can be encrypted, transmit
ted, and correctly decrypted.36,3s 

In a recent master's thesis on encryption-based protec
tion protocols, Kent addresses encryption key distribution 
protocols. 39 He identifies two basic transmission tech
niques: 

• chained key changes 
• two-level key distribution systems. 

Under the chained key system, each new key is enci
phered using the last key issued. This new key is then used 
until another ch!:lng~ occurs. lJnder the two:level distribu: 
tion system, a special key is used solely for transmitting 
new keys to remote users. Kent describes protocols for 
using these schemes and considers the use of magnetic 
stripe cards for distribution of keys. 

COST CONSIDERATIONS 

The costs of a given password scheme are those incurred 

• by the protector 
• by the intruder. 

These costs must be considered in conjunction with the 
value of the information to be protected. (See Reference 40 
for a discussion on the value of personal information in 
qualitative terms.) 

The costs to the protector include not only the hardware 



32 National Computer Conference, 1977 

and software costs involved, but also the effect on overall 
system performance. Processing time required and commu
nications channel loading may result in severely degraded 
system response time. 

Password schemes have been described which involve 
authentication to the file or data item level. Tum observes 
that the "costs of access control operations reflect them
selves in increased processing time and storage space 
requirements. "41 He relates the results of a study of these 
costs which revealed a 22 to 140 percent processing time 
increase in file access operations, depending upon when 
access controls are applied (e.g., at file open time, or data 
item access time). Such implementation costs in a computer 
networking environment are considered in Reference 42. 

The cost to the system intruder includes the investment 
in time and equipment (i.e., the work factor) necessary to 
determine the password or password-generating algorithm. 
Risk can also be considered part of the penetration cost. 

As an example, consider the intruder's cost of acquiring 
passwords through wiretapping. These could range from the 
cost of recording equipment (a few hundred dollars), to the 
cost of a minicomputer and associated software develop
ment (several thousand dollars). Risks include possible 
legal prosecution. 40 

As aptly stated by Petersen and Tum,5 "the level of work 
factor which is critical for a given information system 
depends, of course, on an estimate of the magnitude of 
threats and of the value of the information." They suggest 
that a work factor of one day of continuous computation 
required to break a single encryption key might be adequate 
against low-level threats. 

Of course, the cost of the system utilized in the penetra
tion effort must also be considered. For example, Diffie and 
Hellman have suggested a configuration consisting of 1,-
000,000 chips and associated controlling and power supply 
hardware costing around $20,000,000. They assert that such 
a system could search the key space of the proposed NBS 
encryption algorithm in about a day, assuming the posses
sion of a matching block of encrypted and unencrypted 
text. 43 

CONCLUSIONS 

Passwords can be a highly effective form of personal 
authentication when care is taken in their selection and 
protection. We have categorized the types of password 
schemes, identified their capabilities and limitations, and 
indicated the points at which password protection mecha
nisms are needed. 

The exact password scheme appropriate for a given 
system depends, of course, upon the required level of 
security as determined by risk analysis. Cost is also a factor 
in the selection of the "right" password system. 

Until other forms of personal authentication become 
more cost-effective, the password will remain the most 
widely used means of controiiing access to remote comput
ing systems and services. 

REFERENCES 

1. Parker, Donn B., "Computer Abuse Perpetrators and Vulnerabilities of 
Computer Systems," Proceedings of the National Computer Confer
ence, AFIPS Press, Montvale, N.J., 1976, p. 65-73. 

2. Cotton, Ira W. and Paul Meissner, "Approaches to Controlling Personal 
Access to Computer Terminals," Proceedings of the 1975 Symposium 
Computer Networks: Trends and Applications, IEEE Computer Society, 
1975, p. 32-39, 19 refs. 

3. Browne, Peter S., "Computer Security-A Survey," Proceedings of the 
National Computer Conference, AFIPS Press, Montvale, N.J., 1976, p. 
53-63, 134 refs. 

4. Meissner, Paul, Guideline on Evaluation of Techniques for Automated 
Personal Identification, National Bureau of Standards, Washington, 
D.C., 1977 [in press]. 

5. Petersen, H. E. and R. Tum, "System Implications of Information 
Privacy," Proceedings of the Spring Joint Computer Conference, 
AFIPS Press, Montvale, N.J., 1%7, p. 291-300, 14 refs. 

6. Beardsley, Charles W., "Is Your Computer Insecure?" IEEE Spectrum, 
January 1972, p. 67-78, 16 refs. 

7. Winkler, Stanley, and Lee Danner, "Data Security in the Computer 
Communication Environment," Computer, February 1974, p. 23-31, 7 
refs. 

8. Johnson, S. M., Certain Number Theoretic Questions in Access Control, 
Rand Corporation, Report R-1494-NSF, January 1974. 

9. Gasser, M., A Random Word Generator for Pronounceable Passwords, 
The MITRE Corporation, Bedford, Mass., AD-AOI7 676, November 
1975, 183p., 3 refs. 

10. Bushkin, Arthur A., A Framework for Computer Security, System 
Development Corporation, McLean, Va., AD-A025 356, June 1975, 
158p. 

11. Held, Gilbert, "Locking Intruders Out of a Network," Executive Guide 
to Data Communications, McGraw-Hill Publications Co., New York, 
1976. 

12. Weissman, c., "Security Controls in the ADEPT-50 Time-sharing 
System," Proceedings of the Fall Joint Computer Conference, AFIPS 
Press, 1%9, p. 119-133, 20 refs. 

13. Anderson, James P., "Information Security in a Multi-user Computer 
Environment," Advances in Computers, Vol. 12, 1972, Academic Press, 
Inc., New York, p. 1-36. 

14. Peters, Bernard, "Security Considerations in a Multi-programmed Com
puter System," Proceedings of the Spring Joint Computer Conference, 
AFIPS Press, Montvale, N.J., 1%7, p. 283-286. 

15. Baran, Paul, On Distributed Communications: IX. Security, Secrecy, 
and Tamper-free Considerations, Rand Corporation, August 1964, AD-
444 839, 39p. 

16. Anderson, James P., On Centralized Distribution of One-time Passwords 
in Resource Sharing Systems, James P. Anderson and Co., Fort 
Washington, Pa., August 1971, 8p. 

17. Richardson, Mark H. and James V. Potter, Design of a Magnetic Card 
Modifiable Credential System Demonstration, Electronic Systems Divi
sion (AFSC), Hanscom Field, Mass., MCI-73-3, December 1973, 65p. 

18. Carroll, John M., Robert Martin, Lorine McHardy and Hans Moravec, 
"Multi-dimensional Security Program for a Generalized Information 
Retrieval System," Proceedings of the Fall Joint Computer Conference, 
Vol. 39, 1971, p. 571-577,5 refs. 

19. Taylor, Alan, "Darmstadt System Eliminates Check-Digit Loopholds," 
Computerworld, September 17, 1975, p. 13. 

20. Taylor, Alan, "Deeds Check-Digit Method Possibly Valuable DP Tool," 
Computerworld, October 22, 1975, p. 11. 

21. Taylor, Alan, "Statistics Improving State of Art in 'Check-Digitry' ," 
Computerworid, February 23, i976, p. 17. 

22. Kaufman, D. and K. Auerbach, "A Secure National System for Elec
tronic Funds Transfer," Proceedings of the National Computer Confer
ence, AFIPS Press, 1976, p. 129-138, 6 refs. 

23. Campaigne, Howard and Lance J. Hoffman, "Computer Privacy and 
Security," Computers and Automation, 22:7, July 1973, p. 12-17,6 refs. 

24. Lupton, William Lloyd, A Study of Computer Based Data Security 
Techniques, Naval Postgraduate School, Monterey, California, AD-765 
677, 1973, 77p., 141 refs. 

25. Hoffman. Lance J., "Computers and Privacy: A Survey," Computing 
Surveys, 1:2, June 1%9, p. 85-103, 69 refs. 



26. Wilkes, M. V., Time Sharing Computer Systems, American Elsevier, 
New York, 1975. 

27. Evans, Arthur Jr. and Willia."TI Kantrowitz, "A User Authentication 
Scheme Not Requiring Secrecy in the Computer," Communications of 
the ACM, 17:8, (August 1974), p. 437-442, 8 refs. 

28. Purdy, George B., "A High Security Log-in Procedure," Communica
tions of the ACM, 17:8, August 1974, p. 442-445, 8 refs. 

29. Fletcher, J. G., Software Security in Networks, Lawrence Livermore 
Laboratory, University of California, 1975, 17p. 

30. Karger, Paul A. and Roger R. Schell, Multics Security Evaluation: 
Vulnerability Analysis, Electronic Systems Division (AFSC), Hanscom 
AFB, Mass., ESD-TR-74-193, Vol. II, June 1974, 156p., 33 refs. 

31. Downey, Peter J., Multics Security Evaluation: Password and File 
Encryption Techniques, Electronic Systems Division (AFSC), Hanscom 
AFB, Mass., ESD-TR-74-193, Vol. III, in preparation. 

32. Northup, Ernest H., "Bank Cards Vs. the Underworld," Banking, 67:9, 
September 1975, p. 66, 68, 70, 73. 

33. Carroll, John M. and P. M. McLelland, "The Data Security Environ
ment of Canadian Resource-sharing Systems," INFOR, Canadian Jour
nal of Operational Research and Information Processing, 9: 1, March 
1971, p. 58-67, 17 refs. 

34. Carroll, John M. and Paul Reeves, "Security of Data Communications: 
A Realization of Piggyback Infiltration," INFOR, Canadian Journal of 
Operational Research and Information Processing, 11:3, (October 1973), 
p. 226-231, 2 refs. 

35. Carroll, J. M. and P. M. McLelland, "Fast 'Infinite-key' Privacy 
Transformation for Resource-sharing Systems," Proceedings of the Fall 
Joint Computer Conference, AFIPS Press, 1970, p. 223-230, 12 refs. 

Use of Passwords for Controlling Access 33 

36. Branstad, Dennis K., "Encryption Protection in Computer Data Com
munications," Proceedings of the Fourth Data Communications Sym
posium, IEEE Computer Society, October 1975, p. 8-1-8-7, 2 refs. 

37. National Bureau of Standards, "Proposed Standard Encryption Algo
rithm for Computer Data Protection," Federal Register, 40:52, August 
75, 12134-12140. 

38. Branstad, Dennis K., "Security Aspects of Computer Networks," 
Proceedings of AIAA Computer Network Systems Conference, Ameri
can Institute of Aeronautics and Astronautics, New York, N.Y., April 
1973,8p. 

39. Kent, Stephen T., "Encryption-Based Protection Protocols for Interac
tive User-Computer Communication," (Master'S Thesis), Massachusetts 
Institute of Technology, Cambridge, Mass., AD-A026 911, May 1976, 
122 p., 42 refs. 

40. Turn, Rein and Norman Z. Shapiro, "Privacy and Security in Databank 
Systems-Measures of Effectiveness, Costs, and Protector-intruder In
teractions," Proceedings of the Fall Joint Computer Conference, AFIPS 
Press, Montvale, N.J., 1972, p. 435-444, 26 refs. 

41. Turn, Rein, Privacy Protection in Databanks: Principles and Costs, The 
Rand Corporation, Santa Monica, California, AD-A023 406, September 
1974, 21 p., 19 refs. 

42. Lientz, Bennet P. and Ira R. Weiss, On the Evaluation of Reliability and 
Security Measures in a Computer Network, Office of Naval Research, 
Arlington, Va., AD-AOO2 996, December 1974, 28p., 19 refs. 

43. Meissner, Paul, Report of the 1976 Workshop on Estimation of Signifi
cant Advances in Computer Technology, National Bureau of Standards, 
NBS-IR 76-1189, August 30-31,1976, 7Op., [in press]. 





A microprocessor selective encryption 
terminal for privacy protection 

by JOHN H. CARSON, JOHN K. SUMMERS and JAMES S. WELCH, JR. 
The MITRE Corporation 
McLean, Virginia 

ABSTRACT 

This paper reports on an experiment performed by the 
METREK Division of The MITRE Corporation from No
vember 1975 through August 1976. The purpose of the 
experiment was to determine how effectively a low cost 
microcomputer could provide privacy protection to a user 
of a time-shared computer system. The microprocessor was 
used to selectively encrypt information entered at the 
terminal before transmission to the host computer so that 
the protected information never appears in plaintext form at 
the host computer. The advantages and disadvantages of 
this approach along with the operational details of the 
experimental system are presented. 

INTRODUCTION 

The recent advances in microcomputer technology are 
having a strong impact on the capabilities of conventional 
time-shared computer systems. By using microcomputers 
to construct very intelligent terminals, new features and 
capabilities can be added to existing systems with the 
intelligent terminal, rather than the host computer system, 
providing the new functions. Privacy protection is one such 
function. > Privacy protection requirements vary widely tor 
users in the diverse user communities commonly found in 
large-scale computer systems. The use of a programmable 
intelligent terminal provides a means for tailoring both the 
capability and cost of privacy protection to the individual 
user's needs. 

This paper reports on an experiment in which the NBS 
proposed Data Encryption Standard l was used by a micro
processor to selectively encrypt and decrypt portions of the 
transactions with the host time-shared computer. This en
cryption terminal can interactively build, maintain and 
retrieve from databases in which selected fields are en
crypted to provide a level of protection sufficient for most 
privacy requirements. 2 

By performing encryption at the terminal, privacy protec
tion is maintained independent of the host system. At no 
time does the host see the encryption key, the encryption 
algorithm or the plaintext form of the protected text. 

35 

Furthermore, this form of protection requires no modifica
tion to the host's software. Through terminal encryption, 
the party held responsible for protection of the data retains 
control over the protective mechanism with no dependency 
on the geographically and organizationally remote host 
computer's operations group. 

THE PROBLEM 

Privacy protection of computerized databases requires 
that the data be protected both from accidental disclosure 
and from unauthorized penetration by a determined in
truder.3,4 

Privacy protection is easily attained when the owner of 
the data controls the host's operations and processing 
privileged information is a major part of the installation's 
job load. Privacy protection is difficult to achieve when the 
database is loaded on an easily accessed time-sharing 
computer whose system and operations staff are organiza
tionally independent of the owner of the data. 

This situation is further complicated when only portions 
of the database need protection and the remaining portions 
of the database should be available to selected user groups. 
For example, in a medical database the patients' names 
must be carefully guardedwhHe it is, des.~@ple lq perm~t 
researchers and administrators to study the remainder of 
the database. 

TECHNICAL APPROACH 

Figure 1 shows the encryption experiment hardware 
configuration. A microcomputer, which is inserted between 
the modem and the terminal, is programmed with the 

TEKTRONIX 
4023 LSI-11 

Figure I-Experimental configuration 

TO 
HOST 



36 National Computer Conference, 1977 

encryption/decryption algorithm plus the logic necessary to 
detect when these processes are to be invoked. 

In the METREK experiment, the microcomputer was a 
Digital Equipment Corporation LSI-II with 8K words of 
memory and was attached using serial interfaces to a 
Tektronix 4023 CRT terminal and an Anderson Jacobson 
A242 acoustically coupled 300 baud modem. (The LSI-II 
software actually required only 5K words but only incre
ments of 4K were available during the experiment.) 

The LSI-II software operates in two modes, plaintext 
and encryption. In the plaintext mode, the LSI-II acts as a 
relay between the terminal and host. Each character from 
the terminal is relayed, individually, to the host and vice 
versa. All control characters such as carriage return, line 
feed, insert character, delete character, delete line, break, 
etc., are relayed to the host for processing. 

The terminal user signals the start of a protected phrase 
by typing an open bracket "[" which puts the LSI -II into 
the encryption mode. All subsequent incoming characters 
are diverted to an internal buffer until the phrase is termi
nated by a close bracket "]" or a carriage return/line feed. 
Character deletes are handled by backing up the buffer one 
character. The phrase terminator causes the collected 
buffer to be encrypted and transmitted to the host. The 
transmitted encrypted message is surrounded by brackets 
"[ ]" to identify it upon return as an encrypted phrase. 

Although any encryption algorithm could have been 
used, the NBS Proposed Data Encryption Standard1,5 was 
used as the encryption process for this experiment. The 
algorithm accepts an 8 byte key (input from the terminal) 
and an 8 byte block of plaintext data. It produces an 8 byte 
block of encrypted data. The entire plaintext buffer is fed 
through the encryption process, 8 bytes per entry. The final 
block is padded with filler bytes to make it a full eight 
bytes. 

The encryption algorithm is a 16 step block cipher 
process involving bit permutations and "exclusive or" 
operations with the key and plaintext block. The characters 
produced by the algorithm can take on any of the possible 
256 8-bit patterns. Unfortunately, most computer systems 
will not accept all of the 256 possible 8-bit characters. 

For example, there are often special system control 
characters such as carriage return, character delete, line 
delete, etc., that are intercepted by the operating system 
and not passed through to the application database soft
ware. In addition, there may be control characters for 
database management systems which cannot appear in data 
being input. Finally, many computers do not even recog
nize the full 256 character input alphabet. For example, the 
METREK IBM 3701145 operating under VM/CMS uses a 
translation table for converting the ASCII input to 
EBCDIC. This table is implemented as a many-to-one 
mapping which has an output alphabet of less than 256 
characters. 

Since the character identities within the encrypted mes
sage serve no meaning when the message is in the host 
computer, the entire message may be treated as a stream of 
binary information. The 64 character ASCII subset de
scribed in Figure 2 is used to transmit this "binary" 

message to the host. This is accomplished by dividing the 
message into 6-bit entities, each of which is mapped into 
one of the 8-bit characters in the selected ASCII subset. 
(On return from the host, this process is reversed.) 

Upper Case Alphabetics 
Lower Case Alphabetics 
Numerics 
Two special characters 

(upward i arrow and underline __ ) 

Figure 2 

Total 

26 values 
26 values 
10 values 
2 values 

64 values 

This ASCII subset is free of symbols that have any special 
meaning to the host. Thus, the encrypted phrase, sur
rounded by brackets to serve as sentinels, will pass unmo
lested through the host, to the application database as just 
another plaintext character string. 

This process results in an increased message size which 
can be computed as follows: If n is the number of bytes in 
the plaintext phrase, then let N = the integer portion of (n 
+ 7)/8, (i.e., the smallest mUltiple of 8 bytes that can 
contain the message). Then 8·N is the number of bits in the 
message and 8N/6 is the number of ASCII characters 
required to represent the message. Two sentinel characters 
must be added to the message bringing the total number of 
characters transmitted to 4N/3 + 2. 

This approach makes it quite easy to adapt the selective 
encryption terminal to different host computers. By selec
tion of the proper ASCII subset, the terminal system can be 
used with most contemporary computer systems. 

THE VIEW FROM THE TERMINAL 

During the plaintext exchanges, the selective encryption 
terminal behaves as a conventional "teletype compatible" 
terminal. Plaintext messages include system commands and 
responses, and application commands and responses. 

Any part of a message can be encrypted by enclosing the 
segment in square brackets [ ]. For example, the database 
transaction 

NAME=[WASHINGTON IRVING], 
OCCUPATION=AUTHOR, AGE=194 

when entered from the selective encryption terminal would 
actually transmit 

NAME=[ORDQfq53VKFJNYSOFqisKL], 
OCCUPATION=AUTHOR, AGE= 194 

to the host computer where it would create and store a 
record in the host's database management system. In order 
to retrieve that record using the NAME field, the request 

FIND NAME=[WASHINGTON IRVING] 



A Microprocessor Seiective Encryption Terminai for Privacy Protection 37 

would be entered into the terminal resulting in the transac
tion 

FIND NA.ME=[ORDQfq53VKFJNYSOFqisKL] 

being sent to the host computer. The record would be 
retrieved and displayed at the terminal in its original 
plaintext form. If the record were to be retrieved either 
through a conventional terminal or the selection encryption 
terminal without the proper password, the name field would 
not be properly decrypted when the record was displayed. 

The user sets his encryption key prior to sending the first 
encrypted phrase. The key governs the encryption proce
dure and can be used to vary the content of the encrypted 
phrase. Any phrase that is encrypted using two different 
keys will produce two different encrypted phrases. 

The terminal is notified of a key change by enclosing the 
new key in brackets within an encrypted message segment. 
The key is not echoed at the terminal and remains in effect 
until a new key is entered. For example, the encryption key 
can be set to "OLD" by typing 

FIND NAME=[[OLD]WASHINGTON IRVING] 

at the terminal. 

FIND NAME=[[ ]WASHINGTON IRVING] 

will be displayed at the terminal while 

FIND NAME=[ORDQfq53VKFJNYSOFqisKL] 

will be transmitted to the host computer. 

DEMONSTRATION DATABASE 

A database was constructed to demonstrate the opera
tional feasibility of this privacy protection approach. The 
demonstration database consisted of 100 medical records, 
selected from a much larger operational database. Each 
Ie~uiJ~Je~l:ribeu an 'a(;l.;rJenT·vi~Hrii who was ueateu ata 
midwestern general hospital. The records contained 18 
fields, including patient identification, patient profile data 
(age, sex, religion, etc.), accident description, (time, place, 
injury, how it happened, etc.) and treatment (emergency 
room facilities, speciality care, survival). 

The demonstration database was loaded on the host from 
magnetic tape, with the patient identification omitted. Pa
tient identification was added later through the selective 
encryption terminal. Demonstration tests have shown that 
the host's data management system retained most of its 
functional capability. The selective encryption terminal is 
able to update the database, retrieve by patient name (an 
encrypted field), retrieve a list of patient names sharing 
some common characteristic (e.g., patients with abdominal 
injuries) and perform statistical analysis and summary re
porting on the collected data. As expected, the host data 
management system was not able to report a sorted list of 

patient names nor was it able to perform range type 
retrieval on patient name (e.g., list all patients whose last 
name begin with B). 

The host data management system was unaware that part 
of its database was encrypted and no modifications were 
made to any host programs to perform this demonstration. 

VULNERABILITY 

In the selective encryption process the same encryption 
key is used for all values of each encrypted data field and 
the encryption process is restarted in the same manner for 
each encrypted value. Furthermore, a constant is used to 
pad messages to the next higher increment of eight charac
ters. This consistency is necessary for situations where 
retrieval on the encrypted field is required. The price paid 
for this consistency is redundancy; everywhere the plain
text field contents are the same, the encrypted values are 
also identical. Redundancy is an attack point for any 
determined intruder. 

If this redundancy presents a severe problem it can be 
eliminated by employing random padding characters rather 
than a constant. The contents of the filler characters affect 
the entire message and this could be employed to provide 
an invertible one-to-many mapping. However, employing 
this technique makes retrieval by protective field impossi
ble. 

The decision to employ either random or constant filler 
must be made by considering the value of a retrieval by 
protected field value versus the amount of protection re
quired. The intent of this approach is to make it more 
difficult to obtain the protected information from the com
puter system than by more traditional methods (e.g., brib
ery, theft, etc.). 

IMPLEMENT ATION DIFFICULTIES 

The encryption of selected fields of a large database 
presents two major problems. The first problem appears 
""fit:fl lht:~ Jala·ule Iuaueu iilLulhe DBMS 01 '"..rien an 
existing database is to be used with the encryption terminal. 
The next problem appears when it comes time to re-encrypt 
the database because of possible key compromise or be
cause periodic re-encryption under a new key is sound 
policy. 

In either case, a database of any magnitude will rule out 
the manual data entry approach employed in the medical 
demonstration database described above. Some sort of 
automated support must be sought. 

Alternatives begin with the transporting of the impacted 
fields via tape or demountable disk, to the microcomputer 
for encryption and back to the host via the same medium. 
This is expensive since an additional hardware component 
is required for the microcomputer. 

A second alternative is to set up a dialogue between the 
microcomputer and the host. Each piece of data is sent to 
the microprocessor, re-encrypted and returned. Although 



38 National Computer Conference, 1977 

no human participation is required at low speeds (300 
baud), the process will be time consuming. 

A third alternative is to implement the encryption proce
dure on the host and perform the encryption during dedi
cated time when physical security could be assured. This is 
a risky procedure since the key, the plaintext and the 
encrypted text are all present in the host system. 

CONCLUSION 

Selective encryption at a time-sharing terminal is a viable 
approach to privacy protection of data stored on unsecured 
host computer systems. By constructing such a terminal 
and operating it on a demonstration database, MITRE has 
shown the approach to be technically feasible. 

The configuration and component costs of the system 
used to support the experiment is: 

1 LSI-II microcomputer with 4K words 
RAM and 1 serial interface 

4K words additional RAM 
1 additional serial interface 

Total 

$2,495 

625 
235 

$3,355 

The LSI-II was selected to provide a hardware/software 
breadboard facility for a range of experiments. The system 
was not designed to either minimize cost or achieve high 
performance for the encryption project. Significant cost 
reductions could be realized in the development of a 
production system. If the NBS proposed Data Encryption 
Standard is adopted, it seems probable that a low-cost 
($100) LSI version of the algorithm will quickly appear on 
the market. 6 

NOTES 

Based on this assumption, the following configuration 
cost implementation is conjectured: 

1 microprocessor 
4K bytes of memory (mixed ROM and RAM) 
2 serial interface devices 
1 power supply 
1 LSI encryption chip 

Total 

$250 
140 
tOO 
50 

tOO 

$640 

These component cost estimates are intentionally con
servative. Additional savings could be realized by building 
the encryption system into a terminal and taking advantage 
of the facilities (e.g., power supply, buffer areas) already in 
the terminal. This would clearly decrease the cost of the 
implementation and if the terminal were microprocessor 
based (as many are), the implementation cost could be 
dropped to around $200. 

REFERENCES 

1. "Encryption Algorithm for Computer Data Protection," National Bureau 
of Standards, Federal Register, Vol. 40, No. 52-Monday, March 17, 
1975. 

2. Carson, J. H., W. R. Flury and J. S. Welch, "The Selective Encryption 
Terminal: A New Approach to Privacy Protection," M76-56, The MITRE 
Corporation, METREK Division, September 1976. 

3. Corasick, M. J., "Protection of Computer-Based Information Systems," 
M75-235, The MITRE Corporation, May 1976. 

4. The Privacy Act of 1974, Public Law 93-579. 
5. "NBS Standard Puts Encryption in DP System," Computenvorld, June 7, 

1976. 
6. Sykes, D. J., "Protecting Data by Encryption," Datamation. August 

1976, Vol. 22, No.8, pp. 81-85. 

1. John H. Carson is now with RLG Associates, Inc., Reston, Virginia. 
2. NBS proposed Data Encryption Standard has been adopted (1977). 



MIDAS-A compositional modeling system 

by J. R. WARNER 
Colorado University Computing Center 
Boulder, Colorado 

ABSTRACT 

MIDAS (A Modular Integrated Digital Animation System) is 
a portable FORTRAN-based system for defining two- and 
three-dimensional graphic compositions. Hierarchical mod
eling functions are coupled with dynamic storage allocation 
providing extensible storage for easily defined structural 
and transformational primitives. This modeling system is 
interfaced to a modular device-independent graphics pack
age that utiliZes a segmented virtual display file. Alternative 
graphics systems may be interfaced. 

Typical application imagery includes architectural model
ing, visualization of mathematical functions, two- and 
three-dimensional simulations, and animation. This paper 
discusses the general system configuration. 

INTRODUCTION 

A graphic composition may be defined as any spatial model 
formed from basic dimensional primitives. Points, lines, 
arcs, and alphanumeric characters are common dimensional 
primitives. An object is defined as a named set of contig
uous dimensional primitives. A polygon, for example, is 
defined from connected line segments; a text string is 
created from alphanumeric characters. 

!)~k'!:~l!y, ~>0tllI??~.!!i~~~~.~!~~v!I~~ fro~: '~~stanc~s"8 
ot these prototype obJects. Compiex compositions are buiit 
from groups of object instances, called assemblies, and 
groups of assemblies. Assemblies may extend to any level, 
forming a compositional hierarchy built, at the lowest level, 
from simple dimensional primitives. 

The compositional hierarchy exists in a finite two- or 
three-dimensional environment. The units of this environ
ment (e.g., inches, meters, light-years) are determined by 
the composition designer as a function of the physical or 
abstract phenomenon being modeled. 

A compositional modeling system must provide straight
forward techniques for defining prototype objects, mUltiple 
primitive instances, and hierarchical groups. Further, facil
ity must be made for easily transforming any assembly, 
instance, or object in the compositional hierarchy. Simple, 
yet extensible, techniques for displaying all of the composi
tion, or modular components, onto a virtual graphics device 
must be incorporated into the modeling system. 

39 

While flexible display techniques are vital to the model
ing function, the enactment of these techniques should be 
reserved for a modular, device-independent graphics sys
tem, interfaced to the composition creation and display 
procedures. 

Graphics modeling systems have been designed and suc
cessfully implemented based upon hierarchical data struc- > 
tures. 4

,15 Often, however, these approaches go beyond the 
modeling and display functions, interweaving the low-level 
computer graphics display routines into the compositional 
modeling system. 

While this approach is effective on stand-alone comput
ing systems supporting a single graphics device, it often 
obviates graphics independence and precludes system port
ability among computers. 

MIDAS has been designed as a machine-independent, 
device-independent compositional modeling system. Hier
archical modeling and transformation functions allow arbi
trarily complex compositions that are easily transformed in 
the user's dimensional environment. Simple display con
ventions provide an understandable mapping from the com
positional environment to an idealized, virtual display de
vice. 

The compositional design and virtual display modules of 
MIDAS are independent of the actual graphics display 
module. Presently, MIDAS is interfaced to a modular 
~~~~ics ~y~!~m>.,~~~~~ l!J?<?!l s~~fl1tEnttE~ v~"!1ual ~i~pl,~Y file 
techmques. ~,J\J figure I detmes the general Sy stem struc-
ture.

This paper discusses the compositional modeling and
virtual display capabilities of MIDAS. The organization of
the hierarchical data structure ("workspace") is detailed.

Figure I-General system structure

40 National Computer Conference, 1977

The graphics system requirements are briefly discussed.
The interface between virtual representation of the compo
sition and final display on a graphics device is presented.
Overall system portability is discussed as machine-depend
ent and machine-independent modules. Finally, a brief
review of compositional applications is given.

HIERARCHICAL MODELING IN MIDAS

All hierarchical design packages have similar modeling
traits. These include:

• basic dimensional primitives (e.g., points, lines, arcs,
character set)

• identification of a contiguous set of elements as an
object (e.g., rectangle, polygon, text string)

• definition of object instances from prototype objects
• grouping of objects and object instances into assem

blies
• hierarchical assemblies
• transformation capabilities at any level of the hier

archy.

This section details MIDAS' approach to each of these
operations.

MIDAS maintains a standard set of dimensional primi
tives for defining modular objects. Most objects are formed
as a contiguous set of two- or three-dimensional points.
"Attribute values" are associated with each point to define
visible (pen down) or invisible (pen up) line segments.
Other attribute values reflect dimensional characteristics of
the object (e.g., convex polygon, concave polygon) useful
in hidden-line processing. This facility is discussed below.

Special function objects include conics, parametric 2-D
curves, text strings, and polygonal shading. Shading is
generated as evenly spaced parallel line segments with
optional cross-hatching. Other special function objects
(e.g., parametric 3-D patches, parallelpipeds, etc.) could
easily be incorporated into this basic set.

Actual 2- or 3-D coordinates are either explicitly pro
vided by the user or read from a graphics input device.

For reference purposes within MIDAS, each user-defined
object is given a name. The user explicitly provides the
object name at the time of object definition. Names may be
either integer constants or alphanumeric literals at the
preference of the user.

New named objects (or instances) may be created as
spatial transformations (e.g., translation, scaling, rotation)
of existing objects.

A group of objects is referenced as an assembly. Assem
blies also are given names. New assemblies may be created
as instances of existing assemblies. Groups of assemblies
are also called assemblies. Assemblies may extend to
arbitrary levels in the hierarchy. For simplicity in subse
quent discussion, objects and assemblies will both be called
entities.

Spatial transfOimations are mathematically represented
as 4-by-4 matrices. In MIDAS transformations are named.

Instances of entities ("new entities") associate a named
transformation with the new entity name. Existing entities
are redefined by associating a named transformation to the
entity name. Multiple redefinitions are enacted by matrix
concatenation. Transformations used to create new entities
or redefine existing entities are called defining transforms.
They are implicitly assigned unique literal names by
MIDAS and are, effectively, transparent to the composi
tional designer.

Another class of transformations, called attach trans
forms, may be explicitly named and linked to entities by the
user. Whereas defining transforms enact immediate change
in the compositional hierarchy, attach transforms are only
applied at entity display time. Defining transforms, implic
itly built and concatenated by entity creation or redefini
tion, permanently update the data structure. Attach trans
forms allow the application of temporary or iterative
transformations without changing the data structure.

Attach transforms permit straightforward programming of
animation sequences requiring simple or compound motion
(e.g., planetary motion). At the end of the animation, the
attach transform is dissociated (detached) from the entity
and the data structure remains unaltered.

THE DATA STRUCTURE

The MIDAS data structure (or workspace) consists of
dynamically allocated nodes. These nodes maintain infor
mation on all created entities and transforms and the
interrelationships among these hierarchical components.

Figure 2 provides the data structure schematic of an
hierarchical composition. In this example, the composition
spans four levels in the hierarchy. At the lowest level,
objects and instances of objects reference blocks of dimen
sional primitives (e.g., points, lines, text). Advanced levels
in the hierarchy contain assemblies. An assembly or assem
bly instance may reference any set of objects or assem
blies that are lower in the hierarchy.

The layout of the entity node is shown in Figure 3. Entity
nodes are maintained in a doubly-linked queue, called the
entity directory. As shown in the figure, all information
parcels in the entity node are 16-bits long, except for the 32-
bit name. This format simplifies implementation on 16-bit
machines. The actual information parcels are defined be
low:

NAME

PLINK

SLINK

TYPE
COLOR

INTENS

the 4-character literal or 32-bit
integer name of the entity
pointer to the predecessor entity
in the directory
pointer to the successor entity in
the directory
object/assembly switch
7-bit color
8-bit intensity

CO~.1PTR pointer to the entity's compo~
nent block (discussed below)

i

i

Level-3 Assembly

Level-2 Assemblies

Level-l Assemblies

Level-O Objects

Dimensional
Primitives

Dimensional
Primitives

MIDAS 4i

'A' -- ATTACH transform
'0' -- Defining transform

Figure 2-Data structure schematic

DEFPTR pointer to defining transform (if
any)

ATTPTR pointer to attach transform (if
any)

(optional)SEGPTR address of display file segment
for the entity if it is currently in
the display file

\l.Jpdonai)SEGC~~T nl.lInoer 01 successive segments
in the display file representing
this entity
(object: SEGCNT= 1; assembly:
SEGCNT2:l).

32-bit NAME

PLINK SLINK

TYPE I COLOR I INTENS COMPTR

DEFPTR ATTPTR

SEGPTR SEGCNT

Figure 3-Entity node

The SEGPTR and SEGCNT are optional information
parcels that directly reference the graphics system virtual
display file. They are useful in providing selective update to
the display file image without full retrace of the composi
tion data structure. The efficiency savings is vital on high
performance, refresh CRT's.

These parame.~~rs bind the application data structure to
[he segmented virtual dispiay fiie graphics approach. AS a
result, system modularity may be eroded in favor of display
update efficiency. The inclusion of these parcels is left to
the discretion of the implementor, to be based upon the
resident graphics system (if any) and the probable graphics
devices to be supported.

The component block of an entity defines the basic
dimensional elements of an object or the sub-entities of an
assembly. The assembly component block, shown in Figure
4, is always the same. A different format is used for each
type of object component block. Typical object component
blocks are shown in Figure 5.

Every entity component block contains the component
type and a continuation pointer. The five-bit component
type (TYPE) allows up to 31 different object forms (e.g., X
Y pairs, X-Y-Z triples, conics, text. etc.). The type permits
a parameterized and, subsequently, compact definition of
mathematical objects, text strings, and other special type

42 National Computer Conference, 1977

TYPE-" I SUB-ENTITY
COUNT CONTINUATION POINTER

(N)

POINTER to SUB-ENTITY-l POINTER to SUB-ENTITY-2

POINTER to SUB-ENTITY-3 POINTER to SUB-ENTITY-4

:

POINTER to SUB-ENTITY-(N-l) POINTER to SUB-ENTITY-N

Figure 4-Assembly component block

objects. At recovery time, separate processing routines
convert each parameterized object into 3-D line segments
that are mapped into the display file.

While parameterization of objects minimizes workspace
storage, it can significantly increase the computation time
required for converting regularly accessed objects into
display file line segments. To overcome this added compu
tational burden, the user may elect to directly maintain the
actual 2- or 3-D point pairs in the application workspace.
This space/time tradeoff is primarily a function of the
modeling application. Other factors are main memory size
and the availability of floating point hardware.

The component continuation pointer links the successive
component blocks. When created, an entity needs only one
component block. However, it is sometimes desirable to
explicitly redefine an entity to have more points (for
objects) or more sub-entities (for assemblies). The contin
uation pointer facilitates this expanded redefinition.

Transform nodes (Figure 6) are also linked in a two-way
queue, called the transform directory. The TRATYP is the
transform type. Each bit in the type indicates that a
particular transformation function (e.g., X-axis rotation)
has been concatenated into the transformation matrix. By
knowing the actual transformation contents of the matrix at
recovery time (e.g., only scaling, only translation, rotation
and perspective, etc.), the computation time of the matrix
algebra may be abbreviated.}

The storage allocation scheme for the compositional

TVPE=O I POIKT I CONTINUATION POINTER COUNT (N)

Xl

VI I attribute
valuel

Xz

YZ I attribute
value2

XN

VN I attribute

I value~ I

Figure 5A-2-Dimensional point pair object

TYPE=SI
NlJolBER OF

I CONTINUATION POINTER SEGMENTS

RAOIUS

Xo

Yo

Figure 5B-Circle object

modeling module obtains blocks of main memory from a
sequential free storage pool. Some machines will allow
dynamic expansion of a user's program space at run time.
In such systems the user need not declare the maximum
size of the free storage pool. On limited memory machines,
where complex compositions could not be maintained
wholly in core, the workspace could easily be processed in
blocks, paged in and out of peripheral storage.

Note that this workspace configuration does not facilitate
run-time deletion of entities or transforms. Deletion is felt
to be a graphics function (e.g., deleting a segment from the
display file), rather than a modeling function. The only time
components of the modeling structure need to be deleted is
when they are never referenced, are impractical to explic
itly redefine, and free storage is exhausted. By experience
in the current implementation, this has rarely occurred.

DISPLAYING ENTITIES

Figure 7 provides a general flowchart of the composition
display process. The recovery algorithm traces each branch
in the hierarchy of the entity to be displayed. A combined
transformation matrix (CTM) is built for each branch,
reflecting the concatenation of all transformation matrices
along that branch. A push-down stack maintains hierarchi
cal ordering of both entities and CTM's allowing pseudo
recursive tracing of the compositional branches.

When an object node is detected at the end of each
branch, the CTM is applied to the two- or three-dimen-

TYPE=a!
NUMBER OF I CONTINUATION POINTER WORDS

X-CENTER OF STRI NG (X)

V-CENTER OF STRING (V)

WIDTH OF STRING (W)

HEIGHT OF STRING (H)

The character string is stored 4 characters per word starting in

word 5. A sentinel character and special code characters signal

ita 1 i cs, case change, end of stri ng, etc. The stri n9 is mapped

into the rectangular area defined by (X,V,W,H).

Figure 5C-Character string object

32-bit NAME

PLINK SLINK I
TRATYP

I

4-by-4 MATRIX

Figure 6---Transform node

sional coordinates of the object. The resultant user-dimen
sioned coordinates are passed through an interface module
for mapping into virtual display coordinates and creation of
a virtual display file segment. Special purpose recovery
software converts parameterized primitives and text into
3-D line segments before applying the CTM.

If hidden line processing is to be performed, the mapping
interface is pre-empted. Instead, the recovered coordinates
are saved in dynamically allocated recovery buffers. The
hidden line processor (discussed, below) synthesizes the
wire-frame composition in these buffers, routing the hidden
line output to the interface module.

The interface module performs 2- or 3-D clipping as
required and maps the recovered compositional entities into
the virtual display space. In the current implementation,
each object of the composition defines a separate display
file segment.

The user may explicitly define both physical (i.e., user
dimensioned) windows and viewports, and virtual display
windows for mapping any compositional region onto any
rectangular area of the virtual display.

HIDDEN LINE ALGORITHM

The hidden line algorithm accepts polygonal objects for
processing. Sutherland's re-entrant polygon clipper6 pre
Qro~e_~§e~ Jh.ese Qpj~c:~§jnt() coIlvex. "shells .. and holes."
Non-polygonal objects are det~~te(t~~d ··tr~ai~d as .: hldea
ble, but may not hide." The shells, holes, and non-polygonal
figures are then processed against each other using a subset
of the polygon-clipping algorithm to do line clipping. Facil
ity is made for implicit line calculation of intersecting
polygons.

The visible lines of the figure are finally returned to the
interface module for mapping into the display file.

The algorithm requires space for the convex 3-D repre
sentation and normal vector of each polygon. Processing
time increases as (n)*(n -1) where n is the number of
convex representations.

THE GRAPHICS SYSTEM

The graphics system is organized around a segmented
virtual display file. 1O,13 This display file is geared toward an

MIDAS

idealized virtual terminapo and, as such, is graphics device
independent. A separate set of device-dependent routines
(DDR's)l is loaded at execution time for each graphics
device that is supported.

As in the MIDAS workspace, the segmented virtual
display file (SVDF) is implemented for 16-bit words dynam
ically allocated from a separate free storage pool. Segments
are allocated sequentially as the display file is built.

Figure 8 defines the actual segment block. Segments do
not have names. Instead, SVDF routines use the segment
address as the identifier returned to the calling routine.
PLINK, SLINK, COLOR, AND INTENS are analogous to
the same functions defined for entity nodes. COUNT is the
number of (X, Y) coordinate pairs in the segment. PCKSNS
is a switch indicating if the segment is pick-sensitive, a
mandatory feature for devices allowing graphic input.
POSTS and PAINTS are switches indicating the current
status of the segment on the display device. 13 A segment is
posted if it is to be displayed during the next display file
trace (refresh). An unposted segment is not to be displayed
during the next trace. A painted segment is currently
displayed on the display device. An unpainted segment is
not currently displayed.

XMIN, XMAX, YMIN, YMAX provide boundary infor
mation on the segment in virtual display coordinates,
thereby speeding up the picking operation.

The virtual display coordinates are 14-bit integers, allow
ing a virtual display region of O~X ~ 16383; O~Y ~ 16383. As
shown, a two-bit opcode precedes both the X and Y
coordinates. This design preserves the 16-bit word crite
rion. The opcodes, interpreted by the DDR's, provide point
plot, move/draw, absolute/relative information for each
coordinate pair.

This particular implementation allows very simple
DDR's. The only required primitives that must be written
for each device are:

BEGIMG
ENDING

SETCLR

-initialize a new image
-terminate image (screen erase,

frame eject)
-set color

SETTI~l ~~tCiiil~-11-~i'l)

MOV/DRW-ABS-move/drawabsolute
MOV/DRW-REL-move/draw relative
PNT ABS -point absolute
PNTREL -point relative

The SVDF assumes that all coordinates are in the domain
of the virtual screen. Transformation, clipping, and win
dowing are considered application program/system func
tions (e.g., MIDAS). All character output is generated by
software.

This SVDF structure simplifies reference to complete
images (frames), buffering in and out of peripheral storage
(e.g., SAVEDF, LOADDF), and transfer of graphic data
files among computing installations. Increased sophistica
tion could be incorporated into the DDR's to allow virtual
image windowing and clipping before mapping from virtual
to screen coordinates. Similarly, software text generation

44 National Computer Conference, 1977

Ent1 ty Stack :z .,

CTM Stacl(.. .,

No

Push

CYM

find Node of

Entity to

Be Di sp 1 ayed

No

(Current
Entity
is an
object)

Get (X. Y .z)
Coordini.tes of 1---.-'

[I] • Identity Transform

r. ~ [VieWing]
LCTMJ- CTM

{RECOVERY ALGORITHr4}

{PSEUDO RECURSION TRACE LOOP}

onto

Entity Stack

Pop

Entity

Stack

Yes

r -- ------

Cl ip to

Phys i ca 1 Wi ndow

(2 or 3-['1)

No

{ Interface Modu 1 e }

No

- - r
I
I

Map to

Virtual

Coord i nil tes
I

Object Apply

Perspective r---------------------.- ____ .1

!,~1!~2!

coordinate] •
Vector

I
I

; I L _ _ _ _ __ _ _ _ __ _ __ J
Save Object

Coord inates

Figure 7-Composition display process

Create New

SVDF

Segment

PLINK SLINK

COLOR I INTENS COUNT I PCKSNS I POSTS I PAl NTS

XMIN XMAX

YHIN YHAX

op
Xl

op Yl code code

op X2
op

Y2 code code

op XN
op YN code code

Figure 8-SVDF segment block

and polygonal shading could conceivably be done at the
DDR level, freeing up SVDF storage requirements.

These and other "enhancements" are feasible and, in
deed, practical for computing installations with specific
graphics applications. Unfortunately, as the SVDF seg
ments become more parameterized, the DDR's must as
sume more of the computational burden of generating the
image. The increased complexity at the DDR level deters
both graphics system modularity and the transfer of SVDF
files to different machines.

Though not as elegant or potentially efficient as more
customized approaches ,3 the described SVDF permits
straightforward DDR display on all vector-based graphics
devices and uncomplicated transfer of imagery among com
puting installations.

APPLICATIONS

The user accesses MIDAS as a library of FORTRAN
callable subroutines. Typically, application programs are
written in FORTRAN, with CALLS to the MIDAS rou
tines. The MIDAS routines build, update, and display the
composition.

Animation

In 1973, MIDAS was conceived as an animation system.
While it has evolved into a compositional modeling system,
many of the original animation features remain.

Animation with MIDAS is not real-time. The software
transformation algorithms, combined with a frame by frame
hierarchical trace, preclude real-time image update on high
performance refresh displays. At this time, real-time vec
tor-based animation requires transformation hardware. As a
result, existing real-time systems2 are entirely device-de
pendent.

Animation using MIDAS is produced in stages that
parallel conventional animation techniques. Working from
an action scenario, or storyboard, user-written modeling
programs define the compositional imagery to be used in

... "T~" "" AC IVllU1\.;:) '"tJ

the animation sequence. This imagery is maintained on
peripheral storage as one or more MIDAS workspaces.
Compositional editing programs may be invoked interac
tively to load, preview, edit, and update the animation
workspaces.

When the static compositions are correct, the actual
animation program(s) are invoked. The MIDAS display
routines simplify the specification of animation parameters
such as varying focal point, virtual camera position, and
motion along a path. The ATTACH transform facilitates
iterative motion sequences. Coupled with hierarchical con
structs, the ATTACH transform simplifies compound mo
tion sequences. Other special function routines allow over
laid imagery, pan, zoom, tilt effects, and key-frame
animation.

When generating the actual animation sequence, the
display file of each frame is saved in compacted form on
disk. An interactive preview program can then be used to
view and analyze selected frames of the animation se
quence.

When both the imagery and motion are deemed correct,
the compacted animation sequence is routed to a hardcopy
display device. Normally, this would be a microfilm recorder
or storage-tube terminal synchronized with a 16-mm cam
era.

A complete discussion of microfilm-based animation
techniques using MIDAS is planned.

DESIGN

MIDAS is currently used in a variety of design and
simulation disciplines including architecture, chemistry,
and psychology.

Most design applications involve an interactive monitor
program that invokes MIDAS routines for on-line composi
tion definition and editing. As the modular design is being
built, intermediate views may be either saved on disk or
routed to a hard-copy display medium. Utility workspaces
maintain regularly-used objects and assemblies (e.g., cubes,
circles, cylinders, icosahedra).

Hidden-line processing on polygonal compositions en
hances the oispiayed image. FIgures i) and 10 show hidden-

Figure 9-Perspective view of structure

46 National Computer Conference, 1977

Figure IO--Perspective view of structure

line processed design imagery, varying both the focal point
and virtual camera position.

The compositional modeling and display modules of
MIDAS do not easily support the graphic input capabilities
inherent in truly interactive computer-aided design systems.
Symbolic entity reference and compositional transformation
within interactive MIDAS programs are normally enacted
by keyboard input. Menu selection and dynamic 2-D trans
formations via light-pen, cursor, mouse, etc., while feasi
ble, are unwieldy within the hierarchical constructs. These
operations are considered graphics system functions requir
ing explicit user reference to the segmented display file.
MIDAS does allow direct user interaction with the seg
mented display file via subroutine calls to the graphics
system routines. However, this implies user understanding
of the SVDF structure and the interface between the SVDF
and the compositional workspace.

Mathematical imagery

This area is actually a subset of design, relying heavily on
the viewing and hidden-line algorithms. Three-dimensional
solids are built as parallel-plane cross-sections (Figure 11).
Solids of revolution are built from concentric disks (Figure
12). Certain 3-D surfaces may be simulated (Figure 13).
Polygonal shading hilights 2-D areas (Figure 14). Overlaid
color transparencies can be used to identify critical compo
nents of a mathematical model. Animation is a straightfor
ward progression from these static displays.16

Teaching computer graphics

MIDAS can provide an easy introduction to the rudimen
tary mathematical concepts of computer graphics. These

Figure II-Solid built from parallel plane cross sections

include concepts in coordinate geometry , transformation
matrix algebra, matrix concatenation, and clipping algo
rithms.

PORT ABILITY CONSIDERATIONS

As described above, MIDAS is primarily coded in FOR
TRAN-IV. FORTRAN is presently the only viable language
for non-business applications with 'universal' implementa
tion. Only this universality justifies FORTRAN for hierar
chical modeling applications. It has neither the structured
procedures nor recursive programming facilities of either
PLil or SAIL. The matrix notation and algorithm specifica
tion is clumsy compared to APL. The representation and
manipulation of character data is syntactically awkward.
Perhaps most importantly, FORTRAN is difficult for 'non
scientists' to learn. Collectively, these drawbacks may
doom the FORTRAN language to gradual extinction.

Acknowledging this structural rigidity and staged obso
lescence, FORTRAN remains the most portable medium
for scientific application systems. Utilizing modular pro
gramming techniques, with prudent use of machine lan
guage primitives, can significantly improve the code, en
hancing both readability and portability.

Within MIDAS, machine-dependent code is selectively
used for those utility functions requiring optimum efficiency
(e.g., low-level data structure routines). Machine word
characteristics (e.g., bits per word, characters per word,
words per floating point value, etc.) are stored in global
COMMON blocks and are used to calculate addressing and
shifting values at run time. Certain regularly accessed
routines (e.g., matrix multiply, clipping, dot product) are
coded in FORTRAN to improve portability at a sacrifice of
efficiency. Implementors are encouraged to rewrite these
routines in their local machine language.

Character 110 is a function of word size and characters

Figure 12-Solid of revolution

per word. Print formats are maintained on disk and loaded
at run time. As a result, WRITE statements use variable
formats.

Application program debugging and error messages are
optionally available from all modeling and display routines.
By default, the extent of commentary is implicitly con
trolled by the user's mode of access; batch or interactive.
The user may explicitly control the verbosity of comments,
from fun p'togram t;"a'tIng to oilty '\\Yi'fir'lg fatdl·'j'ilh:milE:
diagnostics.

All FORTRAN code has been reviewed using the PFORT
Verifier developed at Bell LabsY PFORT performs strin
gent portability verifications against a subset of ANSI
FORTRAN. Wherever practical, MIDAS conforms to the
more stringent PFORT standards.

The Graphics System Module (GSM) supporting the
SVDF also conforms to the PFORT standard wherever
practical. The MIDAS interface to the GSM is modular and
well-defined. This allows implementors with an existing
graphics system easy interface to the MIDAS composition
and display modules without major recoding.

The 16-bit display file format presented here is encour
aged, but is not inflexible. Facility is made for easy
redefinition of segment parcels within the SVDF segment
block to optimize word usage (e.g., packing two X, Y
coordinate pairs into a single CDC 6O-bit word). Similarly,

MIDAS 47

Figure 13-Shading to hilights a 2-dimensionaI area

the workspace node formats may be redesigned for im
proved efficiency in storage and/or execution.

The DDR's described here are written in machine lan
guage. Each graphics device at a given computing installa
tion will have nuances inherent to both the device and the
installation. If the display file format is kept simple, the
implementor should be able to code device-dependent rou
tines for a single device in half a day. Any parameterization
of imagery within the display, other than points and lines
(e.g., hardware text, shading, circles and arcs), will burden
each DDR with specialized image generation software. The
tradeoff is increased SVDF memory versus DDR complex
ity.

MIDAS should not be viewed as a 'general purpose
graphics system.' Several existing packages5,19 use this
catchall phrase as an alluring description of their capabili
ties. The implication is that all graphics applications, from
2-D data display through real-time hidden-line computer
aided design, are easily realized on all graphics display
devices.

Most such systems are founded on a requisite set of
graphics primitives that maintain some form of display file

\

--

Figure I4-A 3-dimensional discontinuous surface

48 National Computer Conference, 1977

image. Often, however, special-purpose enhancements
(e.g., single-call graph generation subroutines, complete
with tick marks and annotation) front-end the display
processor. Other systems interweave an application-ori
ented picture structure into the graphics routines. Neither
these hybrid approaches nor the MIDAS modular approach
implies generality.

The general purpose graphics system is a marketing
idiom offered as the conditional panacea of computer
visualization. The general purpose graphics application
system is non-existent.

Only the general purpose graphics display system pur
ports credibility. The 'display' qualifier limits the scope of
such a system to display manipulation functions and
graphic 1/0. Virtual display file constructs and localized
transformation utilities are also within the definition of a
general display system. Clipping and windowing are the
highest level functions of such a system, providing a clean
interface to the user's application program or the structured
application system.

While a general purpose graphic display system should be
algorithmically portable among machines, it is often im
practical to require strict code portability.

To capsulize, MIDAS is a structured compositional mod
eling system that is readily interfaced to a graphics display
system. Neither the modeling module nor the interfaced
SVDF graphics display system are considered general pur
pose. Only the segmented virtual display file system could
be expanded into a general graphics display system.

SUMMARY

This paper has discussed both the modular configuration
and certain internal characteristics of the MIDAS modeling
system. A separate graphics system, interfaced to MIDAS,
and based on segmented virtual display file techniques, was
presented. Compositional applications were suggested in
animation, design, mathematical simulation, and computer
graphics instruction. Graphics system generality was quali
fied in a discussion of modular systems configurations,
device-independence and portability.

ACKNOWLEDGMENTS

The structural simulations (Figures 9 and 10) were gener
ated by Mr. Imre Komaromi of Budapest, Hungary. The

mathematical images (Figures 11-14) were generated by Mr.
Ken Joy of the University of Colorado Mathematics De
partment. Mr. Joy has also done all the development on the
hidden line processor implemented within MIDAS.

REFERENCES

I. Blinn, J. F. and A. C. Goodrich, "The Internal Design of the IG
Routines-An Interactive Graphics System for a Large Time-Sharing
Environment," in SIGGRAPH '76 Proceedings, pp. 229-234.

2. Csuri, C., "Computer Animation," SIGGRAPH '75 Proceedings, pp.
92-101.

3. De Fanti, T., "The Graphics Symbiosis System," in Real Time Film
Animation, Computer Graphics Research Group, Ohio State Univ.,
Columbus, Ohio, January 1973.

4. Herzog, B., "DRAWL in MTS," Compgraph, Ann Arbor, MI, Oct.
1971.

5. Hirschsohn, I., P. Preuss, and M. S. G. Repko, "Design and Implemen
tation of the DISSPLA Graphics Language," Eurocomp '75 Proceed
ings, London, 1975.

6. Hodgman, G. W., and I. E. Sutherland, "Reentrant Polygon Clipping,"
CACM, Vol. 17, No. I, January 1974, pp. 32-42.

7. Kitching, A., "The ANTICS Computer Animation System," Proceed
ings of 1975 Eurocomp Conference on Interactive Systems, Online
Conferences Ltd., Uxbridge, England, pp. 465-480.

8. Newman, W. M., "Instance Rectangles and Picture Structure," Pro
ceedings of the Conference on Computer Graphics, Pattern Recogni
tion, and Data Structures, IEEE Catalog No. 75CH0981, May 1975.

9. Newman, W. M. and R. F. Sproull, "An Approach to Graphics System
Design," in IEEE Proceedings, Vol. 62, No.4, April 1974, pp. 471-483.

10. Newman, W. M. and R. F. Sproull, Principles of Interactive Computer
Graphics. New York, McGraw-Hili, 1973.

11. Rogers, D. F. and J. A. Adams, Mathematical Elements for Computer
Graphics. New York, McGraw-HilI, 1976.

12. Ryder, G. G., "The PFORT Verifier," Software Practice and Experi
ence, Vol. 4, 1974, pp. 359-377.

13. Sproull, R. F., OMNIGRAPH: Simple Terminal-Independent Graphics
Software, XEROX Palo Alto Research Center, December 1973.

14. Sutherland, I. E., R. F. Sproull, and R. A. Schumacker, "A Characteri
zation of Ten Hidden-Surface Algorithms," Computing Surveys, Vol. 6,
No. I, March 1974.

15. Van Roekel, J., The Michigan Graphics Interpreter, Dept. of Aerospace
Engineering, University of Michigan, Ann Arbor, MI, 1971.

16. Wahl, M. and J. R. Warner, Dynamic Functions, (film), University of
Colorado. July 1973.

17. Warner, J. R., "Design Applications of the MIDAS Graphics System,"
Computers and Graphics, Vol. 2, No.1, 1976, pp. 15-22.

18. Warner, J. R., MIDAS Programming Manual, Colorado University
Computing Center Library, Boulder, CO, 1976.

19. Woodsford, P. A., "The Design and Implementation of GINO 3D Graph
ics Software Package," Software Practice and Experience, Vol. I, Oct.
1971. p. 335.

20. Wright, T., "A Schizophrenic System Plot Package," in SIGGRAPH '75
Proceedings, pp. 252-255.

A system for automatic acquisition
of three-dimensional data

by HENRY FUCHS, JOE DURAN and BRIAN JOHNSON
The University of Texas at Dallas
Richardson, Texas

ABSTRACT

This paper presents the design of a three-dimensional data
acquisition system based on multiple, single-dimensional
optical sensors. The system can operate in any of three
modes:

(1) the tracking of multiple, independent, point light
sources

(2) the automatic digitization of opaque surfaces
(3) the real-time tracking of an unmarked moving object

(e.g., tip of user's hand).

The design offers such advantages as a lensless sensing
system, a minimum reliance on analog measurements, an
ease of upgrading to higher precision measurements, an
ease of portability, an adjustable field of view, and the
ability to operate under normal ambient light conditions. A
network of microprocessors is incorporated to minimize
processing delays and thus increase data acquisition rates.
In its initial application the system will digitize the cranio
facial surfaces of candidates for reconstructive surgery.

INTRODUCTION*

Recent deveiopments in charged coup leO oevice (CCD,
technology have made generally available a variety of IC
chips which contain a linear array of light-sensitive ele
ments (Figure 1). Such an array can be treated in the
system as a digital shift register in which successive clock
pulses cause serial output of the entire array of values. (The
sole complication, that the serial output is analog, is easily
overcome with a single analog-to-digital converter.) Each of
the individual values in the array is a function of the
number of photons which have been absorbed by the
associated cell in the array since the previous scanning of
the shift register's contents. If the CCD chip and the
analog-to-digital converter are considered as a single unit,
then a sequence of clock pulses will obtain an array of

'" Appendix A includes a short discussion of previous digitization devices
and their effect on the design presented in this paper.

49

digital values which define, as a function of distance along
the array axis, the amount of light striking the CCD chip.

To build a one-dimensional sensor for 3-D input, we
place in front of the CCD array a knife-edge in a plane
parallel to the CCD array face with the line of the knife
edge boundary perpendicular to the line of array elements
(see Figure 2). If the environment contains a point light
source which is brighter than the ambient light level, then
the knife edge will cause a shadow to be cast somewhere
along the line of light-sensitive elements.

MATHEMATICAL FORMULATIONS

With a number of such detector units placed around the
room, the location of a light source can be determined by
the taking of a single measurement, hi, at each linear
sensor, i, which can "see" the source. Each hi measure
ment defines a plane in which the light must be located.
When three such planes are defined, each containing the
same light source, the location is uniquely determined
(Figure 3). The use of homogeneous matrices considerably
simplifies the mathematical formulations (c.f. Reference

Dual
in-line

package

(DIP)

Light sensitive
Elements

Figure I-CCD linear sensing array chip

50 National Computer Conference, 1977

Figure 2-Basic sensor design

11). We show below that these simplifications allow the
problem of computing the coordinates of a point light
source to be stated as the problem of solving a system of
planar equations of the form

a(h)X + b(h) Y + c(h)Z= d(h), (1)

where h is the position of the shadow edge (Figure 4). X, Y,
Z are our system coordinates, and the coefficients a, b, c, d
are linear expressions in h.

It is well-known (c.f. Reference 6) that an appropriate
4x4 matrix can be used to transform a 3-D point between 2
coordinate systems. For a single sensor, i, the transforma
tion from room to sensor coordinates (see Figure 4) can be
expressed by the 4x4 matrix, CI, such that

(2)

Xj' Yj' z/
Where x-= - y-= - and z-= - are the actual sensor

I wj ' I Wj' I Wj
coordinate values. For the ith sensor, hj, rj, and the
coordinate components, Xj and yj, of the light source in the

o etecfo_rS ___________ S_h_O_do.ww." ,

~ ~
'\\/Plone ~

" Sh~~O~ / /
edge ¥ ~ /

\ / /

Figure 3-{3-D position from) 3 linear sensors

Figure 4-Sensor/room coordinate relationship

sensor coordinate system are related by the expression,

J!.L _ .ti _ C12jX+C22iY+C32iZ+C42i
-rj - Xj - CUiX+C21iY+C31iZ+C41i

Simplifying by collecting factors of X, Y, and Z yields

(hjCUi+riC12i)X+(hiC21i+riC22i)Y +(hjC31 i

+riC32i)Z+hiC41i+rjC42i=0

One of the transformation matrix elements can be elimi
nated by dividing through by, say riC42i. This yields

CUi P C12i
where P1j = -C i' 2i= -C i' etc.

r i 42 42

Eq. (3) is of the form of eq. (1) and is the equation of a
plane in room coordinates. The light source lies in this
plane. From three or more such planar equations, the
unique location (Xl, Y" Zl) of the light source in room
coordinates can be calculated, either by standard matrix
solution techniques or by least squares methods. If the PH
are known for each sensor i, the hi values measured for
each of three or more sensors will, by eq. (3), uniquely
determine the light source location.

Our sensors can be calibrated quite simply by determin
ing the PH. Given the known position of seven light sources
in room coordinates and the hi value generated by each
source at each sensor, we obtain a linear system of seven
equations in the seven unknowns Pli, P2i, ... , P7i for each
sensor. The seven points should be chosen so as not to give
an ill-conditioned or singular matrix. The probability of
such problems can be reduced by the use of more than
seven calibration points, allowing a least squares solution.

Once the Pij are calculated for each sensor, the location
of an unknown point can be found by solving the linear

system

(4)

(where ai=hiPti+p2i, bi=hiP3i+p4il etc.) for any three sen
sors i, j, k which see the light source. If more than three
sensors see the source, error smoothing via a least squares
solution of an overdetermined system is possible. If the
values of a(h i), b(h i), c(h j), and d(hi) for each sensor are
stored in advance for each possible hi value (quite feasible,
since h can take on 256 discrete values for our current
sensor), then the coordinates of a point may be calculated
with about 20 or so multiplications and divisions. The exact
number depends upon such factors as the number of
precalculations stored and the number of excess sensor
equations which may be desired for error smoothing. This
processing load is light enough so that the system can
operate at sensor speeds with only a minicomputer serving
as the central host.

With the use of a computer-deflected light beam, only
one sensor needs to detect the light reflected from the
surface being digitized, since the position of the light beam
source in the environment will be previously determined
and its orientation (deflection in two axes) will be under
computer control. The plane and line measurements thus
determine the 3-D location of the point on the target surface
which is illuminated by the narrow beam of light (Figure 5).
This might best be implemented by defining the line of the
light beam in terms of the equation (in the form of eq. (3»
of two planes which intersect along the line. The sensor
measurement thus defines the third necessary plane and the
computational method described above may be used. This
has the advantage of readily allowing a least squares error
smoothing treatment if the use of more than one linear
sensor is desired.

With some sacrifice in speed, it is possible to use the
reflected light beam mode for interactive input applications.
In this case the light beam deflection would be controlled

Array of
CCO elements

x

z

\11 Spot
---s.O:::::" of

/1 ~ I'" Light
I

I
/

I
I

I ,
............ I'

........ I
..... ..y

I ,

,
I ,

Figure 5-Automatic surface digitization mode

y

Automatic Acquisition of Three-Dimensional Data ~ 1
.Jl

by a real-time program which would acquire and track the
object of interest (e.g., the tip of the user's hand) in a
manner similar to a stage spotlight following a star per
former.

SYSTEM ARCHITECTURE

The current system layout has a microprocessor associ
ated with each CCD array. The microprocessor is used to
control the integration time of the CCD array (the amount
of time it is allowed to sense), to collect the data from the
array, and to compute the element position value (hJ of the
shadow boundary. Since current CCD arrays suffer from
background noise level variations from cell to cell, individ
ual cell calibration improves sensor performance. The mi
croprocessor records these variations during an initial cali
bration phase and uses them to improve the shadow
boundary determination.

The microprocessors are all connected to a host CPU, a
small minicomputer with a minimal floating point capability
(currently an HP 2100). The host computes the source point
coordinates by solving the system of linear equations (4).

In the single point (or "wand") acquisition mode, the
host stores the computed coordinates and waits for the next
input point. It also carries out various control functions
such as starting and stopping the process, changing the
acquisition rate, etc. With mUltiple light source input, the
host fires the sources at known times and keeps track of the
association between coordinate computations and the cor
responding sources. This mode allows tracking of not only
the position, but also the rotational orientation of a moving
object by the tracking of the position of three noncollinear
light sources attached to the object.

In the light beam scanning mode, the host also must
calculate coordinates for the scanning beam and deflect the
beam to the desired orientation. The host polls the sensors,
computes the coordinates of the reflected light spot, de
flects the beam to the next desired position, then polls the
sensors again, continuing in this manner until data acquisi
tion is completed.

SENSITIVITY AND ACCURACY

Our prototype sensor uses a 256-element Fairchild model
110 CCD array. The measured effective sensitivity of the
array is about 10-5 watts/cm2. This indicates that a uni
formly radiating point source of .1 watt can be sensed up to
about 40 cm. (In practice we have been able to do slightly
better, even without resorting to individual cell calibration.)
We have sensed a 2 watt source at a distance of about 2
meters, in a room which was darkened but with still enough
light for reasonable human vision.

The sensing distance for a projected spot depends both
on the amount of energy projected onto the target surface
and the scattering coefficient of this surface. Preliminary
experiments indicate that the current sensor will enable
digitization of human heads but not automatic scanning of

52 National Computer Conference, 1977

~
h

T ~---R---""1

""-Array of
CCO elements

Figure 6--Sensor resolution distances

H

~1;/ Spot
,l):::.- of
I I \ light

entire bodies, without resorting to high-powered light
sources. We expect continual improvement in CCD sensi
tivity and can use other sensor technologies, such as arrays
of individual photo-transistors or image intensifier devices,
if desired.

The sensor's resolution is of course limited by the
number of cells in the CCD array. Thus, the 256-element
sensors yield a resolution of al;lOut .6 cm in a I cubic meter
working volume. The small~r the working volume, the
better the absolute resolution limit. The resolution depends
upon the number of CCD elements and the relative dis
tances of the CCD array, knife edge and source (see Figure
6). The absolute resolution in room coordinates is related to

CCD element width, ah, by the relation aH= ~ ah.
r

Accuracy increases can be realized by using sensors with
more elements (sensors with over 1000 elements are cur
rently available) or using more sensors to segment a desired
working volume into several contiguous, smaller volumes.

CURRENT STATE OF IMPLEMENTATION

A prototype sensor system has recently been completed
and interfaced to an HP 2100 computer. Figure 7 illus
trates the output from the linear sensor array. A sharper
distinction between the outputs of the shadowed and non
shadowed elements can be achieved by substituting a
smaller light source.

Figure 7-Output from sensor array

Figure 8-Reconstructed surface from laser scan

The data for Figure 8 was acquired by Fuchs,3 by
scanning a human model with a laser beam. The original
Twinkle Box system detected the individual reflected spots
of lights and calculated their three-dimensional positions.

CONCLUSION

We have presented a system which allows the use of very
simple linear sensors to obtain 3-D information. These
sensors involve no optical lensing systems or mechanical
movement, and their use in the system leads to simple,
tractable mathematical calculations. Although our current
system was inspired by and uses linear CCD arrays, any
sensor system capable of reporting values of a shadow edge
position along one dimension can be used, with little or no
changes in the total system. More expensive sensors may
be used to increase sensitivity and/or resolution as needed.

It is hoped that this new system will make acquisition of
3-D information significantly faster, easier and less costly,
thereby encouraging an expansion of 3-D man/machine
interaction.

ACKNOWLEDGMENT

The authors are grateful for ideas contributed by Larry
Evans of Evans and Sutherland Computer Corp., Salt Lake
City, at the inception of this research project. Gordon
McNorton assisted with the sensor/computer interfacing.

REFERENCES

!. Binford. T. Oq "Visual Perception by Computer." Proc. of the IEEE
ConI- on Systems and Control. Miami, Dec. 1971.

2. Burton, R. P. and I. E. Sutherland, "Twinkle Box-A Three-Dimen
sional Computer Input Device," AFIPS Conference Proceedings, Vol.
43, May 1974.

3. Fuchs, H., "The Automatic Sensing and Analysis of Three-Dimensional
Surface Points from Visual Scenes," Ph.D. thesis, Univ. of Utah, Salt
Lake City, August, 1975.

4. Gara, A. D., R. F. Majkowski, and T. T. Stapleton, "A Holographic
System for Automatic Surface Mapping," General Motors Research
Labs., Research Publication GMR-1342, Warren, Mich. March 1973.

5. Herron, R. E., "Biostereometric Measurement of Body Form," Year
book of Physical Anthropology, Vol. 16, 1972, pp. 80-121.

6. Newman, W. M. and R. Sproull, Principles of Interactive Computer
Graphics, McGraw-Hili, New York, 1973.

7. Roberts, L. G., "The Lincoln Wand," MIT Lincoln Laboratory Report,
Lexington, Mass., June 1966.

8. Science Accessories Corp., "Graf/Pen Sonic Digitization," Science
Accessories Corp., Southport, Conn., 1970.

9. Selective Electronic Company AB, "Selspot System," Molndal, Swe
den.

10. Spreight, B. S., C. A. Miles, and K. Moledina, "Recording Carcass
Shapes by a Moire Method," Medical and Biological Engineering,
March 1974, pp. 221-226.

11. Sutherland, I. E., "Three-Dimensional Data Input by Tablet," Proc. of
the IEEE, Vol. 63, No.4, April 1974, pp. 453-461.

APPENDIX A-BACKGROUND

The widespread interest in acquiring 3-D information has
stimulated the development of a variety of methods and
systems. These systems can be loosely categorized into two
general classes:

I. those systems which digitize the location of a special
position-indicating device ("wand"), which is moved
manually to specific points of interest, and

II. those systems which digitize (manually or automati
cally) an entire surface of interest.

Examples of type I systems include the early Lincoln
Wand of Larry Roberts7 and the current commercial prod
uct, the Graf-Pen.8 Both systems digitize the position of a
small ultra-sonic transmitter located at the tip of the wand.
More recently, the Twinkle Box of Burton and Sutherland2

and the Swedish commercial product, Selspot,9 are both
r.:b-tc-l\:! d[glift~' a mu!tipI~ numhC't- of points vf right ~0nCUr
rently, using time-division multiplexing.

Type II systems, being usually more complex than type I,
tend to be laboratory developments oriented toward a
specific application: the digitization of automobile bodies
using holographic techniques,4 the measurement of the
surfaces of animal carcasses by interference methods,IO the
scanning of small object clusters for automatic scene analy
sis using optical triangulations, 1 and the digitization of
human body contours by classic stereometric procedures. 5

This last application-the digitization of human body
form-seems to be of greatest current interest. In this area,

Automatic Acquisition of Three-Dimensional Data 53

3-D surface digitization has been used for such diverse
studies as anthropomorphic dummy evaluation, spinal de
formation measurements, and tumor detection and tumor
growth monitoring. However, the presently implemented
and proposed digitization methods are incompletely auto
mated, and tend to be cumbersome and expensive, thus
requiring much human intervention and effort. Additional
processing steps, such as the transfer of images to photo
graphic materials, often cause additional delays and ex
pense.

Wand-like devices are also inconvenient for surface digi
tization in that the wands have to be moved by the user to
every point to be measured. This can be a very time
consuming task, sometimes made impossible if the surface
to be digitized moves too rapidly. However, wand-like
devices are particularly useful when real time tracking of
only a few points is needed. For example, in limb mobility
measurements, "wand tips" (small light sources) placed on
a subject's leg allow leg movement to be tracked in real
time.

The most direct predecessor of our system is the afore
mentioned Twinkle Box. We have attempted to retain most
of its capabilities as well as overcome its major flaws. We
consider the major assets of the Twinkle Box to be

(1) the digitization of mUltiple points,
(2) the use of arbitrarily positioned single-dimensional

sensors instead of two-dimensional devices, such as
TV cameras,

(3) a simple, unified approach to the problem of convert
ing raw sensor measurements into a 3-D position in
Cartesian coordinates.

The Twinkle Box's limitations, as reported by Burton
and Sutherland, can be primarily attributed to the basic
electro-mechanical sensor design. The sensors consist of
spinning discs sandwiched between an optical lens and a
photomultiplier tube. The system's four sensor units, each
with a 22-inch diameter disc spinning at 3500 rpm, create a
very noisy working environment, and the 2 h.p. motors
needed to spin these discs severely overheat the sensors
afki a~6ut JU minutes of operation. The disc fluctuations
and non-synchronous rotations cause additional difficulties.

Our system eliminates the mechanical and optical prob
lems by using an entirely new sensor design. The system
also adds two new features (1) a focused light beam
deflection system to enable automatic surface digitization
and the tracking of unmarked objects; and (2) a network of
microprocessors for signal pre-processing and other parallel
computations. These features allow our system to be used
both in the "wand" tracking mode of type I systems and
also the automatic-surface-digitization mode of type II
systems.

Strategies for the successful introduction of
computer technology in a mental health care
setting-The problem of change

by JAMES H. JOHNSON, THOMAS A. WILLIAMS, RONALD A. GIANNETTI, and L. J. SCHMIDT
University of Utah
Salt Lake City, Utah

ABSTRACT

An innovative approach to mental health care delivery
which makes use of on-line computer technology is de
scribed. Results of a formal evaluation study of this system
are summarized. These results indicate that the computer
supported system has the capability of effecting improve
ments in mental health care delivery. However, it has also
been learned that clinical staff have difficulties in accepting
innovative approaches to patient care, and furthermore,
that their resistance to change limits the effectiveness of the
new system. Strategies to effect clinician acceptance of
these changes and the positive results of these strategies,
are also discussed.

We are no longer able to satisfy patient needs within the
constraints of available economic resources with traditional
approaches to the delivery of mental health services. 1 The
allocation of resources to mental health facilities has not
kept pace with the increasing demand for services. May and
Cohen have suggested that solutions to this problem await
major innovations in the design of hospital admitting sys
tems. 2 They hypothesize that changes in admissions proce
dcrrcs aiill~d at pro'v'idirlg "a highI} 6eledlvc t:valuaGun amI
distribution operation" (p. 737) will lead to more efficient
and effective provision of services. However, it has been
impossible to implement such systems using traditional
procedures. The primary obstacles have been the time and
expensive manpower required to complete an evaluation
that is sufficiently comprehensive to permit sensible intake,
treatment, and other patient-management decisions. Typi
cally, several days elapse before the mental health team can
complete and report the results of the various psychologi
cal, social, and medical examinations. Thus, in a traditional
system, intake and initial treatment decisions are made
without the benefit of a comprehensive data base.

As a potential solution to this problem, the Psychiatric
Assessment Unit (PAU) was established at the Salt Lake
City Veterans Administration Hospital. 3

-
5 The PAU was

conceptualized as a means for optimizing assignment of
patients into the treatment system in order to improve both

55

individual care and resource utilization. The functional
design of P AU differs significantly from that of the usual
psychiatric admitting system. Comprehensive psychologi
cal, social, and physical assessments are performed at the
time of application for care. These assessments provide the
basis for determining an optimal assignment to an initial
treatment program. An on-line computer system that func
tions in a real-time mode collects patient information and
summarizes, interprets, and prints reports that are available
immediately for use in clinical intake decision-making. A
substantial amount of clinical information is collected on
line, utilizing the patient's responses to inquiries presented
on a cathode-ray tube (CRT) tenninal. The remainder of the
intake data base is collected by mental health paraprofes
sionals who record data in response to structured examina
tion schedules which are also presented on the CRT. This
design, which maximizes utilization of self-report and para
professional introduced data, permits implementation of
real-time "evaluation" at intake, yet at a cost which is
feasible in most mental health settings.

Patient flow through PAU is relatively structured. A
receptionist opens the patient's computer file by entering
basic identifying data into a CRT. The patient is instructed
in the use of a CRT and completes an I8-item measure, the
Q i, which predicts the iikehhood that the patient can
supply valid self-report information.6 The PAU coordinator,
a mental health professional, then interviews the patient
and gathers information about the circumstances surround
ing the application for care, the chief complaint, and the
history of the present illness. If the patient fails the Q I test
and is judged to be in need of immediate inpatient care, he
by-passes the regular PAU assessment system at admission
and is evaluated later when his clinical condition has
improved sufficiently to permit self-report testing. In the
usual case, self-report testing is possible at intake, and the
comprehensive assessment process begins. First, a health
technician performs a computer-prompted screening physi
cal examination. Results are entered into the CRT. The
patient then begins self-report testing on the CRT. The
standard self-report evaluation consists of the Beck Depres
sion Inventory, the Beck Hopelessness Scale, the Minne
sota MUltiphasic Personality Inventory, the Briggs Social

56 National Computer Conference, 1977

History, a problem list, a modification of the Shipley
Hartford test of intellectual performance, and a screen for
organic impairment. A PA U interviewer then administers a
structured mental status examination and records the data
on a CRT. As each procedure is completed, the computer
analyzes the responses and prints a narrative report. The
P AU coordinator reviews these reports and summarizes the
results by selecting problems from a precoded problem
dictionary and rating the severity level of each problem.7
The computer report of this procedure becomes the "initial
problem list" for the patient's medical record. Based upon
this "initial problem list," the coordinator, in consultation
with a psychiatric physician, if needed, determines an
optimal initial treatment disposition for the patient.

A formal evaluation study was performed to compare the
P AU system with the traditional admitting physician intake
procedures on a variety of process and outcome meas
ures. 8

,9 While some data analyses are still being completed,
the available results strongly support the conclusion that,
when the PAU system is compared with traditional hospital
intake evaluation approaches, it results in superior assess
ments which have a positive impact on treatment outcomes
and which decrease the cost of patient care. Furthermore,
patients report that they prefer the prototype computerized
evaluation system better than they do the traditional ap
proach.

The P AU represents a positive innovation in mental
health care delivery. On-line computer technology has been
integrated into the operation of a comprehensive psychiat
ric treatment program as one solution to the problem of
meeting increased demands for services with limited re
sources. Evaluation studies have shown that the PAU
system is highly successful in this enterprise. However,
despite the fact that the PA U has been shown to have a
positive impact on mental health care delivery, there have
been a number of problems attendant with its implementa
tion. As with any other radical systems innovation, the
approach utilized by the PA U has challenged deeply in
grained notions associated with mental health treatment.
This has been true for most personnel associated with the
Salt Lake City V A Hospital Mental Health Treatment
Services, but it has been especially true for those individu
als assigned to work within the PAU. The purposes of this
paper are: (a) to discuss some problems associated with
staff acceptance of a computer-assisted intake system, (b)
to review our efforts in working to solve these problems,
and (c) to present the outcome of our efforts. It is hoped
that this paper will stimulate others to consider problems
and solutions in the acceptance of change, especially as
related to the acceptance of innovations utilizing computer
technology.

THE PROBLEMS OF CHANGE

The P AU was designed and implemented as the central
intake point for both inpatient and outpatient mental health
care at the Veterans Administration Hospital in Salt Lake
City. As such, it became the primary bond between a

number of independent treatment units. Some of the ramifi
cations of this position were unanticipated. We soon dis
covered that the PAU, by virtue of its central position, was
expected by many to meet existing needs in other areas of
the treatment system. Therefore, PAU's mission quickly
evolved to include a number of functions for which it was
not designed. These included crisis intervention, initial
prescription of medications, liaison with the local judicial
system, arbitration of inter-ward transfers, telephone refer
ral service, and completion of routine evaluations which
were not related to intake. Rather than merely performing
intake evaluations, the PAU became a center for communi
cations and referral for the entire mental health care sys
tem, which it was designed to serve as but a portal of entry.
Thus, the initial problem of change associated with the
implementation of the computer-assisted psychiatric assess
ment system was one of defining the actual limits of its
operation.

A second major problem of change was also unforeseen,
although it was addressed in the original design of the
system. The PAU evaluation protocol called for an exten
sive assessment prior to intake triage. Patients were to be
examined for several hours prior to treatment decision
making. Treatment staff, used to the idea of making quick
decisions without comprehensive information, were often
impatient when faced with the wait for extensive evalua
tion. They did not understand how to proceed to decision
making, based upon the large data base now potentially
available to them. What they could understand was the
need to complete mandatory administrative admission pro
cedures and laboratory tests. The comprehensive intake
evaluation was viewed as but a hindrance to completing
these other routine but mandatory tasks. As a result,
treatment staff began to pressure PAU staff to make triage
decisions prior to the completion of the complete evalua
tion. In an attempt to accommodate to these pressures,
P AU staff began making premature triage decisions in order
to facilitate processing of the patient for admission to a
treatment program. However, once the patient left the PAU
area, he was seldom returned to complete his evaluation.
Furthermore, even if the patient did return, the concept of
making decisions on the basis of a complete data base was
rendered ineffective, since the intake triage decision had
already been determined.

The difficulties mentioned above resulted in a final major
problem: PA U staff began to lose sight of the original goals
of the project. On the one hand, they were confronted with
demands for a large number of services which were not
planned for in the original design of the system. On the
other hand, they were receiving pressure from treatment
staff members to shorten the evaluation process and move
patients into treatment more quickly. This was reflected in
a progressively decreasing number of completed evalua
tions, potentially neutralizing the project's aims.

In summary, there were several problems of change
associated with the introduction of the computerized PA U.
Many of the ramifications of a unifying systems concept
were not foreseen. Treatment staff did not fully understand
the concepts involved with an intake system which was

radically different from that which they had experienced
previously. PAU staff lost their commitment to the original
goals of the project.

PROCEDURES USED IN ATTEMPTING TO SOLVE
THE PROBLEMS OF CHANGE

A study group composed of senior clinicians and project
leaders was formed to correct the problems which had
developed during the initial implementation of the com
puter-assisted Psychiatric Assessment Unit. To facilitate
better understanding of the problem, it was determined to
obtain a work sampling of PA U to determine the current
functional resource allocation. Twenty-one hours of work
time were observed, at the rate of one observation per PAU
staff member per minute, for a total of 1220 observations.
The results of this analysis is presented in Table I. It was
apparent from this analysis that only 21.5 percent of staff
time was being allocated to patient assessment functions,
while a relatively large proportion of resources was being
allocated to initially unanticipated functions such as: (a) VA
forms completion (11.96 percent), (b) consultations and
patient management (4.67 percent), (c) communications
(19.02 percent), and (d) miscellaneous (42.73 percent).

Based on this analysis, patient flow through the PAU was
reorganized. Coordination and assessment functions were
separated. One person was identified as the coordinator for
communications among PAU staff, and between PAU and
other components of the V A facility and local community
facilities. An additional full-time person was recruited to
handle all crisis functions. All other PAU staff members
were assigned responsibility for specific assessment duties.
Wherever possible, the secondary functions and tasks
which PA U had assumed during the initial period of imple
mentation were eliminated. The evaluation procedure was
standardized according to the original design. A structured
scheduling system was implemented. In this system both
evaluation staff time and self-report CRT time were sched
uled to increase the efficiency of utilization of these re
sources. A tracking system was installed in order to moni
tor the progress of the patient through~itie compn;hensive
evaluation procedure. This minimized the possibility that
portions of the evaluation would be inadvertently omitted.
These steps were taken in order to reorient PAU staff
members' attention back to the original goals of the intake
assessment concept and, also, to take into account the
unforeseen tasks which were encountered during the initial
implementation of the prototype central intake triage unit.

An in-service staff education program was initiated in
order to deal with the problem of treatment staff acceptance
of this PA U concept. Results of the formal evaluation of the
PA U system were presented to treatment unit administra
tors and clinicians. Introductions to the value and use of the
various PAU assessment instruments were presented to
staff members of the various treatment units. Informal
discussions were held to improve communications between
PA U and treatment unit personnel. The goals of these
undertakings were to increase understanding of the P AU

Computer Technology in Mental Health Care 57

TABLE I-Workload Analysis for Staff Functions of The Computer-
Assisted Psychiatric Assessment Unit

Function Percent Total

Computerized examination related
Read chart 1.15
Talk to pt. 3.69
Mental status 3.44
Problem list 1048
Physical 3.93
Review tests 0.57
Other 0.08 14.34

N oncomputerized examination
related 0.98 0.98

Staff monitoring of patient self-report
Start test 1.80
Correct error 0.33
Call and collect reports 2.87
Update test log 0.74
Take reports to ward 0.00
Other 0049 6.23

Hospital administrative reporting
H)"10M 1.23
Chart notes 0.16
Short form admission 0.57
Referral form 0.66
Routing slip 0.16
Chart processing 0.90
Pt. log 2.05
Typing 0.49
Other 5.74 11.96

Consultations with physicians 1.56 1.56
Pt. management

Emergency treatment and crisis 0.73
Med. related 0.49
Advice or info 1.07
Miscellaneous 0.82 3.11

Communications
Info to/from SEU staff or personal calls 2.87
Computer related 0.98
Processing or status of pt. 8.69
Paperwork related 1.07
Staff or resources 0.90
Patient (clinical) 2.05
Psych inpt. 0.98
Psych opt. 0.74
Community resources 0.33
Miscellaneous 0041 19.02
Other 42.73 42.73

concept and its value and, thereby, to facilitate better
clinician-acceptance of the system.

RESULTS OF A STUDY TO EVALUATE
PROCEDURES USED TO SOLVE PROBLEMS OF
CHANGE

It was hypothesized that if treatment staff acceptance of
the PA U concept was improved, and if PA U staff members
could be reoriented to the original goals of the project, then
there would be an increase in the number of assessment
packages completed. A "complete assessment package"
was operationally defined as completion, prior to triage
decision-making, of all procedures specified in the original
design of the P AU. In order to test this hypothesis the

58 National Computer Conference, 1977

number of complete evaluations was counted for three
weeks before, and again for three weeks after, implementa
tion of the changes enumerated in the preceding section of
this report. Six evaluations were completed in the three
weeks prior to implementation. Thirty-nine evaluations
were completed in the three weeks following. This repre
sents a 650 percent increase in the number of evaluations
completed. Since the introduction of new operating proce
dures inevitably results in some initial confusion and error,
an even greater gain is anticipated to accrue, as the PAU
staff become accustomed to the new procedures.

SUMMARY AND DISCUSSION

In this paper an innovative approach to mental health care
delivery is described. This PAU approach involved the
introduction of on-line computer technology in order to
facilitate an improvement in service delivery. Even though
this system has now been shown experimentally to effect
positive changes in the care of mental health patients, there
have been problems in the acceptance of the system by
both treatment and PAU staff members. These problems
effected day-to-day operations of the system. An approach
to solving these problems, and results of a study aimed at
evaluating the success of this approach are also presented.

It is evident from this research that improved systems
concepts utilizing computer technology will not necessarily
result in an improvement in patient care, even if the
proposed concept provides the demonstrated capability of
such an improvement. There must be staff acceptance of an
innovative concept in order to achieve integration of that
new idea into an existing system. Where computer technol
ogy is a component of an innovative approach, there
appears to be a ready resistance, especially in mental health
care delivery settings. Staff members trained and experi
enced in traditional settings tend to view computerized
techniques as dehumanizing to the patient. Presumably,
they are, therefore, inclined to view such approaches with
suspicion. This suspicion must be recognized and dealt
with, if the use of computer technology is to obtain staff
acceptance.

Those of us who have been conducting research on the
use of computer technology in mental health care settings
have become increasingly aware of the fact that the imple
mentation of innovative approaches is impeded more by the
problem of clinical acceptance, than by the present state of
computer technology. The present technology is sufficient
to effect significant improvement in the quality of mental
health care delivery. However, technology alone is not
sufficient to effect the desired improvement in care without
significant staff resistance. It is hoped that this paper will
stimulate additional progress in this latter arena.

REFERENCES

1. Lanyon, R. I., "Technological Approach to the Improvement of Deci
sion-Making in Mental Health Services," Journal of Consulting and
Clinical Psychology, 1972, Vol. 28, pp. 431-438.

2. May, P. R. A. and J. Cohen, "The Mental Health Engineer: an Agent for
Institutional Change," Hospital and Community Psychiatry, 1974, Vol.
25, pp. 735-739.

3. Johnson, J. H., R. A. Giannetti and T. A. Williams, "Real-Time
Psychological Assessment and Evaluation of Psychiatric Patients," Be
havior Research Methods and Instrumentation, 1975, Vol. 7(2), pp. 199-
200.

4. Johnson, J. H. and T. A. Williams, "The Use of On-Line Technology in a
Mental Health Admitting System," American Psychologist, 1975, Vol.
30, pp. 388-390.

5. Williams, T. A., J. H. Johnson and E . .L. Bliss, "A Computer-Assisted
Psychiatric Assessment Unit," American Journal of Psychiatry, 1975,
Vol. 132, pp. 1074-1076.

6. Johnson, J. H., T. A. Williams, D. E. Klingler and R. A. Giannetti,
"Interventional Relevance and Retrofit Programming: Concepts for the
Improvement of Clinical Acceptance of Computer-Generated Assessment
Reports," Behavior Research Methods and Instrumentation, in press.

7. Giannetti, R. A., J. H. Johnson, T. A. Williams and C. F. McCusker,
.. An On-Line Problem-Oriented System for the Evaluation of Mental
Health Treatment Service," Behavior Research Methods and Instrumen
tation, in press.

8. Klingler, D. E., J. H. Johnson and T. A. Williams, "Strategies in the
Evaluation of an On-Line Computer-Assisted Unit for Intake Assessment
of Mental Health Patients," Behavior Research Methods and Instrumen
tation, 1976, Vol. 8(2), pp. 95-10.

9. Klingler, D. E .• D. A. Miller, J. H. Johnson and T. A. Williams, "Process
Evaluation of an On-Line Computer-Assisted Unit for Intake Assessment
of Mental Health Patients," Behavior Research Methods and Instrumen
tation, in press.

Database management for clinical trials

by JOHN M. LONG and JOSEPH R. BRASHEAR
Hyperlipidemia Program
Minneapolis, Minnesota

ABSTRACT

The Authors describe how they used a standard database
management system (System 2000) and a computer utiliiy
to build a sophisticated medical records system in support
of a national multi-clinic clinical trial. Privacy, protocol
adherence, quality control and other key elements of an
ethical clinical trial were satisfied at a fraction of the
development cost for the more traditional approach of
building a customized system. The authors feel that old
lessons learned in other areas regarding the balance of
manual to automated systems and the use of standard
software are being re-Iearned for clinical trials. Neither a
medical setting nor a clinical experiment changes the basic
issues of good systems design. The possibility of using
clinical trials as a test bed for developing medical informa
tion systems is also proposed.

In this paper we will describe our experiences in the
development of a data processing system for a national,
multi-clinic, controlled clinical trial. It is hoped that the
description will demonstrate that controlled clinical trials
are neither unique nor specialized users of medical informa
tion systems. In fact, clirtical trials could be<:ome a vehic:le
for t~sti~g ~e~ co~c~Pts i~· inf~rmation sy~tem design for
medical applications.

The clinical trial is a controlled experiment designed to
test the effects of a medical treatment on human subjects. It
is the last step in the medical research process. It is the test
to determine whether a drug, surgical procedure, or medical
device is safe and effective for use in day-to-day medical
practice, as well as a medical research device to test
alternative hypotheses.

A controlled clinical trial requires detailed analysis of the
medical well-being of large groups of patients. The subject
population is well defined. Major aspects of their health
care are carefully controlled. Clinical data is collected in a
standard manner according to a pre-defined trial protocol.
Patients are followed (indeed pursued) over long time spans
to insure complete data collection and statistical reliability.

Our clinical trial, funded by a grant from the National
Heart, Lung and Blood Institute, is formally known as the

59

Surgical Control of the Hyperlipidemias, Secondary Pre
vention Trial. We simply refer to it here as the Hyperlipide
mia Clinical Trial or Study.

The Hyperlipidemia clinical trial is a definitive test of the
lipid hypothesis. It is designed to seek an answer to the
question of the effect of maximal cholesterol reduction on
patients with known atherosclerotic heart disease. One
thousand patients are being randomly assigned to either a
treatment or a control group. The patients will be followed
for five years after randomization. Periodic clinic visits are
scheduled to ascertain the extent of atherosclerosis and to
detect the occurrence of any other medical problems. Trial
protocol requires a highly restrictive recruiting and screen
ing process to obtain 1,000 patients for randomization. It is
anticipated that clinical data will be collected from at least
10,000 patients during the screening phase of the trial.
Twenty-two different forms are used for data collection.
They range in size from a single page log-in report to a 31
page medical history and physical form. Obviously both
patient management and data management are primary
concerns of the trial.

In addition to these physical parameters, we were faced
with a set of environmental constraints. Form design and
patient recruiting had already started when computer sys
tems personnel were hired. We expected to be inundated
with forms at any moment, and certainly before systems
aJ,ld .p(Qcedures wen~ fully estahlished& Additiooall¥. m the
rush to recruit, incomplete attention had been given to the
practical day-to-day aspects of how to handle data and
readily analyze the end results of the trial. We were forced
into early recognition that actual computer processing rep
resented only one of three major data processing systems
areas. We were forced by practical circumstances to relearn
this old lesson which should not have been forgotten.

Given these parameters and constraints, a system had to
be developed that could be operational quickly at reasona
ble cost. The data processing system is a necessary tool for
a clinical trial. As in all of health care, the computer is not
the paramount concern and should not become a major
expense item. In addition, the entire system had to be
responsive and easily modified. A medical researcher sim
ply cannot anticipate all of the effects of his procedures.
Medical ethics require constant surveillance for unantici
pated events and possible procedure termination.

Other constraints on system design were no different

60 National Computer Conference, 1977

than those facing a systems analyst in any application.
Privacy and security of data must be considered whenever
data is collected about individuals. Economics dictate that
novel developments in supporting disciplines cannot com
promise the integrity of the user and his application.
N either a medical setting nor a clinical experiment change
the basic issues of good system design.

Trial management was faced with a classical computer
system dilemma. There are four obvious alternatives in
building a data processing system: develop a custom sys
tem, still a tantalizing alternative for a systems analyst;
share customized hardware and software with other similar
applications; develop a generalized hardware/software sys
tem specifically for clinical trials, or use a computer utility
and available standard software. The Hyperlipidemia Clini
cal Trial chose the fourth alternative.

We are using a shared CDC Cyber 74 facility at the
University of Minnesota and System 2000 as our database
management system. This approach has proven a good one.
Starting in May of 1975, we had control of documents and
protocol adherence via time-sharing terminals by the end of
that year. The basic system was fully operational in May of
1976. By this we mean that we were able to emer clinical
data in a controlled operation, provide data accountability,
and retrieve reports based on that data. Improvements have
continued and some work remains to be done in data
analysis and statistical reporting, but data processing, in
cluding programming or systems analysis, is not responsible
for any delays. We have been able to generate all reports
very shortly after they have been defined. The basic system
was developed in less than one year at a cost of less than
$60,000. Of course, some of these savings are lost in higher
operating costs which we will discuss later.

An interesting and significant body of work has been
done in peripheral areas as well, ranging from data security
and privacy to the social psychology of medical data
processing. We have also been able to be truly responsive
to our users. A great deal of time has been devoted to
gaining input and support regarding reporting formats. The
generality of standard software has permitted changes with
little disruption to the automated portions of our system.
Overall, we feel that we have been able to emphasize those
areas where emphasis rightly belongs. Rather than expend
all our resources on computers and software, we have
emphasized data content and editing, meaningful data anal
ysis, and effective computer generated reports.

Our medical records database design was based on three
primary concerns. First, we needed ready access to large
volumes of clinical data. Secondly, we are required to
monitor adherence to the trial protocol by every patient
from each clinic. And finally, we had to control data flow
through a complex editing and certification process. These
concerns led to consideration of three separate System 2000
databases. The Main, or scientific, database would contain
all of the clinical information collected for every patient,
that is, the patient's individual medical record. The Admin
istrative database would hold the information needed to
control data coliection and adherence to triai protocoi. A

Locator database would be used to monitor the flow of data
forms through the entire system.

These functions are analogous to those found in a tradi
tional circulating library. The Main database is equivalent
to the card catalog. We use it to determine what data we
have on each subject. The Locator database is the analogue
of the checkout or circulating system, tracing the current
location or user of individual holdings.

Function or method of use dictated the structure of the
three databases and resulted in three different designs
within this rather loose restrictions of System 2000. The
simplest final structure was that of the Locator database.
The automated version was abandoned. The checkout and
circulation control function appears to operate better as a
manual procedure.

The Administrative database is on-line and is accessed
through a time-sharing terminal. Information is added or
updated as forms are received. An entry is made for every
data form which arrives from a clinic. This is a fundamental
step in imposing control over forms flow and protocol
adherence. The database has a tree structure with three
hierarchical levels. All data elements, except a text memo,
are inverted. That is, they are all key elements and may be
used to qualify retrieval or access operations. Complete
inversion has given us the capability to retrieve formatted
administrative reports with minimal programming effort.

The Main database, holding the medical records, is also
maintained on-line, but is updated periodically in a batch
processing mode from punched cards. Although extensive
editing and consistency checks are made in the update
programs, it is expected that manual control of the input
data will make it relatively error free. Entry into the Main
database is the last step in the manual editing and checking
chain. This database is also structured as a three level,
hierarchical tree but the structure is unique. Our approach
was dictated by storage costs and limitations, rather than
access modes. You will recall that the clinical data is
submitted on a large number of complex forms. A straight
forward approach would be to define a data set or repeating
group with unique data elements for each form. This
approach rather quickly leads to realization of System 2000
overhead costs and limitations on numbers of unique ele
ments. The design used was to designate the third level as a
two element data set containing a question number and an
answer. Access to information in the database requires
detailed knowledge of each form and explicit definition of
data by question number. This has not been a severe
restriction and is offset by reduced computer operating
costs. In fact, requiring knowledge of the data form has
turned into an advantage. Requests for reports have been
unusually brief and rational.

By using a standard software package, System 2000, we
were able to minimize development time and cost. But,
obviously, the system is not an optimal system for this
particular application. For example, the ratio of total data
base size to actual information is greater than five to one.
We are paying four indexing characters for each informa
tion character. Pari of this cost is attributable to full

inversion, but a fair amount is pure overhead. For example,
the cost to index a date is totally exorbitant in System 2000.

First, dates must be represented as ten character data
elements. Further, if a date is a key element, 20 characters
are required to index each unique value. System 2000 also
imposes a second indexing scheme for multiple occurrences
of each key value. An application requiring data set selec
tion with date of birth as one of the criteria becomes very
expensive. The Administrative database has five dates
designated as key elements. Given that there is a need to
index dates, we could devise a coding scheme which would
minimize file overhead. But we would have to give up the
straightforward System 2000 natural language capability to
manipulate dates on storage or retrieval. We do not believe
the increased storage efficiency would offset the resulting
increase in programming costs.

We could cite a number of similar instances of balancing
or optimization which have been considered. There are
undoubtedly many more that have not been recognized as
yet. The major point is, that by selecting a software
package, we have the time now to consider optimization.
The trial data system is operational. We enter data and
produce reports on a production basis. We have a happy
customer and the resulting leisure to consider system
enhancements.

An additional benefit from use of System 2000 is reduc
tion in continuing programming staff and costs. Reports are
produced using combinations of System 2000 natural lan
guage and FORTRAN or COBOL. Data elements for a
report are selected and retrieved from the database using a
simple "LIST" command. The selected data sets are or
dered and written onto a sequential, FORTRAN compati
ble, temporary file. The final report is produced either by a
simple formatting program or by a package such as SPSS.
The "LIST" command is easily constructed, and complex
selection criteria can be readily changed. All report pro
gramming to date has been a part-time activity for a senior
programmer. Report production costs have averaged less
than 50 cents per page.

So far our decision to use a computer utility and standard
software appears to he a good one. Ihe.bottom line.. total
cost or net profit, has been our measure. However, we
have encountered enough problems along the way to con
fine our appraisal to one of cautious optimism. We have
alluded to some of these problems earlier. We would now
like to share them further.

Many of our development and operational problems can
be grouped and labeled as environmental. We do not and
cannot fully control our hardware or software environment.
The trial is only one user of a university computer system
and an indirect customer of the software house which
produced System 2000. Even though a clinical trial might
become the largest single user of this particular computer
utility, it would still be a single user.

Production schedules for the Hyperlipidemia Trial are
now largely based on University classroom assignments.
Updating the Administrative database is referred to as a
conversational mode operation. During the summer months

Database Management for Clinical Trials 61

or winter holidays, this is factual statement. Response
times to individual entries or inquiries have been typically
less than five seconds and often only one or two. However,
during mid-quarter or final week, response times are meas
ured in minutes.

The batch mode update to the scientific database requires
over 11 OK of memory and as much as 60 seconds of CPU
time. The priority scheme at the University optimizes
through-put for student FORTRAN jobs. Obviously, a
major update run by our project requires enough resources
to reduce run priority considerably. An update run submit
ted in the morning during final examination week will test
the computer system's mean time between failures.

These response time problems are a major frustration to
the trial systems staff and management. But the bottom line
is our major measure. We pay only for time used. The trial
does not have the fixed expense attendant to a dedicated
computer system. We should not expect the side benefits of
a dedicated system. We have however, relearned another
old lesson. Update runs are scheduled according to system
loading. Batching data for a scheduled update appears to
relieve the perceived pressure to rush individual forms to
the terminal. We are experiencing better human editing and
checking of data forms and a lower rate of rejection by the
computer system on heavy system load days.

The elapsed time problems with batch updates have
forced us to give close attention to file backup procedures.
We are also looking into the use of update and suspense
files as an adjunct to the central database. We should be
able to reduce our system resource requirements and vul
nerability considerably, by reviving these techniques. They
appear to be compatible with our System 2000 database
approach, and we do not anticipate major reprogramming
costs for implementation.

So far we have discussed our implementation of one
alternative approach to construction of an information
processing system for a clinical trial. The use of standard
computer resources and application of tested systems anal
ysis techniques permitted attainment of trial goals in mini
mum time with minimal cost. This approach is certainly not
new R+)f ~~ jH~fl~ 4"~ f4"'~' .Mk"l~~, the!-e!!°!!C doubt
that another alternative could have been implemented to
produce another optimal system balance. Indeed, other
clinical trials have taken alternative routes to system imple
mentation and have succeeded according to their measures.

The variety of paths taken to attain a common goal by
different clinical trials points to a major side benefit which
could be significant to all medical information processing.
Clinical trials require systems to handle clinical records for
ambulatory care, longitudinal analysis of clinical data, com
puterized medical record summary systems, and archival
storage of clinical data. In fact, they need most of the tools
we are developing for health care applications. There is no
doubt in the minds of the computer community or the
medical community that they are necessary tools. There is
however, an undercurrent of doubt or concern over intro
duction of these tools into an existing system of health care
delivery.

62 National Computer Conference, 1977

We contend that the controlled clinical trial is an ideal
environment for development and testing of these new
tools. A clinical trial, by definition, is a controlled environ
ment. The patient population is stable, the trial has an
endpoint in time, and the necessity for data collection is
established. Further, installation of new procedures in a
clinical trial would be a non-disruptive, parallel operation. A
trial is not in the main stream of day-to-day health care
delivery. A trial does, however, require most of the proce
dures used in the main stream.

Finally, a clinical trial is a research procedure. Both the
patient popUlation and the medical personnel are condi
tioned to accept new practices. Clinical trial medical staff
are usually research oriented and more receptive to use of
computers. This last may be the most important point. A
prudent health care practioner must be a conservative when
his patient is involved. This attitude leads directly to
conflict when something new is proposed for patient care.
This type of conflict can become irrational and irreconcila
ble and lead to rejection of the new idea. Unfortunately, the

psychological process described is evident throughout the
health care industry today.

This potential test-bed facility, the controlled clinical
trial, is not a new practice.- Drug trials have been run by the
pharmaceutical companiesJor years. The National Heart,
Lung and Blood Institute has funded at least six major trials
in the last fifteen years. These have required from 1500 to
over 10,000 patients for each trial. Anticipated trial duration
ranged from three to six years or more. Of more importance
to the computer community, the clinical trial is here to stay.
Recent legislation requires that all new medical devices,
such as pacemakers, undergo a clinical trial before being
released to the pUblic.

We seldom find a potential testing ground for computer
development which has broad generalized needs, is truly
non-disruptive, and is securely financed. Controlled clinical
trials meet all these criteria and more. We must stop
regarding trials as different or unique experimental proce
dures and begin to exploit them as a resource.

Data management for clinical research

by W. L. SIBLEY, M. D. HOPWOOD, G. F. GRONER, W. H. JOSEPHS and N. A. PALLEY
The RAND Corporation
Santa Monica, California

ABSTRACT

This paper discusses a prototype system intended for the
personal use of physicians engaged in ciinical research. In
particular, the prototype is a highly integrated, interactive,
minicomputer based data management and analysis system.
The facilities offered by the system allow the clinical
investigator to store, recall, analyze, and display his re
search data without resorting to computer programming.
Modem data base techniques are available to the physician
as aids in organizing, storing, and retrieving his data. The
data base concepts are expressed in terms that are familiar
to a clinical researcher.

PURPOSE

The purpose of this paper is to discuss a prototype system
intended for the personal use of physicians engaged in
clinical research. In particular, the prototype is a highly
integrated, interactive, minicomputer based data manage
ment and analysis system.

THE CLINFO PROJECT

Th~ c:LINFQ ,pr()totyp~ .~~ta manag~m~ut and anab:~is
system described in this paper has been developed as part
of the CLINFO project, a scientific inquiry sponsored by
the Division of Research Resources (DRR) of the National
Institutes of Health (NIH). The goals of the project are to
identify and characterize the information analytic tasks and
the information flows in clinical research, and to develop
methods for facilitating these tasks and flows. The project
is being conducted by clinical investigators at the Baylor
College of Medicine, the University of Washington, the
University of Oklahoma, and Vanderbilt University; by
information scientists at the Rand Corporation; and by staff
members of the DRR.

We have thus far (1) interviewed clinical investigators
both formally and informally., (2) characterized their infor
mation processing needs, (3) identified data management
and analysis as major problems, (4) examined existing
computer systems aimed at satisfying those needs, (5)
designed, built, and installed three copies of a prototype

63

system, and (6) started the analysis of instrumentation data
and user interviews to help us evaluate the system.

References 1, 2, 3, and 4 discuss various aspects of the
foregoing points.

CLINICAL STUDY DATA VOLUMES AND
ACTIVITIES

A General Clinical Research Center (GCRC) provides
facilities which clinical research personnel can use in con
ducting a variety of medical studies. Each study tends to be
separate and distinct from other studies and provides a
natural focal point for data collection and analysis. A large
study involves approximately 75 subjects (patients) and a
total collection of approximately 67,000 data values. 1

Generally, a clinical study involves the following activi
ties:

• During the study design the investigator decides what
data are to be collected, at what rate, and in what
volume.

• As the study progresses, data are collected and re
corded in a central data file. Considerable care is taken
to ensure the validity of those data.

• As the study progresses, the investigator reviews and
sum~~r!:z~~ th~ d~t"~."P~I1 of the::. pro~,ess, of S,Un::Wlllri
zahon Involves transcribing the data into a form suita
ble for statistical analysis as well as the preparation of
plots, graphs, and reports.

The CLINFO prototype is designed to accommodate 25
such studies.

SYSTEM OVERVIEW

The prototype is implemented on a commercial minicom
puter (Data General Eclipse S/2(0) using multi-user ex
tended BASIC.5 Each study has its own portion of a 25
million character disk. When an investigator (or a member
of his staff) uses the system, he interacts with the CLINFO
software (primarily by responding to prompts) and is pre
vented from using BASIC procedures to affect his data.

Figure 1 illustrates the main features of the CLINFO

64 National Computer Conference, 1977

(DESCRIBE }--s Vl UPjTE ~
C

S

()-- ~_V' ENTER I PATIENTS I T

M o U

)-+ ~- A 0
(RETRIEVE i- - --- + T '{

I SUBSETS I A

I

(ANALYZE/DISPLAY }- -_I WORKSHEETS I-1COMM FILE I

Figure I-Command(---) and data (-) flow in the CLINFO prototype for
a single protocol

prototype. The ellipses encompass the three general activi
ties which were mentioned above. The rectangles indicate
the various ways in which data (or descriptions of data) are
stored in the prototype. The diagram encompasses a single
study (or research protocol). This paper is concerned
primarily with the activities labeled "DESCRIBE," "EN
TER" and "RETRIEVE" and the data contained in the
"SCHEMA," "UPDATE," "PATIENTS," "SUBSETS,"
and the "STUDY DATA" structures. The "ANALYZE/
DISPLAY," "INPUT," "OUTPUT," and "BASIC" ac
tivities and their associated structures will be described, but
in less detail.

THE DATA BASE

The organization of a CLINFO study data base is predi
cated on three observations:

• The fundamental unit of analysis is usually the patient.
• Data are collected about that patient over time.
• The data have natural groupings in time (e.g., the vital

signs of a patient are sampled at essentially the same
time).

The time-oriented nature of clinical research data has been
discussed by Fries.6 Dr. Fries' ideas have been further
reinforced by our observations of the current manual tech
niques for recording that data. For example, data are
recorded in patient flowsheets (one for each patient) which
are two-dimensional arrays with the rows representing the
data items to be measured and the columns containing the
values of an item for different times of measurement. We
have further observed that some of the rows can be
grouped naturally into related items (examples of such
groups are vital signs, blood serum tests, urine analyses,
etc.). However, the groupings differ widely from study to
study. The CLINFO term for a grouping is ··PANEL." The
concept parallels records or groups in the CODASYL Data
Base Task Group (DBTG) report. 7

PATIENTS/SUBSETS

The key structure is the PATIENT file which contains an
eight character abbreviation for each patient (assigned by
the clinician when the patient is added to the study) and an
internal numeric key (assigned by the system). This file can
contain up to 392 different entries. The entries are ordered
alphabetically on the patient abbreviation to allow for
efficient searching.

A subset is a named file (e.g., LOWBLOOD) with the
same structure as the PATIENT file but containing patients
with particular properties. No particular patient ordering is
maintained for subsets. There can be as many subsets as
space allows.

The numeric key associated with each patient references
a block of data in a PATIENT DIRECTORY (not shown).
That block contains some redundant identification data and
two tables. The first table contains pointers to the patient's
set of panels (see above) in the STUDY DATA file and
counts of the numbers of instances of the panels. The
second contains data concerning the state of the various
EVENTS (to be described later) for this patient.

DESCRIBE/SCHEMA

The SCHEMA 7 provides the means for adapting the
CLINFO data base structure to the needs of a particular
investigator. It is a description of the panels and their
contents. The schema exists in two forms: the external
textual form and the internal compiled form. The former is
for human interaction, the latter is for computer processing.
The DESCRIBE activity is in essence an interactive editor
which allows the clinician to create, edit, and compile his
schema.

The schema describes three main entities: ITEMS of
data, PANELS of items, and EVENTS triggered by the
occurrence of certain values for particular items.

PANELS have eight character names, and references to
them by name imply reference to all of their items. There
are two types of panels, numeric and textual. The type of
the panel determines the types of the data items included in
that panel. Each panel can contain at most 30 items, all of
which are either 32-bit floating decimal numbers, or charac
ter strings at most 70 characters in length. A sample panel
entry in the schema might be

PANEL 1 hist ,patient ID & history,numeric;

Reading from left to right, this is the first panel (PANEL 1),
its name is "hist ", it contains "patient ID & history,"
and its items are all numeric.

ITEMS also have eight character names which are used
to reference the data associated with an item in a wide
variety of circumstances. Again, an item may either be
numeric or textual. In addition, there are parts of the item
description that serve to screen, validate, and possibly
encode the value associated with that item. For example:

ITEM 9 HT ,Height ,inches ,num,range,(55,80),no;

Reading from left to right, this is the ninth item in the
schema (ITEM 9), its name is "HT ", its values represent
height in inches, its values are numeric and must lie in the
range 55 to 80 inches inclusive, and its value need not be
considered confidential ("no"). "Height" and "inches" are
purely descriptive and do not imply automatic units check
ing by the system.

The sequence "num,range,(55,80)" illustrates one option
available for data screening. Other options for items in
numeric panels are:

• date,range(01031976,12251980)
the item value is a date in the indicated range (1/3/1976
to 12/25/1980 inclusive).

• time,range(1300, 1330)
the item value is a time in the indicated range (13:00 to
13:30 inclusive).

• num,check(4),(7,10,6,5)
the item value is numeric and one of the listed 4
values.

• char,code(3),(yes ,no ,unk)
the item value is externally one of the listed 3 character
strings and is carried internally as one less than the
ordinal position of the string in the list (i.e., 0, 1, or 2).

• the data types date, time, and num may require no
validating, e.g., num,none.

The textual panels and items are of the form:

PANEL 2,demo
ITEM 20,name

,demographic data,text;
,patient name,text(30);

The item "name" will then be allocated 30 characters in
each occurrence of a "demo" panel.

EVENTS are time markers maintained by the CLINFO
prototype system to aid the user in the retrieval of his data.
It is common in clinical research to relate the response of a
patient to a procedure by referencing some events which
marks the application of that procedure. For example,
blood sugar levels are measured at regular intervals after
the ingestion of glucose. Events provide the means for
cieaiing with relative time. A sample event is:

EVENT 3 test ,glucose ingest,gluc ,FIRST;

Reading from left to right, this is the third event in the
schema, its name is "test," it relates to glucose ingestion,
and it records the time at which the item "gluc" FIRST
takes on a value. Time is taken here to mean a combination
of date and time.

Events may be triggered by the "FIRST,"
"LAST,""MAX," and "MIN" values of its governing
item. In addition, an event may be triggered at the first or
last time the item takes on a particular value.

When the clinician is satisfied with his description of the
data he intends to collect, he compiles the schema (the
system provides appropriate feedback about errors in the
compilation). He then requests that disk space be allocated
to accommodate his study. He assists the allocation by

Data Management for Clinical Research 65

estimating the number of patients he expects to include in
his study and an approximate number of occurrences of
each panel type for the average patient.

He is then ready to start entering patients and their data
into the data base.

ENTER

The main function of the ENTER activity is to process
data (entered interactively) in the light of the data screening
specifications contained in the schema. The data that are
accepted are not passed directly to the STUDY DATA file,
but are recorded in an UPDATE file whose contents are
merged with the STUDY DATA file at some convenient
time. This buffering of the input data allows a simple
structure for the STUDY DATA file, reduces the exposure
of the system to computer malfunctions, and provides a
means of reviewing the input data before it is actually
recorded in the STUDY DATA file.

Again, a CLINFO data base is patient- and time-oriented.
In order to enter data, a "context" must be established for
that data. That is, the data must

• Belong to a patient already in the PATIENT file.
• Have an associated date and time of day at which the

data are assumed to have been sampled.

After a context has been established (by interactive
prompts and responses) the clinician may then enter values
for items by either

• Typing the name of an item followed by its value or
• Typing the name of a panel, whereupon the system

prompts for each of the items in that panel.

The context stays in force for all data entered subsequently
until the clinician desires to change it. The context may be
changed at any time by typing "patient:," "date:," or
"time:" followed by the corresponding value.

As each value (including patient aiJbreviations. dates.
tImes, and panel and item names) is entered, that value is
checked for reasonableness. The patient abbreviation must
be in the PATIENT file; dates and times must have the
correct format; panel and item names must exist in the
schema; the value for an item must satisfy the criteria in the
schema. Incorrect values are refused and re-prompted for
by the system. An exception is the case of an out-of-range
numeric value which may be forced upon the system by
entering the initials of the data enterer. Incorrect but
reasonable values that have been accepted by the system
may be corrected by re-typing them (perhaps after re
establishing the correct context).

ENTER has three additional functions:

• Adding patient abbreviations to the PATIENT file.
• Reviewing data in the UPDATE file.
• Copying and screening data from a worksheet into the

UPDATE file.

66 National Computer Conference, 1977

As an alternative to item-by-item data entry, an entire two
dimensional array (Le., a "worksheet") of data may be
entered. A worksheet is a two-dimensional array of numeric
entries extended to include 8-character labels for the rows
and columns as well as a worksheet name, title, date of
creation and date of last modification. A worksheet is
stored by the system as a file with the same name as that of
the worksheet. Worksheets provide the data organization
required by the ANALYZE/DISPLAY activities. The row
and column labels can be used to reference patients,
relative times, and items. These labels are used to direct the
data entry process. Data entry via worksheets provides the
facility for entering "derived" data (i.e., data produced as
the result of the analysis of raw data) into the STUDY
DATA file. It also provides another data entry route that
may be more convenient in some circumstances.

As indicated above, the clinician can interactively review
the contents of the UPDATE file and edit it to the extent of
deleting blocks of data.

When he is satisfied that the data are correct, the
clinician can request that the UPDATE file be merged with
the data already in the STUDY DATA file. The newly
entered data are organized automatically into panels, those
panels are marked with the internal patient identifier, the
panel number, the date and time of sample, the date and
time of data entry, and the initials of the data enterer, and
the results are merged by date and time of sample. The
merge process checks for existing instances of panels with
the same date and time as those being merged and for item
values previously entered in those instances.

The investigator is now in a position to retrieve his data
from the STUDY :bAT A file and to format it in a variety of
ways: into worksheets, as a display at the terminal, or as a
file to be passed to an externally generated applications
p~ckage (Such a file is a "communication" file in CLINFO
terminology.) .

RETRIEVE

The data in the STUDY DATA file may be viewed as
values associated with points in a three dimensional space.
Figure 2 illustrates that space. The axes are labeled "PA
TIENT", "TIME," and "ITEM" to reflect the parameters
that uniquely identify a data value.

The three dimensional space is sparsely populated with
data points, especially if the TIME axis is taken to repre
sent absolute dates and times. Moreover, not all data are
collected about all patients for all of the expected times.

It is the intent of the RETRIEVE activity to identify a
planar slice of the data space and to abstract part of that
slice into a two-dimensional form (i.e., a worksheet). Se
lecting a slice as illustrated in Figure 2 results in what was
referred to above as a flowsheet for that patient. A slice
parallel to the PATIENT-ITEM plane produces an array of
items for a group of patients at a particular time. That time
may be either an absolute date and time, or it can be a time
relative to an event (e.g., two hours after glucose inges
tion). Finally, a slice parallel to the PATIENT-TIME plane

/
/

/

/
/

/

/
/

P
A
T
I
E
N
T

P

/
/

/

ITEM

Figure 2-A three-dimensional representation of a time-oriented data file. I-I
is a panel of items for patient P at time T

results in a worksheet containing the time history of a
particular item for a group of patients (again either absolute
or relative time).

The clinician constructs his retrieval request interactively
under the control of the schema. In particular, coded items
(e.g., sex may be either "male" or "female", but is
encoded as either 0 or 1) are referred to in terms of the
external form ("male," "female") while the system deals
with them as numeric values (0 or 1). The values of items
playa role if the clinician wishes to restrict the panels being
retrieved by specifying conditions that the values must
satisfy.

When he completes the specification, the system surveys
the appropriate parts of the STUDY DATA file and pro
duces a worksheet with the rows and columns appropriately
labeled.

The retrievals discussed above are limited to numeric (or
coded) items. However, textual panels may be retrieved
and displayed at the terminal or passed in their entirety to a
communication file. This facility allows the clinician to
review his notes about a patient or to pass demographic
data to a BASIC program that, for example, produces
mailing lists.

For those retrievals in which a list of patient abbrevia
tions is appropriate (e.g., a slice parallel to the PATIENT
ITEM plane), the investigator may provide that list by
giving the name of a SUBSET.

SUBSETS

As mentioned above, subsets are files containing patient
abbreviations and numeric keys. The files have the same
structure as the PATIENT file.

Subsets are created in a variety of ways:

• By listing patient abbreviations.
• By the usual set operations (e.g., intersection and

union) among existing subsets.
• By requiring that a patient's data in the STUDY DATA

file satisfy a set of conditions.
• By requiring that a patient's data in a worksheet (e.g.,

the values in a row labeled with the patient's abbrevia
tion) satisfy a set of conditions.

The sets of conditions mentioned in the last two members
of the above list are made up of lists of either conjunctions
or disjunctions (but not both) of range restrictions on the
values of items. A sample set of conditions is:

If 30:s; age :s; 65
and if 120:s; systol :s; 140
and if sex = male

The last line illustrates the use of a coded item which takes
on one of a set of discrete values.

In addition to the conditions placed on item values, the
time at which a sample was taken can play a part in the
selection. For example, the above conditions might be
required to hold in the third hour after the ingestion of
glucose.

In any case, the usual result of a retrieval using either a
subset or all of the PATIENT file is a worksheet.

ANAL YZE/DISPLA Y

The CLINFO approach to data analysis is to abstract the
desired data from the STUDY DATA file (which can cause
very intensive accessing of the disk storage) into a work
sheet which fits into the user's working space in main
memory. The worksheet can then be manipulated effi
ciently, especially since its contents need not be re-ab
stracted from the STUDY DATA file each time a new
question is asked of those contents.

A sample worksheet has the format illustrated in Figure
3.

WORKSHEET CLINICAL
TITLE Clinical Characteristics of Diabetic Patients
CREATED 12117175 MODIFIED 12117175
OF ROWS 7
OF COLS 4

ROWS/COLS 2 4
LABELS age sex %idl wt dur diab
1 case 1 27 male 100 12
2 case 2 24 female 98 11
3 case 3 32 male 98 15
4 case 4 34 male 94 20
5 case 5 21 male 96 9
6 case 6 23 male
7 case 7 28 female 99 JO

(Note: ... indicates missing values)

Figure 3-A sample worksheet

Data Management for Ciinicai Research 67

A worksheet can hold approximately 2200 entries and its
dimensions can vary within that restriction. In the case
above, the row labels are patient abbreviations and the
column labels are item names. These labels and the con
tents of the worksheet would ordinarily be supplied by the
retrieval process. In addition, Figure 1 indicates an INPUT
facility that allows the direct creation of worksheets, the
labelling of their rows and columns, and the entry of data
into those rows and columns. This facility allows the
investigator to use CLINFO's analysis and display features
independently of the STUDY DATA file.

CLINFO maintains a "current" worksheet so that the
same worksheet can be used in a variety of situations
without the user respecifying it as the worksheet of interest.
Most of the worksheet analysis and display functions apply
to the current worksheet. The main worksheet manipulation
facilities are:

• Select a worksheet as the current one by typing its
name. If there is no worksheet by that name, create
one as specified by the user.

• Display a worksheet at the terminal (see Figure 3).
• Label worksheet rows or columns.
• Enter data into a worksheet by row or by column or by

individual cell.
• Discard (destroy) a worksheet.
• Sort a worksheet by rows or columns.
• Edit a worksheet by adding, deleting, or moving rows

or columns.
• Copy a sub-array of a worksheet, with labels, into the

same or another worksheet.
• Print a worksheet on the system printer.
• Display a list of all the worksheets in this study.

Worksheets created by the retrieval process or by direct
means can be used by the analysis facilities. In general, the
analyses can be made to apply to sub-arrays within the
body of a worksheet. The results of some analyses may be
stored in worksheets to minimize transcription and to make
those results available for further analysis.

The CLINFO analysis facilities include:

• Descriptive Statistics (means, standard deviations,
etc.).

• T Test.
• Chi Square Test.
• Linear Regression (simple and multiple).
• Analysis of Variance.
• Cross Tabs.
• Scatter Plots and Bar Charts.
• Histograms.
• Frequency Distributions.
• Normality Test.
• Non-parametric Paired Tests.

In addition, special calculations may be performed on a
worksheet, and the result of these calculations are stored in
the worksheet. This facility replaces in part the need for
special purpose computer programming. These calculations

68 National Computer Conference, 1977

are:

• Generate values in a row (or column) as the result of
evaluating a single algebraic-like expression involving
other rows (or columns) as variables.

• Generate truth values (0, 1) on the same basis.
• Perform special calculations such as cumulative sum,

time differences, etc.

SUMMARY

The foregoing discussion does not describe the properties
and facilities of the CLINFO prototype in their entirety.
The intent is rather to outline those properties and facilities
and to emphasize the idea of a personal, integrated, highly
interactive system placed in the hands of personnel whose
primary interest is to use the system as a tool.

At least one CLINFO prototype has been in daily use by
medical personnel since January of 1976. The acceptance of
the system seems to be good and it is being used in
productive ways. Moreover it is being used personally by
senior medical staff, that is, the research staff for which it
was designed.

Our experience to date indicates that modern data base
techniques (e.g. the SCHEMA), when expressed in the
user's own terminology, are readily understood, accepted,
and used by those personnel. The use of terms such as
"PATIENT", "PANEL", and "WORKSHEET" and the
time orientation of the STUDY DATA file are not acciden
tal. They play an important role in making the computer
scientist's techniques understandable by and useful to the
clinical researcher.

Another point of interest is the utility of two distinct data
structures, the STUDY DATA file (and its associated files)
and worksheets. The STUDY DATA file acts as a pool of
data whose contents can be abstracted and arranged into a
form more suitable for viewing and analyzing (i.e., a work
sheet). In addition, worksheets serve to store data and to
communicate them between steps in the analysis process.

ACKNOWLEDGMENTS

Although the authors accept the responsibility for the
words in this paper, a much wider group is responsible for
the content those words express. We would like to express
our appreciation to our co-contractors Howard K. Thomp
son, Jr., M.D., at the Baylor College of Medicine, T.
Graham Christopher, M.D., at the University of Washing
ton, and Arthur W. Nunnery, M.D., at the University of
Oklahoma, our project officer, William R. Baker, Jr.,
Ph.D., of the NIH, and to our colleague Thomas L.
Lincoln, M.D., of the Rand Corporation. They have all
contributed significantly to the design and continuing devel
opment of the CLINFO prototype. This research was
supported by Contract No. NOI-RR-5-2111 from the Divi
sion of Research Resources, National Institutes of Health.

REFERENCES

I. Palley, N. A., and G. F. Groner, "Information Processing Needs and
Practices of Clinical Investigators-Survey Results," AFIPS Conference
Proceedings (1975), Vol. 44, AFIPS Press, Montvale, New Jersey, 1975,
pp. 717-723.

2. Groner, G. F., N. A. Palley and N. Z. Shapiro, "A Structural Characteri
zation of Clinical Research Participants and Their Activities," R-1540-
NIH, The Rand Corporation, January 1975.

3. Groner, G. F., M. D. Hopwood, N. A. Palley, N. Z. Shapiro, and W. L.
Sibley, "A Plan for the Development and Evaluation of a Data Manage
ment and Analysis System for Clinical Investigators," R-1541-NIH, The
Rand Corporation, August 1974.

4. Sibley, W. L., M. D. Hopwood, G. F. Groner, and N. A. Palley, "A
Prototype Data Management and Analysis System for Clinical Investiga
tors: An Initial Functional Description," R-1621-NIH, The Rand Corpo
ration, August 1974.

5. Data General Corporation, Extended BASIC User's Manual, publication
093-000065-4, September 1973.

6. Fries, James F., "Time-Oriented Patient Records and A Computer
Databank," The Journal of the American Medical Association, Vol. 222,
December 18, 1972.

7. CODASYL Data Base Task Group (DBTG) Report, April 1971. Available
from the Association for Computing Machinery.

Why restrict the modelling capability
of codasyl data structure sets?

by CHARLES w. BACHMAN
Honeywell Information Systems
Billerica, Massachusetts

ABSTRACT

Several issues have been raised concerning changes to the
capabilities of the CODASYL Data Description Language
specifications for data structure sets. The paper argues
against new restrictions suggested and for removal of
existing restrictions. The issues are:

allow recursive set declaration
keep mUltiple member declaration
allow alternate owner declarations

The concept of "record-roles" is introduced to justify the
need for these capabilities. The expanded capabilities de
scribed offer an alternate means of achieving the same end
result without the need to introduce the "record-role" into
the CODASYL Data Description Language.

INTRODUCTION

The concept of data structure sets has been well established
through the publicity and use of I-D-S, the Honeywell
Integrated Data Store system. 1

-
3 In recent years this con

cept has been adopted by the various CODASYL commit
~ anfJ tfflheEMed m t~ €O{)AS¥{~ HR.~ ~ript'ffll
Language4 and the COBOL Data Manipulation Language."
A number of hardware and software suppliers have imple
mented the data structure sets of these languages (DDLI
DML) as part of their systems. They include:

IDMS
I-D-S

I-D-S II
EDMS
DMS 1100
PHOLAS
PHOLAS

(Cullinane for IBM 360/370)
(Honeywell GE2oo, GE4oo, GE6oo,
H60oo)
(Honeywell for H66, H64)
(Xero Sigma 6/7/8)
(Univac for Univac 1100 Series)
(Philips for Unidata 7000, PI0(0)
(Siemens for S4004)

Other implementations have been reported for CDC and
DEC.

69

The capabilities of the data structure set, as developed in
I-D-S and now defined in both the CODASYL DDL and the
COBOL DML, provide for set-type declarations which:

(1) restrict the record type declared as owner to be
different from any of the record types declared as
member.

(2) permit declaration of one or more record types to
serve as member records of an occurrence of a set
type, and

(3) restrict to one the number of record types which can
be declared to serve as owner records of occurrences
of a set type.

THE PROPOSALS

This paper is a refinement of a working paper written in
response to an assignment accepted at the IFIP-TC2 meet
ing on Data Description Languages held in Namur, Belgium
in January 1975. There were three closely related proposals
for changes to the CODASYL DDL discussed at that
meeting. These proposals relate directly to three points
enumerated in the prior paragraph. Assignments were given
to defend a number of such proposals. The proposals
interrelated and my working paper treats them as a single
concept.

The first proposal, which was unanimously supported at
the meeting, was to remove the restriction that the record
type declared as owner could not also be one of those
declared as member. I strongly concurred with this pro
posal as a removal of an unnecessary restriction.

The second proposal was to add a restriction that only
one record-type could be declared as member of a particu
lar set-type. This proposal received mixed support. I
strongly disagreed with this proposal, for essentially the
same reasons that I support the first and third proposals. It
adds an unnecessary restriction.

The third proposal was to remove the restriction that
only one record-type can serve as owner of a particular set
type. This proposal received scant attention. The meeting
did not express an opinion on the subject. I strongly
recommended it, as I have done to the DBTG at least
seven years ago. It is the removal of a restriction.

70 National Computer Conference, 1977

ARGUMENTS

There are several arguments for permitting a set-type to
permit the record-type declared as member to be the same
as the record-type declared as owner. There is a specific
argument which will be treated first and then a general
argument which relates to all three proposals mentioned
earlier.

The specific argument treats the need for tree-like data
structures, catalogues, organization structures and parsing
trees. For these structures, it is necessary to support
recursive sets, which provides the capability to build trees,
with branches which have branches, which have branches,
etc. An example of this is illustrated in Figure 1.

If all the straight lines in Figure 1 are considered to be
"branches," then this structure can be built with a single
record type and a single set-type. However, the member
ship of the "branch" record-type in the "fork" set-type
must not be mandatory. A record declared to be as the
lowest level branch is never a member of a "fork" set
occurrence. This special branch is characterized as the
trunk. Figure 2 is a data structure diagram6 which illustrates
the branch/fork structure.

In this data structure diagram, the "fork" set-type is
illustrated with a broken line, meaning that the "branch"
record-occurrences are sometimes members of it. That is,
they are members if they are not the "trunk" branch of the
tree. Note that all branch record-occurrences, whether or
not they are the trunk, own "fork" set-occurrence with
zero, one, or more subordinate "branches" records.

The third Namur proposal, which supports alternative
owners in data structure sets, would permit the trunk
branch to be treated as a distinctly different type of entity.
Figure 3 is a redrawing of Figure I.

It illustrates a tree with one trunk and many forks and
branches. When this is drawn as a data structure diagram,
the illustration of Figure 4 is developed. This structure has
some advantages.

The "branch" record-occurrences can now be treated as
mandatory members of the "fork" set-type, i.e., no
branches are floating in the air. This can be very important

Figure I

'l'ree Structure
(data structure diagrar::.)

- -,-
/ "-

"fork"
I ~

set \

" ""'"- -- branch

Figure 2

from a naming point of view, as each branch needs a field
for its "branch name" while the trunk does not need such a
name. Branches are frequently named with an articulated
grammar. All the branch names at a single fork of the tree
must have unique local names. The higher level branches
(i.e., the branches which are farther from the trunk), are
uniquely named· by concatenating their unique local names
to the tree unique name of the branch immediately below.
This is expressed below in BNF (Backus/Nauer/Form)

(branch-name):: = (character-string) I
(branch-name) < articulation-character)
(character-string)

(character-string):: = (character> I (character-string)
< character)
< character): : = a I b I c I I z I 0 I 1 I I 9
<articulation-character):: =any symbol which is not a blank

or a character

In our information systems today, there are many exam
ples of tree structures. In catalog (file) systems, we find

Tree

Figure 3

directories of directories of directories of. . . of named
files. In corporate organizations we find companies which
have departments, which have departments, etc. Figure 5 is
a data structure diagram which illustrates this.

This example illustrates a specific need for this type of
structure and supports the proposal. Some will argue that
this is an incorrect approach to the fundamental corporate
organization structure and that they are really hierarchies of
different types of organizational-units. At one time, the
General Electric Company had a well defined hierarchical
organization structure which is illustrated in Figure 6.

If you were a "section" manager, you knew exactly
where you were in the management hierarchy. This is an
easier structure to handle manually than by computer, as
people did not get quite as upset when someone thought it
appropriate for a particular "unit" manager to report di
rectly to a "section" or "department" manager. If this
organization structure were declared to an I-D-S database
system with the structure illustrated in Figure 6, then no
"unit" could directly report to a -"section" or "depart
ment", it would have to be assigned to a "subsection."

The proposal to support alternative owner record-types
for a single set-type should be accepted because it is useful.
It does not require that the database administrator use
either the structure of Figure 5 (alternative owners) or
Figure 6 (unique owners). It should be supported because it
allows each administrator the choice.

The more general argument, for the support of alternative
owner record-types for a set-type, also supports the need to
retain the capability for multiple member record-types for a
set-type. In an information system, real world entities are
represented by records. These entities are classified by
entity-type in order to facilitate the processing of data
concerning them. Further, each entity-type may portray
several concurrent roles or behavior patterns and some
times these roles are shared by other distinctively different
entity-types. For example, a person, or a company, or a
governmental unit may serve in the role of "employer" of
people, and as an "owner" of property. Within such a
designated role, the record-types representing the entity
type~ should be capabl~ of being the owner or memberof a

Tree Structure With Distinctive Trunk
(data structure diagram)

"fork"
set

trunk

branch

Figure 4

CODASYL Data Structure Sets 71

Corporate Organization Structure
(data structure diagram)

"department"
set

company

department
unit

Figure 5

set-type which is role related, and be the holder of a field
which is role related. Figure 7 is a data structure diagram
which illustrates the employer role played by persons,
companies and government units.

To model this structure, it is necessary to declare the
"person" record-type, "company" record-type and "gov-

General Electric
Corporate Structure
Circa 1970
(data structure diagram)

co~ration

•
group

+
division

•
department

i

section

t
sub-

section

•
unit

Figure 6

I
I

72 National Computer Conference, 1977

Record-'Iypes With "Employer" Role
(data structure diagram)

person company governrr.en tal
unit

t l I \
J

\. /

'--_ / "e~ployer-->employee" set

Figure 7

ernmental unit" record-type such that all are able to
assume the rule of owner of the "employer~employee"
set. It is necessary to declare the "person" record-type as a
sometime set member, "sometime," since all persons are
not necessarily employers.

In the case of a person who is self-employed, the same
"person" record would be the owner and member of the
same occurrence of the "employer~employer" set. Both
the alternative owner (prop. 3) and recursive set (prep. 1)
proposals would need to be accepted to support this struc
ture.

The reader should glance back to Figure 6, one of the
possible means of implementing the organizational unit
aspects of a corporate structure. Given this structure, now
imagine how the organization-to-employee relationship
would have to be handled. Each organizational record,
from the "corporation" record through to the "unit"
record, must be able to handle the role of employer. All
seven of the organizational records need to be declared as
alternative owner types to the "organization~employee"
set. Figure 8 illustrates this extension to Figure 6.

If one assumes that each of the units needs to have a
manager, who is a person, then each of these seven
organizational unit role record-types must also be declared
as a member in the "managed" set. The support of the
"managed" set gives an example of the usefulness of the
ability to declared mUltiple record-types as members of the
same set-type, (Proposal 2). Figure 9 illustrates the further
extension of Figure 6 to include the .. manager
~organization" set.

RECORD-ROLE CONCEPT

For the theoreticians (and it is they who have iargeiy
argued for reducing the number of member record-types
declarable for a set-type to one, and keeping the owner
types declarable to one) the introduction of the "record
role" concept may be of great importance. This is because
there will be no argument from the practitioners over
having only one role declared as the owner of a set-type
and only one role declared as the member of set-type if
roles become declarable entities. Furthermore, the owner

and the member declarations could be restricted to be
different "roles."

In the work at Honeywell Information Systems on this
subject, the word "record-role" has been used to charac
terize the role concept introduced above. The following
definitions apply:

• A "record-occurrence" is the database representation
of a real world entity.

• A "record-role" is a declaration of the a collection of
the properties (fields and sets) which a record-occur
rence may represent on behalf of one role of a real
world entity.

• A "record-type" is a declaration of a collection of one
or more record-roles which a record occurrence may
represent, while roles are all played concurrently by a
real world entity.

• A "record-class" is the collection of all record-occur
rence of a particular record-type. A record-occurrence
is always in only one record-class, defined by a record
type.

• A "role-class" is the collection of all record-occur
rences of a particular record-role. A record-occurrence

l~ul tiple Ovrner "Employee" Set
(data s tructure diagr;on,'

!'-""

~rtX>ration ,
....... group

t

~ division

•
~ depart:Irent

+
..... section

"employ ee"set

y

~ sub-
section

•
employee ~- unit

Figure 8

~ultiple Nember
(data structure

I "departIrent" set

"employee" set

mployee unit

Figure 9

is in one or more many role-classes depending upon its
record-type declaration .

• A "role-occurrence" is a subdivision of a record
occurrence which is the representation of that record
occllrrcnce p!ayirrg otle rule.

This distinction between record-role and record-type has
not been made in existing database systems. While a record
type may have represented several record-roles, there was
no mechanism of sharing the record-role declarations be
tween two or more record-types. Thus the same fields and
sets, relative to the role, had to be multiply declared, once
for each record-type which played the role. This led to the
requirement for mUltiple member declarations and alternate
owner declarations for sets.

With the record-role concept, the declaration of fields,
groups and sets are all associated with the record-role
declaration. Field may be accessed using field-names which
are qualified by record-role-name rather than record-type
names. Sets are ordered by role declared fields. Set owner
selection is based upon role declared fields. Record occur
rences of different record-types coexist within the same set

CODASYL Data Structure Sets 73

type as owners or members when the record-types share
the same record-role with the declared function.

In the paper "The Evolution of Data Structures, "7 there
was a sequence of data structure diagrams which were used
to illustrate the progressive introduction of new meta ob
jects and new inter-object relationships into data structuring
capabilities. The first two of the following three data
structure diagrams are reprinted from that article. Figure 10
illustrates the meta entities: record, field, group, owner,
member and data-structure-set, where there may be an
unlimited number of member record-types and owner re
cord-types declarable for a set-type. The diagram of Figure
10 is the meta object structure which I recommend to
DBTS and have recommended and used for a number of
years.

Figure 11 is a simplification of Figure 10 where the
restrictions of a one owner entity-role and a one member
entity-role have been placed on the set-type. The set-owner
and set-member meta entities have been merged with the
set-type meta entities, as they exist on a 1 : 1: 1 basis. This
yields the restricted structural capability which was recom
mended by some of the attendees at the N amur
Conference.

The data structure diagram of Figure 12 introduces the
meta entity "record-role". In this structure, the "record
role" meta entity has displaced the "record-type" meta
entity in its direct relationship to the set, group and field.
The record-type concept is now at the side, associated by a
declared relationship with one or more' 'record-roles" .

"Record-role" declaration may be associated with one or
more record-types .. From the viewpoint of the set-type,
there is only one "owner" record-role and only one "mem
ber" record-role. This fits more easily into the viewpoint of
both the relational model and the Data Independent Access

Meta Entity Structure For Cnrestricted Set/Record Relationships
(data structure diagram)

group
ty.,e

recorc:.
type

fiel'::
type

set
!.tember

Figure 10

set
type

74 National Computer Conference, 1977

Meta Entity Structure For Restricted SetjRecord Relationship
(data structure diagram)

group
type

record
type

set
type

"member" set

field
type

Figure II

Model. However, the requirements of the real world which
we wish to model can be satisfied as each real world entity
can be recognized acting in one or more roles and its
record-occurrences are combined with the declared role
occurrences.

At this time I have no interest in trying to introduce the
"record-role" concept into existing data description lan
guages and data manipulation languages. Rather, I wish to
provide the rationale, within these languages, for:

(I) recursive set-types,
(2) multiple member set-types, and
(3) mUltiple owner set-types

~eta Entity Structure With Record.Pole Concept
(data structure diasrarn)

group
type

record
role

field
type

set
type

Figure 12

record
type

record-role
association

which provide an alternate means for achieving the objec
tives achieved by the record-role concept while remaining
within the limitations of the presently available meta enti
ties. However, the eventual introduction of the "record
role" may be the unifying factor that we seek.

The data structure diagramming technique has been ex
tended to support the concept of record-role. Figure 13 is a
redrawing of Figure 7 with focus on the record-roles of
employer and employee.

They are illustrated by the two hexagons so designated.
The record-types with which the roles are associated are
designated by the background boxes. The employer role is
played by the company, person and governmental-unit
record-types. If classical data structure diagrams were
thought to represent record-types and the relationships
between them, then the new diagrams illustrate record
roles, their associations with record-types and their rela
tionships with other record-roles. Record-roles are illus
trated by hexagons and the background boxes name the
record-types which play the role. Each record-type is
considered to have one or more roles. In this example
"person," "company" and "government-unit" are the
record-types. "Employer" and "employee" are record
roles. A complete data structure diagram would show each
record-type once as a box on top of a stack of hexagons.
Each hexagon representing a record-role played by the
record-type. It would also show each record-role, once as a
hexagon at the top of a stack of boxes. Each record-type
would appear once more as a background box behind each
record-role it plays. Figure 13 is thus an incomplete data
structure diagram as it shows the record-types playing each
record role but does not graphically illustrate each record-

Employer and Employee Record~Roles
(data structure giagram)

I-unit

"employer-->emplo ee"
set

Figure 13

Person, company and Governmental-unit i.ecord .. Type

Figure 14

governrrental
unit

L...-___ ~I

type with its record-roles. Figure 14 illustrates each record
type with the record-role that it plays. Thus most old data
structure diagrams can be considered as being examples
where the record had only one record-role. Thus no role
factoring is necessary. If alternative owners or mUltiple
members exist in those diagrams, then the record-roles for
them has not yet been factored. The importance of the
record-role concept to data structure diagrams may not be
immediately obvious at the first comparison of Figures 7
and 13. However, consider the following analogy. If identi
cal programming code appears in several parts of a com
puter program, it is common to factor this code out as
subroutines or at least as macro procedures so that the
documentation is more easily understood. The record-role
concept is the data structure diagram equivalent of a
subroutine call. The diagram illustrates the shared aspects
of the record-role and also all the places it has been
invoked. For data structure diagrams, representing complex

CODASYL Data Structure Sets 75

their relationships, the record-role has proven to be ex
tremely useful in simplifying the diagrams. They are much
more readable. Of necessity, these diagrams are only
effective after the new concept has been understood, used
awhile and accepted.

SUMMARY

The data structure set is almost the only structural tool
currently available to the database administrator to repre
sent the relationships between entities in his enterprise. At
this time when all of its usages are unknown, it seems
desirable not to place any restrictions upon its application.
Proposal I, to permit recursive sets (where owner and
member are of the same record class), is a proposal to
remove a restriction. Proposal 2, to prohibit mUltiple mem
ber record-types, is a proposal to add a restriction. Pro
posal 3, to permit alternative owner declarations, is a
proposal to remove a restriction. These facilities, within
today's record-network model would provide a workable
implementation of the role concept, an expression of the
evident and important mUltiple behavior patterns which are
characteristic of real world entities.

REFERENCES

I. Bachman, C. w. and S. B. Williams, "A General Purpose Programming
System for Random Access Memories," Proceeding AFIPS Conference
Proceeding. FJCC Volume 26 AFIPS Press Montvale N. J., 1964 pages
411-422.

2. "Integrated Data Store," DPMA Quarterly, January I%S.
3. "Software for Random Access Processing," Datamation April I%S,

pages 36-41.
4. CODASYL Data Description Language Journal of Development. June

1973, (cI3.6122: 113) Superintendent of Documents, U. S. Government
Printing Office, Washington D. C. 20402.

5. CODASYL COBOL Journal of Development. January 1976, (IIO-GP-ID)
Material Data Management Branch, Dept. of Supply and Service, Sth
Floor, 88 Metcalfe Street, Ottawa, Ontario, Canada, KIA OSS.

6. "Data Structure Diagrams, Data Base I, 2," 1969, Quarterly Newsletter
of ACM SIGBD, pages 4-10.

7. "The Evolution of Data Structures." Proc NordDATA Conference.
~\ugus~ i'r.J~ Cu~~nhdgtr.l.' D~il1':flaJk, pc.lg,~~ 1075- ~093.

The entity-relationship model-
A basis for the enterprise view of data

by PETER PIN-SHAN CHEN
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

The concept of the enterprise view of data is very useful in
the database design process and in the construction of
conceptual schema. This paper discusses the use of the
entity-relationship approach in describing and maintaining
the enterprise view of data. Fundamental operations for
changing the enterprise schema are presented. Finally, an
example is given to show the differences between the
entity-relationship approach and the data-structure ap
proach in modeling the enterprise view of data.

INTRODUCTION

The subject of the logical view of data has attracted
considerable attention in the past ten years. However, most
researchers have focused on the user view of data. The
need for studying the enterprise vIew of data was not
recognized until recently. Different users of a database may
have different views of the database, but the enterprise
should have a unique and consistent view of the database.
This is particularly important in designing a logically mean
ingful and consistent database. The concept of the enter
prise view of data is very useful in the database design
pr.oces~ and in.the desigIJ g£~~~,

Enterprise view and database design

Database design is a process to organize data into a form
which matches the underlying data model of the database
management system. There are three major types of data
base management systems: network, hierarchical, and rela
tional. In the network database management systems,
which include Honeywell's IDS and UNIVAC' DMS-llOO,
data will be organized into different types of records and
can be represented by a data-structure diagram! (see Figure
I). In the hierarchical database management systems,
which include IBM's IMS, data will be organized into a
form similar to but more restricted than the data-structure
diagram. In the relational database management systems,2
data will be organized into a set of tables (or "relations").
In general, to design a database is to decide how to

77

organize data into specific forms (record types, tabies) and
how to access them. Up to now, there are very few tools
available to aid the database design process. Usually, the
database designer relies on his own intuition and experi
ence. Thus, the resulting database may not satisfy com
pany's objectives and may cause problems in company's
operations.

Another related problem in database design is that the
output of the database design process-the user schema (a
description of the user view of data)-is not a "pure"
representation of the real world. One of the reasons is that
the database designer is restricted by the limited capabili
ties of the database management system. For example, the
many-to-many relationships between entities are difficult to
represent directly in some database systems. Another rea
son is that the user schema may contain some features
related to the storage representation of the database. For
instance, it may describe which record types can be directly
accessed and how to access other record types. In addition,
the user schema is usually designed to be efficient for a
certain type of data processing operations. For example,
the data about employees may be grouped into two record
types, employee-master and employee-detail, to improve
the retrieval performance. Therefore, the user schema is
usually not a direct representation of the real world. This
mftk~ .• ~tl.qe'" Iil("h~ dfffi(:'t.rl+. .~{'. '.rnde~nd a!!d d!fficutt
to change.

Figure I-Conventional database design process

78 National Computer Conference, 1977

A possible solution to the above problems is to introduce
an intermediate stage in the database design process: defin
ing the enterprise schema, which is a "pure" representation
of the real world and is independent of storage and effi
ciency considerations. The enterprise schema will then be
translated into different types of schemata for different
database management systems (see Figure 2). It can also be
translated into several schemata for the same database
management system to optimize different types of data
processing operations. There are several advantages of this
approach:

(1) The enterprise schema is easier to understand than a
user schema since the former does not have the
restrictions of the underlying database manageme;}(
system;

(2) The enterprise schema is more stable than the user
schema, since some types of changes in the user
schema may not require any change in the enterprise
schema. If the enterprise schema needs to be chrnged
to reflect the changes in the enterprise environment,
the changes can be performed easily since efficiency
and storage issues are not considered.

Enterprise view and conceptual schema

What is the difference between the enterprise schema and
the conceptual schema proposed by the ANSIIX3/SPARC
group?3 Basica1Jy, they are very similar since both are
descriptions of the enterprise view of data. In the SP ARC's
approach, the conceptual schema serves as the interface
between the external schema (user view of data) and the
storage schema (physical view of data) (see Figure 3). The
requirement of serving as an interface between two other
schemata may introduce some undesirable features into the
conceptual schema. If this restriction on the conceptual
schema is ignored, there is almost no difference between
the conceptual schema and the enterprise schema. There
fore, the techniques discussed in this paper are also suitable
for describing and maintaining the conceptual schema in the
SPARC's architecture.

Real World Enterprise Schema User Schema

~
~o the enterprlse

'-

Figrue 2-Enterprise schema as an intermediate step in database design

Real World AI';SI/X3/SPARC Architecture

~
User

<-----------~~

Figure 3-Enterprise view and conceptual schema

Approach used in the paper

In order to describe the enterprise view of data, a mental
framework to model the real world is needed. Different
people may be used to different mental frameworks. The
mental framework used in this paper is the Entity-Relation
ship (E-R) model. 4.5 The E-R model and similar ap
proaches6- 9 have been found useful in modeling the real
world. A diagrammatic technique called the Entity-Rela
tionship (E-R) diagram will be used in this paper to repre
sent the enterprise view of data.

This paper is divided into three parts. The first part
discusses how to use the E-R model and diagrammatic
technique to describe the enterprise view of data. This is an
extension of the work reported in Reference 5. The second
part describes fundamental operations for changing the
enterprise view of data. This is an area where very little
work has been done. The operations proposed in this paper
will be useful in maintaining the enterprise schema. The
third part uses the E-R approach to analyze an example
given by Bachman10 concerning changes in the conceptual
schema.

MODELING THE REAL WORLD USING THE
ENTITY-RELATIONSHIP MODEL AND
DIAGRAMMATIC TECHNIQUE

In this section, we shall use examples to show how to use
the Entity-Relationship (E-R) model and diagrammatic
technique to describe the enterprise view of data. A more
formal definition of the model can be found in Reference 5.

It is assumed that the responsibility of defining and
maintaining the enterprise schema belongs to a person
called the enterprise administrator. The following is the
suggested procedure for the enterprise administrator to
define the enterprise schema:

(1) identify entity sets of interest to the enterprise
An entity is a "thing" which can be distinctly

identified. According to the needs of the enterprise,
entities can be classified into different entity types
such as EMPLOYEE, STOCK_HOLDER, An entity
set is a group of entities of the same type. In the E-R

EMPLOYEE STOCK~HOLDER

Figure 4-Entity sets

diagram, an entity set is represented by a rectangular
shaped box (see Figure 4). The terms, "set" and
"type," can be interchanged in the E-R diagram. The
reader may use either one to interpret the E-R
diagram.

There are many "things" in the real world. In
addition, different enterprises may view the same
thing differently. It is the responsibility of the enter
prise administrator to select the entity types which
are most suitable for his company.

(2) identify the relationship sets of interest to the enter
prise

Entities are related to each other. Different types of
relationships may exist between different types of
entities. A relationship set is a set of relationships of
the same type. For example, PROLEMP, which
describes the assignment of employees to projects, is
a relationship set defined on two entity sets, EMP
and PROJ. A relationship set can also be defined on
more than two entity sets. For example,
PROLSUPPj> ART is a relationship set defined on
three entity sets PROJ, SUPP, and PART. In the
entity-relationship diagram, a relationship set is rep
resented by a diamond-shaped box with lines con
necting to the related entity sets (see Figure 5). The
"m" and "n" associated with the PROLEMP rela
tionship in the E-R diagram indicate that the relation
ship is an m: n mapping. That is, each employee may
be associated with several projects, and each project
may have several employees. In certain companies,
each employee belongs to at most one project, and
the PROLEMP relationship is a 1: n mapping.

There are many types of relationships between
entitie~. TA~ r~e$popsibilltj'. of the,ente.rpri.se .. adm.inis~
trator is to select the relationship sets (or types)
which are of interest to the enterprise. He also has to
specify the type of mappings (1 : 1, 1: n, m: 1, or m: n)
of the relationships.

(3) identify relevant properties of entities and relation
ships (i.e., define value sets and attributes)

Entities and relationships have properties, which
can be expressed in terms of Attribute-value pairs.
"Blue," and "4" are examples of values. Values can

~ ____ M ____ ~ N

Entity Set Relationship Set

Figure 5-Relationship set

EMP

Entity Set

The Entity-Reiationship Model 79

be classified into different types such as COLOR or
QUANTITY. A value set is a group of values of the
same type. An attribute is a mapping from an entity
set (or a relationship set) to a value set (or a group of
value sets). For example, "address" is an attribute
which maps entities in the entity set EMP to values in
the value set NAME~OF_LOC. Note that we relax
the constraint imposed in Reference 5 that the map
ping from the entity set to the value set has to be a
function (i.e., m: 1 mapping). In other words, we now
allow that an attribute (such as address) can have
several values (such as locations) for the same entity
(employee). This relaxation in the definition of attri
bute will make the changes in the enterprise view
simpler. This point will become clear in the next
section.

In the E-R diagram, a value set is represented by a
circle, and an attribute is represented by an arrow
directed from the entity set (or the relationship set) to
the desired value set(s) (see Figure 6). After selecting
entity sets and relationship sets, the enterprise ad
ministrator identifies the attributes and value sets
which are relevant to the company's operations.

The three steps stated above cover a major part of the
enterprise schema. For simplicity, we shall not discuss in
this paper other issues related to the enterprise schema
such as integrity constraints.

To design a database, the enterprise administrator first
draws an E-R diagram such as the one shown in Figure 7.
He then drew the attributes and value sets for each entity
set and relationship set. The E-R diagram is then translated
into a data-structure diagram or a set of tables ("relations")
(see Figure 2). The rules and procedures used in the
translation process were discussed in Reference 5. Here,
we shall investigate how to change the enterprise schema
(the E-R diagram) itself.

MODIFICATION OF THE ENTERPRISE VIEW

.t\'tthougb the errtcl1'rIst: 5Cticrtta is more stable U:ldil d

user schema, it still needs to be changed from time to time

Entity Set

Attributes

Value Sets

AGE ADDRESS

Figure 6---Attributes and value sets

Upper Conceptual
Domain

Lower Conceptual
Domain

80 National Computer Conference, 1977

Figure 7-An entity-relationship diagram (with entity sets and relationship
sets only)

to reflect the changes in the enterprise environment. Ex
cepting a paper by Bachman,1O very little work has been
done in this area. In this paper, we use the E-R model as a
basis for analyzing different types of changes in the enter
prise view of data. We not only propose a set of operations
but also analyze the consequences of these operations.

There are five basic types of operations: add, delete,
split, merge, and shift. The first four operations are applica
ble to entity sets, relationship sets, attributes, and value
sets. The shift operation is used when the enterprise
administrator would like to view a value set in the old
enterprise schema as an entity set in the new schema or
vice versa. It is useful to think that the E-R diagram
consists of two conceptual domains: (I) the upper concep
tual domain which consists of entity sets and relationship
sets; (2) the lower conceptual domain which consists of
attributes and value sets. We shall discuss the first four
operations in both the upper and lower conceptual domains.
Finally, we shall discuss the shifting an entity set from the
upper conceptual domain to the lower conceptual domain
and the shifting a value set in the opposite direction.

Operations in the upper conceptual domain

The following are the basic operations applicable to
entity sets and relationship sets:

(l) Split an entity into several subsets
For instance, the entity set EMP in Figure 8a can be
split into two entity sets: MALE-EMP AND FE
MALLEMP in Figure 8b. The consequence of this
operation is that the relationship sets associated with
the entity set may also have to be split. For example,
PROLEMP is split into PROL~EMP and
PROLE_EMP (see Figure 8b).

(2) Merge several entity sets into one entity set
This is the opposite operation of (I). The conse
quence is that the related relationship sets may have
to be merged.

(3) Split a relationship set ir:lo several SLlbsets
An example of this operation is: the relationship set

PROLEMP in Figure 8a can be split into two rela
tionship sets, PROLMANAGER and PROL
WORKER, in Figure 8c. Note that the type of
mapping in the new relationships may be different
from that in the original relationship. For instance,
the mapping in PROLMANAGER is 1: n while the
mapping in PROLEMP is m:n.

(4) Merge several relationship sets into one set
This is the opposite operation of (3). Note that these
relationship sets have to be defined on the same
group of entity sets.

(5) Add a new entity set
For example, a new entity set called SUPPLIER may
be added to the E-R diagram in Figure 8a. The result
is shown in Figure 9a. Note that it is possible to have
stand-alone entity sets in the enterprise schema,
although in many cases relationships between the
new entity set and the existing entity sets are estab
lished immediately (see the next operation).

(6) Add a new relationship set
We may add a new relationship set for the new entity
set such as the relationship set PROLSUPP in Figure
9b. We may also add a new relationship set for
existing entity sets such as the relationship set
PROLMANAGER in Figure 9b.

(7) Delete an entity set
For instance, after deleting the entity set EMP in
Figure 9b, we have Figure 9c. The consequences are:
(i) the relationship sets related to the entity set are

- Spli t an ~4----r_--J
- entity se"f'P"

M
4==:" Merge =

N

(a) (b)

Add an entity se~

(-:0 Figure 9a)

F" 8-J Split 1 J Entity 1 S
Igure LMergeJ lRelationshipsJ ets

(a)

Add !:"elationship
sets (PROJ SUPP,
PROJ _MANAGER)

•

(b)

D,let, a /
~

Delete an entity set
relationship set (P7p

:

(EMP)

i
r-;;;,;l ~-- r;;;;-I
~

(el) (0)

F 9-{Add} { Entity } Sets
Igure Delete Relationship

also deleted; (ii) attributes related to the deleted
entity set and related relationship sets are also de
leted.

(8) Delete a relationship set
An example is: delete the relationship set PROLEMP
in Figure 9b, and the result is shown in Figure 9d.
The consequence of this operation is that the attri
butes of the relationships are deleted (not shown in
Figure 9d).

Operations in the lower conceptual domain

Assume that the entities in the entity set EMP have two
~Hri~:!te~, !.EG.~L'~' .. L~ME and PfIDNE, which map the
entities to the value sets NAME and PHONE-# (see Figure
lOa). We shall use these attributes and value sets as the
basis for the discussion of the following operations:

(1) Add a value set
For example, a new value set called DOLLARS may
be added to Figure lOa. The result is shown in Figure
lOb. Usually, this operation is followed by an "add
attribute" operation.

(2) Delete a value set
After deleting the value set PHONE-# in Figure lOa,
we get Figure lOco The consequence is that all
attributes associated with this value set will be de
leted.

(3) Split a value set into several subsets
The value set NAMES in Figure lOa may be
split into two value sets FIRST_NAMES and

The Entity-Reiaiionship Modei 8 i

LAST_NAMES in Figure IOd. The consequence is
that attributes related to the value set may have to be
adjusted. Although the attribute LEGALNAME is
not split in Figure IOd, it is possible to split it into
two attributes: LEGALFIRST~AME and LE
GAL_LAST_NAME. It is the responsibility of the
enterprise administrator to make this decision.

(4) Merge several value sets into a value set
This is the opposite operation of (3).

(5) Add an attribute
For instance, Figure llb is obtained by adding the
attribute OTHER...NAME to Figure Ila.

(6) Delete an attribute
Deleting the attribute LEGALN AME from Figure
Ila, we have Figure lIe. The value set associated
with the attribute will be deleted by another operation
("delete value set") if desired. In some cases, the
value set may be still associated with other attributes
(see Figure l1c).

(7) Split an attribute into several attributes
For example, Figure lId is obtained by splitting the
attribute PHONE in Figure lla into two attributes,
OFFICEYHONE and HOMEYHONE.

(8) Merge several attributes into one attribute
This is the opposite operation of (7). The attributes
have to be defined on the same entity set (or relation
ship set).

Operations between two conceptual domains

Assume that there are two entity sets (EMP and PROJ),
one relationship set (PROLEMP), four value sets
(NAME~OF.J>LACES, SOL-SEL-#, PHONE-#, and

(c) (d)

Figure 1000perations on value sets

82 National Computer Conference, 1977

~ :f\MP

~ Add an attri~ute /

~ e 0
R

-8
(a) (b)

r-----,
I I
I PROJ I

L--r_..J
I
I

NAME

II

~

~
LEGAL_

" '" Split an attribute

Merge ~
,~

LEGAL~OME
N E - - -

88
PHONe

(c) (d)

Figure 11-Operations on attributes

PROLNAMES), and four attributes (ADDRESS,
SOL-SEL-NO, PHONE, and NAME) as shown in Figure
12a. We shaH use them as the basis for the discussion on
the following operations:

(1) Shift a value set from the lower conceptual domain to
the upper conceptual domain
When the enterprise environment changes, it may
become natural to view PLACE as an entity set
instead of a value set. Thus, in Figure 12b "AD
DRESS" becomes a relationship set, and "PLACE"
has an attribute "NAME" which points to the value
set NAME~OF_PLACES. Since PLACE is an entity
set, we may establish new relationships of it with
other entity sets such as PROJ or add more attributes
and value sets to describe properties of "places."

(2) Shift an entity set from the upper conceptual domain
to the lower conceptual domain
When the enterprise environment changes again, it
may become natural to view PROJ as a value set
instead of an entity set. In Figure 12c, PROJ is
deleted from the upper conceptual domain, and the
relationship set PROLEMP becomes the attribute
INVOL VEDJROJ. The entity set PROJ in Figure
12b may have been associated with several value
sets, but only the value set PROLNAMES which is
used to identify the entities PRO] remains in the
lower conceptual domain.

ANALYSIS OF AN EXAMPLE

In a recent paper, Bachman10 uses data-structure dia
grams to illustrate the changes in a conceptual schema. In
this section, we shall first state his example and then use E
R diagrams to interpret his example.

Description of the example using data-structure diagrams

The following is a simplified version of Bachman's exam
ple:

(a) In the beginning, the enterprise administrator de
clared a conceptual schema as shown in Figure 13a.
The reader is assumed to have some knowledge of
the data-structure diagram. 1 Simply speaking, a rec
tangular-shaped box represents a record type, and an
arrow represents a data-structure-set (i.e., 1: n rela
tionship between record types). In Figure 13a, there
are two types of conceptual records, COMPANY and
PERSON, and a data-structure-set "a" repre
senting the fact that each person is associated with
exactly one company and that each company has a
set of personnel.

(b) Later, the enterprise administrator recognized that
the personnel of the company were persons in their
own right. This fact may be discovered at the merger

~OJ I Upper conceptual EMP ElIIP- PROJ

~am~n __ ,/- _} _________ / __ _

d;~:~~tua> ADD3SEC3 6
~JV ~

(a)

(b)

I PLACE ~~_RESS ~ EMP I
1 ~ ::y_) _\ __ ~__ _ (c)

NAlVlE SOC SEC # PHONE INVOLVED_PROJ

@G
Figure 12-Shifting a set from the upper conceptual domain to the lower

conceptual domain and vice versa

9IY'P"'V v,'. ru~_

"a"

(a)
(b)

(d)

(c)

Figure 13-Expressing changes in the enterprise view using data-structure
diagrams

of several companies that some of the persons held
two jobs and were personnel to two of the merged
companies. Figure 13b illustrates the data-structure
diagram for the new conceptual schema. Basically,
the old personnel type record has been split into two
record types, PERSONNEL and PERSON. The
"PERSON" has attributes NAME and ADDRESS
(not shown in the figure).

(c) After a while, the enterprise administrator decided to
factor the address of residence out of the person
record. Figure 13c illustrates the addition of the
"PLACE" conceptual record type and the data
structure-set type ", 'c':' It was aiso assumed "that each
person has a unique address (place).

(d) It is now recognized that people move from place to
place and that it is desirable to know current address
as well as past addresses. Another reason may be: it
is discovered that a person may have more than one
address. In either case, a new conceptual record type
ADDRESS is added to the conceptual schema (see
Figure 13d).

Analysis using entity-relationship diagrams

In the following, we shall use E-R diagrams to explain the
above example:

(a) The E-R diagram in Figure 14a is corresponding to
the data-structure diagram in Figure 13a. There are

The Entity-Reiationship Modei 83

two types of entities, PERSON and COMPANY, in
the enterprise view. Since the mapping between
COMPANY and PERSON is 1: n, the relationship set
PERSONNEL is represented by a data-structure-set
"a" in Figure 13a.

(b) Figure 14b is the corresponding E-R diagram for
Figure 13b. Since the relationship set PERSONNEL
is an m: n mapping, it is represented by a relationship
record type PERSONNEL and two data-structure
sets "a" and "b" in Figure 13b. Note that Figures
14a and 14b have the same entity sets and relation
ship set in the upper conceptual domain, and the
difference is the type of mapping between the entity
sets.

(c) Now the enterprise administrator prefers to view
"PLACE" as an entity set rather than a value set.
Thus, we have Figure 14c. The attribute ADDRESS
in Figure 14b becomes a relationship set in Figure
14c. Since the mapping between PLACE and PER
SON is 1: n, the relationship set ADDRESS is repre
sented by the data-structure-set "c" in Figure 13c.

(d) The enterprise administrator discovers that the map
ping between PLACE and PERSON is an m: n map
ping instead of a 1: n mapping. The new enterprise
view is represented by Figure 14d. Since the mapping
is m: n, the relationship set ADDRESS is represented
by the record type ADDRESS and two data-struc
ture-sets "d" and "e." Note that Figures 14c and 14d

Upper Conceptual
domain

Lower Conceptual
domain

Figure 14-Analysis of Figure I3 using E-R diagrams

(a)

(c)

(d)

84 National Computer Conference, 1977

are almost the same except that the type of mapping
between PLACE and PERSON is different.

In general, the E-R diagram is easier to use to analyze the
changes in the enterprise view than the data-structure
diagram. Bachman also raised the issue of the ambiguity in
Figure 13d: If one wants to modify a person's address,
does he have to create a new "address" record or to
change the name of the place where the person is living?
This question can be easily answered using the E-R ap
proach. Consider Figure 14d. Since the PLACE is an entity
set, to change a person's address is to change the relation
ship between the person and "his place." We should not
change the name of the place where the person is living
since "NAME" and "NAME~OF.J>LACES" are used to
describe a property of the PLACE entities (see Figure
14d).

SUMMARY

The enterprise schema is useful as an intermediate step in
database design. In this paper, we have shown how to use
the entity-relationship model and diagrammatic technique
to describe the enterprise schema. Since the enterprise
environment changes from time to time, the enterprise
schema will have to change to reflect these changes. Five
basic types of operations (add, delete, split, merge, and

shift) which are useful in modifying the enterprise schema
have been presented, and the consequences of these opera
tions have been discussed. Finally, we have used an
example to analyze the differences between the entity
relationship approach and the network approach in model
ing the enterprise view of data.

REFERENCES

I. Bachman, C. W., "Data Structure Diagrams," Data Base 1,2, Summer
1969, pp. 4-10.

2. Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks," Comm. ACM 13,6, June 1970, pp. 377-387.

3. ANSI, Interim Report of ANSI/X3/SPARC Group on Database Manage
ment Systems, ANSI, February 1975.

4. Chen, P. P., "The Entity-Relationship Model," (abstract), Proc. 1st
Very Large Database Conf., Framingham, Mass., Sept. 1975, ACM.

5. Chen, P. P., "The Entity-Relationship Model: Toward a Unified View of
Data," ACM Tran. on Database Systems 1, I, March 1976, pp. 9-36.

6. Moulin, P., J. Randon, M. Teboul, et aI., "Conceptual Model as a
Database Design Tool," Proc. IFIP TC-2 Working Con/., Jan. 1976,
Black Forest, Germany, pp. 459-479.

7. Hall, P., Todd S. Owlett, "Relations and Entities," Proc. IFIP TC-2
Working Conf., Jan. 1976, Black Forest, Germany, pp. 430-458.

8. Deheneffe C. and H. Hennebert, "NUL: a Navigational User's Lan
guage for a Network Structured Data Base," Proc. ACM 1976 SIGMOD
Con/., Washington, D.C., June 1976, pp. 135-142.

9. Tozer, E. E., "Database Systems Analysis and Design," Technical
report, Software Sciences Limited, England, April 1976.

10. Bachman, C. W., "Trends in Database Management-1975," Proc.
AFIPS 1975 NCC, Vol. 44, AFlPS Press, Montvale, N. J., pp. 569-576.

Data architecture and
data model considerations*

by EDGAR H. SIBLEY and LARRY KERSCHBERG
University of Maryland
College Park, Maryland

ABSTRACT

The Data Base Management System is now a well estab
lished part of information systems technology, but the
many architectures and their plethora of data models are
confusing to both the practitioner and researcher. In the
past, attempts have been made to compare and contrast
some of these systems, but the greatest difficulty arises in
seeking a common basis. This paper attempts to show how
a generalized data system (GDS), represented by two
different models, . could form such a basis; it then proposes
that data policy definitions can restrict the GDS to a
specialized model, such as a relational or DBTG-like
model. Finally, it proposes that this concept forms a better
basis for data structure design of specific system applica
tions.

INTRODUCTION

The seventies has seen the acceptance of the database
management system (DBMS). Commercial systems and
research efforts have proliferated, and the subject has
become a major conference topic. However, the potential
user is still left with most of the questions that first
appear:ect: Whic.h. is. the. best s.ys1em? Am .1 locking myself
into one technique or implementation method?

There have been attempts at explaining similarities and
differences in the basic classes of systems,1,2 debate on the
effectiveness of different data models,3 and description of
the selection and acquisition process,4 but confusion re
mains.

Possibly the reason for difficulty is:

1. The topic is complex. DBMS exist, but they are so
different that they defy simple comparison. They also
run the gamut of size and sophistication.

2. They differ in methodology of data modelling, retain
ing, and querying, as well as their internal storage.

* The authors wish to express their gratitude to the U.S. Army Computer
Systems Command who, through grant number DAAG29-76-G-0300 (Title:
Problems in the Translation and Standardization of Relational and Network
Type Data Base). provided partial support and technical advice.

85

Testing is expensive: some representative system
must be implemented on several DBMS for compari
son, or difficult simulations5 are needed.

Further problems arise in large scale database research and
there is need for a common basis6 as a formalism for
describing such systems. Methods of defining the function
ality of DBMS include set theory and graph theory con
structs. 7 This paper attempts to define such a common
basis, and show how it can be used to compare models.

DEVELOPMENT OF A FRAMEWORK

There are at least three distinct levels in an information
system: the information and its structure, the data model,
and the storage structuring. Obviously, no short paper can
cover all three, and we will concentrate on the data model.
However, consideration must be given to the information
system/data model interface to set the stage for ways to
define a good data model with its need to reflect the way
data are interrelated, manipulated, and protected.

A data model is a system in which a schema may be
defined; the DDLC's definition languageS is principally a
mechanism for defining the names and attributes of data
elements.. groupings, .. and. relationships. while the definition
of policy (integrity, security, efficiency, etc.) is almost an
afterthought.

The information system-Data model interface

There is an important interface between the organization
view of information and the data model constructed to
represent it. This interface is being investigated by re
searchers who are attempting to define a process for
producing a good data base design given a set of user needs
or aspirations. Reference 9 is a survey of current tech
niques.

Complete knowledge of the information system and its
data usage characterizes the company. Operating policy,
however, summarizes the internal constraints of the organi
zation, and the way that the functional subsystems interact;
one authorlO refers to these as operative and directive

86 National Computer Conference, 1977

information structures. Several researchers ll,12 have re
cently advocated the collection of transactions as a basis
for designing logical data structures.

Our goal, however, is to develop a framework in which to
study data models, and to incorporate important parameters
of the interface into the data model: Data Utilization and
Operating Policy. By incorporating these parameters into
the data model framework we expect to examine some
classes and:

• Explain subtle differences,
• Explore declarative versus procedural aspects, and
• Characterize their "semantics."

Data architecture-A level concept

A recent paper13 proposes that there are four abstraction
levels for data machines and models. These, in increasing
abstraction, are:

1. The Defined and Populated Database: a fully opera
tional data system, with database defined via some
definition language.

2. The Database System: it involves no data, but repre
sents a specific system, with its description.

3. The Data Model: the data system prior to its applica
tion. The class(es) of data structures that may be
supported by the system have been fixed, but not
used.

4. Data Model Theory: a conceptual or generalized data
base management system generator, assumed to be
able to support all classes of data models.

These levels form a progression: From one to four is
abstraction-from four to one is utilization; each level
naturally subsumes or subsets the previous one.

As an example, Level 3 may be a Relational Model; 14
i.e., it can support a relational data system, but no other.
Then Level 2 might be the implementation of a payroll data
definition; i.e., a definition of those items (and their attri
butes) with procedures making up a relational payroll
system. At Levell, we see sets of payroll tuples; i.e.,
entries for specific people.

We shall use this concept as a basis for the paper.
However, there are special operations performed in going
from one level to another, defined as follows:

• Level 4 to 3: Data Policy Definition.
In this step, the management and information system
designers state the major constraints on the operational
system. The resulting data model (or database ma
chine) at Level 3 is restricted: only some classes of
data structures are now allowed; some types of opera
tion are restricted, allowing privacy or security (policy)
decisions to be stated; some actions are performed
automatically, allowing validation and integrity (policy)
to be stated.

• Level 3 to 2: Data Operation Definition.

Here, the administration is working with a restricted
system in which data structure, some efficiency, and
specific policy considerations may be stated: e.g., Data
Policy Definition specified a relational system with
validation at input, now Data Operation Definition
defines a database of 2-tuples involving social security
number and name, where the former is a nine digit
element. This also involves definition of the proce
dures for building, maintaining, manipulating and re
trieving data.

• Level 2 to 1: Data Population and Utilization.
Finally the data must be loaded and used.

The data model generator-generalized data system

Level 4 data architecture or system can be viewed as
either a theory or a machine: i.e., as either an abstract
description of a method, or as a machine implementation of
that method. If the concepts of Level 4 can be expressed in
set theory, then the "machine" could be either a theoretical
or working set processor. In this paper, we discuss two
candidates for Level 4 machines, and then show how each
may be restricted to Level 3 machines. It is, however, of
tantamount importance that these machines be truly gen
eral, and this exercise is an attempt to show the need and
generality, as well as to illustrate the parts and use of such
machines. Obviously, if the Level 4 machine is sufficiently
general, it will cover all possible data machines at Level 3
(at least relational, hierarchic, and network models). It may
be considered a meta-data model or generalized data sys
tem (ODS). Furthermore, the use of such a system provides
a framework for data model comparison.

The two models discussed here are:

i. The Functional ModeF and
ii. The Set Theoretic and Extended Set Processor15 - 19

modified to allow data policy and data operation
definition.

THE FUNCTIONAL MODEL OF DATA

Here we consider the Functional Model of Data as a
ODS. First, Level 4 structure is presented, then data policy
constraints are shown to add form and structure to the
model. The constraints are semantic, and allow the Func
tional Model to be viewed in restricted cases as either
relational or DBTO (network) data models.

Level 4 structure

Level 4 is a meta-data level where the Functional Model
of data is viewed as a directed graph; its nodes represent
sets and its arcs represent total functions. Nodes are either
entity sets or value sets. Entity Sets may have any number
of incoming or outgoing arcs; Value Sets may have only
incoming arcs, because "values" are the ultimate logical

representation of information, so no arcs leave value set
nodes. A typical Level 4 Functional Model graph is shown
in Figure 1.

The definitional facilities for the Level 4 Functional
Model consists of three creation and naming operations for
value sets, entity sets, and functional specification of an
entity set (i.e., specification of functions whose domain is
the entity set).

There are also operations for deleting value sets, entity
sets, and functions. The deletion operations have the fol
lowing side-effects:

• Deletion of an entity set also implies deletion of those
functions incident on it (both incoming and outgoing);

• Deletion of a value set also implies deletion of those
functions incident on it;

• Deletion of a function does not affect its domain and
range sets, but some may become isolated nodes and
may no longer be relevant.

Data policy definition

Data policy decisions are of the following types:

• The methodology to be used to obtain the data struc
tures.

• The representation of elements in the nodes (i.e., sets)
of the Functional Model graph.

• The logical access mechanisms to be supported at
Level 3.

While both information and management policy ramifica
tions may be stated in a declarative fashion (CODASYL

Enti ty Sets = E

Value Set = V

Figure I-Functional model graph at level 4

Data Architecture and Data Model Considerations 87

DDL,8), management policies are often enforced by trans
action-driven "triggers. "20

To refine these ideas we first address the ramifications of
data policy. The most important decision is the choice of
data model methodology; this will determine the richness
and complexity of the allowable data structures. The meth
odology adopted in the Functional Model is semantic pre
dication analysis,21 a process developed to analyze the
semantic structure of sentences.

A predication represents a whole sentence: e.g., an
assertion, a command, or a question; it may be decomposed
into zero, one, or two arguments and a predicate. Argu
ments may themselves be predications. "Downgraded pred
ications" may qualify arguments (the semantic equivalent
of adjectival clauses) or may modify predicates (the seman
tic equivalent of adverbial clauses). The lowest semantic
level consists of semantic features which serve as atomic
semantic description units. Downgraded predications play
the role of semantic features of the arguments or predicates
that they qualify or modify.

Here we assume that a specification of data interrelation
ships is available. The information analyst's role is to
obtain the corresponding predication structures and map
these to the Functional Model (an abstraction process).
Consider the statement:

"Companies supply parts to departments in some volume"

The predication structure is shown in Figure 2, where the
main predication structure "companies supply parts" is
represented by the predication PN 1 with arguments Al
(COMPANIES), A2 (PARTS) and predicate PI (SUPPLy).
The arrow under SUPPLY denotes the direction of the
relationship represented by PN 1; it corresponds to the
active voice of Pl' PN 2 and PN 3 are downgraded modifying
predications representing the indirect object and adverbial

(Py.,
/' I "

" I ,
,/ I ~,

J/ t ,
A5 P3 A6

I I
PN ------ X
I ,I\~, IN VOLUME

I I \
I I \ '

I I \ 'i
I I \ I

/ I \
I I \ I

/ I \ I
I \ I ,: . ,

Al PI A I

I I r i
I

COMPANIES SUPPLY PARTS L __ X TO DEPARTMENTS ..
Figure 2-The predication structure for the sentence: "Companies supply

parts to departments in some volume"

88 National Computer Conference, 1977

v = Value Set
A = Argument Set
P = Predication Set

Figure 3-The functional model data structure

information, respectively. The X's refer to PI' which their
corresponding predications modify. Semantic features are
not present in this example, but correspond to descriptions
of the arguments (COMPANIES, PARTS, DEPART
MENTS and VOLUME). For example, DEPARTMENTS
might be characterized by NAME, ADDRESS, and NUM
BER.

The choice of the abstraction used to map predication
structures to Functional Model data structures is part of
data policy. As an example, the model might be restricted
as follows:

• Semantic features map to functions whose range sets
are value sets.

• Arguments corresponding to "real-world" entities map
to named argument sets.

• Predications map to named predication sets, and the
arcs pointing to arguments become named functions.
Also the predicate and its arrow are attached to the
predication set.

• Downgraded predications are represented by functions
whose domain is the main predication set and range is
either an argument set or a value set.

Figure 3 depicts the Functional Model data structure based
on the predication structure of Figure 2 and the above
abstraction rules.

Thus the choice of the methodology used to model the
organization is one aspect of data policy which induces
structure in passing from Level 4 to Level 3. At Level 3 the
Functional Model has entity sets classified as either predica
tion sets or argument sets (denoted P and A, respectively)
and value sets remain unchanged. Functions perform two
roles: a function may provide information about a predica
tion structure or it may represent a semantic feature. The
data structures supported by the predication analysis and
abstraction process are depicted in Figure 4. All these data
structures are possible for the Functional Model, but most
applications use cases b, c, and d. If we restrict further:

• Every predication structure must have at ieast two
argument sets, and

• Functions emanating from a predication set cannot
have predication sets as ranges,

then only cases c and d are admissible. This is precisely the
case in the Entity-Relationship model,22 where predication
and argument sets are called relationship sets and entity
sets, respectively. In the Functional Model arcs all repre
sent total functions, whereas in the Entity-Relationship
model arcs are either 1: N mappings (for entity sets to
relationship sets) or functions (for entity sets to value sets).

So far, we have only considered the methodology for
obtaining data structures. Although the set types play an
important role, the function types are important in express
ing logical access mechanisms. Consider a binary relation a
from set A to set B, and its representation, Rco as the set of
ordered pairs

Ra={(a, b) laeA & beB & aab}

Obviously, there exists an "inclusion" function, i, which
assigns an element (a, b) of Ra to its corresponding element
(a, b) of AxB, the Cartesian product of A and B. In
addition, there exist functions f:Ra~A and g:Ra~B such
that the diagram of Figure 5 "commutes. "23 In terms of the
Functional Model predication structures, the binary relation
a corresponds to a predication structure consisting of a
predication node (labelled "a"), argument nodes (A and B)
and arcs (f and g) (see Figure 5). The actual representation
of the elements in the predication set is by means of the set
Ra ·

The functionality types of f and g are important in
modelling the semantics of a: i.e., whether a is a relation, a
partial function, or a total function. There are sixteen
possible configurations for the predication structure, be
cause f and g may be one-to-one, onto, both of these, or
none of these. The most important configurations are

(a) (b) (e)

(d) (el (f)

Figure 4-Level 3 functional model data structures

If\ p q
A~ AxB~B

Figure 5-Representation of a binary relation and predication structure

summarized in the following:
Fact:
Let a be a binary relation from A to B with functional
specification f and g.
Then:

1. If neither f nor g are one-to-one (1: 1), then a is a
relation;

2. If f is 1: 1, then a is a partial function;
3. If f is 1: 1 and onto, then a is a total function;
4. If f is 1: 1 and onto, while g is 1: 1, then a is a 1: 1

function;
5. If f is 1: 1 and onto, while g is onto, then a is an onto

function;
6. If f and g are both 1: 1 and onto, then a is also 1: 1 and

onto.

The functionality type of f determines whether a is a
relation, a partial function, or a total function. If a is a
function, then the functionality of g determines whether a is
one-to-one, onto, a one-to-one correspondence, or none of
these.

In terms of predication structures, a predication set may
thus represent a relation or a function, which implies that,
in the latter case, a may be represented by an arc. This is
indeed true, but it must be considered a Data Policy
decision.

One-to-one functions play an important role in accessing
a particular element of a set. If the function f in Figure 5 is
one-to-ont:, a particul,ar aE1\ willpilrtic!pate in (at most) one
ordered pair (a,b)ERa , so that the second element of the
ordered pair may be obtained by evaluating the function g.
Thus, any one-to-one function outgoing from a set is a
candidate (key) for accessing the elements of the set.

The notion of logical access can be extended to predica
tion sets involving more than two argument sets and
various value sets (as in Figures 3 and 4). In this case, the
predication node represents an n-ary relationship, where
each element may be viewed as an n-tuple of entities and
values. For n-ary predication sets, a composite key is
precisely the concept in Reference 22.

Finally we illustrate a management policy constraint
whose predication structure has another predication node
as an argument (e.g., Figure 4(0). The operational con
straint "A company must supply at least three parts to
some department during a quarter to remain a valid sup
plier." could be modelled by a predication structure con
sisting of a "must" predication set with argument sets

Data Architecture and Data Model Considerations 89

COMPANY and SUPPLY (a Figure 3 predication set), and
semantic features (functions to value sets) TOTAL-PARTS
and QUARTER. Elements of the "must" set might be
updated by program on the occurrence of a SUPPLY
transaction, but the validation would probably take place at
the end of each operating quarter.

The relational model of data

The data policy constraints on the Functional Model
predication structures which transform it into the Relational
Model are:

• Value sets are domains;
• Argument sets and predication sets are relations whose

elements are represented by tuples of values from
domains;

• Functions whose range sets are value sets become the
attribute names of their respective relations;

• Functions from predication sets to argument sets are
replaced by the attribute name corresponding to the
key (perhaps the composite key) of the argument set.

The consequence of these restrictions is to allow only
nodes which represent Level 4 entity sets as relations:
represented by tuples. The arcs can now only point away
from nodes, and their functions are the names of the value
sets of each element of the tuple: see Figure 6.

The DBTG data model

The Functional Model can also be transformed into
DBTG type Data Structures by data policy definitions.
First, the record will be simplified by ignoring repeating
groups-in this case a record is a tuple, and may be
represented in the same way as the relational data struc
ture. The DBTG-set, in its simplest form, is a representa
tion of a functional predication (i.e., a predication which is
a fUl}ct,iQ.U). The ~rrow of the Junction name is in the
opposite direction to the arrow in the equivalent "Bach
man" Diagram.24 For a more complicated DBTG-set struc
ture, there is a predication (a record) between two other
relations (also records). This represents an intermediate or
link record between two others; these structures have been
discussed as linking records between two relations in Refer
ence 25 and termed "associations" in Reference 26.

Whether the model transforms a function name into a
DBTG-set or follows the Predication (Record) name model
is a data policy decision: the same results may be obtained
provided that one record is functionally dependent on the
other-but not if the relation is N to M.

The insertion property of a DBTG-set is either A UTO
MATIC or MANUAL. Which set has which property is
defined at Level 3, but the ability to define these properties
of a function is a Data Policy decision, which delimits the
Level 4 to 3 structure and defines the DBTG Model.
Similarly, the deletion properties (MANDATORY and OP-

90 National Computer Conference, 1977

Relation Name

Function (Attribute)
Names

Val ue Sets (Domains of the relation)

a) Relational Data Structures

Record (Relation) Name

Value Sets of the items
(e.g., PICTURE clause)

b) DBTG-like Data Structures

Item Names

Record Name

Record Name

Item Names

Predication
(Record)

Name

Figure 6-Level 3 data structures in the functional model

TIONAL) are Level 4 to 3 data policy decisions which
define the operation of a DBTG model. These two proper
ties are therefore declaratives associated with the arcs,
similar to the functionality types in a functional model, but
obviously having stronger effect. The enforcement of this
policy is, of course, procedural.

Comparisons

It is useful to compare and contrast relational and DBTG
data policy operations. Relational systems like System R27
and INGRES28 use the theory of normal fmms to provide
good data structures and then utilize these simple structures

through data-name linkages and data operations like JOIN
and PROJECT; they apply other data policy such as
consistency, integrity, and validation through system modi
fication of the user statement (INGRES), which is immedi
ately initiated, or through system triggers (SYSTEM R)
which are transaction driven, but may be delayed. These
two implementations differ in the fact that INGRES speci
fies policy in declaratives with procedural enforcement,
while SYSTEM R is procedural both in declaration and~
enforcement.

The DBTG data policies are both declarative and proce
dural: some, such as AUTOMATIC, are declarative and
apply a primitive function on operation implying a "seman
tics" at storage of a record; others, the Data Base Proce
dures, are procedural and are invoked by some trigger: e.g.,
on update (validation), privacy and security checking.

THE SET THEORETIC DATA MODEL

The set theoretic processor owes its existence to the
concept of an extended set. The extended set consists of
elements which themselves may be conventional sets, se
quences, ordered sets, atoms, or even extended sets, but
each element is identified by a position-identifier (numeric
or mnemonic). The extended set is enclosed in square
brackets [] while the ordered sets or sequences are in
angle brackets (). Thus if X is an extended set consisting
of elements Y and Z in positions 1 and NEXT, we have:

X=[(1,Y), (NEXT,Z)]

If we use braces { } to enclose sets, then if Y is the set of
the first three integers and Z is the four-tuple consisting of
"0,1,0,2" (in order), then:

Y ={l ,2,3}=[(#,1), (#,2), (#,3)]

and

Z=(O,1 ,0,2) =[(1 ,0) ,(2,1) ,(3,0) ,(4,2)].

Reference 16 shows that the extended set is a normal
extension of set theory and that predicate calculus opera
tions can oeJdineo"onthe exte'ndeo" "set. AIi normal set
operations (union, intersection, difference, etc.) may also
be defined, except that operations are position dependent.

Level 4 structure

The model consists of the following objects or elements:
Atoms, which represent a number or character string; Sets,
composed of any object; Ordered sets or sequences, com
posed of any object; Extended sets, composed of any
object. Of course, no object may contain itself. The other
model objects may all be represented as extended sets,
position identifiers (which are atoms), and atoms. Commas
are used to delimit objects in a sequence or set.

The basic language of the Level 4 data model consists of:
predicate calculus expressions; algebraic expressions; as
signment (storage) statements; retrieval expressions, with

Data Architecture and Data Model Considerations 91

predicates to limit the response; and macros which simplify
operations (e.g., Average, Sum).

In order to illustrate the operations of the extended set
processor (XSP) at Level 4, a series of operations is given
in Figure 7. The first ten operations are all of the "storage
by assigriment" type: they store ten extended sets, with
synonyms (names) ME, YOU, etc. The VALUE function
invokes a "copy" operation, which does not necessarily
duplicate the string: the result may be represented inter
nally by pointers. The set AUTHORS is therefore made up
of the two extended sets ME and YOU.

The assignment operation for X defines a new extended
set: it is a simple set containing the names of the two
authors of this paper. This particular operation extracts
(from the set AUTHORS) the values which have position
indicator NAME. Furthermore, the summation operation
(SUM) counts the elements (two) of this newly defined set
X. The keyword LIST in the find instruction of Figure 7 is
used to denote a set of ° to "N" replications. The names
and symbols which have not yet been described, such as
PHONE, NAME, AUTHOR-TYPE and PICTURE, have
no semantic meaning at Level 4. Later, some will have
semantics in defining policy, but here they are merely
symbols. At Level 4 the XSP is unrestricted. It will store,
maintain, retrieve, or manipulate the whole or any part of
any extended set. However, the XSP must have operations
which can be triggered by events or conditions; these
operations, applied in going from Level 4 to Level 3, are
the Data Policy definitions.

Data policy definition

There are two types of XSP system applied constraints:
static and dynamic. The static constraint is one that must
always be satisfied: e.g., the data structure class must be
hierarchic, or the access to some parts of the database are
password protected. Such constraints imply a system action
whenever violation occurs, and these may be implemented
as special system actions ("compiled into the system") or
as interpreted actions, with well defined error response.
Mu~t l..UlrellC;ystems '\;ompile" these constraints ~i.e.,
they "do not support other models of data" or "allow the
following types of data protection ... ").

The dynamic constraint is one that is satisfied at specific
times or for special operations; e.g., the validation of an
element is only to be performed at input, or security is to be
checked against type of user and type of operation for
every access. These constraints are essentially interpreted.

The relational model of data

An example of the definition of allowable data structure
classes for a relational model is given in the restrictions of
Figure 8. This definition states that all sets are made up of
ordered sets which contain "attribute-value" pairs (e.g.,
the elements ME and YOU in Figure 7 are ordered sets of
three pairs). Moreover, the position identifiers shall be

92 National Computer Conference, 1977

ME = [<NAME,SIBLEY>,<SS#,017J3217992>,<PHONE,(301)262-7138>]

YOU = [<PHONE,(301)937-7726>,<NAME,KERSCHBERG>,<SS#,294/36j4321>]

IT = [<TITLE,DATA ARCHITECTURE ETC.>,<AUTHOR,{VALUE(ME),VALUE(YOU)}>]

AUTHOR-TYPE = [<NAME,NAME-TYPE>,<PHONE,PHONE-TYPE>,<SS#,SS#-TYPE>]

NAME-TYPE = {PICTURE X{25 MAX)}

PHONE-TYPE = {PICTURE '('999')'999'-'9999}

SS#-TYPE = {PICTURE 999'/'99 1
/ ' 9999}

ARTICLE-TYPE = [<l,TITLE-TYPE>]

TITLE-TYPE = {PICTURE X (UNRESTRICTED)}

AUTHORS = {VALUE(ME),VALUE(YOU)}

PRINT (NAME-TYPE)

x = {NAME, SET = AUTHORS}

Y = SUM(X)

z = SUM ({AUTHOR \ SET=IT})

Xl = {NAME\SET=AUTHORS AND SS# NOT='01713217992 1
}

AUTHORSHIP-TYPE = [<AUTHOR,LIST (AUTHOR-TYPE»,<ARTICLE,ARTICLE-TYPE>]

AUTHORSHIP = {VALUE(IT)}
Figure 7-Some operations of an XSP at Level 4

Data Architecture and Data Model Considerations 93

POLICY RESTRICTIONS OF XSP.

OBJECTS: ATOM, ORDERED-SET, SET.

MEMBERSHIP: MEMBER (ORDERED-SET) IS <POSITION-ID, ATOM>,

MEMBER (SET) IS <I, ORDERED-SET>.

CONSTRAINT: ALL POSITION-ID (ORDERED-SET) IS MEMBER (POSITION-ID

(ORDERED-SET-DEFINITION)).

LEVEL 3: DEFINITION WITHIN RESTRICTION.

SET OBJECT. AUTHORS.

ORDERED-SET OBJECT. AUTHOR-TYPE.

ATOM OBJECT. NAME-TYPE, PHONE-TYPE, SS#-TYPE.

TIMING.

APPLY PHONE-TYPE, SS#-TYPE ON INPUT.

APPLY NAME-TYPE ON OUTPUT, INPUT.

APPLY AUTHOR-TYPE ALWAYS.

An Invalid DEFINITION would be:

SET OBJECT. AUTHORSHIP.

ORDERED-SET OBJECT. AUTHORSHIP-TYPE .

... (See Figure 4.1: this is not a first
Normal Form definition)

Figure S- Policy statements and level 3 definition for an XSP: Example I: Relational model

94 National Computer Conference, 1977

found within a definition. Thus, if we consider the Level 3
definitions of Figure 8: AUTHOR-TYPE defines the posi
tion identifiers (NAME, PHONE, SS#), then ME and
YOU conform to this type of ordered set. Moreover, the set
AUTHORS in Figure 7 now conforms to the definition
AUTHORS in Figure 8.

It is now obvious that Figure 7 contains definitions of
extended sets which can apply (or be applied) with seman
tics at Level 3. We class the elements by statements in
Figure 8 which show the definition that AUTHORS con
tains elements (tuples) which comply with the (Figure 7)
AUTHOR-TYPE definition, while the (validation) criteria
of the atoms SS#-TYPE, etc., are applied on input, with
NAME-TYPE checking also on output. Moreover, because
some extended set operations might allow generation of
invalid sets during valid operations, the AUTHOR-TYPE
criterion is applied on all operations (this may be a duplica
tive statement, depending on the overall con
straint ... ALL POSITION-ID ... etc., being universally
applied, or "compiled into the system").

If we gave XSP, the definition for A UTHORSHIP
TYPE, an error must occur, because the definition in
Figure 7 allows non-atomic elements in the ordered set (due
to LIST).

The DBTG data model

In dealing with the definition of a DBTG-like structure,
one is faced with some prior decisions. Using the definition
of Reference 25, a DBTG-set consisting of an owner record
(Ai) and three member records (Bib Bij', Bu"), in that
order, will be represented as

(Ai, (B jj , Bjj ', BU"»

The restrictions imposed in an earlier section on DBTG
records is applied here also: no repeating groups are
allowed. Thus the definition of a record in Figure 9 follows
that of an ordered set in Figure 8. The definitions therefore
are special only in their inclusion of membership in DBTG
sets.

Data Policy is represented by the ability to have A UTO
MATIC operation of DBTG-set inclusion on storing a
predefined record.

Comparisons

It has been suggested that the implementation of a
relational structure in a DBTG system is a matter of:

I. Only allowing system owned sets (DBTG termed this
a "SINGULAR SET");

2. Removing concepts of database procedures, inclusion
and deletion properties (AUTOMATIC, MANDA
TORY, etc);

3. Making keys unique (using CALC with a DUPLI
CATES NOT ALLOWED clause);

4. Allowing new macros like JOIN and PROJECTION
on (mathematical) sets of records.

It will be seen that the definitions do not truly reflect the
first requirement, and that the second can be considered a
triggered or system applied procedure (the result of an
operation depending on the functional properties of the
DBTG-set, etc.). Thus the restrictions are not correct. By
further refining the models, it should be possible to deter
mine true similarities and differences. However, it is first
necessary to add the operations and their mappings-a non
trivial task.

POLICY RESTRICTIONS OF xSP.

OBJECTS: ATOM, RECORD, DBTG-SET, SYSTEM-SET.

MEMBERSHIP: MEMBER (RECORD) IS <POSITION-ID, ATOM>,

MEMBER (DBTG-SET) IS <1, RECORD> OR

<2, LIST {RECORD}> ,

MEItlER (SYSTEM-SET) IS DBTG-SET.

CONSTRAINT: ALL POSITION-ID (RECORD) IS MEMBER

(POSITION-ID (RECORD-DEFINITION)),

LEVEL 3: DEFINITION WITHIN RESTRICTION.

SYSTEM-SET OBJECT. AUTHORSHIP

DBTG-SET OBJECT. AUTHORSHIP-TYPE.

RECORD OBJECT. ARTI CLE- TYPE, AUTHOR-TYPE.

ATOM OBJECT. TITLE-TYPE, NAME-TYPE, PHONE-TYPE, SS#-TYPE.

TIMING.

APPLY AUTOMATIC TO ARTICLE-TYPE ON STORE.

Figure 9-Policy statements and Level 3 definition for an XSP: Example 2:
DBTG model

CONCLUSIONS

Work with two GDS (Functional and Extended Set Models)
leads us to the following conclusions:

1. The model of an enterprise information structure may
be defined independently of the GDS used for its
implementation.

2. If the GDS is "universal" it may store any informa
tion structure (both data syntax and semantics) in
terms of its primitives.

3. The specialization of the G DS to a data model like that
supported by most current research and commercial
DBMS involves Data Policy definition. Using this, a
GDS may be restricted to perform as one or more
specific data models.

4. The process of mapping from an information structure
within a GDS to a data structure within a traditional

SYSTEM
LEVEL

4

DATA
POLICY
DEFINI-

TION

3

2

1

Data Architecture and Data Model Considerations 95

DATA
SYSTEM

DATA MODEL GENERATOR Informa-
(Generalized Data tion

Represen- I System) tation

Examples: • r ---, Functional Model
Extended Set Model I

SPECIALIZED DATA
MODEL

Examples:
Relational System
Hierarchic System
DBTG System

Special Usage of
Speci a 1 Sys tern

i

Data
Repre-
senta-

tion
- --

DATA
MODEL

INFORMATION MODEL

Examples:
Infological
Syngl ish (ref. 29)
Conceptual

Schema

DATA MODEL

Examples:
DOL Specifi-

cation

DATA
OPERATION
DEFINITION

DATA 1
I

lEVEL j
.J

j

I
! ,

I
I
I 4 I

I DATA i
MODEL- I

I
I LING i
i

t-1
3

.•. ---. __ ._ , .. '

t)(ample: A personnel implementation in a R,elational System

Populated Database

for the Specific Usage

DATA POPULATION AND
UTILIZATION

Figure 10-The parallelism of data policy and modelling

i

I
I

DBMS follows the restrictions of the Data Policy
definition. Consequently there must be a correspond
ence between Data Policy restriction and data model
ling (i.e., passing from information structure to data
structure). This process is diagrammed in Figure 10.

Most information analysts already have a specialized data
model (e.g., DBTG systems) in mind when constructing
their information model. Thus, they take the Data Model
ling route in Figure 10. We suggest that the correct (more
general) process is to express conceptual information struc-

96 National Computer Conference, 1977

tures in the GDS and to "tune" the information structures
to data structures by means of Data Policy decisions. In
other words, it is advantageous to represent information at
Level 4 so that all semantics of the information are re
tained.

Data Policy definitions impose added structure (with
restrictions) on allowable data structures. Tradeoffs will
then make it easier to consider the losses in representation
of information structures in the supported data structures.

REFERENCES

I. Sibley, E. H., Guest Editor: "Special Issue on Data Base Management
Systems," ACM Computing Surveys, Vol. 18, No. I, March 1976, pp.
151

2. Kerschberg, L., A. Klug and D. Tsichritzis, "A Taxonomy of Data
Models," Proceedings Second International Conference on Very Large
Data Bases, Brussels, September 1976.

3. Rustin, R., Editor: ACM SIGMOD 1974 Workshop on Data Description,
Access, and Control, "Data-Structure-Set versus Relational," May
1974, pp. 144.

4. CODASYL Systems Committee: "The Selection and Acquisition of
Data Base Management Systems," Published by ACM, New York and
lAG, Amsterdam, March 1976, pp. 252.

5. Reiter, A., "Data Models for Secondary Storage Representations,"
Proceedings 1st International Conference on Very Large Data Bases,
ACM, Sept. 1975, pp. 87-119.

6. Hardgrave, W. T., and E. H. Sibley, "Database Research: Some
Comments on Future Directions," SIGMOD FDT 7, pp. 3-4, 1975.

7. Kerschberg, L. and J. E. S. Pacheco, "A Functional Data Base Model,"
Computer Science Monograph, Pontificia Universidade Catolica do Rio
de Janeiro, February, 1976, also available as Technical Report 13, Dept.
of Information Systems Management, University of Maryland, 1976.

8. CODASYL Data Description Language Committee, "Data Description
Language-Journal of Development," National Bureau of Standards
Handbook 113, Washington, 1973, pp. 136.

9. Novak, D. O. and J. P. Fry, "The State of the Art of Database Design,"
Proceedings Fifth Texas Conference on Computing Systems, Austin,
1976, pp. 30-38.

10. Langfors, B., "Theoretical Aspects of Information Systems for Manage
ment," Proceedings IFIP Congress 74, pp. 937-945.

II. Rund, D. Sheppard, "Data Base Design Methodology Parts I and II,"
AUERBACH Publishers Inc., 1976.

12. Kahn, B. K., "A Method for Describing the Infonnation Required by
the Data Base Design Process," Proceedings International ACM-SIG-

MOD Conference on Management of Data, Washington, D.C., 1976, pp.
53-64.

13. Rothnie, J. B. and W. T. Hardgrave, "Data Model Theory: A Begin
ning" Proceedings Fifth Texas Conference on Computing Systems,
Austin, 1976.

14. Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks," Comm. ACM, 13, June 1970, pp. 377-387.

15. Childs, D. L., "Description of a Set-theoretic Data Structure," AFIPS
Conf. Proc., Vol. 33, Part 1, AFIPS Press, Montvale, N.J., 1968, pp.
557-564.

16. Childs, D. L., "Feasibility of a Set-theoretic Data Structure: A General
Structure Based on a Reconstructed Defmition of Relation," IFIP
Congress 1968, North Holland, Amsterdam, 1968, pp. 420-430.

17. Childs, D. L., "Extended Set Theory: A Fonnalism for the Design,
Implementation, and Operation of Infonnation Systems," Volume IV,
Current Trends on Programming Methodology, edited by R. T. Yeh,
Prentice-Hall,

18. Hardgrave, W. T., "A Technique For Implementing a Set Processor,"
Proc. ACM Conference on Data: Abstraction, Definition, and Structure,
SIG-PLAN Notices, March 1976.

19. Hardgrave, W. T., "Set Processing: A Tool for Data Management,"
Proc. ACMINBS Fifteenth Annual Technical Symposium, June 1976.

20. Eswaran, K., "Aspects of a Trigger Subsystem in an Integrated Data
base System," Proceedings Second International Conference on Soft
ware Engineering, San Francisco, 1976, pp. 243-250.

21. Leech, G., Semantics, Penguin Books Ltd., Middlesex, England, 1974.
22. Chen, P., "The Entity-Relationship Model-Toward a Unified View of

Data," ACM Transactions on Database Systems, Vol. 1, No.1, March
1976, pp. 9-36.

23. MacLane, S. and G. Birkhoff, Algebra, Macmillan Co., 1968.
24. Bachman, C. W., "Data Structure Diagrams," Data Base, ACM

SIGBDP Newsletter No.1, 2, Summer 1969.
25. Sibley, E. H., "On the Equivalences of Data Based Systems," ACM

SIGMOD 1974 Workshop on Data Description, Access, and Control,
May 1974, pp. 43-76.

26. Schmid, H. A. and J. R. Swenson, "On the Semantics of the Relational,
Data Model," Proceedings International ACM-SIGMOD Conference on
Management of Data, 1975.

27. Astrahan, M. M. et aI., "System R: A Relational Approach to Data Base
Management," ACM Transactions on Database Systems, Vol. 1, No.2,
1976.

28. Stonebraker, M., "High Level Integrity Assurance in Relational Data
Base Management Systems," Proceedings of the 1975 ACM-SIGMOD
Workshop.

29. Kerschberg, L., E. A. Ozkarahan, and J. E. S. Pacheco, "A Synthetic
English Query Language for a Relational Associative Processor," Pro
ceedings Second International Conference on Software Engineering.
San Francisco, 1976, pp. 505-519.

Security risk assessment in
electronic data processing systems*

by ROBERT H. COURTNEY, JR.
IBM Corporation
New York, New York

ABSTRACT

Concern for the safety of a data processing facility and the
data within it should result in the selection of such security
measures, including insurance, as are appropriate to bring
ing the risk within tolerable limits at the lowest cost. These
security measures should be selected on the basis of the
benefit/cost relationships which they afford. This, in tum,
requires a quantification of the potential benefits afforded
by each security measure or group of measures for compar
ison with the cost. Because the benefit afforded by the
security measure is lessening or elimination of security
problems, which is risk reduction, we must be able to
quantify the risk so as to measure the benefit afforded by its
elimination or diminution. A workable procedure for doing
this is described.

INTRODUCTION

Most management decisions involve the assumption of
risk-the chance that things may not turn out the way we
hope or want them to. Decisions made in spite of uncertain
ties and, indeed, in recognition of them are generally
accepted as essential to dynamic, successful management.
Most ffeqtlt'fl't~y howeye!"' , the ker to success ties not in the
willingness to accept uncertainty, or to assume risk, but in
the ability to recognize and quantify the elements of that
risk so as to deal with them in a fully objective way.
Virtually every manager must come to grips with and
manage risk in some form. For this reason, risk manage
ment has become recognized as a distinctly identifiable
function of general organization or project management.

The steadily growing dependence of virtually every kind
of organization on electronic data processing systems has
introduced new concerns, which themselves have grown
rapidly in the past few years. These concerns are attribut
able to a wide variety of factors, but there are two principal

* This paper is derived from a working document prepared by the author for
study and use by the Federal Information Processing Standards Task Group
15, Computer Systems Security. of the United States Department of Com
merce National Bureau of Standards.

97

ones. First is the recognition of the recent rapid growth in
the centralization of the data keeping and information
extraction processes with the attendant potential for the
loss of the entire facility or major portions of it. Such loss
might result in a severe set-back for the organization. The
second major factor is recognition of the increasing depend
ence of the enterprise on employees with skills, talents, and
disciplines, and sometimes motivations, quite different from
those with which management has been familiar in the past.
There is a feeling that these people might present new,
unfamiliar problems and unfamiliar problems generally
yield more discomfort than do familiar ones.

This paper was prepared in response to a clear need for a
rational, systematic approach to a quantitative analysis of
the security risks associated with electronic data processing
systems. There has been broad agreement for some time
that a risk analysis technique is needed, but no readily
workable, broadly applicable technique has been described
in sufficient detail for it to be in general use. A methodol
ogy is offered here for assessing the risks specific to an
organization, the particular system within that organization,
and, to the extent necessary, the specific entities of which
each system is comprised. More specifically, the purpose of
this document is to describe one way of doing a risk
anGlly~is which has been found. workable by sevetal. OIga,ui

zations.
Earlier versions of this paper provoked active discussion

of the precise nature of those undesirable things which
should be considered appropriate topics for risk assess
ment. Opinions ranged from a belief that consideration
should be given only to catastrophic events, which would
result in a complete loss of the data processing capability,
to the opinion that only events ascribable to intentional
misconduct need evaluation. At the opposite extreme, some
held the position that consideration must be extended to all
things which might result in undesired modification, de
struction, or disclosure of data or suspension of data
processing services. The latter is the correct approach.
While this will increase the work required to complete the
risk analysis, there is no basis for a' priori exclusion from
consideration of subsets of the total array of undesirable
things which can happen to data and data processing
capabilities. It is not until the impact of the event and its

98 National Computer Conference, 1977

frequency of occurrence have both been examined, which
is in fact a risk assessment, that there can be a reasoned
justification for the exclusion from further consideration of
any potential source of damage.

It has been argued that the inclusion into the relatively
formal risk analysis procedure of such things as data entry
errors, mistakes in handling tapes, and operator errors is an
invasion of the normal province of the data processing
manager. It can also be viewed as a tool to assist him in the
identification of the need for and selection of appropriate
safeguards.

The purpose of performing a risk assessment is to obtain
a quantitative statement of the potential problems to which
the data processing facility is exposed, so that appropriate,
cost-effective security safeguards can be selected. It is
assumed that, once armed with such information, no secu
rity measure will be selected which costs more than tolerat
ing the problem. The risk assessment should establish that
threshold.

THE TWO PRINCIPAL FACTORS

Most people who have seriously considered or attempted
to devise a risk analysis procedure readily agree that a
useful technique must yield a quantitative statement of the
impact of specific security problems. However, there is less
than uniform agreement that the unit of measure can or
should be monetary. In addition to a measure of impact, a
statement of the probability of the occurrence of a particu
lar event is essential to a useful risk assessment. We
contend here that the two key elements in risk analysis are:

1. a statement of impact, that is, a quantitative statement
of how badly a specific difficulty hurts, and

2. a statement of the probability of encountering that
difficulty in a specified period of time, which is, of
course, anticipated frequency of occurrence.

Both parameters are needed to describe risk in terms of
cost per unit time, such as dollars per year.

The probability of an undesirable thing happening is
usuaJJy more difficult to determine with confidence than is a
measure of the impact of its happening. It has been sug
gested that we are S6 accustomed to making unconscious,
gross, subjective judgments of probability in reaching deci
sions that it is difficult to accept a formalization of the
process. Whatever the reasons for finding it difficult, state
ments of the potential economic impacts of events, without
regard to their relative probabiJity, cannot lead to the
identification of those security exposures that are worthy of
corrective action and those which are not. There are, of
course, many events which could have catastrophic conse
quences but which appear to have such low probability of
happening as to not justify the expenditure of significant
resources to lessen the potential damage. For example, at
another time and in another social climate, we judged the
probability of nuclear attack to be sufficiently high that we

were persuaded to provide and stock fallout shelters. We
have now, for the most part, abandoned those shelters, not
because the damage which would be caused by such an
attack is believed lower, but because we judge the probabil
ity of attack to be too low to justify the cost, in dollars and
inconvenience, of maintaining these facilities. Our decision
to abandon this security measure was based on a reassess
ment of the probability of occurrence and not on its cost.

As another example, assume that a hypothetical major
corporation has centralized most of its data processing
facilities into a single location. Also assume that no plans
have been made for data processing support elsewhere in
the event of a catastrophic loss of that facility. Suppose that
the sum of all costs to the corporation of such a loss is, at
first estimate $150 million, including not just the replace
ment costs of hardware, but also lost business opportuni
ties, customer ill-will, interruption of proper cash manage
ment, and other key activities. As such, the availability of
the $150 million figure, while possibly interesting, does not
lend itself to any real measure of the problem. It does not
suggest how much might reasonably be spent in reducing
the exposure. If we then determine, through further analy
sis, that we might reasonably expect such a loss with a
frequency of .003/year, we do have a basis for a decision on
corrective action. It is clear that we have an exposure in the
order of $450,OOO/year.

Continuing our example, we have three options in ad
dressing the exposure; we can:

1. Tolerate it.
2. Lower the dollar impact by implementing those meas

ures which cost less than a total of $450K per year, if
any.

3. Lower the probability of the loss occurring by imple
menting protective measures costing less than the
exposure.

The point made here is that, unless we had quantified both
the impact and the probability of occurrence, we would not
be in a position to make an informed election of any of the
three options.

Parenthetically, it should be noted that insurance is not a
fourth option. Insurance provides a means of smoothing the
impact of the loss when and if it happens. As such, it is a
matter to be considered after the election of the other
options. The availability of insurance does not necessarily
lessen the desirability of minimizing risk by other measures.
The downward adjustment of risk should lessen the amount
of insurance required (in the case of reduced impact) or the
rate (in the case of reduced probability or occurrence). In
the unlikely event that such reductions do not change the
cost of insurance, this should affect either the decision to
insure or the decision to apply security measures.

It was stated earlier that there is something less than
complete agreement that the impact of security problems is
best measured in dollars. Those people who seem to have
the most difficulty in assigning dollar values to security

problems are, for the most part, either:

!. considering the safety of data collections which, if
disclosed or otherwise harmed, would have some
identifiable and undesirable political or social ramifi
cations, and are possibly affected by privacy legisla
tion, or

2. have an involvement with defense or intelligence ac
tivities. The risks associated with activities in these
two categories are generally much more difficult to
assess quantitatively than are many other exposures.
However, this does not lessen the desirability of such
assessment.

Reluctance to use dollars as a means of sizing the
negative social impact of security problems is understanda
ble. Many people will not look kindly on those who appear
coldly to assess in dollars the hurt which might befall
people as a consequence of some security problem which
impacts those people personally. The appearance of an
objective measurement in dollars, for example, of an indi
vidual's privacy concerns might be abhorrent to many
people. This reluctance to use dollars as the measure has
led to several parallel development efforts to define the
severity of problems in these categories using relative
sensitivities as, for example, on a scale of one to five. Such
rating schemes are potentially valuable. Their development
and use should be encouraged. They are means of commu
nicating an assessment of the potential for harm to people
of the loss of security to files of specific types. For
example, a rating of "1," indicating great sensitivity, for
psychiatric data and "2" for files containing personal data
which is a little less sensitive, such as tax files. Such ratings
do not, however, provide an adequately meaningful param
eter for guidance in the selection of economically feasible
security measures. Such rating schemes can and should
coexist with risk analysis techniques which quantify the
problem in dollars.

It is conceivable that a convention which uses relative
sensitivities on a scale of one to five can be coupled with
another which describes probability of occurrence to pro
~/idt ~n < expression \\"hic'tr ~~r);s rhat--!lie pr0ba'birit» of a ~~
sized problem is O.3/year. However, this does not provide
much help in evaluating the need for, or relative effective
ness of, specific security measures.

A specific security measure is often difficult to justify in
terms of its ability to contain only one problem, and the
best security measures are usually those which contain or
assist in containing more than one.

Any summation of risks contained by a specific measure
or combination of measures requires that these risks be
expressed in common units of measure. If some problems
are describable only in economic terms and others in non
dimensional sensitivity ratings, the ability of specific meas
ures to contain a variety of problems will be awkward to
assess and security measures difficult to cost-justify.

Much of the problem of quantifying subjective concerns
often seems to go away if, in performing the risk analysis,
we defer until last the decisions we do not know how to

Security Risk Assessment 99

make. It then frequently becomes clear that other, more
easily quantifiable concerns fully justify the required secu
rity enhancements. Under these fortunate circumstances,
we are relieved of the need to make these decisions.

As an example, it may be difficult to arrive at a quantita
tive statement of the privacy impact of an exposure of the
violations records associated with vehicle operators' license
files. That such data are generally public record does not
lessen belief that their consolidation in a machine-based
system results in potential for their unfair exposure to too
many people who should not or do not need to see them.
The clear need to protect such data against unauthorized
changes will justify a level of security sufficiently high to
displace concerns for disclosure as the dominant factor in
selecting security measures.

It is not argued that serendipity will always prevail in
such matters, but there is no reason to ignore any assist
ance that it might provide. The present limited experience
in applying this risk analysis methodology to data collec
tions where social concerns are of major importance leads
to the strong belief that data security considerations other
than protection against disclosure will often dictate security
measures adequate for protection against disclosure and
thus relieve the need for quantification of the social impact,
real or imagined.

While those considering the problem of the social impact
of losses of data security have trouble expressing in dollars
the damage which might be done to people, the defense
establishments have a greater problem in addressing the
other factor in the risk analysis expression, the probability
of occurrence.

It is usually not easy to assess the dollar implication of
losses of classified data or denial of processing capability.
An even greater problem is encountered when trying to
assess the probability of espionage and sabotage. Because
the losses in such cases can be very great, it becomes
difficult to accept as tolerable any probability of occurr
ence. This dilemma can lead, if we are not careful, to such
logical dead ends as the statement that . 'if it can happen,
we must assume it will happen with a probability of 1."

It is important to avoid the inclination to overemphasize
~he 5igrtificailce ~0r f~C11nr~aT proOI';iilssimp1y be(;<iu~t: lTleil
solutions are intellectually challenging. Frequently, the
more intellectually stimulating problems are also those with
low probabilities of occurrence. The probability of occurr
ence of these more exotic problems is lowered by the
limited number of people in a position to pose each specific
problem. Thus, we are more inclined to concern for the
potential for damage by a systems programmer, of whom
there are relatively few, but whose capabilities provide
quite challenging problems, than we are to a critical evalua
tion of the effectiveness of a guard force in keeping
strangers, of whom there are many, out of a facility and in
restraining persons from carrying off what they should not
remove from the premises, including media for data stor
age.

In many electronic data processing environments, the
number of people in a position to do damage tends to be
inversely proportional to the amount of damage which they

100 National Computer Conference, 1977

might do. This is desirable and should be a goal of those
concerned with the security of these facilities. Unfortu
nately, this comment does not apply to many other secu
rity-sensitive environments not involving electronic data
processing.

The great majority of systems in both government and
the private sector fortunately do not have their security
needs dominated by unquantifiable events or probabilities
of occurrence due to undefined potential social impact or
defense problems. Even in systems free of these problems,
it may at times be difficult to arrive at precise assessments
of event impact or probability. It is usually quite feasible to
arrive at figures which, while inexact, are good enough for
the purpose of evaluating exposures and for guidance in
selecting appropriate security measures.

THE METHODOLOGY

The proposed risk analysis procedure proposed is fairly
well described by the sample form shown as Figure I. The

form is for use in evaluating the risk of damage to data from
all causes, including its loss to physical threats, such as
fire.

Data security problems are those which result from the
accidental or intentional, but unauthorized, disclosure,
modification, or destruction of data or the loss of the ability
to process it. There are, then, six bad things which can
happen to data and, in addition to those six, there can be
the denial of processing capability. It is important that all
six be kept in mind because security measures to be fully
cost effective need to address the broadest possible array of
problems. If our attention converges on too narrow a
definition of data security it is likely that a set of security
measures could be selected which contains a smaller prob
lem scope than would have other measures selected with
the broader problem definition in mind.

Because there are six categories of undesirable things
which can happen to data in addition to the loss of the
ability to process it, and because the negative dollar impact
of these things or their probability of occurrence, or both,

RISE: ANALYSIS WORK SHEET

SYSTEMI
DATA SET

NAME

INTENTIONAL

Where:

v

P
E

2

Exposure if Unable
to Process for:

HOURS

4 8 12 18

v is a function of dollar impact, as shown
in Figure 2,

P is a function of the estimated frequency of
occurrence of the event, as shown in Figure 2,

E, a function of p and v, is the estimated loss in
dollars per year from that event (vertical column)
impacting that data set (horizontal 'ow), calculated
as shown in Figure 3 or from table in that figure,

Figure i-Risk analysis worksheet

COMMENTS

may vary widely as a function of which data is being
considered, experience has shown it to be desirable to look
at the dollar impact of an event and its probability of
occurrence in a rather fine-grained structure; that is, look
ing at the results of each bad thing happening to every file
or dataset.

The selection of appropriate security measures is highly
dependent upon the specific problem to be contained. If our
problem structure is too coarse, combining, for example,
the consequences of both accidental and intentional things,
the results will not usually provide the desired guidance to
select a set of cost-effective protective measures.

Refer now to the format of the sample work sheet. The
far left column is for listing an inventory of the data. It is
suggested that these files be aggregated by system, such as
"Life Beneficiary Pay," "Inventory Control, Sub Assy,"
or "Personnel Data, Non-Exempt Emp.," because they are
most conveniently inventoried this way and are always
most conveniently considered for risk assessment in the
context in which they are used. "System" is used here to
describe a major application area, as implied by the exam
ples, and does not imply a physical facility.

Some files are used to support more than one system. In
such cases, it may be more convenient to list them with
each system in which they are used, and note in the
Comments column that they have been so listed. It is not
safe to list only once those files which are used to support
several systems because the system with which they are
included may be the one less dependent on that file than
other systems might be.

The first objective is to assign values for impact and
probability for each intersection in the matrix. Many inter
sections describe problems which are sufficiently small that
they may be neglected. Ordinarily, if the sum of v and p, as
described in Figure 2, is less than 6, then it can be
neglected. In some cases it is acceptable to set the thresh
old higher, but caution must be used. There may be
security measures which will contain a large number of low

If the dollar impact of the event (vertical column) on the data "et (horizontal
row) is:

$ 10, let v=1
100, let v=2

1,000, let v=3
10,000, let v=4

100,000, let v=5
1,000,000, let v=6

$10,000,000, let v=7

If the estimated frequency of occurrence is:

Once in 300 years, let p= 1
Once in 30 years, let p=2
Once in 3 years, let p=3
Once in 100 days, let p=4
Once in 10 days, let p=5

1 per day, let p=6
10 times per day, let p=7

100 times per day, let p= 8

Figure 2-Selection of values of v and p

Security Risk Assessment 101

cost problems but which cannot be cost-justified unless
several of these small problems are identified. Care must be
taken to avoid disregarding an intersection because the per
instance dollar impact is low; it may well be that the
probability of occurrence is sufficiently high to yield a high
annual cost for this problem. If the cost of a particular data
entry error is only $10, this should not be ignored as too
small to be important until it is also known that it does not
happen many times per day.

There is a strong tendency to attempt impact and proba
bility assessments far more exact than are actually re
quired. This contributes materially to the time required to
complete a risk assessment, without a corresponding in
crease in the value of the product. It is not uncommon
when working on a risk analysis to find the discussion
bogged down on the question of whether there is, in a
particular instance, a $115,000 or a $132,000 problem when,
in fact, it makes no difference which is chosen.

It is better to do the risk assessment making every gross
estimate of both impact and probabilities, and then refine
specific items later only if it is found that a decision to
pursue a particular course requires greater precision. For
this reason, an artifice is proposed to induce the risk
analysis team to be sufficiently inexact, at least on the
initial pass, to complete the job in a reasonable time. The
use of factors of 10 (orders of magnitude) for both dollar
impact and probability is recommended.

It must be understood that the assignment of probabilities
to specific human behavior problems in this area cannot be
done from a sound statistical base. This should not seri
ously inhibit the risk analysis. With on-going systems with
which there is a body of experience, particularly as it applies
to high-probability errors and omissions problems, the task
is relatively easy. There is usually an experience base from
which the team can work. It is usually more difficult to
assign probabilities to dishonest behavior problems. Never
theless, with the proposed gross quantification intervals, it
has not been found too difficult.

Even if al1 white col1ar crime were reported to law
enforcement agencies, (as opposed to the estimated 10-15
perc:e.nt of the detected.in,~t:mce§) ,tpere would ~tin not be a
statistical base which would provide data better than in
formed judgment based on a thorough knowledge of the
environment under consideration. People are far too com
plex to permit a statistically-based behavior analysis as it
relates to the probability of members of groups committing
specific crimes. In fact, if all the people in the United States
who are users of data processing systems were simple gas
molecules in a teacup, there would not be enough of them
to obey the basic pressure/volume/temperature relation
ships of the gas laws. It is clear that the behavior of people,
with their near-infinite complexity, will not yield to a
rigorous, statistically-based, behavior prediction.

Common sense is a very powerful weapon in attacking a
probability analysis. In a life insurance beneficiary payment
system where several hundred to a thousand or more
people know that it is relatively easy to change beneficiary
address without risk of anyone verifying that new address,
there is an exposure to at least one dishonest person

102 National Computer Conference, 1977

successfully diverting checks to an address or mailbox from
which he can get and then cash the checks. Such a situation
should yield a probability much higher than once in 30
years, probability much lower than every ten days and so,
using our exponential scale, we are discussing either once
every 1000 days or 100 days. The selection of the more
appropriate one of these two depends on several factors,
including the general climate in which the system functions.
If the number of people who know of the potential exposure
is in the order of one to two hundred, it is perhaps
reasonable to work with the three year, or 1000 days,
probability. If the number of such people is in the thou
sands or if employee dishonesty is a sustained problem,
then the 100 day approximation is probably better. This
selection is left to the risk analysis team. However, the
team must consider the general environment. If employee
dishonesty is relatively rampant and accepted by manage
ment so long as it does not exceed established bounds, then
a much higher probability of loss must be anticipated than
would otherwise be the case.

It is quite commonly stated that there is no justification
for an attempt to identify a back-up facility because no one
else can possibly spare the machine time necessary to
replace the whole capability of the system which is down or
which was lost in some fire or other catastrophe. The flaw
in this rationale is the assumption that it is necessary to find
a facility which can replace all of the capability that was
lost. It is generally true that only 10 to 15 percent of the
work is so critical to the organization that it cannot be
deferred for four to six days without catastrophic impact. It
is important that this 10 to 15 percent be identified, and that
contingency plans be laid which include the availability of
all of the things necessary to process elsewhere, including
forms, programs, communications, data and people.

The time intervals which should be on the form vary with
the nature of the organization under consideration. The
intervals shown are more appropriate to large scale com
mercial banking, for example, than they are to fire and
casualty insurance companies. The risk analysis team must
determine the time intervals useful to their particular indus
try area. Once these time dependencies are well under
stood, the data processing manager will usually find that the
amount of processing required and the cost of an inability
to process after loss of his facility makes an arrangement
with other facilities for back-up not only feasible, but highly
desirable.

HELPFUL HINTS

It is important that proper weight be given to the impact
of errors and omissions. Data is more often destroyed or
otherwise rendered useless, or even harmful, by people
making mistakes than through dishonesty or malice. People
whose loyalty and honesty are unquestioned, but whose
judgment and competence leave much to be desired, are
our greatest enemies. Data security considerations must not
be limited to concern for the acts of dishonest people.

Otherwise, it is very difficult to achieve proper cost justifi
cation of appropriate security measures. Weigh all potential
security problems.

It is of utmost importance when considering the potential
for damage by dishonest or malicious people to keep in
mind that the vast majority of all white collar crime is
committed by employees, not outsiders.

Most of the losses to dishonest employees occur when
employees misuse system resources to which they are
authorized access to get their jobs done. The people who
steal from Accounts Payable usually work there or are
authorized to enter or modify these data. The people who
steal from inventory through manipulation of the data
processing facility most commonly work in Inventory Con
trol. The people who work in Accounts Payable usually do
not steal from inventory or payroll. This situation must be
kept in mind when considering the exposure to data secu
rity problems. Most improprieties against property directly
involving the data processing system are conducted by
people who work in that portion of the business from which
the theft occurred, and by people who are very familiar
with that particular functional area.

It is usually best to eliminate perceived individual
personal integrity when performing a risk analysis. While
the probability than an individual will engage in dishonest
conduct clearly varies widely from person to person and
clearly influences the exposure to problems originating in
this manner, the factors which influence this individual
integrity are not easily perceptible. Further, individual
personal integrity is not a constant. It varies dramatically
with time and with personal situations of which a risk
evaluation team may be totally unaware. Satisfaction of
personal pride, frequently reflected in care and precision in
the conduct of a job, an admirable trait, can also lead to
other endeavors to satisfy this pride. Conflicts between two
ethics, for example, the need to pay for an urgently needed
operation on a child and a desire to be honest, can be
resolved in a manner not favorable to the employer. The
highly motivated employee who feels passed-by on promo
tions may decide to get his increased income in a manner of
his own choosing. For these reasons, it seems most satis
factory to eliminate individual personal integrity as a factor
in the risk assessment.

People in a position to engage in white collar crime are
sometimes deterred when the potential for reward from
dishonest conduct is limited to the absolute minimum
necessary to the conduct of the job to which he is assigned.
They frequently are deterred by reasonable assurance of
detection if they do something wrong. This is to say that
people are primarily deterred by limits on the value to them
of their dishonest activities, by the fear of being caught and,
to a lesser extent, by fear of punishment.

The loss of the physical facility itself should be treated
independently of the matter of loss of processing capability.
It is misleading to consider the loss of processing capability
as part of the cost of a loss of the physical facility. The loss
of the physical facility in a properly planned operation may
not result in a loss of all processing ability, and the ioss of
all processing ability need not involve the loss of the

physical facility. There may well be other facilities on
which the more critical data processing functions can be
continued until the prime system is replaced with the result
that the cost of the loss of the facility is only modestly
greater than the replacement cost of all that destroyed. For
this reason, it is recommended that loss of the ability to
process be treated as a data security problem and taken into
account when considering the impact of other problems on
specific files.

When considering the problem of fire, bear in mind that
fire can deprive the facility owner of services without
destroying or in any way damaging the data processing
complex itself. In high rise buildings, for example, severe
fires on any floor below the facility, and, frequently, on any
floor above, may disable that facility by depriving it of
power, air conditioning, communications or elevators. Fire
which destroys the supply of pre-printed paper forms can
seriously inconvenience the operations and effectively crip
ple any function totally dependent upon those forms. It may
well take longer to replace a destroyed supply of custom
ized forms than it does to replace the hardware facility. It is
necessary, to consider all aspects of each possible loss to
fire.

It is important that data security and physical security
definitions do not become confused. Data security prob
lems are those which are contained by security measures in
data processing hardware and software, and physical secu
rity problems are not just those which are contained by
physical measures such as fire detection and quenching
facilities. These interpretations do not yield a usable dis
tinction and should be avoided.

THE RISK ANALYSIS TEAM

The composition of the team to perform the risk assess
ment is particularly critical to its success. The task cannot
be done both quickly and well. It takes time. With even the
best teams and a near optimum situation, experience has
shown that the time required is about one month for each
2QQQ. ~l.aJ~.~e.ts orJik§<;:QI),$jdeIe.<;! ~ Th"tfIguxe i~ pr:e(U.cateq
on the assumption that the team is configured as suggested
here and devotes the recommended amount of time to the
task. Some experienced teams have reported an average
rate as low as a file every 15 minutes of actual evaluation

Security Risk Assessment 103

time. The proper consideration of the impact and probabili
ties required to complete the recommended procedure
requires the assignment of well-informed, properly moti
vated people. This job cannot be delegated to clerks as a
routine task. Because it takes good people, and in a large
shop, quite a while, it is suggested that the best way to
convene a risk analysis team is to agree that the people
working· on it will be required for only a half day per day
with the other half spent at their normal duties. The
alternative to this mode of operation, the full-time task
force approach, seems to provide only a fast wind-up with a
quick fade before a significant amount of work is com
pleted.

The participants on the risk assessment team must in
clude competent, senior representation from each of the
following:

1. EPD operations management.
2. The department supported by or owning the data

under consideration at the time.
3. The programmers responsible for support of that de

partment, operation or function currently under con
sideration.

4. System programming, if the installation is large
enough to have this as a separate function.

5. The internal audit function.
6. The department responsible for physical security.

While these people may not be able to contribute a
significant amount initially, their involvement usually
results in their education in a way that may not be
achievable by any other means.

In addition to the above, a strong senior management
commitment to risk assessment is essential to its success.
No amount of lower level concern wil1 be truly effective
unless everyone who has a role in achieving security
believes that more senior management has sufficient com
mitment to this area. It is often difficult to convince senior
management that they should be concerned without a
quantitative expression of the problems as might be derived
fromtJ}er:i~ka~~e$§me.nt. This .~ituati(m te~:H:t~ to {l ch.ic;kell
and egg problem. There is a need of senior management
support to get a properly manned risk analysis team organ
ized, but management may not be sufficiently concerned
about data security until it sees the product of their labor.

Values ofp
2 4 6 7 8

1 $300 $ 3K $ 30K $300K

2 $300 3K 30K 300K 3M

3 $300 3K 30K 300K 3M 30M

4 $300 3K 30K 300K 3M 30M 300M

$300 3K 30K 300K 3M 30M 300M

6 3K 30K 300K 3M 30M 300M
7 30K 300K 3M 30M 300M

Values of E $/year

Figure 3-Determination of Annualized Risk, E.

104 National Computer Conference, 1977

Thus, more than a modest amount of selling may be
required to get a risk analysis program under way. Once it
is functioning smoothly, there is usually continuing team
dedication to the job as the team members sense the
importance of the product-{)ften as much through the
surprises which they uncover as anything else.

BIBLIOGRAPHY

I. Privacy Act of 1974, Pub. L. No. 93-579, 88 Stat. 1896, December 31,
1974.

2. Privacy Act Implementation Guidelines and Responsibilities, Office of
Management and Budget, Circular No. A-108, Federal Register, Vol. 40,
No. 132, p. 28947, July 9, 1975.

3. Supplementary Guidance on Implementing the Privacy Act, Office of
Management and Budget, Federal Register, Vol. 40, No. 234, p. 56741,
December 4, 1975.

4. British Computer Society Code of Good Practice, National Computing
Centre Ltd., London, England, April 1973.

5. Feistel, H., "Cryptography and Computer Privacy," Scientific Ameri
can, Vol. 228, No.5, May 1973.

6. Martin, J., Security, Accuracy, and Privacy in Computer Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

7. Orceyre, M. J., "Data Security," Journal of Chemical Information and
Computer Sciences, Vol. 15, No. I, February 1975.

8. Parker, D. B., Computer Abuse, Stamford Research Institute, Menlo
Park, California, Nov. 1973.

9. Privacy in a Free Society, Roscue Pound American Trial Lawyers
Foundation, Cambridge, Massachusetts, June 1974.

Publications of the U.S. Department of Commerce, National Bureau of
Standards:

I. Executive Guide to Computer Security.
2. NBS Special Publication 404, Approaches to Privacy and Security in

Computer Systems, September, 1974.
3. NBS Technical Note 780, Controlled Accessibility, Bibliography, June,

1973.
4. NBS Technical Note 809, Government Looks at Privacy and Security in

Computer Systems, February, 1974.

5. NBS Technical Note 827, Controlled Accessibility Workshop Report,
May, 1974.

6. NBS Technical Note 876, Exploring Privacy and Data Security Costs
A Summary of a Workshop, August, 1975.

7. FIPS PUB 31, Guidelines of Automatic Data Processing Physical
Security and Risk Management, June, 1974.

8. FIPS PUB 41, Computer Security Guidelines for Implementing The
Privacy Act of 1974, May, 1975.

9. FIPS PUB 39, Glossary of Terminology for Computer Systems Security,
to be published January 1976. Available as TG-15 Working Papers of 9/
75.

to. Encryption Algorithm for Computer Data Protection: Federal Informa
tion Processing Standard, proposed, Federal Register, Vol. 40, No. 149,
p. 32830, August I, 1975.

Working Papers of Federal Information Processing Standards Task Group-
15:

I. TG-15/24.1, Index of Automated System Design Requirements as De
rivedfrom the OMB Privacy Act Implementation Guidelines, August 12,
1975 (to be published as NBSTR).

2. TG-15/30, Toward a Taxonomy of Computer Security Requirements for
Federal Agencies, by Alfred M. Pfaff.

Publications available from International Business Machines Corp., White
Plains New York:

I. Data Security and Data Processing, Volumes 1-7, Joint Study by IBM
Corp., Massachusetts Institute of Technology, TRW Systems, Inc., and
the Management Information Division of the State of Illinois (G320-1370
through G320-1376).

2. Considerations of Data Security in a Computer Environment (G520-
2169).

3. Considerations of Physical Security in a Computer Environment (G520-
27(0).

4. 42 Suggestions for Improving Security in Data Processing Operations
(G520-2797).

5. The Fire and After the Fire (G520-274l).
6. Proceedings of the IBM Data Security Symposium, April 1973 (G520-

2838).
7. Proceedings of the IBM Data Security Forum, Sept. 1974 (G520-2965).
8. "OSIVS2 System Integrity," W. S. McPhee, IBM Systems Journal, Vol.

14, No.3, 1975 (G321-0042).

Problem ,areas in computer
securityassessment*

by s. GLASEMAN, R. TURN and R. S. GAINES
The Rand Corporation
Santa Monica, California

ABSTRACT

An important problem area in providing security in com
puter systems is to avoid excessively costly and constrain
ing security practices while providing an adequate level of
security. In addition, there are problems in determining an
appropriate level of investment in techniques and practices
which enhance security and in the measurement of returns
on those investments, i.e., to what degree is security
improved by any given technique?

The resolution of these problems depends on the devel
opment of a capability for identifying and evaluating the
risks of storing and processing sensitive data in imperfectly
secure computing environments. This paper provides back
ground information on security assessment, surveys recent
work and the present status of computer security assess
ment, and identifies the research needed to move this field
forward.

INTRODUCTION

One of the goals of contemporary computer science is the
design and production of secure computer systems. Toward
this end, current research is focused on designing secure
ope+~8ysWm81 and~-tif'e dfl.t9 ht¥!e ~~t~ z C~d

erable progress is being made, even though certain underly
ing philosophical questions, such as the following, have not
yet been satisfactorily answered: What is secureness in
computer systems? How is it evident that a computer
system is secure? Are there degrees of secureness and if so,
how are they measured?

In the interim, however, it is necessary for the managers
of operational computer systems to understand and assess
the security situation in their systems. Are the security
techniques employed adequate? Are the associated costs
and operational constraints justifiable? What losses are
likely should the security system fail? For example, one
problem is the inability of current operating systems to

* The preparation of this paper was supported, in part, by the National
Science Foundation Grant No. MCS 76-00720. However, any views or
conclusions contained in this paper should not be interpreted as representing
the official position or policy of the sponsor or The Rand Corporation.

105

provide multilevel security in resource-sharing computer
facilities where different categories of sensitive national
defense information are processed. In such cases it is a
common practice to use "periods processing"-the com
puter is dedicated to processing information in only a single
sensitivity category at a time. This results in decreased
efficiency and throughput, and requires time-consuming
procedures for changing between processing periods.

In order to provide some answers to the above day-to
day questions dealing with security, the use of the concept
of risk, and the associated techniques of risk assessment
and risk management, have been suggested and are cur
rently being explored. In this paper we will discuss various
approaches to what we will call security assessment in
computer systems, examine the difficulties that arise, and
use a conceptual model to suggest promising directions in
the development of a security assessment methodology.

RELEVANT CONCEPTS

Since the concept of risk admits of a significant element
of subjectivity, it is perhaps not useful to attempt a rigorous
definition of it or of the terms associated with it. However,
since a ~et of shared perceptions is Ile~e,ssar}' if colllUlUIli~
cation is to occur, we will briefly discuss several contexts
within which some of the terms apply, then describe our
own views.

Management Science texts often deal with the concept of
an "insurable" risk.3 That is, business plans involve both
certain knowledge and elements of risk. The ways in which
these elements may be combined to more or less insure a
favorable outcome depend on the relative contribution
each makes to knowledge. A related view of risk is held in
the insurance industry. Here, risk has principally to do with
the uncertainty of loss, and the degree of risk is measured
by the probable variation of actual experience from ex
pected experience. 4 In each of these cases, empirical data is
available against which to apply statistical tools in evaluat
ing the risks involved. One of the important constraints on
our ability to assess security is the lack of such data.

Another example comes from Systems Engineering, which
considers risk as associated with situations in which the set

106 National Computer Conference, 1977

of possible outcomes is completely known, and the proba
bility of each outcome is calculable. 5 In terms of computer
security risk, we will rarely be able to claim "complete"
knowledge of potential losses (outcomes), or to calculate all
probabilities. However, we argue here that we can do much
better than we now do in identifying the potentials for
certain types of losses by the use of informed judgment
based on close examination of all the elements which
contribute to the potential for loss.

Two types of risks are recognized in economic theory: (1)
speculative risks where there is an uncertainty whether an
outcome limy entail a profit, or a loss, or neither; and (2)
pure risks where only losses are possible (but it is uncertain
whether or not they will actually occur). In the context of
computer security, we are dealing with pure risks. Gahin6

has formulated an elaborate theory of pure risk manage
ment in the business firm. We feel that Gahin's ideas merit
further study to determine their potential application in
assessing and managing computer security risks. To moti
vate such study, we present a very brief outline of his
work.

Gahin defines risk, R, as the maximum potential loss (to
the subject of risk) due to a specific event (a specific cause
of loss). That is, R is a loss that could be exceeded with a
probability g, and as g approaches 0, the value at risk
approaches the maximum possible loss. As defined, risk
would be measured in cost units, such as dollars, but could
also be expressed qualitatively. Associated with risk in
Gahin's theory are a risk function, a security function, and
a methodology for optimal selection of risk control devices.

The risk function is expressed as R=f(V,X,N) and
involves three variables: (1) the total value exposure, V, is
the total economic value that could possibly be lost or
destroyed by the same event; (2) the loss ratio, X, gives the
statistics from previous experience with this particular risk
event, and shows how much of the value exposed was lost
in similar events in the past; and (3) the number of
independent units of exposure, N, subject to the same type
of risk (e.g., the number of warehouses that collectively
contain the total inventory of a business firm) which
contain parts of the total value. In general, R is directly
proportional to exposure and to loss ratio, and inversely
proportional to amount exposed.

Gahin refers to security as the outcome of protecting the
firm against pure risks in terms of the reduction or elimina
tion of the risk. He defines a security function,
S=f(A,L,D,I,F), also measured in units of cost (dollars),
which is used to select among several risk control tech
niques. After an application of S, the new value of risk, R',
is expressed as R'=R-S.

The categories of risk control techniques (the parameters
in the security function) are: (I) risk avoidance, A, which is
aimed at reducing the total value exposure, V, by avoiding
situations or activities that involve the risk; (2) loss preven
tion, L, involving techniques which can reduce the fre
quency and/or severity of loss occurrences (components of
the loss ratio, X); (3) distribution of the value at risk, V,
over more independent exposure units by increasing N; (4)
insurance, I, which is the transfer of the burden of loss

partly or totally to another party by paying a premium to
that party; and (5) self-insurance in the form of establishing
a reserve fund, F, for offsetting possible losses. Gahin
suggests several strategies (too lengthly to summarize here)
for using the security function to select an optimal mix of
risk control techniques. Underlying these techniques, how
ever, is the assumption that for each risk control device its
cost and its risk-reducing capability are known. As we will
discuss below, determination of this information is a major
problem.

For the purposes of the present discussion we will
consider a computer system to consist of a physical instal
lation, hardware, software, procedures, and communication
links with remotely located satellite computers or terminals.
Any of these components, or any combination of them,
may be considered as subject to risk. That is, each repre
sents a certain value which is subject to loss. Any weakness
in the design, implementation or operation of a computer
system must be regarded as a vulnerability which, if ex
ploited (singly or in combination with other weaknesses),
would represent a threat to the information entrusted to the
system. Whether or not such threats will actually material
ize, that is, whether vulnerabilities will be exploited, either
accidentally or intentionally, and whether or not they will
succeed in causing losses are the basic uncertainties in
providing security in computer systems.

One objective of security assessment is to estimate the
risk, or likelihood, that a loss will in fact occur as a direct
result of a given threat. Improved procedures for assessing
risk should also result in better means than are now
available for estimating the magnitudes of the various losses
that are possible.

These two major targets of security assessment-likeli
hood of loss, and magnitude of loss-generate requirements
for a broad range of information. So, we can view security
assessment as an information gathering and analysis proce
dure which will furnish the basis for more informed and
more effective decision-making with respect to computer
security alternatives. Suggesting the kind of information
that is required to make such decisions is the main thrust of
this paper.

RECENT RESEARCH

The need to satisfy operational requirements in an envi
ronment providing less than complete security implies the
acceptance of a certain amount of risk, and we must have a
sound understanding of the elements of such risk before we
can make value judgments as to (1) appropriate levels of
investment in techniques for risk reduction, and (2) evalua
tion of the increment of risk reduction associated with such
techniques.

The greatest progress in using risk assessment for evalu
ating computer security appears to have been made in
physical protection of computer facilities and equipment
against natural disasters such as fire, flood, and the like, as
well as against theft and sabotage. 7,8 This is not surprising
since (1) experience from the insurance industry is readily

applicable, (2) values of exposed equipment are relatively
simple to determine, and (3) ample empirical data is avail
able for determining probabilities of loss due to various
threats. The principal document in this area, FIPS PUB 31 7

equates risk with expected loss measured in dollars (ex
pected loss = value of the exposed asset probability of
occurrence of the threat), and gives guidelines for determin
ing the required values and probabilities. This appraoch
appears quite adequate and, hence, we will refrain in this
paper from further discussion of risks due to natural disas
ters or physical theft.

Risks to data and programs in a computer system are
much more difficult to determine. There is very little
experience in determining the value of exposed data files or
programs, not all threats can be identified, and threat
occurrences tend to be highly uncertain. Most importantly,
empirical data about losses incurred by existing computer
systems is virtually nonexistent. Without data, attempts to
evaluate system security must remain completely subjec
tive. This point will be elaborated in the next section.

Thus far, two approaches to security assessment have
been proposed: the Illinois treatment of the economics of
security,9 and a risk assessment approach proposed by
Courtney.1O Courtney's approach, or similar approaches
developed independently, have been included in several
recent books on computer security. 11-14

U sing the Illinois approach, the total expected cost (in
dollars/year) in using the security system k, TEC(k), is
defined as: TEC(k)=X(k)+ Y(k), where X(k) is the cost
(dollars/year) to install and operate the safeguards compris
ing the security system k, and Y(k) is the expected loss
(also in dollars/year) due to exposure if security system k is
used. The loss, Y(k), is found by summing, over all possible
threats (defined as access routes to the protected assets),
the products of exposed value and the probability of
safeguard failure. If several safeguards must fail simultane
ously in order to cause a loss, a product of the individual
failure probabilities will be used. However, major assump
tions are required involving knowledge of all the possible
access paths and the probabilities of failure of the safe-
gtl!1r~~ th~t bl<?c~ th~~t: p~!h"~· Thl!.p~~~~p'!.i9n ,an~ ~~rn0tl
stration that concepts from economics can be applied to
assessment of risks in computer systems is an interesting
one. However, the assumptions required to enable applica
tion of this approach in any but the crudest exercise beg the
major issues involved in security assessment.

The thesis in Courtney's method is that risk managers
seek to obtain more precise results than can be justified. He
suggests assigning order of magnitude estimates of value to
the assets at risk, and makes correspondingly rough guesses
at the probabilities that any of the threats will actually
result in loss. The emphasis is on relative magnitudes of
risk, and its reduction by additional safeguards, rather than
on actual estimates of future losses and costs. Furthermore,
Courtney limits threats to six possible classes-destruction,
modification, or disclosure of data in the system, either
accidentally or intentionally. Thus, there would be no need
to subject each possible threat to detailed analyses of the
associated vulnerabilities and their exploitation.

Problem Areas in Computer Security Assessment 107

In line with this reasoning, Courtney expresses risk as
estimated loss in dollars per year, E, and establishes scales
for estimated exposed value and postulated frequency of
occurrence, v and p, respectively, that represent powers of
ten: E= loY lOP-DID, where D is chosen to allow expression
of E on a yearly basis (as expressed in number of working
days). For example, if three years represents 1000 working
days, D=3. The scale for p is so chosen that p=3 repre
sents the postulated frequency of one event per year. To
illustrate, if the exposed value of a data file is estimated to
be three thousand dollars (v=3), and if the expected fre
quency of events is once every 30 years (p=2), then the
exposed value per year, E=$33. However, if the expected
frequency of loss is once every 100 days (p=4), then
E=$3333.

Given the estimated yearly exposure, E, the next step (as
in other, similar, approaches) is to decide on a course of
action. According to Courtney there are three options: (1)
tolerate the risk, (2) lower the estimated loss by implement
ing measures that result in less exposure, and (3) lower the
probability of loss occurring by implementing protective
measures that cost less than E. A fourth option might be to
cover the residual exposure by insurance. However, Court
ney maintains that this is not a real option-while it soothes
the loss after it has occurred, it does not necessarily lessen
the desirability of minimizing the risk by other measures.

Here again, much is based on rough estimates of resource
value, threats, and loss probabilities. The whole utility of
this order-of-magnitude approach depends on these esti
mates. If they reflect no incremental improvement to infor
mation accuracy, this technique can claim to provide no
increment to our ability to assess risks. Also lacking in
Courtney's approach, at least in published versions, is a
methodology for choosing risk-reducing measures and esti
mating their impacts on the estimated exposure, E. This is,
as we will discuss below, one of the major difficulties in
existing risk assessment approaches.

In addition to the above, the issue of security assessment
has appeared in several other recent studies. 15

-
21 They have

attempted to establish broad principles for computer secu
ritYl ~e~~ed)lfl(t ~val~3.teq the ~e<=UI:ity l'IQYi.ded by ,e,~i~lip.g
operating systems, and developed techniques for identifica
tion of security-related design flaws in operating systems.
However, for the most part, these efforts have not involved
basic research aimed at understanding the components of
risk, and they have not recognized that progress in security
assessment is a prerequisite for attainment of increased
security in currently operational systems.

A CRITIQUE

Each of the two major studies discussed earlier has, in
effect, described a model of a computer system from a
security point of view. These models relate to various
elements that appear to contribute to the security of a
system in such a way as to allow one to make quantitative
judgments about the security offered by a system, or the
amount of money that should be invested in enhancing the

108 National Computer Conference, 1977

security of a system. There are shortcomings in both
models which make it doubtful that they can be used to
make serious quantitative judgments concerning how much
security one can achieve or what level of investment should
be made. There are several reasons for this which we will
now review.

The first is that we lack a sufficient understanding and a
sufficient set of facts on which to base the formulation of
reasonable models of the security of computer systems. As
a consequence, if we develop models which purport to
describe computer security there are no means for validat
ing anyone particular model or choosing between several
different models. Suppose that, nevertheless, we adopt a
particular model. An additional difficulty then arises: We
cannot apply the model in practice. The reason is that the
models assume that we are able to supply values for the
parameters of the model which, in fact, we are not able to
supply. For example, in Courtney's model one is expected
to estimate, for each system or data set that is to be
protected, the probability of intentional disclosure or modi
fication. In this simple phrase is included almost the whole
of the computer security problem. Courtney's approach
suggests that we understand the kinds of attacks that could
be made on a system, the probability that someone will try,
the probability that they will succeed if they do try, and
that we know how to combine all of this information into a
meaningful judgment of the probabilities associated with
incurring losses (themselves related to resource evaluation)
through various means of attack. Courtney points out that a
high degree of precision in such probability estimates is not
now possible, and, further, that it is not necessary. How
ever, at this time security assessment is in its· infancy, and
the techniques currently proposed are, at best, formaliza
tions of the crude, intuitive methods that have been in use
informally for several years. Progress in security assess
ment depends primarily on the use of more precise informa
tion. Failure to pursue the goal of greater precision amounts
to an agreement that today's assessment techniques are
sufficient for our needs. Few people knowledgeable in
computer security would feel comfortable with such a view.

It appears that what both the Illinois and Courtney
approaches have done is to try and describe what we would
do if we really had all the knowledge and information about
system vulnerabilities, people's intentions regarding those
vulnerabilities, and exact dollar values concerning the
losses that we could expect if particular attacks should
occur. It is our view that this is the simplest part of the
problem. The hard part of security assessment is in the
identification and analysis of the full range of vulnerabilities
and threats that might occur in systems. This is a very
complex subject and only a subset of the vuinerabilities in
systems has, as yet, received very careful attention.

The issues which have received attention fall into two
categories. The first is operating system vulnerabilities. The
second area is the physical security of computer centers.
The range of topics yet to be considered is large and
includes some very serious problems to which little atten
tion has yet been paid. These topics include: (1) the
vulnerability of the hardware itself, (2) the possible ways

which correctly functioning operating systems may never
theless be exploited, and (3) the vulnerabilities in proce
dures for various operations in a computer center, including
recovery from crash, backup of files, initiation of the
system, authorization of new users for the system, and
granting of new access rights for existing users for the
system.

As we analyze in depth the particular threats that can be
discovered in the context of particular existing systems, we
may also begin to consider some of the measures one might
take to block those threats. We do not wish to suggest that
by this route one may discover all of the measures which
should be taken to improve the security of a system.
However, at present our list of security enhancements for
systems is exceedingly small and any additions to that list
would be a welcome fringe benefit from such a study.

IMPORT ANT RESEARCH ISSUES

If we do not believe that the models currently being
offered for security assessment are satisfactory, how may
we proceed? We feel that it is appropriate to examine the
assessment question a good deal more carefully in the
context of one or more existing systems so as to acquire
sufficient data on which to base the construction of models
of computer systems from a security point of view. If we
hope ever to develop valid quantitative methods for assess
ing the security of a system, the risk that is being exposed,
and the probability of loss on which to base estimates of the
dollar amounts that ought to be spent in enhancing security,
then we first need a much more detailed analysis of the
elements that contribute to security or to the lack thereof in
computer systems. In fact, we prefer to leave it as an open
question whether or not a quantitative assessment method
ology can ever be developed.

Thus far, the development of requirements for technically
enhancing the security of existing systems has proceeded in
the absence of a clear understanding of what is being
protected from whom, and at what cost. One important
inference that may be drawn from the work discussed
earlier is that significant progress in security assessment is
constrained primarily by a lack of specific information in
most of the areas which are associated with the concept of
risk. One view of the interrelationships among these areas
is shown in Figure 1. The figure is not intended as a
complete specification; it is provided to indicate the com
plexity of the field. Those knowledgeable about the current
state of computer security will recognize that many of the
relationships shown in this figure are, at best, poorly
understood. Nevertheless, even such preliminary and in
complete attempts to structure the security assessment field
makes clear the need for a deeper examination of a number
of important areas. They include:

a. the specification of system assets to be protected, and
an estimation of their value.

b. the identification of system vulnerabilities, including,
but not limited to, operating system vulnerabilities,

Probiem Areas in Computer Security Assessment 109

System
characteristics

POliCY~
Policy Technology

{

Protected data} ~
Inplace security

safeguards:

Nature -----,.~{Value} AND {Classification}-----+ AND ----+
~ount level

Hardware
Software
Procedures
Cost
Constraints

Use

{
Poten!ial value}~{ Intrud~r's . }

to Intruder motivation

System
characteristi cs:

Hardware
Software
Personnel
Operations
Env ironment

Inplace security
safeguards

1
---.@v~{ Vulnerabilities

{

Intruder's . }
opportunity:

Access
Time

{
Intruder's }

resources

Risk:
Probability of

attack
Probab iI i ty of

success
Potential harms

to protected
assets

Figure I-Some interrelationships among certain elements of risk

c. an estimation of the relative degree of exploitability
associated with each vulnerability, or set of vulnera
bilities,

d. identification of the resources required by an intruder
for various attacks, and

e. the identification and specification of explidt threats
to sensitive information.

Since these elements of risk and their interrelationships
are imperfectly known, research is needed if we are to
progress beyond present limited abilities to assess security.
Each of these areas is briefly discussed below in order to
call attention to some of the important and basic research
questions yet to be attacked.

Protected assets

Any approach to security assessment requires estimation
of the value of the assets to be protected. Prior to this we
must identify those characteristics of the assets which
establish the need for protection and affect the value
estimation. What are these characteristics and how do they
influence protection decisions? This question requires fur-

ther research, especially as it applies to data stored and
manipulated by computers, and to applications and systems
software. One such characteristic is clearly the likelihood
that a particular asset would be singled out as a target. A
tentative list of other characteristics that may be relevant
includes the fallowing:

a. form of the data (narrative text, numeric information,
etc.),

b. data classification,
c. file size, and fraction of sensitive data in the unit of

measure (e.g., record, file, etc.),
d. frequency and duration of use,
e. duration of sensitivity,
f. dependence on and linkages with other data bases,

and
g. storage media used.

It is likely that some of this information is already
employed in rudimentary assessment procedures. For in
stance (see e, above), information which is valuable for
only a short time is more readily entrusted to a computer
than is data of continuing importance. A detailed examina-

110 National Computer Conference, 1977

tion of such characteristics will permit their more rigorous
application in assessment procedures, and should aid the
development of standardized assessment techniques.

In what way does the concept of value apply to those
assets subject to protection? One major problem in assign
ing value is determination of the unit of measurement. The
tendency is to value in terms of dollars; for example, costs
are associated with developing alternatives to a compro
mised plan, and with re-creating a contaminated data file.
While it is true that economic costs may be associated with
several aspects of protected resources, this is only a part of
the problem-other costs are involved which go beyond
technical considerations. Dollar value is hard to assign, for
example, to national security information or to personal
information-a variety of intangible costs are involved.
Such intangibles are usually expressed in terms of the
degree of harm or damage that might result from a security
compromise. But this is a very fuzzy area; what are the
various possible harms? How does one determine their
relative importance? One demonstration of the ambiguity in
this area is found in the official criteria for the major
national security information classification levels:

• Top Secret " ... unauthorized disclosure of which
could reasonably be expected to cause exceptionally
severe damage to national security."

• Secret " ... unauthorized disclosure of which could
reasonably be expected to cause serious damage to
national security."

• Confidential ". . . unauthorized disclosure of which
could reasonably be expected to cause damage to the
national security."

Such expressions clearly require individual and sUbjective
interpretation before classification can proceed. To assign
value to sensitive assets, we must be able to better specify
the losses which might result from their compromise. In
addition to its utility for the assessment of security, more
rigorous specification of values might provide a basis for
reevaluating the current scheme for assigning classification
categories to sensitive information.

Vulnerabilities

What are the vulnerabilities associated with the protected
assets? Penetration studies have produced convincing dem
onstrations of the vulnerabilities of present day operating
systems, and fairly complete identification and categoriza
tion of design flaws and implementation errors which seem
to produce such vulnerability. This focus is traceable to the
quest for a perfectly secure ADP facility, for which the
prime requirement is a flawless operating system. But,
other types of vulnerabilities exist, and must also be
considered in any effort to estimate the degree of security
provided by a particular ADP facility. For example, hard
ware failuies can result in data misroutings and consequent
inadvertent disclosures of sensitive information, and in

contamination of files by inappropriate insertion or omis
sion of data.

Another aspect of vulnerabilities is that of ease of exploi
tation; some vulnerabilities are easier to exploit than oth
ers. Scavenging for residual information in systems which
do not clear memory blocks upon deallocation, and trial
and error search for passwords are examples of easily
exploited vulnerabilities. Readily accessible, unhardened,
computer-to-terminal communication lines represent an
other vulnerability, easy to exploit through wiretapping, but
harder to fix-a cryptographic system must be installed.

However, there are other vulnerabilities which require
much more effort to exploit. Vulnerabilities based on the
time-dependent characteristics of asynchronous processing
are in this category. If it were possible to weight all
vulnerabilities on the basis of exploitability, the protector
would be in a much better position than he is now to
determine risks and choose strategies to allocate the funds
for implementing security systems. Clearly, such funds are
limited and some vulnerabilities, e.g., those rooted in
system design, cannot be eliminated for technical or finan
cial reasons based on requirements for major changes in
software or hardware.

It is important to distinguish between an intruder's
money and time costs. In some cases money costs might be
considered immaterial, while time costs might be quite
important, and, in fact, limiting with respect to the available
options. If we assume an intruder will attack via the most
exploitable vulnerability which will satisfy his needs, then
the majority of limited protector funds might be allocated,
not to potentially fruitless attempts to eliminate such vul
nerabilities, but to dramatically increasing the time required
to exploit them; thereby increasing the intruder's time
costs, and the real and perceived likelihood of detection.

Resources

What resources can an intruder bring to bear against a
system? How should these be taken into account in evalu
ating the plausibility of threat scenarios, estimating risks,
and designing more secure systems?

Depending upon an intruder's goals and motivation, and
on system characteristics, resources are of varying impor
tance. For example, the disgruntled employee mayor may
not have the technical expertise sufficient to carry out his
aims, but may have ample time to acquire it. On the other
hand, an agent of a hostile government might have suffi
cient expertise, but access to the target system might be
time-limited.

Some of the basic resources needed by potential intrud
ers are: funding, time, technology, expertise, and opportu
nity. These resources combine in various ways to contrib
ute to the probabilities associated with overcoming existing
safeguards. Furthermore, knowledge of the combinations of
~esources associated with different types of intruders and
vulnerabilities helps the protector to identify and deal with
the threats represented hy those combinations.

For example, the time required to exploit a vulnerability

is sometimes a more important consideration than the
amount of other resources needed-the more time required
to successfully complete an attack, the more likely it is that
the intrusion will be detected and thwarted. This is a major
principle in providing physical security in other environ
ments. It may also be applied to computer systems, even
though the time scale may be different, if the system can be
adequately instrumented for detecting questionable activi
ties. This is further evidence that increasing the time
required to exploit vulnerabilities which are too costly to
eliminate may be a plausible protection option.

Threats

What threats are associated with the protected re
sources? The several dimensions of this area are virtually
unexplored, even in the commercial world. For any threat
to exist, several conditions must be met; they include, but
are not limited to, the following.

a. There must exist an exploitable vulnerability.
b. Opportunity (whether for an intrusion, or for an

accident) must exist.
c. Other resources must be available for intentional

exploitation (funding, technology, expertise, etc.), and
some failure process must be active for accidental
exploitation.

Moreover, threats to a system posed by a malicious in
truder may involve the following additional characteristics
which strongly influence whether or not a possible threat
becomes probable:

d. Some information in the system will be highly valued
by the intruder.

e. Other sources for that information will be less attrac
tive.

f. The intruder's potential benefits outweigh the losses
he would suffer if his attempts fail.

g. Plans for gaining access exist, or can be generated.

How do these characteristics combine to produce plausible
threat scenarios? How can these be used to estimate the
probability that threats will be carried out? Research is
needed to develop answers to such questions.

Taken together, the components of threat exhibit a high
degree of interdependence. Therefore, it is necessary in
security assessment to deal with their interactions, in
addition to their individual contributions. Threats also de
pend, to some degree, on the perceived value of protected
assets, and on opportunity, available resources, etc. The
relative value of resources is sensitive to who is doing the
evaluation-which in tum depends upon someone' s percep
tion of vulnerabilities, opportunity, and so on. Finally, the
risks faced by any system can be expressed in terms of
resource evaluation, intruder motivation, opportunity,
other resources, and existing vulnerabilities. It is clear that

Problem Areas in Computer Security Assessment 111
III

the understanding of each specific issue discussed above
depends to some degree on understanding the others.

CONCLUSION

In the foregoing we have listed a number of topics which
should be explored in greater depth. The work proposed is
basic. It provides the necessary background for judging the
utility and cost-effectiveness of all other security work. It
may also permit new insights into the kinds of protection
mechanisms and procedures which will be beneficial in the
imperfect real world.

Such topics might be studied in vacuo, simply by careful
reasoning about the issues involved. However, we suggest
that it might be of substantiai benefit to consider these
questions in the context of one or more existing systems
which would serve as a source of data about the actual
problems which arise in conducting a risk assessment
related to the security of a "live system." One of the
important questions in risk assessment has to do with which
problems arise in practice, in contrast to the problems one
can imagine in theory. Moreover, it is premature to search
now for a global security assessment methodology. The
development of such a general capability is constrained by
a lack of exactly the kind of data that will become available
only as a result of focused, individual efforts at assessing
the security characteristics associated with specific sys
tems.

We suggest that there are two major requirements for
progress in security assessment:

(1) increased research emphasis aimed at the develop
ment of a better understanding of the informational
elements of security assessment;

(2) experience, at the level of individual computer instal
lations, in the application of a broader and more
accurate information base to the assessment of com
puter security.

!!!T!"~,:,e~ !!lfm !!~at!~?!. :!!l~ ~:v:~!"!e!'!,,:~ !!'! 2pp!y!!'!g !t !!'!
various ways should provide the data needed to refine the
focus of efforts to develop more general security assess
ment techniques.

There are no shortcuts, no "quick-and-dirty" solutions
that will significantly enhance either our ability to provide a
degree of security to sensitive resources, or our ability to
accurately measure the risks involved in operating in an
imperfectly secure environment. Rather, the whole area
must be viewed as it actually is-a complex set of issues
that must be put into broad perspective.

REFERENCES

I. Saltzer, J. H. and M. D. Schroeder, "The Protection of Informatio;; if'

Computer Systems,"Proceedings of the IEEE, Vol. 63, No.9, Septem
ber 1975, pp. 1278-1308.

112 National Computer Conference, 1977

2. Hsiao, D. K. and R. I. Baum, "Information Secure Systems," Advances
in Computers, Vol. 14, Academic Press, N. Y., 1976, pp. 231-272.

3. Koonz, H. and C. O'Donnell, Management: A Systems and Contin
gency Analysis of Managerial Functions, (Sixth Ed.), McGraw-HiII
Book Company, New York, 1976.

4. Mehr, R. I. and E. Cammack, Principles of Insurance, Richard D. Irwin,
Inc., Homewood, Ill., 1957.

5. Hal, A. D., A Methodology for Systems Engineering, D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1962.

6. Gahin, M., A Theory of Pure Risk Management in the Business Firm,
Ph.D. Thesis, University of Wisconsin, University Microfilms, Ann
Arbor, Michigan, 1966.

7. Guidelines for Automatic Data Processing Physical Security and Risk
Management, FIPS PUB 31, National Bureau of Standards, Washing
ton, D.C., June 1974.

8. The Considerations of Physical Security in a Computer Environment,
Document G520-2700-0, IBM Corporation, White Plains, N.Y., October
1972.

9. Data Security and Data Processing Volume 3 Part / State of Illinois:
Executive Overview, Document G320-1372-0, IBM Corporation, White
Plains, New York, June 1974.

10. Courtney, R. H., Jr., Security Risk Assessment in Electronic Data
Processing Systems, IBM Systems Research Center, New York, De
cember 1975.

II. Martin, J., Security, Accuracy, and Privacy in Computer Systems,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.

12. Hoyt, D. B. (Ed), Computer Security Handbook, Macmillian Informa
tion, New York, 1973.

13. Where Next for Computer Security? The National Computer Centre,
Ltd., Manchester, 1974.

14. An Executive's Guide to Data Security-A Translation from an IBM
Svenska AB Publication, Document G320-5647-0, IBM Corporation,
White Plains, N.Y., October 1975.

15. Bushkin, A. A., A Frameworkfor Computer Security, TM-WD-5733/000/
00, Systems Development Corporation, McLean, Va., March 1974.

16. Abbott, R. P., et ai, Security Analysis and Enhancement of Computer
Operating Systems, NBSIR 76-1041, National Bureau of Standards,
Washington, D.C., April 1976.

17. Carlstedt, J., R. Bisbey, and G. Popek, Pattern Directed Protection
Evaluation, ISIIRR-75-31, USC/Information Sciences Institute, Marina
Del Rey, Ca. June 1975.

18. Bisbey, R., et ai, Data Dependency Analysis, ISI/RR-76-45, USC/
Information Sciences Institute, Marina Del Rey, Ca., February 1976.

19. Anderson, J. P., Computer Technology Planning Study, Volume I, ESD
TR-73-51, J. P. Anderson & Co., Fort Washington, Pa., 1973.

20. Jacobson, R. V., "Risk Analysis in Planning for Physical Security," in
Approaches to Privacy and Security in Computer Systems, NBS Special
Publication 404, National Bureau of Standards, Washington, D.C.,
March 1974, pp. 54-55.

21. Peters, B., Operational Requirements for WWMCCS ADP Security,
TM-WD-5733/001l01, System Development Corporation, McLean, Va.,
June 1974.

Computer based information systems for the
small firm-Why? cost? caveats,
functional needs, contracts

by FREDERICK FRANCIS NEWPECK
University of New Mexico
Albuquerque, New Mexico

ABSTRACT

The following article presents advice to the small business
considering automation of information flows. Topics dis
cussed are, why and when to automate, the costs of
automation, how to avoid failure, how to specify functional
needs, and what to expect from the vendor contract.

WHY COMPUTERIZE A MANUAL SYSTEM?

If a small business has annual sales of $250,000, it should
consider the purchase of a small business computer to
automate some of its information flows.

A computer system would allow a seasonal business
requiring huge amounts of clerical effort in a short period of
time to expand and contract while maintaining a small
clerical staff. Volume of data input may vary, but input is
only a small part of the total clerical effort required to
process data in a manual system.

To reduce the complexity of manual accounting systems,
a computer can integrate accounts payable, accounts re
ceivable, general ledger, payroll, and job cost accounting in
a system which provides one-time data entry. When data is
entered, the system automaticarr) updules Lht:: llt:~t!s~ar'y

files and ledgers. Accuracy and integrity of the firm's
accounting system is enhanced by eliminating human proc
essing of data.

To control day-to-day business, management may need
more accurate and timely information. Once data is accu
rately entered into a computing system, it is processed with
100 percent accuracy at electronic speeds. Furthermore,
the computer can be programmed to display the same data
in a variety of ways to give the manager a better current
perspective. For example, if a summary report indicates a
problem area, a preprogrammed detail report can provide
analysis of the problem area. Manual systems could provide
the same information, but at the cost of high clerical
salaries and precious time. Hence, small business managers
tend to "fly by the seat of their pants," making decisions
on "feel" and soft data. A computer can rationalize man
agement.

113

A computer can provide small business management with
the sophisticated management information available to ex
ecutives of the large firm: cost and performance analyses
by product activity, area or individual; controls over inven
tory that significantly reduce the number of dollars tied up
in it; and analyses of sales, credit sales and purchases
which define cash needs and cash availability and provide
the basis for the wise use of credit. In short, a computer
based system can be a competitive advantage. Ongoing cost
analysis aids pricing decisions and better control over
inventory, and cash management can reduce overhead
expenses.

THE COST OF COMPUTER TECHNOLOGY

A small business can now afford a computer because the
cost of computers have been dropping at a 35 percent
annual rate for the past 15 years. The main parts of a
computer can be manufactured now for less than $100.
(MITS, an Albuquerque, New Mexico computer manufac
turer, sells computer kits to hobbyists for approximately
$400.)1 Experts predict that by 1980 a computer equivalent
in power to the IBM 7090, which sold for approximately $2
m~m(liliii 1965, 'W iII i,;OSi $ i LO manufacture! The impiica
tions are startling. Computers are used in ranges, watches,
home environmental control systems and aJltomobile fuel
injection systems. 2 The implications for factory automation
are obvious.

But, if computers are so cheap, why do small business
computers cost between $5,000 and $90,000? (A typical
small business system costs from 20 to 40 thousand dol
lars.) The price of components of the system-data entry
terminals, printers, and storage devices-has not been
dropping as rapidly as the processor. Substantial price
decreases occur only when manufacturing processes are
totally automated. Although the computer can be manufac
tured on a single integrated circuit chip which eliminates
hand wiring, manufacture of computer terminals still re
quires human handling at almost every step. The net result
is that the cost of computing systems will continue to
decline at a 10-20 percent compounded rate through 1980.

114 National Computer Conference, 1977

However, the average cost of a purchased small business
system has not decreased. The personnel costs of writing
programs to tell the computer what to do have been
increasing. And now, customers are buying more sophisti
cated peripherals and computer storage so that the system
does more things faster. In fact, integrated business sys
tems allowing small business management to automate
information flows in a functionally integrated, on-line envi
ronment have only emerged within the last year and have
yet to be announced by some vendors. These systems allow
a clerk to enter the data once, the data is then made
available to all hierarchical and functional levels of the
organization. One result is that the functions of marketing,
finance and production make decisions based on the same
data. Hence, the classic goal conflict between production
and marketing is eliminated. Information provides a synthe
sis of the goal of producing to meet customer. needs at a
competitive price and the goal of producing efficiently. *
Hence, merely providing information to disparate functions
of the organization may eliminate the need for managerial
control and provide more freedom for middle level man
agers. Information itself is control and the computer can
provide a freer organizational climate in which participants
direct their own behaviors to a greater extent. Hardware to
provide this organizational climate is readily available,
however, the integrated soft:ware systems are in their
infancy of development and availability.

THE PURPOSE OF AN AUTOMATED INFORMATION
SYSTEM

Let us now examine how the formal information system
develops in a corporation. When created, the business
probably had one or two employees, the president and a
close friend. The president carried accounts receivable,
accounts payable, and inventory data in his head. As the
firm grew, more people were added to handle the workload.
The resulting specialization and fragmentation of the firm's
memory among individuals require formal communication
flows and reports to create the situation that once existed
when one person possessed all the information. As the
business continues to grow, data storage becomes further
fragmented into functional areas as the number of special
ized functions increases and the number of people in each
specialty increases also. Under these circumstances, the
problem is how to enable the firm to react to its environ
ment as a single entity.

The answer lies in a computer-based information system
in which the data is sensed and collected once and entered
into a single database which can be accessed by any
business function to obtain information. Because all func
tions base decisions on the same data, disparate functions
like marketing and production are coordinated. Hence, total
system optimization replaces SUboptimization.

* If machines are controlled by computers, production to order will be as
efficient as continuous production runs because machine set up win be via
changing the program rather than costly mechanical alterations.

In summary, the purpose of an information system is to
provide information to the management system for decision
making. The purpose of automation is to increase the
efficiency and effectiveness of communication channels
within the business so that once again the firm can react to
its environment as a single organism.

WHY DO COMPUTER BASED INFORMATION
SYSTEMS FAIL?

The objectives for automation are simple and manage
ment is aware of the potential for coordinated operational
control. Why then do some computer based information
systems fail miserably while others are successful? One
reason is a management structure that cannot control its
current environment; another is the lack of top management
involvement with the computer based system; and a third
reason is software. Before the computer based information
system can be successful, the management system must be
well structured. A small company looking at automation for
the first time usually has been growing at a 100-300 percent
annual rate. Growth results in confusion within the manage
ment system that can only be resolved by restructuring
management responsibilities. If the computer is expected to
solve management problems, the result will most certainly
be failure. Second, the prerogative to manage the system
containing the valuable, irreplaceable data resource of the
firm must never be delegated. Without top management
involvement at every stage of implementation, the comput
erized system will fail and possibly the business itself.

Management participation must be educated. Manage
ment may already be expert in the selection, acquisition
and use of machinery for its manufacturing or service
business, but managers typically do not possess the same
degree of competency with computers. Small business
managers are ignorant of computer technology because
they were not trained in the universities and/or because
they have been too busy making money to educate them
selves in the rapidly changing computer technology. Ag
gressive action often is not taken in an area where the small
business manager feels insecure. The small business man
ager needs to become conversant in computer technology
and its management to avoid the typical pitfalls and provide
rational computer based information system management
leadership. In many cases, the burden of responsibility for
placing the nerve center of the firm on a computer is
delegated to a technician. It is unfair to place such a burden
on a technician and it is dangerous to the very existence of
the firm that so much power and authority resides with a
single person who is not intimately tied to the success of
the firm.

A third and critical area is software. Very often a small
business manager requires a computer system to conform
to his firm's established procedures rather than change the
firm's procedures to fit a preprogrammed application pack
age. The process of finding a software package which feels
comfortable to a firm with minimum change is the critical
issue. Small businesses should not undertake to write their

own software systems. In general, they do not possess the
software expertise and the tremendous financial resources
that go into writing and documenting their system. Special
ized software often ties the firm to hardware and the people
who wrote the software. One small firm nearly went
bankrupt when its data processing manager died in an
accident. No one understood the programs he wrote which
were undocumented and no one knew how to run the
software on the computer! Standard software would have
precluded the problem, since a large group of people would
understand the operation of the software system. In general
it is best if a small firm uses standard software packages.
Modifications to the software should be made only after the
firm has used the package for three months, often needed
changes prove to be niceties the firm can do without.

COMPUTER ACQUISITION

Nothing can replace the computer educated, articulate
manager in the computer acquisition process. However, a
measure of security may be achieved by hiring a consultant
knowledgeable in the small computer field to assist in the
acquisition procedure. Computer sales people are, after all,
trying to sell their product. They are an excellent source of
useful information, but aggressive sales people will waste
valuable time and often appeal to emotional rather than
technical issues. A knowledgeable consultant, someone
who is in the market every day, can serve as an effective
buffer for the small business manager. The final equipment
decision and responsibility must lie with the manager. He
alone is responsible for the profitability of the firm. An
incorrect decision could cost a small firm an amount of
money far exceeding the cost of the hardware. A construc
tion firm with which the author is familiar lost ~ million
dollars the year it purchased a computer; the next year it
returned to its manual system and has been profitable since.
Another firm, a manufacturing company automated its
accounting functions and later was unable to access its
accounting data for government auditors. The result was a
delay in payment on government contracts and a substantial
KtYe'!tmemtWthe ('~y ~tdeflt'<iltt~ ~¥t'r'~ ~'
of six months. However, if a company uses the following
acquisition procedures, the threat of loss will be minimized:

1. If there is no computer expert in your firm, hire a
consultant. The consultant should be able to provide
you with references, he should have a degree in
business administration with a concentration in infor
mation systems or computer science coupled with
substantial real world experience. The consultant
should be able to understand your business problems
and be an expert in the automation of business sys
tems.

2. Generate functional specifications for your firm.
These should include (1) the system objective, (2) a
brief description of what is to be automated, and (3)
parameters of the business, such as numbers of cus
tomers, inventory items, order volumes, etc. Exam-

Computer-Based Information Systems i i 5

pies of functional specifications tailored to the needs
of specific firms appear in Appendix A.

3. The vendor should be asked to comment on (1) the
number of similar systems they have installed and
their length of operation, (2) their maintenance capa
bility, and (3) the warranties and terms of purchase or
lease.

4. Once the vendors have been narrowed to three to five
qualified bidders, visit operating sites similar to the
proposed system. During these visits ask questions in
the following areas: (I) customer satisfaction, (2) in
stallation delays, (3) length of installation operations,
(4) major difficulties during installation, (5) system
reliability, (6) service level, (7) modifications to sys
tem, and (8) scope and complexity of system.

5. Finally, in selecting the vendor, disregard salesmen's
claims. Rely on: (I) facts from information gathered,
(2) vendor past performance, and (3) evaluation of
people you will work with in system development.
Hire a lawyer familiar with computer systems to write
an addendum to the vendor's standard contract. See
Appendix B for some suggested clauses.

6. Additional system considerations:
a. Specify a system that is CRT and keyboard driven,

cards are costly and unwieldy for small systems.
b. A cassette based system should never be pur

chased. Cassettes store ~ million characters of
data that can only be accessed by searching the
entire cassette for a particular piece of information.
Floppy disks store the same amount of data that
can be randomly accessed. A floppy disk system
should only be purchased if the data volume to be
stored is very small and its growth stagnant. A hard
disk costs $10,000 vs. $4,000 for a floppy disk and
provides substantial growth benefits.

c. The critical issue is the availability of software to
meet your specific needs. Concentrate on this is
sue. Hardware is in general not a problem.

APPENDIX A-EXAMPLES OF FUNCTIONAL
SPE:CIFICATJQNS.

CPA FIRM/SERVICE BUREAU

Software requirements

1. Payroll System-Approximately 50 clients, mode is 5
to 10 employees, five clients with 20 to 50 employees.
System must have ability to prepare checks, year-to
date registers, payroll registers, labor distribution by
cost center or department, and also prepare W-2's on
demand as well as year-end W-2's and quarterly 941-A
reporting. A vacation, holiday, and sick leave accrual
system is a helpful addition. The payroll reporting
subsystem must interface with the general ledger data
entry processes to capture by-product payroll data and
retain this data for quarterly and annual reporting.

2. Accounts Receivable System-Data entered via sales
journal and cash receipts journals to produce state
ments and an aged trial balance.

116 National Computer Conference, 1977

3. Accounts Payable System-Fully integrated system
for both cash and accrual based clients. Check writing
capability, volume: 6,000 checks per month.

4. General Ledger System-Fully integrated with Pay
roll, AIR, AlP systems must be capable of using the
Autotax system chart-of-accounts. Capability of pro
ducing subsidiary financial statements.

5. Availability of a standard data input editing capability
to include data type field checks, range checks, ac
count code and check digit, etc., and data output
control checks is a pius.

6. The current system must be capable of handling 60
clients, having 40 accounts per general ledger account
and be expandable in increments to handle 200 clients
requiring NR maintenance, payroll and all standard
accounting functions.

System requirements

I. On-line Interactive System-Initially a single CRT
station, modular and expandable to four to six CRT
stations capable of simultaneously accessing system.
Software protection of database update an important
consideration in maintaining data integrity. Please
specify cost of each additional CRT station.

2. Line Printer-Low speed, 64 character set, reliability
critical.

X-BAR FLYING SERVICE

I. Data Processing Requirements
Processing-The system shall be capable of meeting
X-Bar's immediate accounting needs with a fully inte
grated on-line AlP, AIR, GIL, payroll, inventory,
software package.
Input-Input will be on-line, single item entry with
editing capability.
Output-CRT and line printer (100 to 200 lines per
minute).

2. Future System Requirements
Processing-The system shall be capable of software
expansion to meet future management control infor
mation needs. It must be possible to easily access and
restructure data to provide for new management infor
mation requirements. It must be possible to process
data from at least four separate companies simultane
ously; that is, the data may be updated and accessed
by remote terminals in at least four different locations.
Input/query capability from several local and remote
locations. Some terminals may be connected directly
to the system while others are connected by a leased
telephone line.

3. Modular Expansion
The system must be expandable in modules of hard
ware, applications software, and operating systems
software. Each perspective vendor is expected to
quote the basic system and then show how the system

can be expanded to meet the future system require
ment.

4. Maintenance
Maintenance must be Albuquerque based with one
half day response.

5. Backup
An Albuquerque based backup system fully compati
ble with X-Bar's specified system must be available.
Excess time (current and projected) on the backup
system must be available.

6. Training
Local training support must be available and easily
accessible.

7. Availability
Only a "try before you buy" philosophy will be
accepted. Each vendor will be expected to demon
strate the basic system with X-Bar data to satisfaction
of X-Bar before purchase. In addition, the vendor
must demonstrate a currently operational expanded
system that would meet X-Bar's future needs. The
system shall be available in 30 to 45 days after the
order is received. A similar system and sufficient
system time must be available to affect immediate
conversion from X-Bar's old system to the new sys
tem.

8. Guarantee-The vendor must be willing to include a
penalty clause and/or initiate an escrow account to
cover possible loss to X-Bar due to the system not
meeting specifications. The vendor must agree to
submit to arbitration should a vendor-buyer disagree
ment arise.

APPENDIX B-THE STANDARD CONTRACT

The standard vendor contract is not immutable, though that
is often the impression presented by the vendor representa
tives. The truth is that the vendor contract is written to
favor the vendor, hence, is inequitable and should be
modified to be fair to both parties. 1 The data processing
manager and the company executive staff have definite
wishes regarding:

(1) Delivery date commitment
(2) Documentation requirements
(3) Trade-in options
(4) Reporting requirements (on a software development

contract)
(5) Performance test requirements
(6) Service commitments

They, however, do not have the expertise necessary to
translate these requirements into contractual language. A
lawyer, on the other hand, normally does not have the
expertise to determine what is required. Together the DP
managerlcorporate executive and negotiating lawyer form a
symbiotic relationship. Every vendor will renegotiate a
standard contract, if pressed.

Initially, the corporate staff should decide what the

critical contract objectives are. For example, if reliable
service is the most important consideration, then attention
should focus on warranty and maintenance provisions.
These contractual objectives must be articulated and trans
lated into appropriate legal language by an attorney.

Some contract considerations follow:*

(1) Warranty-Will the equipment function according to
software and hardware specifications?

(2) Terms and Price-Specific conditions under which
title the computer and/or software passes to vendor.
In a lease contract, who pays the property taxes? Is
the lease renewable? Is there an upgrade/downgrade
penalty clause?

(3) Delivery and Installation-Delivery dates should be
designated with penalties for late deliveries. Provision
should be made for damage in shipment.

* The Auerbach Data Processing Manual contains model contracts for
computer equipment. Access to this document may be available at a local
university library, or a large corporation, university or city data processing
department. See also Brandon, Dick H., and Sidney Segelstein, Data
Processing Contracts-Structure, Contents and Negotiation, VanNostrand
Reinhold Company, New York, N.Y., 1976.

Computer-Based Information Systems i i 7

(4) Acceptance Testing and Maintenance-Under what
terms will the vendee accept the equipment? A mini
mum acceptance period is 30 days. A maintenance
clause should specify the maximum response time for
service calls.

(5) Training-The type and duration of training should be
clearly specified.

In summary, every conceivable event should be included
in the contract. Do not accept the verbal agreement with a
vendor official, he can be overruled later, or be powerless
to follow through if the agreement is not in writing.

REFERENCES

1. "Microcomputers Catch on Fast," Business Week, July 12, 1976, p. 50.
2. "The Smart Machine Revolution," Business Week, July 5, 1976, pp. 38-

44.
Appendix
1. Bucci, R. A., "Beware the Standard Lease," Datamation, March 1973,

pp.75-76.

Storage utilization in a
self-organizing data base

by P. M. STOCKER
University of East Anglia
Norfolk, England

ABSTRACT

The controlling mechanisms within a self-organizing base
are concerned with maintaining the balance between search
efficiency and update efficiency, and with resolving con
flicting requirements for physical adjacency. This paper
shows how the concept of the value of store to a process
may be used in the control mechanisms, and discusses the
connection between values derived from theory and values
measurable in operation.

INTRODUCTION

A proposal for the general structure of a self-organizing
data management system was made in Stocker and Dearn
ley; 1 an account of a pilot implementation was given in
Dearnley;2 and some account of its operation in Dearnley,3
and Stocker & Dearnley . 4 A second implementation is
currently in progress, which follows the general structure of
the first, but which includes more sophisticated searching
and structuring techniques. In particular, the structures
forming the data base are now viewed in a less rigid manner
and the self-initiated changes in the structures, in response
to changes in usage, are seen more as continuous adapta-
tio~ thaT1 ~i~:r~te ch~.!l~:s~. .

The data base management system has two pnnclpai
components. The first determines a near optimum proce
dure to process a transaction presented to the system, and
in almost every instance will necessarily make use of the
overall data structure which exists at the instant when the
transaction is presented. The second component restruc
tures the base in response to data instance changes, past
usage and any known information concerning future usage.
Its objective is to minimize overall future cost; that is, user
cost, together with any internal cost arising from restructur
ing activities. The basic processes of the restructuring
component are described in Stocker,5 and are briefly sum
marized here. The processes in the base are seen as a
hierarchy, each monitored by a control routine which
adapts it to the usage pattern in which it is currently
employed and will be employed in the future. In a sense,
each data structure may be viewed as part of a processing
plant, with an associated capital and operational cost.

119

General description of control mechanisms

At the highest level the keys which are to provide direct
access to the data are controlled. The process is that of
adding a new key or ceasing to maintain a current one. At
the next lower level control is maintained over the record
sets which may be accessed by these keys. These record
sets may be regarded loosely as main record-sets and
secondary indexes, one or more record-sets being associ
ated with each access key. There are four processes at this
level:

(i) The partitioning of the data items associated with a
particular key into record-sets, if more than a single
record-set is found to be advantageous (i.e.,
cheaper).

(ii) The migration of a data item from a record-set on
one key to a record-set of another key which is in 1-1
correspondence with the first.

(iii) The duplication of data items by including them
explicitly in more record-sets than is logically neces
sary, including secondary sets.

(iv) The specification of which main files shall be in
dexed by secondary ones.

Th'~-' t~nirct tcu~ints 'a5~utiatc~- ~~~'ifh tlh~,5t PfuCCSS'cs
periodically review the activities of the system and may
cause a process to undertake its activity, that is, move,
delete or duplicate a data-item with respect to a record-set.

Below the processes operating at the record-set level are
others concerned with the file structure of the record-sets.
It is assumed that these files are implemented in terms of
"frames, " the normal unit of transfer from backing store to
core in the file processor. Lower level processes with
associated controls are concerned with the inter-frame
structure and with the intra-frame structure.

In the present system the unit of cost is equated to one
transfer of a frame between core and backing storage.

OBJECTIVES

This paper is intended to clarify two aspects of the self
organizing system. The first is the relation between the

120 National Computer Conference, 1977

formal optimization of data structures carried out mathe
matically under assumptions of random rectangular distri
bution of data key instances and the more ad hoc proce
dures which operate on statistics to be measured during
operation of the management system. Two examples are
chosen, one of a low level control, which operates fre
quently, and so must have a low overhead. The second
control mechanism operates at a high level and, because it
is comparatively infrequently invoked, can bear a higher
overhead.

The paper is intended also to clarify an important aspect
of the data structures. The data structures constructed by
the processes described are quite neutral with respect to
hierarchic, relational or network definitions of the data in
an external user description. The second example is chosen
to show how the storage structures react to various forms
of usage (not external description). It is hoped that this
demonstration will assist in the understanding of the desira
ble separation between the internal specification of adaptive
data base systems and the external view of the data.

OVERFLOW PROCEDURES

Consider a growing sequential file, with index. The file
itself may contain actual data or be the lowest level of
a multi-level index; see for example, Schneiderman and
Goodman. 6 Two possible overflow procedures, when a
frame becomes full, are as follows:

(i) Push a number of records to the next frame in
sequence,

(ii) Obtain a new frame and divide the contents of the full
frame between the two.

If the rate of growth is slow the (i) is attractive since
frames will be well filled and overflow will be infrequent. If
the growth rate is high (ii) appears attractive.

If strategy (ii) is adopted it can be shown that the average
density will be 100 (2 loge 2)-1=72 percent. The difference
from 75 percent is due to the fact that the rate of gain of
additions depends upon the page content. For strategy (i) to
show an improvement a density higher than this must be
attained and the gain from the increased density must more

, than offset the cumulative nature of the overflow.
In all the processes one should ask, "is the increased

complexity justified by the gain?" The gain may be ap
praised as follows. For a slow-growing file strategy (i) may
produce a density approaching 100 percent. This corre
sponds to a 39 percent saving in disc space over strategy
(ii). The saving in access costs will also be 39 percent for a
batch of keys which access every frame in the file, but will
be zero for a batch where the number of keys is small
compared with the number of frames. Finally, strategy (ii)
preserves the physical ordering of frames.

The strategy considered here is to partition the file into
segments such that strategy (i) is used throughout the
segment untii it is terminated by a frame foiiowing strategy
(ii), and hence terminating the overflow propagation.

In the next section a theoretical basis is deduced, leading
to the simplified operational algorithm of a later section.

Theoretical basis

Consider a file containing r records having a random
rectangular distribution of keys. Consider also a "frame" of
that file containing p records and of maximum content q. A
batch search supplying m keys of similar distribution is
applied to the file.

The probability that the frame is accessed is l-e-mp/r •

The expected number of keys serviced by the frame is
mplr.

Let 2: denote a sum over a spectrum of values of m (the
usage distribution) and let v be the number of additions to
this frame over a time period covered in the usage distribu
tion. Note that v contains the cumulative overflow from
frames earlier in the segment.

Overflow from the frame will cause four additional ac
cesses (read and write overflow frame and index). The cost
per query serviced may be written:

C= 4v/(q-p)+2:(1-e- mP/r)

(p/r)2:m '
(1)

where p is the page occupancy after overflow has been
performed and p is 'an average value' for page occupancy
during operation. Because overflow will tend to cascade
down the segment p=p is a good approximation.

Segment ends

At a segment end one must have the approximate rela
tion:

4v(g -p)+ 2:(l-e-mPlr) _ 2:(l_e-o.72mq/r)
(p/r)2:m - (0.72q/r)2:m '

(2)

where it has been assumed that cumulative additions heav
ily outweigh local ones. With obvious approximation, as
suming that p-q, one may obtain:

__ O. ng[14v+ 2:(I-e-O.72mq/r)]
p- ~(I-e-O.72lllq/r) (3)

That is, a sequence should terminate if the estimated p/q is
less than 0.72[1 + 14 (Number of Additions)/(Number of
Accesses)] and this rule will serve for the ad hoc process.

Optimization

Consider the effects of changing p to p+ 1 in equation (1).
Overflow costs per query will increase in the ratio (q-p)/
(q-P-l). Search costs will be unchanged for small batches
(as can be shown by expanding e-mP/r in powers of m). For
iarge batches they will change in the ratio 1'/(1'+ 1). This
discrepancy raises a difficulty, but expansion suggests that

a satisfactory approximate ratio is given by I-kip, where
k= I-g, g being the ratio of accesses to queries serviced.

The previous paragraph omits mathematical detail and is
expressed in terms appropriate for the control algorithm.

Control

It is simple to arrange that the data management system
record on each frame, when it is accessed, the number of
queries serviced and the number of accesses since the last
overflow, and to keep weighted values of these for, say, the
last three periods between overflow.

When overflow next occurs, the following computation is
performed:

1. Form:

- p(q-P) -
x- (p+ l)(q-p-l) x overflow cost (-4),

g=accesses/keys serviced,

k=I-g,

y= (1- ~) x access cost,

z= 1 + 14 x (additions/accesses).

2. If x+y>(overflow cost + access cost), then decrease p
by 1 when processing overflow. Otherwise increase p by
1.

3. If the new p is less than O.72z treat overflow by strategy
(ii), record p as O.72z and reset weighted averages on
both frames involved.

4. If new p is greater than or equal to O.72z use strategy (i).

Note that increased packing on backing store may be
achieved by adding an additional term proportional to real
time and scaling like p/(p+ 1), to represent backing store
rental.

The control scheme achieves local control and the file
can adapt to an increase or decrease in additions in a
particular key area.

STRUCTURE FORMS

In British Universities, students apply to a national
center for admission. A record is maintained under the
applicant's unique code number which contains personal
data together with a repeating section to contain details of
the progress of applications to a number of universities.
These records might be of the logical form:

Applicant's Code Name Age

University Code II Course Code
Repeating

The basic logic of the management system may reject the

Storage Utilization 121

embedded repeating groups and may store such data in two
record-sets, thus:

Set A
App. Code

and
Set B
App. Code
App. Code

Name Age

Univ. Code
Univ. Code

Course Code
Course Code.

Alternatively, it may accept the repeating group in prac
tice, by retaining the two logical record-sets A and B, but
storing instances corresponding to the same key in the same
frame. In addition, the intrapage control mechanism will
suppress some key duplication but that aspect is not
mentioned further in this paper. 5

Statement of the problem

The decision concerning whether the sets A and B should
be physically distinct or interleaved is determined by a
process specific for this purpose. Three kinds of query
access using Applicant's Code as key are possible, those
which refer to A alone, B alone, or A and B in combination.

If the size of all query batches is small then the combined
structure is optimal (the case where the repeating group for
a single key exceeds a frame is ignored). If the batch sizes
are larger then the low packing density of A in the inter
leaved file it may prove more costly than the gain achieved
for queries involving the combination.

An approximate process

The number of accesses to a file of n frames to process a
batch containing m key instances is:

n(1-e-m/").

Thus, to properly cost a number of batches, N B , one must
be able to compute:

In this case, we are concerned with assessing the merits of
widely different values of n, and the incremental approach
of the preceding section will not suffice. It is necessary,
therefore, that statistics be maintained by the management
system concerning the batch sizes of queries concerning
particular data items. The degree of detail required is
dependent on file sizes. A satisfactory division may be an
octal one. That is, for each access presenting "Applicant's
Code," as key, and for each combination of items sought, a
small table is maintained which records a count of the
queries in each batch size range, (8 i , 8i ±1l). This will be
called the batch distribution table, BDT for brevity.

Periodically, a review of the following form is produced.
Compute the BDT for the next time period for sets A, B
and AB. Compute the likely average number of frames in
A, Band AB. Compute the total cost for the next period of

122 National Computer Conference, 1977

A serving A and AB queries, denoted by C(A), a similar
statistic for B, and the cost of AB serving A, Band AB
queries. Suppose the system were in the AB state. Form:

Q=C(A)+C(B)-C(AB).

If Q is positive no further action is taken. If Q is negative,
call a procedure which evaluates the cost of the AB~ A + B
stored data transformation, say, R. It is now necessary to
use a further statistic, extremely difficult to obtain, which is
the likely time span for which the current usage will
continue. Call this T. Let S be the cost, for the next time
period, of "interest" and repayment of R over period T.
Then if S is less than Q the process controlled is called, that
is, the stored data transformation AB~ A + B is carried out.

For completeness, the action of another control in this
particular problem will be mentioned. Suppose that ac
cesses to B were via the key "University Code," then B
would be ordered and indexed on this key. If the items
searched for often included "Applicant's Name," an extra
access to A via "Applicant's Code" is involved.

This problem may be approached by maintaining usage
statistics for the actual file B, as distinct from the BDT's
which are system statistics. The file statistics are counts of
the hits on data-items in B, either as directs or indirects.
That is, they record whether the item was searched for as a
required output or as a reference to an output. This is done
by the query processor. If the indirect count is high the
BDT associated with "University Code" can be consulted
and a reason deduced. An appraisal of the value of includ
ing "Applicant's Name" in both A and B would then be

carried out on lines similar to those described eariler in this
paper.

CONCLUSIONS

From the foregoing, it will be seen that the concept of
processes and control routines provides a system which
may produce data structures which correspond to relational
concepts (A + B), hierarchic concepts (AB), secondary in
dexes or CODASYL sets, and which contains controlled data
duplication. The concept also more directly provides
change towards optimality at lower levels. The author sees
the main problem as that of minimizing the number of
processes and of finding the most nearly orthogonal set.
The simplicity of implementations will be determined by
how well this problem is solved.

REFERENCES

1. Stocker, P. M. and P. A. Deamley, "Self-Organising Data Management
Systems," The Computer Journal, Volume 16, No.2, 1973.

2. Dearnley, P. A., "A Model of a Self-Organising Data Management
System," The Computer Journal. Volume 17, No.1, 1974.

3. Deamley, P. A., "The Operation of a Model Self-Organising Data
Management System," The Computer Journal. Volume 17, No.3, 1974.

4. Stocker, P. M. and P. A. Dearnley, "A Self-Organising Data Management
System," published in Data Management. edited by J. W. Klimbie, and
K. L. Koffeman, North Holland, 1974.

5. Stocker, P. M., IFIP-TC-2 Working Conference on "Modelling in Data
Base Management Systems," Nice, North Holland Publishing Co, 1977.

6. Shneiderman, B. and V. Goodman, A.C.M. Transactions on Data Base
Systems, Volume J, No.3, September 1976.

Self-adaptive automatic data base design*

by MICHAEL HAMMER
MIT Laboratory for Computer Science
Cambridge, Massachusetts

ABSTRACT

Physical data base design, the selection of organizational
structures and access mechanisms for a data base, is one of
the most important responsibilities of a Data Base Adminis
trator (DBA). A DBA often has difficulty in performing this
task; he lacks the information needed to choose a design
that is well matched to the data base's mode of use.

This paper presents the design principles of an automatic
system that has the ability to choose the physical design for
a data base and to adapt this design to changing require
ments. The components of such a system include: an
information gathering module that collects global statistics
on the overall usage pattern of the data base; a predictor
that projects observed usage statistics into the future; a
design evaluator that computes a figure of merit for any
proposed design; and a heuristic proposer that synthesizes
a small set of candidate designs for detailed consideration.
These principles have been applied to the design of a
system that selects secondary indices for an inverted file
system.

INTRODUCTION

The advent of shared integrated data bases has called into
being a new job function. that of the Data Base Administra
to;- (DBAj. TIlt' DBA i~ diargeu Wilh responsibility for a
collection of data that is being used in differing ways, for
varying reasons, by a disparate community of users; he has
authority over an important resource that no single user can
(or should) control. It is his task to mediate the conflicting
needs of the user community and make decisions regarding
the organization and maintenance of the data base. The
particular tasks associated with this important position
cannot be easily summarized in a job description. By all
accounts, one of the DBA's major areas of responsibility is
for the physical design of the data base; by this, we mean
all decisions pertaining to the structure and representation
of the data and its associated access mechanisms.

The physical design of a data base will determine the cost
of its use and maintenance: the time it takes to perform

This research was supported by the Advanced Research Projects Agency
of the Department of Defense and was monitored by the Office of Naval
Research under contract number NOOOl4-76-C-0944.

123

retrievals and updates, and the space needed to store the
data and its associated auxiliary structures. (A terminologi
cal note: We use "update" as a generic term to include
insertions and deletions of records as well as the modifica
tion of existing records.) In an important sense, physical
design issues should be largely invisible to users of the data
base: i.e., they should primarily affect only system per
formance and not the ways that users view the data or write
their programs. The latter sort of concerns are usually
gathered together under the term "logical design." In some
contemporary systems, the choice of a logical schema does
have a direct impact on the structure of the physical
representation of the data, and so performance issues do
impact the users' view of the data. But with the growing
trend towards data independence in modern systems, the
logical and physical design processes are being increasingly
decoupled. Logical design is an exercise in modelling,
wherein the DBA attempts to design a logical data structure
that effectively captures the fundamental semantics of the
application domain and thus enables users to express their
transactions with the data base in a natural and convenient
way. Physical design can be viewed as the process of
reducing this abstract representation to a concrete one,
which is expressed in terms of physical data structures and
access mechanisms; the only relevant issue at this level
should be performance.

Pml:iic.al desig.uueJlCQlDJ)aS~ .n, e;deAii~e,·~· m ~ue",:
which ones are relevant in the design of a particular data
base depends on the kinds of file structures and access
methods that are supported by the data base management
system (DBMS) being used. Typical design problems in this
domain include: choosing the primary access methods for
the files of a data base (e.g., sequential, indexed sequential,
or direct); for a sequential file, selecting the major and
minor keys by which the file is to be sorted; identifying the
set of fields for which to maintain indices, and choosing the
structures of these indices.

In most cases, the set of possible physical designs for a
given logical data base is very large. No single one of them
is the optimal in all circumstances. Rather, one design can
be said to be better or worse than another only in the
context of a particular pattern of use for the data base. It is
well-known that any particular physical design of a data
base will enable the efficient execution of certain retrievals
but not of others, and that it will entail extensive mainte-

124 National Computer Conference, 1977

nance activity for certain updating activIties but not for
others. Thus, the objective of the physical design process is
the selection of a physical representation that will provide
good performance in the context of the particular mix of
retrievals and updates to which the data base will be
subjected.

There is another factor that affects the choice of the
physical design for the data base, which might be called the
internal characteristics of the data. This includes such
issues as the sizes of files, the ranges of values that fields
can assume, the distributions of values in fields across a
record type, the cardinalities of relationships between re
cord types, the typical numbers of elements in repeating
groups; these all affect how a particular physical design will
perform for a set of transactions, and so should influence
the choice of the physical design.

Large, shared data bases are not static entities. When a
data base is used as an autonomous organizational re
source, rather than as a set of master files for some
particular programs, it develops a highly dynamic life cycle
of its own. Its usage patterns can shift dramatically as old
applications evolve or are replaced, as new applications
emerge, as users acquire increased sophistication and famil
iarity with the system. Internal characteristics of the data
may change as well, reflecting the changing nature of the
domain being modelled by the data base. Consequently, the
tuning of a data base's physical organization must also be a
continual process; physical redesign, to meet changing
requirements, is as important as the initial configuration
process.

In light of all these issues that influence the choice of a
good design, it is not surprising that a physical design
chosen by the DBA in an intuitive fashion, based on his
qualitative impressions, is likely to result in unsatisfactory
performance. But problems also face the DBA in trying to
choose a design in a more systematic fashion. First of all, it
is difficult for him to obtain an accurate usage pattern for
the data base as a whole, since he typically has meaningful
interactions only with a limited number of individual users.
Secondly, a modern data management system is a complex
device, and it is hard for a human DBA to develop a useful
intuitive model of its operation; on the other hand, a more
precise model would be so complex that the evaluation of
any proposed design would be an extremely cumbersome
process. Next, even if the DBA were able to assign a figure
of merit to any particular design, he would not be able to
use this ability to select an optimal structure, because the
number of candidate organizations is almost certain to be
too large to allow their individual consideration. Finally,
because of the evolving character of data base usage and
data characteristics, even a well-chosen design is not likely
to remain a good one for long. Obtaining meaningful
predictions as to what the relevant parameters affecting the
design will be like in the future is even harder than
determining what they have been in the past.

Therefore, the DBA needs help in choosing the physical
design for his data base; and it is natural to look to the data
management system itself to assist in (or even subsume)
this process. It certainly is the best source for all the

information needed to do the task effectively. Since the
DBMS processes all user transactions it has the capability
to build up an integrated and accurate model of data base
usage; it should also be able to detect emerging trends and
project them into the future. Similarly, it can obtain sum
maries of the pertinent internal characteristics of the data
during the normal course of its operation. It could also be
provided with a detailed model of its own operation, in
order to compute useful cost figures for candidate physical
designs. What we are proposing is imbuing the data man
agement system with a limited form of "intelligence",
thereby enabling it to share in the making of decisions
heretofore entirely within the province of humans.

. In the remainder of this paper, we describe how a data
management system can participate in the physical design
process; initially, by means of a set of tools to aid a human
DBA, and then through a totally automated data base
design facility.

INFORMATION GATHERING AND DESIGN
EVALUATION

The basic components of any automated or semi-auto
mated physical design system are a design evaluation
module and an information gathering module. The former is
used to comparatively evaluate any set of candidate designs
for the data base and thereby rationalize the process by
which a design is selected. In order to perform such
automatic physical design evaluation, the system must have
access to information that characterizes the use of the data
base and its contents. It is the responsibility of the informa
tion gathering module to collect such data. This module can
be incorporated into the interface language processor of the
DBMS; it can be thought of as watching over the shoulder
of the language processor and taking notes on what it sees.
The choice of what information it should collect is deter
mined by the design issues to be addressed and the ap
proach being taken to design evaluation by the evaluator
module. This choice should also be influenced by consider
ations of accuracy and efficiency. On the one hand, suc
cinct summary statistics may not provide enough data for
the precise analysis of possible designs. On the other, it
may be prohibitively expensive to gather and store a large
amount of data of a fine-grained character; furthermore, it
might be difficult to make effective use of a mass of low
level facts.

Earlier efforts in the area of automatic data base design
have utilized rough summary information to describe the
use of a data base and its contents. 1

,2 This description of a
usage pattern in terms of a small number of parameters has
been used to characterize an "average" transaction, with
respect to which any proposed design could be bench
marked. The difficulty with this approach is that it obscures
a great deal of detail that is crucial in tuning a data base
design to match its mode of use; much relevant information
is lost in describing a usage pattern in terms of a single
average transaction.

We believe that for most design decisions, the most

effective way to evaluate a proposed design is by examining
its aggregate performance for all the individual transactions
ihat comprise the usage of the data base. The system
should utilize a model of the operation of the DBMS,
together with information about the internal characteristics
of the data, to forecast how much processing would be
done by the DBMS in the handling of each individual
transaction; the sum of these processing costs over all
transactions in a usage pattern can be combined with
certain other cost figures to achieve an overall figure of
merit for the proposed design. Therefore we shall attempt
to gather as much detailed information as possible about the
individual transactions with the data base and its internal
characteristics.

Practically, it would be infeasible to maintain a separate
record of every transaction that occurs with the data base;
it would also be prohibitively expensive to attempt to
analyze each one when considering a proposed design.
Therefore, we shall partition the set of transactions into
transaction classes such that all transactions in the same
class will have the same essential structure. For example,
the class of a retrieval request will be determined by the
field names and comparison operators occurring in the
atomic predicates and by the structure of the total predicate
in terms of its logical connectives. The intent is that all
transactions in the same class should entail roughly the
same amount of processing by the DBMS; while this may
not be completely accurate, we believe it represents an
acceptable tradeoff between efficiency and accuracy. Then
a usage pattern will be expressed by the occurrence fre
quencies of the various transaction classes; a design will be
evaluated by considering its (weighted) performance for the
different classes, as predicted by the model of the DBMS.
Henceforth, we shall take "transaction" to mean "transac
tion class."

There are two further points to be observed about the
information gathering module. First, it is imperative that
the process of gathering information not significantly de
grade DBMS performance; the statistics that this module
collects ought to be readily available in the normal opera
tion of the DBMS. SecondJy, the usage pattern may have to
retlect more than just the occurrence frequencies of the
various transactions. It may well be that certain users or
applications have a higher priority than others, and that
their needs and habits should carry more weight in deter
mining the physical design of the data base.

The information gathering module provides the back
ground knowledge essential to choosing a physical design;
this information is utilized by the physical design evaluator.
This module takes two inputs: the output of the information
gatherer (a description of the usage pattern and internal
characteristics of the data bases) and a proposed physical
design for the data base. Its function is to produce a figure
of merit that reflects the suitability of the proposed physical
design for a data base with the specified internal character
istics that is being used in the way described by the usage
pattern.

The evaluator will be used to compare alternative designs
and select the best of any set of candidates. The figure of

Self-Adaptive Automatic Data Base Design 125

merit need not be a completely accurate measure of the
cost associated with an individual design, but it must allow
for reliable comparisons to be made of alternative designs.

The design evaluator will be built around a transaction
cost estimator. This estimator is called with a transaction, a
proposed physical design for a data base, and a summary of
the data base's internal characteristics; it computes a figure
that reflects the cost that the DBMS would incur in
processing the transaction, if the data base were siructured
in the proposed way. The units of this estimate could be
expected I/O processing, or expected CPU time, or a
combination of the two.

The bulk of a (naive) design evaluator could consist,
then, simply of an iteration over the set of transactions in
the usage pattern; each transaction would be submitted to
the cost estimator, and the result tallied into a running total.
The value computed by this iteration could be combined
wiih a figure reflecting the costs of storing and'maintaining
the access structures, in order to achieve a unified figure of
merit for the proposed design. We shall discuss later the
shortcomings of this naive evaluator and how they may be
repaired; however, in the interim, this can serve as a useful
model of the structure of this module.

The transaction cost estimator requires a detailed model
of the operation of the DBMS. By scanning the structure of
a transaction, this module will determine what strategy the
DBMS would follow in processing it: what access mecha
nisms would be utilized and in what order, what kinds of
intermediate results would be generated, and so on. The
detailed information about the data base's internal charac
teristics will enable the estimator to forecast such things as
the sizes of the various structures the DBMS would have to
scan and the number of links it would have to traverse.
Thus the estimator will be able to predict the total amount
of activity required of the DBMS to handle this transaction.
Since the estimator will have to operate efficiently, it may
have to ignore some hard-to-compute factors in the proc
essing cost; but the dominant terms should be readily
approximated.

Such a cost estimator is an entity of interest in its own
right~ independent of the problem of self-ortlaniziRg Gata
bases. Many contemporary data base systems provide a
"stand-alone" language interface, which is intended for use
by relatively unsophisticated users in posing ad hoc inqui
ries to the data base in real-time. An unfortunate property
of such a facility is that it enables a naive user to ask the
system a seemingly simple query whose processing will
cost a great deal more (either in terms of elapsed time or
other system resources) than the answer is worth to him. A
transaction cost estimator could inspect any query and
quickly return to the user an estimate of its processing cost,
enabling him to abort expensive queries and to better plan
his data base usage.

Although the information gatherer and the design evalua
tor form a coherent unit, either one by itself would still be
useful to the DBA: the information gatherer could provide
him with data for his use in intuitively designing file
structures, or the design evaluator could operate with usage
statistics that he supplied it.

126 National Computer Conference, 1977

Theoretically, the DBA could run the evaluator on the
full set of all possible designs and select the one with the
best figure of merit; he would then be reasonably certain of
having chosen a near-optimal structure. More realistically,
the DBA would intuitively choose some small set of struc
tures to investigate more closely, and subject them to
careful analysis and evaluation.

REDESIGN AND USAGE PREDICTION

A scenario of the use of these basic DBA design tools is
as follows. At the time of data base creation, the DBA
generates a pattern that he believes represents the expected
usage pattern of the data base, and uses it as input to the
evaluator in selecting the initial physical design. He then
activates the information gatherer to monitor the actual
transactions with the data base and determine its real mode
of use. When sufficient statistics have been gathered, the
DBA can decide if his initial guess was accurate. If not, he
can use the evaluator again and choose another design that
better fits the observed usage.

The flaw in this primitive scenario is, of course, that a
data base usage pattern is not static, and so even a well
chosen design may become obsolete. Consequently, it is
desirable to incorporate the concept of redesign into this
picture. To accomplish this, we introduce the notion of
redesign points, which could occur on a regular basis or on
DBA request (for example, upon his noticing a significant
degradation in system performance). At each such point,
the statistics gathered since the last redesign point are
summarized into a usage pattern, which presumably defines
the most recent mode of use. The evaluator can then be
used to help the DBA select a physical design optimally
suited to this usage pattern. This design is the structure of
choice in the current circumstances.

This approach raises some issues that must be addressed.
One of these involves the cost of performing a redesign. If
it develops that the optimal design for the evidenced usage
pattern is different from the existing design, then there is
almost certainly going to be some cost associated with the
process of transforming the data base from the old physical
organization into the new one. The extent of this cost
depends on the size of the data base, the kinds of structures
involved, and the degree of the difference between the old
and new designs. It may be the case that the cost improve
ment to be gained by using the new design rather than the
old will be washed out by the expense of the reconfigura
tion process. Consequently, this latter cost must also be
considered in choosing the physical design. The optimal
design is thus defined as that design D for which
F(D)=C(D)-C(Do)-T(Do,D) is a maximum, where Do is
the existing design, C(D) is the total cost associated with
design D for the usage pattern observed since the last
design point (as computed by the evaluator), and T(Do,D)
is the cost of transforming the data base from design Do to
design D. The evaluator can readily be modified to compute
F(D) for any proposed design.

The other problem with our redesign scenario is rather

more fundamental. In the process described above, we are
always designing for the past, optimiZing for a usage pattern
that is already over. The tacit assumption behind this is that
the usage of the future will strongly resemble that of the
past. However, it may happen that the redesign points are
badly situated with respect to the evolution of the usage
pattern, and that statistics gathered since the last design
point are dominated by transactions least representative of
future usage. This situation might well obtain if redesign
points occur when system performance is just beginning to
degrade.

For this reason, it is appropriate to be more sensitive to
the problem of changing usage patterns and to include in
the system a predictor module. This component will inter
pret the observed statistics and explicitly translate them
into an anticipated future usage pattern. The intent is that
this module will detect evolving trends in data base use
even before they become fully established, and so enable
the data base structure to be prepared in advance for the
demands to be put on it. A predictor module needs access
not only to the usage statistics of the most recent time
interval, but to those of earlier periods as well. By analyz
ing the historical trends of the various parameters that
comprise the usage pattern, this component can synthesize
a description of expected use for the upcoming interval. It
is with respect to this predicted pattern that the alternative
physical designs will be evaluated.

A good predictor module must satisfy a number of
criteria. It must not be overly vulnerable to chance fluctua
tions in usage, while still responding to real change. There
fore, it cannot base its decisions purely on recent events,
nor on the aggregate of information gathered over the entire
history of the data base. Intuitively, some weighted average
of the two is desirable. At the same time, the predictor
cannot demand access to a great deal of detailed informa
tion from all previous time periods, since both the gathering
and storage of such information is likely to be prohibitive in
cost; nor can it attempt to perform extensive computations
for each prediction that it makes. A useful usage pattern is
likely to be composed of a large number of parameters, and
a lengthy evaluation for each one is impractical.

A promising predictive technique for this application is
exponential smoothing.3 The basic formulation of exponen
tial smoothing in making a forecast of a discrete time series
is as follows:

new forecast=a*(actual observation from last pe
riod)+(1-a) *(previous forecast)

where a is caUed a smoothing constant and takes on values
between 0 and 1. In essence, this computes a weighted
average of all previous observations with the weight de
creasing geometrically over successively earlier observa
tions. The rate of response to recent changes can be
adjusted simply by changing the smoothing constant; the
larger the smoothing constant, the more sensitive is the
forecast. to recent changes and chance fluctuations. (The
value of the smoothing constant a can be selected by the

DBA or can be adaptively chosen by the system itself to
minimize the difference between observed and predicted
data.) Presumably, the predictor would maintain a time
series for each parameter in the usage pattern. In this
scheme, only two values need be maintained for each
series: the current observation and the previous forecast.
The computational requirements of this approach are also
minimal.

This basic scheme can be modified in order to make it
more sensitive to evolving trends. The revised formulation
is as follows:

new average=a*(current observation)+(l-a)*(old av-
erage)

current trend=new average-old average
new trend=a*(current trend)+(l-a)*(old trend)
new forecast=new average+«(l-a)/a)*(new trend)

The new trend is a smoothed average of the differences
between successive basic forecasts (as formulated above),
and so represents the direction that these forecasts are
taking. The revised forecast is the basic forecast modified
by a weighted version of the new trend. Here, too, storage
requirements are minimal; space is needed only for the
current observation, the old average, and the old trend.

A number of issues must be confronted in attempting to
apply exponential smoothing to data base usage prediction.
One question is whether such techniques, developed for
problem domains like inventory control, are really appro
priate for the data base environment. The fundamental
problem is determining the nature of the patterns and trends
that do occur in the history of use of a centralized data base
by a diverse community of users. Certainly, such histories
seem to have some aspects that are not congenial to
modelling by smoothing techniques. Ultimately the validity
of this approach to usage prediction can only be determined
by careful study of extensive amounts of appropriate data
that have been gathered in an operational environment.

AN AUTOMATIC DESIGN FACILITY

As we have described it, the information gathering mod
ule collects the statistics on observed data base use, and
passes them to the predictor module, where they are
converted into an expected usage pattern. The design
evaluator utilizes this prediction in assessing possible de
signs. What, then, remains the function of the human DBA
(with respect to the data base design problem)? It might be
said that his first responsibility in this area is that of any
human working with an automated decision-making system:
to assure that the system's decisions are sensible, that they
reflect not only an abstract model but concrete reality as
well. Thus the DBA should interpret the statistics that are
gathered and the usage that is forecasted, decide if they are
plausible, and manually modify them if he feels they are
incomplete. Similarly, he must exercise human judgment
in his use of the design evaluator, deciding what its results
mean in terms of actual data base design. The DBA may

Self-Adaptive Automatic Data Base Design 127

need to go beyond the limited contexts of these automated
tools, in order to account for hard-to-quantify factors not
incorporated in their computations and consequently not
reflected in their output. For example, the DBA might
decide that the best design is not the one with the lowest
cost figure as computed by the evaluator; his decision may
be influenced by taste and intuition.

There is a problem with the foregoing argument: while
the kind of judgment described above is fundamentally
beyond the capacity of a machine, it may also effectively
exceed a human's capability as well. With large data bases
being used in a wide variety of ways, and with complex
data management systems that make clever use of intricate
storage structures, a DBA may find that he does not have
the subconscious understanding of "what's really going
on" needed to transcend the purely quantitative capabilities
of an automated design system. He may be forced to accept
the decisions of his design aids, because he does not have
any real basis for overruling them.

Consequently, if the DBA is provided with an informa
tion gatherer, a predictor, and a design evaluator, his role in
the physical design process is reduced to deciding which
physical designs warrant detailed examination by the evalu
ator. To be sure, synthesizing a good set of candidate
designs is a creative task and an extremely important one.
In modern data base systems, the physical design space
may have many dimensions, with a large number of alterna
tives on each axis. The total number of possible organiza
tions for even a simple data base is likely to be astronomi
cal; an exhaustive iteration over all of them is clearly
impossible. Thus, human intervention seems necessary in
selecting a small set of promising candidates to submit to
detailed evaluation.

But here too, a human's performance may be less than
acceptable, for the reasons described above; the DBA may
not be able to identify any of the near-optimal designs, and
may send to the evaluator a set containing only mediocre
alternatives. Consequently, we arrive at the notion of a
completely automated designer. Previous attempts at auto
mated physical design have attempted to derive a closed
fqrm ~malyt~~ e2<:pxe~~ion for the c()s.ta~~Qciated with a.
design that is parameterized in terms of key properties of
the design; this expression is subjected to mathematical
optimization techniques in order to yield an optimal de
sign.4 It is our belief that reducing complex designs to
tractable formulae inevitably entails their serious oversim
plification. Our approach to automatic design relies on an
intelligent module to pick a small set of promising design
candidates, which can then be sent to the evaluator for
detailed analysis.

Therefore, our automatic design system is comprised of
the modules described above, plus a design proposer. At
each design point, the proposer will inspect the predicted
usage pattern and propose a set of designs to be analyzed
by the evaluator. Of course, a trivial proposer could pro
pose all possible designs, but that is clearly unrealistic.
Therefore, the proposer must employ heuristics to choose a
manageable number of candidate designs. There is the
possibility that in some cases such heuristics will not

128 National Computer Conference, 1977

synthesize the mathematically optimal solution; but if the
heuristics are well chosen, then in all but the most patho
logical of contexts, the best design that they do produce
should perform nearly as well as the optimal. The synthesis
of a very good (if not optimal) design, at low cost, is
certainly an acceptable goal for an automatic designer. The
competence of a heuristic designer can be verified through
experimentation, by comparing its designs in a variety of
test cases to those that would be chosen after an exhaustive
consideration of all designs.

It is useful to view the problem of automatic physical
design as essentially one of navigating through a large
search space (that of all possible designs) while looking for
the optimal point. This suggests that heuristic search tech
niques developed for artificial intelligence applications
should prove useful in selecting a near-optimal design.
Some of these techniques include the following: incremen
tal search through the problem space, with no backtracking
and transition made only to improved positions; early
termination of the search when a local optimum is reached;
decoupling of related design decisions, with a relative
ordering placed on them; a rough a priori ranking on
alternatives in each design dimension, with primary atten
tion to be paid to high-ranking alternatives.

The foregoing suggests a system design wherein the
proposer operates with feedback from the evaluator. That
is, the proposer begins with some initial candidate design
(which is either a trivial one, or one chosen on the basis of
obvious surface properties of the usage pattern, or the
actual current design of the data base). The proposer then
constructs a small set of variations on this candidate, based
on some a priori judgments. These variations are then sent
to the evaluator for analysis. That variation which repre
sents the greatest total cost improvement over the current
candidate becomes the new candidate design. (If none of its
variations represents an improvement, another small set of
alternatives may be considered.) The information gained in
evaluating these variations determines which variations of
the new candidate ought to be considered at the next step.
This process continues until a local optimum is reached: a
design which is an improvement over its predecessor, but
over which none of the considered variations yields a better
figure from the evaluator.

In cases of multiple design decisions, the foregoing
procedure would be applied sequentially in the different
dimensions, based on some general guidelines as to their
relative importance.

Experimentation with the heuristics can determine the
values of the operating parameters that achieve an accepta
ble balance between accuracy and efficiency. For example,
by limiting the numbers of alternatives that are considered
at each step, the algorithm can severely restrict the number
of designs that are submitted to the evaluator.

The efficiency of the designer can be further enhanced by
modifying the structure of the design evaluator. The basic
difficulty with the evaluator as initially described is that it
applies the transaction cost estimator to each component of
the projected usage patiern; this might be expensive if
many of the possible transactions with the data base are

expected to occur. One approach to this problem is based
on the observation that, when evaluating a design that is a
minor variation of the current candidate design, most
transactions will have the same cost as they did when the
current candidate was evaluated; the reason for this is that
most transactions will be processed in exactly the same
way for two similar physical designs. Since we are only
interested in the comparative evaluations of the candidate
and the proposed variation, the evaluator can concentrate
on those transactions that have different costs in the two
cases. Another approach is to group together similar trans
actions into a cluster to be represented by a typical transac
tion; the estimator is then applied to just the representative,
and the result multiplied by the size of the cluster. (This is
an extension of the concept of grouping transactions into
transaction classes.) This can result in a certain inaccuracy,
because not all transactions in a cluster will have the same
cost. This scheme is probably most effective when infre
quently-occurring transactions are clustered together, while
the more common ones are still treated individually. The
tradeoff between efficiency and accuracy is controlled by
the total number of clusters; a good value for this parameter
can be obtained through experimentation.

A self-organizing data base system should be able to
decide when, as well as how, to redesign a data base to fit
changing access requirements; the redesigner ought to be
automatically invoked when the current design begins to
show signs of degraded performance. Two conditions have
to be satisfied in order to signal this situation. First, that the
recent pattern of transactions is deviating sharply from the
predicted usage pattern to which the current design is
tuned. Second, that system performance in the aggregate is
proving to be less good than it had been in the past. Some
caution must be exercised in invoking the redesigner, so
that a transient fluctuation in usage does not cause the
(somewhat expensive) process of considering a redesign to
be activated. On the other hand, it is too late to wait for
degraded performance to be firmly established before be
ginning the redesign process.

A SYSTEM FOR SECONDARY INDEX SELECTION

The foregoing discussion has been couched in general
terms; the system structure described should be applicable
to a wide variety of physical design decisions pertinent in
different data management systems. We are developing a
facility that applies these principles to the problem of
selecting secondary indices for data bases managed by an
inverted file data management system. A secondary index
for a field A is a structure that, for a given value x, provides
rapid access to the identifiers (addresses) of ail records in
the file whose value for A is x. A major design decision for
a data base under a system that supports secondary indices
is the selection of the appropriate set of fields for which
indices ought to be maintained. An index on field A will
speed up retrievals involving A, but will slow down updates
to A (as well as requiring extra storage space). The accurate
determination of whether or not a partitular field ought to
be indexed depends on a range of considerations beyond its

relative occurrence frequencies in retrievals and updates.
These include: the selectivity of the field, or the extent to
which its presence in a retrieval request cuts down the
number of records satisfying the request and so affects the
time needed for its processing; the kinds of retrieval predi
cates in which the field is used; which other fields are
known to be indexed; and the details of the DBMS strate
gies for processing transactions.

Our facility selects indices for an experimental data
management system similar in structure to several commer
cial inverted file systems. The details of this facility are
presented elsewhere [6,7]; some of its major points of
interest follow.

I. The data management system operates in a paged
virtual memory operating system. Since I/O process
ing is usually the dominant cost in data base systems,
the transaction cost estimator computes the expected
number of page accesses associated with the process
ing of the transaction. The overall figure of merit
computed by the physical design evaluator is also
expressed in units of page accesses; other kinds of
costs (e.g., for storage of indices) are converted into
this scale.

2. The major information needed by the transaction cost
estimator in determining the cost of processing a
retrieval is the average selectivity of each field that is
used in the predicate and that is indexed in the
proposed design. This information can readily be
obtained by observing the intermediate results com
puted by the transaction processor while handling
retrieval requests.

3. The relevant usage pattern information is easy to
capture during transaction processing.

4. The techniques underlying the cost estimator have been
applied to an operational inverted file system, with
encouraging results. Using appropriate selectivity in
formation, estimates are produced that approximate
very closely the number of page accesses actually
performed by the system in processing transactions.

5. The design proposer employs a set of heuristics that
enable it to send a relatively small set of candidate
designs to the evaluator for analysis. This heuristic
proposer has been tested against an exhaustive pro
poser. for a wide range of usage patterns and data
characteristics. In virtually all cases, the heuristic
proposer finds the optimal design; in the remaining
instances, its selection has a total cost within five
percent of the true optimum. The number of evaluator
calls that the heuristic proposer makes is roughly
proportional to the number of fields in the file, com
pared to an exponential number for the exhaustive
version.

SUMMARY

We have presented the principles of a novel approach to the
design of self-organizing, adaptive data base systems. This

Self-Adaptive Automatic Data Base Design 129

approach differs from earlier efforts in the field by its use of
detailed information on data base usage, its concern with
evolving trends in the usage pattern, its transaction by
transaction analysis of every proposed design, and its
reliance on heuristics to synthesize a small set of candidate
designs. The keystone of a system built on these principles
is a transaction cost estimator, which assesses the cost of
performing any specified transaction in the context of a
proposed design. An information gathering module acquires
sufficient knowledge about the contents of the data base to
enable the cost estimator to operate; it also records the
global usage pattern of the data base. At each redesign
point, all this information is projected into the future, so
that the design should be matched to developing require
ments. The design evaluator combines the cost figures
associated with the transactions in the usage pattern with
general maintenance and storage costs to achieve a unified
figure of merit for the design. Both the design proposer and
the design evaluator make use of heuristics: the former to
guide its search through the space of potential designs and
thereby restrict the number of calls on the evaluator, and
the latter to coalesce transaction classes and reduce the
number of calls on the estimator.

These principles have been applied to the design of a
system that selects secondary indices for an inverted file
DBMS. A transaction cost estimator has been implemented
that is efficient and also quite accurate in its forecasts of
page accesses; the information that it requires can readily
be gathered during normal transaction processing; and its
associated heuristic-based proposer performs virtually as
well as its exhaustive counterpart, but at dramatically
reduced cost. This facility is being extended to address
such issues as the selection of sort keys and file partition
ing.

REFERENCES

1. Cardenas. A. F .• "Evaluation and Selection of File Organization-A
'fade! nnd Syste!':":," C',1:C'.'11. !~, ~. !ept. !cr~, pr. ~:ro ~#.

2. Teorey, T. J., and K. S. Das, "Application of an Analytical Model to
Evaluate Storage Structures," Proceedings of the 1976 SIGMOD Interna
tional Conference on Management of Data, Washington, D.C., June
1976, pp. 9-19.

3. Brown, R. G., Smoothing, Forecasting, and Prediction of Discrete Time
Series, Prentice Hall, 1962.

4. Yao, S. B. and A. G. Merten, "Selection of File Organization Using an
Analytical Model," Proceedings of the International Conference on Very
Large Data Bases, Framingham, Mass., September 1975, pp. 255-267.

5. Stocker, P. M. and P. A. Deamley, "A Self Organising Data Management
System," in Data Base Management, edited by J. W. Klimbie and K. L.
Koffeman, North Holland, 1974.

6. Hammer, M. and A. Chan, "Index Selection in a Self-Adaptive Data
Base Management System," Proceedings of the 1976 SIGMOD Interna
tional Conference on Management of Data, Washington, D.C .. June
1976, pp. 1-8.

7. Hammer, M. and A. Chan, "Acquisition and Utilization of Access
Patterns in Relational Data Base Implementation," in Pattern Recogni
tion and Artificial Intelligence, edited by C. H. Chen, Academic Press,
1976.

Overview of the military computer
family architecture selection

by WILLIAM E. BURR and AARON H. COLEMAN
US Army Electronics Command
Ft. Monmouth, New Jersey

and

WILLIAM R. SMITH
Naval Research Laboratory
Washington, DC

ABSTRACT

This paper presents an overview of the selection process
employed to choose a single Computer Family Architecture
(CF A) to be used in a new Military Computer Family
(MCF) intended for use in Army and Navy Systems. A joint
Army/Navy Selection Committee studied the suitability of a
number of architectures, and intensively evaluated three
"final candidate" architectures, before selecting one, the
PDP-II, for use with the MCF.

INTRODUCTION

Since early 1975 the Center for Tactical Communications
Sciences (CENT ACS) of the Army Electronics Command,
and the Naval Research Laboratory have been engaged in a
cooperative project to develop a software compatible family
of military computers, based upon a common architecture,
and suitable for a wide range of military land, sea, and air
appiicatlons. That project IS Kno\\-n as rheIViiiltary Lom
puter Family (MCF) Project, and the computer architecture
to be used by the MCF is known as the Computer Family
Architecture (CFA).

The MCF is based upon a strategy that included the
fonowing:

• Selection of architectural design or designers unbun
dled from implementation or implementers.

• Standardization on architecture design as the founda
tion on which software investment is made.

• Consideration of commerciany successful architectures
for which software already exists as candidates for
DOD adoption.

• Technology independence, that is the anticipation of
mUltiple implementations of the same architecture,
implementations which might differ in technology (e.g.,
semiconductor vs magnetic memory), environmental

131

specifications (e.g., volume or power constraints), or
reliability assurance (e.g., MIL-qualification vs war
ranties or incentives).

• Multiple sources of supply for the various processors
and other modules of the family.

• Support (probably via emulation) of existing software
for the principal existing Army and Navy military
computers.

The first step in the development of the MCF was the
selection of the architecture to be used. The selection was
made by an Army/Navy CFA Selection Committee during
the period between October 1975 and August 1976 as a
result of evaluating and comparing candidate architectures.
The CF A committee began with the initial selection of nine
candidate architectures, narrowed the initial set to three
finalists: the IBM S/370, the DEC PDP-II, and the Inter
data 8/32, and finany chose the PDP-II. This paper dis
cusses the basic premises of the CF A selection process,
and summarizes the actions of the Selection Committee.

WHAT IS A MILITARY COMPUTER?

Computers are used in the DOD for a wide range of
applications. Many administrative, research and laboratory
applications are run on the same commercial computers
which are used in industrial and business applications.
Many military computer applications, however, require
"militarized" computers, which can operate in battlefield,
ship borne , and airborne environments, and survive expo
sure to severe shock, vibration, radiation, and thermal
stress. The applications for these computers are usually
similar to the applications of commercial OEM computers,
that is they are usuany embedded in some larger system,
such as a missile system, or a radar, and the computer itself
is just one component, and not necessarily the most impor
tant component, of a larger system.

132 National Computer Conference, 1977

For the purposes of this article and the five articles which
follow it, it is the hostile physical environment-not the
types of computations, response times, data rates, or
throughput requirements-which fundamentally distinguish
the commercial OEM application/computer from the mili
tary application/computer.

RATIONALE FOR A COMPUTER FAMILY
ARCHITECTURE (CFA)

The Army and Navy currently use and maintain an
inventory of over one hundred different computer types.
Practically all of these machines have a design personality
which must be catered to through specialized software and
maintenance support. This inventory is regularly justified as
the only means of applying processing capability where it is
needed with a minimal cost investment. That is, off-the
shelf procurement or specialized designs aimed at specific
operational applications is deemed to be the only satisfac
tory way of meeting the wide range of speed, power,
weight, size. etc., requirements imposed by these applica
tions.

There is little or no argument against satisfying a multi
tude of environmental and processing speed requirements
through a combination of machines of varying hardware
technological characteristics. Physical constraints ranging
over orders of magnitude leave little choice but to meet
these head-on with suitable device technologies, if cost
effective weapons systems are to be put into operation. The
current proliferation of computer types is more a de facto
result of platform and project managers trying honestly to
choose the most appropriate machines out of a sea of
unrelated available computer types, than a result of unin
formed procurement practices. Moreover, platform and
project managers face heavy pressures to locally optimize
the costs and schedules of their own projects and relatively
little direct pressure to reduce the long term life cycle costs
of both hardware and, particularly, software.

The greatest penalties arising out of such proliferation are
in the efficiency, timeliness and both non-recurring and
recurring costs of system software. However, it is not
necessary for differences in computer technology require
ments to mandate differences in software characteristics. A
number of examples of commercial capitalization on this
principle are well known-the IBM 360/370 and the Digital
Equipment Corporation PDP-II product lines. What has
been gained from this approach is a line of computers of
varying processing capabilities but which are software
compatible and enjoy the support of a common set of
system and applications programs. The main goal, then, of
the Computer Family Architecture is to provide the Army
and the Navy with a design for a series of computers (a
family) with the variety of members necessary to satisfy the
requirements of various platform and battlefield applica
tions, while at the same time providing a single software
system capability which will serve each and every member
of that computer famiiy.

Central to the success of the Computer Family is the

selection and precise specification of the family architec
ture. The term "computer architecture" means quite differ
ent things to different people, so a definition is necessary.
Here we follow the example of S/360. In an introductory
paper on the IBM S/360, Amdahl, et al.,l defined computer
architecture as: "The term architecture is used here to
describe the attributes of a system as seen by the program
mer, i.e., the conceptual structure and functional behavior,
as distinct from the organization of the data flow and
controls, the logical design, and the physical implementa
tion. "

This definition of architecture specifically excludes de
tails of hardware implementation. The instructions and
registers which programmers "see" are part of the archi
tecture, but the data buses are not. For example, the IBM
360/30 used 8 bit data paths, the 360/40 used 16 bit paths,
and the 360/50 used 32 bit paths, but all three are the same
architecture, and can execute the same programs. As
another example, the PDP-II Unibus is· not an integral part
of the architecture (indeed PDP-II's have been built with at
least three different bus structures), but the use of dedi
cated memory locations for communication with 110 de
vices is an architectural feature, because the programmer
does not see the unibus, but he does see the decicated 110
registers.

Selection of the CF A was guided by the principle that the
bulk of computer processing improvements over the last
two decades have risen out of technology advances rather
than out of architectural changes, and that this principle is
likely to remain in effect for at least another generation or
more of computer systems. It is more promising, then for
the Army and Navy to adopt an already successfully
demonstrated extant computer architecture, commercial or
military, and to use that architecture to reap the benefits of
technology advances while enjoying the benefits of soft
ware stability. The selection of an existing architecture
carries with it an understanding of the strengths and weak
nesses of that architecture and also a useful inventory of
support and applications software already developed.

OTHER LEVELS OF STANDARDIZATION

The MCF has chosen to standardize at the instruction-set
level. Many other levels of standardization are conceptually
possible. One attractive alternative might be to standardize
on a single Higher Order Language. There are efforts
under way to fix a single HOL for DOD, and these efforts
do not conflict with the MCF approach. However, there are
a number of problems with this approach:

• HOL's are much more complex than instructions sets.
Consequently no two different compilers for the same
language have ever been truly compatible, as anyone
who ever tried to convert any large set of programs
from one "standard" FORTRAN or COBOL compiler
to another will attest. Differences between supposedly
compatible compilers becomes very difficult to resolve

when the underlying data types of the host architec
tures differ.

• No one existing HaL seems satisfactory for all, or
even most, tactical military applications.

• Some level of machine or assembly language program
ming will doubtless be with us for some time. Although
the desirability of using HaL's in place of assembly
language is recognized in DOD, the time and space
constraints placed upon some critical functions will
probably force the continued use of assembly level
languages for the foreseeable future.

Another alternative might be to standardize on the as
sembly language, rather than the instruction set. An exam
ple of such standardization is found in the Interdata Family
of 16 and 32 bit computers (5/6, 6/6, 7/32 and 8/32) which
have similar, but not identical 16 and 32 bit architectures,
and which rely on a Common Assembly Language and a
"smart" assembler program to resolve the differences. This
approach is attractive, but requires that the underlying
architectures be quite similar. In particular, programs that
are to be transferable from one architecture to another have
to be written to avoid incompatabilities and thus it may not
be possible to take full advantage of either.

A third alternative would have been to settle upon a
standard "micro architecture." This approach assumes that
all future military computers will be microcoded (not an
unlikely assumption), and asserts that it is the internal
register-level architecture of the processor, and the micro
code which should be standardized. This approach, and the
use of read/write microstore, would permit application
tailored macro instruction-sets. This approach, however,
has a number of disadvantages, including the following:

• The micro-architecture of a computer is much more
directly related to the performance capabilities of the
computer, than is the instruction set. It is not clear that
a single micro-architecture can effectively satisfy a
wide range of performance requirements.

• Micro-architectures are closely related to component
technology and hardy.Tar~ de~ign. Since rapidly improv
ing device technology is the driving force in the com
puter industry, it would be a mistake to select a micro
architecture which is more or less closely tied to
contemporary technology.

• The configuration control of the firmware needed to
implement a number of tailored instruction sets, or
user developed microcode, and of compilers and oper
ating systems for different tailored macroinstruction
sets, promises nightmare-like problems in the diverse
environment of military laboratories, system centers,
project and platform managers, and system developers
(contractors) .

Standardization at the computer architecture level is the
safe, proven and accepted approach. It is the only answer
to complete software transportability across a wide range of
computer implementations, which has stood the test of time
in industry-wide applications. The success of the IBM S/360

Miiitary Computer Family Architecture Selection i 33

and S/370 families, the PDP-II family, and several other
instruction set compatible families, have demonstrated the
practicality of this approach. Amdahl and National Semi
conductor have proven that independent manufacturers can
build compatible versions of a well-defined architecture (the
S/370). The CFA approach is based upon the premise that
the Army and Navy should try to take maximum advantage
of existing commercial technology, rather than try to push
it in new directions.

THE SELECTION COMMITTEE

The first task of the Army/Navy cooperative effort was
the selection of the computer family architecture to be
used. The Naval Research Laboratory (NRL) led this effort
for the Navy under the sponsorship of the Naval Air
Systems Command. NRL and CENT ACS agreed to per
form this task.

In order to achieve a wide representation of military
computer requirements in this effort, letters were sent to
Army and Navy Laboratories, System Centers, and Project
Managers inviting them to nominate "candidate" architec
tures, and to participate in the selection process as mem
bers of the CFA Selection Committee. Ten Army and
seventeen Navy organizations assigned representatives to
participate in the Selection Committee.

The Army and Navy cooperative effort has been entirely
voluntary, and was not imposed upon the Army and Navy
by DOD. It resulted from the discovery that both the Army
and Navy independently had similar efforts under way, from
the belief that military data processing requirements in the
three services are similar, and from the realization that the
combined funding and application bases of the Army and
Navy would enhance the success of such a program. Air
Force observers have attended the Selection Committee
Meetings, and are participating in the next phase of the
MCF project, involving systems implementation, or prod
uct planning.

SLiMMARY OF THE SELECTiON PRUCESS

The CF A Selection Committee held five meetings be
tween 1 October 1975 and 26 August 1976. The procedure
developed by the committee for selecting the architecture is
depicted in Figure 1 and may be summarized as follows:

a. Select Initial Candidates-The Committee approved a
list of nine candidate architectures for examination.
Table I shows nine candidate architectures.

b. Establish Initial Ranking Procedure-The Committee
developed a set of "absolute" and "quantitative"
criteria as measures of computer architecture effec
tiveness for a wide range of military computer-based
systems applications.

c. Evaluate the Candidate Architectures-Subcommit
tees were established to evaluate each candidate ar
chitecture in accordance with the established absolute

13 4 National Computer Conference, 1977

(
I

Absolute

BURROUGHS B6700
IBM 370

INTERDATA 8/32
GYK-12
PDP-II

ROLM 1664
SEL 32
UYK-7
UYl}-20

1

Criteria I Quanti ta ti ve
Criteria

I
IBM 370
PDP-II

f
INTERDATA 8/32

PDP-II
IBM 370
GYK-12

ROLM 1664
BURROUGHS B6700

SEL 32
UYK-7
UYK-20

Test Program
Analysis: S,M

Data Rights
Licensing

INTERDATA 8/32
PDP-II
IBM 370

Top-down
Life Cycle

Cost Analysis

PDP-II
INTERDATA 8/32

I Bottom-up
Life Cycle

l Cost Analysis

I
PDP-II PDP-II
IBM 370 IBM 370

INTERD~J(~T_A __ 8_/_3_2 __ ~ _______ IN_T_E~~DATA 8/32
_t _____ ,

Final ~r~-------------~

PDP-II
IBM 370

INTERDATA 8/32

Figure l-CFA selection process

s

IBM 370
PDP-II

INTERDATA 8/32

INITIAL
SCREEtHNG

DETAILED
ANALYSIS

DECISION

Military Computer Family Architecture Selection 135

TABLE I-CF A Candidate Scores on Absolute and Quantitative Criteria

QUANTITATIVE
ARCHITECTURE CRITERIA

INTERDAT A 8/32 1.68 (BEST)

PDP-II 1.43

IBM S/370 1.36

AN/GYK-I2 .94

ROLMINOVA .92

B6700 .91

SEL-32 .86

AN/UYK-7 .46

AN/UYK-20 .44 (WORST)

and quantitative criteria. Table I shows the list of nine
candidate architectures and their relative performance
in this evaluation. Fuller, Stone and Burr2 describe the
criteria and the evaluation process in detail in their
paper.

d. Selection CFA Finalists-The Selection Committee
reviewed the architecture evaluations in detail, and
selected three candidate architectures: the IBM S/370,
the DEC PDP-II, and the Interdata 8/32 as CF A
finalists for further examination.

e. Describe the Finalists in ISP-The three final candi
date architectures were described in a formal register
transfer language, ISP. These ISP descriptions were
used to simulate the candidate architectures, and
collect the data required for the test program evalua
tion. Barbacci, Siewiorek, Gordon, Howbrigg, and
ZuckeJman4 describe the use of ISP.

f. Test Program Evaluation-Just over 100 test program
"kernels" were coded by 16 programmers to evaluate
the relative efficiency of the three final candidates.
The results of this evaluation are summarized in Table
11. fuller, Burr, Shaman, and Lamb" descnbe the test
program evaluation in their paper.

g. Support Software Base Evaluation-A subcommittee
was formed to evaluate the support software bases of
the three final candidates. The results of this evalua
tion are summarized in Table II, and Lieblein, Wagner
and Stone5 describe this evaluation.

h. Life Cycle Cost Analysis-A subcommittee was
formed to evaluate comparative life cycle costs of the
MCF for each of the three final candidates. Two
different analyses were performed, one using a "top
down" model and the other using a "bottom-up"
model. These evaluations are described by Cornyn,
Coleman, Smith and Svirsky. 6

i. Licensing-A series of meetings were held with the
manufacturers of the final candidates to establish
proposed licensing arrangements for the CFA finalists.
Due to the confidentiality of the licensing discussions,

ABSOLUTE
CRITERIA

Problem with interrupts and traps

Passed all

Passed all

Failed floating point

Failed virtual memory mapping and
interrupts/traps

Failed protection

Failed virtual memory mapping

Failed floating point

Failed protection

they are not reported on here, but they were a
significant factor in the final selection.

j. Final CFA Selection/Recommendation-All the data
acquired in the preceding steps was reviewed and the
Committee voted the relative ranking of the CF A
finalists.

RESULTS

The Selection Committee held its fifth and final meeting
on 24-26 August 1976 at the Naval Underwater System
Center, Newport, R. I., for the purpose of selecting the
recommended architecture for the MCF. At that meeting
the data discussed in the preceding sections of this report
was considered at length. The data considered in that
discussion is summarized in Table II.

Based upon the data presented in Table II, and upon
other concerns specifically considered by the Committee
during its discussion of the final selection, the respective
~treTIgth4\ nrrd' ,,,e:!t,ne~!.e~ of each a;ct!!tect'...!'!"e C2n toe
summarized as follows:

a. INTERDAT A 8/32. The 8/32 was the highest rated
architecture on the Quantitative Criteria, and the Test
Program results. The 8/32 has a good interrupt struc-

.Jure for real-time processing. On the other hand, the
software base is relatively weak, which consequently
compromised its performance in the life cycle cost
evaluations. There was a nagging question about how
well the state of the machine was preserved after
interrupts.

b. IBM S/370. The strongest virtue of the S/370 is its
large support software base. The S/370 performed well
on the life-cycle cost analyses under assumptions of
maximum relative cost of software development. The
S/370 is the only architecture demonstrated as an
easily virtualized computer in a standard product line.

136 National Computer Conference, 1977

TABLE II-Final CF A Selection Data Summary

8/32

QUANTITATIVE CRITERIA
SCORES

1.68

PDP-II 1.43

S/370 I.36

8/32

SEE NOTE I BELOW

SUPPORT SOFTWARE VALUE
CURRENTLY
AVAILABLE DEFICIENCY

$15.3M $25.9M

PDP-II $22.2M $19.IM

S/370

8132

$32.3M $9.6M

TOP DOWN COST MODEL (SEE NOTE 3)
RELATIVE COST (S/370= I)

1.23

PDP-II 1.07

S/370 1.00

TEST PROGRAM RESULTS
R M S

.83 .85 .83

.94 .93 1.00

1.29 1.27 1.21
SEE NOTE 2 BELOW

BOTTOM UP COST MODEL FOR 1985
RELATIVE # SYSTEMS PREF.
COST (S/370= I) (SEE NOTE 4)

1.00

.87 14.5

1.00 0.5

NOTE I: These are relative values with an average value of one for nine CFA candidates. The higher the value, the better the
architecture.
NOTE 2: These are relative values with an average value of one for the three CFA finalists. The lower the value, the better the
architecture. S is a measure of the program storage required for a test routine by each architecture. M is a measure of the processorl
memory bandwidth to run a test programs, i.e., # bytes transferred between processor and memory. R is a measure of the internal
processor bandwidth required to run a test program.
NOTE 3: Top down cost model analyzed variation of DOD computer resource budget as a function of the selected CFA.
NOTE 4: Bottom up cost model analyzed variation of life cycle cost of 15 tactical data systems as a function of the selected CFA.
Relative cost refers to total life cycle cost of all 15 systems. # Systems preferred indicates how many systems would have selected the
CF A on the basis of life cycle cost.

On the other hand, its interrupt structure was consid
ered cumbersome for real time control applications.
The test program results indicate that the architecture
is significantly less efficient than the 8/32 and the
PDP-II; this compromised the S/370's performance in
the life cycle cost evaluations. There was also concern
that small subset versions might not prove cost
effective for low-end applications, and that there was
insufficient experience with the S/370 in OEM type
applications.

c. PDP-II. The PDP-II enjoys a good support software
base, performed relatively well on the test program
evaluations, and has a good interrupt structure for
real-time control applications. It enjoys a slight advan
tage on the cost models for a range of reasonable
assumptions. Small scale (microprocessor) implemen
tations are practical and have been built. On the
negative side, the 16 bit virtual address space is a
limitation and it may be expensive to add a virtual
machine capabiiity to the architecture.

The Committee made four final recommendations:

a. The DEC PDP-ll was determined by a vote of 14 to 4
to be the most advantageous architecture for the
MCF, the IBM S/370 was ranked second, and the
Interdata 8/32 was ranked third.

b. The committee unanimously agreed that a single in
struction-set architecture should be selected for the
MCF, that the selection of only one architecture is
more important than which one of the candidates is
selected, and that anyone of the three final candidate
architectures could provide a satisfactory basis for the
MCF.

c. The committee agreed that an effort should be made
to relieve the limitations of the selected architecture.
In the case of the PDP-II the major limitation is the
small (16 bit) virtual addresss space.

d. A single organizational structure must be established
to control the architecture, or major incompatibilities
bet\veen different implementations \vH! sur~I)J result.

REFERENCES

1. Amdahl, G. H., G. A. Blaauw, and F. P. Brooks, "Architecture of the
IBM System/360," IBM Journal of Research and Development, Vol. 8,
April, 1964, pp. 87-101.

2. Fuller, S. H., H. S. Stone, and W. E. Burr, "Initial Selection and
Screening of the CFA Candidate Computer Architectures," AFIPS Con
ference Proceedings, Vol. 46, 1977 National Computer Conference.

3. Fuller, S. H., W. E. Burr, P. Shaman, D. A. Lamb, "Evaluation of

Military Computer Family Architecture Selection 137

Computer Architectures via Test Programs," AFIPS Conference Pro
ceedings, Vol. 46, 1977 National Computer Conference.

4. Barbacci, M. R., D. P. Siewiorek, R. Howbrigg, R. Gordon, S. Zucker
man, "An Architectural Research Facility: ISP Descriptions, Simulation,
Data Collection."

5. Wagner, J., E. Lieblein, J. Rodriguez, and H. Stone, "Evaluation of the
Software Bases of the Candidate Architectures for the Military Computer
Family," AFIPS Conference Proceedings, Vol. 46, 1977 National Com
puter Conference.

6. Comyn, J. J., W. R. Smith, W. R. Svirsky, and A. H. Coleman, "Two
Life Cycle Cost Models for Comparing Computer Architectures," AFIPS
Conference Proceedings, Vol. 46, 1977 National Computer Conference.

Initial selection and screening of the CF A
candidate computer architectures

by SAMUEL H. FULLER,
Carnegie-Mellon University
Pittsburgh, Pennsylvania

and

HAROLD S. STONE,
University of Massachusetts
Amherst, Massachusetts

and

WILLIAM E. BURR
US Army Electronics Command
Ft. Monmouth, New Jersey

ABSTRACT

The initial selection criteria that were developed and used
by the Army/Navy Computer Family Architecture (CFA)
committee in their evaluation of alternative computer archi
tectures is presented in this article. These initial criteria
were used in this first phase of the CF A evaluation process
to reduce the number of computer architectures from the
original set of nine to the most promising three or four
architectures for the more intensive evaluation discussed in
the companion articles.4,6,S The machines selected by this
initiai ranking and sl:reening process for runher evaiuation
were the Interdata 8/32, DEC PDP-II, and the IBM S/370.

INTRODUCTION

The CF A selection committee was concerned with selecting
a computer architecture to use in future military (rug
gedized) computers and hence wanted to evaluate the merits
of the computer architecture independent of any features,
or flaws, of existing implementations of the computer. For
this reason, the following definition of computer architec
ture was used by the CF A committee:

Computer Architecture: The structure of the computer
a programmer needs to know in order to write any

139

machine-language program that will run correctly on
the computer.

With a well specified architecture, details of data bus
width, technology (core memory versus semiconductor
memory, TTL versus ECL circuits), implementation speed
up techniques, physical size of computer, etc., need not be
of concern to the programmer and hence are not a part of
the architecture. This separation of architecture and imple
mentation is not a radically new idea. 1 The IBM System/
360-370 series. the DEC PDP-II series. and the Data
GelltiaT XOVA st:i-i~s ai-'e just three exampies of wnere ihis
has already been successfully accomplished to a greater or
lesser degree.

This article first describes how the CF A selection com
mittee chose the initial candidate architectures for evalua
tion, and then describes the criteria, the methodology, and
the data used in ranking these architectures during the
preliminary screening phase of the CF A project. At the
point this procedure was formulated, it was known that
time and money limitations would preclude doing a detailed
analysis on all nine candidates; consequently an initial
screening was necessary to limit the field to the three or
four "best" candidates that would be subjected to a much
more detailed analysis. This more detailed analysis, based
on test programs, the support software bases of the archi
tectures, and life cycle cost models is discussed in the
accompanying articles.

140 National Computer Conference, 1977

Many detailed questions arose during the evaluation of
these nine initial candidate architectures. It is impossible to
review all these questions in this article, but we will discuss
here the most important questions that arose, and inter
ested readers are encouraged to refer to Volume II of the
final report of the CF A committee for a detailed presenta
tion of how and why each candidate architecture was
evaluated as it was. 3

The mechanism for choosing the nine initial candidate
architectures is discussed in the next section. The third and
fourth sections then describe the nine absolute and seven
teen quantitative criteria, respectively, and show how each
of the candidate architectures was ranked on these criteria.
The fifth section describes how the CF A committee com
bined the scores of the candidate architectures for each
individual criteria to form a single, composite score for
each architecture that reflected the relative importance of
the seventeen quantitative criteria.

INITIAL SELECTION OF CANDIDATE COMPUTER
ARCHITECTURES

The CF A selection process was initiated in March and
April of 1975 when letters were sent to 35 Army and Navy
organizations soliciting proposals for candidate computer
architectures. As a result of these letters, and discussions at
the first two CF A meetings, the following set of nine
computer architectures was chosen:

Burroughs 6700
DEC PDP-II
IBM SystemJ370
Interdata 8/32
Litton AN/GYK-12

ROLM Corporation 1664
(AN/UYK-28)*

SEL 32
Univac AN/UYK-7
Univac AN/UYK-20

There were on the order of 100 viable computer architec
tures in 1975 that might have been considered by the CF A
committee for selection. 2 The decision as to what set of
architectures would be evaluated remained open from
March through December of 1975. The nine architectures
listed above were selected for evaluation because they met
two essential criteria: (I) the CFA committee agreed the
architecture might be a reasonable choice for future military
computers, and (2) there was a CF A committee member
sufficiently convinced of the value of the computer archi
tecture that he was willing to act as its advocate in the
subsequent evaluation phase.

* The AN/UYK-28 is instruction-set upward-compatible with the Data
General NOV A computer architecture. Other ROLM computers that are
also compatible with the NOVA architecture are the ANIUYK-19 and ANI
UYK-27. The AN/UYK-28 is incompatible with the Data General ECLIPSE
computer architecture, Data General's upward-compatible extension of the
NOVA.

ABSOLUTE CRITERIA

The CF A selection committee specified nine absolute
criteria that they felt a candidate computer architecture
needs to satisfy if it is going to meet the requirements of
future military computer systems. All the absolute criteria
(with the exception of the subsetability criterion) had to be
satisfied by an implementation of the architecture which
was operational by 1 January 1976. This eliminated specula
tive decisions based on promises or potential solutions that
looked inviting, but might not come to fruition. Failure to
satisfy any absolute criterion resulted in the elimination of
the architecture from further consideration. The nine abso
lute criteria are given below. The formal statement of each
criterion is underlined, while explanations and examples are
not underlined. Many of the comments that follow the
definition of an absolute criteria are the result of the
experience gained when the CF A committee evaluated the
nine candidate architectures against these criteria. 7 Table I
shows which absolute criteria each candidate architecture
passed or failed.

Virtual memory support

The architecture must support a virtual to physical ad
dress translation mechanism. The intent of this criterion is
to take advantage of the widely used feature of many
machines that is known as virtual memory. Many advan
tages accrue to architectures that support virtual address
translation mechanisms, the most notable of which is the
ability to simplify programming by freeing the programmer
of explicit management of his primary memory and provid
ing a mechanism for keeping only the active portions of a
program in high-speed memory.

The answers for this criterion listed in Table I are not
controversial, except for the AN/UYK-20. This architec
ture provides the page registers necessary for relocation,
but does not limit the ability to change these registers to
privileged programs. Some members of the CF A committee
felt that preventing user state access to the page registers
was a necessary aspect of virtual memory; others disa
greed. The full CF A committee voted to fail the AN/UYK-
20 on this criteria. The ROLM 1664 and SEL 32 both failed
this criterion because each of these architectures provide a
mechanism commonly known as "bank switching," which
the committee felt was not an adequate memory translation
mechanism.

Protection

The architecture must have the capability to add new,
experimental (i.e., not fully debugged) programs that may
include 110 without endangering reliable operation of exist
ing programs. The intent of this criterion is to provide a
mechanism in the hardware for aiding software develop-
ment, and for pre\Tenting certain catastrophic soft\vare
failures from occurring in the field. Architectures that use a

CF A Candidaie Compuier Architectures 14 i

TABLE I.-Candidate Architecture Value for Absolute Criteria

Rolm
Inter- ANIUYK-

Absolute Criterion IBM S/370 Data 8/32 28

Virtual Memory Y Y N
2 Protection Y Y Y
3 Floating Point Y Y Y
4 Interrupts/Traps Y Y
5 Subsetability Y Y Y
6 Multi Processor Y Y Y
7 110 Controllability Y Y Y
8 Extensibility Y Y Y
9 Read-Only Code Y Y Y

SUMMARY Y N

Y Yes, Meets Criteria
N No, Fails Criteria
Y? Yes (but with some reservations)

Unresolved

privileged mode to protect vital registers and system re
sources generally meet this criterion.

The AN/UYK-20 failed this criterion because it lacks
memory protection; any user can modify the contents of the
relocation registers, and thereby read and write any word in
memory. Another generic way for an architecture to fail the
protection criterion is for a program to have the ability to
put the machine into a noninterruptible state for an indefi
nite time. Architectures that permitted nonterminating in
structions were carefully examined to identify if these were,
or were not, interruptible.

Floating-point support

The architecture must explicitly support one or more
floating-point data types with at least one of the formats
yielding more than 10 decimal digits of significance in the
mantissa. The significance measure was determined as
representative of the most stringent requirements actually
encountered.

The ANLGYK-12 failed this. cri.terion because it does not
support floating point operations. The AN/UYK-7 failed
because it supports a single, 64-bit floating point format
with only 31 bits (9.2 decimal digits) of mantissa. Because
this is so close to the borderline, one might reconsider
requirements on significance to determine how firm the 10
decimal digit criterion is. (Had the AN/UYK-7 looked like
an otherwise excellent architecture, it is likely that the
committee would have relaxed the floating point absolute
criterion for it.)

Interrupts and traps

It must be possible to write a trap handler that is capable
of executing a procedure to respond to any trap condition
and then resume operation of the program. For example, if
the processor receives a page-fault trap from the address

Candidate Computer Architectures

DEC Univac Burroughs Univac Litton
PDP-II AN/UYK-7 SEL 32 B6700 ANIUYK-20 AN/GYK-12

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y N Y N Y
Y Y? N N Y?
N Y Y Y N
Y Y Y Y Y
Y? Y Y? Y Y?
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y
N N N N N

translation unit, it must be able to request the appropriate
page be brought in from secondary storage and then resume
execution. If resumption of execution is logically impossi
ble (e.g., an attempt to store an operand into a read-only
segment of virtual memory or fetch an instruction with a
parity error) then the trap handler should be able to abort
the program with an indicator of which instruction and/or
operand caused the termination.

A similar requirement exists for interrupts: the architec
ture must be defined such that it is capable of resuming
execution following any interrupt (e.g., power failure, disk
read error, console halt).

Another intent of this criterion is to permit extensions
and subsets of an architecture to operate correctly so
programs can be upward or downward compatible. The
subsets and extensions may differ drastically in size, cost,
and performance, but every program written for the native
architecture can run on the subset or extended machine.

The Interdata 8/32 had difficulty satisfying this criterion
since it has variable length instructions, and there is no way
after a trap or an interrupt to tell whether the instruction
~rh!t-h U'~~ ~ng ~~~Ct!ted w!'!~ ~ tf). ='2, O!" "8 ~t 'n"t"'t!f:
tion. This may be a problem when it is desirable to correct
the cause of the fault, and then re-execute (or resume) the
instruction. Due to uncertainties in the definition of the
Interdata 8/32 architecture, the CFA committee was not
able to resolve whether or not the Interdata 8/32 satisfied
this criterion.

Subsetability

At least the following components of an architecture
must be able to be factored out of the full architecture:

a. Virtual-to-Physical Address Translation Mechanism
b. Floating Point Instructions and Registers (if separate

from general purpose registers)

142 National Computer Conference, 1977

c. Decimal Instructions Set (if present in full architec
ture)

d. ~ection Mechanism

Implementations of the architectures on small machines
for dedicated applications must not be required to include
features of the architecture intended for use on larger,
multiprogrammed, multi-application configurations. Exis
tence of such subsets did not have to be demonstrated in an
operational implementation of the architecture.

Because there was no operational method for testing
subsetability, we could not challenge positive replies for
any of the nine candidate architectures. However, the B-
6700 and the AN/UYK-7 have not been subsetted in the
sense of the criterion, so that their subsetability is more
speCUlative.

In order to retain program compatibility across the imple
mentations of the architecture, this criterion was extended
to include the following requirement: The trap mechanism
of the architecture must be defined such that instructions in
the full architecture, but not implemented in the subset
machine, trap on the subset machine and that it be possible
to write trap routines for the subset machine that allow it to
interpretively execute those instructions not implemented
directly in hardware (or firmware) and then resume execu
tion. (This is an elaboration of absolute criterion 4.)

Multiprocessor support

The architecture must support some form of "test-and
set" instruction to allow for the communication and syn
chronization of multiple processors. The intent of this
criterion is to be sure that the basic architecture can
support mUltiprocessor configurations.

Input/output controllability

A processor must be able to exercise absolute control
over any 110 processor and/or I/O controller. The interpre
tation of the criterion proved rather difficult. While all
architectures necessarily permitted individual devices to be
started and queried for status, there were varying degrees
of control exercisable with respect to stopping the devices.
It is reasonable to stop all input/output, or to stop selected
devices. All architectures had some way of stopping a
single device and stopping all devices, but how they did it
varied widely in efficiency.

Extensibility

The architecture must have some method for adding
instructions to the architecture consistent with existing
formats. There must be at least one undefined code point in
the existing opcode space of the instruction formats. All
nine candidate architectures ha\'e unused instructions, so
all passed this criterion.

Read-only code

It must be possible to execute programs from read-only
storage. This criterion is intended to permit an added
degree of reliability by permitting programs to be stored in
a nonvolatile read-only memory. However, a program can
be rewritten to be read-only on any of the nine architec
tures, even if that architecture does not support special
types of instructions to facilitate this. It might have been
more meaningful to examine this question quantitatively.

Table I shows the score of each candidate architecture on
each of the absolute criteria. Note that none of the nine
architectures failed to meet the last five criteria: subsetabil
ity, multiprocessor support, I/O controllability, extensibil
ity, and read-only code. This is in part the case because we
limited our evaluation to reasonably successful architec
tures, but is partly the result of not defining these criteria
precisely enough prior to applying them to the candidate
architectures. For example, by not clearly defining how to
test for the practical subsetability of an architecture, we
made it virtually impossible for an architecture to fail this
criterion. Subsequent studies would be well advised to
consider more precise definitions of these (and any addi
tional) absolute criteria before evaluating alternative archi
tectures against them.

Q U ANTIT A TIVE CRITERIA

In addition to the absolute criteria, the CF A committee
specified seventeen quantitative criteria that they felt would
be helpful in the initial screening process. A number of
these quantitative criteria measure attributes of a computer
architecture better measured by benchmarks, or test pro
grams. 4 However, the CFA committee recognized that it
did not have the resources to run benchmarks on all nine
candidate architectures and therefore proceeded with the
use of these quantitative criteria to help select three or four
candidate architectures, out of the original nine candidate
architectures, for more intensive study via test programs.

The quantitative criteria are described below and the
score of each architecture on the quantitative criteria is
given in Table II.

Virtual address space

VI: The size of the virtual address space in bits.
V2 : Number of addressable units in the virtual address

space.

Two aspects of these measures were open to interpreta
tion. The CF A committee settled on the following interpre
tation for treating bank switching: the virtual address for a
machine with bank switching is the address within a bank.
The effect of bank switching is to increase the size of the
physical rather than the virtual address.

The second interpretation centered on the notion of
"addressable unit." There are several degrees of addressa-

CF A Candidate Computer Architectures 143

TABLE H.-Candidate CFA Values for Quantitative Criteria

Candidate CFA's

Quantitative Inter- Rolm DEC Univac Burroughs Univac Litton
Criteria IBM S/370 Data 8/32 AN/UYK-28 PDP-II AN/uYK-7 SEL 32 B6700 AN/UYK-20 AN/GYK-12

Vl** 27 27 20 20 24 22 24 20 20
2 V2** 27 27 20 19 24 22 20 17 20

P l ** 27 27 22*** 25 23 26*** 24 20 29

4 P2** 27 27 22*** 24 23 26*** 20 17 29
5 U .371 .355 .039 .043 .15 .450 .019 .125 .219
6 CS l 1344 1632 1008 1168 992 304 306 1328 1008
7 CS2 576 576 112 144 448 288 204 336 752
8 CM l 3168 1120 1882 736 1472 768 408 2256 1344
9 CM2 1312 32 544 480 1472 704 408 720 1088

10 K 0 0 I 0 0 0 0 0
Il Bl 17,300 185 13,800*** 14,700 346 75 90 400 30
12 B2 ***** 16,000 14 169 311 147 23 207 8 6
13 64 16 48 i6 128 64 169 80 32
14 D 15 27 20 19 18 22 18 20 20
15 L 6192 560 114 112 2112 288 255 1376
16 J 1 1904 2368 1360 1040 1280 960 459 1408 1344
17 J 2 1136 1280 320 400 1280 960 459 640 1088

** These values are of the form 2X where x = indicated data except for B6700 which is of the form 3(2X).
*** With memory bank switching. **** Includes Novas. ***** Millions of dollars.

bility. An item may be fully addressable in the sense that it
can be accessed by the address produced by an effective
address computation. The committee also decided, how
ever, that instructions such as the IBM S/370 Test Under
mask, and the OR Immediate allowed the testing and
setting of individual bits, and provided a minimum address
able unit of 1 bit.

Physical address space

PI: The size of the physical address space in bits.
P2 : The number of addressable units in the physical

address space.

Where bank switching has been implemented, the physi-
. cal address measures include all the banks of memory
available. For computers with virtual address translation,
the physical address is the address resulting from the
virtual-to-physical address translation. The physical ad
dress space is defined apart from any implementation, since
the physical address space size is defined by the effective
address calculation process or the virtual address transla
tion process and need not be equal to the largest memory
configuration yet delivered.

Fraction of instruction space unassigned

It is important to select an architecture that will allow
reasonable growth over its expected lifetime. Let U be
defined as the fraction of the instruction space in the

architecture that is unassigned. Specifically:

U= 2: ui2-i (1)
lsi<oo

where Ui is the number of unassigned instructions of length
i.

Size of central processor state

The amount of information that must be stored or loaded
upon interrupt and/or context swapping is clearly an impor
tant factor in the response of real time systems and in the
overhead of multiprogramming systems. Let the processor
stat~15~ aefintJds aTI tllt:bib"ofinfuI:rilatiuIl in a processor
that must be saved in order to be able to restart an
interrupted process at a later date. Processor states nor
mally include the accumulators, index registers, program
counter, condition codes, memory mapping registers, inter
rupt mask registers, etc.

CS1 : The number of bits in the processor state of the full
architecture.

CS2 : The number of bits in the processor state of the
minimum subset of the architecture (i.e., without
Floating Point, Decimal, Protection, or Address
Translation Registers).

Cm!: The number of bits that must be transferred be
tween the processor and primary memory to first
save the processor state of the full architecture
upon mterruptlOn and then restore the processor
state prior to resumption. This measure differs from

144 National Computer Conference, 1977

CSt above in that "register bank switching," where
provided for in the candidate architectures, may
eliminate the need to save some registers in primary
memory, while the instruction fetches required to
save the state are included in Cmt but not in CSt'

Cm2: The measure analogous to Cm 1 for the minimum
subset of the architecture.

These measures give an approximation to the complexity
of the implementation of the architectures, as well as a
measure of the responsiveness of the architectures to
worst-case context changes for interrupt processing.

If an architecture provides for several sets of certain
registers to provide fast switching or mUltiple contexts, and
if a program uses only one such register set when it runs in
one context, then only one set of these registers is used in
calculating CSI'

Usage base

B1 : Number of computers delivered as of the latest date
for which data exists prior to 1 June 1976.

B2 : Total dollar value of the installed computer base as
of the latest date for which data exists prior to 1 June
1976.

These two measures are meant to be approximate indica
tors of the existing software and programmer experience
base. A single individual determined the value of these
measures for all candidate architectures from standard
sources.

110 initiation

I: The minimum number of bits which must be transferred
between main memory and any processor (central, or
I/O) in order to output one 8-bit byte to a standard
peripheral device.

Although this measure was intended to give some insight
into the responsiveness of an architecture, it is very diffi
cult to construct an interpretation of the measure that
serves this purpose well. The measure counts relatively few
bits for some architectures, and this, in tum, makes the
measure very sensitive to changes of a few bits. The I
measure is also sensitive to several assumptions about
exactly what actions are to be performed in doing the input!
output operation, and where parameters for the operation
are found. Unfortunately, this sensitivity made the I meas
ure very arbitrary, and a rather inexact measure of input!
output responsiveness. The precise, and somewhat lengthy,
definition of I is given in Reference 3.

Virtualizability

K: is unity if the architecture is virtualizable as defined
in Reference 5, othen.vise, K is zero.

The intent of this criterion is to capture the concept of
virtual machines that has been used to advantage in some
commercial computer systems (e.g., IBM's VMl370). An
architecture that supports virtual machines provides a
mechanism for a privileged, stand-alone program to run as
an unprivileged task and produce the results identical to
those it produces as a privileged program. The importance
of this idea is that an operating system can be run in user
mode as a subsystem of another operating system.

The definition of virtual machine as provided by Popek
and Goldberg in their article in CACM5 is a very strict
definition that guarantees that any operating system that
can run stand-alone on architecture X, can also run on
architecture X in nonprivileged mode. If an architecture
fails this definition it may still support virtual machines in a
more limited sense.

Direct instruction addressability

D: The maximum number of bits of primary memory
which one instruction can directly address given a
single base register, which may be used but not
modified.

Large displacement fields in instructions generally sim
plify programming because they reduce the need to set base
registers and to maintain addressability. Because an archi
tecture may have several different instruction formats, each
with different displacement field formats, the committee
required that the format selected for this measure be the
one used for standard LOAD and STORE operations, or
the equivalent thereof. This eliminated anomalies, like the
MOVE CHARACTER LONG in the IBM S/370 architec
ture, from consideration.

Maximum interrupt latency

Let L be the maximum number of bits which may need to
be transferred between memory and any processor (central
processor, I/O controller, etc.) between the time an inter
rupt is reguested and the time that the computer starts
processing that interrupt (given that interrupts are enabled).
This may be interpreted as a measure of the longest non
interruptible instruction or sequence of instructions. Archi
tectures with nonterminating noninterruptible instructions
have infinite L measures and are so indicated in Table II.

Subroutine linkage

J1 : The number of bits which must be transferred be
tween the processor and memory to save the user
state, transfer to the called routine. restore the user
state, and return to the calling routine, for the full
architecture. No parameters are passed.

J2 : The analogous measure to S 1 above for the minimum
architecture (e,g,; without Floating Point registers).

This measure gives an indication of the size of overhead
that might be encountered in doing subroutine calls in the
worst case for the biggest and smallest machines in the
family. The bits counted here are related to the count in
CS1 , CS2 , CM1 , and CM2 • By presumption, the bits that are
stored for J1 are exactly those for CS1 , except that it is not
necessary to save the protection registers, memory map
registers, interrupt mask, and other registers that determine
the global context for a program. Architectures with small
processor states or that have LOAD/STORE MULTIPLE
instructions show up well on these measures.

COMPOSITE SCORE OF THE QUANTITATIVE
CRITERIA

After applying the quantitative criteria just discussed, the
CF A committee had to determine how the performance of
the candidate architectures on these criteria would be used
to screen out all but three or four of the architectures for
further consideration in the test program and software
evaluation phases of the study. Clearly, the candidate
architectures should be ordered relative to each of the
seventeen quantitative criteria and these independent or
derings studied to detect weaknesses and strengths of the
competing architectures. However, some summary meas
ure was ultimately needed to assist the committee in its
selection of the final architectures to undergo more inten
sive study. A variety of thresholding and weighing schemes
were proposed, but the particular scheme that follows was
the scheme chosen by the CF A committee.

Relative weighing of criteria

Each voting organization of the CF A committee was
given 100 points to distribute among the various measures
to indicate their relative importance to the organization.
The weight for criterion x, W[x], was defined as the total
number of points given criterion x by alJ the voting CF A
ulganizati'uns, divided by Gle tutal number of PlJint~ hanued
out. The weights for the quantitative criteria based on
responses from 24 voting CF A committee members is given
in Table III.

Normalization

When attempting to combine these quantitative measures
into a composite measure we faced two problems:

a. The measures are defined such that good computer
architectures maximize some measures and minimize
others. Specifically, the measures that a computer
architecture should maximize are: VI' V2 , PI' P2, U,
K, B1, B2 , and D; while the measures that should be
minimized are: CS 1 , CS2, CM1, CM2, I, L, J1, and J2 •

CF A Candidate Computer Architectures 145

TABLE III.-Quantitative Criteria Composite Weights

Full CFA
Committee

Criterion Army Weights Navy Weights Weights

VI .0412 .0444 .0433
V2 .0438 .0575 .0529
PI .0425 .0706 .0612
P2 .0387 .0637 .0554
V .0513 .0644 .0600
CSI .0587 .0375 .0466
CS2 .0675 .0219 .0371
CMI .0700 .0544 .0596
CM2 .0713 .0319 .0450
K .0500 .0587 .0558
BI .0450 .0244 .0313
B2 ,0200 .0281 .0254

.0875 .1419 .1238
D .0912 .1081 .1025
L .0812 .0969 .0917
11 .0637 .0626 .0629
J2 .0762 .0331 .0475

Let our composite measure be a maximal measure and
transform all minimal measures to maximal measures by
taking the reciprocal: X'= 1/X.

b. Measures that inherently involve large magnitudes are
not necessarily more important than smaller meas
ures. For example, VIis on the order of 104 to 109

while K is either 0 or 1.

To resolve this problem of differing scale, the values for
the quantitative criteria were normalized by dividing each
value by the average value of the criterion over the set of
nine architectures. For example, the nine measures for
criteria I are (64, 16, 48, 16, 128, 64, 169, 80, 32), the
average value is 68.6, and the normalized measures are
(0.93,0.23,0.70,0.23,1.87,0.93,2.47,1.17,0.47).

Normalized measures have the attractive properties that
they all lie in the range (O,M); have a mean across the set

the set of normalized measures is in the interval (0, MO.S
).

We could have taken the normalization process a step
further and adjusted the spread of each measure so that the
measure gave a standard deviation of unity (or some other
constant) across the set of architectures being evaluated.
We did not do this for all measures. Some measures were
better "discrimination functions" than others and we did
not want in general to lose this information by further
normalization. However, the committee agreed that it is
important to normalize the standard deviation of some of
the measures; specifically, Vb V2 , Pb P2 and D were
normalized to have a mean and standard deviation of unity.
These measures may differ by several orders of magnitude
between candidate architectures, but the CFA Committee
did not feel that the utilities, as expressed by the measures,
differ by orders of magnitude.

146 National Computer Conference, 1977

Scaling and composition of the quantitative measures

In order to combine the individual measures the commit
tee used a simple, linear sum of each normalized measure X
scaled by its corresponding weighing coefficient W[X]. The
weighing coefficients have been defined so that they sum to
unity and hence the composite measure A is in fact a
normalized measure with a mean of I. Using the weights
given in Table III and the values of the quantitative criteria
given in Table II we get the composite measures for the
candidate architectures shown below in Table IV.

There was some valid concern by members of the CF A
committee about the role of the weighing of the measures,
the normalization of the measures, and the measures them
selves in the selection of finalists. However, upon detailed
examination of the results we found that, given the weights
applied by the committee as an indication of the importance
of idealized concepts, the finalists selected are very insensi
tive to the exact details of the selection procedure. Almost
any reasonable methodology for measuring the key con
cepts quantitatively would select the same finalists.

SUMMARY

This article has presented the nine absolute criteria and the
seventeen quantitative criteria used by the CF A committee
in their initial screening on the initial candidate computer
architectures. The scores for each of the candidate archi
tectures are given in Tables I and II for the absolute and
quantitative criteria, respectively. Only the IBM S/370 and
PDP-II architectures passed all the absolute criteria. The
Interdata 8/32 architecture is not well defined with respect
to trap handling and there remains some question as to
whether it meets the requirements of the interrupt and trap
handling criteria. The remaining six candidate architectures
failed one or more of the absolute criteria specified by the
CF A committee. A weighing scheme was developed by the
CF A committee for the quantitative criteria and the com
posite scores of the nine candidate architectures are given
in Table IV. The quantitative criteria showed that the
Interdata 8/32, PDP-II, and IBM S/370 lead the other
architectures by comfortable margins. These results were
used by the CF A committee to reduce the field of candidate

TABLE IV.-Ranking Based on the Quantitative Criteria

Architecture Score

Interdata 8132 1.68
PDP-II 1.43
IBM S/370 1.36
AN/GYK-12 0.94
ROLM 0.92
B6700 0.91
SEL-32 0.86
AN/UYK-7 0.46
AN/UYK-20 0.44

architectures to three finalists-the IBM S/370, the PDP-II,
and the Interdata 8/32-for more thorough evaluation.

This article has indicated some of the areas where we had
difficulty applying the criteria and the final report of the
CFA committee goes into these difficulties, and their reso
lution, in much greater detai1.3 The fact remains, however,
that if we had to compare a set of computer architectures
again, we would need to go through a similar "initial
screening" process; it is just too costly and time-consuming
to expect to be able to evaluate more than a small set of
architectures via any more comprehensive means such as
benchmarking. The absolute and quantitative criteria used
by the CF A committee have the attractive property that
they can be determined directly from the definition of the
computer architecture (or from a survey of computer instal
lations for criteria B1 and B2)' Reflecting back on the
history of the CF A project, we estimate that it took from
two to five man-days to evaluate each of the computer
architectures against the criteria discussed in this article,
plus a two day meeting of the entire CFA committee to
resolve differences of interpretation, and it took from six to
nine man-months to evaluate each of the computer archi
tectures via the set of test programs, support software
evaluation, and life cycle cost models in the subsequent
stages of the CF A project.

ACKNOWLEDGMENTS

The criteria and methodology described in this article
benefited from the ideas and criticism of many members of
the CF A committee. R. Estell, L. Haynes, and N. Tinkel
paugh, as members of the selection criteria subcommittee,
each made important contributions to the formulation of the
initial screening process.

REFERENCES

I. Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, "Architecture of the
IBM Systeml360," IBM Journal of Rand D 8, April 2, 1964, pp. 87-101.

2. Computer Review (formerly Computer Characteristics Review) GML
Corporation, Lexington, MA, 02173, 1975.

3. Fuller, S. H., H. S. Stone, and W. E. Burr, "Selection of Candidate
Computer Architectures and Initial Screening," Volume II of Computer
Family Architecture Selection Committee Final Report, Naval Research
Laboratory, Washington, D.C. 20375. December 1, 1976.

4. Fuller, S. H., W. E. Burr, P. Shaman, and D. A. Lamb, "Evaluation of
Computer Architectures via Test Programs," AFIPS Conference Pro
ceedings, Vol. 46, 1977 National Computer Conference.

5. Popek, G. J., and R. P. Goldberg, "Formal Requirements for Virtualiza
ble Third Generation Architectures," Communications of the ACM, Vol.
17, No.7, July 1974, pp. 412-421.

6. Smith, W. R., J. J. Cornyn, A. H. Coleman, W. Svirsky, R. Estell, P.
Sabin, "Life Cycle Cost Models for Comparing Computer Family Archi
tectures," AFIPS Conference Proceedings, Vol. 46, 1977 National Com
puter Conference.

7. Stone, H. S., "An Audit of the Selection Criteria for Computer Family
Architecture," CFA memorandum, January, 1976. Distributed at the 18-
20 February CF A meeting.

8. Wagner, J., B. Lieblein, J. Rodriguez, H. S. Stone, "Evaluation of the
Candidate Architectures for the Military Computer Family," AFlPS
Conference Proceedings, Vol. 46, 1977 National Computer Conference.

Evaluation of computer architectures
via test programs*

by SAMUEL H. FULLER, PAUL SHAMAN and DAVID LAMB
Carnegie-Mellon University
Pittsburgh, Pennsylvania

and

WILLIAM E. BURR
U.S. Army Electronics Command
Ft. Monmouth, New Jersey

ABSTRACT

This article presents the evaluation of the Computer Family
Architecture (CF A) candidate architectures via a set of test
programs. The measures used to rank the computer archi
tectures were S, the size of the test program, and M and R,
two measures designed to estimate the principal compo
nents contributing to the nominal execution speed of the
architecture. Descriptions of the twelve test programs and
definitions of the S, M, and R measures are included here.
The statistical design of the assignment of test programs to
programmers is also discussed. Each program was coded
from two to four times on each machine to minimize the
uncertainty due to programmer variability. The final results
show that for all three measures (S, M, and R) the Interdata
8/32 is the superior architecture, followed closely by the
PDP-II, and the IBM S/370 trailed by a significant margin.

INTRODUCTION

While there are many useful parameters of a computer
architecture that can be determined directly from the prin
ciples of operation manual, the only method known to be a
realistic, practical test of the quality of a computer architec
ture is to evaluate its performance against a set of bench
marks, or test programs. In a previous article,l we pre
sented a set of absolute and quantitative criteria that the
CF A committee felt provided some indication of the quality
of the candidate computer architectures. It is important to
emphasize, however, that throughout the discussion of
these criteria it was understood that a benchmarking phase
would be needed, and that many of the quantitative criteria
were being used to help construct a reasonable "prefilter"

* This work was supported in part by the US Army Research Office Grant
DAAG29-76-G-0299, and in part by the Advanced Research Projects Agency
under Contract F44620-73-C-0074, which is monitored by the Air Force
Office of Scientific Research.

147

that would help to reduce the number of candidate com
puter architectures from the original nine to a final set of
three or four. As described in the preceding article, this
initial screening in fact reduced the set of candidate com
puter architectures to three: the IBM S/370, the PDP-II,
and the Interdata 8/32.

The concept of writing benchmarks or test programs, is
not a new idea in the field of computer performance
evaluation and is generally considered the best test of a
computer system. 2

-
4 For the purpose of the CFA commit

tee, we define a test program to be a relatively small
program (1 ()() to 500 machine instructions) that was selected
as representative of a class of programs. The CF A commit
tee's test program evaluation study described here had to
address the central problems facing conventional bench
marking studies:

a. How is a representative set of test programs selected?
b. Given limited manpower, how are programmers as

signed to writing test programs in order to maximize
the tnf0rmatidu that ':al1 bt gilirlt:J':'

We faced an additional problem because we evaluated
computer architectures, independent of any of their specific
implementations. In other words, when evaluating particu
lar computers, time is the natural measure of how fast a test
program can be executed. However, a computer architec
ture does not specify the execution time of any instructions
and so an alternative to time must be chosen as a metric of
execution speed.

This article explains how the CF A committee addressed
the above questions and presents the results of the test
program evaluation of the three candidate architectures.
The next section describes how the 12 test programs used
in the evaluation process were selected. The third section
explains the measures of architecture performance that
were used in this study. The fourth section explains how 16
programmers were assigned from six to nine programs

148 National Computer Conference, 1977

each, in order to get a set of slightly over 100 test program
implementations that were used to compare the relative
performance of the candidate architectures. The principal
results of the test program evaluation are presented in the
sixth section and Appendix A contains the actual S, M, and
R measurements of all of the test programs. For the actual
specifications of the test programs, details of the evaluation
process beyond the scope of this article, and a chronology
of the CFA test program study see Reference 5.

TEST PROGRAM SPECIFICATION

Alternative approaches

A number of alternative test program specifications were
considered by the CF A committee. A tempting proposal
was to use test programs written in a Higher-Order Lan
guage (HOL). This had the advantage of allowing a single
HOL source program to be used for all the architectures to
be tested. This also would have permitted the use of
existing benchmark programs, which were available from
several sources CfCDSSA, and NADC), and which were
extracted from "real" military systems. One disadvantage
of this approach was that no one language, even FOR
TRAN, was available on all the nine initial candidate
architectures and those languages developed for use in
tactical military applications (e.g., JOVIAL, CMS-2, CS-4,
and T ACPOL) were each available on only a few of the
candidate architectures. There are FORTRAN IV and
COBOL compilers available for each of the three final
candidate architectures; however, neither FORTRAN nor
COBOL are widely used in tactical military applications.
The major disadvantage, however, was that there is no
practical way to separate the effects of compiler quality
from the effects of architectural efficiency, and the object
of the test program study was to measure only the architec
ture. The results obtained from HOL test programs would
necessarily involve a significant undetermined component,
which would be due to variations in the efficiency of
compilers that are unlikely to be extensively used in tactical
military applications, and because these unmeasurable
compiler effects might well mask genuine differences in the
intrinsic efficiencies of the architectures.

Using standard (Machine-Oriented) assembly language
for the test programs was the obvious alternative to the use
of Higher Order Languages, but it had several obvious
disadvantages. First, each program would have to be re
coded for each machine, adding to the effort involved.
Moreover, this introduced programmer variability into the
experiment, and previous studies have shown programmer
variability to be large (variation of factors of 4: 1 or more
are commonly accepted). Finally, it is much more expen
sive to code in assembly language than in Higher Order
Languages, and this would limit the size or number of the
test programs. Nevertheless, the committee felt that there
were ways to limit, separate, and measure these program
mer effects, whiie there was no practical way to limit or
separate the effects of compiler efficiency. It was therefore

decided that the test programs would, of necessity, be
coded in assembly language.

Guidelines for test programs specification

The Test Program Subcommittee attempted to establish a
strategy for defining and coding the test programs that
would minimize the variability due to differences in pro
grammer skill. The strategy devised was as follows:

a. The test programs would be small "kernel" type
programs, of not more than 200 machine instructions.
(In the end, a few test programs required more than
200 instructions.) It was felt that only small programs
could be specified and controlled with sufficient preci
sion to minimize the effects of programmer variability.
Moreover, resources were not available to define,
code, test, and measure a significant set of larger
programs.

b. The programs were defined as structured programs,
using a PLlI-like Program Definition Language (PDL)
and then "hand translated" into the assembly lan
guages of the respective architectures.

c. Programmers were not permitted to make algorithmic
improvements or modifications, but rather were re
quired to translate the PDL descriptions into assembly
language. Programmers were free to optimize their
test programs to the extent possible with highly opti
mizing compilers. This "hand translation" of strictly
defined algorithms was expected to reduce variations
due to programmer skill.

d. All test programs except the 110 Interrupt test pro
grams were coded as reentrant, position-independent
(or self-relocating) subroutines. This was believed to
be consistent with the best contemporary program
ming practice and provides a good test of an architec
ture's subroutine and addressing capabilities.

Selection of the twelve test programs

The CF A committee appointed a subcommittee responsi
ble for developing a set of test program specifications
consistent with the guidelines just discussed. This subcom
mittee defined a set of 21 test programs that were intended
to be broadly representative of the basic types of operations
performed by military computer systems. The CFA com
mittee reviewed these 21 test programs, committee mem
bers were asked to rank the relevance of these test pro
grams to the applications of their particular organization,
and it was agreed that the top 12 programs would be the
basis of the test program study. (The rationale for using 12
test programs is explained in a later section, where the
statistical design of the test program assignments is pre
sented.) The full specification of the 12 selected test pro
grams is given in Reference 5 and a brief description of
these test programs is given below.

A. liD kernel four priority levels, requires the processor
to field interrupts from four devices, each of which
has its own priority level. While one device is being
processed, interrupts from higher priority devices are
allowed.

B. liD kernel, FIFO processing, also fields interrupts
from four devices, but without consideration of prior
ity level. Instead, each interrupt causes a request for
processing to be queued; requests are processed in
FIFO order. While a request is being processed,
interrupts from other devices are allowed.

C. liD device handler processes application programs'
requests for 110 block transfers on a typical tape
drive, and returns the status of the transfer upon
completion.

D. Large FFT computes the fast Fourier transform of a
large vector of 32-bit floating point complex numbers.
This benchmark does exercise the machine's floating
point instructions, but principally tests its ability to
manage a large address space. (Up to one half of a
million bytes may be required for the vector.)

E. Character search, searches a long character string for
the first occurrence of a potentially large argument
string. It exercises the ability to move through char
acter strings sequentially.

F. Bit test, set, or reset tests the initial value of a bit
within a bit string, then optionally sets or resets the
bit. It tests one kind of bit manipulation.

G. Runge-Kutta integration numerically integrates a
simple differential equation using third-order Runge
Kutta integration. It is primarily a test of floating
point arithmetic and iteration mechanisms.

H. Linked list insertion inserts a new entry in a doubly
linked list. It tests pointer manipulation.

I. Quicksort sorts a potentially large vector of fixed
length strings using the Quicksort algorithm. Like
FFT, it tests the ability to manipulate a large address
space, but it also tests the ability of the machine to
support recursive routines.

J. ASCII to floating point converts an ASCII string to a
float~ng poi.tlt. IlurnQer,. It ~~erci~es cbar:a.cter~to-:nu
meric conversion.

K. Boolean matrix transpose transposes a square,
tightly-packed bit matrix. It tests the ability to se
quence through bit vectors by arbitrary increments.

L. Virtual memory space exchange changes the virtual
memory mapping context of the processor.

The specifications, written in the Program Definition
Language, were intended to completely specify the algo
rithm to be used, but allow a programmer the freedom to
implement the details of the program in whatever way best
suited the architecture involved. For example, in the AS
CII-to-floating-point benchmark, program J, the PDL speci
fication included the statement:

NUMBERE-integer equivalent of characters POSITION
to J -1 of A 1 where character J of A 1 is "."

Evaluation of Computer Architectures 149

This description instructs the programmer to convert the
character substring POSITION, POSITION + 1, ... , J -1,
to an integer and store the result in the integer NUMBER.
It left up to the programmer whether he would sequence
through the string character-by-character, accumulating an
integer number until he found a decimal point, or perhaps
(on the S/370) use the Translate-and-Test (TRT) instruction
to find the decimal point, and then use PACK and Convert
to-Binary (CVB) to do the conversion. It did forbid him to
accumulate the result as a floating point number directly,
forcing him to convert to an integer and then to floating
point.

Procedures for writing, debugging, and measuring the test
programs

The test programs were written by seventeen program
mers at various Army and Navy laboratories and at Carne
gie-Mellon University. A set of reasonably comprehensive
instructions and conventions were needed to insure that the
various programmers produced results that could be com
pared in a meaningful way. A later section of this article
discusses the assignments made to the programmers, and
shows how these assignments were made to minimize the
distortion of the final conclusions due to variations between
programmers. In addition, we also agreed that it was not
sufficient to just write the test programs in assembly
language. We instructed each programmer that all of the
test programs that he wrote had to be assembled and run on
the appropriate computer. * Test data was distributed to the
programmers, and a test program was defined to be de
bugged for the purposes of the CFA committee's work if it
performed correctly on the test data.

S, M AND R: MEASURES OF AN ARCHITECTURE'S
PERFORMANCE

Very little has been done in the past to quantify the
relative (or absolute) performance of computer architec
tures, independeI)t Qfspecjfic impl~mentatiQns. Hence~ like
it or not, we had little choice but to define measures of
architecture performance for ourselves.

Fundamentally, performance of computers is measured in
units of space and time. The measures that were used by
the CF A Committee to measure a computer architecture's
performance on the test programs were:

Measure of Space
S: Number of bytes used to represent a test program.

Measures of Execution Time:
M: Number of bytes transferred between primary mem-

* The exceptions were test programs A, B, C, and L since they all require
the use of privileged instructions and it was impractical to require program
mers to get stand-alone use of all the candidate machines. In these four
cases, an "expert" on a test program was designated and he was responsible
for reading in detail all implementations of the test program and returning the
test programs to the programmer for correction if he detected any errors.

150 National Computer Conference, 1977

ory and the processor during the execution of the
test program.

R: Number of bytes transferred among internal registers
of the processor during execution of the test pro
gram.

All of the measures described in this section are meas
ured in units of 8-bit bytes. A more fundamental unit of
measure might be bits, but we faced a number of annoying
problems with respect to carry propagation and field align
ment that make the measurement of S, M, and R in bits
unduly complex. Fortunately, all the computet architec
tures under consideration by this committee are based on 8-
bit bytes (rather than 6, 7, or 9-bit bytes) and hence the
byte unit of measurement can be conveniently applied to all
these machines.

Test program size

An important indication of how well an architecture is
suited for an application (test program) is the amount of
memory needed to represent it. We define Sj,j,k to be the
number of 8-bit bytes of memory used by programmer i to
represent test program j in the machine language of archi
tecture k. The S measure includes all instructions, indirect
addresses, and temporary work areas required by the
program.

The only memory requirement not included in S is the
memory needed to hold the actual data structures, or
parameters, specified for use by the test programs. For
example, in the Fourier transform test program S did not
include the space for the actual vector of complex f1oating
point numbers being transformed but it did include pointers
used as indices into the vector, loop counters, booleans
required by the program, and save-areas to hold the original
contents of registers used in the computation.

Processor execution rate measures

In selecting among computer architectures, as opposed to
alternative computer systems, we are faced with a funda
mental dilemma: one of the most basic measures of a
computer is the speed with which it can solve problems, yet
a computer architecture is an abstract description of a
computer that does not define the time required to perform
any operation. (In fact, it is exactly this time-independence
that makes the concept of a computer architecture so
attractive!) Given this dilemma, one reaction might be to
ignore performance when selecting among alternative com
puter architectures and leave it to the engineers implement
ing the various physical realizations to worry about execu
tion speed. However, to adopt this attitude would invite
disaster. In other words, although we were evaluating
architectures, not implementations, it was essential that the
architecture selected yield cost/effective implementations,
i.e., the architecture must be "impiementabie."

The M and R measures defined below were developed to

measure those aspects of a computer architecture that will
most directly affect the performance of its implementations.

Processor memory transfers

If there is any single, scalar quantity that comes close to
measuring the "power" of a computer system, it is the
bandwidth between primary memory and the central pro
cessor(s).6-8

This measure is not concerned with the internal workings
of either the primary memory or the central processor; it is
determined by the width of the bus between primary
memory and the processor and the number of transfers per
second the bus is capable of sustaining. Since processor/
memory bandwidth is a good indicator of a computer's
execution speed, an important measure of an architecture's
effect on the execution speed of a program is the amount of
information it must transfer between primary memory and
the processor during the execution of the program. If one
architecture must read or write 2 x 106 bytes in primary
memory in order to execute a test program and the second
architecture must read or write 106 bytes in order to
execute the same test program, then, given similar imple
mentation constraints, we would expect the second archi
tecture to be substantially faster than the first.

The particular measure of primary-memory/central-pro
cessor transfers used by the CF A Committee is called the
M measure. Mj,j,k is the number of 8-bit bytes that must be
read or written from primary memory by the processor of
computer architecture k during the execution of test pro
gram j as written by programmer i.

Clearly, there are implementation techniques used in the
design of processors and memories to improve performance
by attempting to reduce processor/memory traffic, i.e.,
cache memories, instruction lookahead (or behind) buffers,
and other buffering schemes. However, with the intention
of keeping our measure of processor/memory traffic as
simple, clean, and implementation-independent as possible,
none of these buffering techniques were considered. At the
completion of one instruction, and before the initiation of
the next instruction, the only information contained in the
processor is the contents of the registers in the processor
state.

Table I shows an example of a small IBM S/370 instruc
tion sequence which should help to illustrate the calculation
of M. The instructions are the basic loop of a routine for
calculating the inner product of two single precision floating
point vectors of length 10.

Registers transfers within the processor

The processor/memory traffic measure just described is
our principal measure of a computer architecture's execu
tion rate performance. However, it should not be too
surprising that this M measure does not capture all we
might want to know about the performance potential of an
architecture. In this section a second measure of architec-

Evaiuation of Computer Architectures 151

TABLE I-M Measure for IBM 370 Inner Product Example

M

(1) LA 2,10(0,0) 4
(2) LA 3,XVEC 4
(3) LA 4,YVEC 4
(4) SDR 2,2 2

(5) SR 7,7 2

(6) LOOP LE 4,0(7,3) 8
(7) ME 4,0(7,4) 8
(8) ADR 2,4 2
(9) LA 7,4(0,7) 4
(10) BCT 2,LOOP 4

26
260

(11) STO 2,SUM 12

288

ture performance is defined: R-register-to-register traffic
within the processor. Whereas the M measure looks at the
data traffic between primary memory and the central pro
cessor, R is a measure of the data traffic internal to the
central processor. The fundamental goal of the M and R
measures was to enable the CF A committee to construct a
processor execution rate measure from M and R (ultimately
an additive measure: aM +bR, where the coefficients a and
b can be varied to model projections of relative primary
memory and processor speeds). An unfortunate but una
voidable property of the R measure is that it is very
sensitive to assumptions about the register and bus struc
ture internal to the processor; in other words, the "imple
mentation" of the processor.

The definition of R is based on the idealized internal
structure for a processor shown in Figure 1. By using the

Primary

Memory

R.ad daia
from memory

Writedat.
to memcry

General Purpose
Register File

Accumul.tars t

Base Rl"gu;lars.
tOONe reelslers,
Temp(lr3r'9~,

oie

Inltruction Rat

lAp Add,. •• RoC

Procram Countor

Pro&ram St.tUIL

_ A-, ~ I!p!!'!s_ io

[=LEo:_ II
II --- Control Paih II

ALU.n<! do.! ProceSSOr's

- - - --
I

CO~i!i3::
1.".1'

I

Control
Unit

~--~--~- ______ I

C~ntro! Memor), Operations

Figure I-Canonical processor organization for R measure computations

Comments

Set R2 to 10, the length of the vectors.
Load R3 with starting address of X vector.
Load R2 with starting address of Y vector.
Clear floating point reg. 2.
Use it to accumulate inner product.
Clear R7
Use it as index into floating point vectors.
Load XCi) into floating point register 4.
Multiply XCi) by Y(i).
Sum: = Sum+ X(i)*Y(i).
Increment index by 4 bytes.
Decrement loop count and branch back if not done

(Loop Total)
(Loop (6-10)* 10)
Store double precision result in SUM.

Grand Total

register structure in Figure 1 we do not imply that this is the
way processors ought to be built. On the contrary, the
structure in Figure 1 has a much more regular data path
structure than would be practical in contemporary proces
sors. There exist both data paths of marginal utility and
nonexistent data paths that, if present, could significantly
speed up the processor. This structure was selected be
cause the very regular data path, ALU, and register array
structure helped simplify our analysis.

Ri,j,k is defined as the number of 8-bit bytes that are read
to and written from the internal processor registers during
execution of test program j on architecture k as written by
programmer i.

AL U Operations-The AL U in Figure 1 is allowed to
perform any common integer, floating point, or decimal
arithmetic operation; increment or decrement; and perform
arbitrary shift or rotate operations.
Only Data Traffic Measured-All data traffic is measured
in R and no control traffic measured. Figure t is intended to
spedry'whatwnrbe·de'Ilnec[to-he·c'oritrofiramc-·and'"whit"
will be data traffic for the purposes of the R measure. The
R measure does not count the following "control" traffic:

(t) The setting of the condition codes by the AL U (or
control unit) and the use of the condition codes by the
ALU. The only time that movement of data into or
out of the Program State Word will be counted in the
R measure is when a Load PSW instruction is per
formed or a trap or interrupt sequence moves a new
PSW into or out of the PSW register.

(2) Bits transmitted by the control unit to activate or
otherwise control the register file, ALU, or memory
unit, are not counted in the R measure.

(3) Reading of the Instruction Register by the control
unit as it decodes the instruction to determine the
instruction execution sequence is not counted in the
R measure. In other words, the Instruction Register

152 National Computer Conference, 1977

(with the exception of displacement fields) will be for
most practical purposes a write-only register as far as
the R measure is concerned.

(4) Loading the Memory Address Register is counted in
the R measure, but use of the contents of the Memory
Address Register to specify the address of data to be
accessed in primary memory is not counted.

Virtual Address Translation-The virtual to real address
translation process is not counted in the R measure. In
other words, the final memory address in the MAR is a
virtual address and the work involved in translating this
virtual address to a real address is not included in the R
measure.

The definition of the R measure was the center of
considerable discussion within the CF A committee. The full
set of rules that are necessary to completely define the R
measure is too voluminous to present here; readers inter
ested in the details of the R measure are referred to Volume
III of the CF A Selection Committee's final report. 5 Figure 2
illustrates the calculation of the R measure for an IBMl370
add instruction.

STATISTICAL DESIGN OF TEST PROGRAM
ASSIGNMENTS

The test program phase of the CF A evaluation process
involved comparison of twelve test programs on three
machines. Approximately sixteen programmers were avail
able for the study and a complete factorial design would
have required each programmer to write all of the test
programs on each of the machines (for a total of 576
programs). This was clearly not feasible with the given time
and resource constraints, and, consequently, a fractional
design (or several fractional designs) had to be selected.
Fractional factorial designs are discussed in Reference 9.
The fractional designs to be described below incorporate
balance in the way test program, machine, and programmer
combinations are assigned.

It was necessary to consider designs which required each
programmer to write test programs for all three machines.
Otherwise, comparisons among the machines could not be
separated from comparisons among the programmers. A
desirable design would have instructed each programmer to
write a total of six or nine different test programs, one third
of them on each of the three machines. For most of the
programmers in the study time limitations precluded this
type of design, and some compromise was required. The
compromise design selected also had to allow for precise
comparisons among the three competing architectures. A
type of design that meets both of these objectives is the
nested factorial. 10

The test program part of the study actually involved the
use of three separate experimental designs, henceforth
referred to as Phase I, Phase II, and Phase III. Nested
factorial designs were used for Phase I and Phase III. Phase
II was a one-third fraction of a 34 factoriai design. Phase i

was used to study test programs A through H, those
deemed to be of primary interest. Phase III was used to
study test programs I through L. Phase II included test
programs A-B, E-H, and J-L. Plans of the three designs are
depicted in Figur~ 3.

The Phase I design is a pair of nested factorials, each
involving four programmers. Each programmer was asked
to write two test programs for all three machines. Each of
the eight test programs in Phase I appears once on each
machine in each of the nested factorials. When this design
was originally formulated, the plan included requiring
programmers to write their six test programs in a preas
signed randomly selected order, so as to eliminate possible
biases due to learning during the course of completing the
assignments. This procedure was discarded, however,
when the programmers objected because of the varying
availability of the three machines for debugging. Program
mers were instructed to complete the assigned jobs in
conformity with their typical practices and working habits
with regard to order, consultation with other individuals,
and other such considerations. Programmers in the study
were not permitted to consult with each other, however, on
any substantive matters concerning their designated assign
ments. All programmers were instructed to keep diaries of
their work on the experiment.

As noted above, the Phase I design was formulated with
the goal of obtaining maximum possible information about
differences between the competing architectures. With the
given Phase I design, comparisons among the three archi
tectures are not confounded by effects of either test pro
grams or programmers. The Phase I design called for 48
observations and was viewed as the most important of the
three designs formulated.

The design termed Phase III was formulated according to
the same plan as was Phase I, except that four test
programs and four programmers were utilized." The Phase
III design contains half as many observations as the Phase I
design and thus gives statistical results of less precision.
The test programs in the Phase III design are of lesser
interest than those in Phase I. The four programmers in
Phase III are distinct from the eight in Phase I.

Together the Phase I and Phase III designs provide a
view of all three machines and the operation of all twelve
test programs selected for consideration. A third experi
ment, labelled Phase II, was also planned. This was viewed
as an auxiliary effort and was to be completed only if it was
clear that the programmers assigned to it would not be
needed to aid in the completion of Phase I and Phase III.
the Phase II design called for three programmers to write
nine different test programs, three on each of the three
machines. The programmers assigned to Phase II were able
to devote enough time to the test program study to permit
use of a design which required them to write nine different
programs. Some comparisons among programs not possible
in Phase I and Phase III could be made, and the statistical
results of Phase II could be compared to those of the other
two experiments. The design used was the 3.4.3 plan in
Reference i i. This was made possible by dividing the factor

Evaluation of Computer Architectures 153

RX. RS. & 51 INSTRUCTION INTERPRETATION

B. Comment

IR<O!15> ~ Mh[MAR]
MAR (- MAR + 2
IR<15:31> ~ Mh[MAR]
PC ~ PC + 4
address interpretation
instruction execution

MAR ~ PC

TOTAL

2
3
2
3

6

16

Get halfword in instruction register
Incrementation counts only 1 byte
Get rest of instruction in IR
Increasing Program Counter

Set up MAR for next instruction

RX ADDRESS CALCULATION

B. Comment

1. 82 ;: 0, X2 = 0
MAR ~. IR<20:31>

2. 82 = 0, X2 > °
5

MAR ~ IR<20:31> + R[x2]<8:31> 8

3. 82 > 0, X2 = 0
MAR (- IR<20:31> + R[82]<8:31> 8

4. 82 > 0, X2 > °
MAR (- IR<20~31> + R[B2]<8:31> 8
MAR ~ R[x2] + MAR 9

TOTAL 17

Read 12 bits from the IR

Add 12 bits from IR to 24 bits from index

Full 24 bit (3 byte) addition

EXAMPLE INSTRUCTION: A R4,DISP{R2,R7)

RX Add Instruction R

RX instruction interpretation 16
address intI rpretation 17
MBR (- Mw[MAR] 4
R(R1] ~ R[R1] + MBR 12

TOTAL 49
Figure 2-IBM S/370 R measure example

representing test programs, which appears at riine levels,
into two pseudofactors,lO each at three levels. One of the
Phase II programmers also participated in the Phase I
design. The only duplicate assignment. however, was test
program G on the IBM S/370.

ANALYSIS OF TEST PROGRAM RESULTS

This section describes the experimental results and statis
tical analysis of the test program data. We shall first discuss
the Phase I experiment, then the Phase III experiment, and

154 National Computer Conference, 1977

then the analysis combining data from Phase I and III.
Finally, the Phase II experiment will be described.

Phase I models

A possible model for the nested factorial designs in Phase
I is

(1)

i=l, 2, 3, 4,j=l, 2, k=l, 2, 3.

In this equation YUk is some response (i.e., an S, M or R
measure) generated by the ith programmer writing the jth
test program on the kth machine. Also,

= constant, termed the grand mean
= effect due to the ith programmer
= effect of the jth test program assigned to the ith

programmer
= effect of the kth machine
= interaction between the ith programmer and the

kth machine
= interaction between the jth test program written

by the ith programmer and the kth machine
= a random error term, assumed to be normally

distributed with mean 0 and variance not de
pendent on the values of i, j, and k.

The Phase I experiment may also be modelled in a
manner somewhat different from that just described. In
Phase I there are two factors at eight levels each, program
mers and test programs, and one factor at three levels,
machines. The two eight-level factors may each be replaced
by three pseudofactors at two levels each. Then we are
concerned with a complete factorial experiment involving
3*26= 192 total observations. The actual Phase I experiment
is a 1/4 fraction of this. A model may be fit using dummy
variables to account for various effects and interactions.

Transformation of the data

Examination of the S, M, and R data values collected
clearly shows there is wide variation in the data from one
test program to another, e.g., especially for the M and R
measures. Various statistical considerations suggest that
some transformation of the raw data prior to analysis is
desirable. A technical discussion of transformation of sta
tistics is given in Reference 12 which illustrates use of the
methodology in various contexts.

In the CF A study the purpose of a transformation of the
data is to stabilize variance, so that an additive model such
as (eq. 1) will hold for each of the designs. Specifically, the
model (eq. I) assumes that the variance of the error term
ejjk is independent of i, j, and k. Under this assumption
inferences which follow from analysis of variance (AN
OV A) calculations, as described below, are valid.

A variance stabilizing transformation is frequently sug
gested by consideration of the experimental situation and

prior understanding of the variation to be expected in the
data. For example, consider the M and R measures. Sup
pose some programmers each write two test programs and
the average run time of the second one is k times the
average run time of the first. Then if the standard deviation
of the M or R readings is V for the first test program, it can
be expected to be proportional to kV for the second test
program. In other words, the variability (standard devia
tion) in run times is directly proportional to the average run
time. The accuracy of this conjecture may be tested by
examination of the data, but clearly there is strong intuitive
support for it. Consider the Runge-Kutta test program. Its
M and R measures are dominated by the computation of the
inner loop performing the step-wise solution of the differen
tial equation. Variations in M and R measures will be a
result of alternative encodings of this inner loop. Average
M and R measures will be doubled if the number of
iterations requested is doubled. Moreover, doubling the
number of iterations will also cause the differences between
the different Runge-Kutta programs to double. When the
standard deviation of the test data is directly proportional
to the mean, a logarithmic transformation will stabilize the
variance, that is, remove the dependence of the variance on
the size of the test program. 12

The model of (eq. 1) may be termed an additive model.
When a logarithmic transformation is used for the data, YUk
in (eq. 1) becomes the logarithm of the response, such as
the M or the R reading. In this case a multiplicative model
in fact underlies (eq. 1) and we write

i=l, 2, 3, 4,j=1, 2, k=l, 2, 3.

The connection between (eq. 1 and eq. 2) is

In Zjjk= Yijk

Inx=C,

In J.Lk=Mk,

In 7TJ.Lik=PMik ,

In TJ.LUk = TMjjk ,

(2)

Thus, use of the logarithmic transformation on both sides of
(eq. 2) yields (eq. I), and the mUltiplicative model (eq. 2)
may be viewed as the meaningful basic underlying model.

Similarly, consideration of the underlying properties of
the S measure suggest a square root transformation is
appropriate to stabilize its variance. This transformation
arises because the variance, rather than the standard devia
tion, of the S measure can be expected to be proportional to
k V. 5 Use of the square root transformation would imply use
of the model in (eq.1) with Yijk denoting the square root of
the measured S value,

It should be noted that the square root and logarithmic

Evaluation of Computer Architectures 155

• Test. Program

Phase Programmer A B C D E" F G H I J K L

I 14 all all

1 all all

2 all all

9 all all

11 all all

12 all all

13 all all
.-
17 all all

3 370 11 832 11 11 832 832 370 370

II 4 11 832 370 832 832 370 370 11 11

17 832 370 11 370 370 11 11 832 832

5 all all

8 all all
III

6 all all

7 all all
Figure 3-Layouts of Phase I, II, and III designs "all" designates all three

machines

transformations i;;i.ft; uuly two uf 4 large nulJlber of PO~lble
transformations. A particular family of transformations
takes a response z and transforms it according to za for an
a>O. With an appropriate interpretation, the logarithmic
transformation corresponds to the limiting value a~O. This
family of power transformations is discussed in detail in
Reference 13.

Statistical analysis of phase I data

ANOVA calculations were performed on both halves of
the Phase I experiment for jS, In M, and In R values. In
each analysis the sample variance of the 24 values was
decomposed into sums of squares attributable to variations
among programmers test programs, machines, programmer
machine interactions, and test program-machine interac
tions. The proportions of the total variance due to the
various sums of squares are given in Table II. The ANOV A

caim#Rfto"~ ''''theft.f'' th~ ~~t p~r!! 1!!!d rrograrnmer
variations account for most of the variation in the data in
the case of the M and R measures, and that machine

T ABLE II-Estimates of Machine Comparisons and 95 percent Confidence
Intervals, Phase I

InM In R

- .586 .018 .012
(-3.696,2.524) (-.430, .466) (-.449, .474)

-3.535 -.655 -.717
(-6.645, - .425) (-1.103, - .207) (-1.178, - .255)

2.949 .673 .729
(-.161,6.059) (.225,1.121) (.267, 1.191)

-3.242 -.664 -.723
(-5.936, -.548) (-1.052, -.276) (-1.122, -.323)

M1 : effect of PDP-II
model (eq.I): M2 : effect oflBM S/370

Ma: effect of Interdata 8/32

156 National Computer Conference, 1977

differences are relatively small. Machine differences are
more noticeable for the S measure.

Using dummy variables, we also fit models using the
formulation discussed earlier. In each model 24 parameters
were fit, leaving 24 degrees of freedom to measure experi
mental error. Estimates of the variance of the error term in
the model (eq. 1) are 18.175, 0.377, and 0.400 for jS, In M,
and In R, respectively. The actual data values for the S, M,
and R measures are given in the Appendix, and these
estimates of variance reflect the magnitude of the experi
mental error component in the model (eq. 1). Table II
shows estimates of various machine comparisons for the
Phase I data. A 95 percent confidence interval is quoted
below each estimate. The 95 percent confidence intervals
which do not cover the value 0 correspond to comparisons
statistically significant at level 0.05(= 1- .95). Thus at level
.05 the Interdata 8/32 is superior to the IBM S/370 on all
measures. The PDP-II is adjudged superior to the IBM
S/370 at level .05 on two of the measures and barely misses
being superior when jS is considered. Moreover, the IBM
S/370 is inferior to the average performance of the other
two machines on all measures. It is worth noting that these
comparisons among the competing architectures are based
upon consideration of test programs A through H only. It is
reasonable, however, to view the eight programmers in
Phase I as representative of a larger population of program
mers.

Table III displays estimates of the effects Mk and JLk for
the various measures. The JLk estimates are obtained by
exponentiating the estimates of Mk and are appropriate for
the logarithmic models only. Estimates have been included
for architecture comparisons obtained from the model (eq.
1) with the response In S. These are also given in Tables V
and VII. Use of the In S model leads to estimates which are
qualitatively similar to those obtained from the jS model,
and it permits more convenient comparisons of the three
architectures. Since the effects noted in Table III are
differential values, a value of 0 is neutral for Mk and a value
of I is neutral for JLk' The figures in Table III are consistent
for the different measures and transformations. The IBM S/370
is noticeably worse than the other two architectures. For all but
the In R response, the Interdata 8/32 appears to be modestly
better than the PDP-II.

One may interpret the last three lines of Table III in the

TABLE III-Estimates of Machine Effects in Models (eq.1) and (eq.2),
Phase I

Measure vis

Machine Effects

MI -.788
M2 2.161
M3 -1.374

/Ll
f.L2

/La

wit, ILl: effects for PDP-II
M2, f.L2: effects for IBM S/370
M3, /L3: effects for Interdata 8/32

In S

-.148
.354

-.205
.862

1.425
.815

InM In R

-.230 -.247
.443 .482

-.212 -.235
.795 .781

1.557 1.619
.809 .791

TABLE IV-Estimates of Machine Comparisons and 95 percent Confidence
Intervals, Phase III

Measure
Comparison of
Machines vis

Ma-MI -3.806
(-8.780, 1.168)

M3-M2 -1.585
(-6.559, 3.389)

M2-MI -2.221
(-7.195,2.753)

!(MI+M3)-M2 .318
(-3.990,4.626)

M1 : effect of PDP-II
M2: effect of IBM S/370
Ma: effect of Interdata 8/32

InM In R

-.295 -.348
(-1.000, .410) (- .988, .291)

.099 -.027
(- .606, .804) (-.666, .613)

-.394 -.321
(-1.099, .311) (-.960, .318)

.247 .147
(- .364, .858) (-.407, .701)

following way. The In M measure results indicate the IBM
S/370 requires 155.7 percent as many processor/memory
transfers to "execute" programs A through H as the
average of the three machines, while the PDP-II and
Interdata 8/32 require 79.5 percent and 80.9 percent, re
spectively.

Phase III models and results

The models for Phase III experiments are the same as in
(eq. 1) and (eq. 2), except that the SUbscript i assumes the
values 1 and 2 only. Estimates of the variance of the error
term in the Phase III version of model (eq. 1) are based on
eight degrees of freedom and are 18.606, 0.374, and 0.308
for jS, In M, and In R, respectively.

Table IV is the analog of Table II, and Table V the analog
of Table III. None of the confidence intervals shown in
Table IV fails to cover the value O. However, it is apparent
that the PDP-II performed noticeably worse than the other
two machines in Phase III. Also, there is very little differ
ence between the IBM S/370 and the Interdata 8/32 in Phase
III.

The relatively poor performance of the PDP-II in Phase
III appears to be due to its inability to handle test program
I, quicksort. Certainly part of the explanation for the poor
performance of the IBM S/370 in Phase I can be attributed
to test program A, 110 kernel with four priority levels. In

TABLE V-Estimates of Machine Effects in Models (eq.l) and (eq.2),
Phase III

Measure vis

Machine Effects

Ml 2.009
M2 -.212
Ma -1.797

/LI
f.L2

/La

M:, J.L:: effects for PDP-II
M2, f.L2: effects for IBM S/370
Ma, /L3: effects for Interdata 8/32

In S

.133

.042
-.174
1.142
1.043
.840

InM In R

.229 .223
-.165 -.098
-.066 -.125
1.257 1.250
.848 .em
.936 .882

the next section results from Phase I and Phase III are
combined to produce overall estimates of machine effects
and overall comparisons of the machines.

Combination of Phase I and Phase III results

Let 8 1 denote an estimate of a machine effect or compari
son, such as Ml or M3-Ml' in Phase I. Let 8 m denote the
estimate of the same effect or comparison in Phase III. In
the previous two sections such estimates were given, as
well as some confidence intervals. The purpose of this
section is to present estimates of the form

(3)

where a is chosen to minimize the variance of the resulting
linear combination and O<a< 1. Table VI shows estimates
of machine comparisons and 95 percent conlidence inter
vals. The value of a for each column in the table is given
along the top border. In all columns more weight is given to
the Phase I data. Table VII gives estimates of machine
effects with Phase I and Phase III data combined.

All of the confidence intervals for M3-M2 in Table VI fail
to cover the value zero. Thus, the evidence suggests that
the Interdata 8/32 performs better than the IBM S/370 on all
three measures, S, M, and R. Also, the IBM S/370 tends to
be worse than the average of the other two machines.

The estimates of ILk in Table VII provide a summary of
the Phase I and Phase III data. The IBM S/370 requires
120.8 percent as much storage as the average of all three
machines for the twelve test programs studied. According
to the In M measure estimate, the IBM S/370 required 126.6
percent as many processor/memory transfers to "execute"
the test programs as the average of the three machines. The
other figures in the lower part of Table VII are interpreted
similarly.

Phase II models and results

Analysis of variance calculations were performed on data
~ri~!"!'!g f;C'rr! the Phrtse' -II desigr:, Scme af ~e ~esu!ts fer

TABLE VI-Estimates of Machine Comparisons and 95 percent Confidence
Intervals, Phase I and Phase III Data Combined

Measure
Comparison v's InM In R
of Machines 0:=.67 0:=.66 0:=.61

M3 -M1 -1.649 -.088 -.128
(-4.119, .821) (-.442, .266) (-.517, .261)

Ma-M2 -2.892 -.399 -.448
(-5.362, -.422) (-.753, -.045) (- .837, - .059)

M2-M1 1.243 .310 .320
(-1.227,3.713) (- .044, .664) (- .069, .708)

~Ml+M3)-M2 -2.067 -.354 -.384
(-4.207, .073) (-.661, -.047) (-.721, -.047)

M1 : effect of PDP-II
M2: effect of IBM S/370
M3: effect of Interdata 8/32

Evaluation of Computer Architectures 157

TABLE VII-Estimates of Machine Effects in Models (eq.1) and (eq.2),
Phase I and Phase III Data Combined

Measure v's In S InM In R

Machine Effects 0:= .67 0:=.47 0:=.66 0:=.61

Ml .135 .001 -.075 -.064
M2 1.378 .189 .236 .256
M3 -1.514 -.189 -.163 -.192
Ml 1.001 .928 .938
M2 1.208 1.266 1.292
M3 .828 .850 .825

Ml , Ml: effects for PDP-II
M2, M2: effects for IBM S/370
M3 , M3: effects for Interdata 8/32

responses jS, In R, and In M are summarized in Table
VIII. This table indicates the proportions of the total
variance attributable to various sums of squares. The
variance was split into sums of squares each with two
degrees of freedom. Since two of the factors in the design
were in fact pseudofactors at three levels each to account
for the nine test programs, several sets of sums of squares
were combined. There is some aliasing in the design involv
ing the second-order interactions.

Estimates of differential effects in a model comparable to
(eq. 1) for the three machines can also be given. For the jS
measure they are - .952 for the PDP-II, 1.605 for the IBM
S/370, and - .653 for the Interdata 8/32. For the In M
measure the values are -0.691, 0.508, and 0.183 for the
machines quoted in the same order, and the figures are
- .662, .538, and .123 for the In R measure. Thus, the
experimental results for this phase tend to rank the ma
chines with the PDP-II first by a substantial margin, and
the Interdata 8/32 ranks second. However, it should be
noted that test program A was included in the Phase II
design, and test programs D and I were not.

SUMMARY

This article has described ho.w the te~t program ph(l~t;. Qf
the CF A study wa~ developed, what methodologies were
used, and what were the results of the study. We began

TABLE VIII-Phase II ANOV A Calculations Proportion of Variance
Attributable to Each Sum of Squares

Measure v's InM InR

Degrees of
Sum of Squares freedom

Programmers 2 .027 .018 .026
Test Programs 8 .623 .653 .660
Machines 2 .132 .076 .068
Programmers 2 .039 .053 .047

x Machines
Test Programs 8 .132 .124 .121

x Machines
Test Programs 4 .047 .076 .078

x Programmers

158 National Computer Conference, 1977

with a discussion of the twelve test programs used in this
study and how the CF A committee selected these twelve
from a larger set of test programs as most representative of
the expected applications of military computers. A Program
Definition Language (PDL) was used to clearly specify
these test programs so that it was clear to the programmers
exactly what algorithm was to be implemented yet also
indicate to what extent we expected the programmer to
optimize the coding of the test programs to take advantage
of the features of the architecture under test.

The third section of this article defined the three meas
ures of performance used to evaluate the candidate com
puter architectures on each test program:

S: The number of bytes used to represent a test pro
gram

M: The number of bytes transferred between primary
memory and the processor during execution of the
test program

R: The number of bytes transferred among internal
registers of the processor during execution of the test
program

The test programs were assigned to programmers based
on a statistical design involving three phases, denoted as I,
II, and III. In Phase I eight programmers were assigned two
test programs to implement on each of the three machines.
Phase III was a smaller version of Phase I, involving only
four programmers. Phase II was a somewhat more complex
design that involved each of three programmers writing
nine different test programs, three on each machine. Phase
II was intended to give some information on the interaction
between particular test programs and machines that was not
available with much precision from Phases I and III.

The principal results of the test program study that were
passed along to the life-cycle cost models l3 was the com
posite performance of the candidate architectures for
Phases I and III on the set of 12 test programs. An analysis
of Variance (ANOVA) procedure was used to determine
the overall relative performance of the three candidate
machines. Unity indicates average performance and the
lower the score on any of the measures, the better the
machine handled the set of test programs.

In other words, the test program results indicate that the
IBM S/370 needs 46 percent more memory than the Inter
data 8/32 to represent the set of test programs (or 21
percent more than the average of the three architectures)
and the PDP-II is essentially average in its use of memory.

Considering the test program results in a little more
detail, in Phase I the data revealed the IBM S/370 to be
significantly worse than the other two machines on S, M,
and R measures at a significance level of 0.05 (i.e., the 95
percent confidence intervals all failed to include the point
where the IBM S/370 equals the performance of the other
machines). Moreover, the overall performance of the PDP-
11 was virtually identical to that of the Interdata 8/32. Some
part of the poor performance of the IBM S/370 can be
traced to test program A (the priority 110 kernel). In Phase
III alone, none of the comparisons among the three ma-

TABLE IX-Average Performance of the Architectures on
the 12 test Programs

ARCHITECTURE

PDP-II
IBM S/370
Interdata 8/32

s

1.00
1.21
0.83

M

0.93
1.27
0.85

R

0.94
1.29
0.83

chines was significant at the 0.05 level because of the small
number of data points (24). However, the PDP-ll was
noticeably the worst of the three machines on all three
measures. The IBM S/370 dominated the Interdata 8/32
with regard to the M measure, the Interdata was better for
the S measure, and there was little difference between the
two for the R measure. The relatively poor performance of
the PDP" 11 appeared to be due to the quicksort test
program, test program I, which worked with a list much
larger than the 64K byte virtual address space of the PDP-
11.

Statistical results from Phases I and III were combined.
In this analysis the ranking of the three machines from best
to worst on the three measures was: Interdata 8/32, PDP
II, and IBM S/370. The average performance of the three
architectures in Phases I and III is given in Table IX.

The outcome of Phase II largely corroborates the results
of the other two experiments. The ranking of the -three
machines, from best to worst is: PDP-II, Interdata 8/32,
IBM S/370. This ranking prevails for all three measures, S,
M, and R. It is important to recall (See Table III) that Phase
II included test program A, for which the IBM S/370
performs relatively poorly, and does not include test pro
grams D and I, which are relatively difficult to implement
on the PDP-II, because they have large data structures.
Because of the magnitude of the experimental error in these
test programs and the relatively small number of data points
in Phase II (27), we were not able to detect any test
program/architecture interactions that were statistically sig
nificant.

ACKNOWLEDGMENTS

During the specification of the test programs and develop
ment of the S, M, and R measures, we had helpful
discussions with many individuals related to the CF A
project. Mario Barbacci, Lynn DeNoia, Robert Gordon,
David Parnas, John Shore, Daniel Siewiorek, and William
Smith. We are especially indebted to a group of graduate
students at Carnegie-Mellon University who proved crucial
to the successful completion of the full set of test programs.
Three of these students, Navindra Jain, George Mathew,
and Leland Szewerenko were particularly helpful through
their continued effort on behalf of this project.

REFERENCES

! Fuller, S. F, H. S. Stone, and W. E. Burr: ""Initial Selection and
Screening of the CFA Candidate Computer Architecture," AFlPS
Conference Proceedings, Vol. 46, 1977 National Computer Conference.

2. Lucas, H. C., "Performance Evaluation and Monitoring," ACM Com
puting Surveys, 3,3, 1971, pp. 79-91.

3. Bemwell, N. (editor), Benchmarking: Computer Evaluation and Meas
urement, John Wiley & Sons, New York, 1975.

4. Wichmann, B. A., Algol 60 Compilation and Assessment, Anderson
Press, New York, 1973.

5. Fuller, S. F., W. E. Burr, P. Shaman, and D. Lamb: Evaluation of
Computer Architectures via Test Programs. Volume III of Computer
Family Architecture Selection Committee Final Report, Naval Research
Laboratory, Washington, D.C., 1 December 1976.

6. Bell, C. G. and A. Newell, Computer Structures: Readings and Exam
ples, McGraw-Hili, New York, 1971.

7. Computer Review, GML Corporation, Lexington, Mass., 1976.
8. Stone, H. S. (editor), Introduction to Computer Architecture, Science

Research Associates, Chicago, 1975.
9. Davies, O. L. (editor), Design and Analysis of Industrial Experiments,

2nd ed., Oliver and Boyd, Edinburgh, 1971.
10. Anderson, V. L. and R. A. McLean, Design of Experiments, a Realistic

Approach, Marcel Dekker; Inc., New York, 1974.
11. Connor, W. S. and M. Zelen, Fractional Factorial Experiment Designs

for Factors at Three Levels, National Bureau of Standards, Applied
Mathematics Series 54, 1959.

12. Rao, C. R., Linear Statistical Inference and its Applications, 2nd ed.,
John Wiley & Sons, New York, 1973.

13. Comyn, J. J., W. R. Smith, W. R. Svirsky, and A. H. Coleman, "Two
Life-Cycle Cost Models for Comparing Computer Architectures,"
AFIPS Conference Proceedings, Vol. 46, 1977 National Computer
Conference.

14. Box, G. E. P. and B. R. Cox, "An Analysis of Transformations," The
Journal of the Royal Statistical Society, Series B, Vol. 26, 1964, pp. 211-
252.

APPENDIX A-S, M, AND R MEAsURES FOR EACH
TEST PROGRAM

On the following pages are actual measurements for each of
the test programs written for the CF A program. The unit of
measurement for all data is (8-bit) bytes. The number in
brackets following each measurement is the identifying
number of the programmer who wrote and debugged the
particular test program. Data followed by an "A" are
auxilary data points. Data followed by a "*" were associ
ated with programming assignments not completed in time
to be used by the CF A Committee and the pseudo-values
shown were used in the AN OVA calculation (when the
acwal .4.ata poin~ beca.llle~4lvailable at a .la1ter .d4ue .. ioser"
tion of the real values for these programs had no significant
effect on the results).

INDIVIDUAL S MEASURES

Test Program Computer Architecture
Interdata

IBM S/370 PDP-II 8/32

A. Priority I/O 216[3] 48[4] 26[12]
Kernel 286[12] 32[12] 28[14]

742[14] 32[14] 26[17]
B. FIFO I/O 372[2] 133[2] 144[2]

Kernel 465[13] 124[3] 142[4J
308[17] 246[13J 98[13]

c. I/O Device 192[IJ 132[1] 176[1J
Handler 252[17] 216[17] 241[17]

Evaluation of Computer Architectures 159

INDIVIDUAL S MEASURES-Continued

Test Program Computer Architecture
Interdata

IBM S/370 PDP-II 8/32

D. Large FFf 454[11] 766[11] 550[11]
454[9]* 766[9]* 402[9]

402[17]A
E. Character 104[1] 88[1] 120[1]

Search 92[4] 136[11] 144[3]
154[11] 90[17] 168[11]

F. Bit Test, Set, 144[9] 68[3] 82[4]
Reset 122[12] 78[9] 90[9]

116[17] 86[12] 98[11]A
98[12]

G. Runge-Kutta 202[2] 184[2] 166[12]
Int. 238[17] 172[3] 158[4]

248[17] 232[II]A
190[17]

H. Linked List 144[4] 162[13] 148[3]
Insertion 228[13] 182[14] 198[13]

176[14] 194[17] 164[14J
I. Quicksort 340[6] 940[6] 426[6]

407[5] 1534[5] 524[5]
J. ASCII to Float- 256[4] 164[5] 206[3]

Pt. 441[5J 208[7] 238[5]
241[7] 172[17] 204[7]

K. Boolean Matrix 224[3] 174[4] 156[17]
267[6] 232[6] 130[6]
284[8] 284[8] 180[8]

L. Virtual Memory 292[3] 254[4] 328[17]
Exchange 382[7] 250[7] 310[7]

414[8] 378[8] 334[8]

INDIVIDUAL M MEASURE

Test Program Computer Architecture
Interdata

IBM S/370 PDP-II 8/32

A. PrIority itu L J 2(3] 28L4J L8ll2j
Kernel 354[12J 24[12] 32[14]

522[14] 24[14]
B. FIFO I/O 424[2] 208[2] 192[2]

Kernel 920[13] 188[3] 226[4]
434[17] 296[13] 114[13]

C. I/O Device 328[1] 309[1] 426[1]
Handler 304[17] 290[17] 279[17]

D. Large FFT 10810[11] 14746[11] 10886[11]
10810[9]* 14746[9]* 8560[9]*

8560[17]A
E. Character 854[1] 730[1] 958[1]

Search 940[4] 770[11] 1044[3]
1724[11] 520[17] 1021[11]

F. Bit Test. Set, 378[9] 162[3] 222[4]
Reset 358[12] 178[9] 176[9]

238[17] 152[12] 296[11]A
276[12]

160 National Computer Conference, 1977

INDIVIDUAL M MEASURE-Continued INDIVIDUAL R MEASURES-Continued

Test Program Computer Architecture Test Program Computer Architecture
Interdata Interdata

IBM S/370 PDP-II 8/32 IBM S/370 PDP-II 8/32

G. Runge-Kutta 141074[2] 102662[2] 100062[2] C. I/O Device 1789[1] 1480[1] 1902[1]
Int. 228056[17] 94960[3] 100042[4] Handler 1729[17] 1416[17] 1391[17]

176960[17] 117984[lIlA D. Large FFf 62904[11] 70512[11] 60446[11]
138414[17] 62904[9]* 70512[9]* 50045[9]*

H. Linked List 228[4] 204[13] 224[3] 50045[17]A
Insertion 304[13] 218[14] 260[13] E. Character 5603[1] 4348[1] 5885[1]

264[14] 240[17] 238[14] Search 5549[4] 4326[11] 3139[3]
I. Quicksort 1024[5] 14960[5] 2968[5] 10239[11] 3091[17] 5767[11]

1008[6] 2756[6] 1732[6] F. Bit Test, Set, 1674[9] 832[3] 891[4]
J. ASCII to Float- 241[4] 292[5] 363[3] Reset 1542[12] 917[9] 887[9]

Pt. 437[5] 275[7] 423[5] 1212[17] 801[12] 1167[12]
433[7] 283[17] 334[7] 1281[11]A

K. Boolean Matrix 832[3] 582[4] 384[6] G. Runge-Kutta 845966[2] 724372[2] 696085[2]
909[6] 776[6] 566[8] Int. 1203952[17] 665529[3] 696049[4]
896[8] 932[8] 640[17] 10 12727[17] 777846[II]A

L. Virtual Memory 532[3] 541 [4] 721[7] 874923[17]
Exchange 532[7] 566[7] 1058[8] H. Linked List 950[4] 1025[13] 834[3]

645[8] 945[8] 780[17] Insertion 1741[13] 1087[14] 1049[13]
1137[14] 1210[17] 965[14]

INDIVIDUAL R MEASURES I. Quicksort 7618[5] 74278[5] 13315[5]

Test Program Computer Architecture 7540[6] 15205[6] 9609[6]

Interdata J. ASCII to Float- 1330[4] 1726[5] 2100[3]

IBM S/370 PDP-II 8/32 Pt. 2578[5] 1512[7] 2270[5]
2226[7] 1716[17] 1897[17]

A. Priority I/O 947[3] 108[4] 166[12] K. Boolean Matrix 5576[3] 3180[4] 2216[6]
Kernel 2146[12] 106[12] 166[17] 5661[6] 3905[6] 3154[8]

3052[14] 106[14] 214[14] 5277[8] 4446[8] 3945[17]
B. FIFO 110 2222[2] 1096[2] 698[2] L. Virtual Memory 1931 [3] 2616[4] 2539[7]

Kernel 4583[13] 810[3] 937[4] Exchange 1934[7] 2911[7] 4573[8]
2226[17] 1419[13] 482[13] 2529[8] 4226[8] 2643[17]

An architectural research facility-ISP descriptions,
simulation, data collection*

by MARIO BARBACCI and DANIEL SIEWIOREK
Carnegie Mellon University
Pittsburgh, Pennsylvania

and

ROBERT GORDON and ROSEMARY HOWBRIGG
Naval Undenvater Systems Center
New London, Connecticut

and

SUSAN ZUCKERMAN
Naval Research Laboratory
Washington, DC

ABSTRACT

The objectives of this paper are twofold. In the first place
we discuss some issues related to the formal description of
computer systems and how these issues were handled in a
specific project, the selection of a standard computer archi
tecture for the Army/Navy Computer Family Architecture
(CFA) project. The second purpose is to present a method
ology for automatically gathering architectural data which
can be used for evaluation and comparison purposes. We
will not discuss the rationale behind the selection of specific
test programs and the statisical experiment set up to
ascertain the influence of the programmers, the test pro
grams, and the machine architecture on the results. These
issues and the actual results of the experiment belong in a
companion paper. 9

Formal descriptions of three candidate architectures
(IBM S/370, Interdata 8/32 and DEC PDP-II) were written
in ISP, a computer description language. The ISP descrip
tions of the three architectures were used to simulate the
execution of assembly language test programs. The meas
urements collected during the program simulations were
stored into a data base for post-processing. Automating the
data collection process not only eliminated tedious and
potentially error prone hand calculations, but also provided
the means to gather information about dynamic program
behavior, information that would be almost impossible to
calculate manually.

* The work reported in this paper was sponsored in part by the Naval
Research Laboratory, the National Science Foundation (under grant
GJ32758X), and the Defense Advanced Research Projects Agency, ARPA
(under contract F44620-73-C-0074).

161

INTRODUCTION

There have been many attempts to specify computer archi
tectures in some formal notation. The CF A project in
cluded, to our knowledge, the first attempt to describe the
complete instruction set of several large, commercially
available architectures. The candidate architectures were
the IBM S/370, DEC PDP-ll, and the Interdata 8/32. The
experiment described in this paper involved the preparation
of formal computer descriptions, the execution of machine
language programs under an instrumented simulator, and
the collection of data used to evaluate the architectures.
Three aspects of the experiment are important to observe:
(1) we did not implement specific simulators, tailored for
each architecture; the system used in this project is a
general purpose computer simulator driven by a formal
machine descnption; (2} we executec{alarge number 01 test
programs,* each ranging from less than a dozen instructions
to several hundred instructions; (3) we used real programs
that had been executed on actual physical machines and
then used to initialize the simulators.

The Naval Research Laboratory selected ISJ>6 as the
notation to formally describe the candidate machines. This
decision was based on the availability of expertise and
software support at CMU and in the fact that ISP was
better suited than other candidate notations for describing a
computer architecture, independently of timing and other

* A total of 114 simulation runs were executed. They correspond to a total of
70 different programs (some of which called for several test cases, in other
instances a test case had to be divided into separated sub-cases). The 70
programs were divided as follows: 26 for the PDP-II, 22 for each of the IBM
S/370 and Interdata 8/32.

162 National Computer Conference, 1977

implementation issues. * This however, does not imply that
ISP is free of blemishes. Some of its virtues and defects are
discussed in Reference 3. In this paper we will point out
some characteristics of the notation that prevent a complete
separation between architectural and implementation de
tails.

Volume IV of the final report of the CFA committee7

includes the ISP descriptions of the three candidate archi
tectures and more information about the writing and debug
ging of ISP descriptions. It also discusses the issue of the
correctness of the ISP descriptions and other matters which
could not be covered in a short paper.

The second section of this paper presents a brief intro
duction of ISP through a simplified version of the IBM
S/370 ISP description. The third section discusses the
separation of architecture vs. implementation details. The
fourth section describes the Architectural Research Facil
ity. The fifth section describes the collection of architec
tural data from the simulation of ISP descriptions and the
sixth section concludes the paper by outlining the areas in
which future work could benefit from the use of the
Architecture Research Facility.

A TYPICAL ISP DESCRIPTION

The ISP notation was developed to formalize the infor
mation normally given in basic machine manuals and to
supplement or, if possible, eventually replace the "pro
gramming reference manuals." Hence its essential require
ments were readability, completeness, flexibility, and brev
ity.

The original notation was introduced for descriptive
purposes and, in the context of a book,6 certain ambiguities
were permitted. For more formal uses, the notation had to
be revised and a language named ISPL was developed
between 1973-1975.4 Further developments on the notation
continue at CMU, and a language tentatively named ISPS is
being implemented. For the remainder of this paper we
shall refer exclusively to ISPL, the dialect used in the
description of the CF A architectures.

The example shown in Figure 1 is derived from the IBM
S/370 ISP description. We will only present the main
declarations and the instruction interpretation cycle. **

The control flow for all instructions in Figure I follows a
well defined path. The main body of the ISP description is
defined by the Run procedure which continuously performs
a loop of instruction cycles (IFetch followed by IExec).
After an instruction has been executed, a special section of
code (INT) is executed. INT checks for the presence of

* The CF A selection committee adopted the definition of architecture
proposed by the designers of the IBM S/360: "The term architecture is used
here to describe the attributes of a system as seen by the programmer, i.e.,
the conceptual structure and functional behavior, as distinct from the
organization of the data flow and control, the logical design, and the physical
implementation. " 1

** In order to keep the examples within the space limitations of this paper, we
have taken some minor liberties with the syntax of ISPL. These alterations
should not overly confuse readers familiar with ISPL.

exceptional conditions (errors or external interrupts) and
performs the proper context switching to handle these
conditions.

The instruction fetch section (lFetch) reads the first half
word of the instructions and from the first two bits (lnstr(0)
and Instr(1» it computes the length of the instruction
(PSW (32: 33» and updates the program counter (PSW
(40:63». IFetch then proceeds to read one or two more
half-words, the rest of the instruction.

The instruction execution section (IExec) uses the first
two bits of the instruction (lnstr(0: 1» to select an instruc
tion-type specific section. The RR, RX, RSSI, and SS
sections handle the corresponding instruction types. RX,
RSSI, and SS begin by computing the effective address of
the operand(s). After this step is completed the next 6 bits
of the instruction (Instr(2: 7» are used to select a "routine"
which describes the behavior of the instruction.

If any errors are detected during the instruction cycle
(address boundary errors, illegal operations, storage protec
tions, etc.) the rest of the instruction is aborted and the
proper error code is set in the PSW. This premature
termination allows the interrupt handler (lNT) to take care
of the situation (the usual mechanism is to switch PSWs
thus automatically starting the execution of interrupt spe
cific system routines).

We have tried to keep the example as simple as possible
by avoiding any details beyond those necessary to follow
the example. In particular, the reader might have noticed
that we were making explicit references to fields of the
Instruction Register (lnstr) and the Program Status Word
(PSW). It is clear that when we deal with large descriptions
such explicit references tend to become cumbersome and
error prone.* The following section deals with the issues of
how to improve the readability and writability of ISP
descriptions by using abstractions like pseudo-registers,
procedures, temporary registers, etc.

ABSTRACTIONS AND IMPLEMENTATION
DEPENDENCIES

ISP can be viewed as a programming language for a
specific class of algorithms, i.e., Instruction Set Processors
or Architectures. Ideally, a language to describe architec
tures should avoid the specification of any implementation
details. Any components introduced beyond these are un
necessary for the programmer of the machine and might
even bias the implementor working from the description.
While these items must appear in a description of an
implementation, a problem arises when describing a family
of machines where the abstractions and/or algorithms may
vary across members of the family. The rest of this section
illustrates this problem.

* Even though some portions of the Architectures were left out of the ISP
descriptions, notably the Floating-Point Instructions, the ISP descriptions
used in this project are non-trivial computer programs. Each description
takes between 30 and 40 pages of code. The size of the descriptions (1445
lines for the PDP-II, 2345 lines for the Interdata 8/32, and 2132 lines for the
IBM S/370) retlects the size of the instruction set, nut necessarily the
complexity of the architecture.

An Architecturai Research Faciiity i 63

5373:=
begin declare

Mcmory[8:"PPPPPP]<B:7>;
R[e :15]<8 :31>;
P5W<B:63>;

! Primary Memory
! General Purpone Registers

! Program Status Word
! Auxiliary Registers (Instr, Mar, Mbr, etc.)

! End of Dednrations eralcml

Run:= begin ! Main Executable Prog,'um

end

Abstractions

IPetch:= begin ! Instruction Fetch Section
Mar+-P5W<40:G3> next ! Initial Instrucr-ion Addrmw
Instr<8:15>+-Mcmory[Mar:Mar+l] next ! Read Pirst Half-Word of Instruction
P5W<32:33>+-Instr<8>+Instr<1>+1 next ! Instruction Length
PSW<4B:G3>+-PSW<40:G3>+PSW<32:33>*2 ncd ! Program Counter
. ! Petch the rest of the Instruction

end;
IExec:= begin ! Instruction Execution Section

! Select Instruclion Typej
! RR Instruction Decode Table

decode Instr<0:1> =>
PaR:= br.gin

(decode Instr<2:7> =>)
end;

! Selcct RR Instructiom;

Pa}{:= begin ! R}{ Instruction Decode Table
Mar+-Instr<2B:31> next ! Displacement
(if Instr<16:19> => Mar(-Mar+R[Instr<16:19>]) next ! Base
(if Instr<12:15> => Mar+-Mar+R[Instr<12:15>]) next ! Index
(decode Instr<2:7> =>) ! Select R){ Instructions
end;

RSSI:= bcgin ! RS,SI Instruclion Decode Table

55:=

end;

Mar +- Instr<2B:31> next ! Displacement
(if Instr<16:19> => Mar +- Mar+R[Instr<16:19> J) next ! Base
(decode Instr<2:7> =>) ! Select PaS, 51 Instructions
end;
begin ! SS Instruction Decode Table
AMarl~Instr<2B:31>; AMar2+-Instr<36:47> next ! Displacements
(if Instr<16:19> => AMilrl(-AMarl+R[Instr<16:19>]); ! Base
(if Instr<32:35> => AMar2+-AMar2+R[Instr<32:35>]) next ! Base
(Decoue Tnstr,,2:7.l# :::> .•.••) ! Selecl 55 Instrudions
end;

INT:= begin end ncxt
Run

! Interrupt Handling Section
! Repeat Main Procedure

end

Figure I-A simplified version of the IBM S/370 ISP description

stractions mayor may not have a counterpart in some or all
physical implementations of the ISP description.

An ISP description written using only the architectural
components would not only be unreadable but also unwrita
ble. Some form of abstraction is required. The following
subsections demonstrate this point by introducing pseudo
registers, procedures, and temporary registers. These ab-

Pseudo-Registers

When writing an ISP description for a real machine it
immediately becomes apparent that describing everything

164 National Computer Conference, 1977

in terms of just the components of the architecture would
lead to a cumbersome and unreadable description. The
concept of a pseudo-register to rename a frequently used
field of a register greatly relieves this problem. For exam
ple, consider the PDP-II which has an autoincrement
addressing mode. During the address computation an archi
tecture register, pointed to by a subfield of the current
instruction, must be incremented. Dealing only with com
ponents of the architecture would yield an expression like:
R[M[Pc](2: 0>]~R[M[Pc](2: 0)]+2 where M[Pc] represents
the current instruction in memory, pointed to by the
program counter. Introducing the pseudo-register Ir (in
struction register) for the current instruction would yield:
R[Ir(2:0)]~R[lr(2:0)]+2. We could further define a
pseudo-register, Dr (for destination register), for the fre
quently used three bit subfield Ir(2: 0), as in:
R[Dr]~R[Dr]+2.

The pseudo-registers may suggest a register (e.g., Ir) or
a set of wires (e.g., Dr) in some physical implementation.
In reality they may have no physical correspondence at all.
In any event, pseudo-registers are a useful and necessary
abstraction for readable (and writable) ISP descriptions.
However creating pseudo-registers for infrequently used
fields or using obscure names may defeat the usefulness of
this abstraction leading to reader confusion and excessive
page flipping to find definitions.

Procedures

Just as there are frequently used register fields in a
machine description, there are frequently used sequences of
operations. Forming these operations into procedures
greatly enhances readability.

For example, consider operand fetching. Every machine
has a more or less complicated effective address calculation
that is performed when accessing these operands. A mem-

M[decode Dd =>
(decodu Dm :::>

#37403@Dr;
R[Dr]~R[Dr]+2 next R[Dr]-2;
R[Dr]~R[Dr)-2 next R[Dr);
M(Pc+2] + R(Dr]
);

(decmlf! Urn n:>
M[#37403@DrJ;

ory reference to a destination operand might appear as:
M[Dest] . where Dest is a procedure for calculating the
effective address of the destination operand. Without pro
cedures the same reference for the PDP-II would appear as
shown in Figure 2. The situation would further be aggra
vated if the effective address had to be processed by some
form of memory management which provides for address
translation and rights checking. These operations would
have to be performed in the description on top of the
effective address calculation. It should be noted that many
minicomputers and all larger computers have some form of
memory management.

Temporaries

Occasionally readability is improved by introducing a
temporary register in cases where the operands before and
after the operation are required or a complex result is used
repeatedly. Figure 3 shows a portion of the memory man
agement procedures for the PDP-II.

The Read procedure shows the translation of a virtual
address into a physical address. A temporary Memory
Address Register (Mar) initially contains the virtual address
(the result of the effective address calculation) which is
then translated into a physical address in the line that reads:

Mar~(PAR[Templ< 11: 0) + Mar(12: 6») @ Mar(5: 0) next

The PAR (Page Address Register) and PDR (Page Data
Register) arrays contain the necessary address translation
information. A bounds check is performed before the actual
memory fetch from physical memory. Without the tempo
rary variable Mar the Read procedure would be substan
tially complicated by having to replace every appearance of
the temporary by the complex expression given above. Of
course, the temporary variable mayor may not have a
counterpart in some implementation.

! Direct Addrmminy
! Register Mode

! Autoincrement Mode
! AutodecJ'mnent Mode

! Index mode

R[Dr]~R[Dr]+2 next M(R[Dr]-2];
R[Dr]~n[Dr]-2 next M[R[Dr]];
M[M[Pc+2] + R[DrJ]

! Deferred Mode
! Register mode

! Autoincrement Mode
! Autodecrmncnt mode

! Index mode
)

)

Figure 2-Inline effective address calculation

An Architectural Research Facility 165

Realb=benin
Temp ~ Mar<15:13> next
Mar ~ (PAJ\[Temn]<11:0> + Mar<12:6» @ M£lr<5:B> next ! Compute Physical Address
(if not PDR[Temp]<2:1> => Abort) next
(if (Mar<12:6> gtr PDR[Temp]<14:8» and not PDR[Temp]<3> => Abort) next
{if (Mar<12:6> Iss PDR[Temp]<14:8» and PDR[Temp]<3> => Abort) next
. ! Read from Physical Memory

end;

Figure 3--A portion of the PDP-II memory management

Implementation dependencies

There are mUltiple examples of detaiis that must be
specified in an implementation description but do not
belong in an architecture description. Typically, these are
features that exhibit model dependencies. For instance, in
the specification of the interrupt handling facility of a
computer system, it could be the case that because of cost/
performance requirements, different models must respond
to simultaneous interrupts in different orders. An ISP
description must by its very nature describe a specific order
of interrupt trapping, thus losing a degree of freedom that
one might wish to provide the machine implementors.

Figure 4 shows how the specific order in which simulta
neous interrupts are fielded is build into an ISP description.
Individual bits of INTVEC indicate the presence of a
pending interrupt of a given priority. When only one
interrupt is pending the proper context switching will take
place. When more than one is pending there will be mUltiple
context swaps and lower priority interrupts will be delayed

Int:= begin
Tempf-P5W <32:33> next
(if INTVEC AND PSW<13> =>

'rmxt
(if INTVEC<l> =>

) next
(if INTVEC<2> =>

) next
(if INTVEC<3> AND PSW<8:7> =>

) next
(if INTVEC<4> AND IOMSK =>

) next

to be processed later (the "new PSW" associated with a
low priority interrupt will be stored into the "old PSW"
position associated with a higher level interrupt).

It is not clear whether having to be specific about
ordering of interrupts or similar events is a bad practice.
Although one can claim that machine designers will be
constrained in their choice of designs, the fact stilI remains
that somebody must write the interrupt handling software,
and for these programmers the order of interrupt fielding is
important. This type of dilemma occurs quite often when
dealing with ISP descriptions. The solution might be simply
to write model-dependent ISP procedures whenever this
conflict arises and then indicate in the ISP description
which version of a given procedure must be implemented
for a given model.

Another problem with implementation dependencies is
that the definition of the input/output behavior of an in
struction might actually imply a particular implementation.
For example, consider the PDP-II Subtract instruction.
The carry condition code (C) is set according to the borrow
during the subtraction. The PDP-II Processor Handbook

! Save Instruction Length
! Handle Priority (1) Interrupts

! Handle Priority (2) Interrrupts

! Handle Priority (3) Interrupts

! Handle Priority (4) Interrupts

PSW<16:31>~a; PSW<32:33>f-Temp ! Reset Instruction Length & Interrupt Code
end;

Figure 4--Explicit interrupt processing order in the IBM S/370

166 National Computer Conference, 1977

5 - 3 = 2 (no borrow) 3 - 5 = -2 (borrow)

0101 0011 Subtracting
0011 0101

o 0010 1 1110
borrow borrow

0101 0011 Adding Two's Complement
1101 1011

1 0010 o 1110
carry carry

Figure 5-Implementation dependant condition code setting

describes the setting of the C bit as:

. 'C condition code is cleared if there was a carry from the
most significant bit of the result, set otherwise."

This definition implicitly assumes that subtraction is
implemented by forming the two's complement and adding.
Figure 5 illustrates the situation. Consider four-bit numbers
and the two methods to perform subtractions, by using a
subtractor, and by using an adder after forming the two's
complement.

ISP

In the adder case, the carry is the complement of the
borrow which is exactly the definition given by the PDP-II
Processor Handbook. The ISP description of the setting of
C becomes:

CE-(dest-source)(16);
CE-NOT (dest+ NOT(source)+ 1)(16);

! Subtraction
! Addition

As in the previous example (the order of interrupt han
dling), a complete algorithm had to be given. In this case,
the subtractor/borrow algorithm is preferred since it pre
supposes only the properties of the two's complement
number system. However, if an alternate implementation
(such as forming the two's complement and adding) is
utilized, then the implementor should be aware of possible
changes in other algorithms in the ISP description.

THE ARCHITECTURE RESEARCH FACILITY

The facility used for the data collection phase of the CF A
project is depicted in Figure 6. Reference 4 explains in full
detail the features of the ISP compiler and simulator. Some
familiarity with their capabilities is needed in order to

Simulator ~

~ :'criPtion _. L-_-1IS,...P_---'I--RT-M-C-O-d-e-t:>/'-r--_ -_ ~~ -_ -_ -_ -_ ~ ,.... Compiler _" LINK-lO -
I ... -

Listing and Diagnostics
PDP-lO

SHR File

~
Interactive
Command

.A Language
Frequency
Counts

...
Post

Rand M
Measures

Processor I------.o!;

~
Test Assembly
Program Listing Reformat/

I-------,-t"t;:>t Assembler /------1!:':;>I Relocate

Command
File

...

Target
Machine
Simulator

Trace Files

Simulation State Files

Target
Machine
Object
Program

Test Data
...

Results l
Sim~lation

L.-------~_t,;:I Target
Machine

/-------j;:-I;> Comparison

Execution
L--___ --', Resul ts

Figure 6---Test program execution under ARF

__ to-. -

understand the data collection phase described later. The
following paragraphs attempt to satisfy this need.

The ISP compiler produces code for a hypothetical
machine, dubbed the Register Transfer Machine (RTM).
The "object code" produced by the compiler can be linked
together with a program which is capable of interpreting
RTM instructions. This separation between the ISP de
scription, the RTM code, and the RTM interpreter allows
the simulation of arbitrary, user defined architectures. The
result of linking the RTM code with the RTM interpreter is
a running program, a simulator.

The simulator accepts commands from a teletype or user
designated command file. The state of the simulator can be
dumped to a command file which can be read at a future
date when the simulation is continued. Command files can
also be used to load programs and data into the simulated
target machine memory and registers.

Debugging of test programs and ISP descriptions

Most of the test programs were debugged and run on the
real machines. Other programs were executed exclusively
under the simulator. The latter included those programs
using privileged instructions that were not directly available
to non-system programmers (e.g., interrupt and I/O han
dlers). Results from the actual runs, whenever available,
were used to check the simulated execution.

Only minor modifications and corrections to the ISP
descriptions were performed during the data collection
phase. The largest unforeseen problem with the test pro
grams was presented by the memory management feature
of the PDP-II which was based on the PDP-I 1140. The test
programs which made use of this feature had been tested on
a PDP-I 1145 which uses different Unibus addresses for the
memory management registers. This difference required
minor modifications in the test programs. Most other prob
lems were of a simpler nature and required only a few
minutes to correct. It should be noted here that the simula
tor facility was also used to debug some programs for the
Inter~at<;t 8f3? befor~ th~y wer(! ~xecute.d on ~ht: re~1
machme. ThIS was dictated by the fact that no 8/32 was
available near CMU and a large turn-around time (several
days) would have complicated the debugging of the test
programs.

Preparation of simulation tests

The ISP simulator provides commands for the loading
and initialization of the simulated machine memory and
internal registers. The single most important feature of the
command language which permitted the fast execution and
collection of statistics was the ability to read command files
containing the test programs to be executed. The command
language cannot handle programs in symbolic form (assem
bly language); it requires the preassembly of the programs
into absolute, numeric, code. To get around this problem, a
set of utilities was developed at CMU which permitted the

An Architectural Research Facility 167

transformation of assembly listings prepared by the real
machine's assembler into simulation command files. This
operation was performed off-line as shown in Figure 6.

Figures 7 and 8 show the transcript of a typical session
using the ISP simulator. The session consists of running
one of the test programs (Bit Test, Set, and Reset) on the
PDP-II. The input for a simulation session consists of
several files prepared off-line. These files include: the test
program (derived from the assembly listing), a driver (simu
lation commands used to initialize the parameters for the
test program), and finally, a command file with a list of
those ISP procedures which must be "opaqued" (these are
the procedures during which the activity counters are
disabled). A typical command file, derived from an assem
bler listing is shown in Figure 9. This was the test program
used in the sample simulator session shown in Figures 7
and 8.

Instrumentation

The ISP simulator permits the instrumentation of an ISP
description by associating activity counters with each of the
machine registers and memories. These counters allow the
collection of statistics indicating the number of times each
component of the machine is read from or written into. A
separate counter is kept for each label in the ISP descrip
tion. Labels are included in the ISP descriptions to identify
machine instructions, addressing modes, loops (used to
describe vector-like instructions like move character on the
S/370), as well as other ISP procedures. During the execu
tion of the test programs, a data base was created by
collecting dumps of the counters after each test case was
completed. The files containing the counters were then
processed by other, off-line, programs in order to arrive at
the M and R measures described in a later sction.

Artificial labels in the ISP descriptions

Certain modificatiaus not LWrmali yileeded were ~ k)

the ISP descriptions to aid in the collection of data during
the running of the test programs for the CF A project.
Several labels and' 'do-nothing" procedures were added to
identify certain phases in the instruction interpretation
algorithm and to measure selected events (e.g., different
addressing modes). The labels added to count these events
are clearly not part of the architecture or even the imple
mentation.

Figure 10 shows an example extracted from the S/370 ISP
Description. It shows the use of artificial labels to identify
different addressing modes for the RX instruction set.
According to the definition of the S/360 and S/370 architec
tures, the RX instructions can specify both a base and an
index register to be added together with the displacement
field of the instruction to compute the address of the
memory operand. The architecture further specifies that
R[0] , when specified as either a base or index register
does not take place in the effective address calculation, i.e.,

168 National Computer Conference, 1977

ru pdpllli
ISP SINULnTOR V3 - HRL RRF STRGE 2
Friday 10 Sep 76 17:13:59 PDPI1M.ISP[L410MB25J
SER HH. 1201 ION COI1PLE1EO
SPReE nLLOCflTEO
TYPE:: HELP FOR HELP
TYPE:: <ESC> TO IHTERRUPT SIHULRTIOH LOOPS

>read fadl.sill
»RonIX OCTOL
»DECHO

Read in the bench~art file

The bonchnnrt file disables the listing
on tho usor terMinal.

»190 LINES RERn
>read fa.dr3 Read in the driver file
»! HERE COIIES THE IJR1VER (CALLS)
»SETVRL
»SETVRL
»SETVRI.
»SETVRL
»SETVRL
»SF.TVRL
»SETVRL

HU (;10001 .. 013746
Hil {:iOO;?) ,.0137(.6
HU (300r.1 .. 012746
1111 ClOOGJ 1·1312746
HU (:10101 ,.012746
tlU [:i012} ... 00r.737
HII [301(IJ foOOOOOO

005202
005201.
oor.ooo
8135200
005206
901000

MOV @#S202,-(SP)
MOV @#S20 f., - (SP)
MOV 64000,-(SP)
MOV #S200,-(SP)
MOV #S206,-(SP)
JSR PC,@#1900
HLT

» ! Tho abovo DoqU(lnc:o of PDp··l1 instruct ions PUShOD tho pnra.stars
! onto the stact, call tbo benchnnrt as a routino, and halt.

»SETVRL 1111 (?FlOOI,·123457 971234 167906 145670! BIT STRING
»SF.TVAL 1111 (2[;001,·0 RETURH CODE
»SETVRL 1111 (2501] ... 2 F
»SETVRL till (2502J ... 25 N
»SETVRL 1111 12ti03J ,.e WORI~ RRER
»SETVAL PC,·GOOO
»SETVRL SP.·2BO

! The abovo r;oqllonco in i t ia I i2es the dAta (pArAneters), the stOlet::
! pointer and tho progrnn count~r (Hhich nOH points to the eoda
! sequenco that PUShDD the pm'tmoters Ami ca'i the rout ine.

F
N
RI
RC
W
BTSR

»SETVRL A~B ! This is an ISP internal variable - indicates whother the
! machine is running, hAlted, or Halting.

»SETCTR RLL B,S ! Reset activity counters
»REnn OPOll.SIN[L419MB2SJ ! PDPI1 Opaquod Procoduros
»>DECHO
»>53 LINES REOD
»REnn UUOl1.SINlL419MB2S1
>>>DECHO
»>15 LINES REOD
»TRACE lR,PC,R,HMI0

»BREm: JSR, RTS
»26 LINES HERn

UNIHPLEIIEHIEO OPERRlIOH BRERJ~S

Trace a few selected rogisters
IR is the Instruction Register,
PC is the PrograM Counter (RI7),
R[B:7) are the genDral registers,
MWIO is the 1/0 page (R is ~apped onto "~IO)
Brea~ on selected instructionB

Figure 7-Initialization of a simulation run

R[0] should be specified whenever one of these two com
ponents (base or index) is missing. In the above example
four dummy in-line procedures where introduced to count
the number of times each possible combination of basel
index modes occurs. Thus RX0000 is "executed" whenever
R[0] is specified as boih ihe base and ihe index register.
RX00X2 is "executed" whenever R[0] is used as the

base register and any of R[I: 15] is used as the Index
register. RXBI00 is "executed" whenever R[0] is specified
as the index register and any of R[1: 15] is specified as
the base register. Finally, RXB lX2 is "executed" whenever
R[01 is not specified as either the base or index registers.
NOP is a dummy procedure which does not have any side
effects.

ARCHITECTURE PARAMETERS

As a means of comparing architectures, three measures
were defined for the CF A project: 9

Measure of Space

S The number of bytes used to represent a test pro
gram.

>start inter'
@ INTER + 15 IR 13746
@ INTER + 28 PC = 6002
@ SINCO + 22 R [7)= 6004
@ DO[CRD + 21 R [6)= 176
@ INTER + 15 IR = 13746

Pushing

@ INTER + 15 IR 12746
a INTER + 28 PC = 6022
@ SINCO + 22 R [7}= 6024
@ 'OO[Cnn + 21 R [6] = 166
e INTER + 15 IR 4737
@ INTER + 28 PC = 6026
BRERI; RFTEH JSA
*setctr al I 9,0

*cont
@ DINeRO + 22 R (7)= 6830
@ JSR + 14 R [7)= 6838
@ JSR + 15 PC HlOO
@ INTER + 15 IR 18046
@ INTER + 28 PC 1902

An Architectural Research Facility 169

Measures of Execution Time

M

R

The number of bytes transferred between primary
memory and the processor during the execution of
the ,test programs.
The number of bytes transferred among internal
registers of the processor during execution of the test
program.

Here He start the si~ulation

Paralleters

The simulation stops on A brontpoint
The raAI bonchnart RtArts here, He Must
reset all count~rs (they Hero Modified
during tho bonchRnrt calling sequonco)
we continuo the si~ulation

! Prograg E~acution Traco

@ INTER + 28
'!'!' 9'twt:ff ... '22
@ l-IRXTE + 131
@ INTER + 15
@ INTER + 28
BREm: AFTER RTS

*outctr fadl.r~3
*cont

PC
~

Ml-IIO
IR
PC

@ RTS + 2 PC
@ RTS + 7 R
@ INTER + 15 IR
@ INTER + 28 PC
SIMULllnOH COIIPLE7EU

1972
e,': tell'

[3740001 = 0
287

= 1874

= 1874
[71= 6939

8
= 6932

the sil1lulation stops At the end of the
bench"Ar~: Hhe roturn instruction)

we du~p all the counters into a file
we continuo tho Bi~ulation

we e~8cuted tho HRlt Instruction
RUH TIME(19 usec units)=831678
RTM OPS EXECU1EOn453S
>ex i t
EXIT

! we finish the session

Figure 8-Program execution trace

170 National Computer Conference, 1977

RRnlX OCTRL
OEClia
!CFAF NACHll V903F 5-JUL-76 12:54 PRGE 1
!BTSRI M11

. ProgrAM, ProgranMor Idontification (SuproBBed)

13 01300 ; Offsets of para.sters frOIl stac~ p
14 91400
15 OOOOOlj 81590 SJlVh4 we need to save 2
16 916BO ;
17 900016 91790 F=12+SRVE function codo
18 900014 918BO ~ir.10+SRVE relative bit nUMbs
19 900012 91900 nl=6+SnVE address of bit str
20 900019 92000 RCr.4+SRVE address of return
21 000006 02100 ~ORt~=2+SRVE addross of wort ar
22 02290 ;
23 oaoooo' 02300 BTSR:
24 800000' 0100(,S 024BB MOV R9,-(SP)
25 000002' 010146 92S0a MOV Rl,-(SP)
26 000001;' 005076 000010 92600 CLR @RC(SP) ze
27 00a010' 016600 000014 02799 MOV N(SP),R9 ge

, Relocatable Objac1 Code Lis tiny

41 900066' 012601 94100 QUIT: MOV (SP)+,Rl ex
42 000070' 012600 94200 MOV (SP)+,R9
43 000072' 000207 04300 RTS PC
44 000074' 150119 94400 SET: BISB R1,@R9 Fe
45 000076' 000773 94500 BR QUIT
46 000001 94600 .END

Cross-Ru foroncu Lis t ing

Hero bogin tho sinulation cORMands
derived frop the abovo listing
relocation addrOOB a Hord 400 (octal) byte 1800

SETVRL HII ((,001 .·0100fJI)
SETVRL HI-J {4011 .. 0lEH46
SETVAL HI-J(402) .. e050?G 000010
SETVAL HI-J(40tl) .. e16600 OOOOlft

, Target Machino ProgrAR Loading

SETVnL 1111 (4331 .. 012601
SETVnL HU [43f,) .. 012600
SETVAL I1U(435) .. eOO20?
SETVAL HU (4361 .. 150119
SETVAL H~(437) ... ee0773

ECHO
Figure 9-A command file derived from an assembly listing

The S measure is a static parameter which can be
computed independently of the ISP description. For the
purposes of this paper we will restrict the discussion to the
other two measures. The actuai computation of the M and
R measures was done through a semiautomatic process.

The raw data collected from the simulator was used'to
count frequencies of instructions and addressing modes.
These counters were multiplied by certain hand calculated
factors in order to arrive at the M and R measures for each
test program. Ideally, the ISP simulator should perform the

R}{:= begin
Mar(-Inslr<2B:31> next

An Architectural Research Facility I 71

(decode {In!ifr<lS:19> NEa B)@{Instr<12:15> NEG. B)=>
\Ba RX8BOB:= (NOP);
\B1 RX8(J){2:= (NOP);
\18 RXEIBB:= (NOP);
\11 R}{BIX2:= (NOP)

) next

! No Base, No Index
! No Base, Indexing

! Base, No Index
! Bsse, Indexing

(if In5tr<16:19> => Mar(-Mar+R[lnstr<16:19>]) next
(if Instr<12:15> => Mar(-Mar+R[Instr<12:15>]) next
(decode lostr<2:7> =>

! Select R){ Instructions

end;
Figure 10-Use of artificiaIlabels

entire operation and this would be a better approach, less
subject to human errors. We had to use the hand computed
factors due to our inability to determine the influence of the
ISP writing style on the architecture parameters as defined
above. The actual results of the experiments (the M and R
measures for each test program) are presented in Reference
9.

The exact methodology for writing ISP descriptions so
that the M and R measures can be calculated automatically
has yet to be developed. It is clear, however, that a careful
control of the counting mechanism is paramount to the
collection of meaningful data. During the data collection
phase we made use of the following techniques towards this
goal.

Opaqued procedures

A simulator command allows the selective masking of in
line and off-line procedures. Masking or opaquing a proce
dure inhibits all activity counts inside the body of the
'procedure."'" . ."

Certain operations, such as incrementing the program
counter after an instruction, or the setting of the condition
codes as a result of an instruction, do not affect the R
measure and should not be counted. This is typical of those
actions which, in a reasonable implementation, would be
done using ad hoc circuitry, separate from the main opera
tional units of the machine. These operations could be
implemented by combinational logic (e.g., setting condition
codes from ALU lines), special registers (e.g., using a
counter instead of a simple register for the program
counter), or even complex sequential networks (e.g., the
virtual address translation can be performed using its own
arithmetic units and data paths).

Operations like those described above can be easily
marked by adding artificial labels to the ISP description and
then disabling the counters while the selected operation is
being performed.

Pseudo-Register chains

Every component declared in an ISP description has
activity counters associated with it. When a register is
defined in terms of another register, such as: Pc (1 5 : 0) :
=R[7](15: 0); a redefinition chain is established. Ac
cesses higher up in the chain increment all counters lower
in the chain but not vice versa. In the above example an
access of the Pc causes the register file counter for R to be
incremented but accessing R[7] does not increment the
program counter (Pc). By establishing appropriate redefini
tion chains, distinction between access types can be main
tained. One variation of this technique is the use of
"shadow" registers. For example two instruction registers
can be defined: Ir(15:0):=lrl(15:0); where Irl is the
shadow register. The loading of the Ir from memory is to be
counted in the R measure, however, the combinational
logic decoding of the instruction and effective addressing
mode is not to be counted. The former is performed on Jr,
the latter on Ir 1 thus distinguishing the two different types
of a.cces.¥!s.

Memory access procedures

Modem machines provide the user with an address space
defined in terms of smal1 units of information, typically 8-
bit bytes. For convenience, however, the architectures also
define larger access units in multiples of bytes. Thus, the
IBM S/370 provides bytes, half-words, full-words, and
double-words. Since the physical memory is the same, the
ISP description must declare the different address spaces
by building a redefinition chain in which the different
address spaces are declared as "pseudo-memories" so that
the M measure component of each address space is prop
erly accounted for.

Machines like the PDP-I) add some more complexity to
the issue of having multiple address spaces. The PDP-II
architecture defines the concept of an 110 page as a

172 National Computer Conference, 1977

reserved portion of the address space, not necessarily
implemented as a physical memory. Addresses in the upper
4K bytes of the PDP-II are used to address 1/0 devices,
machine registers, etc. Addresses in the 110 page must be
handled differently when computing the M measure. If one
attempts to include in-line address checks in the ISP
description, the description quickly becomes bulky and
unreadable. A satisfactory solution is simply to define
memory access procedures (Read and Write), which can
then be properly instrumented, thus enabling the automatic
computation of the M measure.

Temporary Registers

The automatic computation of the R measure is more
difficult. In an ISP description there are three types of
registers to consider: architectural, standard implementa
tion, and temporaries. Architectural registers and certain
standard implementation registers (instruction register,
memory address register, and memory buffer register) can
be handled using the same techniques used to automate the
M measure (declaration chains and encapsulating proce
dures). Handling temporary registers presents a more diffi
cult problem. The number, type, and manipulation of
temporary registers are a matter of writing style.

Architecture parameters which are based solely on archi
tecture registers while ignoring temporary registers intro
duced for clarity might overlook hidden computations per
formed on these registers. Unlike the memory, architectural
registers, and standard implementation registers, a tightly
defined writing style cannot be developed for temporary
registers. One solution would be to use well-known expres
sion optimization techniques 10 on the ISP description to
uniformly minimize the temporary register activity. Hope
fully the optimization would lead to similar results for
equivalent algorithms.

Architectural parameters should be independent of the
experience, style, and objectives of the ISP writer. This will
then guarantee that the ISP descriptions which make use of
abstractions (pseudo-registers, procedures, and temporary
registers, etc.) to enhance clarity and readability will not be
penalized. By the same token, no advantage should be
derived from the use of "clever" programming tricks which
might attempt to bias the measurements.

ADVANTAGES OF AN ARCHITECTURAL
RESEARCH FACILITY

Although for the purposes of this paper we have pre
sented the uses of the ISPL compiler and simulator in the
context of a specific project, we should point out the wider
range of applications in which a system like ARF* can be of
great value.

* Soon after the data collection phase was completed, a new, more powerful
version of ARF was undergoing final testing. This new system, designated
ARF III,s Was developed by the Naval Research Laboratory. ARF III and its
successors will continue to evolve and will be used to model and verify the
chosen CFA

A simulator as a training tool

In this paper we described how machine language test
programs can be executed under the simulator. The implied
assumption during the data collection phase was that we
were dealing with correct, finished programs. With no extra
effort the ISP simulator can be a powerful training device
for novice programmers. Speed of simulation is not an issue
in this application. Programmers learning a new machine
language tend to spend long hours single-stepping via the
machine console. An interactive simulator can easily satisfy
the needs of these users, while providing much better
diagnostic and debugging facilities than a computer console
(did you ever see a "help" button on a machine?). ISP
descriptions exist for the following machines: DEC PDP-8,
PDP-IO, PDP-ll, IBM S/370, Interdata 8/32, and Intel 8080.

Architecture evaluation

The S, M, and R measures are by no means the only set
of architecture parameters one might wish to evaluate.
Nothing in the ISP simulator depends upon this particular
set of parameters. The instrumentation in the simulator
allows counting every event we care to define by simply
labelling the event. There is no need to create new proce
dures which might impact the organization or readability of
the description; even a single register transfer operation can
be labelled and counted. More details on architecture
evaluation can be found in Reference 5.

Experimentation

Once the initial effort of writing an ISP description is
accomplished, only moderate effort is required to perturb it
to reflect proposed or actual changes in the architecture.
Thus the effect of a modification in an architecture can be
measured and studied before any funds are committed to the
development of a new machine. By a careful design of the
ISP description it is possible to pattern a description along
the lines of the organization of the physical machine. Thus
one would be able to measure and evaluate different models
of the architecture. For instance, functional units and data
paths can be represented by separate procedures in the ISP
description. An ISP description could then be parameter
ized to invoke these procedures in different order, concur
rently or sequentially, with or without intermediate steps,
etc. as the different models differ in their implementation.
An example might be determining the effect of a cache
memory on the apparent instruction execution speed in high
performance implementations.

Machine relative software

As the number of different architectures coming into
existence increases every year, it is becoming more and
more expensive to develop the necessary software support
base that allows the effective use of these machines. The
availability of user micro-programmable machines enlarges
the space of possible architectures to the point that auto
matic software generation systems will become a necessity.
Tools that operate relative to a computer description could
represent a significant breakthrough in the manner that
computer systems (hardware/software) are designed and
evaluated. The Advanced Research Projects Agency
(ARPA) of the Department of Defense is currently sponsor
ing this area of research at CMU and elsewhere. 2

In the future one can foresee hardware and software
automation systems that take as input computer descrip
tions, and language and problem specifications; and from
these, generate operating systems, compilers, and other
support and application software automatically. Other areas
of current research include automatic diagnostic generation,
microcode generation, machine verification, etc.

Formal computer descriptions will play an increasing and
important role in the evaluation, procurement, verification,
and programming of computers. The ARF facility is a step
in this direction.

An Architectural Research Facility 173

REFERENCES

l. Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, "Architecture of the
IBM SystemJ360," IBM Journal of Research and Development, Vol. 8,
No.2, April 1964, pp. 87-1Ol.

2. Barbacci, M. R. and D. P. Siewiorek, Some Aspects of the Symbolic
Manipulation of Computer Descriptions, Department of Computer Sci
ence, Carnegie-Mellon University, July 1974.

3. Barbacci, M. R., "A Comparison of Register Transfer Languages for
Describing Computers and Digital Systems," IEEE Transactions on
Computers, Vol. C-24, No.2, February 1975, pp. 137-149.

4. Barbacci, M. R., The Symbolic Manipulation of Computer Descriptions:
ISPL Compiler and Simulator, Technical Report, Department of Com
puter Science, Carnegie-Mellon University, 1976.

5. Barbacci, M. R., S. H. Fuller, and D. P. Siewiorek, A Methodology for
Comparative Computer Architecture, Department of Computer Science,
Carnegie-Mellon University, 1977.

6. Bell, C. G. and A. Neweli, Computer Structures: Readings and Exam
ples, McGraw-Hill Book Company, New York, 1971.

7. Computer Family Architecture Selection Committee Final Report, Naval
Research Laboratory, Washington, D.C., December 1976. A collection
of volumes describing each aspect of the CF A project.

8. Elovitz, H. S. and R. A. Parker, The Architecture Research Facility
(ARF) User's Guide, Technical Memorandum 5403-472, Naval Research
Laboratory, Washington, D.C., October 1976.

9. Fuller, S. H., W. BUIT, P. Shaman and D. Lamb, "Evaluation of
Computer Architectures Via Test Programs," AFIPS Conference Pro
ceedings, Vol. 46, 1977. National Computer Conference.

10. Wulf, W. et aI., The Design of an Optimizing Compiler, American
Elsevier, Programming Language Series, New York, 1975.

Evaluation of the software bases of the
candidate architectures for the military computer family

by JAMES WAGNER and EDWARD LIEBLEIN
U. S. Army Electronics Command
Fort Monmouth, New Jersey

and

JORGE RODRIGUEZ
Softech Inc.
Waltham, Massachusetts

and

HAROLD STONE
University of Massachusetts
Amherst, Massachusetts

ABSTRACT

One of the Army-Navy Committees' primary motivations
for selecting a proven computer architecture for the basis of
a family of software compatible military computers is the
potential utility of the existing software base. Therefore,
the evaluation of the software bases of the candidate
architectures constituted one very important factor in the
final selection. This paper describes that software base
evaluation process and results thereof.

INTRODUCTION

One of the primary reasons for adopting the architecture of
an existing successful computer family as the architecture
fur'u future TVrITiiary"Compu'te'i"t'amily '(NfC'F)" isihe poten
tial utility of the existing software base. This concept was
supported almost unanimously by members of the Com
puter Family Architecture (CF A) Selection Committee and
it was further agreed that an assessment of the software
bases of the three finalists should be made and should
constitute one important factor in the final selection of an
architecture for the MCF.

It was apparent that the amount of available software
would be a major factor in the determination of overall
comparative life cycle costs. Consequently, in lieu of an
isolated ranking of the software bases of the finalist CF As,
it was agreed that the assessment should constitute an input
into the life cycle cost models described by Burr et al. 1

Therefore, it was necessary (I) to define what was meant
by the term "software base," (2) to determine what could
and should be measured, and (3) to develop and utilize a
methodology for timely assessment of the value of the three

175

software bases that facilitated a relative quantitative rank
ing suitable for input into the life cycle cost model.

This paper describes the evaluation approach taken as
well as the results of the quantitative comparison of the
software bases of the three architecture finalists, IBM 360,
DEC PDP-II and Interdata 8/32.

TECHNICAL APPROACH

In the commercial world there are many applications
software packages that are transportable across applica
tions (e.g., payroll systems and inventory systems). The
military world has not been able to achieve such transporta
bility, primarily due to the disparity among applications and
the complex, time-critical, and sensor oriented functions
rm-oh;'ed.

After an attempt to find commonality among existing
military applications software failed, it was agreed to ex
clude applications software from the domain of the software
base. Only support software, which includes software used
for producing, modifying, analyzing, and testing a com
puter-based system, would be evaluated. It will be seen that
the evaluation methodology involves subjective quantifica
tion of applicability/importance of items in the software
base. To aid this process, the software base was structured
with respect to the development environment, software
development activities, and software tool interdependen
cies.

The military software development environment

In the past, far too many small to medium scale military
computer systems were developed using the computer that

176 National Computer Conference, 1977

was to go into the final operational system as its own
software development environment. The consequences of
this approach were often disastrous since these develop
ment environments were virtually devoid of the very broad
spectrum of powerful support software tools that now exist
on larger computers.

Many of the activities of software development are
independent of the target computer architecture (e.g., plan
ning, requirements determination, system design, program
library management, documentation, and configuration
management). Many of these activities are now being aided
by software tools. The possibility of improving the develop
ment process through the use of such tools has been
recognized and there is a trend toward even greater use of
computer to support these activities. 2

-
4 The culmination of

this trend seems likely to be a totally integrated software
development system-a relatively large, integrated data
base system containing a complete description of the devel
opment project including requirement specifications, com
ponent representations (design, program code, test data,
documentation, etc.), information about the project activi
ties, and relations among the requirements, component
representations, and activities. Software tools will be asso
ciated with the data base to perform generation, analysis,
transformation, and reporting of the project descriptive
data. A key design goal for the support system is to
automate maintenance of the completeness, currency, and
integrity of the project descriptive data. This will have a
significant positive effect on the visibility of project prog
ress, product reliability, and maintenance costs. It is clear,
however, that such support tools are expensive to develop
and require computer systems with extensive memory and
1/0 capabilities for effective operation. These requirements
make it highly unlikely that such tools will ever be devel
oped for operation on the smaller military tactical com
puters or their commercial counterparts. The potential
benefits of using such an integrated support software sys
tem and the high cost of developing it constitute strong
arguments for centralizing software development support
on one type of host computer even though the software will
be developed for operation on one of a variety of militar
ized configurations, not necessarily even of the same inher
ent architecture.

Other activities such as testing, are dependent on the
target computer architecture. One of the objectives of the
testing of individual program components and groups of
related programs is to provide a basis for confidence that
the system and final software tests can be completed
without extensive changes. Therefore, it is beneficial for
the environment of program testing to closely resemble the
operational environment also, although this requirement is
not as demanding as the system test requirement. If the
host computer architecture differs from that of the target
computer, then the amount of final software testing that is
possible on the host computer will be limited to that which
can be done through simulation (or emulation) of the target
computer.

Additionai target dependent activities are cumpilation,
assembly, and link-editing. Their dependencies result pri-

marily from the fact that most existing program translators
have been built to operate on and produce code for the
same computer architecture. (This dependency does not
result from the intrinsic requirements of the translation
process.)

Software development activities

In this section a model of the tactical software develop
ment process will be presented that provides a structure for
the support software tools. This structure is utilized in the
quantitative assessment of the three finalist architectures.

The software development process is partitioned into the
following major activities: (1) Analyze Requirements, (2)
Design Software, (3) Build System Tests, (4) Build and
Unit-Test Software, (5) Integrate and System Test, and (6)
Maintain System. The following paragraphs describe these
acti vi ties:

Analyze Requirements (Activity 1)

"Analyze Requirements" performs a decomposition of
the user needs into the functions of the required system.
Following decomposition and the development of a func
tional model, functions are allocated to hardware, software
firmware, and people. The results are then used to search a
descriptive catalog of existing systems to locate suitable
candidates for reuse or modification. The systems (if any)
resulting from this search and any new functions that must
be developed may be simulated to determine their gross
performance characteristics. This activity is controlled by
the analysts' knowledge of the current state of the art and
the available budget for the proposed new system. If a
decision is taken to proceed with development, a software
functional design specification and a project schedule are
produced which are used to control the "Design Software"
activity.

Design Software (Activity 2)

During this activity, the software functional design speci
fication is used to produce the implementation specifica
tion. A library of "proven algorithms" is available to assist
in design. The "Design Software" activity may respond to
the "Analyze Requirements" activity with "can't design"
or "can't meet schedule". The output of this activity is the
implementation specification which is used to control the
software unit build and integration activities (Activities 4
and 5).

Build System Tests (Activity 3)

"Build System Tests" is the activity that results in the
design and construction of system acceptance tests. Note
that it is controlled by the same set of functional specifica
tions that control the "Design Software" activity, and that

Candidate Architectures for the Miiitary Computer Family 177

it is unconstrained by and, therefore, may proceed in
parallel with "Design Software" and "Build and Unit Test
Software." A library of previousl y constructed tests that
are presumably tied to sub-systems is available for reuse as
directed by Activity 1. The output of this activity is the set
of system test scenarios, drivers and monitors that will
control Activity 5.

Build and Unit-Test Software (Activity 4)

During this activity, the implementation specifications
produced by Activity 2 are used to produce unit-tested
software modules. A library of previously constructed
modules is available for reuse (with or without modifica
tion).

Integrate and System Test (Activity 5)

During this activity, the modules produced by Activity 4
and the interface and subsystem specifications produced by
Activity 3 are used to bind the system components into
their final form. The system is then exercised to validate
the system using the test scenarios and monitors provided
by Activity 3. The final output of this activity is the
completed system released to the maintenance, distribution
and configuration control activity (Activity 6). Integration
and/or test failures are reflected back to the design, test,
production or software production activities.

Maintain System (Activity 6)

The final development activity, "Maintain System" is
primarily a clearing house and control center for the recep
tion, evaluation, and control of engineering change re
quests. These requests are routed to the appropriate activ
ity for implementation, design, or analysis. The
maintenance function distributes configuration controlled
systems to the users, and releases the results of the
development effort into the available technology data base.

Structuring of the software base

The software base will be structured, in part, by parti
tioning the software tool types according to the specific
development activities they support. However, this ap
proach may ignore that part of the software base that
supports the operation of such tools and does not clearly
indicate those tools that support more than one activity. To
make such software visible, the software base will be
structured further through a layered approach that wiII
provide insight into the relationship among software base
components.

There are at least five distinct virtual layers associated
with an operational computer system and three layers of
software that support the software development process.
Layer 0, the innermost layer, represents the bare computer

hardware including items such as processors, channels,
main storage, mass storage, bulk 110, archival storage,
hardware monitors, terminals, sensors, and communica
tions interface devices. Layers 1 thru 3 "reside" on the
hardware and collectively provide the virtual machine capa
bility that is necessary to support layer 4, the applications
software. In the following paragraphs, layers 1 thru 3 are
described along with short descriptions of the tools that
reside in these layers and the relationship of such tools to
the various development activities.

Layer 3: Functional Support Tools

Layer 3 contains those tools that provide direct support
to the software development activities. These are the tools
with which the applications software developer has the
greatest interaction. Layer 3 tools will be related to the
specific development activities they support.

Layer 3 Tool Types That Support Activity 1 (Analyze
Requirements)

The types of tools that are directly applicable to require
ment analysis are listed below:

(l) General Purpose System Simulators-Allow a user to
construct a computer model of a real or proposed
system and to perform simulation experiments to
determine the behavior of the model under various
operational conditions.

(2) System Description Languages & Analyzers-Assist
system analysts in describing the functional charac
teristics of a system and in validating the consistency
and completeness of a functional decomposition.

Layer 3 Tool Types That Support Activity 2 (Design
Softwar~

The types of tools that are directly applicable to software
design are listed below:

(1) Computer System Simulators-Similar in nature to
the general purpose simulator except that their basic
building blocks represent real computer system com
ponents whose modeled behavior approximates the
throughputs, capacities, and access times achievable
on the modeled equipments.

(2) Data Base Design Aids-Assist data base designers in
grouping data elements into logical record classes and
in determining the relationships among logical record
classes implicit in either the nature of the data or the
usage of the data.

(3) Data Dictionary Systems-Assist data base designers
in managing the data definition activities.

178 National Computer Conference, 1977

Layer 3 Tool Types That Support Activity 3 (Build System
Tests)

The types of tools required to support system test con
struction are listed below:

(I) Test Data Generators-Create data files for testing
and validating programs.

(2) Test Data Auditors-Compare data files against spec
ification and produce reports of discrepancies and/or
compliance.

(3) Test Case Design Advisors-Analyze programs writ
ten in a high level language and present the results of
that analysis in a form suitable to assist test case
designers in the selection of test data.

(4) Test Instruments and Analyzers-Instrument mod
ules under test so as to collect data characterizing the
behavior of the module.

Layer 3 Tool Types That Support Activity 4 (Build and
Unit-Test Software)

The types of tools that are required to support the
program development and unit-test activity are listed be
low:

(l) Assemblers-Allow programs to be coded in a sym
bolic language in which statements generally corre
spond to a single machine instruction. Specific tools
include Basic Assemblers and Macro Assemblers.

(2) Compilers-Translate programs written in a high
level language into either relocatable object code
acceptable to a Linker or assembly language accepta
ble to an Assembler.

(3) Linkers-Combine the text produced by separate
invocations of Compilers and Assemblers ("object
modules") into executable code strings ("load mod
ules" or "core images") that can be loaded into the
computer's main storage and executed without fur
ther preprocessing. Specific tools are Basic Linkers,
Simple Overlay Linkers, and Extended Overlay
Linkers.

(4) Debugging Aids-Assist the programmer in locating
the sources of program errors that have been discov
ered during unit testing, usually by giving him some
control over the execution of the module under test
that is external to the normal program code. Specific
tools are Interactive Symbolic Debuggers, Non-Inter
active Symbolic Debuggers, Interactive Absolute De
buggers, and Non-Interactive Absolute Debuggers.

(5) Module Libraries & Change Control Systems-Pro
vide computer controlled maintenance of groups of
related source modules (programs), object modules
(the output of Assemblers and Compilers), and load
modules (the output of Linkers). Specific tools are
Basic Libraries, Integrated Libraries, and Automatic
Software Production & Test Systems.

(6) Performance Monitors-Assist the programmer in

quantifying the resource consumption characteristics
of a program and in isolating performance-critical
areas. Specific tools are Language Dependent Moni
tors and Language Independent Monitors.

(7) Standards Enforcers-Allow source programs to be
examined automatically and checked for conformance
to installation-defined standards of format, content,
and usage.

(8) Preprocessors and Reformatters-Assist program
mers in producing well-structured and readable pro
grams by allowing the introduction of structured
programming constructs into source programs for
languages that do not have them, and by automati
cally controlling indentation, the placement of com
ments, etc., to produce readable listings.

Layer 3 Tool Types That Support Activity 5 (Integrate and
System Test) and Activity 6 (Maintain System)

There are no unique layer 3 tools that exist to support
these activities. The tools that were listed for activities 1
through 4 are generally applicable to activities 5 and 6 at
layer 3. Most of the tools used in practice that are specifi
cally oriented to activity 5 are special-purpose, e.g., test
environment tools (emulators, hot benches, system integra
tion lab support, virtual machines), test drivers and special
performance monitors.

Layer 2: General Support Services

The primary function of layer 2 tools is to provide a
framework of common services that will allow the output of
third layer functions to be stored, retrieved and inter
communicated. Second layer functions should be usable for
common purposes across different third layer functions,
and should serve to hide (where possible) differences be
tween first layer and third layer functions. Layer 2 tool
types provide general support to all of the software devel
opment activities. These tool types are summarized as
follows:

(1) Data Base Management Systems-Allow the use of a
computer system to define the contents of and the
logical relationships between collections of data items
that represent some useful abstraction of a real-world
phenomenon (tactical command and control system,
the modules and documentation of a system of com
puter programs) without being concerned with the
physical mechanics of storing, locating, and retrieving
items or groups of items.

(2) PERT/CPM Systems-Assist managers in planning
and controlling project activities.

(3) Project Estimation Systems-Assist in the develop
ment of work breakdown structures and related per
formance standards for use in estimating project
resource requirements.

(4) Documentation Aids-Assist in the preparation and

Candidate Architectures for the Military Computer Family 1 79

maintenance of documentation about the modules of
a system. Specific tools are Text Processing Systems,
Flowchart Construction Languages and Automatic
Flowcharters.

(5) Data Manipulation Utilities-Allow the system user
to alter the format and content of data files independ
ent of the logical significance of the data fields
involved. Specific tools are Sort/Merge Programs and
Editors (Interactive Source Language Editors, Inter
active Object Module Editors, Batch Source Lan
guage Editors, and Batch Object Module Editors.

(6) Information Retrieval Systems-General purpose ap
plication programs operating either on-line (interac
tively) or in batch that interpret user requests to
locate and display information that is stored either
within a structured data base or within separate files.
Specific tools are Query Language Systems and Re
port Writers.

Layer 1: Operating System Services

Layer 1 implements the operating system services that
present a "virtual machine" interface to the services/tools
at layers 2 and 3 and manage the real system hardware. The
layer 1 tool types are generally applicable acro'ss all of the
software development activities. Layer 1 tool types/capabil
ities are listed below:

(1) Basic Operating Systems (BOS)-Run single user
processes from initiation to termination. Mayor may
not overlap I/O with execution. Provide basic I/O
support that allows user to refer to files symbolically
and to read and write them without knowing the
hardware details of the I/O Interface. Provide basic
batch supervisor services that control normal and
abnormal job termination, job to job transition, and
operator communication. Provide a minimum base for
program development by supporting at least one
lan,,guage t.rCin~liiltor caAd/pJ;" Uol\ex/JQ.ad~r.

t2) MUltiprogramming Operating Systems (MOS)-Pro
vide all of the services of the Basic Operating Sys
tem. Supports the concurrent execution of two or
more user jobs by allowing the execution of any job
to be suspended while another is executed without
any special programming considerations in the user
job. Prevents concurrently executing user jobs from
accidentally or intentionally destroying each other or
the supervisor.

(3) Multiprocessor Operating Systems (MPOS)-Allow
the computing load to be spread across more than one
processor based on automatic (programmed) load
leveling algorithms or operator control, but does not
require special case programming in the user job.
Multiprocessor Operating Systems include the shared
storage, loosely coupled, and networked types.

(4) Virtual Machine Monitor (VMM)-The operating sys
tem presents an interface to the user program that

makes it appear that the program is executing on a
real computing system.

(5) Time-Sharing Operating System (TSOS)-This is a
variant of the multiprogramming operating system in
which system resources are allocated to user jobs in
such a way that all jobs appear to progress at the
same rate. In addition, users are allowed to "inter
act" with and receive output from' their jobs via
terminals. Such systems are optimized for response
rather than throughput.

(6) Real-Time Operating Systems (RTOS)-Allow user
jobs to be executed within specified short time limits.

EVALUATION OF THE SOFTWARE BASES

One of the fundamental motivations of the entire MCF
program is "software capture," i.e., the ability to take
advantage of the previous investment in support software
associated with the winning architecture. In order to com
pare the three finalist architectures, a procedure was re
quired which could quantify their support software invest
ment. The items deemed to be identifiable, obtainable and
translatable into financial data are applicability, availability
from the architecture manufacturer, and availability from
sources other than the architecture manufacturer.

Applicability

Applicability involved the determination of the functional
relevance of a given software base component (tool type) to
the development of military tactical software systems.
Applicability was not intended to be a binary criterion but
was to be a measure of the potential importance of the
component, ranging from "not applicable" to "essential."
Factors that were to be considered in determining the
importance of a tool type, in addition to essentiality,
included spectrum coverage, economic impact, software
sjze .• Glud, tb~1J.:u,m.b~LQf differ~l1tinstance.s Qftb.e.~. tool
type for a given CF A. Committee members were sent a list
of support software tools delineated in the previous section,
were allotted 5,000 points, and were asked to distribute
these points over the tools thereby indicating the relative
applicability/importance of each tool to their activities. The
guidance given to the members was that if a tool was
essential for military computer software development then
it should deserve more weight than one that is only nice to
have. Consideration was also to be given to spectrum
coverage, i.e., the utility of the component across develop
ment activities as well as across development disciplines.
Consideration was to be given to economic impact, the
potential cost savings that may be realized through use of
the tool type.

The results of this applicability balloting were compiled
and the tool list was ordered in terms of points received. A
predetermined threshold of 1000 points was then applied
against the list. In other words, any tool which received

180 National Computer Conference, 1977

TABLE I-Composite of Software Availability for the IBM, DEC and
Interdata Architectures

1. LAYER 3

1.1 Reguitements Analysis

1.1.1 General Purpose Systems Simulator

1.2 Software Design

1.2.1 Computer System Simulator
1.2.2 Data Base Design Aid

1.3 Construct System Tests

1.3.1 Test Data Generator
1.3.2 Test Data Auditor
1.3.3 Test Case Design Advisors

1.3.3.1 FORTRAN
1.3.3.2 COBOL
1.3.3.3 Cr·1S-2
1.3.3.4 JOVIAL
1.3.3.5 TACPOL

1.3.3 Test Instruments & Analyzers
1.3.4.1 FORTRAN
1.3.4.2 COBOL
1.3.4.3 CMS-2·
1.3.4.4 JOVIAL
1.3.4.5 TACPOL

1.4 Build & Unit Test

1.4.1 Assemblers
1.4.1.1 Basic Assembler
1.4.1.2 t~cro Assembler

1.4.2 Compilers
1.4.2.1 FORTRAN
1.4.2.2 COBOL
1.4.2. 3 Cr~S-2
1.4.2.4 JOVIAL
1.4.2.5 TACPOL

A = Available from architecture manufacturer.

.....
OJ
:3:

A

0
A

0
0

N
N
N
N
N

A
A
N
N
N

A
A

A
A
N
A .

N

.....
::z
--4
fT1
:;0
CJ

CJ)::>
fT1 --4
n):a

N N

N N
A U

N N
N N

N N
N N
N N
N .N
N N

0 .0
N N
N N
N N
N N

A A
A A

A A
A A
N N
N N
N N

o = Available from a source other than architecture manufacturer.
N = Not available from either source.

Candidate Architectures for the Military Computer Family 181

TABLE I--(Continued)

1.4.3 Linkers
1.4.3.1 Basic Linker
1.4.3.2 Simple Overlay Linker
1.4.3.3 Extended Overlay Linker

1.4.4 Debugging Aids
1.4.4.1 Interactive Symbolic Debugger

1.4.4.1.1 Assembly
l.4.4.1.2 FORTRAN
1.4.4.1.3 COBOL
1 • 4 • 4. 1 • 4 Ct·1S -2
1.4.4.1.5 JOVIAL
1.4.4.1.6 TACPOL

1.4.4.2 Non-interactive Symbolic Oebugge·r
1.4.4.2.1 Assembler
1.4.4.2.2 FORTRAN
1.4.4.2.3 COBOL
1.4.4.2.4 CMS-2
1.4.4.2.5 JOVIAL
1.4.4.2.6 TACPOL

1.4.5 Module Libraries & Change COntrol Systems
1.4.5.1 Integrated Library
1.4.5.2 Automatic Software Production

& Test
1.4.6 Perfonnance Monitors

1.4.6.1 Language Dependent Monitors
1.4.6.1.1 Assembly
1 .4.6. 1 .. 2 FORTRA1l
1.4.6.1.3 COBOL
1.4.6.1.4 CMS-2
1.4.6.1.5 JOVIAL
1.4.6.1.6 TACPOL

1.4.7 Standards Enforcers
1.4.7.1 FORTRAN
1.4.7.2 COBOL
1 .4. 7 • 3 Cf4S - 2
1.4.7.4 JOVIAL
1.4.7.5 TACPOL

..-.
to
3:

..-.
:z
-I
rr1
:;;0
C

c »
rr1 -:..t
n »

A A _A.
A A A
A A N

O. 'N N
A N· N
A 0 N
N N N
N N N
N N N

N N N
A A N
A A N' .
N N N
N N N
N N N ..

0 N N
N N N

0 N N
A N N
A N .N
N N N
N N N
N N N

._-
N N N
N N N
N N N
N N N
N N N

less than that threshold would no longer be considered. The
justification for this was that DoD could not affort to build
tools which a representative spectrum of system developers
determined were not very applicable.

The applicability results eliminated approximately half of
the tools delineated in the previous section leaving 28 tools
to be utilized in the availability phase of the evaluation.
These tools are delineated in Table I.

182 National Computer Conference, 1977

TABLE I-(Continued)

1.4.8 Pre-processors/Reformatter
1.4.8.1 Reformatter

2. LAYE.R 2

1.4.8.1.1 FORTRAN
1.4.8~1.2 COBOL
1.4.8.1.3 CMS-2
1.4.8.1.4 JOVIAL
1.4.8.1.5 TACPOL

2.1 Data Base Management System

2.2 Documentation Aids

2.2.1 Text Processing System

2.3 Data Manipulation Utilities

2.3.1

3. LAYER 1

Editors
2.3.1.1

2.3.1.2

3.1 RTOS + TSOS
3.2 TSOS + VMM

Interactive Source Language
Editors
Batch Source Language
Editors

3.3 TSOS + MPOS + VMM

......
OJ
3:

0
0
N
N
N

A

A

A

A

A
A
A

.....
z
-I
rTl
:::0
0

C)::a
JT1 -I
("') :t>

a 0
N N
N N
N N
N N

A N

A N

A A

A A

A A
N tl
N N

A vailability from architecture manufacturers

This criterion involved determining whether the support
software tools delineated in Table I ·were available from the
finalist architecture manufacturers. A tool was considered
available if it was presently being marketed and maintained.
This definition permitted the criterion to be applied uni
formly and equitably to all the finalist manufacturers. It was
felt that, if tools under development were also considered,
it would have been impossible to determine whether a tool
was one month, one year, five years away, etc., from being
marketed by the company.

The actual determination of availability of support soft
ware tools was to be conducted in two phases. Phase I
consisted of providing each of the manufacturers with a list
of the support software tools (Table I) as well as a descrip
tion of the minimum essential characteristics of each tool.
Each manufacturer was requested to answer in the affirma
tive for all tools which they actively marketed and main
tained. Phase II consisted of a visit to each of the manufac
turers by government personnel and an independent auditor
to obtain supporting documentation and to audit the manu
facturer responses. Tabie I depicts the resuits of this
process. All tools which were available from a particular

Candidate Architectures for the Military Computer Family 183

architecture manufacturer are marked by an "A." All tools
which were not available are marked by an "N" or an
"0."

Availability from other vendors

It was felt that there existed a great deal of support
software available from sources other than the architecture
manufacturers which met the minimum essential character
istics. It was the committee's feeling that such software
should be included. Again, firm criteria were needed-the
tool had to meet certain minimum essential characteristics,
had to be hosted on and targeted for one of the finalist
architectures, and had to be marketed and maintained. The
International Computer Programs Inc. (lCP) "INTER
FACE Reference Series"5 was chosen as the source docu
ment because of its position as a de facto standard for
software marketing. However, only tools which are not
marketed by the manufacturer were searched for. Upon
finding such a tool in the ICP document, the vendor was
contacted to obtain further supporting data. Table I also
depicts the results of this process. Tools available from
other than the architecture manufacturer are annotated by
an "0."

Consolidation of results

The main purpose of the software evaluation was to
determine the relative current software dollar investment as
well as the current software dollar deficiency of the three
architectures. In order to do this, a development cost for
each tool was needed. It was known that the architecture
manufacturers and software vendors considered such infor
mation to be proprietary. Therefore, the following approach
was taken: First each manufacturer was requested to pro
vide the source code size (disregarding comments) for his
available tools as well as the language which the tool was
written in, and the object code size in instructions. Second,
a productivity figure was needed. F. Brooks', "The Mythi
Ga~Mft~"\i wtl"l e~ ~ .. ~ tt?e-~t ~!":'e
since it compiled productivity figures from IBM's OS/360
development as well as Bell Lab's ESS software develop
ment. Brooks cites 600 lines of code per man-year for
operating system development and 2,000 lines of code per
man-year for other software development. It was felt that
the state-of-the-art in operating systems had improved
significantly since his data was obtained (nearly ten years
ago) and thus a figure of 1,000 and 2,000 lines of code per

TABLE II-Software Base and Deficiency Comparison

IBM
DEC
INTERDATA

BASE DEFICIENCY

32,269K
22,220K
15,360K

9,595K
19,130K
25,970K

TABLE III-Years to Correct Deficiencies

IBM
DEC
INTERDATA

DEVELOPMENT DOLLARS

1M

10.5
20
26

2M

5.5
II
15

3M

4.5
8.5

10

man-year for operating system and other support software,
respectively, was decided upon. Third, a fully loaded price
per man-year of $70,000 was assumed. Table II depicts the
resultant relative software bases and deficiences of the
three architecture finalists.

A second desired produce of the software evaluation was
a schedule for each architecture which depicted the devel
opment sequence for eliminating software deficiencies. To
accomplish this, a list of deficiencies was generated from
Table I for each architecture and sorted in applicability
order. Next each list was slightly reordered in terms of a
reasonable PERT sequence. In other words if tools X, Y,
and Z were rated by the committee members in terms of
applicability in the order Z, Y, X, but, the development of
Y before Z would incur a saving in overall development
costs, then the final development sequence would be or
dered as Y, Z, X.

Assuming reasonable development periods for each tool,
assuming a figure of 2 million dollars a year as an estimate
of the support software R&D dollars available when the
MCF program is implemented, and utilizing the deficiency
lists in development order, a development schedule was
generated for each architecture which provides, at a glance,
the relative future deficiencies of each architecture. Sched
ules were also constructed based upon annual support
software R&D expenditures of 1 million and 3 million
dollars. Table III depicts the period of time to completely
eliminate software deficiencies for each architecture based
t:tpflftthe·¥~~f:t<il· ~ttl'~~~re R&Bdotta!" e~~.

REFERENCES

1. Burr, W., A. Coleman, and W. Smith, "Overview of the Military
Computer Family Architecture Selection," National Computer Confer
ence, AFIPS Conference Proceedings, Vol. 46, 1977.

2. "BMDATC Software Development System-Research Description," US
Army BMD Advanced Technology Center Report, July 1975.

3. Bratman, H., and T. Court, "The Software Factory," IEEE Computer,
May 1975.

4. Hamilton, N., and S. Zeldin, "Integrated Software Development System!
Higher Order Software Conceptual Description," Technical Report for
Contract ECOM 76-0329-F dated Nov. 1976, Charles Stark Draper
Laboratory and Higher Order Software Inc.

5. "INTERFACE Reference Series," International Computer Programs,
Inc., Carmel, Indiana, 1976.

6. Brooks, F. P., The Mythical Man-month: Essays on Software Engineer
ing, Addison-Wesley, Reading, Mass., 1976.

Life cycle cost models for comparing
computer family architectures

by JOHN J. CORNYN, WILLIAM R. SMITH
Naval Research Laboratory
Washington, DC

and

AARON H. COLEMAN
U.S. Army Electronics Command
Ft. Monmouth, New Jersey

and

WILLIAM R. SVIRSKY
Systems Development Corporation
W. Long Branch, New Jersey

ABSTRACT

This paper describes the methodology used to compute life
cycle costs of military computer systems as a function of
three competing Military Computer Family Architecture
candidates (the IBM S/370, DEC PDP-II, and Interdata
8/32), and it presents separate results of applying this meth
odology to two different models (called Top-down and
Bottom-up) of computer resource requirements in the mili
tary. The architecture comparisons are made by projecting,
computing and combining estimates of hardware and soft
ware costs with architecture-dependent factors to obtain
life-cycle (development plus maintenance) costs and cost
ratios. The results indicate that the three architectures have
roughly comparable life cycle costs for the two models.
HO\\;ge'lrer, negt-e:ting the uncertatnti~s of the tnpct data an-d
assumptions, the bottom-up results indicate that in most
circumstances the DEC PDP-II is superior to both the IBM
S/370 and Interdata 8/32 architectures. The top-down model
results, on the other hand, indicate that the S/370 is
superior for high (greater than one) software-to-hardware
cost ratios, the Interdata 8/32 is slightly better for low (less
than one-fourth) ratios, and the PDP-II is best in between.

INTRODUCTION

Background

The motivation for this work was to help the Army and
Navy determine the most cost effective of three candidate
computer architectures, with the intent that this architec
ture would form the basis of a software-compatible Military

185

Computer Family (MCF) over at least the next decade. 1
-

3

The three candidate architectures were the IBM S/370, the
Digital Equipment Corporation PDP-II, and the Interdata
8/32. It was felt that inclusion of cost considerations would
be a vital element in the acceptance of the Selection
Committee's recommendations by DoD higher manage
ment. 4

Overview

The life-cycle cost evaluations described are based on (1)
a methodology for combining the results of architectural
attribute evaluations (i.e., processor and storage efficiency,
support-software availability) with computer resource re
qmf~Ilis,~i.th. ·l*tFt·ef g.tOF~ .. pr~ ~eQ. ~
sizes) to compute dollar costs of these resources as a
function of architecture, and (2) models defining these
computer resource requirements considered to be repre
sentative of military tactical and strategic systems in the
next 10 to 15 years.

Architecture Attributes

The CF A Selection Committee generated the architec
tural attribute evaluation results that are the basic inputs to
the cost computations. The first of these are the data
derived from test program experiments. These data indicate
the relative efficiencies of the architectures in utilizing
storage and processor hardware resources. The "S" meas
ure is a count of the number of storage bytes required to
contain programs, given an architecture. Differences in S
can be directly related to differences in the amount of

186 National Computer Conference, 1977

storage and therefore cost requirements. The "M" measure
is a count of the number of bytes transferred between the
CPU and main memory (including cache) during execution
of the test programs, and the "R" measure is a count of the
number of bytes transferred among the registers of the
CPU. M and R are clearly indicators of the hardware
bandwidth requirements of an architecture to do a job.
Everything else being equal, memory cost will be greater if
more storage is required (larger S) or if the memory has to
be faster (larger M, R). Similarly, the CPU cost will be
larger if the processor has to be faster (larger M, R). The
relationship between memory CPU speed and cost is taken
as Speed (in MIPS)=kxcostg

, where k and g are empirically
derived constants.

The other architecture attribute that is used in the cost
computations is the availability of software tools to aid in
developing software for MCF systems. This was estab
lished by the Selection Committee by defining a menu of
support software (i.e., compilers, editors, etc.) required for
military applications and then evaluating the relative per
centage of this menu available for each architecture. Using
data from actual system developments, a curve was gener
ated relating this relative availability of software tools to
the cost (per line of code) of developing software for an
architecture. This data was ultimately used in the computa
tion of life cycle software costs. Detailed description of the
cost analyses described herein can be found in Reference 5.

The Models

Two models of military computer life cycle resource
requirements are used in conjunction with the basic meth
odology described above. These are called the Top Down
(TD) and Bottom Up (BU) models. It is frequently useful
when building models for forecasting economic data to
apply two different approaches in order to cross check the
results.

The TD model predicts computer resource requirements
by extrapolating trends in overall expenditures and require
ments in DoD for various aspects of computer hardware
and software. This model predicts, year-by-year, up to 1990
what these expenditures will be for each architecture and
then provides relative architecture costs based on the
cumulative costs.

The BU model predicts computer resource requirements
by using the hardware and software design characteristics
of fifteen actual military data processing systems in devel
opment or to be developed. The costs of developing all
these systems are computed, given each candidate architec
ture, for the years 1976 and 1985.

The reader will notice that the notations in the Bottom-Up
and Top-Down sections of this paper do not always corre
spond. The two models and analyses were generated and
authored independently, 6,7 except for some initial exchange
of ideas and discussion of input data. We have not at
tempted to normalize the descriptions of the two models.

BOTTOM-UP MODEL

Basic approach

Overview

The computer resource life-cycle cost was estimated for
each of 15 Army embedded-computer systems (shown in
Table II), which are currently in various phases (conceptual
through deployment) of their life cycles. Estimates were
made for 1976 and for 1985 production procurements. The
lowest cost CF A for each system and for all systems was
selected for 1976 and 1985 procurements.

Total Life Cycle Cost

The computer resource life cycle cost for system i and
I architecture j is defined as:

where

HW u=hardware life cycle cost
ASwu=applications software life cycle cost

(1)

Hardware Life Cycle Cost (LCC)

The computer hardware life-cycle cost for a given system
using a specific CF A is defined as

where

(2)

i=index of the system
j =index of the architecture

nj=number of units to be produced for system i
Lh=hardware life-cycle cost factor, i.e., ratio of total

hardware life-cycle cost to hardware acquisition
cost. This factor is assumed to be 2 for a 100year
life cycle

Pij=processor acquisition cost
MMij=main memory acquisition cost
SMij=secondary memory acquisition cost

The processor acquisition cost for system i using archi
tecture j is defined as

where

K =constant relating to processor cost
aij=processor speed ratio

(3)

Mrj=operating speed in millions of instructions per
second (MIPS)

Equation (3) follows from a commonly cited relationship
between performance and cost, nameiy performance=con-

stantxcostg
• For the purpose _of the BU model g was

assumed to be 2.5. To obtain a value for K, in Eq. (3), we
used the fact that recent cost/speed data for several military
processors seems to indicate that speeds of 0.5 MIPS and
processor costs of $48,000 are representative values; conse
quently

This value of K is used in subsequent calculations for 1976
processor cost estimates and is reduced by a factor of 10 for
1985 processor cost estimates based on an assessment of
hardware cost reduction over the next decade.

The main memory acquisition cost for system using
architecture j is defined as:

MMjj=cb(bijPMj+DMd (4)

where:

MMij=main memory acquisition cost (in dollars)
bij=static storage ratio

PMj=main memory (in bits) required for program stor
age in system i; Mj is derived from system
proponents; P is estimated fraction of Mj dedi
cated to program storage vs data storage. (See
Table I for values.)

DMj=main memory (in bits) required for data storage
in system i; Mj is derived from system propo
nents; D is estimated fraction of M j dedicated to
data storage vs. program storage

Cb=cost per bit of main memory derived from the
study of Air Force ADP requirements through
the 1980's8 and Tum's data in Computers in the
1980' s. 9 Examination of the price per bit of
recent militarized memory systems indicates an
average cost of 4 cents per bit; i.e., $5000 per
16K byte memory module. This value is used in
1976 cost estimates; 0.4 cents is assumed in 1985
cost estimates.

The secondary memory acquisition cost for system
using architecture j is defined as

(5)

where

SMij=secondary memory acquisition cost (in dollars)
bij=static storage ratio

P'Maj=secondary memory (in bits) required for program
storage in system i; Maj is derived from system
proponents while P' is the estimated fraction of
Maj used for program storage vs. data storage

D'Maj=secondary memory (in bits) required for data
storage in system i; Maj is derived from system
proponents while D' is the estimated fraction of
secondary memory used for data storage vs.
program storage

Ca=cost per bit of secondary memory derived from
References 8 and 9.

Life Cycie Cost Modds 10""
lOt

Examination of the price per bit of current militarized disc
systems indicates an average cost of 0.2 cents per bit, e.g.,
a 36M bit disc system at $72,000. This value is used in 1976
cost estimates; a cost reduction of 10: 1 in the next 10 years
is assumed so that a price of 0.02 cents per bit is used in
1985 cost estimates.

To obtain values of nj, Mrj, Mj, Maj, Sj, a letter was sent
from ECOM to project managers of the fifteen systems
requesting values for their particular system. Their re
sponses are tabulated in Table I.

The processor speed ratio (aij) and static storage ratio
(bij) attempt to capture the ability of the j-th architecture
relative to system i. They are derived by measuring the
performance of the three architectures on twelve test pro
grams and by estimating the relative importance, or weight,
of each of these programs to computations characteristic of
each system. The performance of each architecture on the
test programs is summarized in what are called the S, M,
and R measures, where:

Skj is a measure of the amount of memory (in 8-bit
bytes) needed to represent test program k on
architecture j.

Mkj is a measure of the processor/memory transfers
required to execute test program k when using
architecture j.

Rkj is a measure (in 8-bit bytes) of the number of
internal register-to-register transfers required by
the processor to execute test program k on archi
tecture j.

See Reference 10 for details of the test program experi
ment.

The relevance of the k-th test program to the i-th system
is given by the factors Wjk , which were obtained by first
dividing the twelve programs into two categories: programs
that relate principally to I/O, and those that are associated
with traditional processor/memory functions. Within these
categcnes, '","arying degrees af ftrnctiona:! overlap' occur
among the test programs. Initially a gross value was esti
mated for each of the two categories; subsequently, this
value was distributed across the programs of the category.
As an example of how the weights were distributed, one
data management system resembles contemporary commer
cial data processing in its use of COBOL and data bases.
Thus, its weighting was heavily biased toward I/O and
processing routines such as "Linked List Insertion," and
lightly biased toward mathematical oriented routines such
as "Runge Kutta." Another system, however, is designed
primarily for trajectory computations and thus its weighting
favored the "Runge Kutta" and was biased against
"Linked List Insertion." The sum of all the test programs
weights for a given system is unity.

The processor speed ratio (au) and the static storage ratio
(bij) were obtained by combining the above quantities in the

188 National Computer Conference, 1977

TABLE I-System Proponent Data

Sys. System Mission n. Mr. *PM. *DM. *PMa. *DMa. S.** J
1 (MIPS) 1 1 1 1 1

1 Medium Search 192 1 .33 .414 .101 I
1.9 I 7.7 32

2 Medium Command & Control 27 .26 1 .638 .412 8.8 144 2.2

3 Small Search 100 1 .00 .512 . 128 2.8 11 .2 20
I i

4 Large Command & Control I 178 .20 13.600 3.400 4.0 I 16.0 375
, i

5 Medium Command & Control I 64 .50 1.600 .400 15.8 63.2 47

6 Large Command & Control 30 .40 3.321 .820 8.4 33.6 250

7 Small Command & Control I 832 .75 .618 . 152 .4 1.6 100

8 Large Communications 616 . 18 3.200 .800 13.4 ; I 52.0 ! 175 !

I 1

9 Small Communications 800 .16 . 116 .031 0 0 ! I
i 8 !

I
I !

10 Small COfl1Tlunications 9 .53 .408 .102 3.2- I 83 f 12.8 I

11 Small Special Purpose 30 .48 .328 .082 . 1 .31 14
\

12 Large Data Management 16 .02 1.600 .400 573.4 2293.6 I 324

13 Medium Search 50 .35 3.712 .928 3.2 12.8 28

14 Medium Data Management 8 .80 3.200 .800 1912.0 7648.0 1

15 Small Guidance & Control 3325 .20 .006 .002 0 0 1

* P and D are fractions applied to the proponent's stated memory require

ments which reflect an estimate of memory used for programs (P) vs.

data (D). Values are expressed in megabits.

** S t t d · 103 . t . . s a e ln lns ructlons.
1

following manner:

12
3 L Wik(3Mkj+ Rkj)

k=1
3 12
L L Wjk(3Mkm+Rkm)

m=1 k=1
12

3 L WjkSkj
bij = -'3,;--k-:-~-ii-~ ---

L L WjkSkm
m=1 k=1

Applications Software Life Cycle Cost

(6)

(7)

The applications software life cycle cost for system i
using architecture j is defined as:

(8)

where

Csj=cost (in dollars) per instruction of applications soft
ware for architecture j

Sj=applications software size (in instructions), derived
from the system proponents data (Table I).

Ls=applications software life cycle cost factor, i.e.,
ratio of applications software life-cycle cost to initial
acquisition cost

The software life-cycle cost factor was taken basically from
Fisher's reportll,p.64 which places modifications and retro
fits to software at four to five times the cost of the initial
product. Thus by taking the midpoint and adding the initial
cost as one, we have a value of Ls=5.5. The parameter,
Csj , the cost per instruction of application software for
architecture j, is based on the experience of System Devel
opment Corporation with five large scale (24K instructions
to 500K instructions) software efforts. The data was com
piled by sending questionnaires to the program managers.
Program managers responded with: the cost of software
production l the nUlllber Of in~tru(;tiQUS l'rQd:u~d.oandofor
thirteen software tools they estimated what would be the
percent increase in project cost if the tool were not avail
able and how much less the project cost would be if the
ideal tool were available. From generalizations of this data,
it was possible to construct the curves shown in Figure 1.
These curves show the variation of cost per instruction as a
function of the Tool Availability Index (TAl) for three
conditions: (a) ~orst case, (b) best case and (c) derived
median. It should be recognized that the results are largely
judgmental and that examples can also be found which yield
costs per instruction above and below the worst and best
case curves of Figure 1. The Tool Availability Index (TAl)
is defined as the ratio of available software tools to the ideal
set of software tools. The "ideal set" is defined in a
separate report by the Software Evaluation Methodology
Subcommittee. 12

By knowing the TAl for a given architecture for any
point in time, one can obtain from Figure 1 an estimated

Life Cycle Cost Models 189

w.---------------------------------------~

50

40

30

10

COST PER INSTRUCTION ($) vs
TOOL AVAILABILITY INDEX ("!oj

A' WORST CASE DATA
B BEST CASE DATA
c· DERIVED MEDIAN

TOOL AVAILABILITY INDEX ("!oj

Figure I-Availability index (%)

cost per instruction. As the percentage of available soft
ware tools increases, the cost per instruction of application
software can be seen to diminish. The 1976 TAl for each
CF A finalist was derived from the report of the Software
Evaluation Committee 12 as 34%. 50% and 73% for the
Interdata 8/32, DEC PDP-II and IBM S/370 architectures,
respectively. * The average of these values is 52% and is
indicated graphically in Figure 1. The cost per instruction
for the average TAl is approximately $25, $10 and $17 for
conditions A, Band C, respectively. The cost per instruc
tion for the 3 CF A finalists in 1976 was estimated at $24,
$18, and $12 for Interdata 8/32, DEC PDP-ll and IBM
S/370, based upon TAl values of 34%, 50% and 73%, respec
tively. The corresponding values for 1985 were computed
by assuming an annual expenditure of $2M to augment the
support software base of the selected CFA. The resulting
TAl values in 1985 are 83%, 100% and 100% corresponding
to cost per instruction of $10, $7.50 and $7.50 for Interdata
8/32, DEC PDP-II and IBM S/370, respectively. This data
was then employed to compute applications software life
cycle cost for each of the 15 systems under consideration,
for each CFA and for 1976 and 1985.

Results

Total Life Cycle Costs

Table II illustrates the total life cycle costs for each
system and for each of the three architectures for 1985.
Circled values indicate the least-cost architecture for a
particular system and the least total cost for implementing
all fifteen systems. The number of times an architecture is
selected is also totaled and shown at the bottom of the chart
as the Number of System Preferences. Table II indicates
that:

The system preferences for DEC, IBM and Interdata

* A subsequent refinement of the data in the SEC report changes these
percentages to 37%, 54% and 77%. The changes proved to have no
significant impact on the data described herein.

190 National Computer Conference, 1977

TABLE n.-Total Life Cycle Cost vs CFA
1985 Procurement

1976 AVERAGE APPL'NSW COST=$17/INSTRUCTION

SYS SYSTEM MISSION nj INTERDATA 8/32 DEC PDP-II IBM $/370

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

HDW ASW

Medium Search 192 3.9 1.8

Medium Comm' d and Cntrl 27 0.7 7.9

Small Search 100 2.2 1.1

Large Comm'd and Cntrl 178 23.0 20.6

Medium Comm'd and Cntrl 64 3.4 2.6

Large Comm'd and Cntrl 30 1.6 13.8

Small Comm' d and Cntrl 832 13.4 5.5

Large Communications 616 36.3 9.6

Small Communications 800 5.5 0.4

Small Communications 9 0.2 4.6

Small Special Purpose 30 0.5 0.8

Large Data Management 16 18.0 17.8

Medium Search 50 2.4 1.5

Medium Data Management 8 29.9 1.9

Small Guidance & Cntrl 3325 203 0.1

Total Cost 161 90

System Preferences

would be 14.5,0.5 and none, respectively. The average
total life cycle cost for all systems/architectures is
$250M in 1985. The 8/32 cost is approximately equal to
the average cost while the PDP-II and S/370 costs are
8.9% below and 8.7% above, respectively, the average
cost.

Sensitivity Analysis

Some of the parametric values leading to the 1976 and
1985 results were perturbed in order to determine the
sensitivity of the life cycle cost model. The results are
described in the following subparagraphs.

When the average cost per instruction in 1976 was
doubled to $34, or $9 in excess of the worst-case curve in
Figure I, the resulting hardware: software ratios were 6: 1
and 1.2: I in 1976 and 1985 respectively. The resulting life
cycle costs for 1976 and 1985 indicated that, in terms of the
comparative costs of the three architectures, the model is
relatively insensitive to doubling the cost per applications
software instruction. Comparing results, IBM picked up
one system implementation at both DEC and Interdata
expense in 1976 so that DEC, IBM and Interdata architec
tures would be preferred in 10.5, 4.0 and 0.5 systems,
respectively. The DEC architecture remains the lowest in
total life-cycle cost for all systems. For 1985 there were no
changes, DEC architecture being preferred in 14.5 systems.

The data shown in Table II reflect an investment in the
software bases of the three architectures of $2M annually.

The data for 1985 were re-examined to determine the
impact of reducing the investment in the software base to

TOTAL HDW ASW TOTAL HDW ASW TOTAL

5.7 4.1 1.3

I
4.7 1.3 6.0

8.6 0.7 5.9 6.6 0.9 5.9 6.8

3.3 2.1 0.8 2.9 2.6 0.8 3.4

43.6 23.0 15.5 38. 34.5 15.5 50.0

6.0 3.4 1.9 @ 4.1 1.9 6.0

15.4 1.6 10.3

i
2.1 10.3 12.4

18.9 13.4 4.1 17.5 18.3 4.1 22.4

45.9 35.4 7.3 42.7 47.3 7.2 54.5

5.9 5.3 0.3 5.6 6.4 0.3 6.7

4.8 0.2 3.4 (~j:\ 0.2 3.4 :=~~:\

1.3 12.5 0.6 ~ 0.6 0.6 1.2

35.8 18.1 13.4 1.5 19.9 13.4 33.3

3.9 2.4 1.2 @) 3.0 1.2 4.2

31.8 29.6 1.4

~
33.3 1.4 34.7

20.4 19.9 0.1 20.0 25.6 0.1 25.7

251 160 68 @ 204 68 272

@ 0.5

$IM annually for two different situatio~s: $17 per instruc
tion of application software and then $34 per instruction. At
$17 per instruction the selection of IBM would increase to 5
systems while DEC would drop to 10. This is also predict
able since at a $1 M per year investment rate in the software
base IBM retains for a longer time its cost advantage in
producing application software. At this lower investment
rate, while IBM has achieved the ideal support software
set, DEC has only 83% while Interdata has 61%.

Doubling the cost per application software instruction
merely extends a software favorable situation, in that the
number of IBM selections equals the number of DEC
selections at seven.

The data was re-examined to determine the impact on the
results when the S, M, and R measures were used without
the discriminating weights applied as described earlier. The
results showed that for 1985, the model is relatively insensi
tive to the weighting factors applied to the S, M, and R
values. At $17 per application software instruction a few
systems shift from DEC to Interdata; at $34 per instruction
a few systems shift from DEC to IBM. DEC remains
predominant.

Conclusions

The results obtained with the bottom-up life-cycle cost
model are summarized in Table III.

Hence from the bottom-up model results we conclude
that the DEC PDP- i I architecture would provide the lowest
life-cycle cost for most of the 15 Army embedded-computer

A.

B.

c.

*

**

Life Cycle Cost Models

TABLE III-Summary: Bottom Up Life Cycle Cost Analysis

AVERAGE TOTAL LIFE' CYCLE COSTS ~ILLIONS) FOR 15 SYSTEMS

Type Cost 1976 1985

Hardware $1750 $175

Software $ 162 $ 75

TOTAL $1912 $250

HDW/SW Ratios* 12: 1 2.4: 1

1976 ARCHITECTURE COMPARISON

System Relative Total Cost**
Architecture Preferences HDW SW Total

8/32 0.92 1 .33 0.96

PDP-l1 11 0.91 1 .00 0.92

S/370 3 1 . 16 0.67 1 . 12

1985 ARCHITECTURE COMPARISON

System Relative Total Cost**
Architecture Preferences HDW SW Total

8/32 0.92 1 .20 1 .00

PDP-ll 14.5 0.91 0.91 0.91

S/370 0.5 1 . 16 0.91 1 .09

Hardware/software ratios are calculated from cost data

1.00 denotes average cost

1 C\ 1
171

192 National Computer Conference, 1977

systems considered and for the 15 systems as a whole in
1976 and 1985 under the following conditions:

(a) Applications software cost per instruction of $17 and
$34 in 1976. Lower costs are assumed in 1985 as the
support software base is augmented.

(b) Support software investment rate of $IM, $2M and
$3M per year to 1985.

(c) Architecture test measures of effectiveness (S, M and
R) are weighted for each system application.

(d) Hardware cost reduction of 10: 1 from 1976 to 1985.
(e) Hardware life cycle cost is twice acquisition cost,

software life cycle cost is 5.5 times acquisition cost.

The results shown in Table III are not significantly
changed if the average applications software cost per in
struction in 1976 is doubled to $34 (thereby decreasing the
hardware: software ratio by a factor of 2) or if the annual
support software investment for the selected CF A is in
creased to $3M or decreased to $IM.

THE TOP-DOWN MODEL

The Basic Model

The principal outputs of this model are values, Rjk * ,
j= I, ... , Ny, k= I, ... ,Na , which are the discounted
costs of an architecture k, relative to a reference architec
ture, totaled over a period of j years. Here, Ny denotes the
maximum time period in years and N a the number of
architectures under examination. An element Rjk * is called
a discounted cumulative cost ratio. If the model yields
Rml*<Rm2* then, neglecting irreducibles, architecture 1 is
more desirable than architecture 2 for the period j = 1
through j=m, since it has a lower cumulative cost for that
period.

The study described herein examines cumulative costs
over periods of one to thirteen years (Ny= 13) beginning in
1978. Cumulative costs were calculated up to 1990, j= 13.
Since this study compares only three architectures, we
have N a =3. The index k= 1 represents the IBM S/370
computer family architecture (the reference architecture),
k=2 the Digital Equipment Corporation PDP-II architec
ture, and k=3 the Interdata 8/32 architecture.

The model obtains the yearly architecture-dependent cost
(Cjk) by summing the architecture-dependent hardware
costs (Hjk) and software costs (Sid,

(9)

The nondiscounted cumulative cost through year m for
architecture k, Dmk , is simply the sum of all costs from year
1 through year m,

III

Dmk = :L Cjk (10)
i=l

The discounted cumulative cost, Dmk *, on the other
hand, takes into account the time value of money. Inflation

aside, a dollar today is worth more than a dollar tomorrow.
The model mUltiplies cash flows occurring in a year j by a
discount factor, dj, and sums the products,

III

Dmk * = :L Cjkdj.
j=l

(11)

Each discount factor is an average over the year j of the
single-payment present-worth factor. These discount fac
tors are the same as those recommended in References 13,
14 and used in Reference 8, volume V.

Since our immediate interest is only in the relative merits
of the three architectures, their cumulative cost ratios
provide an adequate and useful measure. In addition, the
cost ratios are more useful than absolute costs because they
serve to cancel out common and possibly unknown multi
plicative factors.

Taking architecture one (the IBM S/370) as the reference
architecture, we define the nondiscounted cumulative cost
ratio as

(12)

and, analogously, the discounted cumulative cost ratio as

(13)

Consequently, we have Rj1*=Rj1=l for j=l, ... ,Ny.

Architecture-Dependent Hardware Costs

The model obtains the architecture-dependent hardware
costs (Hjk) by summing the architecture-dependent proces
sor (Pjk '), main-memory (Mjk '), and secondary-memory
(Eik ') expenditures,

(14)

The following paragraphs describe the method of arriving
at values for these expenditures.

Total yearly hardware expenditures, Bb j=l, ... ,Ny,
for CF A-related military computer systems are key inputs
to the model. They include computer, main-memory, sec
ondary-memory, 110 and peripheral devices, and related
expenditures.

Military systems typically require years between initia
tion of development and full deployment. This phasing-in
period is estimated to be approximately equal to average
system development cycle time, which experience indicates
runs between 3 and 10 years. 15 - 18,P.15 In order to approxi
mate the expenditure levels during this phasing-in period,
we as sume that the expenditures B j, j = 1, . . . , Ny, begin
at some predetermined level, B1 , increase linearly with time
over an initial development period (Bj, j= I, ... , Nd)' and
then remain constant for the remaining period (Bj ,
j=Nd+ I, ... , Ny). For the purpose of the study, the
development period, Nd, was estimated to be seven years.
The model also includes effects of choosing development
periods of five and ten years, assuming the same initial and
final hard\vare expenditure levels. The simplifying assump
tion of constant base hardware expenditures after an initial

development period appears to be reasonable because: (1)
total ADP expenditures in DoD, when measured in unin
flated dollars, have been nearly constant in recent years; (2)
the principle of level funding has tended to guide DoD
budget allocations; (3) decreasing hardware costs on a per
unit basis have tended to offset increasing (inflated) hard
ware requirements; and (4) the exact dollar assumption
used is less important than its equal-handed application to
each of the candidate architectures.

Although they are few and far between, there are some
estimates and projections of DoD computer system budgets
available today. 8,11,19 For our purpose, perhaps the most
useful was D. A. Fisher's study of ADP costs in DoD.ll In
this report, Fisher estimated that in FY 1973, DoD spent
6.2 to 8.3 billion dollars on ADP. He found that approxi
mately one third of this amount originated in each service,
and that about 16 percent of the total went to computer
hardware, 45 percent went to software, and 38 percent to
other ADP costs, such as support and supplies, keypunch
ing, and computer operation. Using these figures, we de
duce that 1.0 to 1.3 billion dollars went to computer
hardware and roughly 2.8 to 3.7 billion dollars went to
software. During a private conversation with the authors in
May, 1976,20 he mentioned that his recent studies showed
that if one were to divide DoD software costs by applica
tion, the major portion (approximately 56 percent) goes for
embedded computer systems, i.e., the types of systems the
CFA project is designed to influence. Approximately 19
percent goes for administrative data processing applications
wherein COBOL is the principal language, and 5 percent
goes to scientific applications using most commonly FOR
TRAN. The other 20 percent goes for other types of
applications and indirect costs. Assuming these percentages
also applied in FY 1973, this would mean that of the
approximately 2.8 to 3.7 billion that went to software, about
1.6 to 2.1 billion went for software for embedded computer
systems. If we make the assumption that the software-to
hardware cost ratio for embedded computer systems is
approximately the same as that for overall DoD ADP
systems, we obtain 0.6 to 0.7 billion dollars for hardware
for embedded computer systems. Dividing this by three to
oblain an estimate of cost for each service, we obtain 0.2 to
0.23 billion. Of course, not all embedded computer systems
will be satisfied by CF A. Making a rough assumption that
one fourth would be, we obtain a yearly annual hardware
expenditure rate for a single service of about 50 million
dollars. For the purpose of our study, we took this figure as
our nominal hardware expenditure level. The exact expendi
ture level assumed is immaterial since it is the comparative
(not absolute) costs that are being computed. In summary,
for most of the cases reported in this study, we assumed the
yearly base hardware expenditures will remain constant at
fifty-million dollars after linearly increasing over a seven
year development period.

The model assumes that the nominal yearly processor
expenditures (K j) are a constant (u) times the yearly base
hardware expenditures (B j),

(15)

Life Cycie Cost Modeis i 93

Nominal processor expenditures (Kj) comprise the nomi
nal CPU (Pj) and nominal main memory (M j) expenditures
but exclude expenditures for 110 busses, devices, and oth.er
peripheral gear whose costs are insensitive to the architec
ture of the processor,

(16)

We assumed in most cases that the constant u was 0.5;
that is, we took the total yearly CPU and main memory
costs to be one-half the overall CF A base hardware ex
penditures. This assumption compares well with a recent
survey of DP budgets. 21 In order to measure the sensitivity
of the model to u, we also used values of 0.4 and 0.6 as
explained in the next section.

The model assumes the nominal yearly main memory
cost (M j) is a fraction (a) of the nominal yearly processor
expenditures (Kj),

(17)

used on data on military computer systems found in Refer
ences 15 and 22, it appears that a usually lies between 0.5
and 0.8. The value used in most of our calculations was
0.65.

Actual main-memory cost (Mjk'), which is architecture
dependent, is computed from nominal main-memory cost as
follows:

(18)

The two coefficients, Pk and Sk, are included in this
equation because the cost of memory depends upon the
efficiency with which an architecture stores programs as
well as the rate at which it uses memory in executing them.
The parameter Sk, the normalized s-measure, is indicative
of the memory space required to represent a program when
using architecture k. This space includes all the storage
required to represent and execute the program exclusive of
input/output used by the program (since the same data
arrays are used by all candidate architectures). The quan
tity Pk in equation (18) is a cost-to-performance coefficient
for architecture k which the model obtains by combining
the normaliz.ed m and r-measures as foUows~

(19)

The m-measure, mk, is a measure of the traffic between
main memory and the central processor that is required to
execute a program when using architecture k. The r
measure, rk, is a measure of the data traffic internal to the
central processor. The exponent g follows from a general
relationship, probably first examined by Grosch,23 between
performance and cost, i.e., performance=Kxcostg

• Rein
Turn9 gives a value of g between 2 and 3; the SADPR-85
Study Group,8 using more recent data, argues for a lower
value of about 1.5. Although this latter value was used in
most of our calculations, we also investigated the effects of
using values of 1 and 2. The parameters V and Ware
weighting factors for the r- and m-measures. Their sum is
assumed to be one. Because the values obtained for the r
and m-measures are almost equal for each of the candidate

194 National Computer Conference, 1977

architectures, making rk insensitive to the values of V and
W, we took both V and W to be 0.5.

The constant a appears in equation (18) because parts of
the main memory are insensitive to computer architec
ture-in particular, the portion occupied by data arrays.
The architecture sensitive fraction, a, is called the main
memory static-storage ratio. Most of the calculations as
sume a equals 0.8. The sensitivity studies, however, also
examine the effects of using values of 0.7 and 0.9.

The nominal yearly and architecture-independent central
processor expenditures (Pj) follow from combining equa
tions (16) and (17),

(20)

The actual architecture-dependent central-processor ex
penditures (Pjk ') are given by:

(21)

The model assumes the nominal secondary-memory ex
penditures (E j) are independent of nominal processor costs
(KJ and are a fraction, v, of the yearly base hardware
expenditures (B j), i.e.,

(22)

From these it obtains the secondary-memory expenditures
that are architecture-sensitive by

(23)

The constant b, the secondary-memory static-storage ratio,
is analogous to the main-memory static-storage ratio (a),
and the parameter, Sk, is the normalized s-measure dis
cussed in this section.

Systems described in References 15 and 22 led us to a
value of v of 0.1 and b of 0.2. The sensitivity studies
discussed in the next section examine the effects of choos
ing v equal 0.0 and 0.2 and b equal 0.1 and 0.3, and show a
relative insensitivity of the model to uncertainties in the
values of these parameters.

Architecture-Dependent Software Costs

For architecture k, the total yearly software expenditure
(Sjk) is the sum of the yearly support-software expenditure
(Qj) plus the architecture-dependent application-software
expenditure (AjFjk),

(24)

We define support software to be software tools such as
compilers, loaders, linkers, simulators, assemblers, sub
monitors, operating systems, and debug packages and we
assume that the amount of money allocated for the develop
ment of these tools is independent of the architecture
chosen. Hence, the model assumes that support software
will be developed with an expenditure of Qj dollars for each
year j where j= I, ... , 13. For the cases considered in this
paper, we let value Qj be constant at x million dollars, for
j=2 through 13 and Ql=O. The sensitivity studies examined
the effects of allowing x to range from zero to eight million

dollars in two million dollar increments. Although x is
architecture independent, it plays a dominant role in deter
mining the lowest cumulative cost alternative.

The model assumes that base (or nominal) applications
software expenditure in year j, denoted Ai> is a constant (p)

times the yearly base hardware expenditure, Bj,

(25)

For lack of a better name, we call p the software-to
hardware ratio. Working with the reports of Fisherll and
others,8,9,19,21,24 we estimate p to be about 2.5 to 3 for
general-purpose DoD computer systems, and possibly 1/2 to
2 for embedded systems,16 which usually have mUltiple
deployments of the same software and hardware and do not
have software bundled into the system price.

The constant p is one of the most crucial parameters in
the model. Because of its importance and because of the
difficulty of estimating its value, we determined the cumu
lative-cost ratios for 1985 and 1990 using values of p of I/S ,

1/4, 1/2, 1, 2, and 4. Figure 2 shows the 1990 results for
support-software expenditures (Qj) of two million dollars
and clearly illustrates the importance of p in determining
the most cost-effective computer family architecture.

At this point, a word of caution is in order. The error
analysis, to be described later, shows that the expected
uncertainties of the values of the input parameters can
result in substantial uncertainties in the cumulative cost
ratios. They imply that the reader should interpret the PDP-
11 and Interdata 8/32 curves of Figure 2 as ribbons having
widths on the order of twenty to thirty percent of the
illustrated values; the choice of the most desirable architec-

2.00

1.90

1.80

1.70

1.60

1.50

1.40

1.30

1.20

1.10

1.00

0.80

SUPPORT SOFTWARE EXPENDITURE, ~ = 2 x 106
1990 CURVES

INT 8/32

DEC PDP-II

o----<~--<:~.,...~--.o.--.o IBM 370

0.90 ~
0.70 L..--_--'-__ --'-__I.... __ -'--__ .L...-_---' __ ---L

Y.

SOFTWARE-TO-HARDWARE RATIO (Q)

Figure 2

ture for values of p between 1/4 and 2 (the values expected
in the military computing environment) is by no means
clear.

The architecture-dependent applications-software costs,
mentioned earlier, are AjFjk . Here Fjk is the amount of base
(nominal) applications-software expenditure that should be
used in determining the actual applications-software cost
for architecture k. It is dependent upon the available
support software for architecture k in year j.

In order to derive an expression for Fjk we began with the
same curves shown in Figure 1 of the Bottom Up model.
These curves give the cost per machine language instruc
tion as a function of available support software. One
hundred percent support software means that an "ideal"
set of software tools for military computer systems is
available. W. Svirsky, T. Giles, and A. Irwin of System
Development Corporation, West Long Beach, New Jersey,
generated these curves on the basis of the results of a
questionnaire sent to SDC project managers of five large
scale command and control software efforts. 7,25 They noted,
however, that the curves are largely judgmental and exam
ples can be found that yield costs per instruction above and
below the worst and best case data. The absolute cost per
instruction does not affect the Top Down model, however,
because the model depends only upon the relative cost-per
instruction vs support software, as opposed to the absolute
cost per instruction given by the curve.

From a graph of the SOC median curve, it appeared to us
that the interpolation function

(26)

might provide a reasonably good fit. Here y is the dollars
per machine language instruction, s' is the support software
availability in percent, and Ym, YM, and c are constants.
Insisting that this function pass through the three points (s',
y)=(20, 32.5), (50, 17.75), and (80, 10), in accordance with
the SDC supplied curve, we obtained Ym= 1.4196,
YM=49.151 and c=46.6171. Next we assumed that

(27)

where k' is a constant whose value is determined by the
additional assumption that when the average of the avail
able support software of the three alternative architectures
in year I, call it s', is substituted in equation (27) for s' we
should obtain Fjk= 1. Here we assume S' can be expressed
as

(28)

where Ujk denotes the available support software (meas
ured in dollars) in year j for architecture k, and T k the dollar
value of a 100 percent support-software base (or ideal
support-software base) for architecture k.

Several members of the CF A selection committee sur
veyed the industry and estimated values for the currently
existing support-software base for each candidate architec
ture and also estimated T k. The values they came up with

were:*

IBM 370
DEC PDP-II
INT 8/32

Life Cycie Cost Modds 195

Currently Available Support-
k Software Base ($) T k ($)

I
2
3

31.049M
20.790M
14. 100M

44.604M
43.893M
44.040M

Making the assumption that the currently available sup
port-software base values given above could be used in the
model for U lk' k = 1, . . . , 3, we obtained from equation
(28) that s'=49.7, and

Expres.sing Fjk as

we have

and

k'= l/y(s')

=0.05601

fm=k'Ym=0.0795

fM=k'YM=2.7528

h= l00/c=2.1451.

(29)

(31)

(32)

(33)

The doll.ar value of the available support software in year j
for archItecture k, Ujk , is given by

j

Ujk= U lk+ :L Qm, (34)
m=2

where Qm is dollar expenditure for support software in year
m.

The values of Qm have a significant impact on the results
of the model. Demonstrating this impact, Figure 3 shows
discounted total cumulative cost ratios for 1990. The cases
shown assume that Qm=x for m=2, ... , 13 and that x
r.auges from a taR .mi.Uion .do.Uats,. in.2 m.illion ~ dollaI:
increments, and that p varies by doubling from 1/8 to 4.
Figure 2 is, of course, a subset of these results. These
figures show that by increasing support-software expendi
tures we can effectively counter high values of p that may
be characteristic of certain computing environments. They
also show that as support-software expenditures increase,
the differences between the three candidate architectures
decrease. For low values of p the Interdata 8/32 appears
most desirable, for high values of p the IBM S/370 appears
to be the best choice; for intermediate values of p (between
1/4 and 1) the DEC PDP-II may be best. As mentioned
earlier, because of the uncertainties of the input parame
ters, these results should be interpreted with discretion.
Table IV is an example of the yearly software and hardware
costs data for a typical case (number 18) shown in Figure 3.

* M denotes millions.

196 National Computer Conference, 1977

TABLE IV

Year Case 18 (Reference)

2 3 4 5 6 7 8 9 10 11 12 13

78 79 i 80 I 81 82 83 84 I 85 86 87 88 j 89 90
Base Appl. Sftwe Exp. 7.14 14.3 i 21.4 28.6 35.7 42.8 50.0 ! 50.0 50.0 50.0 50.0 50.0 50.0
Base Hdwe Exp_. l$Mil) 7.14 14.31 21.4 28.6 35.7 42.8 50.0 ! 50.0 50.0 50.0 50.0 : 50.0 50.0
Total Yearly Software i , ~

(1) IBM ($Mil) 4.86 10.9 14.3
,

17.1 19.4 21.3 22.8 21.3 , 19.9 18.6 17.5 ~ 16.4 15.4
(2) DEC 7.48 15.7 20.8 i 24.9 28.2 30.8 32.9 30.4 ; 28.1 26.0 24.2 22.5 21.0
(3) INT 10.2 20.6 27.4 33.0 37.4 40.8 43.5 40.0 ; 36.8 34.0 31.4 29.0 I 26.9 i

Total Yearly Hardware I i

I
I I

I ! I
(1) IBM ($Mi 1) 4.26 8.59 12.8 17.2 21.4 I 25.7 I 30.0 30.0 30.0 \ 30.0 i 30.0 ! ; 30.0 30.0
(2) DEC 3.09 6.22 9.32 12.4 15.5 ! 18.6 i 21.8 ! 21.8 I 21.8 21.8 21.8 : 21.8 21.8
(3) INT 2.58 5.20 7.77 10.4 13.0 ! 15.5 I 18.2 : 18.2

I
i 18.2 18.2 18.2 ! 18.2

!
18.2 i

I i i Total Discounted I I I i Cumulative Cost I I

98.3 1126
j i !

(1) IBM ($Mi 1) 8.70 25.6 I 47.0 1 71.6 154 i 179 202 ! 221 239 ! 254 268

(2) DEC 10.1 29.1 52.8 1 79.6 108 ! 137 166 192 : 214 234 : 250 ! 265 278

(3) INT 12.2 34.5 62.2 ! 93.3 126 160 192 l 221 i 245 266 284 i 300 314 !

Total Discounted I i i i I 1
I ! I I i Cum. Ratios t !

(1) IBM 1.00 1.00 1.00 i 1.00 i 1.00 1.00 1.00 I 1.00 1.00 1.00
I

1.00 1.00 I 1.00 l
I

(2) DEC I 1.11 \ 1.08 1.06 1.06 1.05 1.04 i 1.04
I

1.16 1.14 1.12 1.10 1.09 1.07 J
(3) INT 1.40 1. 35 1.32 I 1.30 1.28 1.26 1.25 1.23 1.21 1.20 1.19 1.18 1.17 I

Discount Factor _(10%) 0.954 0.867 0.788 I 0.717 0.652 0.592 0.538 0.489 0.445 0.405 0.368 0.334 0.304 I
P OJ = 2xl06 Dev. Cycle = 7 a = 0.65 9 = 1.5 a = 0.8 b = 0.2

51' 52' 53 = 1.208, 1.000, 0.828 ml , m2, m3 = 1.266,0.928,0.850 r l , r2, r3 = 1.292, 0.938, 0.825

Results and sensitivity studies

Figures 2 and 3 summarize the results for 1990 of varying
the software-to-hardware ratio (p=Y8, Y<l., ~, I, 2, 4) and the
support-software expenditures (Qj:==O, I x 106

, 2x 106
, 4x 106

,

8x 106
). These variations constitute the first thirty cases of

the sensitivity studies.
All of the sensitivity studies assume the annual discount

rate is ten percent (the value recommended by References
13, 14 and used in Reference 8).

Further assessing the model's sensitivity, we selectively
perturbed individual input parameters about case number
I8's (p= I and Qj=2x 106) input data set to obtain twenty
nine additional input data sets. We chose the case 18 data
set as a reference because, at this time, it appears to
represent the most reasonable set of data based on our
current understanding of the requirements of military tacti
cal computer systems, the candidate architectures, and
probable life of the MCF.

Figure 4 summarizes the results of the sensitivity studies
(for cases 31 through 59) for 1990. The dotted lines in these
figures are indicative of the discounted cumulative cost
ratios for the reference data set (case 18), and the arrows
sho\v the amount and direction of movement from these
values as the result of parameter perturbation. From these

figures, we see uncertainties in the percentage of the ideal
support-software base available in year I (U lkff k), and
uncertainties in u, the ratio of yearly processor expenditure
to base hardware expenditure (Kj/B j), can have significant
impacts on the results.

Error analysis

Making the assumption that the errors in the measure
ments of the model's parameters are normally distributed,
the variance of the mean of the calculated discounted
cumulative cost ratio Rjk * due to variances of the means of
the model parameters Xm , m= I, ... , Np , can be approxi
mated by

(35)

where Np is the number of parameters under consideration,
and a-m is the standard deviation of the mean of the
parameter X

m
• 26,pp.97 -98

The partial derivatives were derived from the results of
the sensitivity studies in the preceding section. The stand-
ard deviations «(j m) \vere obtained for each parameter by
the method of "educated guess." It should be noted that

the standard deviations for p and Qj were assumed to be
zero. This is not because they are actually zero (in fact,
they are quite large) but because we desired to obtain an
estimate of the standard deviation as a function of p and Qj
for Figure 2. Here, Qj and p are independent variables.

The results of these calculations indicate that the uncer
tainties in the model's major results are quite large. Table V
summarizes the findings for a software-to-hardware ratio of
one (p= 1) and support-software expenditures of two million
dollars per year.

These results imply that because of uncertainties in our
input data we cannot clearly resolve the question of which
architecture is the most cost effective for this software-to
hardware ratio.

INTERPRETING THE RESULTS OF THE MODELS

The two models serve as checks against one another. The
bottom-up results indicate that in most circumstances the

CASE e Qj($MIL) CASE e Qj($MILI

1 Ys 0 16 1 0
2 Ys 1 17 1 1
3 Ys 2 18 1 2

2.00 4 Ys 4 19 1 4
5 Ys 8 20 1 8

1.90 6 Y4 0 21 2 0
7 Y4 1 22 2 1
8 Y4 2 23 2 2

1.80 9 Y4 4 24 2 4
10 Y4 8 25 2 8
11 % 0 26 4 0

1.70 12 % 1 27 4 1
13 % 2 28 4 2

1.60 14 % 4 29 4 4
15 % 8 30 4 8

1.50

1.40

1.30

1.20

I I I I ~ I I I I I § ~ ! I
1.10

1.00

0.90

0.80

0.70

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Life Cycie Cost Modeis i 97

TABLE V

K RSk* <TSk

IBM 1.00 0.000
DEC 2 1.06 0.205
INT 3 1.22 0.255

DEC PDP-II is superior to both the IBM S/370 and
Interdata 8/32 architectures. The top-down model results,
on the other hand, indicate that the S/370 is superior for
high (greater than one) software-to-hardware cost ratios,
while the Interdata 8/32 is slightly better for low (less than
one-fourth) ratios, and the PDP-II is best in between.
These apparently conflicting results were found to be due to
uncertainties in the input data, to different input require
ments, to contrasting basic model assumptions, and to
different methods of combining the same input data.

For example, the bottom-up model weights the raw S, M,
and R data, provided by CMU for the individual test
programs, according to the estimated relevance of each

16

1990 DISCOUNTED
CUMULATIVE COST RATIOS

o IBM 370

6 DEC PDP-11
o INTERDATA 8/32

I I § I I §

17 18 19 20 21 22 23 24 25

I
26 27 28 '-9 ~

Figure 3

198 National Computer Conference, 1977

1.60

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

LO
II w w

U ...J z u
W >-a: u
W
u.. > w w
a: c

o IBM 370

6 DEC PDP-11

[] INTER DATA 8/32

~
II

w
...J
u
>-u LO Q)

c::i c::i > N
w II II II II c ~ ~ Cl Cl

" 0) M

c::i c::i c::i c::i
II II II II
co co ..c ..c

'<:t co 0 '<:t
c::i c::i c::i c::i
II II II II
:::J :::J > >

1990 DISCOUNTED CUMULATIVE
COST RATIOS

N
c::i
II
<'l

~
:5

co Q) '<:t co '<:t
c::i c::i c::i c::i c::i #. #. #.
II II II II II ~ 0 0

f t <'l N N

f ~ ~ a.. a.. a..
::::> ::::> N ::::>

:5 :5 :5 :5 :5 N <'l
~ III III

#. #. #. #. #. #.
~ ~ ~ ~ ~ 0

N a.. a.. a.. a.. a.. a.. ::::> ::::> ::::> ::::> ::::> ::::>
E N E'" E .:- ~

1.00

0.95

0.90

18 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

CASE

Figure 4

program in each system application. It then combines these
into the composite processor speed and static storage
ratios, aij, and bij' The top-down model, on the other hand,
uses composite S, M, R ratios, which were derived by
CMU from the individual S, M, R measures for each test
pfl)gram and which were weighted by CMU to obtain
minimum statistical variance in these ratios rather than to
reflect the importance of particular application programs. A
result of these two different approaches to using the indi
vidual test program S, M, and R data is a difference in the
computed architectural efficiency of the Interdata 8/32 as
compared to the PDP-II. In the first case they are compa
rable, in the second the 8/32 is superior. A further result of
this difference is that if the unweighted S, M, and R data
are used in the bottom-up model, then the 8/32 becomes the
superior architecture in the 1976 calculations when the
hardware-software cost ratio is high. This agrees with the
top-down model results. Conversely, if the S, M, and R
data used in the top-down model were weighted as in the
bottom-up model, better agreement between the models
would result.

As another example, the assumptions leading to the ratio
of software costs to hardware costs are clearly among the
most important to the ultimate results, while at the same

time are among the most difficult to support with actual
data.

The uncertainty calculations in the preceding section for
the top-down model could be applied to the bottom-up
model with similar results expected. Because of the size of
these uncertainties, the results of the models must be
interpreted with caution. By chance, each of the three
architectures evaluated had either superior hardware attri
butes (the 8/32), or superior software attributes (the S/370),
or a good combination of the two (the PDP-II). As a result,
the combined hardware-software effectiveness of the three
architectures were relatively close. Probably the strongest
conclusions to be derived from the life cycle cost evalua
tions are that, within the uncertainties resulting from propa
gating errors in the input data throughout each model's
calculations, (1) the models agree and (2) all three architec
tures would be comparable choices based on life-cycle
costs.

REFERENCES

1. Smith, W. R., "AADC Computer Family Architecture Questions and
Answers," ACM Computer Architecture News, VoL 4, No.3, Sept.
1975, pp. 15-21.

2. Salisbury, A. B., "MCF: A Military Computer Family for Computer
Based Systems," Signal, July, 1976.

3. Coleman, A. H., "ArmylNavy Military Computer Family," Digest of
Papers of COMPCON 76, IEEE. Cat. No. 76 CHI 1 15-5C, Thirteenth
IEEE Computer Society International Conference, Washington, D.C.,
Sept. 7-10, 1976, pp. 230-232.

4. Estell, R. G., R. P. Sabin, and W. R. Smith, "Final CFA Selection
Methodology Subcommittee Preliminary Report," April 1976.

5. Cornyn, J. J., W. R. Smith, A. H. Coleman, and W. Svirsky: "Life
Cycle Cost Models for Comparing Computer Family Architectures,"
AFIPS Conference Proceedings, Vo!' 46, 1977 National Computer
Conference.

6. Cornyn, J. J., "Top-Down Life-Cycle Cost-Analysis Model for Selecting
a Computer Family Architecture," Naval Research Laboratory, Wash
ington, D.C., August 1976.

7. Svirsky, W., T. Giles, and A. Irwin, "Life Cycle Cost Analysis of
Computer Family Architecture (CF A) Finalists Within Army Embedded
Computer Systems," System Development Corporation, unpublished
manuscript generated for CF A Selection Committee, August 1976.

8. SADPR-85 Study Group, "Support of Air Force Automatic Data Proc
essing Requirements through the 1980's (SADPR-85)" Electronics Sys
tems Division, Hq. ESD (MCS), Hanscom AFB, MA. Six Volumes.
ESD-TR-74-192. Cited by Reference 24.

9. R. Tum, Computers in the 1980's, Columbia Univ. Press, New York and
London, 1974.

10. Fuller, S. H., W. E. Burr, P. Shaman, and D. A. Lamb, "Evaluation of
Computer Architectures via Test Programs," AFIPS Conference Pro
ceedings, Vol. 46, 1977 National Computer Conference.

11. Fisher, D. A., "Automatic Data Processing Costs in the Defense
Department," Institute for Defense Analyses, Arlington, Virginia, IDA
Paper P-I046, October 1974.

12. Wagner, J., et aI., "Procedure for and Results of the Evaluation of the
Software Bases of the Candidate Architectures for the Military Com
puter Family," 6 August 1976, prepared by the Software Evaluation
Subcommittee.

13. Shishko, R., "Choosing the Discount Rate for Defense Decision Mak
ing," Rand Corp, Santa Monica, Calif., R-1953-RC, July 1976.

14. AFR-I72-2; DODI 7041.3, "Economic Analysis of Proposed Invest
ments," 30 December 1969, Attachment 2, p. 42. Cited by Reference 8,
Vol. V, p. X-9.

15. Kossiakoff, A., T. P. Sleight, E. C. Prettyman, J. M. Park, and P. L.
Hazan, "DOD Weapons System Software Management Study," Johns
Hopkins Univ., Applied Physics Lab, Laurel, Md., June 1975, APL/
JHU-SR-75-3, AD-A022 16016WC. Abstract in Comp., Control, and
Info. Theory, May 3, 1975.

16. Chapin, G. C., "What is Different About Military Operational Pro-

Life Cycle Cost Models 199

grams?," AFIPS Conf Proc. Vol. 42, 1973, Nat. Compo Conf. pp. 787-
795.

17. Premo, A. F., Jr., "Computer Software: Estimating Guidelines,"
COMPCON 76, Digest of Papers, IEEE Pub. No. 76CHII15-5C, Sept.
7-10, 1976, pp. 146-151.

18. Boehm, B. W., "Information Processing/Data Automation Implications
of Air Force Command and Control Requirements in the 1980's (CCIP-
85), Vol. IV, Technology Trends: Software," Space and Missile Systems
Organization, AFSC, Los Angeles, Calif., October 1973, AD 919267L.

19. Boehm, B. W., et aI., "Information Processing/Data Automation Impli
cations of Air Force Command and Control Requirements in the 1980's
(CCIP-85), Vol. I, Highlights," April 1972, SAMSO/XRS 71-1, U.S. Air
Force, AD-900031L. Cited by References 9 and 27.

20. Private Communication, meeting ofD. Fisher, W. Smith, and J. Cornyn
on May 3, 1976.

21. McLaughlin, R. A., "1976, DP Budgets," Datamation, February 1976,
pp. 52-57.

22. System Development Corp., "Embedded Computer System Data Proc
essing Requirement for U.S. Army Weapon/Data Systems," Draft, 1
March 1976, prepared for CENTACS, U.S. Army Electronics Com
mand, Ft. Monmouth, N.J., Contract DAAB07-76-C-0334.

23. Grosch, H. R. T., "High Speed Arithmetic: The Digital Computer as a
Research Tool," J. Optical Soc. of Amer., Vol. 4, No.4, April 1953, pp.
306-310.

24. Withington, F. G., "Beyond 1984--A Technology Forecast," Datama
tion, January 1975, pp. 54-73.

25. Private Communication with AI Irwin, W. Svirsky, and Tom Giles of
System Development Corporation. SDS data is also cited on p. 88 of
Reference 28.

26. Young, H. D., Statistical Treatment of Experimental Data, McGraw
Hill Book Company, Inc., 1962.

27. Boehm, B. W., "Keynote Address: The High Cost of Software," TRW,
Redondo Beach, Calif., in Proceedings of a Symposium on the High
Cost of Software, Sept. 17-19, 1973, at Naval Postgraduate School,
Monterey, Calif., Stanford Research Institute, Meno Park, Calif., SRI
Proj. 3272, pp. 27-40.

28. Brooks, F. P., Jr., The Mythical Man-Month, Addison-Wesley Publish
ing Co., Reading, Mass., 1975.

29. Manley, J. H., "Embedded Computers-Software Cost Considera
tions," AFIPS Conf Proc. Vol. 43, 1974, pp. 343-347.

30. Taback, M. A. and M. C. Ditmore, "Estimation of Computer Require
ments and Software Development Costs," General Research Corp.,
Santa Barbara, California, RM-1873, March 1974, AD-782-220/8WC, p.
20.

31. Wolverton, R., "Cost of Developing Large-Scale Software," IEEE
Trans. on Computers, Vol. C-23, No.6, pp. 615-636, June 1974. Cited by
Reference 28.

A microprocessor architecture for
digital device implementation*

by THOMAS L. BOARDMAN, JR.
University of Colorado
Boulder, Colorado

ABSTRACT

A microprocessor based architecture for the implementa
tion of digital logic devices is presented. The architecture
facilitates replacement of portions of the hard-wired logic
chains within the device with groups of microinstructions
called kernels. MUltiple modules of a device may share the
processor simplifying interface problems such as buffering,
interlocking, and sequencing. This greatly reduces overall
package count, power consumption, system complexity,
and therefore system debug time and cost while improving
system flexibility with the programmable control store. A
three dimensional graphics displayprocessorforthe Tektronix
4014 terminal, built using Intel 3000-series microprocessor
elements, is discussed demonstrating the viability and bene
fits of this architecture. Such processor elements permit
approximately 250,000 twenty microinstruction kernels to
be executed in place of hard-wired logic per second.

INTRODUCTION

The control of basic digital logic functions such as sequenc
ing, data flow, and arithmetic unit operation by bits in a
programmable control store is at least as old as the EDSAC
II 09~3 .•. {Jnt" reeen#y. ~ver, th~m!t:·rop! ogrnmming
of logic functions served largely to improve system design
flexibility, not to reduce size, power consumption, cost, or
improve performance. The development of microprocessors
using MSI and LSI technologies has provided these addi
tional benefits and therefore significantly affected the digi
tal logic design process.·

Initial utilization of these microprocessors,2-4 centered
around the Intel 8080 and similar hundred thousand instruc
tion per second processors, was characterized by replace
ment of large sections of digital logic with serial execution
of stored programs interfaced to the outside world and
internal SSI logic. Such utilization made products such as
calculators, point of sale terminals, adaptive traffic control
systems, etc. economically feasible and will undoubtedly

* This report was prepared as a result of work performed under NASA
Contract No. NASI-14101 while the author was in residence at ICASE,
NASA Langley Research Center, Hampton, VA 23665

201

continue to represent a major part of the intelligent device
market. They are, however, limited to applications requir
ing at most several thousand operations per second since
each operation must be implemented as a series of machine
instructions.

Recent bipolar LSI technology has produced processors
such as the Intel 3000 and AM2900 series devices which are
capable of executing several million instructions per sec
ond. These processors, while capable of handling orders of
magnitUde faster applications, are mUlti-package systems
and therefore are not necessarily as cost or performance
effective. In addition, since their multipurpose nature de
mands many internal logic levels between input and output,
they can never completely duplicate the performance char
acteristics of SSI logic.

This paper describes an architecture for the interconnec
tion of such bipolar microprocessors and SSI logic which
can provide major logic function unit replacement for low
speed-requirement operations, minor function replacement
for higher speed-requirements, and direct logic execution of
time-critical operations. Examples of these modes include
matrix multiplication every several milliseconds (hundreds
of instructions), multiple-bit shift or buffer push/pop every
several microseconds (several instructions), and bit seriali
zation for disk transfers (hardwired logic).

SYSTEM ARCHITECTURE

The microprocessor system referenced herein as an ex
ample of the architecture being presented was designed to
support eight independent logic devices such as disk units,
communication lines, CRT's, and multiply-divide units. It
was implemented using Intel 3000 series microprocessor
elements with a sixteen-bit word size (eight two-bit arith
metic unit slices) and a sixty-bit microinstruction word. Use
of Intel components and these specific field sizes should not
be considered characteristics or requirements of the basic
architecture.

Whether it be along communication lines or wires etched
in a single circuit board, signals must be bussed between
the processor and the various devices of which it is a part.
The seventy bus lines required by this implementation are
shown in Figure 1. Thirteen lines are used for power

202 National Computer Conference, 1977

POWER AND REQUESTS DEVICE
TIMING SELECT CONTROL

ABUS
(DEVICE DATA)

Figure I-System bus structure

BBUS
(MEMORY)

distribution and timing signals which are described below.
Three lines specify which one of the eight devices is being
selected by a particular instruction. The following eight
lines allow the devices to request (interrupt) the processor
for execution of specific groups of logic-replacement mi
croinstructions. The interrupt structure, which makes the
processbr appear as a dedicated slave to each device, is
also described below. The following fourteen bus lines are
used to control the devices by initiating transfers to and
from the processor and operations at the various points in
the device logic chain. The next sixteen bits provide a
bidirectional data bus for inputs to and outputs from the
processor. Finally, the scratchpad read-write memory asso
ciated with the processor and thereby available to all
devices is addressed and accessed over a second bidirec
tional bus.

As with most bipolar microprocessors, the arithmetic and
processor (next address calculation) functions are per
formed by separate chips within the Intel 3000 family.
Figure 2 shows the specific configuration of these chips.
Figure 3 1ists the various fields which make up the sixty-bit
microinstruction. Many of these are specific to the 3000-
series elements and will not be described in detail. Others
will be referenced in the more detailed description of the
processor implementation which follows.

32

~

ARITHMETIC UNITS

(2-BIT SLICES)

DEVICE REQUESTS

Figure 2-Microprocessor configuration

14 I 7 16 I 7 14 131111121m

(4) CARRY CONTROL (1) INTERRUPT DISABLE

(7) NEXT ADDRE SS FUNCT I ON (1) ARITHMETIC UNIT DISABLE

(16) MASK I NPUT TO PROCESSOR (1) BRANCH ON CARR YIN

(7) AR ITHMET I C UN I T FUNCTI ON (1) BRANCH ON CARRY OUT

(14) DEV I CE CONTROL (2) MEMORY CONTROL

0) DEVICE SELECT (1) ZERO PROCESSOR INPUTS

Figure 3-Microinstruction fields

PROCESSOR-DEVICE COMMUNICATION

Communication between the microprocessor and each of
the devices, which occurs across the seventy-line bus
described above, is controlled by the timing signals shown
in Figure 4. The system is driven by a single twenty
megahertz CLOCK to insure that the devices and processor
remain synchronized.

An individual microinstruction begins execution with the
leading edge of the CPU CLOCK. This initiates the next
address calculation in the processor chip requiring approxi
mately fifty nanoseconds. Once the address is calculated, it
is presented to the (60-bit wide) microinstruction memory
and the instruction is fetched. This requires sixty nanosec
onds for the memory used in this implementation. At the
same time, the bidirectional busses are switched to provide
input from the devices and scratchpad memory to the
arithmetic unit bit-slices. As the instruction is being
fetched, an END CYCLE pulse is sent out terminating
execution of the previous instruction. Although all devices
receive this signal, it means only that they must relinquish
the bus and access to the processor. Internal logic chains
and interaction with their external devices may continue.

Once fetched, a portion of the microinstruction is
LATCHED to permit overlapping of this instruction with
the next instruction fetch. The remainder of the instruction
is presented to the processor elements directly and to the
devices over the bus as indicated in Figure 1. The new

20 MHZ CLOCK

CPU CLOCK .----
I

BUS DIRECTION ~
END CYCLE u
LATCH

~ ____ ~r-l~ ________ ~ __________ ~

BEGIN CYCLE
~ ______ ~rl~ ______ ~ __________ ~

i
~ 300 - NANOSECONDS----ttoi+j4--MEMORY TIMEj

Figure 4-Microprocessor timing

instruction is then initiated with the BEGIN CYCLE pulse
causing a specific device indicated in the instruction word
to be selected. If requested by the appropriate control bits,
the device immediately places data on the bus as input to
the arithmetic units. After a settling time, the falling edge of
the CPU CLOCK initiates execution of the microinstruc
tion specified in the instruction word. As indicated, the
arithmetic unit has access to both device data and memory
data for that execution.

After approximately fifty nanoseconds, the results of the
arithmetic unit execution are sent to the device selected and
to memory as the BUS DIRECTION is reversed. If this is a
memory reference instruction, the cycle is extended until
the memory signals that it is complete. Otherwise, the CPU
CLOCK rises immediately and the microinstruction execu
tion process is repeated beginning with the next address
calculation.

Notice that the device can specify input to the arithmetic
unit, wait for it to be processed, read the result, and
perhaps read a resulting value from memory (since the
bidirectional busses again reverse) before the END CYCLE
pulse terminates the instruction. This represents a signifi
cant characteristic of the architecture since most processors
permit only read device, or write device, or access memory
on a single cycle. In the class of interfacing problems for
which this architecture was intended: read, process, and
write operations are very common.

SYSTEM INTERRUPT STRUCTURE

The previous section described the event sequence for
the execution of a single instruction. Since the next address
opcode is part of each microinstruction (Figure 3), sequen
tial execution of instructions is unnecessary. Groups of
microinstructions required to perform a specific function
can, however, be thought of as logically sequential kernels.
These kernels perform operations for the digital devices to
which the processor is connected ranging from single in
struction shift operations to complex operations such as a
m,::ttrix mijltipUcat~Qn r~q\ljti{lg S~9t:~S of. iQ.~~ru~ctjpJJ.s.

To maximize the usefulness of the microprocessor to the
individual devices, execution of these kernels must be
possible at any point in a device's logic chain. The hard
ware interrupt structure provides this capability. In parallel
with the execution of each instruction, the interrupt logic
shown in Figure 5 monitors requests coming across the bus
from all (eight) devices. At the point in the execution cycle
immediately after the processor has computed the next
address, the highest priority request is compared against
the priority (number) of the device currently selected. If the
requesting device is of higher priority, the computed next
address is optionally stored in scratchpad memory and an
instruction dedicated to handling interrupts from the re
questing device is fetched.

The fetched interrupt handling instruction causes the
contents of a scratchpad memory location (interrupt vector)
dedicated to the interrupting device to be read, and
branches to an instruction common to all device interrupt

Microprocessor Architecture 203

I (MEM)--+CPU I

DEV I CE SELECTED

ILhsL
DEVICE DEVICE !

INTERRUPTING REQUEST !

INTERRUPT

ENABLE

Figure 5-Interrupt structure

handling. This second instruction copies the value read,
which is the microprogram address to be executed next for
that device, into the processor so that it can be used as the
next address executed, as depicted in Figure 5. Processing
(kernel execution) for the interrupting device begins on the
third instruction after the interrupt was received.

Any kernel can include instructions to change the con
tents of the interrupt vector and therefore point to a new
kernel to be executed following the next interrupt from its
device. This allows the processor to perform widely varied
tasks for a device at different points in its logic chain. Since
each microinstruction includes fourteen device control bits
(Figure 3), the processor can provide not only logic simula
tion but also sequencing of the logic chains within the
device.

Return from interrupts is handled by the same logic and
procedure by which they are initiated. The end of each
interrupt processing kernel is a branch to a NOP instruction
of lowest priority. Execution of this NOP is immediately
interrupted by the previously interrupted kernel, its inter
rupt y'~,ctQJ i~ r~ad.. and ,that v.alue becomes the next
address executed.

It was mentioned above that the next address calculated
immediately before an interrupt (return address) is option
ally stored in the interrupt vector for that device. If the
option is not invoked (as specified by a bit in the microin
struction word shown in Figure 3), the address is not stored
and the return procedure wilt reinitiate execution at the
point previously set in this vector address. This wilt typi
cally cause re-execution of some instructions. It allows,
however, general purpose arithmetic unit registers' to be
used without fear of their being altered between execution
of instructions within a kernel since those instructions will
be re-executed if an interrupt does occur. This represents
another significant characteristic of the architecture as it
reduces both microprogram size and save-restore time.
Conventional register-save schemes are inappropriate due
to the relatively small register complement in microproces
sors, the high interrupt rate (virtually all kernels are exe-

204 National Computer Conference, 1977

cuted in response to device requests), and the relatively
small size of most kernels.

An interrupt disable bit is included in the microinstruc
tion word for time-critical sequences of instructions. In
addition, the priority scheme protects higher speed devices
from being delayed by slower ones. Generally, however, it
is expected that hard-wired logic will be used to implement
time-critical functions utilizing the ease in switching be
tween logic and microinstruction kernels inherent in this
architecture.

SPECIFIC IMPLEMENTATION CHARACTERISTICS

Although specific details of the implementation are not
critical to the microprocessor architecture presented herein,
they are discussed briefly as one example of its utilization.
Intel 3000 series components were used to build a prototype
system to serve as a display controller for the Tektronix
4014 graphics terminal. Devices connected to the processor
include an interface to the 4014, a floppy disk controller, a
serial interface to a host computer, and a multiply-divide
unit. The system is capable of receiving segmented images
over a serial communication line from a host computer,
massaging this display data into a compact form, storing it
on the disk unit, and displaying the images with three
dimensional translation, rotation, and scaling in both the
store and refresh modes of the 4014. Functions performed
by the microinstruction kernels ranged from single instruc
tion read character and store in memory to using the
multiply-divide unit to mUltiply four by four matrices for
coordinate transformation.

Idiosyncracies of the Intel 3000 components permitted a
bit in the microinstruction word, shown in Figure 3, which
disables the arithmetic units so that non-destructive tests
may be performed. In addition, deficiencies in the condi
tional branch characteristics required bits specifying branch
on carry-in and carry-out.

ADV ANT AGES OF THIS ARCHITECTURE

The . computer architecture described in the previous
sections is intended to provide an approach to simplifying
digital logic unit design. Its major feature is the incorpora
tion of a high speed microprocessor to replace portions of
the digital logic chain with sequences of programmable
microinstructions. When properly applied, this will reduce
the package count, wiring complexity, power consumption,
and therefore overall system cost.

In applications where timing characteristics permit, mul
tiple devices can draw on a single microprocessor for logic
replacement. In addition to the obvious cost and complex
ity reduction benefits, this significantly simplifies the intra
device communication problems. Scratchpad memory can
serve as a buffer to mask the effects of differing device
speeds. Internal processor registers can be used to maintain
a single copy· of interlock and device communication con
trols. Perhaps most significant, the serial nature of the

microprocessor can reduce device race-condition conflicts
and serve to isolate the devices for debugging.

Naturally, the usefulness of including a microprocessor in
a digital design will depend on the extent to which it can
perform logic functions required by the design. Arithmetic
and shift operations, common within these processor ele
ments, easily replace hard-wired logic causing significant
reduction of space consuming data path wiring. Temporary
storage of data and control information, simplified by the
processor's internal registers and scratchpad memory, is
another candidate for logic replacement. In addition, the
processor's ability to control the device sequencing using
device control bits and updating the interrupt vector to
point to different kernels (states) can significantly increase
design flexibility and reduce re-wiring during the debug
process.

A final advantage involves simplification of the hard
wired logic debugging. Since, within this architecture, the
processor kernels are interacting with the device at various
states in the logic chain, test programs can be written to
repetitively active isolated portions ofthe logic. This allows
modular debugging and provides repetitive signals neces
sary for good oscilloscope traces.

A NOTE ON SPEED

In the preceding sections, specific timing characteristics
have been avoided as they do not directly affect the
architecture presented. The microprocessor system imple
mented as an example has a basic instruction time of 300-
nanoseconds with an additional 200-nanoseconds required
for memory reference instructions. That speed limitation is
largely due to characteristics of the Intel 3000 elements and
implies a minimum interrupt service time of one microsec
ond. (This includes one memory reference instruction to
read the vector address, one non-memory reference in
struction branch to the kernel, and execution of the first
instruction in the kernel.) This example could therefore
sustain megacycle request bursts and approximately 250,-
000 processor requests per second assuming ten to twenty
instruction kernels. This seems adequate for most logic
systems, and has proven so for the graphics display proces
sor application.

The real timing issue, however, is not absolute speed but
rather the relative speed of the processor compared to
available hard-wired logic. Assuming equivalent technolo
gies, the speed difference will depend on the overhead in
gate levels necessary to provide multiple functions within
the microprocessors. Evidence suggests l that this speed
reduction (or processor complexity) factor is fifteen to
twenty. The microprocessor architecture described herein
is oriented toward interleaving kernel execution and hard
wired logic. The speed factor implies that the processor will
be usable for those functions in the logic chain where the
design timing requirement is at ieast twenty times siower
than the basic logic time necessary to perform the function.

SUMMARY

A microprocessor-based system architecture has been pre
sented for the design of digital devices. It is centered
around the interconnection of the microprocessor and digi
tal devices in such a way that various portions of the digital
logic chain can be replaced with sequences of microinstruc
tions. Where mUltiple devices are augmented with a single
processor, the architecture provides a very convenient
interface between them. A prototype graphics display con
troller was built using Intel 3000 series microprocessor

Microprocessor Architecture 205

elements which has demonstrated the viability of the archi
tecture for realistic digital design problems.

REFERENCES
1. Rattner, J., J. C. Comet and M. E. Holt, Jr., "Bipolar LSI Computing

Elements Usher in New Era of Digital Design," Electronics, September
1974, pp. 89-96.

2. Bailey, S. J., "Microprocessor: Candidate for Distributed Computing
Control," Control Engineering, Vol. 21, No.3, March 1974, pp. 4~.

3. Hoff, M. E., Jr., "New LSI Components," 6th IEEE Computer Society
International Conference Digest, December 1972, pp. 141-143.

4. Weissberger, A. J., "Distributed Function Microprocessor Architec
ture," Computer Design, November 1974.

A hybrid computer interface
for microprocessors

by JOSEPH P. HElD
General Electric Company
King of Prussia, Pennsylvania

ABSTRACT

I/O Interfaces for Microprocessor Systems, designed for
use in analog data environments, should be made as power
ful as reasonably possible to compensate for the' 'no-frills"
micro-processor. The Hybrid Computer Interface (HCI) is a
multi-function module composed of standard off-the-shelf
components that augments the micro-processor's capabili
ties by performing not only the standard AD & DA conver
sions but also all four arithmetic, and compare operations.
Its central element is a programmable hybrid arithmetic unit
(HA U) which performs these operations directly on both
analog and digital operands. The HCI derives its program
from the micro-processor memory and operates either as a
pre-processing peripheral or as a self-sufficient processor
independent of the micro-processor.

INTRODUCTION

The performance-cost ratio of digital computers has im
proved significantly with the latest version-the I-L proces
sor. However, though sizable cost reductions in I-LP hard
ware have been realized, performance characteristics and
user convenience are somewhat compromised. But users
rriating~ digltal'computers "to anaiog onented 'data enVIron
ments have become accustomed to inconveniences not
shared by those designing in the all digital domain.

Typically, when interfacing a digital computer to an
analog data environment, the designer selects an AD/DA
converter system which first funnels the digital equivalent
of all analog operands into equations programmed for the
digital computer. The digital results produced by the com
puter are then reverse funneled back to the converter
system for distribution as analog display and control sig
nals. Unfortunately, these bi-directional conversion opera
tions are non-functional in that nothing useful is done to the
data; however all conversion operations, be they with
energy or with data, share the common problems of loss
and inefficiency.

It is generally acknowledged that the computer system
overpowers the typical application. With the more limited
I-LP the opposite might be true; compromises in I-LP perform-

207

ance dictate that it be bolstered by more powerful periph
erals so that the computational and processing burden can
be shared. It is suggested that a Hybrid Computer Interface
can share this burden when applying the I-LP to analog
oriented data environments.

DESCRIPTION OF THE HYBRID COMPUTER
INTERFACE (HCI)

The HCI is a programmable, multi-function module
which operates directly on both analog and digital oper
ands, and which produces analog and digital outputs. The
HCI is like a digital computer in that it is programmable,
executing instructions sequentially. Also the HCI contains
an instruction decoder and a single arithmetic unit. The
HCI differs from a digital computer by its use of both digital
and analog memory. Since the HCI operates on analog
operands directly, the language "separation" between it
and the user is less than for a digital computer. It is more
understandable than a digital computer because its logic is
less complex and because programming is less difficult.

The HCI block diagram shown in Figure 1 consists of five
functional components:

1. InstructIOn Decoder-decodes instruction words and
generates timing pulses for their execution.

2. Dual Input Mux-samples the two designated analog
input operands and routes them to the HA U .

3. Hybrid Arithmetic Unit (HAU)-performs the desig
nated operations with the selected input operands.

4. Output Distributor-routes the HAU analog output to
the designated analog memory output channel.

5. Discrete I/O-tests state of designated input discrete
and generates designated discrete output pulse.

Each instruction word consists of four four-bit fields; the
first field denotes the instruction to be executed, the next
three specify input and output addresses. The second and
third fields designate the two input operands selected by the
Input Mux; the fourth field designates the Output Distribu
tor channel for storing the HAU analog output, or the
memory location for storing the HAU digital output. For

208 National Computer Conference, 1977

.---------- ANALOG DATA ENVIRONMENT ----------t

p~' 16 32 ~~ 16 .~

-- -- - - --- -
• , ,~ E1

- EOUT
DISCRETE

DUAL HYBRID OUTPUT
ARITHMETIC -I- INPUT

I/O MUX E2 UNIT
DISTRIBUTOR

~
• ~~ ~II

DIIN~DL
4 ~

DD DOUT DC ,
FIELD NO. 4 2 2 3 1 4

INSTRUCTION DECODER

J,.

PROGRAM

FIELD NO. 1 2 16 3 4
OP

CODE
INPUT INPUT

ADDRESS E1 ADDRESS E2
OUTPUT

ADDRESS
I NSTRUCTI ON

WORD FORMAT
Figure I-Block diagram hybrid computer interface

the discrete signals the second field designates the discrete
input channel to be tested, the fourth field designates the
discrete output channel to be pulsed.

In addition to the analog inputs selected by the Input
Mux and the analog output routed to the Output Distribu
tor, the HAU also receives input digital words, and pro
duces an output digital word and a discrete flag bit.

Hybrid arithmetic unit

The HA U consists of a common set of interdependent
analog and digital components that executes the designated
instruction by input control signals from the Instruction
Decoder. It does not consist of independent computing
modules that rely on additional switching for routing of
inputs and outputs.

Transfer function and instruction repertoire

The Hybrid Arithmetic Unit (HLA1U) performs the follo\v ...
ing three transfer functions using the two analog and one

digital operands as inputs:

1. Analog- EOUT=El + E 2 xDIN

2. Digital-DouT=EI/E2
3. Discrete-Dc= 1, E 1>E2 xD IN

These three basic functions are expanded into the instruc
tion repertoire shown in Table I, eight instructions produc
ing an analog output, two producing an n-bit digital word,
and four producing a single comparison decision bit.

For several of the instructions the two input address
fields are not variables. The input operands are 0 or + 10 '
volts as implied by the op code.

HAU components

The HA U components that perform these instructions
are shown in Figure 2. They are:

1. Rl2R Ladder Network (n stages) sums bipolar analog
inputs El and E2 producing an output null voltage
current.

Hybrid Computer Interface for Microprocessors 209

TABLE I-HCE Transfer Functions

ANALOG TRANSFER FUNCTION (lOllS)

OP CODE
NO. MNEMONIC

a ADA ADDITION EOUT = EI + E2 DIN = +1

1 ADD = EI + DIN E2 = +IOV

2 SBA SUBTRACTION = EI - E2 D =-1
IN

3 SBD = EI - DIN E2 = +IOV

4 MPY MULTI PLICATi ON E2 x DIN E = OV
1

5 DAC DA CONVERS ION = E2 x DIN E2 = +HN

6 INP INTEGRATION = EI + E2 x DIN } Eo (t) = E1 (t+1)
7 INM = EI - E2 x DIN DI N = ~T

DIGITAL TRANSFER FUNCTION (20.uS)

8 DVD DIVISION DOUT = EI/E2

9 ADC AD CONVERSION = EI/E2 E2 = +10'1

COMPAR I SON TRANSFER FUNCTION (10 JLS)

A CPA D =1
C EI> E2 D =-1

IN

B CPO El>D IN E2 = +lOV

C cpp E1> E2 x DIN

D CPG EI> GND E = 0'1
2

LIMIT CHECK

B CPO DIN< EI < E2 = +IOV

(D I N + DL)

2. SPDT switches-connects E2 or - E2 to each 2R input
leg of the ladder. one additional switch routes the
ladder output.

values that produces a signed multiplication of the E2
input.

4. H Register-stores the digital data input operand DI~
and the digital output ratio DOIJT ' 3. Digital Mux-selects one of four digital, coefficient

210 National Computer Conference, 1977

EOUT

E1

E2 DC

Figure 2-HAU functional components

5. Limit Check Adder-adds limit span value DL to low
limit value stored in H register (for Hi-Lo limit check
ing).

6. Inverter Amplifier-inverts E2 for input to switches,
converts the ladder output current into the analog
output voltage.

7. Comparator amplifier-amplifies null voltage at ladder
output producing the discrete output for compare
instructions.

8. Ratio Sequence Logic-executes the trial and error
sequence for the divide and AD conversion instruc
tions.

HAU operations

When the HA U adds two analog operands the + 1 coeffi
cient input of the Digital Mux is enabled causing all the
ladder input switches to select the E2 input. For subtrac
tion the -I coefficient input of the Digital Mux is enabled
causing the ladder input switches to select the - E2 input.
For both instructions the contents of the H Register do not
enter into the operations. However, when analog and digital
operands are added or subtracted, the contents of the H
Register, or its complement, are gated thru the Digital Mux
by the + H, or - H coefficient input to produce a signed
mUltiplication of the E2 operand. For all analog transfer
function instructions the ladder current output is connected
to the output inverter amplifier thru the SPDT switch,
thereby producing a proportionai voitage EOUT '

For digital and comparison transfer functions the ladder

TABLE II

Analog
Digital

Volts Sign Mag

+9.92 177
+5.00 100
+0.08 001
+0.00 1 000
-0.00 0 177
-0.08 0 176
-5.00 0 077
-9.92 0 000

output null voltage is connected to the high impedance
input of the comparator amplifier. Both of these transfer
functions are subtractive in nature; the digital transfer
function drives the ladder output voltage to a null in
deriving the ratio of the El and E2 operands, whereas the
comparison transfer function creates a null voltage equal to
the difference of these operands. The divide instruction also
performs the inverse hyperbolic operation of lIX where the
numerator constant 1 is represented by a fixed analog
voltage of 0.1 volt for a two decade coverage of 0.1 volt to
10 volts for the divisor input. This range for division
extends the standard comparator amplifier and requires
additional sensitivity for the full two decade range. (Na
tional LM III comparator)

For limit check instructions two compare operations are
executed; the first operation checks that the El operand is
above the low limit stored in the H Register. The second
operation checks that the El operand is below the sum of
the low limit and the Hi-Lo Limit span value DL. The
positive sense of Dc is tested for the low limit check, the
negative sense of Dc is tested for the high limit check.

All HA U analog inputs and outputs have a + / - 10 volt
range. The analog digital scaling for signed eight bit digital
words is illustrated in Table II.

The analog and digital results produced by all HA U
operations are arithmetically consistent over all four quad
rants inherently, without need for additional flag instruc
tions or hardware. However, for the digital transfer func
tion divide instruction the sign of the E2 divisor/operand is
first tested in order to establish the Dc or negative Dc
sense of the comparator amplifier for the trial and error
sequence to follow. Table III lists the quotients produced
for the four quadrants. When E2 is positive the negative Dc
sense causes each trial stage of the H Register to be reset;

TABLE III

Don

+IOV -IOV
E2=El S Mag S Mag

+9.92 177 0 000
+5.00 I 100 0 077
+0.00 I 000 0 177
-5.00 0 077 100
-9.92 0 000 177

when negative the positive DC sense causes it to be reset.
By testing the ladder null output prior to initiating the trial
and error sequence when the H Register is reset, the effect
is identical to mUltiplying the E2 by + 1 thereby permitting a
polarity check on the E2 operand. This test always assumes
that E2 is larger than E 1 , as it must be; if not a null is never
attained, producing a full scale digital output.

The timed sequence of operations performed by the HA U
for the three transfer function instructions are illustrated in
Figure 3.

Discrete I/O

The mux for discrete inputs selects the designated signal
for input to the /LP where its state is interpreted appropri
ately. The output distributor for discrete signals performs
the reverse function; the designated discrete output channel
is activated to perform its user assigned function. The
common format for these two discrete instructions as
shown below, is consistent with that for the three HAU
transfer functions.

.4-------16--------__ ~.
2 3 4

I~ I 5 L L Discrete
Output Address OP Code

I/o Bit
Discrete Input ___ ~

Address

THE HCI AS A /LP PERIPHERAL

By using the HCI as a peripheral to a /LP, two comple
mentary arithmetic units are brought to bear on controV
computational problems. The problem is divided to allow
the HCI to perform preprocessing computations and edit
ing. The /LP provides overall direction and coordination and
performs the program storage function. Figure 4 illustrates
the I/O ports required to establish instruction and data
communications between the HCI and /Lp. Two output

z
o
;:::
u z
C2

* ~

OPERATION

- INSTRUCTION DECODED

-ANALOG

- INPUT OPERANDS ENABLED
-. INPUT OPERANDS STORED
- OUTPUT AMPLIFIER ENABLED
- TRANSFER EOUT TO OUT. CHANNEL

-DIGITAL

- TEST SIGN OF E2 !DIVIDE)
- TRIAL & ERROR SEQUENCE
- TRANSFER D OUT TO IlP PORT

-COMPARISON

- TEST COMPAR. AMP. OUT.

- L! MIT CHECK

- CHECK LOW LIMIT
- ENABLE DL INPUT
- CHECK HIGH LIMIT

____ I'l

~
I

Figure 3-HCI transfer function operations

Hybrid Computer Interface for Microprocessors

HYBRID COMPUTER INTERFACE

~ j FIELDS

., ~ DIN. FIELDS DOUT

DL
1&2 3&4 D D c,

II II I
J~ j

~
lIP

Figure 4--JLP/HCI interface

211

D
I/O
PORTS

ports of eight bits each are assigned to the 16 bit instruction
word. Two ports, one output and one input, handle the
transfer of the digital data words ap,d discrete signals.

Figure 5 illustrates the sequence of operations executed
by the /LP for servicing the HC!. Instruction execution
times are reduced by 20-30 percent by the addition of a
buffer register for the instruction word, allowing the /LP to
fetch the next instruction concurrent with HCI operations.
However, when the HCI signals a branch in the program
the instruction in the output port must first be replaced with
the designated instruction. The HCI waits for this fetch.
The period defining the computational cycle is established
by an external clock which interrupts the /LP at the begin
ning of each cycle.

THE HCI AS AN INDEPENDENT COMPUTER

The HCI as described includes four of the five compo
nents of a complete computer: it lacks only digital memory.
By adding the memory component the HCI operates inde
pendently of the /LP. This capability might prove very

~T

COMPUTATIONAL PERIOD

~I~r-----------~n~----~~~I
INSTRUCTION NO. 1 2 N 1

LOAD OP CODE PORTS I I I I H:/----1.1.-.J1---1L..-..-I.1

TRANSFER I NSTRUCTI ON __ .1.--_______ -'--_

LOAD DATA PORT (DIN)

LOAD DATA PORT (DL) *

COMNlAND EXECUTION

STORE DATA PORT*

"EXECUTED ONLY FOR DIGITAL OR COMPARISON FUNCTIONS

Figure 5-JLP operations

212 National Computer Conference, 1977

useful in distributed computer systems where a central
computer coordinates several remote, semi-autonomous
intelligent terminals. A distributed system application may
not warrant the use of a fLP at each terminal because of the
simplicity of the processing and computations. However,
the services of a computer for special support would be
available as needed via the communications links.

This memory addition to the HCI is augmented with
appropriate logic to permit program branching and looping.
Also the digital transfer function instructions that produce
digital outputs for storage, and comparison transfer func
tion and discrete test instructions that enable the program
sequence to be altered, must be accommodated.

Inasmuch as the output address field, by its four bit
length, limits the range of memory locations to be directly
addressed, an intermediate memory permitting indirect ad
dressing is employed. The output address field of the
instruction fetches the final memory address from this
intermediate memory. This intermediate memory contains
16 locations in each of three sections, one each for the
digital, comparison and discrete test instruction types.

In a dedicated application this independent memory for
the HCI would be mixed ROM and RAM. The ROM
memory would store the fixed program while the RAM
would hold digital results produced by the HCI and used in
subsequent instructions.

PROGRAM ROUTINES

In addition to the basic instruction repertoire executed by
the HCI, a sequence of these instructions can be grouped to
perform the next higher order computations such as squar
ing, square root, function generation (non-linear sensor),
differentiation, intercept-slope correction, as well as com
plete programs for 3 mode process control algorithms. The
following example demonstrates how such sequences are
programmed for the HCI.

Squaring

The flow chart for the four operations constituting the
squaring sequence is shown in Figure 6. The first two
operations are preliminary in that the input is first sampled
and held on an output memory channel which serves as the

FLOWCHART
PROGRAM

r- INSTRUCTION OP CODE I
LOAD H
REG 110001

EO -1' EO - 1 x DOUT

. X'
Figure 6-F1ow chart squaring sequence

input for the next operations. The sample and hold opera
tions though not necessary eliminate errors due to sampling
skew. The AD operation converts the input variable to its
digital equivalent and the final mUltiply operation produces
the product of the analog input and the contents of the H
register.

Square root

The square root sequence employs an iterative technique
based on the equation:

Yi +1=} (Y i + ~)
y._X

=y.-~
I 2

where the ith value had been produced previously during
the i-lth computational cycle. The square root flow chart,
shown in Figure 7, consists of ten operations. The first four
operations tests that the input variable is positive and
assigns the initial trial value as a function of the input value,
in order to hasten the convergence. The next seven opera
tions form the iterative loop which calculates the delta
change in the next trial value. When the delta change is
within the + and - tolerance value, the limit check
operation causes an exit and produces the calculated square
root value at an output channel. A total of four analog
output channels and six analog input channels are used
during the square root sequence. However, eight of these
channels serve in a scratchpad capacity in that they can be
used for other such sequences. In order to eliminate the
necessity of using addressable input/output channels for
scratchpad purposes an additional set of committed internal
input/output channels are provided. The instruction address
fields activate these channels instead of the user input/
output channels, by command from the fLP.

Differentiation

The differentiation sequence shown in Figure 8 consists
of seven operations. The first operation derives the boE
numerator, the next two convert the digital boT value stored
in the fLP memory into its analog equivalent. The division
operation produces the derivative in digital form, the fol
lowing D-A operation presents the derivative in analog
form. The final operation stores the current operand value
for use in the next computation cycle. The boT value is
proportional to the computational period.

Hardware diagnostic

The performance of the HCI is checked by diagnostic
programs since it can analyze the results that it produces .
These programs test that all input and output channels as

EIN - X

X
Vi + 1 • Vi - 1I2IYi - r

I

Hybrid Computer Interface for Microprocessors 213

r- INSTRUCTION-,
OP CODe

X >GROUND D

LOAD INITIAL GUESS F

EO - 2 - Yo 5

X
Dour- Yj 8

EO - 3 - Vi - DIN 3

LOAD 112 F

EO_3-1I2(Vi-DIN' 4

LIMIT CHECK B
-DL < Eo - 3 < + DL

EO - 2 - V i + 1 2

• Eo - 2 - EO - 3

Figure 7-Flow chart square root sequence

well as the components of the HA U are functioning cor
rectly. Typical of these diagnostic programs is the tracking
program shown in Figure 9. This program produces an
output which tracks an input triangular waveform by means
of compare instructions which increment or decrement the
contents of the DL register to maintain a null. The subtract
instruction indicates the tracking error between the input
and output signals. The execution time for this program is
30 microseconds allowing an eight bit HCI to track a ramp
of three volts per millisecond within one bit.

SUPPORT SOFTWARE

No software has been generated to reduce the HCI
programming problem. However because of the small num
ber of instruction types the programming problem is not
severe. Most HCI programs are relatively short because of
the three-address instruction format and because the HCI
operations are inherently more functional. Therefore, a
viable solution is to machine code the program for direct
entry into the ILP memory.

214 National Computer Conference, 1977

FLOW CHART

SUBTRACT

l
LOAD

1\ REG

~
DA

t--__ Eo-l CONVERT

1
IICI

Eo-2

Eo-3 = ~.~ DIVIDE

!
DA

CONVEnT

!
STORE

E(l) VALUE

PROGRAM

INSTRUCTION

Eo-l =E(l) - E (l-l)

= EIN - EO-l = 6E

LOAD AT
(BASED ON COl\lP. INTERVAL)

D = 6E EO-l
au T 6 T(l) EO-2

EO-3 = 0 x E =~
OI,JT R 6T(l)

EO-I = E(l) + E2 x DIN

(II REG) = 10001\

OP CODE

F

Figure 8--Flow chart differentiation sequence

PROGRAM
FLOW CHART I NSTRUCTl ON

SIGNAL
+10V

RESET
GEN. H REG. LOAD H REG. (100)

E1

E2 = +10V
HYBRID

DIN = +0 ARITHMETIC EOUT

DL • VARIABLE =:! UNIT I!DISPLAYS
ADDER ENABLE TRACKING

ERROR)

E1> E2 X DL

DC = 1,INC. DL

DC = O,DEC. DL

EO = E1 - E2 X DL

OP
CODE

F

C

3

DL = UP/DOWN CTR (PROGRAM LOOP I NG EXECUTED BY J1 P)

Figure 9-Tracking diagnostic program

The main f.A-P program fetches these HCI instructions
from its memory and initiates each computational cycle by
an interrupt from an independent timing source. These and
other such housekeeping type tasks are handled by routines
programmed for the f.A-P.

HARDWARE COMPONENTS

The component complement for the HCI consists of ofI
the-shelf hardware. The Dual Input Mux and Output Dis
tributor is composed of analog devices such as gates, and
sample and hold amplifiers. The HAU consists of a 10K R/

Hybrid Computer Interface for Microprocessors 215

2R ladder, inverting mode op amplifiers, SPDT analog
switches (RON <40fi), a comparator amplifier, and variety
of 7400 TTL digital les. The instruction Decoder and the
Discrete I/O section consists entirely of 7400 TTL digital
ICs.

For an eight bit HA U the number of ICs of all types total
approximately 90. The cost of these ICs totals approxi
mately $700. Over half of this expense is for the sample and
hold amplifiers. Using a less expensive sample and hold
amplifier reduces the IC cost to $500 (non production
quantities). The standard voltages of +5, + 15, and -15
volts are required. Total power dissipation is less tran 2
watts.

PM/II-Multiprocessor oriented byte-sliced
LSI processor modules

by MARIO TaKaRa
Keio University
Yokohama, Japan

and

TAISUKE WATANABE, KATSURA KAWAKAMI, JUN SUGANO and KATSUHIKO NODA
Matsushita Research Institute Tokyo, Inc.
Kawasaki, Japan

ABSTRACT

This paper is concerned with the design and implementation
of LSI processor modules named PM/II. The basic con
cepts involved in designing PM/II modules are (1) to
provide maximum flexibilities with the smallest kinds of
modules, (2) to construct a wide variety of computers from
micro to midi and/or maxi where the total number of
components are at a minimum, and (3) to realize PM/II in
"the process free design" which avails itself of the idea that
basic architecture is invariant even when implemented in
any semiconductor process. PM/II are now actually being
produced in CMOS.

At present the PM/II modules provide an Executor (EX),
a Sequence Controller (SC), and an I/O Controller (laC).
They realize three dimensional extensibilities, i.e., (1) for
functions through functional decomposition, (2) for varying
bit-width of operation by byte-slicing, and (3) for multipro
cessor configurations by using a sophisticated inter-proces
~~r S2IA~~I'1:i~!:l!i.2n (tl.nction~ A }ntl1tip[Qc:~~~o,r: ~y~te.m ~Qn).~
posed of PM/II's is already running, proving the validity of
the design concept.

INTRODUCTION

Recently rapid progress in semiconductor technology has
put high density and low power-delay LSI products to
practical use. In the case of density, it has even been said
that for semiconductor processes there exist no problems
even when the demand for large amounts of gates per chip
are taken into account by computer architects. While
various kinds of microprocessors have been consumed in
great quantity, to a large extent the LSI-zation of mini and
office computers has prevailed. LSI hardware has the
potential to change the architecture of middle and/or large
scale computers in the near future.

Several approaches to the development of LSIs for

217

middle and/or large scale computers are immediately appar
ent. One approach is to make a chip which contains the
total functions of an individual CPU. Yet this has the
disadvantages of lack of flexibility; (1) when design errors
occur, (2) when design changes in technological develop
ment occur, (3) in system configurations and applications, (4)
in testing chips, and (5) in the trade off between pins, yield
and power dissipation. So far only 8 to 16 bit simple
microprocessors have been realized due to these disadvan
tages.

If the principle of mass-production of a few LSls is
hereafter held to, it seems profitable for manufacturers to
develop as few kinds of chips as possible from which a
variety of computers-ranging from micro to midi and/or
maxi, can be composed. The straightforward approach to
this problem seems to be the use of the concept of
processor modules, which are sometimes called computing
modules or computer modules. This approach attempts to
develop minimum kinds of LSI processor modules with
m<:t:ximum ~~p~~iliti~~ !n ~~C~t~O that~ny ,diS!t?l, §y~~e.I11
can be composed of the smallest number of them. Some
research on processor modules has previously been accom
plished,1-4 with the one realization being bit-sliced micro
processors such as MMI6701, Inte13000, AMD2900, Ma
crologic, SBP0400, and M10800. The performance and the
flexibility of bit-sliced microprocessors in applications has
been proved. However, a number of MSI modules and/or
SSI modules are indispensable when composing an applica
tions system. This is caused by the following: (1) bit-sliced
microprocessors have been developed to extend the capa
bility of ALU's which still require the design and manufac
ture of many support modules, (2) they do not get rid of the
family series of MSI's, and (3) they have been developed
with excessive restrictions on the number of gates per chip
and on the number of pins. Yet processor modules shou!d
be essentially designed through analyzing various com
puters and their applications and decomposing into func
tions for those applications, and then synthesizing the

218 National Computer Conference, 1977

functions into combinations of modules in order not only to
gain maximum flexibility in system configuration, but also
to be able to compose systems with a minimum number of
components.

PM/II is a series of processor modules designed with the
above considerations taken into account. The authors have
classified the applicability, (i.e., the extensibilities of the
capability of processor modules) into the following three
criteria: (I) extensibility of functions, (2) extensibility of bit
width of operations, and (3) extensibility of total system
performance. The first means the availability for the addi
tion or change of functions such as a multiplier/divider to a
system. In order to satisfy this requirement, PM/II is
functionally decomposed. For the second requirement, the
execution module of PM/II is designed byte-sliced. And for
the last one, a powerful function available for multiproces
sor configuration is attached, since mUltiprocessor systems
have been becoming important in realizing high perform
ance systems.

In addition, the architects have proposed "the process
free design" against various restrictions from semiconduc
tor technology. That is the methodology of design in which
the basic structure is invariant in spite of the change of
semiconductor processes, and in which maximum perform
ance can be obtained with a single process. CMOS process
has now been taken for the actual development. However,
PM/II modules will have the same capabilities in other
technologies. Moreover, they will give better performance
in other technologies such as Shottky TTL, and/or in
improved technologies expected in the future.

The three basic modules in PM/II have been designed and
are being processed. They are a Byte-Sliced Executor (EX),
a Sequence Controller (SC), and an I/O Controller (IOC).
At the present, a multiprocessor system with three proces
sors including breadboards of PM/II is running, satisfying
the design purpose and proving the validity of the design
concept. The rest of this paper is devoted to the description
of the design concept, architecture, application, and evalua
tion of PM/II.

DESIGN CONCEPT

A CPU can be functionally decomposed into a number of
functional blocks such as several data processing blocks, a
sequence control block, an 110 interface block, a control
memory, and a main memory. Such a method of decompo
sition, e.g., functional decomposition, decreases the num
ber of connections among blocks, and this leads to a
decrease of pin numbers of a chip when producing an LSI
module. It is also preferabie from the point of semiconduc
tor technology to have the work load, processing speed,
and chip size of blocks balanced among the blocks, unless
the flexibility of each block is lost.

'On designing processor modules, the most principally
used blocks have been newly designed, e.g., ALU, se
quence control block, and I/O interface block, while control
and main memory have not needed to be r~designed.

The ALU may vary its operations and bit width as a

function of its performance objectives. Bit-slicing is applied
to the module with the powerful instruction set for compos
ing the ALU, so that functional flexibility and semiconduc
tor technological balance is satisfied.

A sequence control block calculates the next address of
its control memory. The address space is generally limited
to a fairly small size, and dynamic microprogramming
techniques are feasibly employed for large microprograms.
This results in a sequence control module with a powerful
addressing calculation capability, which is not bit-sliced.

Data processing blocks are connected to buses. Since bus
configuration and the control method varies according to
the application, it is profitable to separate 110 control
functions from data processing blocks to form an 110
control module. An 110 control module has been designed
for an asynchronous bus. The module is composed of
relatively few gates, so it is not difficult to redesign to meet
other buses.

Based on the above considerations, designs of these three
modules have been carried out from the following view
points, which are proposed to construct a figure of merit of
processor modules, e.g., (1) processing speed, (2) configu
rational flexibility, (3) performance/cost of control memory,
and (4) availability for mUltiprocessor systems.

Processing speed

Pipelining

In order to obtain high speed processing capabilities,
instruction fetching and the execution of modules are
overlapped to form pipelining. This technique is very effec
tive when the cycle time of the control memory and the
execution time of modules are balanced. Therefore it agrees
with the process free design method.

Conditional jump instructions take extra cycles in pipe
lining, which may cause inefficiencies in execution time and
control memory utilization. To minimize these inefficien
cies, a signal named "Wait" has been introduced which
suspends the execution until a designated condition is
satisfied. This signal is available for quick responses in
process synchronization which are frequently encountered
by I/O instructions. On the other hand conditional branching
routines are essentially left conditional. Microinterruption
is provided to recover from a dead lock.

Inside the module EX, a pipeline technique is also
adopted for data transmissions into and out of the ALU.
Three-address instructions for EX are employed for this
reason.

Two data ports

The data transmission delay between LSI chips is several
times longer than that inside a chip, and this may limit the
rate of data throughput. In order to gain a high rate of data
throughput, two independent parallel data ports are pro
vided, which largely affect the bit width of operations in an
EX.

Configurational flexibility

Byte sliced

The width of parallel operations in an EX is designed to
be eight bits, or a byte, which is generally the smallest unit
of data. While this decision has been made to balance with
the number of pins and the size of the chip area of an SC,
this has satisfied the requirement of extensibility for bit
width of operations and consequently has brought about
configurational flexibility.

Two data ports

An EX, provided with its two independent data ports,
increases configurational flexibility of the PM/II. For exam
pie, one port is assigned for a system bus and the other for
the processor bus which connects local memory, multiplierl
divider, and other devices. Another scheme is where one
port operates asynchronously and the other synchronously.

External modification

SC is designed to have an 8-bit External Address Modi
fier (XAM) input port, which enables it to modify the next
address of the control memory dynamically. By connecting
a PLA decoder or such a device to XAM, quick response
for parallel branching is easily attained which is signifi
cantly effective for real time control and language emula
tion.

Addresses of general registers in EX can be designated
by data. This enables indirect register designation which is
essential to emulation.

Performancelcost of control memory

Module instructions

Each module has 0 its OW.Il wstructiwl. set indepeDden.t.
from the others, which is partially encoded. The microin
struction format becomes wide when modules are combined
to compose a system, so that the control memory cost
becomes quite expensive. However, when constructing a
low price processor, one is not required to prepare a full
parallel control of resources in the system. In order to meet
the requirement of parallel control with reasonable cost, a
"Chip Enable" bit is attached to the instruction of each
module. If a chip is not selected, a "No Operation"
instruction is generated inside. This bit very easily and
directly enables the overlap of fields among modules.

Availability for multiprocessor system

Communication synchronization

Usually, a "Test and Set" instruction for a flag is used to
synchronize communications between processors. How-

PM/II 219

ever it is more efficient to provide a register with a flag,
which is set simultaneously when a message is transferred
to the register if and only if the flag is off. This facility is
adopted and implemented in an EX. A P-Register (PR) ,
which is an 8-bit register in an EX, receives information
from other processors. The content of the PR is not
affected until a flag named P-Register Full (PRF) in the 10C
is reset by an instruction.

Bus system

The IOC is designed to interface the EX with an asyn
chronous bus system. The asynchronous bus system is very
general and extensible in mUltiprocessor construction. In
this bus system, processors, memories, and the other de
vices are uniquely addressed, and the communications
between them are carried out by handshaking. A distinctive
feature of this bus system is its special signal (RSYNC)
which supports the communications between processors.

SPECIFICATIONS

PM/II is being implemented by the CMOS process. The
delay of logic elements has been confirmed on test chips,
showing for example that the delays of an inverter, a 2-input
NANDINOR, and an 1/0 pin are at most 5, 10, and 30 nsec,
respectively. The specifications of each module are shown
in Table I. The maximum number of the pins of the LSI
package are 60, and more than 4500 transistors are included
in SC and EX chips. Cycle times of 240 and 280 nsec are
expected in 16 and 32-bit system operations, respectively.

Executor

The block diagram and instruction set of the EX are
shown in Figure 1. Four types of instructions are designed
to obtain smooth pipeline processing. The first type of
instructions, which are the most typical ones, consists of
fuur-f!eftt! ~ ,:&~~~ct.'H'~iat!c~r{~~I.Oj ,.--~~~~~ It ant! c. -nn~ ~t1titeti!si
of General Registers or I/O Registers designated by A and B
are transferred to the ALU through an A and B-bus.
Concurrently the contents of Accumulator (ACC), which
holds the results of the previous operation, are stored into
the register designated by the C field through the C-bus. Six
kinds of operations, ADD, SUB, AND, OR, XOR, and
LAJ, are performed in ALU. The LAJ (Load Adjust)

TABLE 1 - SpecIfications

EX SC IOC
------- ___ ~ __ o

PACKAGE 50PINS SO PINS 24 PINS

ELEMENT 4500 Tr 4500 Tr 1000 Tr

SIGNAL LEVEL TTL COMP.A.T!BLE TTL COMPATIBLE TTL COMPA TlBLE

BIT WIDTH B BITS 12 BITS

INSTAUCTIOI\I WIDTH 19 BiTS 38. TS

INSTRUCTION SET

CYCLE TIME 240ns. min 240n5. min

REGISTER 24 WORDS 16 WORDS

powe R SUPP L Y 10V. 5V. OV lOV. 5V, OV 10V 5V 0"

CLOCK PHASE 2 PHASES 2 PHASeS 2 PHASES

CLOCK PERIOD 120nSEC 120n SEC 120nSEC

220 National Computer Conference, 1977

+10V
+ 5V

INSTRUCTION WAIT CE CLOCK GND CLEAR MODE

~1 ~2 ~3 t}1 ~1

G.P.

DECODER

CONTROL

p SHIFTIN

CARRYOUT~~-==-~~~~

C,Z,
S,OVF

GENERAL

REGISTERS

8 BITS

X24 WORDS

.,:~~~~~~: .

. #::Mi@:ll:;M:;t@tmlMH'::~S:).ij~ .. · .. di::immW:lmlm;:i.~1l

CARRYIN SHIFTOUT

~

I I AO A B C

E I C

SR NU I B C

ST NU C

J-4 ---+-2-1-3 -~ 5 --014-1. - 5 --I

A SOURCE FIELD E : EMIT AD: ALU
B SOURCE FIELD I IMMEDIATE DATA

OPERATION

AROUT
DROUT
ORIN
PRIN

4

E<p"'E7

C DESTINATION FIELD SR: SHIFT/ROTATE (ADD. SUB. AND
ST: STO R E ACC/ST R OR. XOR. LAJ)

Figure I-Block diagram and instruction formats of EX

I"
o
I
-eo

f-
0::
o
a-
D

2

ERIN
EROUT

instruction is effectively used for the decimal operation,
which sets "6" for every four bits of the ACC as the result,
if separate carries of each 4-bit addition are generated.

The second type of instruction sets immediate data into a
register designated by the C field. The third type is de
signed for shift and rotate operations, having one operand.
The fourth type, which specifies the data transfer from
ACC or the ALU Status Register (ASR) to a destination
register, has an 8-bit Not Used field, which is efficiently
used when combined with the SC instructions.

These instructions are activated when a Chip Select (CS)
bit is on. If it is off, the operation is not performed, but
carry and shift signals are propagated through the EX.

Two bi-directional transmission ports and four 8-bit 1/0
Registers are provided. Information stored in AR, DR, and
PR are transferred into and out of the chip through D-port
according to the port control signals, while ER is connected
to the E-port. Using AR and DR for the address and data
registers, respectively, D-port permits simple connections
to an external bus. PR provides the function of receiving
messages from other processors.

Four port control signals AROUT, DROUT, DRIN, and
PRIN, are generated by the 10C. These signals are used for
bus driver control so that the complicated bus interface
circuitry is eliminated.

The low order 5 bits of ER can be used as an address
pointer of the general registers. The ASR contains the
status of the result of ALU operations, i.e., Carry, Over
flow, Zero, and Sign. The ASR is connected not only to the
corresponding pins but also to the C-bus, so that the
content of the ASR can be stored into general registers.
This enables the quick restoration of status which is indis
pensable to interrupt processing and emulation.

In order to connect several EX's in cascade to make a
powerful ALU, four pins CARRY IN, CARRY OUT,
SRIN, and SROUT are provided. The status of the opera
tions are represented by the ASR of the most significant EX
and the Zero bits of all the ASR' S. A mode control input is
used to specify the most significant EX which manipulates
the carry and shift control. The two signals, Carry Genera
tion (G) and G~rry Propagation (P), are prepared for exter::
nal look ahead carry generations.

Sequence controller

The block diagram and instruction set of the SC module
are illustrated in Figure 2. The length of the Control
Memory Address Register (CMAR) has been determined to
be 12-bits wide, so that the next address calculation time is
almost equal to that of the parallel data operation in two or
four cascaded EX's. Maximum size of control memory is
4K words which may be enough for ordinary applications,
however, extension of size or dynamic microprogramming
are easily attained with a few external IC's.

The SC has five types of instructions. The first is a jump
absoluteljump relative instruction with a 12-bit displace
ment field. The large displacement field not only releases
programmers from the anxiety of overbound addresses but

PM/II 221

also achieves high speed processing. The second type of
instruction sets the immediate data into the Stack or
Counter. The third one is the conditional jump relative.
Branching occurs if the contents of the TIF field are equal to
the contents of a bit of the Control Status Register (CSR) or
XAM as designated by the BP. The fourth one is provided
for interruptions, subroutine calls, and other uses. The
contents of the register designated by the RS-field are trans
ferred through the SC-bus to the register designated by the
RD-field. If RS and RD are the Stack and CMAR, respec
tively, this instruction effects a so-called "return" from
subroutine or interrupt process. Control memory addresses
can also be dynamically modified by this instruction, if the
XAM and CMAR are pointed to by RS and RD, respec
tively. Then each bit of the CSR is set or reset by the fifth
type of instruction.

These instructions are activated by the two CE' s which
are wired-ORed inside. If they both are off, the SC just
increments its CMAR by one.

As shown in Figure 3, the instruction access and the
calculation of the next address, which is done by adding the
contents of the Pipeline Address Register (PAR) and the D
field of the microinstruction register, are performed simul
taneously. Therefore, the instruction stored in the next
address of a branch instruction is always executed. A
sixteen-word Stack is prepared so that sixteen-level subrou
tine nesting or eight-level interruptions are available. A 12-
bit Counter performs in two modes as specified by the
Counter Mode. In the first mode it is decremented by the
pulse from the external pin. If a bit of control memory
output is connected to the pin, it acts as a loop counter. In
the second mode, the contents of it are decremented at each
machine cycle. Therefore, it plays an interval timer, an
underflow of which generates an internal interruption. The
CSR is sixteen bit wide and consists of a 4-bit ALU status,
a one-bit 10C, 4-bit interrupt flags, a 3-bit interrupt mask,
and 4-bit general purpose flags. Three pins are prepared to
handle external interrupt requests. Two of them are usually
assigned to the signals from the 10C, which represent
unsuccessful transmission. The other is left for miscella
ne,OilS ,use. When auinten:upLis ac.cepted., the coDtr.ol,
memory address is automatically changed to the fixed
address. The contents of CMAR and PAR must be stored in
the Stack at the beginning of the interrupt process.

Every bit of XAM is used as a jump condition, and also
the contents of XAM can be added to the contents of PAR,
so that the next address of the control memory is modified
dynamically.

110 controller

The 10C is designed to interface the EX with the
asynchronous bus system. The bus transmission scheme is
illustrated in Figure 4. A remarkable feature of this scheme
is that as a response to DTSD, three kinds of signals, Data
Acknowledge (DT AK), Reject Sync (RSYNC) and Quit
(QUIT), are provided for the simple construction of multi
processor systems. DTAK is returned when there is a

222 National Computer Conference, 1977

EXTERNAL ADDRESS
MODIFIER INPUT CE INSTRUCTION WAIT

DECODER

CONTROL

3
~+10V, +5V, GND

¢t=CLOCK
1

¢:t=CLEAR

,...-;.--------.1/'-_- COU NTE R
V::::::~/L----i"1 COUNTER(12) MODE

COUNT
L-----------SV~-CONTROL

CSR (16)

STACK
12 BITS
x 16 WORDS

8 .
,,-__ - ALUSTATUS,
"---IOC CONDITION

STACK
I==;!=t> OVERFLOW

CONTROL MEMORY ADDRESS

J D

E I

CJ ITF BP D

T I RS RD NU

SR BP NU

1- 2+ 2 -1- 4 -I_ 8 ~I

J JUMP D DISPLACEMENT T TRANSFER

E EMIT IMMEDIATE DATA RS: SOURCE REGISTER

CJ : CONDITIONAL JUMP BP : BtT POSITION OF STR RS: DESTINATION REGISTER

TF: TRUE/FALSE SR : SET/RESET BIT

Figure 2-Block diagram and instruction formats of SC

MIR (n-1) = NOP (n) = JMP D (n+1) = E

PAR n-2 n-1 n+1

CMAR (n-1) n+1 n+D

CONTROL
MEMORY
OUTPUT

(n) represents the content of the address n

Figure 3-Timing of pipeline processing

successful transmission. RSYNC means that the data trans
mission is rejected by the receiver. QUIT is generated by
bus control circuits in the case of unsuccessful transmission
caused by hardware trouble.

Figure 5 shows a block diagram and its instruction set.
The 10C performs two kinds of operations. One is the
master mode transmission, which is caused by Read/Write
instructions. In this mode, AROUT and either DROUT or
DRIN are controlled by the 10C. If the 10C receives
RSYNC or QUIT instead of DTAK, it generates RR and
QR, respectively. The other is the slave mode activated by
reception of a DTSD when Device Select (DS) is on. DS
must be connected to its address decoding circuitry which
recognizes when the device is being addressed. In this
transmission mode, PRIN controls the reception of the data
from the "master" device into PRo Once the data are stored
in the PR, the flag is set so that the SC recognizes that the
message from an external device has been received. PRIN
cannot be activated until the PRF is cleared. RSYNC is
returned as the response to DTSD, when PRF is "on."

The first type of instruction to the 10C consists of a 2-bit
Read/Write field and a one-bit W-field as shown in Figure 5.
When the W-field is on, WAIT is activated during the
tnm~m+~~ .jt: 'ft· ~ het,,! !'ffle~~ffi w-,.,. J:f ~J<iI~ttte
next instruction until the end of the transmission. The

SIGNAL SIGNAL
SOURCE H8M.L

MASTER BSRQ

BUS BSAV
CONTROLLER

MASTER ADSD

SLAVE ADAK

MASTER DTSD

SLAI;IE Of BUS DTAK, RSYNC
CONTROLLER Of QUIT

ADDRESS/DATA BUS ---<'--__ AD_D_RE_SS __ >-<'--__ DA_T_A~>__
Figure 4-Bus transmission Scheme

PM/II 223

BUS CONTROL LINES

I R/W I W I INSTRUCTION

BB RTY

~~~?1==~~ AROUT I DROUT 
DRIN 

PRIN 

I- 2 --+-1-1 

R/W: READ OR WRITE 

W WAIT 

RP RESET PRF 

RTY: 

WAIT OUT QR, RR PRF 

3 +10V 

~~J~ 
<::t.: CLOCK 

1 
<:;t: CLEAR 

~ DEVICE 
'd- SELECT 

Figure 5-Block diagram and instruction formats of IOC 

second and third type of instructions provide functions to 
clear PRF and retry transmission, respectively. 

SYSTEM COMPOSITION WITH PM/II 

Examples of a processor system and a mUltiprocessor 
system are described below, which are mainly composed of 
EX's, an SC, and an 10C, as mentioned above. 

Processor composition 

Figure 6 exemplifies a standard processor system imple
mented with PM/II's. The system consists of four PM/II 
modules, a mapping array, a dynamic microprogram control 
module, a control memory, and extra circuitry. The number 
of IC's composing the system are listed in Table II, which 
shows that PM/II's decrease the need for extra circuitry. 

The system contains two data buses. One is an asyn
chronous data bus which connects main memory, liD 
devices, and the other processors. The other is a synchron
ous data bus which can connect local memory, multiplierl 

I I 

~---~---, 
: FLOATING : 
I POINT I 

l_ ~~<:<:,E~~<:R_J 

r---- ---- ... 
: MULT : 

~--~~~----] 
Figure 6-An example of processor construction 

SYSTEM 
BUS 



224 National Computer Conference, 1977 

TABLE 2 - Components of the system shown in figure 6 

CPU 

MAPPING ARRAY 

PM/Il modules 

MSI 
SSI 

DYNAMIC MICROPROGRAM CONTROL MSI 

CONTROL MEMORY 

EXTRA CIRCUITRY 

TOTAL 

SSI 

LSI 
SSI 

SSI 

4 packages 

27 

18 

77 

divider, and so forth. This bus obviously can connect some 
I/O devices directly, therefore PM/II can easily construct 
intelli~ent I/O's. The external mapping array is connected 
to XAM in the SC module which enables a sophisticated 
emulation for machine languages and higher level lan
guages. These circuits depend on the target machine in
struction, which can easily be constructed with a PLA. 
Two interrupt input pins of the SC are allocated to RR and 
OR of the 10C. The other interrupt input pin is left for 
devices which will be connected to the processor bus. 

Microinstructions, which are stored in control memory, 
can be changed by the processor or other processors; 
therefore dynamic microprogramming is realized in this 
system. Byte calculations, such as byte-data addition, sub
traction, shift, and data-emit, can easily be performed by 
controlling CE bits. 

Systems composed of PM/II can have one of three basic 
types of microinstructions. Figure 7 shows them for a 
system with two EX's. These are Horizontal, Joint, and 
Vertical types. A Horizontal type microinstruction is 41-
bits long and has independent fields for SC, EX, and 10C 
modules. A two-bit CE field activates the EX modules. The 
CE bit of the SC is set permanently "on," which does not 
appear in the instruction format as shown. A Joint type 
microinstruction, 33-bits long, is where a field of EX and 
SC instructions are partially overlapped. In this type 3 CE 
bits are required to control two EX's and an SC independ
ently. SC instructions with short formats, such as bit 
manipulation instructions, can be executed concurrently 
with EX operations, and EX instructions with short formats 
with SC operations. A Vertical type microinstruction, 24-
bits long, is where EX and SC are fully overlapped. Two 
CE bits control the operations of EX and SC. When both 
EX's are not selected, an SC function can be performed. 

HORIZONTAL .... 1_CE---!-I ____ EX ___ ---'-I ____ sC ___ ..LI_lo_c---.J\ 

1-2.1. ;s ----'.,.j.!--~ 17 -~'!"""3-1 

JOINT I CE I EX I sc ICEI IOC I 
~2+-- 11 ----l-8-+-- 9 ---41i-3-j 

VERTICAL 

/.2 ...;.1--- 19 ----+-1 ~ 3 -J 
Figure 7-Three types of microinstructions 

An emulator for a typical I6-bit minicomputer was imple
mented on this processor with the PM/II breadboard. The 
target minicomputer is MACC 7/F manufactured by Mat
sushita Communication Industry. About 3k bytes of control 
memory have been required when using vertical microin
structions. It is confirmed that the execution time is less 
than twice that of the target when executing FORTRAN 
programs, even without particular external circuits. 

Multiprocessor 

Figure 8 depicts a memory shared multiprocessor system 
currently in operation. PI is built up by the PM/I compo
nents which are prototypes of PM/II. P2 consists of the PM/ 
II modules implemented by the breadboard, and P3 is a 
MACC 7/F with the bus interface for the PM/II. The 
element processors, connected with a single bus, communi
cate through the shared memory and the P-Register. The 
microprograms of the element processor PI can be loaded 
dynamically by P3, and P2 loads its own microprograms 
dynamically, while P3 has a fixed instruction set. Using the 
multiprocessor system, many fruitful experiments on the 
flexibility of hardware configuration, process efficiency, 
and control program description are made. As a result, the 
following advantages have been derived to display the 
applicability of PM/II in the multiprocessor environment; 
(1) hardware can be connected in a unique and simple way, 
(2) software for each processor can be developed and 
debugged almost independently, and (3) the conciseness 
and ease in description particularly of distributed function 
type and/or resource shared type control programs can be 
achieved. 

A high level language interpreter is now working on the 
multiprocessor system, where PI, P2, and P3 process 
garbage collection, language interpretation, and 110 control, 
respectively. 

Through monitoring the system, it has become clear that 
the bus contention begins to occur when more than three 
processors emulate machine instructions simultaneously. 
Based on the results of these experiments, a new mUltipro
cessor system employing PM/II, in which every element 

P3 Pl P2 INTELLIGENT DISK 

Figure 8--Expermental multiprocessor system 



processor has its own local memory, is currently under 
development. 

CONCLUSION 

The design concept, specifications, and system composition 
of PM/II's are described above. Several instruction mixes 
are estimated, which are illustrated in Figure 9 and compare 
PM/II with three microprocessors on the market. Intel 3000 
and PM/II represent their performance when they compose 
16-bit computers, while PFL-16A is a 16-bit microprocessor 
itself. The performance of PM/II is measured at its vertical 
instruction set, which shows very satisfactory results. 

The breadboards of PM/II are in operation, and have 
been used for experiments on machine language and high 
ievei language emulation, and so forth. A memory shared 
mUltiprocessor system with three processors including the 
PM/II is running, which has made clear the validity of the 
design concept. 

Based on the results of these experiments, a new multi
processor system employing PM/II is currently under de
velopment. Design of the operating system and language 
processors is nearly finished, and the hardware implemen
tation will soon be started. 

Along with the many results which have shown the 
applicability of PM/II, one disadvantage has appeared, i.e., 
the slight difficulty in microprogramming. This may be 
caused by the adoption of pipelining. In order to reduce this 

IASEC 

100 

GIBSON MIX 

COMMERCIAL MIX 

REAL TIME MIX 

10 

INTEL 8080 PFL16-A INTEL 3000 PM/II 

Figure 9-Evaluation of performance 

PWII 225 

difficulty, and to support hardware and microprogram de
bugging even before hardware implementation, an inte
grated development support system named IMPULSE has 
been designed and implemented. IMPULSE consists of a 
debugging part and a microprogram generating part. The 
former debugs hardware and microprograms with a descrip
tion of module connections and microprograms, driving a 
multi-level logic simulator. The latter is a hierarchical 
system composed of a high-level microprogramming lan
guage compiler, an optimizing assembler in which users can 
write programs without considering pipelining, and a gen
eral purpose micro-assembler. The precise description of 
IMPULSE will be available in a separate paper. 

The three modules of PM/II are now being implemented 
in the CMOS process. This process is selected because of 
its high noise immunity and low stand-by power dissipation. 
PM/II will augment the consistency and completeness to 
develop other required modules in the future. 

ACKNOWLEDGMENT 

The authors wish to thank Dr. Y. Koike,. the President of 
Matsushita Research Institute Tokyo, Inc.; Dr. T. Yoshida, 
the Managing Director, who powerfully promoted the re
search; Dr. M. Ohnuki, the Director and the colleagues of 
his group for their ardent semiconductor technological 
examination; Dr. K. Ueda for valuable discussion; Mr. S. 
Shimazaki for his assistance in the implementation and 
experimental stages. 

The authors are also grateful to Professor H. Aiso of 
Keio University for his numerous suggestions from an 
architectural viewpoint. 

REFERENCES 

I. Clark, w. A., "Macromodular Computer Systems," SJCC 1967, pp. 335-
401. 

2. Bell, C. G., J. E. Eggert, J. Grason, and P. Williams, "The Description 
and Use of Register Transfer Modules (RTM's)," IEEE Trans. C, Vol. C-
21, No.5, 1972, pp. 495-500. 

3. Reigel, E. W'o U. Faber, and A. Fisher, "The lnterpreter-A Micropro
grammable Building Block System," SlCC /972, pp. 705-723. 

4. Bell, C. G., R. C. Chen, S. H. Fuller, J. Grason, Satish Rage, and D. P. 
Siewiorek, "The Architecture and Applications of Computer Modules: A 
set of Components for Digital Systems Design," Digest o/COMPCON 73 
Spring, pp. 177-180. 

5. SUE Computer Handbook, Lockheed Electronics Company, Los Ange
les, 1972. 

6. PFL-16A Technical Summary Manual, Panafacom Limited, Tokyo, 1976. 





An organization for optical 
linkages between integrated circuits 

by G. JACK LIPOVSKI 
University of Texas 
Austin, Texas 

ABSTRACT 

Conventional integrated circuit packaging techniques which 
use pins for input-output have several disadvantages, which 
are becoming increasingly important as more logic is put on 
a chip. Recent intensive development of optical links for 
long distance communications suggests that they could be 
used between integrated circuits, to alleviate the bottleneck 
created by the connection technology, so that LSI technol
ogy can be further exploited. However, the complex link
ages between integrated circuit cannot be economically 
realized by just replacing each wire by an optical link; 
rather a "bus organization" should be developed so that, 
by time multiplexing one optical link that threads just once 
through each integrated circuit, different time slots can be 
used to realize any necessary transfer. Additionally, the 
time slices are controlled by a microprogram, so that 
"wiring changes" can be realized by program changes. A 
unified treatment of busses is first developed, then two 
physical realizations of the time-multiplexed bus are de
scribed. 

INTRODUCTION 

Large scale integration (LSI), and microprocessors in par
ticuiar,have revoiutionlzeri 'our approach to digilai Sy~
tems. In this paper, we report on what we perceive will be 
the next step in this revolution. To support this opinion, 
especially to answer the objections of some of our re
spected colleagues, and to justify some decisions we make 
later, we aim to identify some of the implications of the LSI 
revolution. We do this using the premise-implication style9

-
13 

because this style clearly exhibits our assumptions and 
presents our design decisions in an organized way that 
invites the reader to carefully scrutinize them. 

By way of introduction, we state what we believe are the 
ground-rules of our approach; the current state of the art: 

PI: Many (thousands of) gates can be economically put 
on an IC, but few (tens of) pins can be put on one 
chip. 

P2: A communication link exists which is much faster 
than the processor it is connected to. 

227 

Premise 1 reflects the fact that for optimal cost, about 
2,000 gates should be put on an IC chip. * Consider that the 
single gate 7430 sells for about 1O¢, while the (approx.) 
thousand gate Intel 4040 microcomputer sells for about 
$5.00-a 20 to 1 cost ratio per gate. However, no more than 
a few connections (pins) can be made to the chip. We soon 
argue that the connection (pin) limitation is the bottleneck 
to development of LSI systems. Premise 2 indicates that a 
very fast connection mechanism exists. In most technolo
gies and in the majority of applications, which do not 
require much speed, it is possible to make most of the 
circuitry small and low power, and therefore slow, but to 
make a small part of it much faster, and therefore larger in 
size and more power consumptive. So the bottleneck raised 
by premise 1 can be resolved by trading pins against speed 
by time multiplexing a very fast communication link. We 
will soon argue that optical links, or light pipes, will provide 
such speed that a few such links could replace all but four 
of the pins, and provide sufficient communication band
width for the larger and larger chips that will be appearing. 

11: Minimum hardware cost is achieved, not by minimiz
ing gates, but by using extra hardware to minimize 
connections. 

Argument 

Some ten years ago, mmimIzmg gates generally mInI
mized hardware cost. Even now it might appear that 
minimizing gates minimizes the number of integrated cir
cuits, but this is true to some extent now only for design 
with Small Scale Integration (SSI), and for the design of 
integrated circuits. In fact, it is common now to waste gates 
in order to minimize the number of IC's and the amount of 
interconnection. For instance in a memory system, an 
address decoder is put in each memory chip. Really, only 

* We beg the reader's permission to use some approximate figures in support 
of our arguments without giving references. Many of these figures are 
available from current catalogs, but others were obtained through private 
communication with industrial contacts. Although permission to use approxi
mate numbers was granted, permission to identify the source was generally 
not given. 



228 National Computer Conference, 1977 

one decoder is actually needed, but a decoder is put in each 
chip so that log2n address pins can select one of n bits or 
words in the memory chip. Gates are often wasted to 
minimize interconnections in this manner. Minimizing 
gates, per se, is now generally pointless. We have to learn 
to minimize the number of chips and the amount of inter
connections between chips. 

End of argument 

12: Better communication links than conventional IC 
pins will soon be required. 

Argument 

We argue this question by observing the rate of growth of 
logic on the chip, and of pin connections to the chip, and 
then by observing some of the costs of current systems. 

Consider that the maximum number of gates on a chip 
doubles every year or so. Consider that the 256 bit memory 
was followed by the lK, then the 4K, and now the 16K 
memory in rapid succession. We note that these increases 
could be handled by adding just a few more address pins, 
because memories in particular can take advantage of 11. 
However, many large volume applications of microcompu
ters require only 1 K words. We will reach a saturation 
point to memory size. Then larger memories, and larger 
microprocessors, can only take advantage of doubled logic 
complexity by doubling the width of the computer word, 
and thus the number of input/output pins. That can only last 
for a short time, for there is little demand for 32 bit or 64 bit 
microcomputers. Finally, as more logic can be put on a 
chip, more of the system components are put on it. If one 
puts the 8 bit CPU on a chip, some forty links are needed; if 
one puts the entire computer with 110 logic on a chip, some 
twenty links are needed for each I/O device. In these last 
two cases, the number of pins should be significantly 
increased each year to take advantage of the logic on a 
chip. However, the maximum number of pins has increased 
about linearly with time from 14 to 24 to 40, and now 64. 
Clearly, we are running out of pins. 

Logic to minimize pins (11) should be used. However, 
some current examples of this, such as sequentially sending 
the data and address on the same pins in the 800819 or data 
and status information in the 808018 require an extra register 
to hold the address or status. Although this reduces the 
number of pins on the large CPU chip, it actually adds more 
pins to the entire system since the register needs input and 
output pins for each bit it stores. It makes the CPU chip 
cheaper, but adds to the system cost. We perceive that 
these techniques using logic to minimize pins will not be 
adequate. 

We now consider some costs of current integrated circuit 
chip and printed circuit board techniques. Each output 
connection requires a large buffer amplifier and connection 
pad on the chip and each input requires a pad and protec
tion circuitry. In fabricating the chip, wires are bonded one 

at a time to the pads, and each bond has a probability of 
destroying the chip. Fabrication time and cost, and rejected 
chips are therefore increased as the number of pins. In 
putting the chip on a PC board, significant costs are 
encountered. Although the chip itself is perhaps O.I/1 x O.l/1, 
the DIP package is perhaps 2/1 x 1/1 to make the connections 
to the PC board. If it weren't for the pins, a complete 
microcomputer system would occupy, say, a 2/1 square. The 
capacitance of the DIP package and PC board considerably 
slows down signals sent through pins. A good quality (high 
reliability multilayer) PC board alone can cost $500.00, and 
such a board may support only, say, $100 worth of inte
grated circuits. Design errors and custom design changes 
are difficult to correct and implementation multilayer 
boards. Finally, failures are often caused by bad PC board 
connections, and failures are increased as pins are in
creased. 

The pin connection technology is already a major source 
of trouble and cost, and should become even more so as 
time goes on. If it can be replaced by a better technology, 
perhaps even if that technology has a few problems of its 
own, we should seek out and develop this technology. 

End of argument 

13: An optical link should be developed to interconnect 
integrated circuits. 

Argument 

Optical links are being intensively studied to replace 
coaxial cable in the communications industry. Very encour
aging results were reported in the August 5, 1976 issue of 
Electronics, entitled, "Optical Communications, its time 
has come." 14 Development of optical communication sys
tems for telephone, computer and even airplane and auto
mobile electronics were reported. Articles on the light 
sources like LED's,15 and lasers indicate that the former 
can now be modulated at up to 200 mHz at 10 percent 
efficiency and the latter can be modulated at 1 ghz. Al
though LED's and lasers are not directly compatible with 
MOS or bipolar technology, they can be mounted on the 
substrate as they are in the Hewlett Packard 7300 numeric 
and hexadecimal indicators. 5 ghz MESFETS and very fast 
Transfer Electron Logic devices3 can drive these sources. 
A report on light fibers 16 indicates that commercially avail
able step-index fibers can transmit 500 Mb/km, which 
implies that for the short distances between integrated 
circuit chips, very high bandwidth is feasible. For the short 
distances between IC's, coupling between fibers will not be 
necessary, and "sloppy" coupling to and from the fibers 
should be quite acceptable. 1 GHz silicon Schottky-Barrier 
photodiode detectors1,2 have been easily fabricated. There 
are detectors like those above which are compatible with 
bipolar logic, and other detectors that are directly compati
ble with MOS technology. The technology to transmit data 
at 50 megabits per second on one light pipe required for a 



Organization for Opticai Linkages between Integrated Circuits 229 

microcomputer data and address bus system is certainly 
available today at a cost that is probably comparable to the 
cost of reliable multilayer circuit boards, and the potential 
for economic gigabit per second transmission on light pipes 
is not that far off. Although light pipes are now being 
developed for long distance communication, such as be
tween a computer and an intelligent terminal, this technol
ogy could provide better communication links than conven
tional IC pins for Ie's themselves (12). At the very least, it 
cannot be denied, this possibility is worth studying. 

End of argument 

14: An organization for optical links for integrated cir
cuits should be developed. 

Argument 

In long distance communication, the communication is 
basically point-to-point. There isn't much logical organiza
tion to concern the designer. Coupling tens of terminals by 
means of light pipes has been reported.17 However, be
tween IC chips, point-to-point communication would re
quire too many LED transmitters and detectors on each 
chip, and the star coupling in Reference 17 would not 
handle a few very important linkages such as priority 
networks and carry lookahead. We submit that, if a bus is 
realized by optical links and that bus requires a priority 
circuit, we should be prepared to realize the priority circuit 
too in the same optical link. We opt to use time slices of a 
time multiplexed very fast optical link to realize all the 
linkages required between integrated circuits. Moreover, 
we will control the time slices by a microprogram. Wiring 
changes cited in 12 as a problem for multilayer boards 
becomes easier because they are now program changes. 
Primarily, we believe all connections required by a typical 
microprocessor must be realized. Secondarily, we think 
that optical linkages should be developed for MSI, and even 
some SSf "'hkh might be necessary to complete a micro
computer or to implement a system without a microcom
puter. 

End of argument 

In the next section, we develop a suitable theory on 
classifications of busses which, to our knowledge, does not 
exist in the literature. This classification scheme is used 
later to show that the carry lookahead linkage is the 
universal linkage from which all other important linkages 
can be derived. That is, if we implement one carry looka
head linkage that "threads through" all chips, we can 
realize any linkage between any of the chips by time slices 
on that time multiplexed link. In a later section we show 
two physical realizations of the universal linkage, the carry 
lookahead linkage. 

A CLASSIFICATION OF LINKAGES BETWEEN IC'S 

The kinds of linkages between chips are categorized now, 
setting the stage for development of the universal linkage, 
and introducing some terminology for the rest of the paper. 
This terminology generally follows Bell and Newell. 5 A link 
is a single wire (scalar), or a bundle of wires (vector) that 
provides communication between ports. Suppose Bl, B2, 
... Bn are ports that input information to links from 
modules and Cl> C2, ... Cm are ports that output informa
tion from the links to the modules. A simple link has just 
one pair of ports Bl and Cl on the same link. It is simplex if 
information is transmitted in only one direction, say from 
Bl to Cl. It is half-duplex if information can be transmitted 
in either direction, but in only one direction at any given 
time. It is full-duplex if information can be transmitted in 
both directions at the same time. It is (time) multiplexed if 
different information signals are transmitted over the same 
link on different time slots. Each time slot can be simplex, 
half-duplex, or duplex on a multiplexed link. 

Complex links have more than two ports, and are classi
fied herein as follows. A broadcast link or time slot has one 
port, say B, broadcasting to the other ports, Cl, C2, ... 
Cm. A special port is identifiable as a broadcaster in this 
type of link or time slot. For instance, a microprocessor 
commonly broadcasts an address to memory chips on a 
broadcast link. A collection link or time slot has one port, 
say C, collecting signals (possibly by OR'ing them or 
AND'ing them together in a wire-OR or wire-AND link) 
from the other ports Bl, B2, ... Bn. Usually only one port, 
Bl, is transmitting information while the others are trans
mitting O's (for wire-OR) or 1 's (for wire-AND). Alterna
tively, using tristate logic, only one port Bl will send out a 
signal while the other ports appear as open circuits. A 
special port is identifiable as a collector in this type of link 
or time slot. For instance, a collection time slot is used on the 
data link of a microcomputer when one of several memory 
chips read a word back to a microprocessor. On occasion, a 
general broadcast-col1ection link or time slot may have 
more than one broadcaster and more than one collector. 
For instanc:e~ a g~n~r~Lgr:oadc<l:§t~~()llec:tQr lilltc i§ equiva: 
lent t~ ""the ~~~ventional I/O bus such as the unibus. 1 

A propagating link* or time slot OR's or AND's the 
output of each broadcast port to the higher numbered 
collection ports, or conversely, OR's or AND's the outputs 
from lower number broadcast ports as follows. Bl, B2, ... 
Bn are broadcast (input) ports and Cl, C2, . . . Cn are 
corresponding collection (output) ports. In an OR propagat
ing link, C2 is Bl, C3 is Bl OR B2, C4 is Bl OR B2 OR B3, 

etc. (Cl is 0 by default). Propagating links are used, for 
instance, in priority circuits, where requests Rl> R2, ... Rn 
are put into Bl, B2, ... Bn and grants G1 are R j AND NOT 

* One might argue that this is not a link because it performs logic and has an 
order or direction among ports. However, wire-OR collection links perform 
logic, and simplex links have a direction. Moreover, propagating links (e.g., 
priority circuits) form a small but important part of the linkage problem 
between integrated circuits. They must be handled just as broadcast or 
collector links. Thus, we classify this as a link. 



230 National Computer Conference, 1977 

Cj. The propagating link serves to notify the ith stage that 
some higher priority stage (I, 2 ... i -I) has a request, so 
that the request of this stage will not be granted. A round
robin propagating link, used in round-robin priority circuits, 
selects some state i as the "beginning" of the propagating 
circuit, Ci+l is Bj, Cj+2 is Bi+l OR Bj. The link wraps around 
circularly, so that CI is Bj OR Bj+1 OR ... OR Bm etc. and 
C1- I is BiEL Gi+IOR ... OR Bn OR BI OR ... OR Bi-2. 

End of argument 

15: Simple simplex, broadcast, collection, general broad
cast-collection, progagating, round-robin propagating, 
and lookahead linkages will be realized between 
integrated circuits. 

Argument 

These classes of links have been used in a course in top
down design of digital circuits8 for some six years to assist 
the students in deciding what· they need to do to link digital 
modules together. For each class, they are shown chain 
realizations (e.g., as in a ripple adder), minimum delay 
realizations (e.g., as in a wire-OR bus or carry lookahead 
adder) and tree realizations (e.g., as in a tree of OR gates) 
and the delay, fan-out and cost properties of each are 
considered. Experience has not shown links that do not fit 
into these classes. 

Moreover, if one of these classes cannot be realized, then 
extra wiring or extra light pipes will be needed. There is no 
point, for instance, in converting an liD bus to light pipes if 
it needs a priority circuit to effect DMA unless the priority 
circuit can be economically implemented. And given the 
very high speed of light pipes (13), it should be implemented 
as a time slice of the same "bus" that carries the data that 
the priority circuit controls (14). If this is not possible, the 
extra cost of additional pin connections or light pipe con
nections to realize a priority circuit may significantly de
tract from this approach. 

End of argument 

THE LOOKAHEAD AS A UNIVERSAL LINK 

In this section, we show that any of the links in 15 can be 
realized as special cases of the lookahead link that is 
available in a carry lookahead generator like the SN74182. 
Thus, if we can build a iookahead link, we can program 

. time slices on it to realize the other links. We first show 
that a complete carry lookahead generator can realize any 
linkage in 15, then we show that contiguous sections of it 
can be programmed to independently realize these linkages. 

16: Let GI, G2, ... Gn be generates, PI' P2, ... Pn be 
propagates, and CI , C2 , ••• Cn be collectors (carries), 
and Cjn be the carry input and Cout be the carry 

output of a carry lookahead generator. A lookahead 
link is directly implementable in this circuit. More
over, Cin can broadcast to all Cj, or Cout can collect 
from all Oi> or Gi and Ci can be inputs Bi and 
collectors Ci for a propagating or round-robin propa
gating link, or Cin can communicate to Cout on a 
simple simplex bypass link. Finally, in a tree, if GT is 
connected to CT in the root of the tree, then the OR 
of GI, G2, ... Gn is broadcast to CI, C2, ... Cn if PI' 
P2, ... Pn are l. 

Argument 

We show this by example. See Figure la, a chain carry 
lookahead, Figure 1 b, a two-level carry lookahead, and 
Figure Ic, a full binary tree carry lookahead. If gates have 
zero delay, these circuits are identical. We consider each 
case described in implication 6 now. 

A lookahead link is implemented by putting the generates 
and propagates from an adder into Gj and Pi> and feeding 
the collectors Cj into the carry inputs of the adder. A 
broadcaster is implemented by forcing Pj to 'I' and Gj to 
'0.' Then Cjn is broadcast to all Ci. An OR collector is 
implemented by setting Pj to '1', and ignoring all inputs Ci. 
Then any signal broadcast into Gj will be collected by Couto 
An OR propagating link can be realized by setting Pi to 'l.' 
Then signals broadcast into Gi are OR'd into Cj , j>i. 
Similarly, if Pi is '0' and all other Pj are '1', and Cout is fed 
into C1n then a round-robin propagating link is effected for 
inputs Gj and outputs Cj • A simple simplex bypass link from 
Cin to Cout can be realized by making Pi '1' and Gi '0', not 
using Cj. Then Cjn broadcasts only to Couto Finally, in a tree 
circuit, the signals from Cin do not feed into GT of the root 
cell of the tree, while GT collects all Gj, and Cn is broadcast 
to all Cj. Thus, without any feedback loop that might cause 
the logic to latchup or have excessive propagation delays, 
GT can be fed into Cin so that the OR of GI, G2, ... Gn is 
broadcast to CI, C2, ... Cn. This realizes the general 
broadcast-collector link or input-output "bus" in the whole 
circuit. 

End of argument 

17: The carry lookahead generator can be time-sliced by 
decentralized programs in each integrated circuit, so 
that in every slice the chain of generators GI, G2, ... 
Gn and their corresponding propagates and collectors 
can be segmented into contiguous segments, say 
SI=(GI, G2, ... Gi- l), S2=(Gj, Gi+l, ... Gj - l), 
S3=(Oj, OHI' ... Ok-I), and S4=(Gk, G k+I, ... GJ, 
where each segment effects one of the linkages dis
cussed in 11, except the general broadcast-collector 
link and round-robin propagating link. The last gener
ator of a broadcast segment (e.g., Gi- I if S1 above is a 
broadcast segment), or a lower indexed collection or 
priority segment (e.g., SI) can provide information to 
be broadcast in a broadcast segment (e.g., Sa) if all 
intermediate segments are bypass segments (e.g., S2)' 



Organization for Opticai Linkages between Integrated Circuits 231 

C3 C2 C, 

Cin 

G
3 P3 G

2 
P
2 G

1 ~ 

a) Chain 

C, 

b) Two level (minimum delay) 
....... ---------... 

...... --
/' Cout Cin'le r~1 \ 
, /1 connect to topmost 
'~ .:-::: -=-.-1-~.::. -=--'{ _ {root} cell only 

( ~!. __ ~T ___ eIre 
connect to father 

~ - - - ...... - - -, 
connect to left son (G2 P2 C2 .... 1 (G1 ,C, JL-COfl nect to ..... ____ --/ , _____ -/ nght son 

C) Full binary tree 
Figure I-The carry lookahead generator 



232 National Computer Conference, 1977 

Argument 

By means of a cyclic program of m steps, St, S2, ... Sm, 
the generates and propagates can be programmed to pro
vide m time slices. See Figure 5. Each step of the program 
should select a generate which is '0', or some input from 
the integrated circuit that is to be broadcast (e.g., the adder 
generate signal), a propagate which is generally' l' or '0', 
and a destination, if any, of the data coming from the 
collection input. The program can be decentralized so that 
the integrated circuit having Gj, Pj, and Cj contains internal 
to it the orders to select inputs to Gj and Pj, and the 
destination for Cj. Means to start each program together 
(initialization signal) and to step each program together 
(clock) can be provided. The linkages between integrated 
circuits are thus established by the programs. Such pro
grams can be stored in each IC in a read-only memory, 
PROM, EAROM, or equivalent. 

Generally, the propagate is '0' in the last propagate of a 
broadcast, priority or lookahead segment (e.g., if segment 
S2 discussed above is a broadcast segment, Pj- t is '0'), and 
is the propagate signal from the adder inside a lookahead 
segment, otherwise it is '1'. The generate is '0' inside a 
broadcast or bypass segment and is made to be the signal to 
be broadcast in a collection, priority, or lookahead seg
ment. Thus, these linkages are easy to realize. Now note 
that if two segments Sj and Sj+1 are respectively, a collec
tion and broadcast segment, then the effective Cout for Sj, 
the collected data, becomes the effective en for Si+t, the 
broadcasted data. Generally, several generator signals in Sj 
are OR'd together, and broadcast to all collectors in Si+t. 
Moreover, if Sj is a broadcast segment and consequently 
the last propagate is 0, then the effective Cout is exactly the 
last generate. By use of bypass linkages, if Sj is a collector 
(or Sj is a broadcaster), Si+t is a bypass link, and Si+2 is a 
broadcaster, the (last) generators in Sj can broadcast to one 
(or more) collectors in Si+2. Communication can efficiently 
be done in one direction, from Gj to Cj , j>i, in general. 
Note that the length of the bypass link should be kept small 
to efficiently use the lookahead generator in this way. 
However, simple simplex linkage from any C j to any Cj, 
i<j, is feasible. 

End of argument 

From 17 the following communication scheme is sug
gested. Since the technique in 17 affects communication in 
only one direction, a pair of lookahead generators will be 
used, where the second propagates in the reverse direction. 
The integrated circuits will be arranged in some order in the 
first lookahead generator and in the reverse order in the 
second lookahead generator (the optimal arrangement 
should be done by some algorithm which is not yet known 
to us). The chips will be connected by a lookahead genera
tor with Gj, Pi and Cj in ICj, and a second lookahead 
generator with Gj, Pj, and Cj in ICn+1_j). The program to 
time share the lookahead generators \vQuId be set up in this 
way. For each required linkage, the range of collectors and 

generators that will be committed to that linkage will be 
recorded. (Note that the generators normally go with col
lectors except that the last generator of a broadcast seg
ment works independently of its collector.) These will be 
combined by a scheduling algorithm so that as many 
linkages as possible are effected in each time slice, or 
conversely,· so that all linkages can be effected in the 
minimum number of time slices. The programs will be 
derived for each chip, and these will be stored in each chip. 

Consider, for example, a conventional 8 bit microcompu
ter in ICt primary memory for the microcomputer in IC's 2 
to 4, and input/output chips in IC's 5 and 6. A fetch cycle 
might take 25 steps on the two lookahead generators. The 
first step uses the forward lookahead for IC t to send a 
signal to IC's 5 and 6, such as the enable signal for direct 
memory access while the reverse lookahead collects inter
rupt requests and establishes priority from IC5 and IC6 to be 
broadcast to ICt. The next 16 steps broadcast to on the 
forward lookahead generator the 16 bit address from ICt to 
IC's 2 to 4 where the addresses are assembled and decoded. 
The next 8 steps collect the data (instruction) in the reverse 
lookahead generator from IC's 2 to 4 into ICt. We assume 
that the lookahead generator is 25 times faster than the 
microprocessor, in order to collapse the twenty-five bus 
wires into one. 

A tree lookahead generator can be made by interconnect
ing modules such as these in Figure Ic, in a tree, as in 
Figure 2. The collector, generate and the propagate links of 
the father (e.g., ICt) are connected to those of the son (e.g., 
IC2). Leaves of the tree (e.g., IC,J have no sons. The tree 
has an additional advantage for lookahead generators. The 
tree can be pruned into subtrees, such as IC3, IC6, and IC7, 

where the subtrees are independent lookahead generators 
that are capable of being segmented in time slices, or used 
as a whole for a general broadcast-collector linkage. 

18: A tree carry generator can be programmed to form 
subtrees in various time slices by setting CT to '0' or 
to GT in the root of the subtree, and setting the value 
of G and P into its father the values '0' and '1', 
instead of connecting G, P, and C between father and 
son. The separate subtrees can independently realize 
the linkages in 12 if CT is set to '0' or the general 
broadcast-collector link or round-robin propagating 
link, if CT is set to GT , or be pruned from the 
remaining tree if a fault exists in it. 

Argument 

As stated, subtrees can be created to effect separate 
linkages. In Figure 2, the integrated circuits are ordered as 
follows for the full tree: IC 7, IC6, IC3, IC5 , IC4, IC2, ICt. By 
creating a subtree below IC3, two separate linkages with 
order IC 7, IC6, IC3 and IC5, IC4, IC2, ICt are effected. Each 
can be programmed as in 12 if CT for the root node of the 
subtree is O. Additionally, if CT is connected to GT and all Pi 
in the subtree are '1', the whole subtree becomes a general 



Organization for Optical Linkages between Integrated Circuits 233 

'0' 'I' ---'\1----
Gr Pr Cr 

Father 

Son 

Figure 2-A tree lookahead generator 



234 National Computer Conference, 1977 

broadcast-collection linkage, like an 110 bus. Alternatively, 
the linkage for a round-robin priority circuit can be ob
tained. See 14, 15 , 12, 11 for instance. Finally, if a fault exists 
in the subtree, the subtree can be pruned from the remain
ing tree to permit the latter to function correctly. 

End of argument 

Creation of general links and round robin propagating 
links are very significant, since they provide communica
tion from generators to the right of collectors in this order, 
whereas the techniques in 17 provide only linkages from 
generators to the left of collectors. Thus, two separate 
carry lookahead generators are not necessary. The tree 
lookahead can provide linkage in both directions. 

The techniques in 18 suggest a modular approach to 
designing links. A subtree can correspond to a submodule 
with a bus within it. The bus and support linkages (e.g., 
priority circuits) can be realized in time slices in the 
lookahead generator subtree. Other linkages discussed in 17 
can be implemented within the submodule. From time to 
time when this submodule needs to communicate with other 
submodules, the root node of the subtree can be pro
grammed to connect the subtree to the neighboring sub
tree(s). Then the larger subtree can be treated as a general 
broadcast-collector bus, or segmented as discussed in 17. 

OPTICAL LINKS FOR THE LOOKAHEAD 
GENERATOR 

Having shown that the lookahead generator can be pro
grammed to realize all of the required linkages between 
integrated circuits, we now consider how it can be fabri
cated with optical transmitters (LED's) and optical receiv
ers or detectors (photodiodes). Now the ripple or chain 
lookahead generator (Figure la) has some advantages, 
especially in minimizing the number of optical links be
tween chips. A realization is shown in Figure 3. A forward 
lookahead generator requires but one link between each 
chip, and a reverse lookahead generator would require a 
second link. However, the tree lookahead generator has 
other advantages, which might make it attractive for larger 
systems. A possible realization of it is shown in Figure 4. 

IC I 

J1 
.L"2 ~ ~ ~chip 

It 
IC3 

L 0 '7 substrate 
E E (ceramic 0 T 

1 ~ 
thick-film 1 

a) Graph 
c) Ie construct ion 

b) Physicol Reoiizot ion 

Figure 3-A chain lookahead generator 

Figure 3a shows the graph representation with forward 
and reverse chain lookahead generator. Figure 3b shows 
how these links can be easily implemented by a stack of 
chips, where Figure 3c shows the placement of transmitters 
(LED's) and detectors (DET) in a side view of the inte
grated circuit. Figure 4a shows the tree lookahead genera
tor. The nodes of the tree are arranged in "outline form" or 
preorder in Figure 4b, and optical links connect the gener
ate, propagate, and collector signals between father and 
son. Note that four distinct types of integrated circuits are 
used in this realization: depending on whether the node is a 
leaf which has no sons, or a non-leaf, which has sons, and 
whether the node is a left or right son. Type A is a non-leaf 
right son, type B is a non-leaf left son, type C is a leaf right 
son, and type D is a leaf left son. The placement of 
transmitters (LED's) and detectors (DET) for a type A 
integrated circuit in a side view of the integrated circuit is 
shown in Figure 4c. This one dimensional scheme can be 
extended to three dimensions by letting a node of one chain 
be the head of another chain perpendicular to the first 
chain. See Figure 4d. 

The logic to supply and use the generator, propagate and 
carry linkages is shown in Figure 5, and the logic for the 
linkage is shown in Figure 1. The logic in Figure 1 should 
be as fast as the optical link. The logic in Figure 5 should be 
fast enough to supply propagate and generate signals and to 
collect the incoming signals. However, the rest of the logic 
on the chip can be conventional slow logic that might be 
used on high density chips. 

19: If the delay through the optical link and lookahead 
logic is acceptably low, then the chain lookahead 
generator (Figures la and 3) should be used. If this 
delay is substantial, or if the general broadcast
collector link round-robin propagating link, or the 
pruning of faulty nodes is useful in submodules as in 
16, then the full binary tree lookahead generator 
(Figures lb and 4) should be used. 

Argument 

We first argue that a lookahead generator of some kind 
should be time multiplexed to realize different linkages. 
From 15, we aim to implement those linkages that have 
been identified and classified earlier. 

However, we are constrained to use a minimum number 
of actual simple simplex links between integrated circuits. 
17 has shown that such links can be realized by time 
mUltiplexing a lookahead generator, which uses simple 
simplex links between integrated circuits. This provides 
adequate capacity to provide hundreds of linkages, if fast 
Schottky logic and detectors are used in the lookahead 
generator while high density slower logic, such as MOS, are 
used in the logic supported by these linkages. The actual 
physical connections can be reduced to four wires (power, 
ground, clock and initialize as discussed in 11) and two 
opticai iinks (as shown in Figure 3). The chain iookahead 
generator thus well satisfies Implication 4. 



Organization for Optical Linkages between Integrated Circuits 235 

a) Graph 

chi p ----.. ,........-----, 

sub st ra te ---- ~D::;:D:::::;;::L*===~=D:::D~L::;::::J 
( ce ram icE E E E E E 

T TOT T 0 
thick-film) 

c) Ie construction 

one ~ 
dimension 
realizations 
as in 
Fig.4b 

b) A Physical Realization 

d) E xtens ion to 
three dimension 

Figure 4-A tree lookahead generator 

We now argue that a full binary tree lookahead generator 
su<th as described in Figures Ic, 2, and 4 should be used for 
fast links. The minimum delay lookahead generator (Figure 
Ib) has too many links between IC's. However, several tree 
lookahead generators can be used that require slightly more 
links but have much better delay properties than the ripple 
l~ok~h~::ld ,gener~tor.Se~ F!gt.tres Ic (il1d 2. l'he n<?J}~leaf 
nodes can omit Ga, Pa and Ca. This is conventional in the 
SN74182. However, having "paid" for the optical links, we 

Figure 5 

distributor 

flip flops to 
L capture the 

I l collected 
FF information 

'----''1'---1 F F 

I: 
'-----1'---1 FF I 

L_.J 

should use these "free" connections like Ga, Pa, and Ca. 
We refer to this tree, where all nodes have Ga, Pa, and Ca 
connections, as a full tree. Note that almost half of the 
nodes in a binary tree are non-leaf nodes. Thus, using these 
connections cuts the required size of the tree by half. If a 
nonbinary tree were used, however, this advantage would 
decre.::t§e .. T1wJeaf tl(Jdes, are~pec:i~lizedLa,s IC. type~ C lmd, 
D are leaf node versions of A and B in Figure 4b. Since half 
the nodes (or more for non-binary trees) are leaf nodes, it 
should pay to save the extra transmitters and detectors that 
are not required in leaf nodes. Finally, we select a binary 
tree, because for a tree with fan-out f, 2f integrated circuit 
types are required to implement the full tree lookahead 
generator. However, it should be noted that a tree with 
fan-out f will be log2f times faster than a binary tree. It 
might be useful. 

It should be observed that the delay in a chain lookahead 
generator is linearly proportional to the number of chips 
that are used. This can become serious. Suppose for 
purposes of illustration that the delay through an integrated 
circuit is I nanosecond, 1000 integrated circuits are used, 
and 100 time slices are required. Then 100 microseconds 
will be required to transmit all the information-the logic 
supported by the linkages will have to use a 100 micro
second clock. Consequently, the tree lookahead generator 



236 National Computer Conference, 1977 

may be required. Suppose n integrated circuits are connected 
in a full binary tree, and realized in a three dimensional 
space as in Figure 4d. Then the propagation delay through 
space is proportional to 3 rn and the delay through gates, 
transmitters and detectors is proportional to log2n. For the 
same illustration, the longest total gate delay (up and down 
the tree, which has lO levels) is 20 nanoseconds and the 
delay for propagating the light through space would be only 
about 1.25 nanoseconds if the integrated circuits fit in a half 
inch cube. The logic supported by these links could have 
about a 2 microsecond clock. Thus, future systems might 
well require the tree lookahead generator. 

We note also that the tree lookahead generator using the 
general broadcast-collector linkage or, the round-robin 
propagating linkage and pruning faulty cells has interesting 
properties and may be indicated. 

End of argument 

CONCLUSIONS 

Changes in technology tend to aggravate the linkage 
problem by enabling the placement of more and more logic 
on a chip. However, the development of 1 GHz Schottky 
detectors1,2 and 5 GHz MESFETS for pulse-code modula
tion of LED's as well as very fast (l5ps transition times) 
Transfer Electron Logic Devices3 invites the use of very 
fast optical links to solve, or at least ease, the linkage 
problem. 

Herein, we have analyzed the use of such very fast serial 
linkages from the point of view of the organization (in the 
context of architecture, organization and realization). We 
have noted that some six linkage structures exist, and 
should be implemented in the time multiplexed slices of this 
fast optical link. We have shown a way to effect these using 
a lookahead generator. And we have shown that the looka
head generator can be implemented in two different ways 
using optical links. The lookahead generator is, we feel, the 
key to using optical links for interconnecting integrated 
circuits because it can realize the diverse types of linkages 
required for that application. 

The optical link requires some consideration in the design 
of systems using it. Generally, chips that talk to other chips 
should be close by in the chain, or in the same subtree. This 
invites some study on algorithms that will place the chips in 
optimal order to most efficiently use the link. Alterna
tively, hierarchical organizations of modules should be 
designed where a module is a collection of logic that shares 
a single bus. This is similar to contemporary modularization 
where a module is a collection of logic on the same card or 
rack, since cards or racks are intuitively designed to keep 
down the number of interconnections. Thus, top-down 
modular design using optically linked modules should be 
similar to contemporary top-down modular design using 
printed circuit card modules and racks. Finally, the timing 
of transfers on the link will involve an inherent one step 
deiay. A direct, near zero deiay, iink will be hard to realize 
since the data to be transferred will generally have to be 

ready at the first time slot, and all the data will finally be 
transferred by the last time slot in each cycle of time slots. 
Processes may have to be pipelined to effectively use this 
link. However, these considerations are not insurmountably 
difficult in systems design. 

The optical link will have some advantages too. The 
connections are now programmed, so that re-connection 
amounts to re-programming. It will not be necessary to 
rewire a board to correct an error or make a field modifica
tion in the connection. Judging from the acceptance of 
microprocessors in digital design because programming is 
more flexible than re-wiring, a programmed link may be 
very desirable too. 

ACKNOWLEDGMENTS 

The author is indebted to Joe Zelikovitz and Lori Ackerman 
for pointing out the potential for, and devices for, an optical 
link between integrated circuits. 

REFERENCES 

I. Wang, Chitong, "Investigation of a New Grating type Gold-n-type 
Silicon Schottky-Barrier Photodiode for 0.4-1.1 ym Photodetection," 
Ph.D. Thesis, University of Florida, 1973. 

2. Wang, C. T., and S. S. Li, "A New Grating type Au-n Si Schottky 
Barrier Photodiode," IEEE Trans. Electron Devices, Vol. ED-20, 1973, 
pp. 522-527. 

3. Derman, S., "Progress in Gigabit Logic Reported for Super-fast Switch
ing Uses," Electronics Design, Vol. 15, July 19, 1976, pp. 34-38. 

4. General Instruments Corporation, "UART Universal Asynchronous 
Receiver-Transmitter," Description Flier, March 1974. 

5. Bell, C. G. and A. Newell, Computer Structures: Readings and Exam
ples, McGraw-Hill, 1971. 

6. Nisnevich, L. and E. Strasbourger, "Decentralized Priority Control in 
Data Communication," Proc. Second Annual Symposium on Computer 
Architecture, January 1975, pp. 1-6. 

7. Bell, G., H. McFarland, B. Delangi, J. O'Laughlin, R. Noonan, and W. 
Wulf, "A New Architecture for Minicomputers-The DEC PDP-II," 
AFIPS Proc. SJCC, Vol. 36, 1970, pp. 657-675. 

8. Lipovski, G. J., "A Course in Top-down Design of Digital Processors," 
submitted to Computer. 

9. Lipovski, G. J., "A Question of Style," submitted to the Computer 
Architecture Newsletter, Vol. 5, No.4. pp. 32-38. 

10. Lipovski, G. J., "On a Stack Organization for Microcomputers," Proc. 
o/the Euromicro Workshop, Nice, France, June 1975, pp. 137-147. 

II. Anderson, J. A. and G. J. Lipovski, "A Virtual Memory for Micropro
cessors," Proc. Second Annual Symposium on Computer Architecture, 
January 1975, pp. 80-84. 

12. Lipovski, G. J., "On a Varistructured Array of Microprocessors," 
IEETC, Vol. C-26, No.2, pp. 125-137. 

13. Lipovski, G. J., "The Architecture of a Simple, Effective, Control 
Processor," to appear in the Proceedings o/the Second Annual Euromi
cro Symposium, Venice, Italy, October 1976. 

14. Gundlack, R., "Fiber Optic Developments Spark Worldwide Interest," 
Eiectronics, VoL 49, No. 16, pp. 81-i04, August 1976. 

15. King, F. D., "High-radiance LED's Have Linear Response to Analog 
Inputs," Electronics, Vol. 49, No. 16, August 1976, pp. 92-94. 

16. Love, R., "High Performance Cables Achieve Zero Failure at Rated 
Fensile Strength," Electronics, Vol. 49, No. 16, August 1976, pp. 88-89. 

17. Barnoski, M., "In Systems with 20 or More Terminals, Star Couplers 
Outperform Tee Types," Electronics, Vol. 49, No. 16, August 1976, pp. 
102-104. 

18. Intel Corp., Preliminary Specification o/the Intel 8080, application note. 
19. Intel Corp., 8008, 8 Bit Parallel Central Processing Unit, application 

note, June 1972. 



UNIX on a micro-processor 

by H. L YCKLAMA 
Bell Laboratories 
Murray Hill, New Jersey 

ABSTRACT 

A modified version of the UNIX Operating System has 
been written to run on the LSI-II micro-computer with 20K 
words of primary memory and floppy disks for secondary 
storage. This configuration permits most of the UNIX user 
programs to run on the LSI-II micro-computer. The main 
programming language used is the structured high-level 
language, C. A background process as well as foreground 
processes may be run. A set of subroutines has been 
written to interface to the file system on the floppy dis
kettes. Asynchronous read/write routines are also available 
to the user. 

The LSI-UNIX system (LSX) has appeal as a stand-alone 
system for dedicated applications. It also has many poten
tial uses as an intelligent terminal system. The decreasing 
costs of the hardware components make such a system a 
potential candidate for a very powerful and inexpensive 
personal computer system. 

INTRODUCTION 

The UNIX Operating System l has enjoyed a wide accept
ance as a powerful general-purpose time-sharing system. It 
supports a large variety of languages and subsystems. It 
runs on the Digital Equipment Corporation PDP- 11140, I I/ 
45, and lit 70·computers.these'are aHI6-bit word ma
chines and have a memory management unit which makes 
multi-programming easy to support. The UNIX system is 
written in the system programming language , C. 2 In fact 
most user programs and subsystems are also written in this 
language. Other languages and subsystems supported in
clude Basic, Fortran, Snobol, TMG and yacc (a compiler
compiler). The file system is a general hierarchical structure 
supporting device independence. The system runs in about 
20K words of memory and user programs may be up to 32K 
words in size. 

With the advent of the DEC LSI-II micro-processor it 
has become desirable to transport as much as possible of 
the software developed for UNIX to this machine. One of 
the biggest problems faced is the lack of a memory manage
ment unit, thus limiting the total address space of both 
system and user to 28K words. The challenge then is to 
reduce the 20K word operating system to 8K words and yet 

237 

maintain a useful operating system. This limits the number 
of device drivers as well as the system functions which can 
be supported. The secondary storage used is floppy disks. 
The operating system was written in the C language and 
provides most of the capabilities of the standard UNIX 
operating system. The system occupies 8K words in the 
lower part of memory leaving up to 20K words for a user 
program. This configuration permits most of the UNIX user 
programs to run on the LSI-II micro-computer. The operat
ing system (LSX) allows a background process as well as 
foreground processes. 

The fact that a minimum system can be configured for 
about $7000 makes the LSI-UNIX system an attractive 
stand-alone system for dedicated applications such as con
trol of special hardware. The system also has appeal as an 
intelligent terminal and for applications which require a 
secure and private data base. In fact, this is a personal 
computer system with almost all of the functions of the 
standard UNIX time-sharing system. 

This paper describes some of the objectives of the LSX 
system as wen as some of its more important features. Its 
capabilities are compared with the powerful UNIX time
sharing system which runs on the PDP-III40, 11145 and III 
70 computers,4 where appropriate. A number of current and 
planned applications are described in some detail. A sum
mary and some thoughts on future directions are also 
presented. 

WHY UNIX ON A MICRO-PROCESSOR? 

Why develop a micro-processor based UNIX system? 
The increasing trend to micro-processors and the prolifera
tion of intelligent terminals make it desirable to harness the 
UNIX software into an inexpensive micro-computer and 
give a user his own personal computer system. There are a 
number of factors to be considered in doing this: 

1. cost of hardware 
2. cost of software 
3. UNIX software base 
4. size of system. 

The hardware costs of a computer system have come 



238 National Computer Conference, 1977 

down dramatically over the last few years (even over the 
past few months). This trend is likely to continue in the 
foreseeable future. Micro-processors on a chip are a reality. 
The cost of primary memory (e.g., dynamic MOS memory) 
is decreasing rapidly as 4K-bit chips are being replaced by 
16K-bit chips. There exists a large amount of expertise in 
PDP-II hardware interfacing. The similarity of the Q-bus of 
the LSI-II micro-computer to the UNIBUS of other mem
bers of the PDP-It family of computers makes this exper
tise available. 

The software development costs continue to increase 
since the development of new software is so labor inten
sive. It is difficult to estimate the cost of writing a particular 
software application program. Until automatic program 
writing techniques become widely understood and used, 
this trend is not likely to be turned around any time soon. 
Thus it becomes imperative to take advantage of as much 
software that has already been written as possible. A 
tremendous amount of software has been written to run 
under the UNIX operating system. It seems wise to use as 
much of this as possible. The operating system developed 
for the LSI-II micro-computer supports most of the UNIX 
user programs which run under UNIX time-sharing, even 
though LSX is a single-user system. Thus most of the 
software for the system is already available, minimizing the 
cost of software development. 

With the advent of some powerful micro-processors, the 
size of a computer system has shrunk correspondingly. 
Small secondary storage units (floppy disks) are also be
coming increasingly popular. In particular, DEC is market
ing the LSI-II micro-computer which is a 16-bit word 
machine with an instruction set that is compatible with the 
PDP-II family of computers. It is conceivable that in the 
next five years or so the power of a mini-computer system 
will be available in a micro-computer. It will become possi
ble to allow a user to have a dedicated micro-computer 
rather than a part of a mini-computer time-sharing system. 
LSX is a step in this direction. This will give the user a cost 
effective interactive and powerful computer system with a 
known response time to requests, since the machine is not 
time-shared. A dedicated one-user system can be made 
available to guarantee "instantaneous" response to re
quests of a user. There are no unpredictable time-sharing 
delays to deal with. The system has applications in areas 
where security is important. A user can gain access to the 
system only in the room in which the system resides. It is 
thus possible to limit access to a user's data. 

Local text-editing and text-processing features are now 
available. Other features can be added easily. Interfaces to 
special I/O equipment on the Q-bus for dedicated experi
ments can be added. The user then has direct access to this 
equipment. Using floppy disks as secondary storage gives 
the user a rather small data base. A link to a larger machine 
can provide access to a larger data base. Interfaces such as 
the DLVII (serial interface) and the DRVII (parallel inter
face) can provide access to other computers. 

One of the main benefits of using the UNIX software 
base is that the C compiier is avaiiabie for writing applica
tion programs in the structured high-level language, C. The 

use of the powerful command interpreter (sh) is also a great 
asset. A general hierarchical file system is available. 

The LSX system has two main areas of application: 

(1) control of dedicated experiments 
(2) intelligent terminals. 

As a dedicated experiment controller, one can interface 
special 110 equipment to the LSI-II Q-bus and both support 
and control the experiment with the same LSX system. The 
applications as an intelligent terminal are manyfold: 

(1) development system 
(2) general text-processing applications 
(3) form editor 
(4) two-dimensional cursor-controlled text editor. 

HARDW ARE CONSIDERATIONS 

The hardware required to build a useful LSI-UNIX 
system is minimal. The absolute minimum pieces required, 
are: 

LSI-II microcomputer (with 4K memory) 
16K memory (e.g., dynamic MOS) 
EIS chip (extended instruction set) 
Floppy disk controller with one drive 
DL V 11 serial interface 
Terminal (e.g., TTY-33) 
Power supply 
Cabinet. 

A more flexible and powerful system is shown in Figure 1. 
An actual total system is shown in Figure 2. 

The instruction set of the LSI-II micro-computer is 
compatible with that of the members of the PDP-II family 
of computers with the exception of 10 instructions. The 
missing instructions are provided by means of the EIS chip. 
These special instructions may be generated by high-level 
compilers and it is advantageous not to have to emulate 
these instructions on the micro-processor. The instructions 
include the multiply, divide and multiple shift instructions. 

TERMINAL UP '0 .. DRIVES 

O·8US --L...----r---'------,r--...L..-----y---'---

Figure I-LSI-Il configuration 

CONNECTION TO 
'---'\ .... -POP-11/45 



Figure 2 

A floppy disk controller with up to 4 drives is shown. At 
present there are only a few controllers for floppy disks 
which interface to the LSI-ll Q-bus. The typical rotation 
time of the floppies is 360 RPM, i.e., six times per second. 
All floppies have 77 tracks, however the number of sectors 
and the size of sectors is variable. The comparative data for 
the various floppy diskettes are as follows: 

DEC BTL AED 

sector size (bytes) 128 512 512 
sectors per track 26 8 16 
number of tracks 77 77 77 
total capacity (bytes) 256256 315392 630784 

DMA capability (y/n) no yes yes 

max. transfer rate 6656 24576 49152 
(bytes per second) 

The outside vendor (AED Systems5
) supplies dual-density 

drives for an increase in storage capacity. The DEC drives 
are IBM compatible and hence have less storage capacity. 
We have chosen to build our own floppy disk controller for 
some special Bell System requirements. 7 The advantages of 
DMA capabilities are obvious as regards to ease of pro
grammrilg-~ and' 'iranst'e"r 'ra'ie:'l1 IBIVClormat compatlf;iliiyis 
important, the throughput and capacity of the system are 
somewhat diminished. 

At least one serial interface card is required to provide a 
terminal for the user of the system. Provided the terminal 
uses the standard RS232C interface, any terminal is satis
factory. For quick editing capabilities, CRT terminals are 
appropriate. For hard copy, either the common TTY33 or 
other terminals which run at higher baud rates may be more 
suitable. 

The choice of memory depends on the importance of 
system size and whether power-fail capabilities are impor
tant. Core memory is of course non-volatile but it takes 
more logic boards, more space and is therefore more expen
sive than dynamic MOS memory. Dynamic MOS memory 
does not take as much space, is less expensive and takes 
less power, but its contents are volatile in case of power 
dips. Memory boards up to 16K words in size are available6 

UNIX on a Micro-Processor 239 

for the LSI-ll micro-processor at a very reasonable price. 
The memory costs are likely to keep decreasing in the 
foreseeable future. 

Another serial or parallel interface is often useful for 
connection to a larger machine with a large data base and a 
complete program development and support system. It is of 
course necessary to use such a connection to bootstrap up a 
system on the LSI-II micro-computer. The central machine 
in this case is used to store all source for the LSX system 
and to compile the binary object programs required. 

The system hardware is flexible enough so that, if neces
sary, a bus extender may be used to interface special 
devices to the Q-bus. This provides the ability to add 
special-purpose hardware which can now be controlled by 
the LSX system. In a later section we describe a TV raster 
scan terminal which was built for editing and graphics 
applications.8 Other systems have interfaced special signal
processing equipment to the Q-bus. As DEC provides more 
of the interfaces to standard I/O peripherals, the applica
tions will no doubt expand. 

LSX FILE SYSTEM 

The hierarchical file structure of UNIX is maintained. 
The system makes a distinction between ordinary files, 
directories and special files. Device independence is inher
ent in the system. Mounted file systems are also supported. 
Each file system contains its own i-list of inodes which 
describe the files. Each inode contains the size, number of 
links and the block numbers in the file. Space on disk is 
divided into 512-byte blocks. In contrast with the UNIX file 
system, two types of ordinary files are allowed. The UNIX
type file inode contains the block numbers which make up a 
file. If the file is larger than eight blocks, the numbers in the 
inode are pointers to the blocks which contain the block 
numbers. This requires two accesses to the disk for random 
file access. LSX recognizes another type of file, the contig
uous file, in which the inode contains a starting block 
number and the number of consecutive blocks in the file. 
This requires only one disk access for a random access to a 
me. TIU; ~;., ~iTipuifd.lll fui ;i0~ d(,(,,tSSS Jt;vi~t:;., ;"l.l.dl d.;" 
floppy disks. The layout of the disk is also crucial for 
optimum response to commands. By locating directories 
and inodes close to each other, file access is measurably 
improved over a random distribution on disk. 

There is no read/write protection on files. File protection 
is strictly the user's responsibility. The user is essentially 
given super-user permissions. Only execute and directory 
protection is given on files. Group id's are not imple
mented. File system space is limited to the capacity of the 
diskette in use. The list of available inodes is not dynami
cally created by the system (as in UNIX), but is created 
when the file system itself is created or salvaged. 

LSX SYSTEM FEATURES 

The LSX operating system is written in the C language 
and as such bears a strong resemblance to the multi-user 



240 National Computer Conference, 1977 

UNIX system developed for the PDP-11140, 11145 and 11170 
computers. The total system occupies 8K words of memory 
and has room for only 6 system buffers. Because the C 
compiler ifself requires up to 12K words of user address 
space, it is possible to run the C compiler using only 20K 
words of total memory. It is possible to increase the system 
size if more capabilities are required in the operating 
system since the total memory space available to the 
system and user is actually 28K words. More system 
buffers could be provided in the system. If the system is 
kept to 8K words, a 20K word user program could be run. 
However, this requires more swap space, which is at a 
premium. 

The system is a single-user system with only one process 
running at anyone time. A process is defined as the 
execution of an image contained in a file. However, a 
process may fork up to two levels deep, giving rise to a 
total of three active foreground processes. The last process 
forked will run to completion first. More foreground proc
esses could be run but this would require more swap space. 

The command interpreter, the Shell, is identical to that 
used in the UNIX system. The file name given as a 
command is sought in the current directory. If not found, 
"/bin/" is prepended and the "/bin" directory searched. The 
"/bin" directory contains all of the commands generally 
used. Standard input, output and diagnostic files are sup
ported. Re-direction of standard I/O is possible. Shell 
"scripts" are also executed by the command interpreter. 

"Pipes" are not supported in the system, but pseudo
pipes are supported in the command shell. Pipes provide an 
interprocess communication channel in the UNIX time
sharing system. These pseudo-pipes are accomplished by 
expanding the shell syntax " I " to "> ·_pf; < ·_pf'. Provid
ing that sufficient disk space exists, the pipe implementa
tion is transparent to the user. 

The system automatically mounts a user file system on a 
second diskette if so desired. The "mount" and "un
mount" commands are not available to the user. Thus a 
reboot of the system is necessary to mount a new user 
diskette. The system diskette is normally configured with 
swap space and temporary file space. User programs and 
files may reside on the system diskette if a user diskette is 
not mounted. 

The size of memory available and the lack of memory 
protection (i.e., memory segmentation unit) have put some 
restrictions on the capabilities of the LSX operating sys
tem. However these are not severe in the single-user 
environment in which the system is run. Profiling is not 
provided in the system. Timing information only becomes 
available if a clock interrupt is provided on the LSI-II 
event line at 60 times per second. Only one character 
device driver is allowed at present as well as only one block 
device driver. No physical I/O is provided for. There is also 
no read-ahead on file I/O. Only 6 system buffers are 
provided and the buffering algorithm is much simpler than 
in UNIX. Interactive debugging is not possible, but the 
planting of break-point traps and post-mortem debugging of 
a core image is possible. All user programs must be 
relocated to begin execution at 8K in memory. This re-

quired modifications to the UNIX link edit (Id) and debug
ger (db) programs. Most other differences between LSX 
and UNIX are transparent to the user. 

BACKGROUND PROCESS 

It is possible to run a background process on LSX while 
running a number of foreground processes to get some 
concurrency out of the system. The background process is 
run only while the current foreground process is in an input 
wait state. Two new system calls have been added to LSX, 
"bground" and "kill," to enable the user to run and 
remove a background process. Only one background proc
ess is allowed to run and it is not allowed to fork another 
child process; however, it may execute another program. 
The background process may be either compute-bound or 
perform some I/O functions, such as outputting to a hard
copy terminal. 

STAND-ALONE ROUTINES 

Under LSX it is possible to run a dedicated program 
«12K words) in real time using all of the conveniences of 
the UNIX system calls to communicate with the file sys
tem. For programs which require more than 12K words of 
memory or which require more flexibility than provided by 
the LSX system, a set of subroutines have been written to 
provide the user a UNIX-compatible interface to the file 
system without using the LSX system calls. A user is given 
more control over his program. Disk I/O issued by the user 
is buffered using the read-ahead and write-behind features 
of standard UNIX. A much greater number of system 
buffers is provided than is possible in the LSX system. 
Eight of the standard file system interface routines are 
provided. The arguments required for each routine and the 
calling sequence are identical to those required by the 
UNIX system C-interface routines. These include: read, 
write, open, close, creat, sync, unlink and seek. Three 
unique routines: saread, sawrite and statio are provided to 
enable the user to do asynchronous I/O directly into buffers 
in the user's area rather than into system buffers. These 
additional routines allow a user to start mUltiple I/O's tol 
from mUltiple files concurrently, do some computation and 
then wait for completion of a particular outstanding I/O 
transfer at his convenience. A "load" program under LSX 
enables the user to load his stand-alone program which 
must start execution at location 0 in memory. 

A DEVELOPMENT SYSTEM 

One system disk has been configured to contain a fairly 
complete program development system. The development 
programs include: 

editor 
assembler 
C compiler 



link editor 
debugger 
command interpreter 
dump program 

as well as a number of libraries which contain frequently 
used routines for use by the link editor. It is thus possible 
to compile, run and debug application programs completely 
on-line without access to a larger machine, In a typical 
application, the contents of the system disk remain quite 
stable, whereas all user programs are maintained on a 
permanently mounted user diskette. For minimal systems it 
is possible to run with only one diskette. Due to the lack of 
protection, it is possible to crash the system. However in 
practice, the use of the high-level language C minimizes the 
number of fatal bugs which actually occur, since the stack 
frame and program counter are quite well controlled. 

In our particular installation, it is often convenient to use 
the satellite processor system9 to aid in the running and 
debugging of new user programs. This is possible since 
programs running in the LSI-II satellite microcomputer 
behave as if they are running on the central machine with 
access to its file system. This emulates the environment on 
LSX quite closely. Thus a program may be compiled on a 
central machine supporting the C compiler, run on the LSI-
11 micro-computer and debugged. When the program has 
been completely debugged, it is possible to load the pro
gram onto the floppy file system using the stand-alone 
routines (described previously) and the satellite processor 
system. The program may then be run under LSX. 

TEXT PROCESSING SYSTEM 

Another area of application for the LSX system is as a 
personal computer system for text processing. Files may be 
prepared using the editor and run off using the UNIX nrofT 
command with a hard-copy device. This system disk in
cludes programs such as: 

editor 
cat output ascii files 
fJI' plint d~~ii 1iIt:~ 
od octal dump files 
rofT 
nrofT 
neqn mathematical equation FORMATTER 

The file transfer program referred to in the previous section 
enables one to transfer files to/from a machine with a larger 
data base. A user's files may be maintained on his personal 
mounted diskette. If a hard-copy device is attached to the 
computer as well as the user's interactive terminal, hard
copy output can be obtained using a background process 
while editing another file in the foreground. 

FORM EDITOR PROGRAM 

Another area of application for which LSX seems well
suited is for the entry and retrieval of data records by 

UNIX on a Micro-Processor 241 

computer-naive users. We have available an intelligent 
terminal8 which has some advanced features particularly 
suitable for this application. It is shown in Figure 3. It has 
scrolling capabilities, cursor control and user labelled but
tons below the TV screen. The buttons can be used for 
cursor positioning as well as other dedicated functions 
defined by a user program. This terminal is well-suited for 
the input of data into computer-displayed forms. Protected 
fields are implemented in software rather than in hardware 
as for the TTY 40 terminal. A general-purpose form entry 
program has been written for this terminal. 10 Another 
program "mkform" is available to enable a user to com
pose a form on the TV screen interactively. The form is 
then used with the "fentry" program to create, update and 
delete entries in a data base whose record structure de
pends only on the structure of the form and is independent 
of the "fentry" program. The LSX system provides the 
underlying support and file system for these programs. The 
programs are designed to be very easy to use for computer
naive users. 

TWO-DIMENSIONAL SCOPE TEXT EDITOR 

The TV terminal described above is also well-suited for a 
two-dimensional text editor. The interactive two-dimen
sional cursor control features allow one to move the cursor 
anywhere on the face of the TV screen. The editor available 
on the UNIX system has some very powerful features. It is 
desirable to use these in the scope editor as well. Therefore 
the scope editor features have been imbedded in the exist
ing UNIX text editor. Thus the user is capable of going 
back and forth between the standard UNIX editor features 

Figure 3 

~ 
CI) -Q 



242 National Computer Conference, 1977 

and the additional scope editing features. The labels on the 
buttons below the TV screen tell the user what mode he is 
in and what functions are available to him. Complete cursor 
control is available. A window into the file being edited is 
displayed on the TV screen. The user has the ability to 
insert, remove and replace a character at the current cursor 
position or delete the remainder of the line to the right of 
the cursor on a per line basis. The user may also insert or 
delete whole lines or break a line in two. Block deletes, 
copies and moves are also available by means of three 
marks which may be set in a file. A position command is 
available to move any section of the file onto the TV screen 
window (26 lines). Further work is being done on this 
editor. 

SUMMARY 

The LSI-UNIX system is currently being used for re
search in intelligent terminals and in stand-alone dedicated 
systems. There are plans to use this system for further 
research in other areas of Bell Laboratories. Hard-copy 
features have yet to be incorporated into the system in a 
clean fashion. Currently, our system is connected to a 
larger machine using the Satellite Processor System. More 
general connection to larger machines or possibly to a 
network of machines has yet to be investigated. The LSX 
system also has potential uses in multi-terminal or cluster 
control terminal systems where multi-tasking features are 
important. These application areas have only been looked 
at superficially and warrant further investigation. 

As a development system, LSX functions quite well. The 
response to most programs is only a factor of four or so 
slower than on the conventional mini-computers. This is 
due mainly to the slow secondary storage devices used by 
LSX. Optimization of file storage allocation on secondary 
should improve response somewhat. 

The advent of large memory boards (64K words) will 
make the mapping of memory necessary to take full advan
tage of this large address space. This will enable the 
running of mUltiple processes without the need for swap
ping a process out of primary memory. This should also 

improve the response of the system and increase the 
number of uses to which it can be put. 

There is a necessary loss of some functionality in the 
LSX system because of the size of the memory address 
space available on the LSI-ll computer. However as a 
single user system, most of the functions are still available 
to the user. As an intelligent terminal system, a micro
processor with all of the UNIX software available is indeed 
quite a desirable "intelligent" terminal. 

ACKNOWLEDGMENTS 

The author is indebted to H. G. Alles for designing and 
building both the initial PERTEC floppy disk controller and 
the novel TV terminal. These two pieces of hardware have 
provided much of the motivation for doing the LSX system 
in the first place and for doing research in the area of 
intelligent terminals in particular. Many of the application 
and support programs described here have been written by 
Eugene W. Stark. John S. Thompson wrote a floppy disk 
driver for the AED floppy disk controller to facilitate 
bringing up the LSX system on these disks. The author is 
grateful to J. C. Swartzwelder and D. R. Weller for their 
efforts in putting together the first LSI-II system. 

REFERENCES 

I. Thompson, K. and D. M. Ritchie, "The UNIX Time-Sharing System," 
Comm. ACM 17, July 1974, p. 365. 

2. Ritchie, D. M., "C Reference Manual," Bell Labs Memorandum. 
3. DEC LSI-II Processor Handbook, 1976. 
4. Thompson, K. and D. M. Ritchie, "UNIX Programmer's Manual-6th 

Edition," May, 1975. 
5. Advanced Electronic Design Double-Density Floppy Disk Subsystem. 
6. Monolithic Systems. 
7. Alles, H. G. "An LSI-II Controller for the Pertec Floppy Disk," Private 

communication. 
8. Alles, H. G. "A TV Terminal for the LSI-II Microcomputer," Private 

communication. 
9. Lycklama, H. and C. Christensen, "Emulation of UNIX on Peripheral 

Processors," Bell Labs Memorandum. 
10. Stark, E. W., "System for Entering Data Through Computer-Displayed 

Forms," Private communication. 



Using LSI processor bit-slices to build 
a PDP-II-A case study in 
microcomputer design* 

by T. M. McWILLIAMS, S. H. FULLER and W. H. SHERWOOD 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ABSTRACT 

In this article we give the design and evaluation of the 
CMU-l1: a fully operational implementation of the PDP-ll 
computer architecture built with Intel 3000 Schottky bipolar 
microcomputer bit-slices. This project was initiated to test 
in detail the claims that LSI processor bit-slices simplify the 
design of microprogrammed processors. The CMU-II exe
cutes approximately 240,000 instructions per second, which 
is about 63 percent the speed of the PDP-I 1140 and twice 
the speed of the LSI-II. 

We explore in some detail the additional logic that was 
added to enable the Intel 3000 circuits to emulate the PDP-
11 instruction set. We specified full DEC Unibus compati
bility and 29 percent of the integrated circuits used to 
implement the CMU-II were required to provide buffering 
and control of the Unibus. The other main sources of 
inefficiency were the lack of arithmetic overflow logic in 
the bit-slices and the organization of the microinstruction 
control store. We show how improved LSI circuits in this 
area can substantially reduce the size (and cost) of the 
processor. 

The set of design aids currently available at Carnegie
M~llon Univ~rsity w';l~ of criti~al ~~~i~t';lflce in thi~ project 
and we mclude a critique of our use of these design aids to 
show their utility in prototype design efforts. 

INTRODUCTION 

Several semiconductor manufacturers have recently devel
oped high speed LSI circuits that are designed to simplify 
the construction of microprogrammed processors and de
vice controllers. These integrated circuits are called "bit
slices" because they implement two or four bits of the 
registers, arithmetic units, and primary data paths of a 
processor. This article presents the design and evaluation of 
the processor built at Carnegie-Mellon University that uses 

* This work was partially supported by the Advanced Research Projects 
Agency (ARPA) of the Department of Defense under contract F44620-73-C-
0074, monitored by the Air Force Office of Scientific Research. 

243 

the Intel 3000 bit-slices and that is microprogrammed to 
emulate the PDP-II computer architecture. 1,2 * * The purpose 
of this project was to investigate the assertions of semicon
ductor manufacturers that their LSI bit-slices would in fact 
simplify the design and construction of processors. 

Rather than specify a new architecture (i.e., instruction 
set) for this experiment in processor design, we decided to 
reimplement an established computer architecture: the 
PDP-II. We chose the PDP-II architecture for several 
reasons. Using an existing and well-known architecture 
would allow others to more easily evaluate the results of 
our experiment and kept us from consciously or uncon
sciously tailoring the processor architecture to fit the capa
bilities and idiosyncrasies of the LSI bit-slices. Another 
reason is that PDP-II's are in extensive use at Carnegie
Mellon Univ. in a wide variety of applications and, if our 
experiment was successful, the processor could be put to 
work on anyone of several practical tasks. It was this 
second reason that helped establish a criterion that proved to 
be critical: we demanded that the processor we constructed 
support the standard DEC Unibus3 that is common to all 
PDP-II's except the LSI-II. Finally, the PDP-II architec
ture is an unusually good test of the capabilities of a bit
~lict.: c:irc:.uit f~mily .l?~cau~e it i~ ~ rel~tively c.ompl~t.~ 
architecture with numerous addressing modes and mstruc
tion formats. 

In the next section we begin with a description of the 
design of the CMU-II processor. We then discuss the per
formance, cost and implementation difficulties uncov
ered during the design and testing of the machine. In 
addition to the evaluation of the LSI bit-slice circuits for 
general-purpose processors, we are interested in the prob
lems of computer design in general. For this reason, a fairly 
complete set of digital design automation aids are available 
at Carnegie-Mellon University: an interactive drawing 
package that generates engineering drawings, wire-lists, and 
aids in engineering changes; a digital simulation system that 
is interfaced to the drawing system; and microprogram 
assemblers. A later section of this paper reviews our 

** We gratefully acknowledge the donation of 3000 microcomputer sets by 
both Intel and Signetics Corporations. 



244 National Computer Conference, 1977 

experiences with these design aids and we draw some 
conclusions concerning the process of designing and debug
ging prototypes of digital systems built with LSI circuits. 

ORGANIZATION OF THE CMU-II 

Figure 1 is a register-transfer level diagram of the CMU-
11 microprogrammable processor. The processor's compo
nents are arranged in the diagram into three sections: the 
data part, control part, and Unibus interface. We were able 
to build the entire processor on a single board and Figure 2 
is a top view of the CMU-II. 

The data paths and working registers 

The data part of the processor is designed around the 
3002 (central processing element) bit-slice. A single 3002 
circuit implements a 2-bit slice of the data paths and hence 

eight 3002's have been used in the CMU-II. Although not 
explicitly shown in Figure 1, the 3003 carry-Iookahead 
circuit is also used. With the 3003, the 3002 array is capable 
of cycling through operations every 150 ns. However, other 
delays in the clock and control part dictate that the CMU-
11 has a 200 nsec micro-cycle time. The eight general
purpose working registers of the PDP-II architecture can 
be kept in the register scratchpad on the 3002's, and the 
three remaining internal registers, R8, R9, and Tare 
sufficient for source and destination operand computations 
as well as other intermediate results. The Program Status 
(PS) and Instruction Register (lR) were not possible to 
locate within the 3002's without a severe loss in perform
ance. 

The relatively generous number of input and output lines 
of the 3002's are used to good advantage. The D( 15 : 0) 
and A(I5 : 0) buses feed the Unibus Data and Address 
lines respectively. In addition, the D bus allowed access to 
the extra data paths necessary to include the PS register 
and to facilitate the byte swap operation needed by many of 

PS CONTROL 

UNleus 
TIMIN6 

AND 

CONTROL 

LOo". 

EI!.HT 300Z CENTR .... L 
PROCe.SSING ELEMENTS 

SCRATC.H P"D 
REC,ISTERS 
R0-R9, T 

MIR(9:l) 

I I 
~--------------------I 

MIR(9:Z) 

MIR(13:11) 

IR (15:~0) 

MICROe.RI\NC.H 
LOC,IC 

Figure I-Register transfer level diagram 



Figure 2-CMU-11 processor board 

the PDP-II's instructions. The M (I 5 : 0) bus is used as the 
principal data input bus. The Function bus, F(6 : 0), 
specifies both the operation to be performed by the arith
metic/logic unit as well as the selection of the register in the 
scratchpad to be involved in the operation. The K(I5 : 0) 
bus is used to input masks or constants from the microin
struction. The 3000 circuit set makes frequent use of the K 
lines to specify masks (usually all zeros or all ones) that 
effectively extend the operation code on the Function bus. 

Control part 

The control part of the CMU -II uses the 300 I Micropro
gram Control Unit and a 512 word control store** with 32 
bit microinstructions. Figure 4 shows the format of the 
microinstruction and Table I briefly describes the function 
of each of the fields. A microinstruction buffer register was 
included in the design to allow the overlap of the fetch of 
the next microinstruction with the execution of the current 
microinstruction which is a common technique to improve 
th~ p~!fur 1.1::m~e of mf~rC~r'bgrai1irD.(;,n.Yro':':t::"M)i~. 

The ""next-address logic" of the 3001 has been aug
mented by additional microbranch control logic external to 
the 3001. This external logic uses the contents of the 
Instruction Register, the condition codes in the PS, and the 
PLA field from the microinstruction register to determine 
the AC(6 : 0) lines to input to the 3001. 

The other major section of control logic that had to be 
added to the design was the Processor Status logic to 
control the setting of the 4-bit condition code in the PS 
register and control access to the PS. In fact, the PS 

** In order to expedite the debugging of the microprogram for the eMU-II, 
we built a fast, simple writable control store for the eMU-II. 45 nsec access 
time, 1024 bit RAM packages were used to assure a writable control store as 
fast as the final ROM control store. The writable control store is interfaced 
to a Unibus (of a PDP-II other than the eMU-II) for initial loading of 
microprograms. Figure 3 shows the eMU-II interfaced to the supporting 
PDP-II and writable control store. 

A Case Study in Microcomputer Design 245 

Figure 3-CMU-11 system with associated PDP-II 

register is defined as primary memory location 177776 in 
the PDP-II architecture requires special logic to load and 
store the PS. 

Interface to the unibus 

A significant fraction of the components of the CMU-I 1 
are devoted to the support of the Unibus. Given the 
demanding electrical requirements of the Unibus, the tri
state A, D, and M lines of the 3002 array could not be 
directly attached to the Unibus. Instead, separate trans
ceiver packages had to be used to provide this buffering. 

Due to the asynchronous operation of the Unibus and 
interrupt and non-processor requests (i.e., direct-memory 
access request via the Unibus) it was not practical to drive 
thetT~J~ d~iC~~!Y frb:ti ficrGs iiI lh~ lliii:;iuiii;lru~tiun. 

Instead, a bus control and timing section added to the 
processor. The rest of the processor interfaces to this 
control unit via the UC(7 : 0) field in the microinstruc
tion. See Table I for a description of the functions of the 
subfields within UC(7 : 0). 

Console functions 

In place of a standard front panel, the CMU -II has front 
panel functions accessible from a standard teletype at
tached to the Unibus. Memory locations can be examined 
and loaded by typing the octal address followed by a slash. 
The current value is displayed and a new value may be 
entered if desired, followed by a carriage return. The 
processor may also be started and continued from the 
teletype and there is a halt switch on the front panel which 
causes the machine to return to the console microprogram. 



246 National Computer Conference, 1977 

]1 2S 24 18 17 14 13 11 110 9 2 1 10 

AC< 6:10> F< 6: 10> FC<]:0> PLA< 2:10> K<8> K<7:e> MWS< 1: 10> 

JUMP CONTROL CPE CONTROL CARRY CONTROL SPECIAL BRANCH UPPER BITS 8 BIT CONSTANT FOR C=>ES MICRO WORD 
CONTROL CONSTANT SELECTOR 

9 8 7 6 5 4 3 2 
I 
I 

RA< 1 :10> C< 1 :10> 
UC<7:0» UNIBUS CONTROL: -

REGISTER EXTENDED GET BUS PAUSE CHECK WORD C1) C0 
ADDRESS MICROINSTR CONTROL 

9 8 7 6 5 3 2 

I SSS SDS CCTR< 1 : 0> I SCCTR< 2: 0> 

SET SOURCE SET DESTINATION C CONTROL I SHiFT SET PS 
SIGN SIGN COt-:TROL REGISTER 

PS<7:0>, PS LOGIC CONTROL: 

Figure 4-Microinstruction format 

This use of a teletype for a console is similar to the console 
teletype used by the LSI-II. 4 In order to make it easier to 
maintain the processor, we have added a microprocessor 
console which displays the microprogram address and al
lows the microprocessor to be single-stepped. The micro
console proved invaluable for debugging the prototype 
processor. 

several representative instruction times and by running a 
set of benchmarks on the machine. Evaluating the cost of 
the CMU-II has been more difficult. Rather than try to 
compare the price of existing PDP-II implementations with 
the cost of the CMU-It, we chose instead to compare it 
with other PDP-II's with respect to circuit complexity. The 
other significant costs, i.e., development costs, are dis
cussed in a later section. 

EVALUATION OF CMU-II DESIGN 
Performance of the CMU-/l 

The critical questions to be asked about this design 
concern cost and performance. It has been fairly easy to 
evaluate the performance of the CMU-II by looking at 

The CMU-II runs at a microinstruction cycle time of 200 
-nsec. The specifications for the Intel 3000 microcomputer 

MWS(I 0) := MI(I : 0) 

K(8 0) := MI(IO : 2) 

UC(7 0) := MI(9 : 2) 
UC(I : 0) 
UC(2) 
UCO) 
UC(4) 
UC(5) 
UC(7 : 6) 

PS(7 0) := MI(9 : 2) 
PS(O) 
PSO : J) 

PS(5 : 4) 
PS(6) 

PS(7) 
PLA(2 0) := MI(13 II) 

FCO 0) := MI(17 14) 
F(6 0) := MI(24 18) 

AC(6 0) := MIOI 25) 

T ABLE I-Description of Microinstruction Fields 

Micro Instruction Selector. Specifies if MI(9 : 2) should define a constant, unibus 
control, or PS control. 
Literal. K(7 : 0) is a byte constant used by the least significant byte of the K input lines 
of the 3002 array. K(8) is extended to feed the most significant byte of the K input lines. 
Unibus Control 
C I, CO Control. Specified the C 1 and CO lines on the Unibus. 
Check Word. Tests whether a word address is specified in Unibus operation. 
Pause. Halt processor clock until completion of Unibus operation. 
Get Bus. Request access of Unibus for a data transfer. 
Extended Micro Instruction Code. If set, defines alternate meaning for PLA(2 : 0). 
Register Address. Specified which input register address multiplexor should be used. 
Processor Status Control 
Set PS Register. Controls loading of PS. 
Shift Control 
Carry Control 
Set Destination Sign. Controls latching of sign of destination operand in flag external to 
3002's. 
Set Source Sign. Analogous to PS(6). 
Special Branch Control. Used by microbranch logic to tell which fields of IR and PS to 
examine for branch conditions. 
MCU Flag Control. Controls testing and setting of flags in 3001 (MCU). 
CPE Control. Drives Function Bus of 3002 (CPE) array. 
Address Control. Connected directly to the AC(6 : 0) bus of the 3001 (MCU). This is the 
one field of the micro instruction not buffered in the micro instiUction register. (The 
Microprogram Address Register internal to the MCU performs the buffering function.) 



family state that it is possible to build a 16 bit minicomputer 
with a 150 nsec. cycle time. However, given our objective 
to design as cost-effective an implementation as possible, 
we avoided the sensitive and complex timing circuits that 
would be required to approach a 150 nsec. cycle time. 

If we had used clocks with sufficient buffering and pulse 
shaping, a worst-case analysis shows that with the particu
lar IC packages used in the CMU-ll, we could approach a 
149 nsec. cycle time with Intel 3000 packages and a 126 
nsec. cycle time with Signetics' version of ~he ~OOO ~et. We 
have in fact replaced the Intel 3000 CIrcUIts WIth the 
Signetics circuits and although the CMU-II continue~ to 
run reliably at 200 nsec., we cannot reduce the cycle time 
below 200 nsec.: the critical path is in the control part and 
not the 3002 array. 

Tables II and III show the execution time for six of the 
most frequently executed instructions and the eight ad
dressing modes of the PDP-II. The instructions in Table II 
assume a register-to-register operation (i.e., a source and 
destination mode of 0). Table III shows the additional time 
that is added to the instruction execution time for the 
various source addressing modes.t The destination mode 
times are about the same as the given source mode times. 

In order to measure the performance of the CMU-II for 
various instruction mixes, several benchmarks were col
lected and run on the CMU-II, an LSI-ll, and a PDP-Ill 
40. Four benchmarks were collected that attempt to span a 
reasonable range of applications common to minicomput
ers: 

Quicksort. This is a program that uses Hoare's quicksort 
procedure to sort a set of 16 bit integers. The benchmark 
also includes a pseudorandom number generator to pro
vide the initial data. 
Trigonometric Functions. A set of trigonometric, float
ing-point routines. We do not assume the existence of a 
floating point option on any of the processors and hence 
this benchmark heavily exercises software floating point 
emulation routines. 
Partial Differential Equations. A program that uses a 
~tr~bt(Qf\ywQil~ra.tiv~ J~lax~JiQJ;J. techniQue to s"Q~ve a 
partial differential equation over a two-dimensIOnal 
space. Fixed-point values are used. 
Text Searching. Searches an input string for names in a 

t In particular, the times in Table III are the source addresses modes time 
for the CMU-II as measured on the BIS instruction. Addressing times on the 
other instructions are similar to the BIS times. 

A Case Study in Microcomputer Design 247 

TABLE II-Execution Times of Common Instructions 

Basic execution time (microseconds) 

Instruction LSI-II CMU-ll PDP-I 1140 

MOV 3.50 2.06 0.90 
CMP 3.50 2.19 0.99 
ASL 3.85 2.46 0.99 
ADD 2.46 3.85 0.99 
BRX (branch) 3.50 2.82 1.76 

(no branch) 3.50 1048 lAO 
JSR 6040 4.39 2.94 

symbol table. This benchmark makes extensive use of the 
byte and compare features in the instruction set. 

Table IV shows the execution times on the LSI-ll, CMU-
11 and PDP-I 1140 for each of the four benchmarks. From 
th~se results we see the CMU-II is approximately twice as 
fast as the LSI-II and 63 percent of the speed of the PDP-
11140. As expected, there is a moderate amount of variation 
in the relative performance of the three machines for the 
different benchmarks. The two dominant effects that can be 
seen in Table IV are that the PDP-I 1140 design has optim
ized register-to-register operations more than either the 
LSI-II or the CMU-ll (as demonstrated in the partial 
differential equation benchmark). Byte operations are more 
efficiently performed in the CMU-II because of its byte
swap data path provided by the D and I buses. The last line 
in Table IV is the data published by O'Loughlin5 in an 
article comparing the different DEC PDP-II implementa
tions. 

It is mildly disappointing that the CMU-II, built with 
Schottky TTL bit-slices, could not equal the performance of 
the PDP-I 1140, built with standard TTL circuits. The next 
two sections will examine in detail where performance was 
lost (and gained) in the CMU-II design. Before continuing 
with this review of the design, we turn to a brief discussion 
of the cost of the CMU-II. 

A principal objective of the 3000 microcomputer bit-slice 
packages is ta simptify the design 0f pr6Ce~sQts like t1k 
CMU-II. Table V is a summary of the complexity (meas
ured in integrated circuits) of the CMU-II. There are two 
columns in Table V. A simple count of the number of 
integrated circuit packages used in the CMU -11, and a 
column that converts the design to "I6-pin equivalent" 
packages (a measure of the size of the design in a standard 

TABLE III-Execution Times for the Source Addressing Modes 

Addressing mode LSI-II CMU-II PDP-Il/40 

0: Register 0.00 f-Lsec 0.00 f-Lsec 0.00 f-Lsec 
I: Register Deferred lAO 1.21 0.78 
2: Autoincrement lAO 0.64 0.84 
3: Autoincrement Deferred 3.50 1.91 1.74 
4: Autodecrement 2.10 1.00 0.84 
5: Autodecrement Deferred 4.20 2.28 1.74 
6: Indexed 4.20 1.78 1.46 
7: Indexed Deferred 6.30 2.99 2.36 



248 National Computer Conference, 1977 

TABLE IV-Performance ofCMU-lI Relative to Other PDP-II's 

Execution times relative to PDP-I 1140* 

Benchmarks LSI-II 11110 11120 CMU-II 11140 11145 

Quicksort 2.88 (366) 1.48 (188) 1.0 (127) 
Partial Ditr. Eqn. 3.48 (268) 1.75 (135) 1.0 (77) 
Trig. Functions 3.36 (III) 1.57 (52) 1.0 (33) 
Text Searching 2.76 (204) 1.45 (107) 1.0 (74) 

Average 3.1 1.6 1.0 

O'Loughlin's Data 2.32 1.85 1.0 0.91 

* Numbers in parentheses are the absolute run times in seconds for the benchmarks. 

unit). Table VI gives a breakdown of the actual cost of the 
CMU-II at January, 1976 prices. 

It is surprising that less than 20 percent of the design is 
now in the data part of the processor: the part of the 
processor largely implemented with the LSI bit-slices. A 
larger part of the design, 29 percent, is needed just to 
interface to the PDP-II Unibus. 

In order to put the 144 package complexity of the CMU
II in perspective, the IC package counts for other PDP-II's 
_~e: PDP-I 1110-203 packages; PDP-11I40-417; and PDP-
11145-696. The LSI-II is able to implement the basic 
processor in 42 packages but does not interface to a 
Unibus. It is clear that the bit-slices do not approach the 
economy of the Western Digital NMOS microcomputer 
circuits which were specifically designed to emulate the 
PDP-II. 

Another measure of the degree to which the CMU-II 
processor can efficiently emulate the PDP-II architecture is 
given by the size of the microprograms. Table VI gives the 

TABLE V-Integrated Circuit Statistics 

No. 16 pin 
No.IC equivalent 

Processor component packages packages 

DATA PART 
3002 (CPE) Array 8 20 
PS and Instruction Registers 6 6 
Misc. 4 

subtotal 18 31 (19%) 

CONTROL PART 
Control Store ROMs 8 8 
Micro Instruction Register 10 10 
3001 (MCU) 3 
Microbranch logic 26 27 
PS Control 16 16 
Misc. is is 

subtotal 79 82 (52%) 

UNIBUS INTERFACE 
Bus Tranceivers and Inverters 19 19 
Unibus Control 28 28 

subtotal 47 47 (29%) 

Total 144 160 

size of microprograms for several PDP-II processors. It is 
somewhat surprising that the CMU-II uses fewer bits in its 
control store than any of the other processors except the 
LSI-II. This is in large part due to the fact the 11110, 11140, 
and 11145 use MSI arithmetic/logic packages that did not 
have as useful a set of primitive operations as the 3002 
ALU. 

SOME PITFALLS FOUND IN IMPLEMENTING THE 
PDP-II with the 3000 BIT-SLICES 

Since the CMU-II project was started, a number of 
different bit-slice chips have become available whose orga-

Scratch Pad 
Rcgisu·rs 

RO-K], 

Data 
Input ,·15 :0:-

f;ilift 
control -

A addr 

B addr 

Function 

shift 

Figure 5-The Am290I-A 4 bit bipolar microprocessor slice 



A Case Study in Microcomputer Design 249 

TABLE VI-Cost Breakdown for CMU-II 

Components 

LSI Microcomputer parts 
(Intel 3001, 3002's, 3(03) 

PROMS 
(3601,3602,3604,745168) 

SSIIMSI Parts 

Integrated Circuit Subtotal 
Augut Wirewrap Board 
Wirewrapping 

Total 

* Signetics prices 

nizations are significantly different from the 3000 circuits 
and which provide an interesting contrast. Two of the more 
interesting bit-slice chips are the Advanced Micro Devices 
Am2901 and the Monolithic Memories· Inc. MM16701. 
These bit-slice chips have a very similar data path organiza
tion with only minor differences, the Am2901 being the 
faster device. Because of the similarity of these devices, we 
will limit the discussion here to the Am290 I, but all of the 
microinstruction sequences discussed will work on both bit
slice sets. 

The basic data path of the Am2901 is shown in Figure 5. 
The chip contains a register file of 16 4-bit accumulators 
and an accumulator extension register, the Q register. In 
one microinstruction, two operands can be read out of the 
register file, passed through the ALU, the result can be 
written shifted left or right, and written back into the 
register file. In parallel with this, there is an addressing 
mode which controls the RAM and Q shifters allowing the 
output of the AL U and the Q register to be right shifted 
simultaneously, which is well suited for the inner loop of 
multiply or divide instructions. 

I/O Buses 

The main advantage of the 3000 bit-slice over the Am2901 
is its five fully parallel data buses for transferring data in 
and out of the chip. It has two tri-state output buses (the A 
and D buses) and three input buses (M, I, and K). If the 
minicomputer to be emulated has a fairly short I/O and 
memory buses, the 3000 buses can directly drive them, 
resulting in a substantial savings in bus driver packages. In 
the CMU-II, we needed to drive a DEC Unibus, so we had 

Single Units 

$207 
(184)* 

204 
179 

590 
379 
107 

$1076 

Prices 

Quantities of 100+ 

$125 

136 
158 

419 
(use printed circuit) 

to use separate bus drivers and receivers. Once external 
bus drivers are added, the advantage of the two output 
buses for the address and data is minimal, because an 
equivalent external address register can be loaded as fast as 
the existing internal address register and combination bus 
drivers/latches are available (e.g., Am2905). The savings 
realized by having three input buses is the cost of adding 
eight dual 4-to-l line multiplexer chips at the input to the 
bit-slice chips. The saving achieved with the five buses in 
the 3000 bit-slices over the Am290I's single input and 
single output bus is 12 16-pin circuits, plus three bits in the 
control store (two for the select lines on the input multi
plexer, and one to control loading of the address register). 

Arithmetic oveiflow with the 3000 

One of the biggest problems encountered with the PDP
II implementation using the 3000 bit-slice was detection of 
arithmetic overllow. The 3000 bit-slice has no overllow 
output and the signals needed to directly detect overllow 
are not available at the external pin connections. This 
results in considerable overhead in emulating instructions 
which must detect overflow (e.g., instructions that set the V 
bit in the PS register of the PDP-ii). The CMU-ll overflow 
handling was implemented with two external flip-flops 
which contain the signs of the source and destination 
operands. After an instruction is fetched its operands are 
first fetched either from memory or from the register stack, 
and are put in the source and destination registers within 
the 3002. As the operands are fetched, the source and 
destination flip-flops are set to the signs of the operands. 
When an instruction is executed the overllow logic can use 

TABLE VII-POP-II Control Store Sizes 

LSI-II PSP-IlIlO* CMU-II PDP-I 1140* PDP-I 1145* 

22 bits x 512 words 40 bits x 239 32 bits x 287 words 56 bits x 251 64 bits x 256 
(includes console) words (without console) words words 

414 words (with console) 

* [O'Loughlin 1975] 



250 National Computer Conference, 1977 

the signs of the operands and result to detect overflow. This 
technique works well when the operands are from memory, 
but really slows down the register-to-register operations 
because the operands have to be moved to the AC so their 
signs can be latched in the external source and destination 
sign flip-flops. 

The sequence of instructions needed to emulate a regis
ter-to-register add is shown in Figure 6. The first instruction 
in the sequence loads the source operand into the AC, in 
order to get its sign out of the chip. The next instruction 
specifies for the source sign flip-flop to be set to the sign of 
the AC, and to store the AC into the T register. The 
following two instructions load the destination operand into 
the AC and set the destination sign flip-flop. The last two 
instructions do the add and store the result back in the 
destination register. Because of the multiple use of fields in 
the microinstruction it is not possible to specify that a 
register address comes from the instruction register in the 
same microinstruction that sets either the source sign or 
destination sign flip-flops, or which sets the condition 
codes. If the microprocessor were to be redesigned to allow 
this, the register-to-register add could be done in three 
rather than six microinstructions with the 3000 chips. 
However, we would pay for this performance improvement 
by having to use a wider microinstruction. The Am290 I 
provides external access to the overflow detect output on 
the chip and the register-to-register add can be done with 
only one microinstruction, resulting in a considerable speed 
increase over the 3000 chips. 

Example of a multiply instruction 

The inner loop of a 16 bit integer multiply instruction on 
the 3000 chips requires either three or six microinstruc
tions, depending on whether that cycle is a double register 
shift and add, or just a shift. The high order word of the 
product is stored in the AC register, and the low order word 
is stored in the T register. Initially, AC is zero, and T holds 
the multiplicand. For each iteration of the multiply, the 
loop count is decremented and if the low order bit of the T 
register is a I, then the multiplier is added into the AC and 
the AC and T registers are shifted right. Because the 3000 
cannot add a register to the AC without also putting the 
result in the register, it takes three microinstructions to 
perform the inner loop addition. 

For the Am290I, the inner loop of the multiply can be 
done in two microinstructions with no external loop 
counter, and in one with an external counter. This is 

ILR 
SDR 
ILR 
NOP 
ALR 

SR 
T, I, SETSS 
DR 
SETDS 
T,SETCC 

; AC ~Source Register 
; T ~AC and SET Source Sign 
; AC ~Destination Register 
;SET Destination Sign 
;AC=AC+T and SET Condition 
Codes 

SDR DR, 1 ;Destination Register~AC 
Figure 6-Microsequence example: Register-ta-register add with overflow 

detect 

possible because the Am2901 in one microinstruction can 
add two general registers together, shifting the result and 
the accumulator extension register right one bit. A similar 
speedup also occurs for division. 

ADDITIONAL COMMENTS ON THE CMU-II DESIGN 

The 3000 microcomputer circuits are not the only area in 
which to look for improvements in the CMU-II design. A 
major source of complexity was the Unibus interface (29 
percent of processor's packages). The 3002 bit-slices pro
vide tri-state drivers for their A and D lines and if Unibus 
compatibility is not essential, the outputs from the 3002 
circuits could directly drive a memory and 110 bus of 
moderate size. If synchronous operation of the memory bus 
is adequate, further simplification of the bus interface· 
section of the processor is possible. 

A number of integrated circuit packages are now avail
able that could help simplify the design of the control part 
of the processor. Most significantly, 4K bit PROM's appro
priate for use in the control store are now available with 
internal latches for use as a microinstruction buffer. This 
would eliminate the need for the separate latches used in 
the CMU -11' s microinstruction register. A related optimi
zation to the CMU-II would be to move from the partly 
encoded microinstruction format of the CMU-II to a wider, 
fully horizontal format. The random logic needed to decode 
an encoded microinstruction is simply more expensive than 
the extra bits in the control store needed for the horizontal 
format. 

We attempted to use programmable logic arrays (PLA's) 
in our initial design, but converted to ROM's when the 
PLA's we were designing with were discontinued. By now, 
however, several useful PLA's are readily available. For 
example, the Signetics FPLA, with its 16 inputs, is well 
suited to the decoding of PDP-II instructions. 

Below are the gains that might be expected in a second 
iteration of the CMU-II design: 

CMU-II 
Non-Unibus Design 
Integrated ROM/MIR and horizontal 
microinstruction format 
Convert to Am2900 circuits 

COMPUTER-AIDED DESIGN TOOLS 

160 IC packages 
128 
113 

95 

Aside from freeing the designer of bookkeeping and 
clerical tasks, the main advantage of any design automation 
system is its inherent ability to maintain correct and con
sistent documentation (prints and wirelists) and the reduced 
turnaround time for design iterations. The fact that the total 
prototype development time for the CMU-II was 39 (40 
hours) man-weeks is an example of the savings possible 
with even modest design automation aids. 



A Case Study in Microcomputer Design 25 I 

Description of facilities used at eMU 

The Stanford University Drawing System was used to 
enter the schematic print set with a graphics display termi
nal. The drawing package includes a set of satellite pro-

grams to extract information for wirelists and cross-refer
ence tables from its data base. Incorporated in the system 
are libraries of integrated circuit definitions which contain 
not only the pictorial representation of the gates but also 
pin section information and some loading data. Hard copy 

CRT 

input logic 
design 

interactive commands 
to simulator 

Stanford 
Drawing 
System 

SAGE 
Logic 

Simulator 

micro 
assembler 

logic prints wirewrap lists, 
loading analyses 

Old 
Wirewrap 

List 

Engineerin 
Charge 
Orders 

Wrap/Unwra 
List 

Microprogram 

Figure 7-CAD system at eMU 

: d 

f 

1 
Q 

0 
0 

0 

I 0 

1 r c-d 
o Timing: 
• t Diagrams 

Register 
and 

Signal 
Traces 



252 National Computer Conference, 1977 

prints were conveniently generated by an XGP (digitally 
controlled Xerox Graphic Printer). The wirelist program 
can search the data base interactively for specific informa
tion or produce complete tables of run lists, stuff lists, error 
reports (wire-anding violations), and loading analyses, 
which all proved extremely helpful. 

The logic simulator used was SAGE (Simulation of 
Asynchronous Gate Elements), which is a four-state {O, 1, 
high impedance (tri-state buses), and undefined (initializa
tion and uncertainty in delay parameters)} gate-level simu
lator. It reads the data base directly from the output of the 
Stanford Drawing system. This proved to be of utmost 
convenience, since it allowed a turnaround time in the 
order of five minutes for print set corrections. SAGE has 
models in its libraries for the TTL and Schottky families 
and special routines were written by us to emulate the 3000 
microcomputer set. This allowed improvements in the effi
ciency of the simulation execution. Macro facilities are also 
available for quickly defining MSI circuits from more basic 
logic gates. The results of the simulations are in the form of 
register and signal reports and timing/trace diagrams. 

Debugging with the simulator 

About 95 percent of the original design errors were 
eliminated through the use of the simulation program. 
Naturally, not all combinations and sequences of instruc
tions can be simulated, but a standard PDP-II diagnostic 
program was run in addition to a number of other programs. 
A total of about 100 milliseconds' worth of CMU-II com
pute time was simulated before debugging on the actual 
hardware began. 

The limitation here was that the SAGE simulation of the 
CMU-II required about 106 seconds of CPU time on a PDP-
10 to simulate 1 second of CMU-II execution. We simply 
could not afford to consume more than about 30 hours of 
CPU time for this project. 

Whatever amount of time is spent on simulation, the 
simulations cannot be exhaustive and the final set of errors 
must be tracked down with more extensive tests on the real 
machine. We discovered eight to ten errors in the actual 
CMU-II. However, when an error was found in the physi
cal machine, the simulations were again run to help track 
down the bug through the use of timing traces and other 
results. The correction was then entered into the machine 
print set and the simulator was re-run before implementing 
the change on the processor wire-wrap board or in the 
microprogram. 

An example of the worth of the computer aided design 
system was when a major implementation change was made 
when several ROM's were incorporated into the design to 
replace a discontinued PLA (programmed logic array). Our 
design aids were essential in effecting this change within 
four man-days. In order to recover so quickly from such a 
massive wiring change, an ECO wrap/unwrap program was 
run using the old and new wirelists produced by the 
drawing package. Thus, at all times during development, 
the processor reflected the exact connectivity of the print 
set. 

Several of the errors discovered on the real machine were 
timing errors that were not caught in the simulation debug
ging. These errors were not detected because the simulation 
models did not consider the effects of loading on the 
propogation delays and only maximum delays in all gates 
were used as an approximation to worst case conditions. In 
fact, if time had permitted, minimum and typical (Gaussian 
distributed) parameters should also have been tested. How
ever, we again face a fundamental problem with simulation 
in that the computation time becomes excessive as different 
sets of delays are simulated to find worst case conditions. 

CONCLUDING COMMENTS 

The CMU-ll project was initiated as an experiment in 
constructing general purpose (mini) processors with LSI 
bit-slice components. Table VIn is a summary of the 
results. As the table shows, the CMU-II was implemented 
with significantly less components (IC packages) than either 
the PDP-llll 0 or the PDP-I 1140, which are processors built 
with MSI components, and the performance of the CMU-II 
falls between these two MSI processors. However, the 
economy of implementation is not nearly as significant as 
was realized with the LSI-ll although the CMU-ll is able 
to perform at twice the speed of the LSI-II. The LSI-II is a 
processor implemented with NMOS LSI microcomputer 
packages in which the entire data path (with 8 bit data 
paths) was put in a single package and both the control and 
data packages for the LSI-II have been specialized to 
efficiently emulate the PDP-II architecture. 

Earlier we discussed improvements that are possible in 
the CMU-II design and argued that a second iteration on the 
design could boost the performance to that of the PDP-Ill 
40 and could be implemented in about 95 rather than 144 
packages. To achieve a more cost effective design than this 
will require either the deVelopment of some LSI control 
circuits specific to the processor's instruction set or will 

TABLE VIII-Summary of Comparison between CMU-II and Other PDP-II Implementations 

Parameter LSI-II PDP-ll/IO CMU-II PDP-I 1140 

Microcycle time (nsec) 400 200 140,200,300 
Relative Execution Times 3.2 2.32 1.6 1.0 
IC Packages 42 203 144 417 
Coniroi Siore Size (bits) 1:264 9960 9184 14056 



require the specification of a new computer architecture 
tailored to make the most efficient use of the functions 
provided in the LSI circuits. 

REFERENCES 

I. Intel Schottky Bipolar LSI Microcomputer Set: 3001 Microprogram 
Control Unit, 3002 Control Progressive, Element, and 3003 Carry Looka
head Generator, Intel Corporation, Santa Clara, California, 1975. 

2. Introducing the Series 3000 Bipolar Microprocessor, Signetics Corpora
tion, Sunnyvale, California, 1975. 

A Case Study in Microcomputer Design 253 

3. PDP-II Peripheral Handbook, Digital Equipment Corporation, Maynard, 
Mass., 1973. 

4. LSI-II, PDP-III03 Processor Handbook, Digital Equipment Corporation, 
Maynard, Mass., 1975. 

5. O'Loughlin, J. F., "Microprogramming a Fixed Architecture Machine," 
Infotech State of the Art Report 23, Infotech Information Limited, 
Maidenhead, England, 1975,205-224. 

6. Am2900 Bipolar Microprocessor Circuits, Advanced Micro Devices, Inc., 
Sunnyvale, California, 1975. 

7. Fuller, S. H., T. McWilliams, and W. Sherwood, eMU-II Engineering 
Documentation, Department of Computer Science, Carnegie-Mellon Uni
versity, Pittsburgh, Pa., 1976. 

8. PDP-I 1105//0135/40 Processor Handbook, Digital Equipment Corporation, 
Maynard, Mass., 1973. 





Organizing and training for a new software 
development project-That big first step 

by DANIEL FREEDMAN, DONALD GAUSE and GERALD WEINBERG 
Ethnotech, Incorporated 
Lincoln, Nebraska 

ABSTRACT 

This is a position paper describing several rules for the 
start-up of a new software development project. Manage
ment methods and attitudes are suggested which reduce the 
problems of misestimating people skills and task difficulty, 
appointing the wrong person as team leader, measuring 
conformity to specifications and adjusting to unforeseen 
changes. Establishing an environment which encourages 
continual, on-job education through the informal and formal 
review mechanism is advocated in favor of formal training 
programs. Team building and the concept of organizing for 
self-organizing teams is discussed. 

"Remember, it's always darkest in the middle of the 
night." 

-The Fonz 

INTRODUCTION 

Our topic, as originally assigned, was "What is the best 
way to organize, recruit, and train for a new software 
development project?" The best way to organize this paper 
is by discarding that topic for one or two others: 

a. What are better ways of getting started than we now 
often do? 

b. What are some of the errors that ensure a bad start? 
c. Given limited resources (and presentation time), what 

are the most important areas for concentration of 
management attention? 

Our organization, Ethnotech, is a small one, with limited 
resources for consulting and training in software develop
ment. Like many of our clients, we have neither the time 
nor money to accumulate sufficient experience in software 
development to state the "best" way of doing any non
trivial aspect-and getting started properly is most as
suredly non-trivial. We have, therefore, concentrated our 
own work in several areas-areas in which present practice 
is the poorest and which therefore promise greatest returns 
for a small investment. These areas are largely in the 

255 

human side of the business, as our name suggests. Our 
paper will concentrate on these areas. 

RULE I-START WITH WHO YOU HAVE 

Any successful project begins with a realistic appraisal of 
problems and resources. Put another way, more projects 
fail for lack of realism at the outset than for any other 
reason. There are two principal forms of this misestimation: 

a. misestimating your people 
b. misestimating the task 

Let us first consider the people. 
Because programming work is traditionally hidden from 

the view of all but a single person, there is no reliable way 
to estimate the capabilities of each technical person. Some 
programmers are considered aces because they talk a good 
program or spend a lot of time finding fantastic bugs that 
never should have been created in the first place. Others 
quietly and competently go about their work, unrecognized 
by their management. When the time comes to organize a 
project, the manager is working largely at random in 
~~tem~ ~ to' ft'~!'6"~thiij,~, We R8W setm. ··fcM 
example, numerous failures of chief programmer teams 
because of misplacement of individuals, such as 

a. placing an inadequate person as chief 
b. appointing the more adequate person as backup, even 

though the chief may be reasonably qualified 

In order for a chief programmer team to work, the best 
person-who must also be an adequate person-must be 
the chief. If someone inadequate is appointed, the team 
quickly finds out- if they don't already know. In true team 
work, the open inspection of one another's work reduces 
the misestimation of people. Therefore, once teams have 
been well and truly established, the problem of assignment 
of responsibility diminishes. 

This worthwhile feature of team organization is, unfortu
nately, lacking when an organization first decides to use the 



256 National Computer Conference, 1977 

team approach for software development. We must then 
recognize that we don't know who we have-that our 
present assessment of relative strengths may be nothing 
more than a muddle of impressions, prejudices, and mis
takes. Although this is a hard pill for many managers to 
swallow, swallow they must if they are to achieve success
ful software development with any regularity. 

Of course, sometimes a manager is lucky in assigning 
people to responsibilities. Once off to a lucky start, new 
projects can succeed by simply following the adage: "Re
ward the successful with more challenging assignments." In 
an organization with a history of unlucky software develop
ment; some other strategy is needed. Unfortunately, we 
know of no other way to reliably select the true technical 
leader, so we recommend a strategy that doesn't require 
reliable selection by the management. 

The approach that seems to work here is the adaptive 
team. The manager selects the members of the initial team 
by whatever means seem plausible, but avoids investing too 
much management prestige in the particular choice. No 
specific "chief' or "backup" is appointed. Team makeup 
is made conspicuously subject to revision as the team 
develops. The team members, with occasional gentle assists 
from the manager, gradually adapt the team membership 
and responsibilities to the task at hand, in the light of 
increasingly accurate appraisals. 

RULE 2-NEVER ALLOW THE PROBLEM TO 
BECOME UNDEFINED 

To someone outside the computing business, it must 
seem astonishing that people would be asked to make 
reliable estimates for building a product when 

a. They don't know what it is they're building. 
b. They don't have any reliable way of measuring how 

much has been built. 

If the task to be done is misestimated at the outset, how can 
we expect the project to be well managed? 

Much has been spoken and written about the importance 
of obtaining accurate specifications early in a project, so we 
need not labor that point. Suppose, for the moment, that we 
did somehow obtain accurate and complete specifications at 
the outset. Once the project gets into full swing, everyone 
knows 

a. The specifications will change. 
b. People will be too busy, personally too interested, or 

technically too ignorant to appraise the conformity of 
the partial project to the specifications. 

The only known way to ensure a coherent project in the 
face of these problems is through regularly scheduled 
formal reviews of conceptually manageable portions of the 
project. When a specification is passed from one group to 
another, a formal review marks its passage. When a change 

is proposed to the specification, it must invariably be 
filtered through a formal review. When a team claims to 
have completed a certain portion of assigned work, it must 
be reviewed by outsiders before it can be considered part of 
the completed system. 

Review by qualified outsiders assures that no team can 
drift away from project goals and accomplishments. Peri
odic reviews of manageable pieces ensures that the project 
as a whole cannot drift into undefined-and thus unman
ageable-states. 

But, of course, the project must be manageable to begin 
with, or it can hardly be made manageable by reviews or 
any other strategy. When we drop our assumption of 
accurate and complete initial specifications, we see immedi
ately that the project begins with reviews. Even before 
teams are formed, in some cases, review groups can and 
must be put to the task of validating the completeness and 
accuracy of specifications-without which the project will 
certainly fail. 

And, as a byproduct of these "pre-natal" reviews, all 
technical people begin to get sensible appraisals of one 
anothers' technical leadership skills. Thus, in attempting to 
control the task, you also begin to control the estimation of 
people. 

RULE 3-INVEST EARLY AND KEEP INVESTING IN 
TEAM BUILDING 

For successful software building, we must understand 
that a team is not the same thing as a group. A group is 
merely a collection of people in the same place at the same 
time, whereas a team is a collection of people sharing a past 
of working together and a future in which they will have to 
live with the consequences of present actions. 

The contrast can be understood by thinking of sports 
teams. Winning teams are more than collections of talented 
individuals. Witness the singular lack of success of all-star 
"teams" when playing the true team that has won a 
championship. The all-stars, by definition, have far more 
talent, but seldom win. In programming projects, too much 
attention has been devoted to selecting a cast of all-stars, 
and not enough to getting the kind of collective effort that 
causes a team to build itself. No wonder we have seen so 
few programming teams and so many programming groups, 
sometimes mistakenly called "teams." 

How does team-building take place? Though details vary, 
the underlying principle is always the same. Teams build by 
sharing experiences. You cannot build a Super-Bowl cham
pion by having each player work out on a private practice 
field, and you cannot build a champion software building 
team when each member "owns" a private piece of the 
work. Only through mutual help and criticism can a team 
develop common understanding of objectives, accurate 
appraisals of individual abilities, patterns of work that 
involve the strengths and overcome the weaknesses of each 
team member, rapid and precise communication among 
team members, and all the other factors that make a healthy 



team so far superior a productive unit to any other group of 
people. 

One way of establishing a team for a new project is to 
beg, borrow, or steal an already existing team. Building a 
new team takes time, and often means a fallow period in 
which the members will seem less productive than they 
would have been as individuals. Be sure, though, that the 
team was truly successful at its previous work, which is the 
best way to measure the progress of team building. 

Another way of establishing teams is by keeping them 
intact, even though they have completed an initial project. 
IBM's New York Times project was rather large compared 
with many of the projects undertaken by the average DP 
organization. Indeed, the kind of programming done with 
the IBM Corporation is hardly typical of the programming 
done within the organization of IBM's average customer. If 
a new team had to be built for each new small project, few 
organizations could afford the team building effort. 

IBM's experience of larger projects quite naturally led to 
team organizations because team building overhead was 
easily buried in large development costs. Organizations 
with many small projects will have to preserve their invest
ment in team building by providing each team with a 
number of projects, either in serial, in parallel, or both. 
Though projects come and go, the team abides. 

Conversely, throughout the lifetime of a team, members 
will come and go, rotating through the organization, leav
ing, retiring, or dying. By continually investing in teams, 
we invest the project with independence from the vicissi
tudes of the life of individuals. Rarely will the project find 
itself lacking someone experienced in some important as
pect. To be sure, the comings and goings of team members 
add to the cost of maintaining teams, but only through 
teams can we, in effect, achieve redundant programming. 

RULE 4-LET YOUR TECHNICAL LEADERS DO 
TECHNICAL LEADING 

Regardless of the particular structure chosen for the team 
A-ytt~ ..... ~y ~~* *~'~ffl+".~ +m.~f"rAil~ f"~AiI 
and responsibilities that must be assumed by someone. In 
particular, of course, is the role of "leader," but there are 
many aspects to the leader role. In the Chief Programmer 
Team as described by Mills, most of these aspects are 
bundled together in a single person backed up by another, 
similar, person. In practice, we more frequently find no 
single person capable of exercising all these aspects at the 
same time, for a variety of reasons. 

One common reason is the heaping of too much supervi
sion work on the few technically competent people. As a 
project grows, there is a tendency to try to accomplish a 
growing task by increasing the number of people on a team. 
Brooks has demonstrated why adding workers late in a 
project actually destroys working capacity, but there are 
other reasons to avoid this seductive management move. 
For one thing, the team, to the extent it is left alone to do 
so, will develop more capacity as the project progresses-

New Software Development Project 257 

without adding members. For another, each additional 
person to supervise-especially new persons-puts an addi
tional burden on the leadership capacity of the team. 

No team should have more than five members, except 
during transitions when an old member hasn't yet left but a 
new one has joined. This limit is well supported both by 
social science literature and software development experi
ence. When the team exceeds this number, communication 
overhead rises. Either communication breaks down or 
nothing but communication takes place. 

What about smaller teams? Starting with two, three, or 
four is a way to allow for growth within the project, but it's 
better to allow for growth in teamwork capacity, rather 
than in sheer membership bulk. Get the team members 
together as early as possible and start them working on 
something meaningful, so that team development can take 
place. Smaller teams place an additional burden on their 
leadership, for there may not be sufficient diversity to solve 
the diverse technical problems that the team will face. 

Given the proper size team-three to six at the outside
the technical leader has a chance to exercise a critical role, 
including speaking for the group, interfacing with manage
ment, making technical decisions, teaching, providing ac
cess to resources, keeping the team calm, getting the team 
excited, being wise, making everybody laugh, and just 
doing whatever needs doing that nobody else seems able to 
do at the moment. 

These roles mayor may not be vested in a single person, 
but every team member will at times exercise a few of 
them. Some person on the team may be designated "chief' 
or similar title, and may even have management responsi
bilities. Quite often, however, it is best not to burden one 
person with too many expected roles, as this may leave 
insufficient time and energy for adapting to the unexpected. 

Managers who tie up the technical leader's time in order 
to get "informed" are preventing the leader from leading. 
The formal review process is a more reliable source of 
much information a manager tries to get from the technical 
leader through time-consuming personal discussion. 

Managers who have formerly held technical skills---espe
f't~+~, ~ ~ ~ ~fl~m-,.f'f:"'~ ~~~.~ 

meddling in the technical leader's domain. When a football 
team has an inexperienced quarterback, the coach may be 
tempted to send in all the plays. But if that's the best 
technical leader you can muster, perhaps your project is 
doomed to failure in advance. In a recent championship 
game, one of the quarterbacks remarked, "I don't think I'd 
respond very well to getting plays from the coaches up
stairs. There's a certain chemistry that takes place when 
the quarterback selects the play and tells 10 teammates, 
'Here's what we'll do and now let's make it work.' I think 
that's extremely important to a team." 

In the early stages of a project, a manager may be 
relatively well informed technically-at least when com
pared with the analysts, designers, and programmers. Also, 
the manager may have considerable spare time to devote to 
making technical decisions for the team and the would-be 
technical leaders. As the project progresses, however, the 



258 National Computer Conference, 1977 

manager's relative technical skill will diminish, and spare 
time will be a vanishing commodity. 

When it's no longer possible to make technical interven
tions, the meddling manager-like the coach who sends in 
plays from the bench-will find that the quarterback lacks 
the experience, confidence, and desire to select the right 
plays. Good performance in the game comes from good 
management prior to game time-not from sending in the 
winning play when the crowd is roaring loudest. 

RULE 5-ALLOW ADEQUATE TIME AND SPACE 
FOR LEARNING 

There will always be some unknown, uncertain areas in a 
software project. Every project should start with an assess
ment of its store of ignorance. This ignorance inventory 
warns how much uncertainty to allow for, and how much 
uncertainty in that uncertainty. 

Before the project is finished, someone will have to learn 
all those things about which we are now ignorant. We must 
allow, from the outset, sufficient time and resources for 
that learning to take place. If we cannot, then we are 
gambling, not managing. It may be necessary to gamble if 
the stakes are high, but when you gamble you have to be 
prepared to lose, and lose often. 

If we are building a system similar to one with which we 
have considerable experience, the margin for learning may 
be small. We can make reasonably tight guesses as to 
required people, machine time, and other resources. If the 
project is not similar to something we've done in the past, 
we cannot accurately estimate any of these requirements. 
In some cases, we can postpone the project itself in favor of 
a "research" project designed to pin down the looser 
ends-to educate us about the task before us. If we cannot 
politically afford a distinct research effort, we must lard the 
project with slack in which the learning can take place. 

The need for education on projects with a large research 
component explains both the success and failure of certain 
efforts that have been called "top down." On well-under
stood projects, the top down work can take place solely in 
the design phase without much harm, because the designers 
can anticipate what the implementors will face. As the 
research component grows, however, the number of prob
lems first recognized in "implementation" grows propor
tionately. By implementing top down, and by postponing 
lower level design decisions until they are actually needed 
in implementation, we gain the room necessary to learn 
what we don't know and to change the project accordingly. 

For instance, we can modify the number of teams needed 
as the lower levels become successively better defined. 
Adding independent teams need not cause any major inte
gration effort, particularly if the teams have already in
vested wisely in their own development. Implementing 
bottom-up, however, we would need the maximum number 
of teams at the beginning, long before we were in a position 
to make reasonable evaluations of the actual work load. 

The learning for which we have made room takes place 

primarily on the job. Perhaps it ill-behooves a small com
pany specializing in training to say so, but very little useful 
learning-proportionately-comes in classroom situations. 
When teams are in use, the proportion and quality of on
the-job learning is even greater. 

It has been our experience, and the experience of our 
clients, that the best investment in education is that de
voted to getting teams started-analyst teams, programmer 
teams, programmer/analyst teams, development teams, 
maintenance teams, training teams, documentation teams, 
design teams, ... it really doesn't matter. The average 
project contains more than enough information and wisdom 
to be successful-if only it can be brought to bear in the 
right place at the right time. 

Installations, groups, or individuals tend to develop a 
unique style of working-whether in the use of a particular 
language, style of development, tools, or work habits. 
Wherever there are communication boundaries, useful infor
mation is prevented from moving from one work style to 
another. We have found installations where people were 
totally ignorant of a particular language feature or program
ming method. Even worse are installations where one or 
several people know the feature or method but have never 
managed to communicate it to those who really need it. 

Time after time, when such a shortcoming was pointed 
out in an informal review between team members it spread 
to the entire team in a few hours. When seen in a formal 
review, the new feature or technique became the property 
of the entire installation in a few days-without explicit 
expenditure for "education." Allowing adequate time and 
space for learning, then, is largely a matter of allowing 
adequate time and space for teams and formal reviews. 
These methods prove much more effective forms of educa
tion than sending people to schools-with an increased 
psychological advantage. Instead of learning a concept in a 
vacuum, we learn in the context of solving a particular 
problem-a problem guaranteed relevant to our project. 

CONCLUSION-ORGANIZE FOR 
SELF-ORGANIZATION 

The earliest decisions in a software development project 
have the greatest potential impact. The approach we have 
abstracted here is one of avoiding decisions whose impact 
will be limiting, in favor of decisions which will increase the 
problem-solving capability of the project organization. In
stead of organizing for the project, organize the people who 
will organize the project, unencumbered by premature 
restrictions, uninformed intervention, counterproductive 
social organizations, and unmeasurable goals. 

One major self-organizing structure is the team. Above 
the level of the team, and providing a second level of self
organization, is the review process. By organizing the 
various members of the project into mutually reviewing 
teams, we create a project which will 

a. react swiftly and effectively to changes in specifica
tions and constraints 



b. learn to become increasingly productive, both individ
ually and collectively 

c. produce finished code which is readable and modifia
ble, progressing in steps which are measurable and 
controllable 

d. enjoy a professional peer group environment, with less 
turnover and more work satisfaction 

Critical to the team is the technical leader, or, rather, 
technical leadership. In some teams, most of the leadership 
is bundled into one or two members, as in the Chief 
Programmer Team concept. The true quality of a program
ming project environment, however, is measured most 
accurately by the amount of participation in technical 
leadership. In a business where one tiny mistake can cost 
millions, or one tiny idea can be worth millions, there is 
much to be lost by excluding people a priori from contribut
ing their creative technical talents. 

To be sure, a project usually begins-either well or 
badly-with the selection of a small number of conspicuous 
technical leaders-individuals who will have a recognizable 
influence on the shape of the project. If the project is small 
enough to need no others, well and good. Otherwise, the 
project's success will stand or fall on its ability to incorpo-

New Software Development Project 259 

rate other contributors into its problem-solving processes. 
Certain would-be leaders have personal characteristics 
which stand in the way of others making contributions. 
Certain would-be managers have similar characteristics 
which interfere with the technical leaders. You might think 
that the one would learn from the experience of trying to 
work under the other, but nothing is certain when it comes 
to learning. 

With proper social organization-teams and review pro
cedures-the personal characteristics of a few leaders be
come less critical to the ultimate project success. More
over, a healthy environment will lead to the growth of more 
and better technical leaders as time goes on, so later 
projects will become less and less critical. If only we can 
make the right start-or restart-now, starting new projects 
will grow easier and easier as time goes by. Indeed, starting 
projects will not be a problem at all, for one project will 
flow smoothly out of another in the process of creating 
more sensibly integrated, humanized systems. In the future, 
we'll know our profession has matured when we're no 
longer infected with that adolescent preoccupation with 
starting new things, or with finding the best way. Instead, 
we'll be looking for a better way of doing what we're doing 
now, which is needed badly enough. 





The choice of new software development methodologies 
for software development projects 

by EDWARD YOURDON 
YOURDON Incorporated 
New York, New York 

ABSTRACT 

Data processing managers have a number of new "struc
tured" methodologies to assist them in EDP software 
projects: structured programming, structured design, 
HIPO, top-down development, structured analysis, struc
tured walkthroughs, and chief programmer teams. Since 
many of these methodologies are still considered new and 
"experimental," it is often difficult for the manager to 
determine which of the methodologies should be used on a 
software project. 

This paper briefly reviews each of the new structured 
methodologies. It then makes suggestions about the use of 
the methodologies for new projects, concluding that the use 
of informal walkthroughs is probably the best way for the 
manager to introduce the methodologies into an organiza
tion that has no previous experience with them. 

The point is also made that "research-and-development" 
projects have different trade-offs than "bread-and-butter" 
projects. For projects that have hard deadlines and budgets, 
a number of trade-offs are suggested in order to help the 
manager decide which of the structured methodologies 
should be employed. 

I~JTRODt;CTro~ 

The data processing project manager of the 1970's has an 
impressive array of new "structured" methodologies which 
promise to improve the productivity of his programmers 
and analysts, as well as improving the reliability, maintaina
bility and overall quality of the finished product. 

Unfortunately, there are so many "new" methodologies 
that the manager may not know which methodology-or 
combination of methodologies-he should employ on a new 
project. That choice is made all the more difficult because 
there is little or no documented evidence to prove the 
effectiveness of the new methodologies. Indeed, the prob
lem is even worse: a variety of exaggerated claims in the 
popular EDP trade journals has made many a manager so 
skeptical that he may be unwilling to experiment with any 
of the new methodologies. 

The purpose of this paper is to provide some useful 

261 

aavlce to the project manager who finds himself in this 
position. A brief description of the more widely-known 
"structured" methodologies is given; following that, some 
suggestions are given as to the sequence and manner in 
which the new techniques can best be employed. 

AN OVERVIEW OF THE STRUCTURED SOFTWARE 
DEVELOPMENT METHODOLOGIES 

The collection of new software development methodolo
gies is sometimes referred to as PPT (Programmer Produc
tivity Techniques), or IPT (Improved Productivity Tech
niques), or SPT (Structured Programming Techniques). 
Almost every data processing organization has a slightly 
different understanding of the specific techniques which 
comprise the overall collection; however, the most common 
ones appear to be the seven described below. 

Structured programming 

Structured programming is widely regarded as the "first" 
new development methodology. Based on some theoretical 
work by Dijkstra, Behm and Jacopini in the mid l~O'~s, 1-3 

It has recent'Jy been discu'ssed in a number of textbooks4
-

1l 

and literally hundreds of papers in the computer literature. 
A number of people have begun using the phrase "struc

tured coding" to emphasize this methodology's most im
portant features: procedural logic based on combinations of 
IF-THEN-ELSE, DO-WHILE and "sequence" structures. 
Such logic usually eliminates the need for GOTO state
ments, or unconditional branching instructions-a fact 
which has resulted in structured programming being given 
the nickname "GOTO-Iess programming." 

Proponents of structured programming claim that struc
tured code is easier to comprehend; it therefore tends to be 
more maintainable, and is more likely to be correct code. It 
is generally agreed that structured coding adds an overhead 
of 5-10 percent to the memory requirements and execution 
time of the program; however, there have been several 
cases where structured code has been more efficient than 
unstructured code, simply because it is better organized. 



262 National Computer Conference, 1977 

Structured design 

Structured design is usually considered a "newer" disci
pline than structured programming, even though many of its 
concepts have been discussed by EDP professionals for 
several years. A 1974 paper in the IBM Systems lournal lO 

marks the beginning of "real" interest in the subject; that 
paper was quickly followed by a number of booksll

-
14 and 

the usual plethora of papers in the popular journals and 
conference proceedings. 

Structured design is usually described as the process of 
deciding which modules, interconnected in which way, will 
best solve some well-stated problem. Its emphasis is on 
techniques for identifying "good" modules (good, that is, 
from the viewpoint of maintenance and modification, rather 
than execution speed or memory requirements), and on 
systematic "cookbook" methods for deriving "good" de
signs for common types of EDP problems. 

Proponents of structured design c1aim that it has the 
same virtues as structured programming: greater reliability, 
improved maintainabi1ity, and greater comprehension of 
how the system works. Some limited experiments suggest 
that structured design has a far greater impact on maintain
abi1ity than structured programming, since it concentrates 
on building systems from small, highly-independent, single
purpose modules. 

HIPO and other documentation techniques 

Along with the recent interest in structured programming 
and structured design, there has been a great deal of 
interest in some new documentation techniques which can 
help describe the procedural logic represented by struc
tured programming, and the architectural design repre
sented by structured design. 

The most widely known documentation technique is 
known as HIPO-an abbreviation for "Hierarchy, plus 
Input, Process and Output." Originally developed by IBM, 
it has recently been described by Katzan15 in a sufficiently 
thorough fashion for EDP managers to consider using it as 
the documentation standard on new projects. An alternative 
diagramming technique, known as "structure charts," is 
described by Yourdon and Constantine. 12 

To document procedural design-that which has c1assi
cally been documented with flowcharts, decision tables and 
narrative English text-such techniques as pseudocode 
(also known as "program design language16

) and Nassi
Schneiderman diagrams17 have gained popularity in some 
organizations. Other organizations have abandoned detailed 
documentation altogether, feeling that any method of de
tailed documentation will suffer from the problem of obso
lescence. 

Top-down development 

Many data processing organizations were introduced to 
the concept of "top-down design" at the same time they 

were introduced to structured programming. This kind of 
design approach has also been referred to as "stepwise 
refinement," or "levels of abstraction," or "divide and 
conquer." Only recently has it become evident that one can 
easily design a bad system in a top-down fashion. 

Meanwhile, there has been a great deal of discussion 
about the manner in which one should implement a welI
designed system. In contrast to the c1assical approach (now 
referred to as "bottom-up") of unit testing low-level mod
ules, and then integrating them into larger entities, it is now 
becoming popular to work in the other direction. That is, 
the "top-down" approach to implementing systems re
quires the coding and testing of the top-level (or "execu
tive") module first , with the lower-level modules taking the 
form of "stubs" (a typical example of a stub is a module 
which exists immediately without doing any real process
ing.) Subsequent development of the system involves the 
substitution of real modules for the stubs. 

Proponents of top-down implementation c1aim that it has 
a number of benefits, many of which are "political" in 
nature. The top-down approach tends to distribute system 
testing and integration throughout the entire project, rather 
than saving it for the end of the project. It also tends to 
expose major interface problems early in the project, rather 
than leaving them until the end of the project. Equally 
important, the top-down approach usually allows the proj
ect manager to demonstrate a working subset of the system 
to the customer at an early date, and the existence of a 
working subset also aHows him to survive deadline crises 
more gracefully. It has also been observed that the top
down approach tends to distribute the requirements for 
testing resources more evenly throughout the project; by 
contrast, the "bottom-up" approach to testing usually 
requires large amounts of testing resources (e.g., computer 
test time) toward the end of the project-and it may be 
physically impossible to schedule, say, 25 hours per day of 
computer test time. 

Structured analysis 

With the advent of structured programming and struc
tured design, it became c1ear that the major unsolved 
problem was that of the user: specifically, the problem has 
been that of figuring out what the user wants, so that a good 
system can be designed (using structured design), coded 
(using structured programming), implemented (using top
down development), and documented (with HIPO or struc
ture charts). 

Structured analysis addresses this problem. Its basic 
objective is to provide a formal description of the user's 
requirements, expressed in logical terms (i.e., with as little 
reference as possible to the peCUliarities of a specific ma
chine, a specific data base management system, etc.), using 
standard tools and building blocks. Its key ingredients are 
communicat ion tools to improve the communication be
tween analyst and user, and a new approach to the "sys
tems development life cyc1e" that encourages both user and 



analyst to view the development of a software system as an 
iterative process, rather than a sequential one. 

Since it is one of the newer disciplines, there is less 
literature on structured analysis than on structured pro
gramming or structured design. We expect that the few 
papers and books that are currently available18- 20 will 
increase substantially in the next few years. 

Structured walkthroughs 

The concept of walkthroughs, or "code reviews," seems 
to have its historical origin in Gerald Weinberg's classic 
book, The Psychology of Computer Programming. 21 Since 
then, it has been discussed in a number of places22

,23 and is 
regarded one of the more important of the new structured 
methodologies. 

In their simplest form walkthroughs are a somewhat 
informal procedure for reviewing the correctness and qual
ity of the analysis, design, code, test data and documenta
tion associated with a software project. The review is 
normally carried out by the programmer's peers, rather 
than his supervisors; indeed, the review is normally done 
by all of the members of the project team. 

Proponents of walkthroughs claim a number of benefits; 
increased reliability of the delivered product; more compre
hensible and maintainable code; greater learning and shar
ing of information among team members; and a greater 
chance that a partially completed program can be salvaged 
if a programmer leaves in the middle of the project. 

Chief programmer teams 

Originally referred to as the "superprogrammer team" in 
the mid 1960's24 the chief programmer team concept first 
attracted wide-spread attention on the N ew York Times 
project,25 where it was used by IBM in conjunction with 
structured programming, top-down implementation and a 
variety of other techniques. Since then, it has been dis-
c;,'d§,,~.d.iIL~ _y.:;tJi~1y',.QLtmQE~flJ!'Qn,~~~6,:7 ~ .. 

The basic concept of a chief programmer team is to 
organize a software development project around a person 
who has (a) programming abilities substantially greater 
than-e.g., an order of magnitude greater than-other pro
grammers in the organization, (b) ability to provide the 
documentation for the code, the operational procedures and 
the user manuals for the system, and (c) the ability to 
supervise a team of specialists include a "copilot" (an 
apprentice chief programmer), a "language lawyer" (an 
expert in the programming language or operating system or 
data base management system being used), a "toolsmith" 
(a person who develops useful debugging packages or other 
software development tools for the specific use of the 
project), a "librarian" (a person who organizes and con
trols the source programs, object programs, listings, and 
other documents associated with the project). 

Proponents of the chief programmer team approach point 
out that it is merely taking advantage of some well-known 

Software Development Projects 263 

facts about differences in programmer abilities. 28 In addi
tion, they point out that the concentrated talents of one 
superprogrammer makes it possible for a medium-sized 
software development project to be accomplished with a 
much smaller group than would otherwise be necessary; 
consequently, the project manager can expect far fewer 
communication problems than he might otherwise expect. 

SUGGESTIONS FOR INTRODUCING THE NEW 
STRUCTURED METHODOLOGIES 

Unfortunately, it is not possible to give a simple algo
rithm in this area. We cannot easily say, "First you should 
introduce structured programming, then you should use 
structured design," nor can we say, "If you are working on 
a payroll system, then you should definitely use chief 
programmer teams; on the other hand if you are developing 
a real-time telecommunications system, you should use 
only structured walkthroughs." 

On the other hand, the structured methodologies have 
been introduced into enough organizations that we can 
draw some general conclusions from their experiences. 
These are given below. 

Trying to implement all of the new structured 
methodologies at once will generally be a disaster 

Some organizations can actually pull off such a feat. After 
reading about the new methodologies, or getting a presenta
tion from their friendly hardware vendor, they decide to use 
all of the new methodologies at once. As one might expect, 
this is more likely to happen in the smaller EDP organiza
tions-those with only half a dozen programmer/analysts
and is not very likely to occur in the larger organizations. 

Sometimes, though, an organization will decide to try all 
of the new structured methodologies on a single project; 
this is quite common when the organization decides to use 
the new methodologies as an experiment in a so-called pilot 
project. Even in a limited situation like this, it usually turns 
O'Jt'~thnt nn '(lttemtrt te' exp~e~lfJ~ent-~'ith "hrrtf-'1! dcLen'"tte'" 
methodologies at once leads to chaos and confusion. 

The reasons are obvious enough. Structured program
ming and structured design are not simple concepts, and a 
lot of concentration is needed to make them work right. If 
the programmers are also trying to implement walk 
throughs-which require a great deal of psychological 
energy, too!-<md chief programmer teams, as well as 
adjusting to the concept of a librarian relieving them of their 
clerical work ... well, it will be a wonder if they get any of 
it right. 

Techniques which involve organizational change are often 
the most difficult to implement 

Some organizations will find it difficult to ever implement 
chief programmer teams, librarians and walkthroughs. The 



264 National Computer Conference, 1977 

point here is that even if the project manager can convince 
his organization to try the chief programmer team concept, 
or librarians, or walkthroughs, he will probably find that 
difficult as his first new methodology. The author's experi
ence has been that it is somewhat easier to introduce a 
relatively innocuous technical concept like structured pro
grammingfirst-that doesn't threaten anyone's empire, and 
is not likely to be at odds with current organizational 
philosophies. 

Once the project manager has demonstrated that struc
tured programming, top-down implementations and struc
tured design are good ideas, then he'll probably be in a 
strong enough political position to say to the big boss, 
"Listen, the last three structured methodologies that I 
introduced to the company turned out to be winners. Why 
not gamble a little now, and let me try something like the 
chief programmer team concept?" 

Structured code without structured design is often 
worthless 

A number of organizations have found recently that 
structured programming (or, more specifically, structured 
coding) is a great idea but that it is not enough. If the 
modules in an EDP system are too large, too complex, and 
too interconnected with one another, then maintenance 
problems will persist regardless of the presence or absence 
of GOTO statements. 

This raises some interesting political consequences. If the 
EDP organization has been doing things in a backwards 
fashion for years, and if the project manager introduces the 
new structured methodologies with great fanfare and prom
ises of spectacular improvements, then the first new meth
odology should indeed demonstrate spectacular improve
ments. 

And if the project manager tries structured programming 
alone, he might not achieve such spectacular improve
ments. The author's experience on a few EDP projects 
lately has been that the initial productivity and reliability 
will seem quite impressive, but the long-term maintainabil
ity of a system produced with nothing more than structured 
coding may not be very impressive at all. 

The moral: It may make good sense to begin with 
structured design first-and when that is working properly, 
then introduce structured coding. Once the project manager 
has overcome all of the objections and battles and problems 
associated with structured design, it will be almost trivial to 
introduce structured programming. 

There is a more important reason for this suggestion: 
good design and mediocre coding is a tolerable state of 
affairs; mediocre design and good coding, on the other 
hand, is not a good formula for success. And if the project 
manager thinks that his project team has energy, intelli
gence and enthusiasm to tackle only one new methodology, 
then structured design should get preference over struc
tured coding. 

Top-down design and implementation are often a good way 
of introducing the new structured methodologies 

It is frequently observed that many of the benefits of top
down implementation are "political" in nature. It allows 
the project manager to demonstrate a working subset of his 
system to the user at an earlier point in time; it allows him 
to survive deadline crises more gracefully; and it allows him 
to schedule testing resources (e.g., computer test time) in a 
more manageable fashion. 

These benefits are very noticeable to the user commu
nity, to higher levels of management, to the computer 
operations manager, and to various other people in the 
organization. For that reason alone, many EDP managers 
have decided that the top-down approach is a good way to 
introduce the new structured methodologies in their organi
zations. 

Keep in mind that this approach can backfire. Unfortu
nately, many programmers view top-down implementation 
as an invitation to begin coding before they have done any 
real design. Especially on the first few projects, the man
ager should beware of this danger. 

The most successful approach has often been informal 
walkthroughs 

There is a strong argument for informal walkthroughs as 
the project manager's first venture into the new structured 
methodologies. Note the emphasis on "informal" walk
throughs-not necessarily with all the "bells and whistles" 
that are normally suggested (see, for example, the detailed 
procedures suggested in Yourdon's "Standards for Struc
tured Walkthroughs" 23). 

Why would informal walkthroughs be a good way to get 
started with the new structured methodologies? For the 
simple reason that the project manager can't trust any 
individual programmer to understand and implement any of 
the other methodologies by himself. By forcing everyone to 
talk about their designs and their code-in an informal, low
key, non-threatening fashion-the manager can maintain 
some kind of quality control when he most needs it. 

This is a point that needs emphasizing. If the manager 
has 30 programmers, and if he gives them all the standard 
textbooks on structured programming, they are almost 
guaranteed to read 30 different (and almost mutually exclu
sive) things. They will write 30 different kinds of structured 
programming-some good, some mediocre, and some 
downright bad (indeed, probably even worse than the kind 
of code that was written before structured programming 
came along). And if nobody looks at their code (which is 
the current state of affairs), the manager will never know 
who really understands structured programming, and who 
doesn't. 

If the project manager begins by establishing an environ
ment of exposing evelyone's code to public discussion, then 
he will ensure that a relatively uniform version of top-down 
impiementation, structured design, and structured program
ming can be implemented later on. 



CONCLUSION 

In the final analysis, only the project manager can decide 
which of the new structured methodologies he wants to 
introduce on a project. The suggestions in this paper can do 
nothing more than make the manager think about trade-~ffs 
that have been observed in other EDP projects; it is up to 
the manager to apply those trade-offs to his own project. 

One of the most important questions the manager must 
ask himself is whether the new structured methodologies 
should be considered as a set of experimental "R&D" 
concepts, or whether they are to be considered down-to
earth practical concepts, with an immediate payoff. 

Indeed, some organizations deliberately use the new 
structured methodologies on experimental "pilot" projects, 
with no preconceived ideas about which ones will work and 
which ones won't. In such an environment, the manager 
should use any and all of the methodologies that are of 
interest to him; our only caution is to arrange the pilot 
project in such a way that the impact of each new method
ology can be measured in some crude fashion. 

If the manager is involved in a "real" project-with real 
deadlines, real budgets, real users with real needs, and real 
penalties if the project fails-then he should be consider
ably more cautious about the new methodologies he em
ploys. In this case, he will have to take into account his 
own perceptions about such things as: 

a. The political climate within his organization-will the 
manager be given any encouragement if it is seen that 
he is "experimenting" with new technologies? 

b. The nature of his project team-are they enthusiastic 
enough, experienced enough, and bright enough to try 
new methodologies while simultaneously working 
against a real deadline and budget? 

c. The "learning curve" of the new methodologies
even with the best group of programmer/analysts, 
some time will be required to begin using the new 
methodologies properly. Is the project large enough 
and long-living enough to accommodate an initial 
investment in '. learnIng" . in retUl'n'lor a long-term 
payoff in productivity, reliability and maintainability? 

d. The perceived "payoff" of the new methodologies
are they really as good as the popular EDP journals 
say they are? The manager has to make his own 
judgment of the impact on structured design, struc
tured programming and walkthroughs on his project; 
this may be influenced by the nature of the applica
tions, and various other factors. 

e. The alternatives-if the manager elects not to use the 
new methodologies, what else can he use? On a simple 
EDP project, the manager may decide that the project 
is guaranteed to fail with the conventional methodolo-

Software Development Projects 265 

gies; in such a situation, the manager may decide to 
"go for broke," and try all of the new methodologies. 

REFERENCES 

1. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines and 
Languages with Only Two Formulations Rules," Communications of the 
ACM, May 1966, pp. 366-371. 

2. Dijkstra, E. W., "Programming Considered as a Human Activity," 
Proceedings of IFIP Congress 65, Spartan Books, Washington, D.C., 
1965. 

3. Dijkstra, E. W., "Go-To Statement Considered Harmful," Letter to the 
Editor, Communications of the ACM, March 1968. 

4. Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare, Structured Program
ming, Prentice-Hall 1972. 

5. Wirth, N. Systematic Programming: An Introduction, Prentice-Hall, 
1973. 

6. Yourdon, E. Techniques of Program Structure and Design, Prentice
Hall,1975. 

7. McGowan, C. L. and J. R. Kelly, Top-Down Structured Programming 
Techniques, Petrocelli/Charter, 1975. 

8. Yourdon, E., C. P. Gane and T. Sarson, Learning to Program in 
Structured COBOL, YOURDON Incorporated, 1976. 

9. McCracken, D. A Simplified Guide to Structured COBOL Programming, 
Wiley & Sons, 1976. 

10. Stevens, W. G., G. J. Myers, and L. L. Constantine, "Structured 
Design," IBM Systems Journal, May 1974. 

11. Myers, G. J. Reliable Software Through Composite Design, Petrocelli/ 
Charter, 1975. 

12. Yourdon, E. and L. L. Constantine, Structured Design, YOURDON 
Incorporated, 1975. 

13. Jackson, M. A., Principles of Program Design, Academic Press, 1975. 
14. Warnier, J. D., The Logical Construction of Programs, H. V. Stenfert

Kroese, Leiden, Holland, 1974. 
15. Katzan, H. Jr., Systems Design and Documentation: An Introduction to 

the HIPO Method, Van Nostrand, 1976. 
16. Caine, S. and E. K. Gordon, "PDL-A tool for software design," 

Proceedings of the 1975 National Computer Conference. 
17. Nassi, I. and B. Schneiderman, "Flowchart techniques for Structured 

Programming," ACM SIGPLAN Notices, August 1973, pp. 12-26. 
18. Gane, C. P. and V. Weinberg, Structured Analysis, 'YOURDON Incor

porated, in press. 
19. Yourdon, E., "The emergence of structured analysis," Infosystems, 

February 1976. 
20. Gane, C. P., "Structured systems analysis and the training of systems 

analysts." Proceedings of GUIDE 41, November 1976. 
21. Weinberg, G. W., The Psychology of Computer Programming, Van 

Nostrand, 1971. 
?~ iJOI.!b"!!!'l, "'t.'~' '~~cig!1 !!!''''J ~i~"~',!,I.'t'!'.II!' "'T!"t ~'~;'" ~ 

development of programs," IBM, report IBM-SDD TR-2i.572, Decem
ber 1974. 

23. ---, Technical Report Number 3: "Standards for Structured 
Walkthroughs," YOURDON Incorporated, 1976. 

24. Aron, J. D., "The Superprogrammer Project," from Software Engineer
ing Concepts and Techniques, Petrocelli/Charter, 1976. 

25. Baker, F. T. "Chief Programmer Team Management of Production 
Programming," IBM Systems Journal, January 1972. 

26. ---, "Chief Programmer Teams: Principles and Procedures," 
Report No. FSC 71,5108, IBM, Federal Systems Division, Gaithersburg, 
Maryland 20760. 

27. Brooks, F. P., The Mythical Man-Month, Addison-Wesley, 1975. 
28. Sackman, H., W. J. Erickson, and E. E. Grant, "Exploratory Experi

mental Studies Comparing Online and Oftline Programming Perform
ance," Communications of the ACM, January 1968. 





Software development tools-Acquisition considerations
A position paper 

by LEON G. STUCKI 
Boeing Computer Services 
Seattle, Washington 

A NEED FOR TOOLS 

The literature abounds now with many guidelines on 
current programming methodology. Today's software ar
tisan is, however, often commissioned with more tasks to 
perform in a finite amount of time than can be accom
plished using strictly manual techniques. Therefore, a 
knowledge of currently available automated programming 
tools is of key concern to today's software analysts and 
programming managers. The spectrum of tools currently 
available impacts the software life cycle at various points, 
for example: 

(1) As an aid in ensuring that program specifications and 
standards are met, 

(2) As a debugging aid, 
(3) As a means of maintaining current and up to date 

documentation and configuration control, 
(4) As an auditing aid for recording and checking accept

ance test results, and 
(5) As a performance measurement tool aimed at improv

ing program efficiency. 

GUIDELINES FOR EVALUATING TOOLS 

The following guidelines are suggested for consideration 
when evaluating various generic classes of automated tools 
for a given project or for a given programming environ
ment. 

(1) Start early. Tool acquisition should be considered 
early in the software development cycle. Software 
tools cannot be commissioned in one day and in
stalled on the next. Unforeseen problems often occur 
when installing tools at the user's site. Many tools 
must be customized for each new programming envi
ronment. 

(2) Select easy to use tools. Care must be taken to select 
tools that are easy for the applications programmers 
to use. System interfaces and procedures must be 
easy to use, understand, and modify. 

(3) Place tools in proper perspective. The use of tools 

267 

must aiways be viewed in terms of supplementing, 
and not replacing, a good common sense approach to 
software development. The formulation of carefully 
designed test plans and good desk checking proce
dures are still of paramount concern. 

(4) Remember that tools consume resources. In many 
cases, the application of automated tools initially 
increases machine costs. Some tools are very power
ful and can be misused by applying them to classes of 
problems that could better be solved by simpler 
means. 

(5) Select tools with a payoff. The utility of each poten
tial tool should be understood by analyst and manage
ment alike. The use of an automated tool should 
assist in increasing the quality of the subject soft
ware, increasing user confidence, or increasing pro
gram performance in some way. Users should under
stand the benefits and cost associated with each tool 
in order to more fully optimize their utilization. 

A SAMPLE EVALUATION OF SELECTED TOOLS 

Table I was developed in the course of a lengthy investi
gation conducted in 1975-1976 by the author. 1 This table is 
by no means complete. it is simply offered as an example ot 
some of the evaluation criteria involved in examining sev
eral of the more sophisticated automated programming 
tools. 

Much work remains to be done in this area. We are still, 
for the most part, benchmarking tools to find their costs 
and guessing as to their potential benefits. Little empirical 
data has been gathered on the actual measured utility of 
applying tools. One recent set of experiments by the 
author2 at UCLA pointed out some of the pitfalls often 
encountered in trying to assess the utility of tools. At the 
same time, however, it offered a prospect of some very 
interesting potential payoffs. 

This presentation will offer a glimpse into the world of 
automated tools. Generic classes of tools will be consid
ered. General remarks will be offered on various factors of 
tool utility. Specific mention will be made of selected 
findings from evaluation activities conducted by the author. 



268 National Computer Conference, 1977 

T ABLE I-Summary of Test Results 

TOO:' IMP:'lJ:ElITATIO:;S 

A7r.G 
!~A£.A-aOUS:ON 

hOuS70!l;:o:AS 

CAPEl 
?r.J;,:itx ,h?IZC!"tA 

r.3S 
MiASHL;GTO:;.~.C. 

:·1CDO!i~iEl.L

DO:JGU.5 
Ei. -:i7D;::;'TON BEACH 
CA:.IFGiL'iIA 

B!l.I. LAB 
:·!"...:"R.~Y Hr:..r.. 
17~.i ';ER~EY 

5(-::":: :.;;:; llA.lIBAGE 
E" .. :-:~Y..u.E 
CA:.:?:a;;a 

s~;,;:""C7 .. r;u:;G 
:::;~L~ 

(sro;O:;:?.I..~) 

C.M.:tEt~:...?·~, 

G-:::~::J:;.I!i=. 
r~E:iA 

CA:.r:~'?':;IA 

!-I!C:X>:'''1iEU,,
DOC"(iI..\5 
H~'fi!,C?'JrZ B!;ACH 
CAUFOF.li!A 

JOYCE 

lICDOJ:lELI
L<.VGLAS 
HL~;';'t:lGTOJ BEACH 
ct.UFCRJIA 

CC:-!? SCIE:'ICE DEPT. 
U:IIV. OF COLOiIAllO 
BOULD£iI. COLOiIAllO 

FUTURE NEEDS 

UNIVAC 

lIM 
CDC 

UNIVAC 

lIM 
CDC 
HONEYlIELL 
G.E. 
UI;IVAC 

lIM 
CDC 
BURROUGHS 
HONEY'o'ELL 
OTHERS 

IBM 

lIM 

PDPlO 

CDC 

SOURCE LANGUAGES 
ACCEPl'ED 

FORTRAN 

FORTRAN 

FORTRAN 

FORTRAlI 

FORTRAlI 

ALL 

FORTRAlI 

FORTRAII 

STATIC I DYNAMIC 

STATIC 

STATIC 

STATIC 
DYNAMIC 

STATIC 
DYNAMIC 

STATIC 

DYNAMIC 

STATIC 

STATIC 

STATIC 

STATIC 

Much work remains to be done in the area. One current 
need is for more test environments (Software Engineering 
Laboratories) where various tools and techniques can be 
selectively applied and assessed under controlled condi
tions. A set of cost/benefit matrices is needed to aid in the 
quantitative evaluation of automated tools. 

1 

OPERATING COST 
I-LOll 
5-H1GH 

2 - 3 

EASE OF USE 
I-EASY 
5_01" 

FEATURE.'S 

.DET1J!J.!IilES VALU1:S OF 
PROGRAJ.! V AR lABLES TO PRO
DUCE OPl'D-IAL TE.-"T CASES 

LI:UTATIONS 

• DIITI::ULT TO 
INTt:P.PRET OUT
PUT 

.EXACT STIF. EXECUTIQ;i COUl;'X'S • NO LONGi:!! 

.EST!:!ATED uEC TI:~ FOR ACTIVElY 

.blJJ.!B1J! OF Il" STAT!:·!E:IT TFlUE 
PATHS TAKElI 

.SUB?Ol'":'I;i:: EXECTJ!'ICr. 'l'n·!H!GS 

.SL1'lWlY OF SCL'RCr: S":ATn·lEl'IT'S 
BY FORTRAN TYPE 

.ElEClITIOlI COU;IT5 FOR 
PROGRX'. SEG:-:EJiTS 

.EXACT 3TI·~ i::XECt.;7IO:, COU!i:'S 

.IF STA':'!:·:E:IT 7RUE A:;o FALSE 
BP.AJ/CH COUr.TS 

SUP?OR7<II 

r DU'EIIDING 011 OPTIOIIS 

.MINU:tr.'./rOOIlmH VALUES 
ATI'Amm BY PROGRAM VARIABLES 

• FIRST A:ID LAST \'A.:.m:s 
AITAI:;m BY FROG~.A!O\ VI..·'UAB:'ES 

.RELATIVE SUBRct.-:r:,E EXEC "i'D·~
I!;GS 

1 

REFERENCES 

.CliLCKS SOLIlCE nCGRA!·: FOR 
ADh"ERC;CE 70 A POICABLE SUB
SET OF ANS FORTRA."I 

.SUBPROGRAM cmn·nmICA?ICll 
CHECKED T~Ot:G!l CO:'l·IO~ • 
ARGID!E:IT LISTS 

.SUBnOGlWl CROSS PEn."PE:;CE OF 
10 TY?~ .l'~'(" A.'7D A':."'""T- ~~ 

• SA.'PLES EXECl"7I:m PROG!!AII. AT 
REGULA.~ INTErVALS TO OBTAIN 
?ERFORl·IA..';CE ~TATIS'?ICS 

:~~f~ H.~ 1I~~bJIIriECUTrr.G 
~~vr'~ 

• P!'?!=":~~X~CE 

S-=;,::'ISTICS A"TJ. 

:'lOT R=?Iill 
n.l. SOI.."RCE 
Sr.·:7. LEVEL 

.F-RODUCES A S1RUC7URm fORTRAli • lIX·Jr. !.:lAD 
PROGRAM AIID LIS':'IlIG FRO~: MO;;D-_E 
FOR'l'RA1: SOURC E' • CA:; !':lODUCE 

.PREPROCESSOR AVAILABLE TO <:y'C:;:ss~v::r.r 
TRANSLATE Sn;UCTUREll PROGRAM LA!~G:;: S7RUC-
Ir.TO FORTRA.' FOR CO!-PlLATIOn TUR!!l PROGRA."~ 

• TESTS PROGRAY.S INFORI'.A.LLI 
BY COMPUTING VALUES OF 
PIIOGRAM VARIABLES ALOIIG 
SELECTED PATHS 

.ALLOWS SYMBOUC EXECUTIOI 
OF PROGRAMS 

• CHEC"t.:O:n IU,D DOCL."IE:iTAl'IOIl AIl> 
.lo\ICROFILI~ FLO. LIST Ill'll! ALL 
~ttA.i::iF!:.pS I;;LlIC~T"U) l:iY J..?.F.C'JS 
IU:;) ALL DO LOOPS li;DICA'~::':> ilY 
BRAC"tCETS 

.CC:·IP1<."E CROSS-F.!.FEhEiICLD 
PIiOGR;.l·; G:.cSs.:.RY 

.SOME USE!! TIME 
REQliIP.ED TO 
SET \''P '!EST 
CASES 

.C"rlEC"f.S FUR A i1I:JE Vi.iIILTY OF .RE:;v;;;)A.<"l' 
SOu'RCE :;;.ROI<S O,,-:?L":' 

.ISSlJ"L!3 · .. L~·K:n:G l·rssS':'GES FOR !SSShOES 
PC.5SI3U Ul?ORS 

I. Stucki, L. G. et aI, "A Methodology for Producing Reliable Software," 
McDonnell Douglas Astronautics Co .. Technical Report MDC G62IO. 
March 1976. 

2. Stucki. L. G., "The Use of Dynamic Assertions to Improve Software 
Quality," PhD Dissertation, UCLA Graduate School of Engineering, 
Computer Science Department, June 1976. 



Understanding the developmental 
life cycle 

by RAY CAUDILL 
Air Force Data Automation Agency 
Gunter AFB, Alabama 

ABSTRACT 

The paper supporting the topic above asserts that the 
software development manager is faced with a myriad of 
technical questions to which he must seek technical solu
tions. The paper makes a case for applying an adaptation of 
configuration management to the software developmental 
life cycle. This is done by first stating that the life cycle 
can, in fact, be divided into reasonably discrete parts even 
though the developmental life cycle is a continuum. The 
paper then gives an overview of Automated Data System 
Project Management, highlighting phases, reviews, deliver
ables, baselines and scaling. An alternative to this version 
of configuration management is also offered for the purpose 
of showing the flexibility of configuration management. The 
paper concludes by asserting that the elusive term "man
agement visibility and control" becomes realistic and 
achievable through application of configuration manage
ment. Also, a better choice of tools and techniques can be 
made when gauging technical need against phases rather 
than the entire developmental life cycle as a whole. Lastly, 
the paper concludes that progress measurement and man
agement reporting actually can be achieved through docu
mentation of the results of reviews of deliverables expected 
(roJJ).ea~b.Dha&~ , 

INTRODUCTION 

The title of this session is "Software Management: How to 
Start a Software Development Project." This is one of the 
less technical sessions and is aimed at the manager, new or 
otherwise, who is about to begin a development effort. A 
senior analyst/programmer, given project leadership for the 
first time, is confident of success. He's been there. He's 
done the "grunt" work. He knows how to "build" soft
ware. However, he has never "managed" a software devel
opment effort. There is a difference. His confidence in his 
eventual success transcends his superiors and staff alike. 
Because of all this show of confidence, everyone predicts 
high marks for this project to be finished on time, within 
budget estimates, and that it will totally satisfy the cus-

269 

tomer. Amid all this optimism, the manager is asking 
questions like: What skills do I need?; Which of the many 
tools and techniques on the market are right for me?; and, 
How do I know my plan is holding? In short, he's doing 
what most people think he should be doing. That is, he is 
seeking technical solutions to technical problems. He just 
may be making his first serious mistake. He may be 
beginning on an elevated technical plane much too quickly. 

My suggestion is that he hold the technical questions a 
little longer and ask and seek a solution to a less technical 
one first. He should ask himself this all-too-rare question 
first: "What are the Component Parts of this thing called 
the Software Developmental Life Cycle?" If he can see 
through or past the "whole" and actually discern the 
smaller, somewhat discrete, parts of the developmental life 
cycle, and plan and manage accordingly, he will possess 
and be able to articulate a much greater understanding of 
the whole. I firmly believe, then, that he has a much greater 
chance of a level of success that just might match his initial 
optimism. 

Before proceeding, let's briefly explore some of the 
reasons why software development efforts fail anyway. 
You each have your own opinions, some of which relate to 
technical complications and perhaps to the employment of 
Sllecific" tQQl£-ilO.d~t.eclmiqu.es __ Ha:w.e.v:et ... rd Jike to make 
some of my own observations as to why failures occur. 

Lack of management visibility and control 

Management at all levels "assumes" that the manager 
closest to the development effort does have visibility and 
control of the total effort and that a simple query win bring 
a clear and concise response as to project planning and 
progress. Some project managers do have such visibility 
and control, but there is absolutely no reason for you or 
anyone else to assume they do. If your thought and 
planning processes don't or can't transcend the "whole" 
and see the parts of the software development life cycle 
(which is the only place where visibility and control exist) 
then why should you expect another manager, technical or 
otherwise, to do so? 



270 National Computer Conference, 1977 

Pressures from higher authority 

Here's a serious problem for most of us. Let's say you've 
laid out a positively foolproof developmental plan. Higher 
management then decides to step up your schedule by six 
months, or to reduce your budget by some large amount. 
Well, you have no choice now but to modify that great plan 
you had. You guessed it, it's that alternative plan that is 
doomed to failure from the start. But why should that be 
so? If your plan is by phases, or parts of the whole, you can 
modify each accordingly and the basic plan still holds. You 
can't just cut out and throwaway, or ignore a part of the 
developmental cycle just because of a reduction in time, 
people, or money. To say it another way, there are certain 
actions or activities which must occur in order to develop a 
complete computer software system. You cannot cut out 
anyone of those activities; you can only develop less 
system. The alternative (the one doomed to failure) is to 
develop the same system but with less quality. 

Now for a couple of "truisms" or "propositions" to 
cement my position for you and to give you a baseline, or 
point of departure for the remainder of this paper. 

Proposition I: The developmental life cycle is a continuum. 
Dictionary Definition: A continuum is a "succession, or 
whole, no part of which can be distinguished from neigh
boring parts. . . ." 
Proposition 2: The developmental life cycle is a succession 
of discernible, manageable, and measurable parts. 

These propositions appear contradictory. I happen to 
believe both and hope to convince you of the same. More 
of us than care to admit have been involved in failures 
because we saw only the "whole" and managed accordingly 
rather than seeing through the "whole" to its "parts" and 
dealing with them on an individual basis. 

PHASE RECOGNITION 

There are as many phases in the developmental life cycle 
as you'd like there to be. I'll show you two examples of 
phase use later, but for now just visualize your entire 
project as having the following six phases: 

1. The idea and its approval. 
2. Refine the idea into a user requirement. 
3. Design the application system. 
4. Develop, code, and test programs. 
5. Total system testing. 
6. Operate the system. 

It is only after one recognizes these "parts," now re
ferred to as "phases," that the technical questions refer
enced earlier take on some perspective. You're able now to 
apply questions to specific phases of the software develop
ment life cycle and deal with them accordingly. Also, those 
rather elusive terms such as "management visibility and 

control" begin to take on true meaning. Planning each 
phase singly, then putting them together can make for a 
more detailed and a more accurate plan. You've all wit
nessed this negative example of project visibility and con
trol. A project is assigned to a group of people with the 
singular guidance: "Have it on the air in 18 months." You, 
and they, are quite naturally 1118 more nearly complete at 
the end of every month. Suddenly, in the 16th or 17th 
month, you find that youlthey are only 50 percent finished. 
You're forced to accept that assessment even though 
you're too embarrassed to ask the question: "50 percent of 
what?" 

THE ADVANTAGES OF PHASES 

There are many advantages to development by phases: 
Here are a few: 

• Each phase has a relationship to all others and to the 
entire project (the "one small step at a time" concept). 
Comprehension of each makes the "whole" compre
hensible. 

• Each phase must yield some deliverable product in 
order to terminate. 

• User/developer reviews of deliverables for technical 
acceptability become the measure of progress and the 
method of reporting that progress to management. 

• Responsibilities/accountability for specific phases, and 
deliverables can be identified. 

• User or design changes can be controlled and ac
counted for. 

• Finally, dissecting the developmental life cycle into 
deliverable-oriented phases with appropriate reviews 
can: 
- Provide early warning of technical problems/slip

pages. 
- Provide setting for controlled user/developer rela

tions. 
- Provide for some realistic assessment of where the 

effort stands relative to plans. 
- Make visibility and control realistic. 
- Enable the development manager to respond to 

serious changes directed by higher management 
echelons. 

- Lessen the trauma of implementation. 

CONFIGURATION MANAGEMENT 

Of course, what I'm leading up to is a set of concepts and 
principles commonly referred to as configuration manage
ment. For years, configuration management has been the 
tool of managers of ultra-large efforts such as shipbuilding 
and aircraft manufacturing. In the last few years, however, 
more and more people are applying the same concepts and 
principles, with modifications, to software development. 
My first thought, upon reading about configuration manage-



.. A DISCIPLINE APPLYING TECHNICAL AND 
ADMINISTRATIVE DIRECTION TO AND 

SURVEILLANCE OF ... " THE SOFT\V ARE 
DEVELOPMENTAL LIFE CYCLE. 

Figure i-Configuration management 

ment for the first time, was that it is overkill to the nth 
degree. It is only if you allow it to be. The concepts and 
principles have to be tailored and tempered to meet the 
requirements and scope of each project. Figure 1 is a 
simplistic definition of software configuration management 
and shows the aspects of it this paper will develop. Those 
who have dealt with configuration management in the 
development of weapons systems may believe that we have 
strayed rather far from what you know as configuration 
management. I do not believe we have. Those of us who 
developed the version I'll touch on were always mindful of 
phasing, deliverables, reviews, etc. 

AUTOMATED DATA SYSTEMS PROJECT 
MANAGEMENT 

We are using configuration management now in software 
development. I believe it is safe to say we have had 
developmental successes and a failure or two. With no 
particular case in mind, perhaps we would have had fewer 
failures plus more efficient successes had we become 
acutely aware of the potentialities of configuration manage
ment many years ago. There are various elements within 
the software development field which have been exploring 
and in fact implementing configuration management for the 
last couple of years. Unfortunately, it takes considerable 
time to get a process of this magnitude legislated and in use 
across the entire organization. We are now on the threshold 
of the broadest possible usage of the concepts and princi
ples of configuration management. I'll spend the next few 
moments giving you an overview of our approach to it. In 
the interest of brevity, it wilJ be precisely that, an over
Vl~W. ~ 'Pi'g{lre"i ShOW'S the portIOns-ot" ihe 'doc'ument on" this 
subject which will be discussed in this paper. 

THIS DOCUMENT CONTAINS OUR APPLICATION OF CONFIGURATION 
MANAGEMENT TO DEVELOPMENT OF COMPUTER SOFTWARE. 

HIGHLIGHTS TO BE DISCUSSED 

PHASES 
DELIVERABLES 

REVIEWS 
BASELINES 

SCALING 
Figure 2-Automated data systems project management 

Understanding the Developmental Life Cycle 271 

PHASES 

We recognize these phases: Conceptual, definition, de
velopment, test and operation. Figure 3 shows graphically 
the phases and what occurs during each. Here follows a 
brief narrative description of each: 

Conceptual phase 

The purpose here is to identify and fully analyze in detail 
the user requirement. This also involves project planning 
and gaining approval for project development. 

Definition phase 

During this phase, the total system is designed and cross
checked to assure that each system function satisfies a user 
requirement stated in the previous phase. 

Development phase 

All programs are designed, coded and tested during this 
phase. Various reviews are also accomplished to assure 
technical acceptability of the programs and to assure that 
products produced are as intended. 

Test phase 

The total system is tested in an independent environment 
as well as in the user environment if necessary during this 
phase. Audits are performed here to ascertain user accepta
bility of each deliverable product. 

Operation phase 

The system is put into full operation. Feedback from the 
~~ ~ .~. ~,~ .~ ~~. fif'O"" ',,"1"".,..~ 

PHASE DELIVERABLES 

No attempt will be made here to list or discuss all 
deliverable products for each phase. The purpose here is to 
give you some insight into the type of deliverable product 
that is prepared and reviewed in each phase. 

Conceptual phase 

Data Automation Requirement-This is a statement of a 
problem needing attention and will include as much rele
vant detail about the problem as is available at the time. 

Functional Description-This is the most detailed state
ment of the user/customer requirements. This is the docu-



272 National Computer Conference, 1977 

CONCEPTUAL DEFINITION DEVELOPMENT TEST OPERATION 

IDENTIFY AND DESIGN THE TOTAL DESIGN PROGRAMS~ TEST TOTAL SYS- OPERATE 
ANALYZE THE SYSTEM CODE AND TEST TEM IN INDEPEN-
USER REQUIRE- DENT AND USER 
MENT ENVIRONMENT 

-
Figure 3-Phases 

ment used to cement a common understanding between the 
user and the developer and serves as the basis for system 
design. 

Definition phase 

System/Subsystem Specification-This "document" is 
the system design and includes such items as the total 
system design, interfaces with other systems, subsystem 
specifications, etc. 

Development phase 

Program Specifications-This document includes the 
logic of each computer program and is the basis for coding. 
It specifies the functions to be performed by the program, 
its inputs/outputs, and interfaces. 

Coded Programs-Self explanatory. 
Test Plans-As the name implies, this document includes 

plans for testing the total system independently and in the 
user environment. 

Operator and U ser Manuals-These documents include 
everything the operator needs to know to operate the 
systems, and everything the user needs to know to "use" 
the software in his environment. 

Test phase 

Test Reports-The results of all test activities are re
corded and fed back to the developers and the users. 

Operation phase 

U ser Feedback-There is an administrative procedure 
established to cover user feedback. However; letters, 
phone calls, and visits are all used for this purpose. 

REVIEWS 

There are reviews that must be accomplished throughout 
the software developmental life cycle. Figure 4 shows some 
of the reviews we have . elected to use. Reviews are itera
tive. That is, if the product reviewed does not fulfill all 
requirements, it's back to the drawing board with suggested 
or directed changes. Also, it is important to point out that 
the user/customer is involved to some degree, as a direct 
participant, or as an observer, in virtually every review. 
Hence, the user is always apprised of progress and he 
always knows exactly what he's going to get. Secondly, if 
he changes his mind about his requirements late in the 
cycle, he has full understanding and appreciation that it 



Understanding the Developmental Life Cycle 273 

may cost him in terms of his desired on-line target date. 
However, by keeping him involved, he's more likely to give 
you well thought out requirements to begin with. He's less 
likely to say what so many have said in the past-"just give 
me something and I'll tell you whether I like it or not." 

Development phase 

Preliminary Design RevieHJ-The purpose of this review 
is to approve a portion of the total system for program 
development. For a smaller system, this review will be 
combined with the System Design Review. 

Conceptual phase 

Systems Requirements Review-Through this review, the 
user and the developer reach a common understanding of 
the user requirements, of conceptually what is to be devel
oped, and of the plan for doing so. 

Critical Design Review.-The purpose of this review is to 
review and approve the individual program specifications 
prior to coding. This review, as well as the others, prevents 
that historic problem of the "rush to the code sheet." 

Product Verification Review-The purpose of this -review 
is to determine that computer software was developed in 
accordance with specifications. 

Definition phase Test phase 

System Design Review-The purpose of this review is to 
gain both user and developer approval of the total system 
design and to assure that the design satisfies the require
ments approved in the previous phase. 

System Validation Review-The purpose of this review is 
to ascertain that the system performs the function for which 
it was designed. 

There are various audits which occur during the Develop-

CONCEPTUAL DEFINITION DEVELOPMENT TEST OPERATION 

IDENTIFY AND DESIGN THE TOTAL DESIGN PROGRAMS TEST TOTAL SYS- OPERATE 
ANALYZE THE SYSTEr~ CODE AND TEST TEi~ I N I NDEPEN-
USER REQUIRE- DENT AND USER 
MENT ENVIRONMENT 
SYSTEM RE- SYSTEM DESIGN PRELHlINARY SYSTEM VALIDATION 
QUIREMENTS REVIEW DESIGN REVIEW REVIEW 
REVIEW 
PURPOSE: PURPOSE: PURPOSE: PURPOSE: 
ASSURE USER/ REVIEW/APPROVE REVIEW/APPROVE ASSURE THAT EACH 
DEVELOPER TOTAL SYSTEM· PORTION OF TOTAL SEGt1ENT OF THE 

~ COMf'IDN tfNDER- DfS I GrL ?tANS SYSTEM FOR 'FtlR- I SYSTEM OPEAAiESI 
, 

i 
STANDING OF AND TRACEABILITY THER DEVELOPMENT PRODUCES AS 
REQUIREMENT AND TRACEABILITY SPECIFIED HAS 
AND PLANS/ TRACEABILITY 
PROGRESS 

CRITICAL DESIGN 
REVIEW 
PlJRPOSE: REVIEW/ 
APPROVE PROGRAM 
SPECIFICATIONS 
PRIOR TO CODING 

NOTE: THIS CHART REPRESENTS ONLY A SELECTED SAMPLE OF REVIEWS WHICH CAN BE USED. 
Figure 4-Reviews 



274 National Computer Conference, 1977 

ment and Test phases. These are generally conducted with 
the user as a final physical check on an deliverable prod
ucts. Audits usually serve as a portion of the "grunt" work 
that goes into the System Validation and Product Verifica
tion Reviews. Secondly, an reviews are accomplished with 
the rationale that each product reviewed must be traceable 
back to some previously reviewed and approved document. 

BASELINES 

A baseline serves as a point of departure for future 
development or action. Hence, once the system design 
(system/subsystem specification for example), has been 
reviewed and approved, it is baselined. A]] future program 
development must satisfy that base1ined document. This 
isn't to say that changes are forbidden. They certainly are 
not, but they are controlled and are subject to the same 
reviews and approvals as were the original documents. 
Baselines are generally established at the conclusion of a 
phase, but there is no reason a specific document cannot be 
baselined anytime that it suits your plans. The point I wish 
to make is that baselines are flexible, just as any other 
principle of software configuration management is. You 
must determine for yourself what your baselines are to be. 
That means you must determine what documents are to be 
baselined, when they are to be base1ined, and by which 
review. This aspect alone forces you into some pretty finite 
project planning. 

PROJECT SCALING 

I never intended to make you think that every project 
undergoes all these reviews, and must produce a]] the 
documents. Remember the statement about "overkil1" that 
I made earlier in this paper. For sma]]er projects, reviews 
can be combined or eliminated and so can documents. 
However. this is done only after adequate planning.!']] 
provide only one example which gives you an idea of how 
we would scale the procedures of configuration manage
ment to a specific project. This example shows what 
reviews will be accomplished for a project based upon 
project manyears. The fol1owing Decision Logic Table is 
self-explanatory and happens to be for projects which 
would be developed for mUltiple site implementation. 

Project Scaling (Example) 

If Project Manyears are: 1-<10 10-<25 25-<50 50-> 

Then Perform: 
System Requirement Review 
System Design Review 
System Validation Review 
Product Verification Review 
Preliminary Design Review 
Critical Design Review 
Audits 

x 
x 
x 

x 
x 
x 
x 

x x 
x x 
x x 
x x 
x x 
x x 

x 

ANOTHER EXAMPLE OF APPLIED SOFTWARE 
CONFIGURATION MANAGEMENT 

My purpose is to convince you that your chances of 
success are probably greater if you accept the concepts and 
principles of configuration management and tailor them to 
suit your situation. With that in mind, I'd like to show you 
another variation of what I've just shown you in the last 
several charts. This variation uses the same phase names 
but with different accomplishments in each. It does not use 
the same reviews either, but a study of the document from 
which it came revealed that the same activities genera]]y 
occurred. The fo]]owing comparative chart wi]] show you 
the differences between these two variations. 

APPROACH #1 

CONCEPTUAL 

Deals with everything the 
example does plus the 
functional requirements are 
defined in detail. 

DEFINITION 

System design occurs. 

DEVELOPMENT 

Develop programs. 

TEST 

Essentially the same. 

OPERATION 

Essentially the same. 

COMPARATIVE 
PROCEDURE 

CONCEPTUAL 

Deals only with the idea at 
the conceptual level and is 
used for project approval. 

DEFINITION 

Detailed user requirements 
analysis occurs. 

DEVELOPMENT 

Develop both the system 
and programs, but done in 
discrete segments of the 
phase. 

TEST 

Essentially the same. 

OPERATION 

Essentially the same. 

Figure 5 shows a comparative example of phasing along 
with a brief statement as to what occurs in each phase. This 
comparative procedure was included to show an example of 
how software configuration management can be varied. The 
same phase names were used in both the versions above, 
but the activities which occur in the first three are quite 
different. For example, in our version, the Conceptual 
Phase covers everything from the initial idea, project ap
proval through the detailed user requirements definition. 
The comparative version uses the Conceptual Phase to deal 
only with the basic idea and the approval for its develop
ment. The Definition Phases in the two versions also vary 
considerably. In our version, the system is designed, 
whereas in the other, definition means detailed definition of 



Understanding the Developmental Life Cycle 275 

I DEVELOP~lENT 
CONCEPTUAL DEFINITION SYSTEM PROGRAMS 

DEAL WITH THE IDEA DEFINE USER REQUIRE- DESIGN SYSTEM DEVELOP PROGRAMS~ 
ONLY MENTS CODE~ TEST 

PRELIMINARY REQUIRE- SYSTEM REQUIREMENTS SYSTEM DESIGN TECHNICAL TEST 
MENTS REVIEW REVIEW REVIEW REVIEWS 

CONCEPTUAL REQUIRE- DETAILED REQUIRE- DETAILED SYSTEM DETAILED PROGRAM 

I 
MENTS LEVEL MENTS BUT AT CONCEP- DESIGN AND 

I 
DESIGN AND 

TUAL SYSTEM DESIGN DEVELOPMENT DEVELOPMENT 
LEVEL 

Figure 5-Another example of phasing 

the user requirements. There are other differences as well. 
The· point I wish to reiterate is that Software Configuration 
Management is flexible and should be tailored to suit your 
needs. 

SUMMARY 

The introduction to this paper asserts that many technical 
problems in need of technical solutions beset the manager 
~'~G0IM~JR~~a ,6@~R~~~l{.~fl< . ~e-ve ... ,;, ~ 

paper further asserts that the obvious technical questions 
can best be addressed if put into proper perspective. A way 
of doing that is to deal with the whole (developmental cycle) 
by separating it into its component parts or phases. We 
have adopted the concepts and principles of configuration 
management toward that end. The example of another 
variation of configuration management was briefly dis
cussed to assure you that you have much latitude in 
applying the concepts and principles of configuration man
agement. 

CONCLUSION 

The developmental process is a continuum. However, I 
have concluded that the application of the concepts and 
principles of Software Configuration Management should 
be given priority consideration when beginning a software 

developmpnt effort. Planning, controlling and developing 
then become phase/review/deliverable oriented and prog
ress measurement and reporting become realistic and mean
ingful. Specific advantages of applying configuration man
agement to the software development life cycle are: 

• Planning, controlling and visibility become more realis
tic because reviews of specific deliverables must be 
accomplished throughout the cycle. 

• P'a~~ whi~h h~v,~ be.~n rr~l'ar~g .~r()uncl. th~ l'has.,t:~ 
concept are eaSIer to change. 

• Technically oriented tools and techniques can be se
lected and applied to phases or groups of phases with 
more confidence. 

• A workable user/developer relationship can be identi
fied and controlled. 

• The biggest pay-off of all: 
- We data automation people can now "articulate" to 

others precisely what the developmental life cycle 
actually is. 

• Greater confidence from management and users. 
• System developers' credibility can be enhanced. 
• Can stop or at least impede the "rush to the code 

sheet." 
• Can articulate the need for a somewhat greater 

investment up front which will increase both speed 
and accuracy of the systems work and program 
development. 





Management of large scale 
computer program production 

by H. S. WOODGATE 
International Computers Limited 
Reading, Berks, England 

ABSTRACT 

This paper describes a management/computer interactive 
system for the planning and control of the development of 
computer software programs on a large scale. 

Linked planning (PERT type) networks are used to 
represent the basic information model. This composite 
network is formed within the computer from individual 
networks using computerized library techniques. The model 
then represents the overall definition of the projected work 
load. 

This information model is then manipulated by varying 
both the planning data (resources available, etc.) and 
scheduling parameters. Multi-project scheduling methods, 
using advanced resource allocation procedures, are then 
employed to rapidly obtain basic planning information 
(manpower loading, completion dates, costs, etc.). 

These basic concepts are established within a framework 
of a flexible system which responds to changes in product 
requirements, resource availability levels and project priori
ties. The interaction between management and the com
puter based network planning system enables the work to 
be effectively planned and provides a sound basis for 
subsequent control. 

INTRODUCTION 

The management of large scale computer program produc
tion poses special problems which are not readily solved by 
manual methods. The large volume of planning data in
volved, the technical complexity of the end product, the 
uncertainty and variability of the time and resource esti
mates and the vulnerability to external constraints make it 
essential that computer driven methods of project manage
ment are employed. 

The system described was developed for in-house use by 
International Computers Limited in an environment where 
several hundred programmers and systems analysts were 
engaged in the development of a mUltiplicity of computer 
programs. The integrated computer based systems evolved 
over a long period in response to increasing work volumes. 
Network planning (PERT) techniques were used for many 

277 

years to schedule projects individually. However, the sepa
rate treatment highlighted the need to consider the various 
tasks collectively against a common manpower pool and 
development of the system proceeded to this goal. The 
principal stages in development are shown in Figure 1. 

As the number of projects increased so did the variety of 
questions which management was called upon to answer. 
With a mixture of firm and tentative projects on hand, 
estimates of costs and timescales were requested for new 
items about which only the barest details were known. 
Answers to the first questions inevitably had to be hedged 
with qualifications regarding the assumptions made, and 
these invariably sparked off a series of further questions of 
the "what if' variety where changes in these assumptions 
were postulated. 

Some fast, flexible, but reliable system was required to 
provide this information and it was from this necessity that 
the present methods developed. Included in the work 
groups were staff who had developed PERT programs, and 
there was an awareness of the potentiality of the technique. 
It was not surprising, therefore, that network planning 
should be selected as the basis for a scheme for scheduling 
and controlling the work of the whole activity. 

THE PLANNING PROBLEM 

A number of complex computer programs have to be 
produced using pre-determined manpower and computer 
time availabilities. The individual computer programs are 
required to be finished in a defined priority sequence, and 
there are interdependencies between different programs and 
also some external constraints. The various computer pro
grams (some 50/60 in number) have similar production 
characteristics, but the work force is also required to 
undertake some additional work of a dissimilar nature 

Figure I-Development of the system 



278 National Computer Conference, 1977 

(maintenance of previously completed programs, technical 
support, preparation of manuals etc.). Some tasks can be 

. considered as firm commitments, others are only tentative 
proposals for which production capacity must be reserved. 
The resulting work load is a mixture of these ingredients. 
This overview of the planning problem is shown diagram
matically in Figure 2. 

The number of projects to be scheduled varies as time 
proceeds. As work in progress is completed, tentative 
proposals become firm commitments, new work items are 
added, state of dependencies change, availability of man
power alters (transfers and resignations, etc.). 

Superimposed upon this constantly changing variety of 
work and resources is the infamous problem of estimating 
the work content of computer programming tasks. There 
can be few tasks for which it is more difficult to assess in 
advance the time scale by which a given number of persons 
achieve specific objectives. Uncertainty in the original 
estimates is therefore a significant factor in all planning 
decisions. 

From this morass of indefinite and sometimes conflicting 
detail, project management needs to forecast certain highly 
significant information: 

(a) Who should be working on what job and when? 
(b) What will be the forecast completion date? 
(c) What will it cost? 

In connection with the allocation of jobs to people, 
certain basic limitations of human adaptability have to be 
borne in mind. Pre-eminent among these are: 

(1) The need to make use of experience-an Operational 
Research Scientist may stumble through an accoun
tancy routine but an accountant may not be so 
successful in O.R. 

(2) Continuity of employment on the same task improves 
performance-changing individuals rapidly from job 
to job is invariably detrimental to progress. It is the 
nature of programming that it is possible to actually 
progress backwards by inappropriate actions. 

Network planning is an obvious planning tool to employ 
in these circumstances. The breaking down of the overall 
task into individual activities minimizes the estimating 

Figure 2-The planning problem 

error, and the computer calculated time analysis, resource 
allocation and co stings enable the multitudinous elements 
of this particular jigsaw puzzle to be re-assembled with 
comparative ease. 

The well tried methods are, however, not in themselves 
sufficient, as preparation of individual networks and esti
mates for each job is a problem and special techniques of 
network construction from pre-stored libraries are em
ployed. Similarly, the established methods of resource 
allocation need special treatment to observe the relative 
priorities attached to individual projects and to ensure the 
(more efficient) continuity of work on similar jobs. To 
accomplish this, a form of multiproject/residual resource 
scheduling is employed. 

The main features of this system are now described. 

THE PLANNING SYSTEM 

General approach 

The general system flow is shown in Figure 3. Here it will 
be seen that there are two inputs (firm commitments and 
enquiries) and one principal output (quotations). Between 

MANAGEMENT 

.KEY EVENT • 
• DATE • 
.SCHEDULE • 

I~I 

.RESOURCE • 

.UTlLISATION • 
• SCHEDULE • 

• PROJECT • 
.COST • 
.SCHEDULE 

• • • • • 

INPUT OF BUDGETS 
RESOURCE LIMITS, KEY 
DATES AND OTHER 
RESTRAINTS. 

SUBSTITUTION OF DETAILED 
NETWORKS IN PLACE OF 
EARLY APPROXIMATIONS 

MASTER 
NETWORK 
UPDATE 
PROGRAM 

Figure 3-General system flow 



Management of Large Scale Computer Program Production 279 

these two extremes the planning system is an interaction 
between management, planners and a network processing 
system. 

Central to the system is the "master network" which 
holds (in computer store) the events and activities of all 
work (firm and tentative) which is currently in the system. 
This is a multi-project network and it defines all project 
relationships, external restraints and relative priorities, as 
well as carrying time, resource and cost data appertaining 
to all stored networks. 

The master network is maintained by adding and sub
tracting projects with the master network updating pro
gram. New sub-networks (one for each project) are added, 
either after being built up from the network reference 
library held in computer store, or from direct input of new 
material. Library networks are usually employed at the 
tentative stage when little is known about the project and 
personalized networks are submitted when the work has 
been studied in detail. 

As the library methods means that a considerable part of 
network creation and editing takes place out of sight within 
the computer, network diagrams are not available in the 
usual way and it is necessary to provide means of visually 
checking the created network that will subsequently be 
submitted for processing. The system therefore provides for 
networks to be output on a digital plotter for this purpose. 
Comprehensive coding is built into the library of sub
networks so that selected portions can be examined in this 
way. 

Network analysis is carried out in the normal manner and 
a series of resource allocations are performed. Usually both 
time limited and resource limited allocations are carried out 
with graded project priorities being applied by means of a 
residual resource scheduling technique. The results of se
lected allocations are then costed. 

The main print outputs utilized are a key event date 
schedule, a resource utilization schedule, and a project cost 
analysis. These are interpreted by management for accepta
bility. The term "interpreted" is used deliberately in this 
context as management judgment must be exercised to 
~9II1P.qrr§9Je {QX lDe.(;Q9I~,~tl~~§.gf.Jh~ grigip?l ehstitp.H~,e~.an.g 
the precision of the scheduling process. 

The criteria by which the results are considered are: 

(a) Acceptability of completion dates and project costs 
(b) Effective (and sensible) utilization of manpower 
(c) Minimal risk of disturbance by outside constraints, 

e.g., dependencies (which may be unreliable). 

A satisfactory plan is achieved by a series of iterations in 
which various factors are varied and the network reana
lyzed. Typical changes at this stage are: 

( ]) Variation of basic network relationships and depen
dencies 

(2) Alterations to time and resource estimates on individ
ual activities 

(3) Changes to resource availability levels. 

When a satisfactory set of results have been obtained, the 
responsible manager finally "interprets" the computer 
prognostication into a "quotation" which is dispatched to 
the enquirer. 

In this description emphasis has been placed on the role 
of the manager in this cycle. The computer system only 
acts as a tool of management and does not automatically 
produce computer printed results which are followed 
blindly. The system acts as an extension of the manager's 
intellect; he manipulates it, he makes the major planning 
decisions, and he authorizes (and is responsible for) the 
results. Some features of the system are now described in 
more detail. 

Network creation 

In order to perform network planning it is first necessary 
to have a "network." This self-evident truth can, however, 
be qualified for computer processing to say that the neces
sity is for a "numerical representation of the network." 

This modification, which acknowledges the nature of 
computing, is the basis of network library techniques. In 
this method, a number of module networks are reduced to 
digital form and stored on magnetic media (discs or tape). 
They can be recalled on command and edited with a 
minimum of effort on the part of the planner. The manipula
tion of library networks is shown diagrammatically in 
Figure 4. 

In the system described, all computer programs are 
divided into "modules" and the overall network for the 
project is formed by combining a series of sub-networks, 
each representing a module. A library of standard module 
networks has been established to cover the main type of 
product encountered, e.g., large, medium, small, short 
(intensive working) timescale, long (low resource) timescale 
etc. A typical example of a library network is shown in 
Figure 5. 

The planner selects the best combination of library net
works and combines them together with linking dummy 
activities. During the selection of library networks, the 
piaiuleI ~lTI~~unsuil wiiFi" pwuudiu"n managemem it) cun
firm the choice and identify any changes which are neces
sary. The library network is completed with time and 

COMPUTER PRODUCED 

Nn~ 

MANIPULATION OF NETWORKS 
OF SIMILAR PRODUCTS IN 
COMPUTER HelD REFERENCE 
LIBRARY. 

Figure 4-Network creation 

MASTER 
NETWORK 
UPDATE 
PROGRAM 

COMPUTER NETWORK 
PROCESSING SYSTEM 



280 National Computer Conference, 1977 

resource estimates and thus changes to these may be 
necessary as well as the addition or deletion of activities. 

Sometimes the changes will be of a "blanket" nature 
(i.e., increase all durations (and/or resources) by x percent) 
or only to specified activities. One convenient change is the 
addition of a "hammock activity," so called because it 
"swings" from end to end of the network. An example of a 
hammock activity can be seen in Figure 7 (between events 
A3-D3). No duration is specified on a hammock activity 
but a resource applied to this can be spread evenly over the 
project duration on a rate per time unit basis or given as a 
fixed amount, for the whole project. 

Certain events on the module network are identified as 
"key events" for the purpose of summarizing the project 
time plan. These key events correspond with the same 
events on the "master network." This relationship is 
shown diagrammatically in Figure 5. Although the master 
network exists internally within the computer in full detail, 
it is summarized for management use. This relationship 
between module networks and the Management Summary 
Network is shown in Figure 6. 

The Management Summary Network is, in fact, a skele
ton of the Master Network which in tum represents the 
entire collection of sub-networks and exists for the purpose 
of providing management with a reference chart of all 
projects being analyzed simultaneously. The system is, 
therefore, multi-level in concept and the Master Network, 
together with a key event date report (from the computer 
analysis), provides a convenient reference for higher man
agement. Key events are, of course, also the major mile
stones for reporting progress. 

It is perhaps a weakness of the library technique of 
network creation that it is necessary to maintain a record of 
the changes made to library networks and some of the 
visual impact of the planning diagram is lost. One answer to 
this difficulty is the use of digital plotter output to recall the 
network as it stands after modification. 

Digital plotter output 

The manner in which digital plotter output can be used in 
the system is shown in Figure 4, and an example of digital 

KEV 
EVENTS 
{SHOWHON 
MANAGEMENT 
SUMMARY NETWORK) 

Figure 5-A library network (showing key events) 

LIBRAFlY 
NETWORK 

TIME IN WEEKS 
S : SENIOR 
J ,= JUNIOR 

6.0 '" 
SYSTEM MANUAL 

S1 ...... 

~ /... ... ___ ... _ ... J 6 DESIGN dMODpUR'i:oNO·("-T~;T 0-----------------------
"'..... ~INTERFACE EVENTS 

PART OF MODULE NO.2 ...... 0... MODULE 21 - PROJECT A 

::~~~K -----@-.. -.. ::: .. ::~ 
~1~AA~AyGEMENT MODULE NO.3 .. .0 .. " \ 
FORMI .... " .. +-=-- LINKING OUr.wIES 

MODULE NO.9"''''''"" ~ / MODULE 22· PAOJECT B 

-----0--;::: 

Figure 6--Relationship between module networks and master networks 

plotter output is shown in Figure 7. (This sample has been 
simplified for illustration purposes.) Here the library net
work shown in Figure 5 has been modified to add the 
Hammock Activity (connecting events A3-D3) representing 
a supervisory overhead uniquely chargeable to this module. 
Points of interest from this illustration are that different 
types of line (continuous, broken and chain dotted) are used 
to represent activities, dummy activities, and hammock 
activities. Also different event shapes are used to identify 
start events, end events and key events. 

When one has become familiar with the somewhat styl
ized representation produced by the digital plotter, a con
siderable amount of useful information can be quickly 
assimilated from these diagrams. 

External dependencies 

Computer program development work can seldom be 
carried out in complete isolation from external factors. This 
means that the work schedule must be constructed in a way 
which takes account of all external dependencies (or con
straints). 

Typical of these are completion date promises already 
made, dates of availability of specifications, special soft
ware or special hardware from customer or other work 
groups. This information is entered on the appropriate 
events, either as early or late imposed dates in the normal 
way. 

Work scheduling technique 

Operational managers who have used computer based 
resource allocation for the construction of work schedules 
will know that problems arise if blind obedience is given to 
the computer printed page. Computer programs have an 
infinite capacity for devising intricate work schedules yet 
sometimes miss the obvious. For example, no computer 
program will detect that a few hours overtime, worked in 
the weeks preceding an individual's three week holiday, 



Managemeni of Large Scaie Compuier Program Produciion '"'01 
L.Ol 

10 II 12 

Sl'[tlll. D-1OD 011118[ 

-----~.-------------------------------

I ~o J 
l~~~T~~S~~~~~ ____________________ ~ 

9.0 

'I 

1\ 

I C L 1900 SERIES PERT 
PRQJECT SW PAGE 0001 
RUN NUMBER LIBRARY NETWQRK - TYPE 6/1 (SMALL) 
ISSUE 01 25/02/72 

Figure 7-Modified library network produced on digital plotter 

could save three weeks on a project completion date by 
releasing a critical dependency, or how activities can be 
shortened by further sub-division of work in time critical 
areas. 

Scheduling is, therefore, an interactive process between 
the manager who innovates and the resource allocation 
program which merely calculates. Without the aid of a 
computer the manager/planner is forced to think the whole 
pt:Qbt~IJL ~bfQugh. _CQIJ1Pllt~r . <;l~ §i~~ancei§ ngt _ sufficient 
reason to give up thinking altogether, and the thoughtful 
manager can bring individual style to the resulting work 
schedules even when computer programs are used for 
resource allocation. This interaction between the manager 
and the computer program is a feature of the system. The 
established methods of planning network scheduling have 
been described in general! but in this system several 
additional methods are employed to control the determina
tion of the work schedule. 

Work priorities 

Firstly, the master network is brought up to date and 
checked out for data errors. All external dependencies are 
defined and time and resource calendars (holidays and 
overtime etc.) are established. Next the various projects are 
assigned to priority groups. Work already started and 

having near completion dates are given second priority. 
New committed work of a nonurgent nature is the third 
priority, and tentative work is al,ocated the two final 
priorities. In the scheduling process the priority groups 
(each containing several projects) are treated as separate 
projects. which are scheduled against a common pool of 
resources. All projects in the first priority are scheduled in 
their entirety before those in the second priority are consid
ered, andthu~ fir~tpriority proj~c,t~ obt~iIl ~rst cl~i1l1 ?Il.~h~ 
available resources. During the schedulmg of the first 
priority items, the resource availabilities are diminished by 
the extent of the quantity allocated and the remainder is 
passed on as the availability for the second priority proj
ects. A similar procedure is followed for each successive 
priority category. 

The process is termed "residual resource allocation" and 
is shown diagrammatically in Figure 8. It produces sched
ules which reflect the manner in which computer program
ming projects are conveniently run. By changing the prior
ity associated with individual projects dramatic alterations 
to the reSUlting work schedules can be effected. 

Work continuity 

Computer programming requires intense concentration 
and the most effective way of employing the specialist skills 



282 

AVAILABLE 

STAFF l 
1001 

National Computer Conference, 1977 

Figure 8-Scheduling residual resources 

involved is to establish a work group and then to minimize 
the distractions until the task is completed. Within the work 
scheduling program individual network activities, groups of 
activities or even whole networks can be designated "non
splittable" and thus maintain a cohesive effort on particular 
projects. 

The scheduling decision 

At first sight, the decision to schedule would appear to be 
a simple comparison between the resources required and 
the resources available at a particular point in time. In 
practice, however, the scheduling decision is surprisingly 
complex as it depends upon more than just resource availa
bility. The condition of the other segments of the activity 
schedule must be considered as must the effect on the 
project end date of any scheduling delay. In the method 
described, this process is systemized by employing decision 
tables for the scheduling decision. The scheduling decision 
in respect of each activity is made by calculating various 
factors about the activity and looking up the decision 
(whether to schedule or delay) in a decision table which 
contains the appropriate decision for the situation defined 
by the calculated factors. This process is shown diagram
matically in Figure 9 and an extract from a typical decision 

CALCULATED 
DECISION FACTORS 

1 HOWMUCHFLOAT 
AVAILABlE 

2 ARE RESOURCES 
AVAILABLE 

3 IF DELAYED
EFF£(;YONEND 
DATE ' 

4 If PREVIOUS WORK 
UNSCHEDULED -
EFfECT ON END 
DATE 

THE 
RESOURCE 

SCHEDULING 
DECISION 

UNSCHEOULED 
ANDOElAYED 

Figure 9-Resource scheduling-Use of decision tables 

1.1 

Positive 
totul flout 

1.2. 
Positive 
kotul float ut 
threshold 

time 

1.3. 

Negative 
total float 

i~~OUgh S \ 5 

s II 0 SiD 
enough 

w~ sis 

i:D1 

Figure 10000Segment of a typical decision table 

table is shown in Figure 10. According to the resources 
available and the information obtained from this decision 
table, an activity is then either "scheduled" or "delayed." 
In this context' 'delaying" means leaving for scheduling at 
a later date. 

The use of decision tables in this way provides an 
heuristic approach to the scheduling problem in that known 
successful decision patterns can be recorded (by means of a 
decision table) and then subsequently re-used for the pro
duction of further work schedules. Thus, empirical experi
ence can be encapsulated within the computer program at 
the discretion of the manager. The decision tables can, of 
course, be referenced separately and thus the manager has 
another method by which to steer the formulation of work 
schedules into patterns acceptable to him. 

Management information 

Both "time limited" schedules and "resource limited" 
schedules are prepared and the most commonly used print
outputs at the planning stage are key event schedules and 
resource histograms. When they are found to be unsatisfac
tory, "problem modification" takes place. In this the 
planner and manager hold discussions on alternative varia
tions to the network, resource availabilities, scheduled 
dates and priorities. Integration of management and the 
network planning system is greatest at this point and the 
flow of information is shown in Figure II. In this interac
tive process, management skill is employed in suggesting 
acceptable variations to data and the planner's knowledge 
is used to anticipate the effect of changes. Several alterna
tives may be set up in this way and put collectively to the 
computer program and the resource allocation process 
repeated until satisfactory solutions are found. 

Cost planning 

When a satisfactory work schedule and utilization of 
resources has been achieved, the PERT Cost module is 



Management of Large Scale Computer Program Production 283 

MANAGEMENT I ~ I 

J1L 
• KEY EVENT • 
• DATE • 
.SCHEDULE • 

• 

INPUT OF BUDGETS 
RESOURCE LIMITS. KEY 
DATES AND OTHER 
RESTRAINTS. 

• RESOURCE • 
• UTllISATION • 
.SCHEDULE • 

• • 

SUBSTITUTION OF DETAILED 
NETWORKS IN PLACE OF 
EARLY APPROXIMATIONS. 

• PROJECT • 
• COST • 
.SCHEDULE 

• 

MASTER 
NETWORK 

Figure II-Management/network planning system interaction 

activated to produce individual project costs and cash flows 
associated with the total work load. The individual project 
co stings form the basis of project budgets and the overall 
cash flows provide a comparison with departmental budg
ets. 

CONCLUSION 

The system described has established its worth as a man
agement tool over several years. The number of projects 
controlled by the system at present is over 60 and collec
tively they represent a total value exceeding £3 million. 

The planning of computer program production is a diffi
cult task in which unforeseen pitfalls abound. Therefore, no 
claims are made for the automatic production of work 
schedules which can be followed absolutely. Similarly all 
calculated results are "vetted" and often "adjusted" before 
being offered for commitment. This qualification is, how
ever, in no way intended to denigrate the system, but to 
accept that the unforeseen is unknown and allowance must 
be made for it. 

It is a premise of this paper that the system is a tool of 
management-not a management system. The materials of 
the planner's craft are quantitative estimates of future 
activities and probable logical sequences. The manager 
must shape them as he can. 

What is, however, claimed is a way of harnessing the 
advantages of network planning, and through its disciplines 
the unique power of the computer, for the better manage
ment of large scale computer program production. 

REFERENCE 

Woodgate, H. S., Planning by Network, (3rd Ed), Business Publications, 
London, 1977. 





Test planning 

by R. DEAN HARTWICK 
Logicon, Inc. 
San Pedro, California 

ABSTRACT 

The test procedures and program verification methods that 
should be used in planning a software development are 
presented. Planning considerations cover initial determina
tion of test objectives, test planning criteria, the use of test 
tools based upon the anticipated design and application 
error set, and test standards. The presentation is directed to 
the manager who has had some software experience and 
wishes to be thorough in preparation. The test methodology 
stressed is test being performed parallel to program devel
opment, starting with an early (prior to code generation) 
analysis of program requirements and specifications, fol
lowed by static analysis of source code, execution analysis 
of computer program subelements, and integrated system 
testing. Included is a discussion of automated tools now 
being used to relieve test analysts of tedious code analysis 
tasks. Results of a study in which errors from 11 previous 
verification and validation projects were collected and 
categorized by severity and functional type are presented. 

INTRODUCTION 

The testing of computer programs is concerned with finding 
program errors that will unacceptably degrade program 
perforymmce. Te~t pla.nning, ,of!en c:oll~i~t~. ()( ()rganizing an 
increasingly more complicated series of tests after program 
development, following the rather simplistic notion that: 
"Errors will be introduced during program analysis, design, 
and coding and may be found (so that they may be 
eliminated) by program testing." In contrast, a well
planned test approach will start in parallel with program 
development, making it possible to introduce design and 
coding constraints that will assist testing, to plan the testing 
effort properly, and to detect errors at the earliest possible 
time so that they may be corrected with minimum time and 
effort. This concept looks at testing as a means of safe
guarding program quality rather than as a way of measuring 
program errors. 

This approach is desirable for two reasons: to lower the 
likelihood of budget and schedule overruns, and to mini
mize testing costs. Many computer programs have been 
developed late, cost more than budgeted to complete, and 
have worked so poorly as to degrade entire system per-

285 

formance; examples are contained in the well-known CCIP-
85 study. 1 By catching design errors earlier, major itera
tions in program development may be reduced, lowering 
the probability of schedule and budget overruns. An addi
tional advantage is that building quality mechanisms into a 
program should improve its performance when fielded. 
With regard to testing costs, these are frequently reported 
to be in the vicinity of 50 percent of the entire computer 
program development cost. 1-3 Considering test require
ments early makes it possible to prepare a more efficient 
plan in which appropriate test tools and personnel are 
identified. Additionally, finding design errors at an early 
stage saves time for both program development and testing. 

The remainder of this paper discusses how such a well
organized test plan is prepared. Considerations include the 
testing methodology to be employed as a function of phase 
of the program development, the selection of test tools to 
be used, and the organization and control of the test effort. 

TEST OBJECTIVES 

As software systems have grown in size and complexity, 
more programmers have been required, more personnel 
interfaces have been introduced, and more opportunities for 
error have been created. All of these factors have led to a 
nonlinear increase in the. nUmber of ways, a . computer 
prognim can maliu'nction,and 'tile resulting'softwarehorror 
stories have received a far better press than the systematic 
science of computer program testing developed to prevent 
them. This systematic science has been given several 
different names, including Independent Verification and 
Validation (IV & V). The concept of IV & V has become 
widely accepted within the Defense Department and has 
proven its value; remarkably few software developments 
have failed to achieve their desired quality or have violated 
schedules and budgets when IV & V was used. The essential 
difference between IV & V and a formal test group is mana
gerial. IV & V is performed by independent personnel em
ploying independent test tools and techniques. Although 
this distinction will not be maintained hereafter and the 
remaining discussion will strictly address test methodology, 
IV & V should always be considered as a technique to be 
used in any new software development, even though its 
cost may seem to be high (typically 15 percent to 20 percent 



286 National Computer Conference, 1977 

of the total software development cost). The immediate out
of-pocket expense associated with doing IV & V must be 
weighed against the assurance of quality and performance 
gained when it is used. 

The fundamental step in preparing test plans that will 
help achieve high computer program quality is to state the 
test objectives at the outset of the development. The test 
objectives, which are independent of program size, signifi
cantly influence what test methods are to be applied to a 
given program, that is, what types of errors must be 
detected by testing. Test objectives encompass two differ
ent purposes: testing to gain a measure of how well the 
computer program will achieve objectives (performance 
evaluation) and testing to assure that only intended func
tions will occur (assurance analysis). These two purposes 
overlap somewhat, as shown in Figure 1, and the type of 
application influences the amount of effort devoted to each. 

Performance evaluation establishes a measure of how 
well the program performs its intended functions. This 
measure will be a function of the application, user objec
tives, and expected program longevity. Some considera
tions in this respect might be: efficiency (timing and mem
ory), maintainability (ease of modification), accuracy 
(numerical and logical), compatibility with system and user 
(convenience, vulnerability), and testability. The following 
definition of performance evaluation should prove helpful: 
Performance evaluation is a determination of the extent to 
which the examined software: 

• Satisfies system requirements 
• Satisfies program end item requirements 
• Is designed and coded efficiently 
• Degrades the performance of the system or the subsys

tem in which it operates 

Performance evaluation will be adequate only to the 
extent that the system and end item requirements are 
defined. The process of working from system to end item 
requirements is also subjected to scrutiny by performance 
evaluation; for the end item requirements, when combined 
with requirements for other system components, may con
flict with the system requirements. It should be pointed out 

~ 

Measure of extent to which the 
program performs its intended 
functions ---

Assurance that the 
program does not perform 
unintended functions 

Figure I-Test objectives 

that the third and fourth items above are very subjective 
and may involve tradeoffs; inefficiency and system degra
dation are usually demonstrated by counter-example. 

Turning now to assurance analysis, the objective is to 
show that the computer program performs all intended 
functions and does not perform unintended functions that 
could degrade or compromise the safety or security of the 
system to which it belongs. The definition of assurance 
analysis might be generalized for all types of computer 
programs as follows. Assurance analysis is the determina
tion of the extent to which the examined software contains 
coding which could contribute to: 

• Unauthorized access to data files or program 
• Unauthorized display of confidential data 
• Failure to respond in a timely fashion to critical 

program condItions 
• Operations that present a hazard to equipment or 

personnel 

The objectives of performance evaluation and assurance 
analysis are to some extent interdependent. There will be 
program errors which have an impact on safety/security as 
well as on performance. 

The management techniques, analysis tools and tech
niques, personnel qualifications, and configuration control 
procedures are basically the same for performance evalua
tion and assurance analysis. Only by assessing the potential 
impact of a program error can that error be categorized as 
related to the system's performance or to its safety or 
security. The errors are not distinguished by the means of 
discovery. 

TEST PLANNING AND ORGANIZATION 

Testing can be divided into six major management phases 
whose time-phasing relative to a typical system develop
ment cycle is illustrated in Figure 2: 

• Program and personnel planning 
• Test requirements definition 
• Tool definition and development 
• Test plan/procedures definition 
• Testing and analysis (consisting, as will be shown 

subsequently, of program concept analysis, static code 
analysis, and code execution testing) 

• Final report generation 

As shown in the figure, the phases may overlap. There
fore, to prevent significant management problems it is 
important that the program and personnel planning phase 
be completed before undertaking any other phase. Detailed 
schedules for milestones and supporting activities should be 
established for the entire effort. These schedules should be 
detailed enough to provide management with a tool for 
measuring project progress, but also flexible enough to 
permit reaction to unanticipated probiems. If the scheduies 
have been properly established, project management will be 



Test Pianning 287 

CONTRACT 
GO-AHEAD 

SYSTEM 
DESIGN 
REVIEW 

PRELIMINARY 
DESIGN 
REVIEW 

CRITICAL. 
DESIGN 
REVIEW 

FUNCTIONAL. PHYSICAL. 
CONFIG. CONFIG. 
AUDIT AUDIT 

r SYS. SPEC. DEFINITION 

I PROG. ROMTS. DEFINITION 

I 
DES: GN FORMUL.ATION 

DEVEL.OPMENT 
GROUP 

I 

CODE 8 CHECKOUT 

OUAUFICATION 

PROG RAM 
EMENTS 

I 
UPDATES 

I 
PATCHES SYSTEM REOUIR 

SPECIFICATIONS 

'- f 1 I PREL.IM. 

t '"TM' 1 
FINAL. 

PROGRAM 

~ 
PROGRAM 8 TEST PL.AN/P r PERSONNEL PL.ANNING 

ROCEDURES 
ITION DEFIN , ; 

TEST ROMT. DEFINITION 

I 
PROGR AM CONCEPT AN YSIS 

TEST 
GROUP < 

"-

I 
PROGRAM 

PL.AN 

1 

I 

TOOL. DEFINITION 8 

I 
COMMENTS 
ON SYSTEM 

SPECS 

J 

f STATIC CODE ANALYSIS 

I 
CODE EXECUTION TESTING 

I 

DEVELOPMENT 

I I I 
TEST I TEST TEST 

ROMTS. ANOMAL.Y ANOMAL.Y 1 "E~~' REPORTS 
TEST 

1 1 PLANrROC. 

FINAL REPORT GENERATION 

I 
FINAL 

REPORT 

1 
Figure 2-Test management milestones 

able to detect potential problem areas before they become 
critical. The schedules should reflect the following types of 
information: 

• ivlajul piUjt~l Jt~igIl drill ltL:IlIliL:a:i 1 t'v ieV\ 
• Dates and contents of data package deliveries 
• Dates of deliverable data items and other major mile

stones, allowing for rough drafts, internal review, 
editing, final copy preparation, and review and ap
proval 

• Dates for the completion of important test support 
software tools, including definition dates for the test 
tool requirements, design flows, description document, 
and user's manual 

• Schedule dates and management approaches to ensure 
the timely review of activities that can only be sched
uled upon completion of prerequisite milestones 

Once the schedules have been prepared, each supporting 
activity can be manloaded and the qualifications of people 
to staff these activities established. 

Test reviews, in which test progress is presented using 

the activity and milestone charts, should also be planned. 
Near-term milestones, usually those to be accomplished 
within the next three months, might require an inch-chart 
review-a weekly or daily breakdown of activities showing 
~ - ,'t ~," - ."f~ " ,- • ~.,.,. - ,,- 4' /I' IIII~'" - .. -" .. 

nuv. LOt: near-lerrn ITllleSLOne V.HI oe acmevea. I ne lI1cn-
chart review ensures that nothing has been overlooked. 
Also, potential project pitfalls or failure conditions should 
be reviewed so that the necessary actions (for example, 
additional project staffing) can be immediately initiated to 
head them off. 

Test requirements should be generated in the second 
management phase, test requirements definition. For assur
ance analysis, this entails clearly identifying program re
quirements whose violation could compromise system 
safety or security. For performance evaluation, it entails 
identifying the program requirements to be examined to 
measure the quality of program performance. Establishing 
the scope of what is and what is not to be tested is 
imperative because testing all program combinations is 
infeasible. As will be discussed. many of the requirements 
must result from an analysis of the types of errors that may 
be anticipated and the test methodology required to detect 



288 National Computer Conference, 1977 

them. A high-level test methodology must be established 
here. It will then be amplified in defining test plans and 
procedures. 

In the third management phase, tool definition and devel
opment, the test tools that will best accomplish the test 
objectives should be identified. The choice that manage
ment makes in its selection of test support software tools 
will be reflected directly in the quality and productivity of 
the test group. The advantages of automated test tech
niques and analysis methods are obvious, but frequently the 
project will lack sufficient time or money. Once the test 
support software tools have been identified, the test man
agement team must establish the method of qualifying 
them, the configuration control procedures to be applied to 
them, and the schedule for time-phasing them into the 
analysis and testing effort. 

In the fourth management phase, test plan/procedures 
definition, the details of how each test requirement will be 
tested and analyzed must be documented. The document 
should include the following types of information: 

• Test support software or hardware test bed to be used 
• Test scenarios 
• Success criteria 
• Detailed procedures for test implementation 
• Control of data standards and software deliverables 

The last item, control of data standards and software 
deliverables, is especially important. Test management 
should institute strict procedures to ensure that the data 
standards are not replaced with others, tampered with, or 
destroyed. At the completion of testing and analysis, a final 
check of all the working copies against the data standards 
should be performed. 

In the fifth management phase, testing and analysis, the 
management task becomes one of monitoring project per
formance and maintaining control procedures on all input 
and output items. Test management should review all 
discrepancies issued by the test group and evaluate each for 
correctness. Whenever the changes are made to program 
requirements, program code, or support tools, a decision 
must be made whether it will be necessary to repeat tests 
and analyses already completed. The possibility of retest 
makes it imperative to maintain careful configuration con
trol on the program requirements, program code, and 
support software. 

As Figure 2 shows, the testing and analysis phase is 
broken down into three subphases: program concept analy
sis, static code analysis, and code execution testing. The 
functional procedures and tools used during each are dis
cussed subsequentiy under seiection of test methodoiogy. 

The sixth management phase, final report generation, 
may include certification of the program for operational use 
integrally or as a separate step. During the planning for the 
analysis and testing phase, management should establish 
procedures for recording results in a form usable for final 
report generation with minimal modifications. This effort 
allows a final review of activities to ensure that no test has 
been overlooked. For future efforts, it would be useful to 

accumulate statistical information about the number of 
errors detected, their relative importance, and the methods 
used to detect them. 

ERROR SOURCES AND DETECTION METHODS 

Software errors cannot be treated within the confines of 
hardware reliability concepts, nor can it be assumed that 
the detectability of computer program errors has profound 
theoretical considerations. A good test plan is based upon 
sound software error theory. Every application can be 
expected to have its own unique set of errors. It is the role 
of the test group to determine this error set; from it, the 
type and extent of testing to be performed can be deter
mined. 

Considerable work has been performed in accumulating 
and analyzing data to develop a software error theory. One 
study that will be illustrated here represented the results of 
analyzing and categorizing 1202 errors discovered in 11 
projects.4 These results are primarily, but not totally, 
obtained from IV & V activities and hence do not show how 
earlier development testing would affect results. The results 
were categorized by 12 different error types and classified 
by error severity, as shown in Table I. The severity levels 
were based on program performance, as follows; the 
greater the performance degradation, the more serious the 
error: 

• Catastrophic Error: A coding error that would be fatal 
to the application in that it would effectively terminate 
program execution 

• Serious Error: A coding or specification error that 
could severely degrade the program performance but 
would not be fatal to the application; examples are 
violations of timing, accuracy, safety, or stability re
quirements 

• Moderate Error: An error that would not have major 
impact on program performance and that would proba
bly not result in a system requirements violation 

• Trivial Error: An error that would have no impact on 
program performance, e.g., errors within annotations 
on the program listing 

For purposes of test planning, interesting observations 
can be made from an examination of Table I. For example, 
even though errors of the "branch & jump" variety oc
curred infrequently after checkout (4.5 percent of total 
errors), they tended to be serious (14.3 percent of cata
strophic and 6.7 percent of all serious errors). Thus it may 
be conciuded that any testing methodoiogy to be seiected 
should ensure that this type of error should be well ana
lyzed and accounted for. At the other extreme are the 
"documentation" errors, which accounted for 7.9 percent 
of the total errors but no catastrophic or serious errors. 
This then might influence a test planner to reduce effort put 
into finding documentation errors in favor of intensifying 
effort elsewhere. One caveat to any such statistical ap
proach can be seen by looking at the "incomplete or 



Test Planning 289 

TABLE I-Error Categorization Summary 

Error Category '" .... 
2 

&:l 
(ij 
(5 
E-< 

Data/instruction access & storing 120 
Equation computation & arithmetic 113 
Branch & jump 32 
Incorrect constant value & data formats 41 
Violation of programming practices 118 
Specification violation due to incorrect implementation 145 
Timing & process allocation 44 
Interruptibility & data coherency 45 
Incomplete or erroneous specifications 340 
Logic & sequencing i07 
Documentation 96 
Erroneous use of system hardware/software 

Total 1202 
Total % (excluding trivial errors) 

erroneous specifications" category. Although this class 
contributed 43.2 percent of all trivial errors, one cata
strophic error was found. It takes only one such error to 
totally degrade the usefulness of the program. 

Once the test planner has a feeling for the types of errors 
that may be found within a particular program and under
stands the test objectives, he next must consider the test 
methodology to be used. It is useful to think of this 
methodology in terms of testable logical groupings within 
the computer program and the methods that can be used to 
detect the class of errors. 

'" 2 
Ui 
u 

:E 
Q.. 

g 
~ 
~ 
U 

6 
0 
3 
2 
0 
0 
0 
2 
I 
6 
0 

21 
3.2 

.,:, u 

'" :E ::I 
;... 

Q.. <U U ~ 
'" 2 '" 

~ 0 .... 
~ e 2 &:l .... '" (ij ~ t: 

2 ::I <I) <I) 

&:l ~ 
0 '0 ';> (ij 

<I) &:l ·c (ij e <I) 0 
ES 

(5 
'" (ij U en ~ E-< ';> 
::I <I) ·S 0 '0 ';> ""' ""' ""' '0 ""' ·c 0 0 0 0 0 
<I) ES /:lIl 

en ~ ~ ~ ~ ~ ~ .5 

30 72 12 28.6 20.1 15,0 2.2 16.6 
22 73 18 0 14.8 15.3 3.3 14.6 
10 16 3 14.3 6.7 3.3 0.5 4.5 
12 19 8 9.5 8.1 3.9 1.5 5.1 
2 22 94 0 1.3 4.6 17.0 3.7 
9 61 75 0 6.0 12.7 13.6 10.8 

14 25 5 0 9.4 5.2 0.9 6.0 
10 32 I 9.5 6.7 6.7 0.2 6.8 
18 82 239 4.8 12.1 l7.1 43.2 15.6 
22 67 i2 28.6 14.8 14.0 2.2 14.6 
0 10 86 0 0 2.1 15.6 1.5 
0 0 0 4.8 0 0 0 0.2 

149 479 553 
23.0 73.8 

Table II gives the general test methods used to detect 
each category of error in Table I. Referring to Table II, it is 
clear that a variety of techniques may be needed to test 
even a single module. At a higher level of program com
plexity, the executive routine, the various functional mod
ules are interconnected. Generally, the executive itself is 
modular; i.e., portions can readily be separated so that they 
can be used with the functional modules to form a func
tional subprogram. The modularity of the executive can 
generally be demonstrated by use of a flowcharter to 
construct a module-level flow diagram from the actual 

TABLE II-Examples of Specific Detection Methods by Error Category 

c .... . 9 <I) 

] c '=' ::I .9 c Q.. 

E ~ .9 E '" .... 
Ci3 > ] 0 

'" 
..... 

~ '" ·c u 
'" 

"3 
=: <I) ::I '" tid 0 .5 (ij » <I) <I) 

Wi i ~ 
:) 

c~ ~ 0 error Lategury ~ c c JC. 

-< ... ~ ~ 
Q.. :a .s III c C ~ 0 
E 0 .;:: 

'" 
-g 0 0 ..c:: U 0 » 

0 U 0 U '" <I) <I) u ~ '0 
/:lIl '" '" 

C /:lIl ::I 
U 

= 
» '0 '0 c:! '" '" (j5 :.;;: -; <I) » 0 0 

~ 
<I) 

'" 
c 

= 
<I) 

I: c ~ (ij U U E-< <I) 'f » '0 ::I C B c:! III C 
.~ <: 0 <: <I) 5 E <I) ..c:: u 

E <I) 

'=' 
N U r: Q.. u en 

~ » 
~ 

u 
::I <I) (,) u ~ ::I 
(,) <I) ::I .~ ~ '0 <I) <I) (ij (,) 
0 '0 t::r 0 ~ ~ <I) c 0 0 u 
0 .5 ~ ...l ~ U ~ ~ ~ <: u fi: <: 

Data/instruction access & storing 90% x x x x x x 
Equation computation & arithmetic x x x x 90% x x x x x 
Branch & jump x x x 70% x x x x x x 
Incorrect constant values & data formats 50% 20% x x x x 
Violation of programming practices x x 90% 
Specification violation due to incorrect implementation x x x x x 
Timing & process allocation x 90% x x 
Interruptibility & data coherency x 70% x x x 
Incomplete or erroneous specifications x x x x x x x 
Logic & sequencing x x x x x x x 
Documentation x x x x 

x indicates at least one error discovered 
Number indicates percentage of total errors in category found by this method 



290 National Computer Conference, 1977 

code. Such a diagram helps to demonstrate the correctness 
of both functional interrelationships (connection by data 
flow) and physical relationships (overlay of common mem
ory). 

Another effect becomes clear from an examination of 
Table II. It is extremely unlikely that any particular test 
method will assure a complete assessment of all errors. 
Even where a particular method is most suited to detect a 
particular class of error, it cannot be assumed sufficient. 
For example, even though a source code editor detected 90 
percent of all access and storing errors, 12 errors were 
found by a combination of six other methods. Therefore, 
the test planner must consider all test methods available to 
him and select the set of the methodology that will provide 
adequate test coverage-we have not yet reached the 
nirvana of having the one magical tool that will find all 
errors. 

SELECTION OF TEST METHODOLOGY 

It has often been suggested that the most cost-effective 
way to test a program is to load it into its host computer, 
exercise it black-box fashion, using a myriad of inputs, and 
determine whether its behavior is reasonable. While this 
approach seems enticing, it is overly simplistic in that it 
ignores the complexity existing in even very small pro
grams. Further, black-box testing necessarily means that 
errors will be found only at the completion of coding. As 
stated earlier, the most cost-effective way to develop soft
ware is to find and fix errors as early as possible. Cost
effective testing therefore requires that some of the testing 
be conducted before any code has been developed. Such 
testing can be conceptualized in terms of three types (as 
shown on Figure 2): 

• Program Concept Analysis: Achieving satisfaction 
that the program has been adequately and accurately 
designed 

• Static Code Analysis: Analyzing code to detect errors 
before its execution 

• Code Execution Testing: Testing code by executing it 
in successive builds to verify correctness 

The process may be likened to building a house. Each 
level of testing builds upon the foundation and structure 
established by the previous step until the house is ready for 
occupancy. As is true of the construction process, each 
phase has its own set of tools and methods. 

Program concept analysis 

Of the many test-related functions that can be performed 
before code generation, one of the more important is to 
assist the program designer in specifying the standards to 
be followed in designing and writing the program. Consist
ent coding techniques greatly simplify the problems of 

learning code and setting up test tools that can be adapted 
to specific coding standards, for example, the use of 
standard subroutine entry-exit conditions. Another pre
coding function is to investigate design tradeoffs that might 
facilitate testing without introducing substantial program
ming inefficiency. An example is designing a program for a 
real-time application on a variable-instruction-time com
puter in such a way that "dead time" occurs long enough 
before an interrupt to guarantee that the program location 
where the interrupt will occur can always be precisely 
determined in testing. By doing this it is possible to ease 
greatly a very difficult test program with an insignificant 
loss of computation time. 

Other standards that can be applied include: 

• Compatible Numbering System: Each function per
formed by a section of code should be traceable to a 
specific, documented requirement. 

• Consistent Use of Specification Language: A common 
and consistent nomenclature should be defined that 
minimizes the possibility of ambiguous interpretations. 

• Flowcharting Standards: All flowcharts should use 
common formats and be consistent through different 
levels of detail. 

• Programming Standards: All dos and don'ts for the 
application should be specified, including parameter
passing techniques, annotation conventions, and ways 
of specifying symbolic names. 

• Program Change Procedures: Means of making 
changes should be developed to communicate changes 
properly both before and after the program is put under 
configuration management. 

A more directly test-oriented function that can be per
formed during concept analysis is to evaluate the evolving 
design to find problems. This activity, sometimes called 
requirements and specification analysis, essentially dupli
cates the design process in the way it is done but differs in 
the goals that are being met. This type of analysis is 
directed to answering questions such as those contained in 
Table III. 

The methods generally used to perform concept analysis 
testing are: 

• Documentation Research and Analysis: Verifying- that 
program requirements are genuine and related to real 
system requirements, that variables and parameters are 
consistent across all documents, and that all data can 
be traced to consistent, coherent sources. 

• Algorithm Analysis: Verifying that the design will 
work, is accurate, and truly reflects program require
ments. Discrete and continuous simulations are often 
used to check out concepts and algorithms, particularly 
where very complex models are being designed. Partic
ularly important for real-time programs is performing 
independent sizing and timing analyses that will detect 
significant design problems before the design is frozen. 



TABLE III-Program Concept Analysis Questions 

Requirements Analysis 

Are the requirements logical? 
Are the applicable physical constraints of the complete system and each 
subsystem clearly specified? 
Are all the performance and design requirements contained within the 
document? If so, are they correct? 
Have the input data and output requirements been identified? 
Are the system and all subsystems clearly defmed? 
Are the human and software interfaces specified? 
Are all the requirements stated without ambiguity? 
Are the requirements sufficient to realize the system objectives? 

Specifications Analysis 

Are the program functional flows a true representation of the logical and 
mathematical operation ofthe software? 
Are the model interactions and interfaces compatible? 
Are the equations, algorithms, and data that make up the model properly 
ordered? 
Are the equations, algorithms, models, and modules correct? 
Is the data base accurate? 
Have the correct assumptions been made in equation/algorithm derivation? 
Are the equations and algorithms mechanized in the program flowcharts the 
same as those developed in the requirements documentation? 
Have all the program requirements been correctly translated into the 
equations, data, algorithms, models, flows, logic, and rationale that make up 
the program specifications? 

Static code analysis 

The first test function always performed is to examine the 
code for error before actually executing it. This is useful 
because it is very productive (many errors are found) and 
also because it can be done quickly (no startup time is 
needed to make the program flow in a computer). A large 
body of test tools has been developed to aid in analyzing 
computer code without actually executing it. In some form 
or another, these tools all replace the analysis that is done 
by a skilled programmer in examining the code manually. 
This manual analysis has been replaced by automated 
analysis for several reasons: 

• It is one of the more tedious tasks that can be placed 
on programmers. 

• Human analysts make errors when doing tedious 
things. 

• Computer time is much cheaper than analyst time. 
• Tedious processes can be easily and cheaply repeated 

to check the effects of minor code changes. 
• Code too complex to be retained and understood by 

the human mind can be automatically decomposed to 
its simplest representation to facilitate analysis. 

The tools that are used are numerous and subject to many 
variations of definitions depending upon their developer. 
The following describes a few of the static code analysis 
tools implemented by the author's organization. 

Comparators are used to compare the code of one 
program version to that of another and reveal the differ-

ences. The simple one-to-one check provided by use of a 
comparator is used both to bring out the modifications 
between an updated program and its baseline version and to 
demonstrate that all physically different versions of a single 
program (cards, magnetic tape, and Mylar tape) are identi
cal. Conceptually very simple, these programs are complex. 
They work very well in setting baseline standards. 

Editors are used to analyze source code for coding errors 
and to extract information that can be used to check 
relationships between sections of code. Among other func
tions, the error-detection capability determines whether the 
code: sets and clears flags properly, uses error-prone in
struction sequences, sets up calling sequences properly, 
modifies instructions, attempts to reference or modify re
stricted data, uses restricted instructions, or contains inac
cessible instructions. The second capability of an editor 
provides a comprehensive cross-reference listing giving 
information pertaining to references to program data and to 
the program/subroutine calling structures. Editors work 
very well in finding mechanical violations of programming 
standards. They can also be used to flag coding techniques 
determined to be risky for the application. 

Flowcharters show, in detail, the logical structure of a 
program, an aspect not readily apparent from the code. 
Flowcharters can be used to reconstruct the logic flow of 
both higher-level source language programs and assembly 
language programs. The flow is determined from the actual 
operations specified by the executable statements, not from 
comments. The flowcharts generated are adaptable for 
comparison with the flowcharts provided in the developer's 
program documentation. 

Logic/Equation Generators automatically reconstruct 
arithmetic and flowchart assembly language programs. 
Such a program translates assembly language instructions 
into a machine-independent microprogramming language 
and builds the microprogramming statements into a net
work in which the flow of control is analyzed and arith
metic equations are reconstructed. 

Program Structure Analyzers are used to analyze the 
program paths under input control. They allow different 
types or sequences of code to be specified (e.g., all subrou
tiri\£ l:aIE, 'aTI'ii1Teli'upt~te1hfeJ "':il;rYilUi0hs';'aIT e'xteifsi6i1 
register operations) and obtain information such as esti
mates on timing, paths followed, and entry conditions for 
specific paths. 

Correctness Proofs establish, in a mathematical fashion, 
that a given program performs a desired function and halts. 
The proof technique does this by determining the corre
spondence between a function in its coded form (in FOR
TRAN, for example) and the same function presented in the 
pertinent specification in mathematical and English lan
guage descriptions. Operational use of this technique has 
been limited mostly to manual proofs. Considerable work is 
being done to automate it. 5 

Symbolic Program Executors decompose source code by 
logically executing it. They provide a capability to express 
paths in terms of both all necessary conditions to be 
satisfied in selecting the path and the result of transversing 
the path. Some symbolic program executors can also be 



292 National Computer Conference, 1977 

used to produce a structured representation of an un
structed program. 6 

Code execution testing 

In the traditional mode of software testing, the program is 
tested by actually executing the object instructions, gener
ally on the computer it is being built for, sometimes on 
emulators or simulators. Code execution testing closely 
follows the test philosophy normally used for complex 
hardware, namely, to test in pyramid fashion, emphasizing 
the thorough testing of subassemblies, then successively 
larger groupings of these subassemblies until the total end 
item has been tested. Provided that the prior testing has 
been adequate and, moreover, that it has not been sub
verted by the incorporation of insufficiently tested changes, 
the testing done on the top level is essentially reduced to 
demonstrating that all of the pieces work together properly. 

Testing methodology depends to some extent on the 
development methodology. Traditional developments em
ploy bottom-up testing, in which increasing aggregates of 
small programs are tested in succession, generally using 
program drivers. Top-down developments replace program 
"stubs" with analytical data to simulate the effect of having 
executed the program element that replaced the stub. The 
"build" concept requires that stimulus-response patterns 
be determined to test out constructs of program elements 
that implement particular stimUlus-response paths. 7 The 
code execution test methodology is applicable to all of 
these forms of testing.· For simplicity, discussion here is 
limited to the more common bottom-up form. 

Unit-level testing is performed at the subroutine level by 
starting code execution of subroutines as they are verified. 
Each subroutine is exercised by test drivers that furnish 
input and parameters, including representative queues. 
Testing at the subroutine level is performed open-loop and, 
in general,. does not require simulation of the modules or 
environment with which the subroutine interfaces. Comple
tion of subroutine testing with "live" data should demon
strate that: 

• All instructions have been executed at least once 
• All error conditions have been tested 
• All logic branches have been traced 
• All classes of input will be accepted and all outputs can 

be produced 
• Arithmetic results are correct for nominal conditions 

Test cases are generated based on an analysis of the 
program specification. Input data are selected to verify 
proper handling of the full range of acceptable data and to 
verify correct action in processing abnormal data. A test 
driver program typically sets up the input data, calls the 
module to be tested, and, upon return of control, lists the 
module output. For routines that are time-critical, the 
driver is augmented to check timing; the timer can be set 
either to determine the time to calculate one set of input 
data or to evaluate average, minimum, or maximum time. 

Whenever anomalies are suspected, the driver is patched to 
call upon system routines that will allow step-by-step 
monitoring of a process. 

The unit level interface tests are designed to verify that 
subroutines can be loaded and executed together in the 
computer system, and that they properly assume and relin
quish computer control. Of particular importance are tests 
that execute all possible branching conditions between 
subroutines and modules. 

A supplement to actual or simulated code execution is to 
independently perform each operation intended by a section 
of code. This procedure consists of following through the 
calculations of an equation or algorithm. This can be done 
by hand, but is better done by an automated tool which can 
swiftly and accurately run many check cases. Using either a 
listing or a flowchart of a module and the data captured 
from a specific run, the mathematical calculations or logical 
processes indicated in the flowcharts (or the listings) are 
performed and the results compared with the code execu
tion results. The importance of this technique is that subtle 
coding errors not caught during flowcharting or code analy
sis procedures are quickly identified. 

The most common tools used to test software at module 
levels are test drivers, simulations, and execution instru
menters. Many examples of this last class of program 
exist. 8,9 They operate by instrumenting software "probes" 
within the source code. When the program is subsequently 
executed, statistics showing execution frequency of paths 
and code are produced. This gives insight into the program 
behavior and allows analysts to prepare test cases to more 
fully exercise the program. A more recent trend in many 
evaluation efforts is to use hardware monitors to gather 
these data. Inserting probes into computer back panels is 
somewhat laborious; hardware monitors allow the same 
statistics to be collected without modifying the computer 
program. Further, since they operate in a passive mode, 
they can be used after the program becomes operational to 
evaluate it and provide data to optimize it.lO,ll 

The sequence of testing individual modules proceeds in 
order through tests such as the following: 

• Initialization Tests: The performance of all initializa
tion operations is tested to assure that all indicated 
initializations are performed and that correct values for 
all initialized quantities results. 

• Interaction Tests: All quantities, variables, and system 
conditions obtained from other modules are examined 
to determine the sensitivity of the module under test to 
their possible values or states. 

• Arithmetic Tests: The precision of arithmetic calcula
tions is checked to discover where insufficient preci
sion is maintained or incorrect arithmetic calculations 
are performed. 

• Timing Analysis: The longest and shortest possible 
execution times for all tests are determined to establish 
the execution time requirements for the module and to 
identify potential timing problems. 

• Branch Logic Tests: The correct branching decision 
paths for each branch and each closed-loop test case 



are checked. The branch decision paths that are not 
exercised in any of the normal test cases are identified 
and their correctness demonstrated by special test 
cases. 

Once the modules have completed individual code execu
tion testing, they are integrated into the complete software 
component package and tested as a group. At this level, the 
testing is primarily functional: testing the collection of 
modules to show that the aggregate satisfies the stated 
problem. For large-scale software or weapon systems in 
which software is an integral part of the system, this testing 
very often takes place in a laboratory containing a copy of 
the computer(s) and enough equipment to simulate the 
application with considerable fidelity. 

TEST STANDARDS 

To assure the success of the test effort, the test group 
itself must be subject to quality standards. All hardware 
and software used in the test effort should be qualified and 
controlled. 

The test tools can be qualified by certifying they have 
been previously qualified and not changed; by calibration 
against actual system data, other operational standards, or 
other qualified test tools; or by a simplified form of the 
more elaborate test procedures described earlier. Whatever 
the qualification procedure selected, it should be formally 
documented and approved as a part of the test plan! 
procedures. Satisfaction that formal qualification has been 
performed should be obtained before the tools are used and 
should be documented in the final test report. After qualifi
cation, the tools should be placed under configuration 
control using conventional techniques. 

Where complex simulation testing is required, there is a 
natural tendency to modify the test hardware and software 
to adapt them to the peculiarities of the particular program 
segment under test. Any such changes cannot be allowed to 
compromise test integrity, such as by using different ver
sions of test tools to test different program modules. All 

nicated and approved. Where a test bed is to be estab
lished, it must be provided with a usable inventory of test 
support tools. These tools should also be formally qualified, 
and controlled to provide certainty as to their content. 

One of the more critical aspects of testing is ensuring the 
correspondence of the test results obtained at different 
times or by different personnel. At a minimum, test results 
should contain the following information to allow compari
son of results: 

• Test designation 
• Test purpose 
• Specification, option, or feature being tested 
• Range of parameter being tested 
• Method of test 
• Inputs required for test 
• Output expected from test 

Test Planning 293 

• Estimated time for test 
• Criteria for satisfactory completion of test 
• Identification of test bed configuration 

The final test results and supporting documentation 
should be bound as a single document and labeled with the 
name of the routine(s) checked, the test completion date, 
and the names of the programmer(s) and test personnel 
responsible for reviewing and accepting the results. Results 
should be accompanied by such flowcharts, diagrams, 
equations, and verbal descriptions as necessary to identify 
and clearly describe each test, including what was done, 
why it was done, and what specifically was demonstrated. 
A summary, if appropriate, should preface the test results 
package. 

SUMMARY 

The success of a software test program is determined at the 
outset of the development. If testing is accorded the effort 
due it because of its cost and ultimate importance, it is 
possible to achieve working software of high quality within 
cost and schedule. By contrast, letting a test program 
evolve subject to the caprices of development problems and 
schedules gives very little confidence that the test program 
will be successful in all dimensions. 

At the outset of the development, the test objectives 
should be set and agreed to by the project manager, the 
development group, and the test group. These objectives 
should have the concurrence of the user. Test requirements 
should then be developed based upon the objectives, the 
application, and the anticipated design approach. A plan to 
use, and acquire as necessary, appropriate test tools based 
on the requirements and the predicted error set should be 
prepared. An arsenal of tools and test methodology exists; 
test planning should meticulously select that which is most 
appropriate. A test plan that provides appropriate interfaces 
throughout the development effort should be prepared. 
Finally, good practices pertaining to tool qualification and 
configuration control should be followed. 

REFERENCES 

l. Boehm, B. W., "Information Process/Data Automation Implications in 
Air Force Command and Control Requirements in 1980 (CCIP-85)," 
Space and Missile Systems Organization, SAMSO TR 72-122, February 
1972. 

2. Brooks, F. P., Jr., "The Mythical Man-Month," Datamation, December 
1974. 

3. Smith, R. L., "Estimating Software Resource Requirements," Volume 
XI of Structured Program Series, Rome Air Development Center, RADC 
TR 74-300, Vol. XI, January 1975. 

4. "Verification and Validation for Terminal Defense Program Software
The Development of a Software Error Theory to Classify and Detect 
Software Errors," Logicon Report HR-74012, 31 May 1974. 

5. Good, D. I., R. L. London, and W. W. Bledsoe, "An Interactive 
Program Verification System," International Conference on Reliable 
Software, Los Angeles, California, April 21-23, 1975. 

6. Ikezawa, M. A. and R. E. Kayfes, "A Structural Calculus for Program 
Analysis and Testing," Logicon Report CSS-75019, presented at the 9th 



294 National Computer Conference, 1977 

Annual Asilomar Conference on Circuits, Systems, and Computers, 
Pacific Grove, California, November 1975. 

7. Chandler, A. R., "Software Verification and Validation for Command 
and Control Systems," RCA Reprint RE-19-5-23, 12 November 1973. 

8. Stucki, L. G., "Automated Generation of Self-Metric Software," Pro
ceedings of the 1973 IEEE Symposium on Computer Software Reliabil
ity, New York City, April 30-May 2, 1973. 

9. Brown, J. R. and R. H. Hoffman, "Evaluating the Effectiveness of 
Software Verification-Practical Experience with an Automated Tool," 
AFIPS Conference Proceedings, Vol. 41, 1972. 

10. "Software Evaluation and Test System (SETS)," Logicon Report 
R:CDB-75085. 2 March 1976. 

II. "Enroute Air Traffic Control Program, Software Optimization Study," 
FAA Report FAA-RD-75-87, June 1975. 



NODAS-The network-oriented data acquisition 
system for the medical environment 

by SHELLEY I. SAFFER, DAVID J. MISHELEVICH, SHIRLEY J. FOX and VICTOR B. SUMMEROUR 
University of Texas Health Science Center at Dallas 
Dallas, Texas 

ABSTRACT 

A network-oriented distributed computing system designed 
for the medical, multi-laboratory environment is described. 
The development of this network was motivated by the 
need for a real-time computing system which offers the 
speed and responsiveness of a dedicated processor and the 
convenience and cost-effectiveness of resource sharing. 
The system, a star configured network, utilizes a DECsys
tem-IO time-sharing system as its host and small memory
only PDP-II processors as satellites. Program development 
for the satellite processors can be performed on the host in 
a higher-level language developed especially for the net
work. Also present are such network capabilities as down
line loading and remote file manipulation. 

INTRODUCTION 

The type of computing facility which best serves the real
time computing requirement of the multi-laboratory medical 
environment must be more flexible than either the smaller 
in-lab, dedicated computer system or the larger, multi-user, 
centralized system. The concept of a single centralized 
processor for multi-laboratory use offers the advantages of 
~"';I@, "'.UUiR~~,.4i)RGQYRhM·"" ~1"'A1~~d}I=Qu~b,~ut 

and availability. In contrast, the concept of the dedicated 
"in-lab" computer system offers instant computational 
availability but may have the disadvantage of uneconomical 
utilization of resources. However, through a network con
figuration, combining both the centralized and dedicated 
processor concepts, a computing system with the advan
tages of both can be realized. Such a network is now being 
utilized by the Medical Computing Resources Center at the 
University of Texas Health Science Center at Dallas in 
order to augment existing minicomputer capability and in 
some cases obviate the need for laboratory investigators to 
obtain their own complete minicomputer systems. 

THE MEDICAL LABORATORY ENVIRONMENT 

In the medical laboratory environment, real-time applica
tions usually involve relatively high speed acquisition of 

295 

analog signals. In this context, the term "real-time" in
volves externally-controlled, time-constrained data which is 
not readily-reproducible, or involves direct control. 1 How
ever, the varied nature of medical laboratory research 
presents a wide variety of real-time situations. Some labo
ratory applications, for example, may merely require the 
automated acquisition of digital data from a laboratory 
instrument at a reduced rate (perhaps as slow as one sample 
every 30 minutes). Laboratories with such low-speed re
quirements could very well be serviced by a centralized 
single CPU facility. On the other hand, a laboratory func
tion may require the sampling of a number of analog signals 
every millisecond for a long period of time. Such rapid ND 
conversion may dictate the exclusive use of a dedicated 
computer performing only one time-critical task. 

COMPARISON OF IN-LAB AND CENTRALIZED 
SYSTEMS 

The dedicated in-lab processor has the advantage of 
giving real-time capability at the instant it is needed. This is 
an important attribute since time-critical functions are not 
likely to wait for a multi-user computer system to become 
available. In many medical laboratories. real-time systems 

", _, -ff- .~ , ~~-'-r-ir_-~~,,£o-, O-:'"'f~~<--~~"':-T""::-~'.::-':~_"--:-_-'.~"~~"-;-_';-:_'~.-:<::.=-'-.!.=-\-;_-'-"-.!"~!'-~--c...!:.-~_~-;f~.-:a.. 

u:')ually \.UII:')i:')l vi :'IHalJ ;:'IHgH;;-U;:'CI iJl U\,,,;');')UI;') u~u..~uL~U .u 

a particular task. These systems have proven to be a 
valuable tool and their success has increased the demand 
for more computing power in the laboratory. As a result, 
more and more is expected from these small computers 
which reveals an inherent weakness in the dedicated com
puter approach. Although a basic processor is relatively 
inexpensive when purchased, it soon becomes evident that 
extra memory, fast-access bulk storage, and higher-speed 
alphanumeric 110 devices are necessary to increase pro
gram development capability as well as system productiv
ity. Soon the investment can become sizable and expensive 
equipment, maintenance, and extra personnel may drain the 
funds needed for the very research which the computer is 
supposed to facilitate. 

This is not to say that such a progression is inevitable. It 
is, however, not infrequent. In many cases it is not difficult 
to reach the point of diminishing returns with such small 



296 National Computer Conference, 1977 

computer systems. The higher-speed peripherals are neces
sary for adequate time-utilization and efficiencies. Many 
small laboratories may not be able to purchase the faster 
more expensive peripherals such as high-speed line-printers 
or adequately sized high-speed mass storage devices. Be-" 
cause these peripherals usually facilitate program develop
ment, there is the trade-off between increased cost for 
equipment and increased cost for application software. 

On the other hand, a centralized facility has the advan
tage of resource sharing, thereby lessening the utilization 
cost of expensive sophisticated equipment to anyone user. 
Qualified personnel can be employed by the central facility 
and thus be available to the individual laboratories for 
consultation and other services when needed. Also, mainte
nance of a central facility can exist within a unified frame
work under one vendor. However, because of the critical 
time-constraints which are placed on these applications, 
one centralized processor may not be able to adequately 
meet the demand of all real-time needs in a multi-laboratory 
environment. If many users are competing for high-speed 
data acquisition capability, some may not receive adequate 
response from the system. This is of course unacceptable in 
a real-time situation. A centralized facility could possibly 
be utilized in a real-time environment only on a demand 
basis in which a laboratory requests that the highest priority 
be granted to an upcoming application. However, in the 
medical environment, the variety of real-time tasks occur
ring at different times makes scheduling system resources 
impractical. With many laboratories on-line simultaneously, 
it is virtually impossible to schedule resources such that 
each user has access to a specific real-time capability when 
needed. 

THE NETWORK APPROACH 

A compromise between the "in-lab" and centralized 
concepts is the network approach which offers the com
bined advantages of both of the above alternatives; that is, 
the advantages of resource sharing of a centralized system 
and the speed and responsiveness of a dedicated processor. 
Through a network, or a distributed computing configura
tion, a low-cost, memory-only processor can be dedicated 
to the laboratory to perform critical real-time functions, and 
through its connection to a host, rely on the host proces
sor's peripherals, bulk storage, high-speed line-printers, 
etc., when needed. 

NODAS 

NODAS is such a distributed computing system. It was 
designed to help meet the need for a low-cost and highly 
flexible real-time computing capability for the laboratory 
environment. It is configured as an "ICDS" (Indirect, 
Centralized routing, Dedicated path, Star) system2 or 
"star" configuration. It utilizes as its host the time-sharing 
DECsystem-1O and various models of the DEC PDP-II as 
remote satel1ites, see Figure 1. To the DECsystem-IO host, 
the remote processor appears to be just an intelligent 

PDP-ll PDP-ll 

satellite satellite 

PDP-ll DECsystem-lO PDP-ll 

Host 

PDP-ll PDP-ll 

Figure I-The NODAS distributed computing network; a star configured 
network with a DECsystem-lO as a host and PDP-II's as satelJites 

interactive terminal. Thus as many remote processors can 
be supported as regular terminals. The remote processor 
resides in the laboratory and communicates with the host 
over a "hard-wired" 20-milJiamp loop serial asynchronous 
line operating at 9600 baud. The usual distance from remote 
processor to host is from 700 to 1000 feet. Further distances 
can be achieved using special line-drivers. 

The system was designed to support a minimal amount of 
hardware dedicated to any specific laboratory. For exam
ple, the minimum configuration for any laboratory satellite 
is a PDP-ll (whether a PDP-11145 or LSI -11) with 8K of 
memory, 2 asynchronous serial interfaces and an interac
tive console terminal. One asynchronous interface is used 
for the console terminal and the other is used for communi
cation with the host. Of course for most laboratory work, 
an 8 to 16 channel AID converter, a 4 channel DIA 
converter, and a graphics display device should be in
cluded. No mass-storage devices are required for the satel
lite processor because all program development and data 
storage occur on the host machine. Programs for the 
satellite are developed on the DECsystem-1O in a normal 
time-sharing manner using across-compiler, NODAL (the 
Network-Oriented Data Acquisition Language), that was 
written especially for the network system. Load modules 
are created on the host and sent down-line to be loaded into 
the remote satellite. The suggested minimal memory size of 
8K words is adequate to support programs compiled with 
NODAL. The remote monitor takes about 500 Bytes and 
the NODAL run-time package about 3K words. This leaves 
about 4.5K words for a user program. The 8K configuration 
has proven to be adequate for a number of small data 
acquisition and analysis programs. 

NODAS has two monitors, one which runs on the 
DECsystem-1O in a time-sharing manner, and the other 
which is resident within the satellite processor. The monitor 
in the remote processor allows two modes, Transparent 
Mode and Execution Mode. In Transparent Mode, the 
remote user has complete access to the time-sharing facili
ties of the DECsystem-lO. In this mode, the remote proces
sor merely acts as a buffer relaying bytes of information 



from the user to the DECsystem-lO monitor and vice versa. 
Through Transparent Mode, the user has access to the host 
to perform data analysis, program development, etc. 

To achieve Execution Mode, the user runs a submonitor 
program on the host. Upon entry into that monitor, the 
name of a particular load module is entered by the user. 
That module is then sent down-line under a communica
tions protocol and loaded into the remote processor. If the 
load is successful, execution of the program begins auto
matically. At this stage real-time activities can be per
formed. Data can be collected, averaged, displayed, and 
processed accordingly. Data, once collected, can also be 
sent back on a non real-time basis to the host for storage 
and further analysis. At any time during Execution Mode, 
the remote user can type "Control-C" signaling the resi
dent monitor to return to Transparent Mode. It is interest
ing to note that to the inexperienced user in the laboratory, 
the operation of the DECsystem-lO host is more or less 
hidden. Thus it may appear that the small memory-only 
PDP-II has all the power of a sophisticated general purpose 
data-processing machine. 

As mentioned before, all communications between the 
host and satellite occur over an asynchronous serial line 
operating at 9600 baud or less. This baud rate is adequate 
for most laboratory applications because data transmission 
back to the host usually takes place in a non time-critical 
manner. By the time data is sent to the host for storage, the 
real-time function of collecting, averaging, displaying, and 
pre-processing has already been accomplished. In many 
laboratory applications, a great amount of data is collected 
at high rates and processed in the remote computer creating 
a final product of relatively few values. Thus data transmis
sion back to the host usually consists of small irregular 
bursts of data rather than a large contiguous transmission. 
This is desirable since the transmission of very large data 
files may be time-consuming and thus interfere with the 
overall time-sharing response of the host. 

Although the communication line operates at 9600 baud, 
the effective transmission rate (observed during operation 
of the system) is approximately half that or about 500 bytes/ 
se,cQud, Tb~,s is d.ue in. part tQ the cpmIIlUnic;(iti()n protoc91 
overhead, but mainly due to the varying response of the 
DECsystem-lO time-sharing host. The transmission speed is 
one limiting factor because some applications may require 
the rapid collection and immediate storage of data. For 
these applications, an inexpensive high-speed cassette tape 
or a small diskette system would be adequate. Actually, an 
inexpensive form of mass-storage is advisable for certain 
laboratory functions which must be performed regardless of 
whether or not the host machine is running. Load modules 
can be stored on a cassette or diskette and loaded from 
these devices if the host is not running. Thus a satellite 
could have enough mass-storage capability to run independ
ently, but not enough to perform the non-time-critical tasks 
of program development and non-real-time data analysis. 
The addition of a small inexpensive storage device does not 
necessarily dilute the advantages of the network configura
tion. Such an addition could allow the remote processor to 
be an independent ., stand-alone" system with its own 

NODAS 297 

operating system. However, the network configuration still 
has the advantage of allowing the user access to a large 
time-sharing system with adequate disk space, high-speed 
alphanumeric input or output devices, and in the case of the 
DEC system-l 0, software utilities such as a powerful text 
editor, easy-to-use monitor commands, etc. 

COMMUNICATIONS PROTOCOL 

All communications between the host and remote proces
sors occur within the framework of a communications 
protocol. The protocol is byte oriented and requires the 
establishment of synchronization between the host and 
satellite before the communication of each record begins. 
Each data record begins with a Start-of-Message control 
byte followed by a byte count and ends with an End-of
Message control byte followed by a check sum. Each 
transmission must be properly acknowledged or a request 
for re-send will be issued. 

The protocol is not complex. It was designed for com
pactness and a reasonable degree of accuracy in a low-noise 
environment. The protocol establishes the remote proces
sor in a "master" relationship with the host at all times. 
For example, it is the remote processor that issues synchro
nization characters when needed and requests that data be 
sent or that data be received. The host never initiates a 
request to send or receive data but merely acknowledges 
the remote processor's requests and acknowledges if a 
message has been properly sent or received. If an error is 
detected in a message, it is the satellite that requests to re
send or re-receive. Also, if severe "line noise" should 
result in the processors' losing synchronization, it is the 
remote processor's task to "time out" and reestablish 
synchronization. This master relationship of the remote 
processor simplifies the protocol and allows an adequate 
degree of control for network procedures. 

This protocol has been used in a test environment for 
over a year and in two recent laboratory applications with 
good results. In a number of testing situations, severe noise 
waI; ~,QIl tlle se~, cow,w,uAicatioA1il1es with the 
system ~always recovering without loss of data. The check 
sum does allow two different one-bit errors in the same 
relative bit position to go undetected. This has not been a 
problem thus far. However, future upgraded versions may 
employ Cyclic Redundancy Checking, CRC-16,3 which per
haps will enhance the error-detecting capability. It must be 
noted, however, that increased error-checking capability 
will result in increased overhead. 

NODAL 

One of the nice features of NODAS, from a user point of 
view, is that programs for the remote processor can be 
easily written in the higher level language NODAL. NO
DAL, the Network-Oriented Data Acquisition Language, is 
similar to FORTRAN and was written especially for the 
network system. A FORTRAN structure was chosen be-



298 National Computer Conference, 1977 

cause it is easy to use and perhaps easily recognized by 
most who have had a little programming experience. This 
will perhaps encourage laboratory personnel to write their 
own programs. 

NODAL is a cross-compiler (which is written in FOR
TRAN IV) that runs on the DECsystem-lO in a normal 
time-sharing manner. Thus programs for the laboratory can 
be developed outside the laboratory at any time. NODAL 
has full arithmetic capabilities and has many features of 
FORTRAN IV.· There is a library of callable subroutines 
that facilitate the implementation of various laboratory and 
network features. For example, CALL OOPEN and CALL 
IOPEN which, when executed on the remote processor, 
direct the host to open a file for remote data storage or 
retrieval respectively. CALL SEND and CALL RECEIVE 
will send data from the satellite to the host for storage or 
direct the host to read a record from its disk and send the 
data to the remote processor. Thus it is relatively easy for 
the user to move data over the network. 

Another interesting aspect of NODAL is the capability 
for one load module, executing in the remote processor, to 
initiate the loading of another load module. The CALL 
CHAIN command will direct the host to load a new 
program load module down-line and automatically execute 
it. Thus a sequence of programs can be executed in the 
remote processor. Data can be preserved in a "COM
MON" area, thus allowing communication between these 
different load modules. 

One of the most flexible features of NODAL is the ability 
to place PDP-II assembly language instructions between 
the higher level language statements. Since the NODAL 
compiler generates assembly language source, the user 
written assembly language statement is merely included in 
the source allowing the user to have complete assembly 
language capability in manipulating variables defined and 
used at the higher language level. Some interesting combi
nations can thus be brought about. For example, assembly 
language manipulation can direct a vectored interrupt to a 
routine written entirely in the higher level language. Thus 
interrupt handlers, device drivers, and other interrupt func
tions can be written in the higher level language. 

There are also a number of user system subroutines that 
will be added to the NODAL library to facilitate common 
laboratory computing functions. Such routines as SETCLK 
to set up a real-time programmable clock, SETBUFF to 
link a buffer with an AID interrupt routine, and various 
display routines for the support of graphics devices will be 
available to the user in the NODAS Library. 

CONFIGURATIONS 

There are a number of interesting minicomputer networks 
which have been implemented. 4

-
7 As mentioned before, 

NODAS uses a "star" configuration. Such a "star" ar
rangement has the advantage of flexibility and modularity 
with respect to the remote processors. However, with 
resPect to the hust, tht: "star" arrangement is very inflexi
ble when considering failure-effect and failure-reconfigura-

tion. 8 Therefore, with emphasis on reliability, the NODAS 
user is given the option of one of two hosts, the DECsys
tem-IO or a PDP-11145, which is connected to the DECsys
tem-lO via a DA-28 high speed interprocessor buffer as 
shown in Figure 2. The PDP-I 1145, running the multi
tasking operating system RSX-IIM, has two basic func
tions. The first is to act as a data concentrator for the 
remote processors thereby increasing throughput to the 
DECsystem-lO within the network. The second is to act as 
an independent host if the DECsystem-lO is not running. 
The PDP-l 1145 can perform all of the host functions except 
program development. 

In many respects, from the remote user's viewpoint, 
there is no difference in being directly connected to the 
DECsystem-lO or being directly connected to the PDP-Ill 
45. The PDP-l 1/45 host can achieve Transparent Mode and 
allow remote users access to the DECsystem-lO time
sharing monitor the same as if that user were directly 
connected to the DECsystem-lO. However, one major 
difference does exist between the two hosts. When a 
remote processor is using the PDP-l1145 as a host, files 
opened for output by the remote processor will be written 
on the PDP-I1I45's disk. Therefore the data file must be 
sent from the PDP-I 1145 over to the proper user's area on 
the DECsystem-lO in order to be available to the user on a 
time-sharing basis. 

EXAMPLE APPLICATION 

One NODAS application involves the real-time collection 
of EKG data from the EKG Exercise Laboratory in the 
Division of Cardiology of The University of Texas Health 
Science Center at Dallas. The NODAS satellite processor 
utilized in this application is an 8K PDP-11I20 with 2 
asynchronous serial interfaces, an 8 channel AID converter 
and a 4 channel D/A. This remote processor samples a 3-
lead EKG and Phonocardiogram every 5 milliseconds. A 
Trigger signal is also present (which detects the QRS 

PDP-ll PDP-ll 

satellite 

PDP-Il r------i DECsystCf:"L~lO PDP-ll 

PDP- L1 !ODP-ll 

Figure 2-Alternative configuration for the NODAS Network with PDP-III 
45 connected to the DEC&ystem-lO via DA-28 interprocessor buffer 



complex). Instant graphics feedback is produced with a 4 
channel D/A converter driving a Tektronix 611 Storage 
Scope. During the exercise test, data is sampled for a series 
of 25-second rest and exercise sessions using different 
exercise loads. As each waveform is collected, it is exam
ined for proper length and compared, using a correlation 
routine, with the running averaged waveform. The current 
waveform is accepted only if the correlation factor is within 
specified limits. Thus, erroneous waveforms caused by 
transient noise can be excluded from the final averaged 
signal. After each 25-second exercise segment, the three 
EKG waveforms are displayed on the storage scope along 
with a numeric value representing the heart rate. If accepta
ble to the operator, the remote processor sends the aver
aged data to the host for storage and resumes to collect the 
next 25-second segment. This type of user interaction is 
typical in the medical laboratory environment and rein
forces the need for a responsive computing facility. When 
the exercise session is finished, the data file is closed on the 
host and the satellite returns to Transparent Mode allowing 
the operator access to the DECsystem-lO time-sharing 
monitor. At this point, the technician can run "non-real
time" data analysis programs on the DECsystem-lO in a 
regular time-sharing fashion. 

CONCLUSION 

The NODAS system exemplifies the use of a distributed 
computing configuration in establishing a real-time, multi
laboratory computing facility for the medical environment. 
The system is relatively new and is being used at The 
University of Texas Health Science Center at Dallas. As 
the use continues, the system will constantly be evaluated 
and improved. A useful expansion would be the support of 
the more common micro-processors. The LSI-II is already 
supported since its instruction set is equivalent to the PDP-
11/40. However, the support for a variety of microproces-

NODAS 299 

sors would increase the utility and value of NODAS. 
Another area for improvement is in the computer-to-com
puter communications. Different communication protocols 
could be evaluated in the attempt to improve transmission 
efficiency. 

As mentioned previously, the greatest disadvantage ex
perienced thus far has been the network's sensitivity to 
hardware failures of the host. However, the addition of 
inexpensive cassette or diskette storage will help to lessen 
the dependence on the host during critical real-time activi
ties. 

The network approach is a valid method for implement
ing real-time computing capability in a multi-laboratory 
environment, especially an environment involved in medi
cal research and clinical activities. The distributed-comput
ing approach demonstrates the realization of a laboratory 
computing facility which offers the speed and responsive
ness of a dedicated system while at the same time offering 
the advantages of resource sharing. 

REFERENCES 

I. Saffer. S. I. and D. J. Mishelevich, "A Definition of Real-Time Comput
ing." Comm. ACM (Forum) 18,9 September 1975, pp. 544-555. 

2. Anderson. G. A. and E. D. Jensen. "Computer Interconnection Struc
tures: Taxonomy. Characteristics. and Examples." ACM Compo Surv. 
7,4, December 1975, pp. 197-213. 

3. Boudeau. P. E. and R. F. Steen, "Cyclic Redundancy Checking by 
Program. AFIPS Proceedings, Vol. 39. 1971. pp. 9-15. 

4. Ashenhurst, R. L. and R. H. Vonderohe, "A Hierarchical Network," 
Datamation, 21,2, February 1975, pp. 40-44. 

5. Farber, D. J., "A Ring Network," Datamation, 21,2, February 1975, pp. 
44-46. 

6. Wulf, W. and R. Levin, "A Local Network." Datamation, 21,2, Febru
ary 1975, pp. 47-50. 

7. Fraser, A. Goo "A Virtual Channel Network," Datamation, 21.2, Febru
ary 1975, pp. 51-56. 

8. Anderson, G. A. and E. D. Jensen. "Computer Interconnection Struc
tures: Taxonomy, Characteristics, and Examples," ACM Compo Surv. 
7,4, December 1975, p. 206. 





A system for priming a 
clinical knowledge base 

by RANDAL L. WALSER and BRUCE H. McCORMICK 
University of Illinois 
Chicago, Illinois 

ABSTRACT 

Priming refers to the stocking of a knowledge base with 
inference rules derived from expert physicians. One ap
proach to priming is demonstrated by KAMM, a program 
that accepts rules from an expert at a CRT, and integrates 
them into the systemic memory of a medical consultation 
system called MEDICO. Decomposition of inference rules, 
and storage in a relational database, provides for great 
flexibility. Easy reorganization of the knowledge base is 
facilitated by RAIN, a Relational Algebraic INterpreter 
which is available both to the designer and to KAMM. 
Verification of systems of inference rules, i.e., inference 
nets, is performed while the rules are still in decomposed 
form in the relational database. Systemic memory is gener
ated subsequently by KAMM, from the verified network 
implicit in the relational database. A hashed index on an 
encyclopedia of propositions helps speed MEDICO's ac
cess to groups of inference rules during consultation ses
sions. 

INTRODUCTION 

Perspective 

Recently, several large knowledge-based systems have 
been developed for providing nonspecialist physicians with 
advice about disease management. 11 - 13,17,22 These systems 
construct diagnoses and treatment plans by manipulating 
symbolic models of patients and situations, according to 
general rules acquired from expert physicians. 
. While knowledge-based systems hold great promise for 

improving the quality of clinical decision making in circum
stances in which an expert physician is unavailable, their 
construction presents the builder of health care systems 
with an enormous task. It has been estimated that a 
clinically useful consultation system may need from 2,000 
to 10,000 inference rules, each comparable to a statement in 
a high level programming language. Acquiring such large 
numbers of rules, and insuring that they fit together coher
ently and consistently, a process we call knowledge prim
ing, is a major bottleneck in the development of practical 

301 

systems. In the present paper we discuss our approach to 
knowledge priming, and describe a system for knowledge 
acquisition and maintenance, caned KAMM. 

Background 

KAMM is being used to help develop MEDICO, a 
computer-based consultant for giving advice about the 
management of chorioretinal diseases in Ophthalmology. 
MEDICO is basically a production system,5,18,19 patterned 
after that in References II, 12, 17 and 9. Figure I shows 
MEDICO's three major divisions, one of which is KAMM 
(the Knowledge Acquisition and Maintenance Module). In 
addition, there is a rule interpreter, which applies rules at 
consultation time, and a knowledge base, which holds rules 
and models of situations. Short term memory is the' 'imme
diate" knowledge base, containing state description (propo
sitional) models 7 of current clinical events. Long term 
memory has two major parts: episodic memory, with facts 
about individual patients and events encountered in the 
past; and systemic memory, with general clinical knowl
edge. Our present focus is systemic memory, and the 
manner in which it is generated by KAMM. 

STORAGE OF AN INFtRENCE. NET I~ A 

MINICOMPUTER SYSTEM 

Inference rules, which are composed of propositions, 
often fit together logically to form an "inference net." In 
this section we consider the structure of inference nets, and 
illustrate how they may be organized in secondary storage, 
on disk, to promote efficient access. 

Propositions 

We represent propositions in the traditional way, as in 
the predicate calculus. For example, the English assertion 
"The exudate is yenow" is written 

color of (exudate, yellow). (1) 

For us, a proposition is an interpreted formula; that is, the 



302 National Computer Conference, 1977 

Knowledge Base 

Short Term M<:mory 

D D D 
(State Description Models) 

Long Ter!". Memory 

Episodic Memory 

Rule Interpreter 

Figure I-Overview of MEDICO. The concern of the present paper is the 
manner in which KAMM generates systemic memory. 

predicate is the label of a relation At x A2 X ... x An on sets 
of knowledge elements. The argument list is an ordered n
tuple (at, a2, ... , an), such that akEAk' We say the first 
argument is the topic of the proposition. For example, in 
(1), the predicate "color of" is a relation on {clinical 
objects} x {colors}. The arguments "exudate" and "yellow" 
are knowledge elements, instances of the categories "clini
cal objects" and "colors," respectively. The topic of (1) is 
"exudate. " 

Inference rules 

Of the propositions comprising an inference rule, one is 
the hypothesis, while the others are the supports for the 
hypothesis. An inference rule is depicted graphically as in 
Figure 2a, in which the nodes are propositions. The hypoth
esis H is a possible explanation, or diagnosis, for the 
conditions modelled by the propositions ekEE, the set of 
supports. This representation is similar to the one used in 
Reference 6, except that we use a bar to represent a rule, in 
an allusion to Petri nets. * An inference rule dictates that all 
conditions represented by the set E must be operative 
before the condition H may be inferred. The bar in Figure 
2a indicates that, in reasoning, a transition to H is permissi
ble only after the occurrence of the conjunction 
e/\e2/\ ... /\en • In the case in which a rule carries a single 
support, the bar may be omitted (Figure 2b). 

An inference rule has an assigned strength (l in Figure 
2), supplied by a knowledge domain expert. Strength is a 

* Petri nets have been useful for modelling "patterns of activity" in 
concurrent systems. 10 It may be worth pursuing the possible uses of Petri 
nets in the present context. Hack8 has provided formal footing. and Muratal:l 
has offered some computer implementable methods. 

H H 

I :: ~ I:: I 

e 

(0) ( b) 

Figure 2--{a) Graphical representation of an inference rule I with assigned 
strength ~. The bar indicates that the proposition H, the hypothesis of the 

rule, is triggered by a conjunction of propositions, the ek<E, the set of 
supports. The rule dictates that all conditions represented by the set E must 
be operative before the condition H may be inferred. (b) The bar may be 

omitted for a rule having a single support. 

sUbjective estimate of the extent to which the hypothesis is 
valid. given the set of supports as evidence. It is instructive 
to think of strength as the explanatory power of a hypothe
sis, given that the supports are valid. There is currently 
much controversy over means for using strengths, and 
transferring uncertainty from supports to hypotheses. We 
skirt the issue here, since our emphasis is on overall 
organization of systemic memory, and not on details of its 
use. However, the methods in Reference 6 are noteworthy. 

Inference nets, and their disassembly 

Sometimes a proposition occurring as a hypothesis in one 
rule appears as a support in another rule. A system of rules 
effectively meshed together in this way, by common propo
sitions, is called an inference net .14 An example, with three 
hypotheses, is shown in Figure 3. The propositions H9 and 
H5 are hypotheses that do not support any other hy
potheses. The proposition e2' on the other hand, is a 
hypothesis in rule 70, a support in rule 36. 

The evaluation of a hypothesis during a consultation 
session may require that many, perhaps all, supporting 
propositions be evaluated. In minicomputer implementa
tions* this means that all rules relevant to the evaluation of 
a particular hypothesis must be brought from disk into core 
storage. If rules with a common hypothesis are stored in 
physically separate locations, substantial time may be con
sumed in positioning the disk access mechanism before 
hypothesis evaluation can get under way. In MEDICO, in 
order to reduce disk access time, rules in systemic memory 
are organized around common hypotheses, and are stored 
in contiguous locations on disk. Then, when a hypothesis is 
evaluated, minimal searching is required to bring all rele-

* MEDICO is implemented on a DEC PDP-11f40 computer with 160k bytes 
of core storage. Programming is in the C language. supported by Bell 
Telephone Laboratories UNIX operating system. 



Figure 3-(a) Example inference net with rules labelled with integers (rule 
strengths not indicated). Notice that e2 is the single support in rule 36, but 

vant rules into core. Figure 3b is an example, showing the 
appropriate reorganization of the net in Figure 3a. 

USE OF A RELATIONAL DATABASE 

~TI!'cosart ZtI::4uli\:G Jui'lflg ';il1Illl1g :-.~;:-.!un:-. lI1vuivlng dB 

expert physician, who interacts with KAMM at a CRT. The 
input acceptable to KAMM may look very rule-like, or, for 
convenience, may be formatted in -a style that accents the 
embeddings natural in English assertions. * 

It is important to notice that rules input by an expert do 
not find their way directly to systemic memory. Rather, 
incoming rules are parsed by KAMM and are placed in 
decomposed form (i.e., 3rd normal form4

) in a relational 
database. Later, after maintenance operations directed at 
insuring the integrity and consistency of the inference net, 
KAMM generates systemic memory automatically from the 
decomposed rules. 

KAMM does this through an interface to a Relational 
Algebraic INterpreter (RAIN).2 The chief advantage of this 

* For a more detailed discussion see Reference 21; the input syntax is listed 
explicitly in Reference 20. 

System for Priming Clinical Knowledge Base 303 

(0) 

70 

( b) 

the hypothesis in rule 70. (b) Disassembly of the inference net in Fig. 3a into 
groups oriented around hypotheses. 

approach is its flexibility. Systemic memory is subject to 
continual revision, especially during the initial priming 
period, which may go on for several years. Using RAIN, it 
is easy to examine, update, and reorganize groups of rules, 
all with little reprogramming effort. 

Structure of the relational database 

The database has four major relational files. Each is 
defined in RAIN with a statement of the form "define efile 
R( d1 , d2, . . . , dn )," where "efile" specifies that the rela
tion is elementary, 2 R is an arbitrary relation name, and the 
dk are the names of the relation's domains (Le., attributes, 
or descriptors). In particular, the four pertinent files are 
defined as follows: 

define efile supports (prop#, rule#) 
define efile hypotheses (rule#, prop#) 
define efile propositions (predicate, argl, argk, arg code) 
define efile likelihoods (rule#, reverse, forward) 

The structure of the database is depicted in the informa
tion graph3 in Figure 4. The dashed, labelled ovals repre-



304 National Computer Conference, 1977 

supports hypotheses 
"" ..,. -- - .... " ",,""" -- - -- ..... ""-

'" " " ..... , , I " 

I,~~o~::~ ~/: _- ___ ~~:~~::.:OP::) 
....... -~ rule# -/-... , 

" ", 
/ 

/ , 
.; / "".. ) 
',Teverse forward / 

...... " ..... " 

-", 

.... _-------I ikel i hoods 

prop# 
-......... ..... 

...... , 
/ 

I , /I\~ 
, 

\ 
\ 
\ , I 

\ 
predicate argl argk ar9_code 

\ I 
I 

/ " " ....... ....... ...... 
........ ----------- .,.,... ........ 

proposi t ions 

" /' ,,-
~ 

Figure 4-Information graph [3] showing the organization of the relational 
database in which MEDICO's inference net is stored. 

sent 3rd normal form4,6 relational files, with the files' 
a,ttributes written inside the ovals. The unlabelled unidirec
tional arrows within the "likelihoods" and "propositions" 
files indicate functional dependence. For example, the 
arrow from "prop#" to "predicate" in the "propositions" 
file indicates that "predicate" is functionally dependent on 
"prop# ." This means simply that if we know the number 
of a proposition (which is assigned by KAMM, and is 
unique), then we know the predicate of the proposition. 
The attributes of a relational file in 3rd normal form are 
functionally dependent on the key of the file (shown under
lined in Figure 4), which may be an attribute, or a set of 
attributes. The arrows labelled "id" link attributes which 
are identical across files (these are not defined in the 
database, but are part of its semantics). 

Following the id links and using relational algebra, it is 
possible to move logically between files, creating new 
relations, and grouping the components of rules in virtuaily 
any way desired. RAIN's "sort" operation is especially 
useful for perusing the contents of the database. It is an 
easy matter, for example, to get an alphabetical list of all 
topics; one simply does a "projection" on the attribute 
"argl" in the "propositions" file, then "sorf's the resulting 
relation (which is effectively a list). One especially impor
tant set of lists indicates which ruies have common hy
potheses. Such a list, for an hypothesis labelled (numbered) 

H, is generated by doing a "restriction" on the file "hy
potheses" such that "prop#" = H. 

The reason for distinguishing forward and reverse likeli
hoods in the "likelihoods" file is that corresponding to 
every rule of the form A~ B with likelihood lab' there is a 
dual B~A, with likelihood Iba . The A-B association 
constitutes two rules because, in general, lab oF Iba . Rather 
than enter the dual of every rule explicitly in the database, 
it is vastly more economical to note, for each rule, that it 
has likelihood I while its dual has likelihood 1*. The 
forward attribute in the "likelihoods" file refers to the 
likelihood of the hypothesis of the rule R which is explicitly 
stored in the database; the reverse attribute applies to the 
hypothesis of R's dual (which is implicit). 

All propositions, of any degree (any number of argu
ments), are stored in the "propositions" file. Inspection of 
Figure 4 reveals that the "propositions" file provides for 
only two arguments in each tuple (of the file). This is 
appropriate for most propositions in practice, which are 
dyadic. The "arR-code" attribute is provided in order to 
accommodate propositions of arbitrary degree: propositions 
of degree greater than two "spill over" into additional 
tuples. Argument order is signalled by the value of 
"arR-code." If "arR-code"=2, then "argk" is the value of 
the second argument; if "arg..code"=3, then "argk" is the 
value of the third argument; and so on. The values of 
"predicate" and "argl" are identical in all tuples having the 
same "prop#." For example, two tuples are needed to 
store the triadic proposition "between (neck,head, 
shoulders)." If this proposition has the label, say, 38, the 
two tuples in which it is stored in "props" would appear as 
follows: 

(38, between, neck ,head ,2) 
(38,between,neck,shoulders,3) 

Notice that nothing in either tuple, individually, indicates 
that "between" is a trinary relation. This information is 
uncovered automatically when RAIN is used to carry out a 
"restriction" on "props" such that "prop#" = 38. The 
resulting relation contains the two tuples carrying the three 
arguments associated with the relation "between." 

As a simple example of a rule's representation in the 
relational database, consider the following rule (in which 
the strength code 6 has the meaning "often"): 

identify of (mass ,melanoma): 6: 
site of (mass , choroid) & 
height of (mass , very high) & 
shape of (mass , mushroom-like) 

An interpretation is "A mass is often a melanoma, if it 
occurs in the choroid, is very high, and looks like a 
mushroom." Suppose the rule is labelled arbitrarily with 
the number 98; the hypothesis-"identity of (mass, 
melanoma)"-is labelled 22; and the supports are labelled 
30, 31, and 32. Then the tuple (98,22) would appear in the 
"hypotheses" file, and the three tuples (30,98), (31,98), and 
(32,98) would appear in the "supports" file. The predicates 



and arguments of the four propositions involved in the rule 
would appear explicitly in four corresponding tuples in the 
"propositions" file. Finally, the strength of the rule would 
appear as the value of the • "forward" attribute in a tuple in 
the "likelihoods" file; if the strength of rule 9S's dual is 
defined, it would appear as the "reverse" attribute in the 
same tuple. 

Parsing and bundling of incoming rules 

The CRT screen used during knowledge priming is di
vided by a horizontal line into two sections, one for the 
expert, the other for KAMM. These sections may be 
thought of as "windows" through which the expert and 
KAMM communicate. The windows are dynamic, expand
ing and contracting with a bias toward providing the expert 
with as much space to type as possible. The top window is 
KAMM's, and is typically small, taking up just one or two 
lines, or just enough to accommodate the brief messages 
which KAMM puts out to the expert. The expert types 
rules in the bottom window, using an editor, incorporated 
in KAMM, which is very much like the RAND "windowing 
editor." 16 During these sessions the CRT is set to "raw" 
input mode, meaning that characters are transmitted to the 
computer-and to KAMM-as they are typed. The expert 
may type anywhere in his window, with KAMM "watch
ing."* When the expert finishes typing the rule, he submits 
it to KAMM by signalling with a control key. 

KAMM parses the input rule and, if it is syntactically 
well-formed "bundles" its components into RAIN insertion 
commands. It is possible for KAMM to initiate these 
commands directly, through a C language subroutine that 
provides an interface to RAIN. 1 Currently, KAMM does 
not communicate with RAIN during an acquisition session 
because the RAIN interface, while effective, is presently 
too slow for interactive use. Instead, the RAIN command 
bundles are written out to a temporary file on disk, where 
they remain until the acquisition session is over. Then a 
KAMM subprogram called the "inserter" passes the com
mands one by one to RAIN. 

Integrity 

The present inserter is the precursor of a potentially large 
program that will operate on incoming rules, and the 
relational database at large, maintaining data integrity and 
checking for inconsistencies. The relational database is a 
"relational network" of sorts, in which MEDICO's infer
ence net is implicit. We consider it to be a natural structure 
on which to perform consistency checking. Using RAIN 
operations, for instance, we can follow inference chains 

* In a proposed future improvement, KAMM will do more than just watch: 
as the expert types, the multiprocessing capability supported by the Unix 
operating system and the C language, in which MEDICO is implemented, 
will allow KAMM to refer to systemic memory during lulls in typing. If 
incoming words or propositions are unknown, or present consistency prob
lems, KAMM will interrupt the expert to pose questions, or else prepare 
questions to be asked when the expert indicates he is ready for them. 

System for Priming Clinical Knowledge Base 305 

through the network, and, as logical anomalies are uncov
ered, evoke appropriate modifications (which may involve, 
for example, setting flags, removing inconsistent rules to 
temporary files for future inspection by an expert, or 
striking rules from the database entirely). Using the C/ 
RAIN interface, we plan to write programs to execute 
many of these tasks with minimum user guidance. Such 
programs will be the focus of much future attention in 
KAMM's development. 

In the current implementation, the inserter performs a 
simple maintenance service by checking to insure that 
propositions and rules are not already stored in the rela
tional database. Providing they are not, the inserter assigns 
them a unique identifying number (the information graph in 
Figure 4 illustrates the link-making role of these numbers). 
It is extremely important that these numbers be associated 
uniquely with the appropriate data objects; otherwise the 
functional dependencies around which the relational data
base is organized will deteriorate, and the means for 
recomposing rules will be useless. 

If the inserter finds that an incoming data object is 
already stored, it of course does not insert the object. If the 
object is part of a larger, unstored data structure, then the 
object's previously assigned number is used to represent 
the object in that structure. Suppose, for example, that an 
incoming rule (which the inserter has confirmed is new) has 
two supporting propositions A and B. Suppose that the 
proposition A is already stored, and was previously as
signed the number, say, lOS. Suppose further that the 
proposition B is indeed new, and that the inserter will 
assign it a unique number, say, 942. The inserter accord
ingly inserts proposition 942, but not lOS, and then enters 
two tuples into the "supports" file, defined over 
{rule#} x {prop#}. If the new rule is assigned the number, 
say, 416, the two new "supports" tuples will be (416, lOS) 
and (416,942). 

SYSTEMIC MEMORY 

Earlier, we said that inference rules have the form E~H, 
where E is a set of propositions that support the hypothesis 
H. More generally, inference rules are production rules, 
having the form S~A, where S is a situation and A is an 
action. Consider that an inference is "made" when some
thing is done. In MEDICO, an inference is made when an 
hypothesis (a proposition) is confirmed (by some proce
dure) and the confirmed proposition is added to a list of 
propositions in a state model (of a clinical situation). The 
consequence of a rule in MEDICO is invariably an action, 
perhaps an internal operation like the making of an infer
ence, or perhaps something more public, like the making of 
a remark, via a CRT. In general, a production rule means 
"when this situation is recognized, do such and such." By 
grouping rules around common hypotheses, i.e., common 
actions, we assemble, for easy reference, all situations 



306 National Computer Conference, 1977 

which mean' 'perform this task." We call such groups task 
modules. 

The encyclopedia 

The encyclopedia is a large file in secondary storage, 
containing all propositions known to MEDICO. We con
sider a proposition's topic to be its first argument. "Site 
of (hemorrhage , retina)" is a proposition on the topic "hem
orrhage," for instance. An entry in the encyclopedia con
sists basically of a topic, followed by a list of propositions 
on that topic. In the encyclopedia under the topic' 'hemor
rhage" we might find the propositions "site of (hemorrhage , 
retina), " "color of (hemorrhage ,dark red)," and "composed 
of (hemorrhage , blood)," among many others. 

Recall that a proposition by our definition is incomplete 
without an accompanying specification of context. The 
required specification is provided in the encyclopedia by a 
pointer, called a context pointer from each proposition P to 
the task module whose task is: "infer proposition P." The 
sets of supports in this task module constitute models for 
the contexts entailed by P (or which are merely associated 
with P). Also accompanying each proposition in the ency
clopedia is a list pointing to all task modules in which the 
proposition appears as a support. Besides indicating what 
contexts a proposition may be part of, this list, called the 
trigger list, tells which hypotheses the proposition triggers. 

CONSTRUCTION OF SYSTEMIC MEMORY 

As indicated earlier, systemic memory is not assembled 
directly after input of rules by an expert. Rules are stored 
first in decomposed form in a relational database. Our plan 
is for KAMM to put systemic memory together automati
cally, using RAIN through the C/RAIN interface. Ideally, 
this should occur only after the inference net which is 
implicit in the relational database has been determined to be 
free of inconsistencies. Currently, the mechanics of the 
assembly process have been worked out and several rele
vant KAMM subprograms are in working order. Sophisti
cated verification procedures, however, are not yet avail
able. 

Assembly of systemic memory begins with generation of 
the task modules. After producing a checklist for all rules 
by doing a "projection" over "rule#" in the "hypotheses" 
file, KAMM uses "restriction's on the hypotheses" file to 
find groups of rules with common hypotheses. As each 
group is found, it is formatted and appended to a disk file 
that is available to MEDICO during consultation sessions. 
The context pointers and trigger lists are also determined at 
this time, and stored in temporary relational files. * Then 
the encyclopedia is produced. First a list of all topics is 
generated, and then all propositions with the same topic are 
grouped in one location in the encyclopedia disk file. The 

* Context pointers and members of the trigger list are actually file addresses 
relative to the base of the task modules file. 

context pointer and trigger list of each proposltIon is 
inserted as the proposition is laid down in its (encyclope
dia) location on disk. 

ACCESS OF SYSTEMIC MEMORY AT 
CONSULTATION TIME 

During consultation, the encyclopedia serves as an index 
that helps speed access to task modules. When a user 
inputs a proposition, MEDICO's parser extracts the propo
sition's topic, and then looks it up in the encyclopedia. If 
MEDICO cannot find the topic in the encyclopedia, or is 
unable to infer its meaning, it asks the user to rephrase the 
input. If, however, MEDICO does find the topic in the 
encyclopedia, it then searches the associated list of propo
sitions for the incoming proposition. Again, if it cannot find 
the proposition, MEDICO attempts to deduce the proposi
tion's meaning, and ifit cannot, asks for a rephrasing. If the 
incoming proposition is in fact in the encyclopedia, the 
proposition's trigger list is then used to access all relevant 
task modules. 

The proposition recognition process is aided by the use of 
a hashed encyclopedia index, which is generated by 
KAMM upon construction of the encyclopedia (Figure 5). 
We will not discuss our hashing methods here, since details 
are available in a technical report. 20 The upshot, however, 
is that hashing enables MEDICO to recognize the topics of 
incoming propositions virtually immediately, regardless of 
the size of systemic memory. It takes one seek (disk 
access) to determine if an incoming topic is known, and 

I "T I 
,-------------, 
I INTERVIEWER-ANALYST J 
--------------

~ 1 

I TEMPORARY FILE HOLDING J 
RAIN INSERTION COMMANDS 

~ 2 

I rELATIONAL DATABASE I 

SYSTEMIC MEMORY 
3 , 

I TASK MODULES I -.0 
5 
~i ENCYCLOPEDIA I 

I 
4 ,Ir 

I 

6 
TEMPORARY FILE WITH f---- I HASHED ENCYCLOPEDIA CONTEXT AND TRIGGER INDEX 
LISTS 

Figure 5-0verview of major steps in the generation of systemic memory by 
KAMM. An expert may interact with KAMM directly at a CRT, or may 

communicate knowledge to an interviewer-analyst, who relays the 
knowledge to KAMM. The numbers on the arrows indicate the order in 

which the various structures are generated. 



then from three to four seeks to locate any associated task 
module. We believe this provides for reasonably efficient 
and sensible "movement" through an inference net, con
sidering that each task module may hold a large number of 
inference rules, all pertinent to an immediate purpose. 

DISCUSSION 

Reliable methods for acquiring and verifying large bodies of 
computer-resident knowledge are not available at present. 
Yet priming a knowledge base with accurate, relevant 
knowledge is essential to the success of practical systems 
for giving clinical advice. The knowledge acquisition and 
maintenance module (KAMM) described briefly in this 
paper is an attempt to deal with the priming bottleneck. 
Figure 5 provides an overview of the major operations 
performed by KAMM during the priming of MEDICO's 
systemic memory. We consider the storage of a knowledge 
base in decomposed form, in a separate relational database, 
to be an important step. Using relational algebra as a basic 
tool, the designer can rearrange the elements of a knowl
edge base until he achieves an organization that suits his 
purposes. 

Our goal is to elaborate KAMM into a collection of 
design tools, useful generally for constructing, verifying, 
and validating knowledge structures. In the present paper 
we described KAMM's role in generating a particular 
knowledge structure, suitable to our application. While 
KAMM does not yet entail a general methodology for 
knowledge engineering, it does provide a useful basis for 
continued development. Plans for future work include (1) 
development of means for generating alternative knowledge 
structures from a relational database, and (2) greater em
phasis on techniques for verification and validation of 
inference nets. Chorioretinal diseases will continue to serve 
as the example knowledge domain. 

ACKNOWLEDGMENTS 

KAMM has benefited from contributions by W. H. Cheng, 
M. T. O'Brien, A. C. Petersen, S. K. Chang, and M. H. 
Goldbaum. 

REFERENCES 

I. Chang, S. K., "RAIN Manual," MISL Report M.D.C. 1.3.4, Depart
ment of Infonnation Engineering, University of Illinois at Chicago 
Circle, 1976. 

2. Chang, S. K., M. O'Brien, J. Read, R. Borovec, w. H. Cheng, and J. S. 

System for Priming Clinical Knowledge Base 307 

Ke, "Design Considerations of a Database System in a Clinical Network 
Environment," Proc. National Computer Conference, New York, 1976, 
pp. 277-286. 

3. Chang, S. K. and W. H. Cheng, "A Database Skeleton and its 
Application to Logical Database Synthesis," MISL Report M.D.C. 
1.1.17, Department of Infonnation Engineering, University of Illinois at 
Chicago Circle, 1976. 

4. Codd, E. F., "Recent Investigations in Relational Data Base Systems," 
ACM-SIGMOD Workshop on Management of Data, San Jose, Califor
nia, 1975. 

5. Davis, R. and J. King, "An Overview of Production Systems," Memo 
AIM-271, Standford Artificial Intelligence Laboratory, 1975. 

6. Duda, R. 0., P. E. Hart, and N. J. Nilsson, "Subjective Bayesian 
Methods for Rule-Based Inference Systems," Tech. Note 124, Artificial 
Intelligence Center, Stanford Research Institute, 1976. 

7. Fikes, R. E., "Deductive Retrieval Mechanisms for State Description 
Models," Proc. Fourth Int. Joint ConI. on Artificial Intelligence, 1975, 
pp.99-106. 

8. Hack, M., "Petri Net Languages," Computation Structures Group 
Memo 124, Project MAC, Massachusetts Institute of Technology, 1975. 

9. Hart, P. E., "Progress on a Computer Based Consultant," Proc. Fourth 
Int. Joint Conf. on Artificial Intelligence, 1975, pp. 831-841. 

10. Holt, A. W., Final Report of the Information System Theory Project, 
Technical Report RADC-TR-68-305, Rome Air Development Center, 
Griffiss Air Force Base, New York, 1968. 

11. Michalski, R. S., "On the Selection of Representative Samples from 
Large Relational Tables for Inductive Inference," MISL Report M.D.C. 
1.1.9, Department of Infonnation Engineering, University of Illinois at 
Chicago Circle, 1975. 

12. Michalski, R. S., "Problems of Designing an Inferential Medical Con
sulting System," Department of Computer Science, University of Illi
nois at Urbana-Champaign, 1974. 

13. Murata, T., "State Equation, Controllability, and Maximal Matchings of 
Petri Nets (revised)," MISL Report M.D.C. 1.1.10, Department of 
Information Engineering, University of Illinois at Chicago Circle, Sub
mitted for publication, 1976. 

14. Nilsson, N. J., "Some Examples of AI Mechanisms for Goal Seeking, 
Planning, and Reasoning," Tech. Note 130, Artificial Intelligence Cen
ter, Stanford Research Institute, 1976. 

15. Pople, H. E. Jr., J. D. Myers, and R. A. Miller, "DIALOG: A Model of 
Diagnostic Logic for Internal Medicine," Proc. Fourth Int. Joint ConI. 
on Artificial Intelligence, 1975, pp. 848-855. 

16. RAND Corp., "Manual for the RAND Editor," RAND Corp., Santa 
Monica, California, 1975. 

17. Shortliffe, E. H., "MYCIN: A Rule-Based Computer Program for 
Advising Physicians Regarding Antimicrobial Therapy Selection," 
MEMO AIM-251, Stanford Artificial Intelligence Laboratory, 1974. 

18. Vere, S. A., "Relational Production Systems," to appear in Artificial 
Intelligence, 1976. 

1~.Vefe. S.A., "CQlRpQliitioR o£ Rela~Pr~A~tQr,plaJw ,aaQ 

Programs," Department of Infonnation Engineering. University of Illi
nois at Chicago Circle, Submitted for publication, 1976. 

20. Walser, R. L.. "Technical Notes on the Organization and Access of 
Systemic Memory in MEDICO," MISL report M.D.C. 1.2.3., Depart
ment of Infonnation Engineering, University of Illinois at Chicago 
Circle. 1976. 

21. Walser. R. L. and B. H. McCormick, "Organization of Clinical Knowl
edge in MEDICO," to appear in Proc. Third Illinois Conference on 
Medical Information Systems, November 4-6, 1976. 

22. Weiss, S. M., "A System for Model-Based Computer-Aided Diagnosis 
and Therapy," Ph.D. Thesis. Department of Computer Sciences, Rut
gers University. 1974. 





A proposed study to access the impact of microprocessors 
on health care delivery 

by WILLIAM HYMAN and WILLIAM LIVELY 
Texas A&M University 
College Station, Texas 

ABSTRACT 

Rapid development in microprocessor technology points 
the way to significant impacts on a number of industries. 
One such industry is that of health care delivery in which 
the micro-miniaturization and almost zero cost of the mi
croprocessor itself will lead to increasingly widespread 
applications. 

The assessment of the impact of this new technology is of 
paramount importance for component and medical device 
manufacturers in delineating new product directions and for 
the prioritization of research funding. 

It is necessary to make a thorough survey of current and 
projected microprocessor devices and applications through 
literature searches, research and manufacturer surveys, a 
special conference and a workshop. The results of these 
efforts would be incorporated into a report containing the 
background information and recommendations for further 
research and development. Failure to collect and dissemi
nate technological information of this type as widely as 
possible retards the ultimate technological advances that 
may be derived. Enlightened technological application fore
casting and direction emphasis become a key to effective 
and efficient future developments in health care delivery. 

INTRODUCTION 

The development of microprocessors has stimulated a num
ber of new industries and produced significant impact on 
various old ones. It can be expected that these impacts will 
accelerate for a number of years to come due to increasing 
sophistication of available components and rapidly decreas
ing prices. One such industry is that of health care delivery 
in which the microprocessor will be significant for wide
spread technological innovation and reduced costs. 

In order for developments in this area to be efficiently 
channeled, a thorough investigation of present and ex
pected research and implementation of microprocessor 
usage within the health care delivery field is necessary. 

The results of this study would be useful in prioritizing 
future government research support and of paramount 
importance in the coordination of interests among health 

309 

care professionals, medicai device manufacturers, and the 
computer component industry. It could also serve as the 
background of a technology assessment study of this area, 
which is a natural follow-on project. 

STATUS OF MICROPROCESSOR TECHNOLOGY 

In 1963 Digital Equipment Corp (DEC) produced the first 
minicomputer. This was a move to bring computing to a 
larger audience of users who could not afford the large 
computing machines available before 1963. With the advent 
of the microprocessor in 1969 by INTEL (4004), computing 
has been potentially brought to an even larger audience of 
users. LSI (Large Scale Integration) techniques have culmi
nated in the development of a postage stamp size computer 
processor. 1 

The reduction in size and cost of computing hardware has 
resulted due to constant efforts of the semiconductor indus
try to increase the number of functions per semiconductor 
device, and this figure is doubling every year. The term 
Medium Scale Integration (MSI) refers to chips containing 
100-1000 gates while over 1000 gates/chip is general1y 
referred to as Large Scale Integration (LSI). Interestingly, 
the cost or producing a chip is a Iunction onts size and not 
the amount of logic on the chip. Thus, increased integration 
results in lower cost per function. An accompanying advan
tage is increased reliability through fewer inter-device 
connections. 2 

The currently available microprocessors can be grouped 
into three classes based on functional partitioning: (1) the 
multi-chip family, consisting of compatible CPU, memory, 
and 110 devices; (2) the single-chip CPU, designed for 
standard product memory and 110 devices; and (3) the 
multi-chip, microprogrammable CPU, designed for standard 
product memory and 110 devices. Types (1) and (2) can be 
classified as "conventional" types of microprocessors with 
their architectures closely paralleling "conventional" mini
computers and consequently falling into this application 
area. Type (3) is classified as a bit-slice type of architecture 
which frequently comes packaged in 4 bit-slices. Bit-slice 
architectures become a unique entity with microprocessors 



310 National Computer Conference, 1977 

and offer the greatest potential for flexibility and innovative 
processor designs.3 

Past experimentation with parallel processors such as 
pipeline, array, and mUltiple processor systems has clearly 
demonstrated that performance is certainly not a linear 
function of the number of processors. In fact, a point of 
diminishing returns is very rapidly reached after which the 
addition of a processor no longer results in any significant 
performance improvements. Under these circumstances, it 
is the incremental cost/performance ratio which becomes 
important. The low (and rapidly dropping) cost of micro
processors should yield a significant reduction in this incre
mental cost/performance ratio. It is now possible to talk of 
systems consisting of hundreds of processors even if the 
overall utilization is low. Microprocessors lend themselves 
well to the design of modular and flexible systems. Again, 
the inherently high reliability of LSI components is another 
factor favoring the use of microprocessors. 

Distinguishing limits of the microprocessor, as compared 
with those of the minicomputer, are shorter word lengths 
(typically 4 and 8 bits), usually slower speed, limited 
addressing modes, fewer internal registers, and less sophis
ticated interrupt capabilities. Programming is more difficult 
for microprocessors, since manufacturers' software, partic
ularly in high level languages, is very limited, but trends 
indicate that the burgeoning microprocessor industry will 
overcome these limitations within a few years.4 

The microprocessor is currently being used in two broad 
classes of applications. 5 -

7 The microprocessor provides a 
low cost, very dense hardware logic substitute where the 
complexity of the application makes the design of tradi
tional discrete logic systems difficult. On the other hand, 
the more powerful microprocessors can serve as self
contained computers that perform tasks commonly assigned 
to minicomputers. The future will bring arrays of micropro
cessors that will compete with large scale computing ma
chines. 

Mass production and technological advances have de
creased the cost of microprocessors from about $250 for an 
INTEL 8008 in 1969 to about $25 today. Within a few years 
these processors will have almost a zero cost. The cost of 
computing then reverts to the devices for inputting and 
outputting information to the processor and the accompa
nying application development. 

The aspects of an almost zero cost for the microproces
sor and its miniaturized size create tremendous potentials 
for widespread application and use. Any application that 
requires control or computational capabilities such as man
ufacturing, automobile dynamics, medicine, patient rehabil
itation, prosthetic devices or telephone systems is a poten
tial candidate for microprocessors. 8 

POTENTIAL HEALTH CARE APPLICATIONS 

One industry which can be expected to be among those 
which are greatly affected by microprocessor technology is 
the muitifaceted "heaith care" industry. This industry is 
not limited simply to hospital services. It includes planning 

and delivery of all facets of health care including both large 
and small hospitals as well as clinic services, group medical 
practices, individual medical practices, and non-physician 
services such as rehabilitation or pharmacy. The industry 
also extends to equipment and devices owned and used by 
patients themselves and to the selection, monitoring and 
maintenance of such equipment. The recent offering of 
short courses on microprocessor design in medicine and 
biology9 as well as computer applications in generapo are 
evidence of the continued growth in these areas. Increased 
use of computer systems in the health care delivery arena 
will require the employment of technologically trained 
people to purchase, use, and maintain microprocessor 
based equipment. Recent federal legislation concerning 
safety and efficacy of medical devices will of necessity 
include consideration of microprocessor components. 

We can hypothesize on the application areas in health 
care and medical science for this technology. These areas 
can be divided into two groups. The first is one in which 
presently available digital computer capability could be 
utilized, but such use is limited primarily due to hardware 
and software interface problems and cost factors. A second 
group would consist of those application areas in which 
individuality, size, and mobility considerations are impor
tant as well as costs of implementation. 

The first group includes any form of information process
ing such as basic hospital data, including both administra
tive (e.g., patient records, billing, scheduling) and clinical 
(e.g., patient charts) information. Computer based labora
tory equipment and the analysis of laboratory results also 
fall into this group. Applications of this type include both 
automation of techniques for speed and accuracy as well as 
methodologies which are uniquely suited to computer capa
bilities such as complex diagnostic services and forms of 
pattern recognition. These application areas generally must 
rely on access to a large computer facility either through 
direct access or telephone hook-Ups. This approach pro
vides substantial computer capability but carries the prob
lems associated with being dependent on an external proc
essing system. The literature on large scale computer use is 
extensive. Such systems also can bind the user to fixed 
information formats and lack of instant access. Until re
cently, dedicated minicomputers were the only alternative 
to direct tie-in with a large central computer. These systems 
provide individual control of computing style and capability 
but carry a sometimes prohibitive price tag. The microcom
puter will serve to provide dedicated capability in these 
areas at reasonable cost. Reports of such applications have 
begun to appear in the literature. 11,12 

The second group is perhaps the more exciting one in 
that it extends computer technology into new problem and 
application areas. An extension of information processing 
and clinical analysis capabilities to small group or individual 
medical practitioners offers the possibility of significantly 
improving the abilities of this segment of the health care 
industry. Such items as diagnostic screening, EEG and 
EKG analysis, drug interaction screens and administrative 
probiems couid be impiemented using on site, individuaiiy 
tailored programs and equipment. This would eliminate 



problems of access and cost involved in using central 
computer capability for this type of service. It would also 
eliminate any psychological disadvantage associated with 
the use of "remote" programs and services. 

The ability to stay "on-line" through the use of dedicated 
microprocessing suggests the further extension of the devel
opment of "smart" machines in the laboratory and in the 
realm of medical devices. 13 Many sophisticated clinical 
devices such as heart-lung machines, intensive and critical 
care instrumentation, dialysis machines, respirators, intra
aortic balloon and similar equipment could be significantly 
improved by automated monitoring and warning systems 
and/or direct control via microprocessing. 

Extending our thinking somewhat further, it is likely that 
artificial totally internal prosthetic organs, such as an 
artificial heart or kidney, could also be monitored, con
trolled and functionally tested with internal microprocess
ing capability. Monitoring or control subsequent to non
prosthetic surgical intervention such as in vascular or 
orthopedic surgery can also be envisioned. This would 
provide post-surgical information on the efficacy of a pro
cedure and its progress. This type of information is in 
general very difficult to obtain at the present time. It is for 
these patient carried systems that ultra-small size and 
reasonable cost substantially separates these future applica
tions from large scale computer capability. 

All of the application areas previously discussed are 
within the expected growth of microcomputer technology 
and are in no way science fiction. It would be of great value 
to expand on and amplify these application areas through 
the proposed study. This information should include assess
ment of what is currently available, in what areas is 
research currently under way, what is the source of the 
financial support, and what is the time frame for widely 
available implementation. Finally, an educated guess on 
what the next group of applications in the future is likely to 
be with projected costs is necessary. This information 
would form the background for a technology assessment 
study in which the interplay of needs, resources and related 
factors with purely technological capabilities would be 
determined. The inforrnati,on soug!}t here wQuJq aJ~o §erve 
as a guideline for future funding expectations and perhaps 
as a stimulus for accelerating new and worthwhile develop
ments in microprocessor design, control, and application. 

METHODOLOGY 

An appropriate methodology for this investigation would 
consist of several phases. 

The first phase would be a routine literature review and 
the subsequent generation of a comprehensive annotated 
bibliography on (1) microprocessor devices that are avail
able and (2) medically related uses of microprocessors. 
Both manual and computer based searching methods for 
this material would be undertaken and an initial report 
could be generated within three months. This would of 
course be followed by periodic updates in order to keep 
abreast of the very latest literature. This document would 

Impact of Microprocessors on Health Care Delivery 311 

serve as a reference work of progress to date in implement
ing this technology. 

A second phase would consist of a survey of manufactur
ers and distributors of microprocessors and medical device 
manufacturers in order to ascertain the current efforts 
relating to microprocessor utilization in the commercial 
aspects of health care delivery. Major manufacturers of 
microprocessors such as INTEL, MOTOROLA, F AIR
CHILD, etc., have application groups who could partici
pate in this survey, as do major medical device manufactur
ers such as General Electric, Honeywell, Hewlett-Packard, 
etc. Reviews of bio-medical product literature could serve 
as another source of input to the survey. Several confer
ences are held yearly which display microprocessors and 
medical devices, and a canvas of this information would 
provide additional input to this survey. An example of one 
such conference, is the MINI/MICRO Computer Confer
ence and Exposition, October 1976, held in San Francisco. 
Over 100 companies displayed their products at this exposi
tion. Culmination of this phase would result in a complete 
as possible listing of current microprocessor applications in 
commercial aspects of health care delivery. 

A third phase would focus on the identification of current 
microprocessor based medical and health care research 
projects. This information is available in part through the 
computer based files on existing government research con
tracts which is available on-line through many libraries. 
Another useful source for this type of information is the 
Smithsonian Science Information Exchange. Current activi
ties could also be identified through a review of papers 
being presented at all relevant computer and medical sci
ence meetings (e.g., AIlE, AEMB, AAMI, IEEE). 

The primary activity in this phase should be a confer
ence on Microprocessor Applications in Medicine and 
Health Care Delivery. A Call for Papers would be widely 
distributed in the early stages of this study. In order to 
encourage wide participation in the conference, abstracts 
could be accepted and organized into a Proceedings 
whether or not they are to be presented. Microprocessor 
and medical device manufacturers would also be invited to 
partici12Clte in fln e.qui.pment diSplay ~r~~,~ 

The final phase of this type of study would begin immedi
ately after the conference. This phase of the project would 
draw on the previous identification of those who are active 
in this subject area. A select group of individuals associated 
with current or recently completed microprocessor applica
tion projects as well as manufacturer representatives would 
be invited to participate in a workshop session on the future 
of microprocessors in health care delivery. This knowledge
able group would have the benefit of the previous docu
mentation on the current state of the art and would help 
formulate a final overview and projection. The results of 
this overview would be prepared as a report for distribution 
following the workshop. 

SUMMARY 

The rational and efficient development of microprocessor 
applications in health care delivery depends on a number of 



312 National Computer Conference, 1977 

factors including realistic assessment of application needs, 
government and private funding directed to these needs, 
and coordination between computer component manufac
turers, medical device manufacturers, medical device re
searchers, and medical "consumers." This orderly devel
opment cannot occur in the absence of a thorough review of 
where we are now and a projection based on past and 
current efforts. 

REFERENCES 

1. Williman, A. 0., and H. J. Jelinek, "Introduction to LSI Microproces
sor Developments," Computer, Vol. 9, No.6, June 1976. 

2. Laliotis, T. A., "Microprocessors: Present and Future," Computer, 
Vol. 7, No.7, July 1974. 

3. Reyling, G., "Considerations in Choosing a Microprogrammable Bit
Slice Architecture," Computer, Vol. 7, No.7, July 1974. 

4. "Computers ... by the Millions, for the Millions," COMPCON '76 
Digest of Papers, IEEE Computer Society, September 1976. 

5. "Tutorial: Designing with Microprocessors," IEEE Computer Society, 
September, 1976. 

6. Nelson, D. R., "Microprocessor Applications," Computer, Vol. 7, No. 
8, August 1974. 

7. Symposium on trends and Applications 1976: Micro and Mini Systems, 
IEEE Computer Society, May, 1976. 

8. "Minicomputer and Microprocessors: A Tutorial," IEEE Computer 
Society, 1976. 

9. "Fundamentals of Microprocessor System Design in Medicine and 
Biology," Alliance for Engineering in Medicine and Biology, Boston, 
November 1976. 

10. "Practical Computer Applications in Medicine-Theory and Practice," 
Society for Advanced Medical Systems, Boston, November 1976. 

II. Westlake, G., "Microprocessors, Programmable Calculators and Mini
computers in the Clinical Laboratory," in Enland, D. Ed., Computers in 
Laboratory Medicine, Academic Press, 1975. 

12. Enlander, D., "Microcomputer Preprocessing in the Clinical Labora
tory," in Enlander, D. Ed., Computers in Laboratory Medicine, Aca
demic Press, 1975. 

13. Smith, M. B. and J. L. Braidwood, "The Use of Micro-minicomputers 
in Clinical Chemistry: On Line Operation with the SMA 12-60," Clinical 
Biochemistry, 8, 320, 1975. 



Natural language knowledge processing 

by CHRISTINE A. MONTGOMERY 
Operating Systems, Inc. 
Woodland Hills, California 

ABSTRACT 

This position paper treats some advanced concepts which 
present some short and longer range solutions to the 
formidable knowledge processing problems: 

• Short term-As data bases increase in size, the data 
management problems associated with maintaining in
verted files become more complex, and in cases where 
the data base is extremely volatile, the software ma
chine can only be driven by a large dedicated main
frame. For most knowledge processing applications 
this represents an impractical solution to the problem 
of large scale natural language data management. A 
more practical solution is to replicate the software 
machine for text searching and retrieval in hardware. 
This approach has been adopted in recent hardware 
developments, based on parallel and associative tech
nology. 

• Longer term-Despite the formidable problems in
volved in simulating the understanding processes of a 
knowledge worker scanning a text and distilling its 
content into information of interest to him, automating 
the generation of data bases which are susceptible to 
quantitative processing from nonquantitative natural 
language text is ultimately the only feasible means of 
eXI?loiti.ng kn()wle~~~ ~n !h~ form ofn<i!ural langll~ge. 
The automated understanding of text is a more com
plex undertaking than the automatic analysis of natural 
language queries since a text-bas ed-rather than a 
sentence-bas ed-grammar is required. 

In addition, what is called an introspective data base will 
be required which assumes a high level of inferential 
capability, the ability to represent, analyze and synthesize 
knowledge from many disparate sources, the ability to 
create, modify, retain and compare patterns of various 
types and a capability for making probabilistic judgments 
based on information which may be incomplete and is often 
erroneous. 

INTRODUCTION AND SUMMARY 

A data base is a repository of knowledge which in some 
sense constitutes a model (or models) of a real world state 

313 

of affairs. The contents of the data base are utilized by 
knowledge workers attempting to carry out particular deci
sion-oriented tasks. 

This paper treats advanced concepts which present some 
short term and longer range solutions to the following 
formidable knowledge processing problems: 

(1) What happens if the body of knowledge required by 
the human decision maker is in the form of natural 
language? 

(2) Where do data bases come from? 
(3) How does a knowledge worker know what to do 

next? 

The three following sections of this paper address these 
issues: (1) treats a near term approach to the problem of 
natural language data management based on associative 
hardware technology; (2) discusses a longer range approach 
to the same problem in the context of question (2) above, 
and (3) focuses on assistance to the knowledge worker 
involving an active information system built around an 
"introspective" data base. 

NATURAL LANGUAGE DATA MANAGEMENT: A 
NEAR TERM SOLUTION 

In a previous paper discussing corporate data bases,:' the 
chairman raised the thorny issue of dealing with non
quantitative corporate data, e.g., the mood of the stock
holders, employee morale, legal constraints, etc. Such data 
generally appear in the form of natural language text, since 
that is the way humans typically approach non-quantitative 
data. To put the matter succinctly, if we can't count it or 
write a formula for it, all we can do is talk or write about it, 
which we do-indefatigably. This results in an enormous 
and ever increasing volume of accumulated human knowl
edge in the form of natural language. These data must be 
made available to knowledge workers, who are problem 
solvers and decision makers at all levels. 

For the past decade, the accessibility of natural language 
data to knowledge workers has been achieved via key word 
and phrase retrieval from text stored on random access 
devices. The usual retrieval mechanism is an inverted file of 
all content words in the natural language data base, with 



314 National Computer Conference, 1977 

associated document pointers. As the data base increases in 
size, the data management problems associated with main
taining the inverted file become more complex, and in cases 
where the data base is extremely volatile, the software 
machine for managing the natural language data can only be 
driven by a large dedicated mainframe. For most knowl
edge processing applications, this represents an impractical 
solution to the problem of large scale natural language data 
management. 

A more practical solution for the natural language data 
management problem is to replicate the software machine 
for text searching and retrieval in hardware. This has been 
the approach adopted in a recent hardware development 
based on parallel and associative technology, where associ
ative is interpreted as content addressable. In the course of 
this development, Operating Systems, Incorporated has 
built and is currently field testing a hardware prototype 
version of an associative/parallel character matching device 
which is the critical component of a parallel processor for 
natural language data management. 

The logic and parallel matching circuitry module-called 
the Associative Crosspoint Processor (AXP)*-is capable 
of passing 8K bytes of key matching memory with a 1 
megabyte data stream for an effective search rate of 8 
billion matches per second. The key memory accommo
dates 50 natural language queries, assuming 25 words each, 
or any combination of query terms up to 8K bytes. As 
shown in Figure I, the AXP intercepts a data stream from a 
conventional disk controller (at rates of 0 to 1,000,000 
bytes/second-the AXP is self-clocking), performs parallel 
key matching, and sends the results to a cpu. 

An AXP, together with a disk system, cpu, and appropri
ate software, constitutes an Associative File Processor 
(AFP). ** An AFP system is thus capable of searching a 
sequential, indexed, or randomly ordered, unstructured 
natural language data base at disk readout speed. 

The AFP system configuration which is currently in field 
test in a customer environment consists of an 8192 byte 
AXP, a PDP-I1I45 cpu, and a Bunker-Ramo 1535 disk 
controller and 1536 disk with a capacity of 180 million 
bytes. 

The associated software runs under the RSX-IID operat
ing system and includes modules for communicating with a 
Sperry-Univac 1652 display terminal, query translation and 
resolution, and other data management modules. 

The AXP development appears to provide a cost effec
tive concept for natural language data base management 
and thus constitutes an efficient, near term solution for 
delivering non-quantitative data in natural language form to 
workers engaged in knowledge processing. 

Although the AXP approach is in itself an advanced 
concept, it does not materially improve the situation de
scribed in Reference 1 as "the lack of ability to deal 
precisely with non-quantitative data." The compelling chal
lenge "to bring more and more of such data into the realm 

* "Associative Crosspoint Processor" and "AXP" are trademarks of Ope rat
ing Systems, Incorporated, Woodland Hills, California. 
** "Associative File Processor" and "AFP" are trademarks of Operating 
Systems. Incorporated. Woodland Hills, California. 

ASSOCIAtiVE 
CROSSPOINT 
PROCESSOR 

Figure I-Associative crosspoint processor (AXP) 

of the quantifiable" is then added by the authors. The 
following section focuses on a longer range approach to 
natural language data management which satisfies both 
these goals: that is, the approach described will improve 
our ability to deal precisely with non-quantitative textual 
data by analyzing such data into elements that can undergo 
quantitative processing. 

WHERE DATA BASES COME FROM AND HOW NON
QUANTITATIVE DATA CAN BE QUANTIFIED 

A great deal of the computer and information science 
literature is devoted to discussions of data bases, where a 
data base is defined as a file of records in a particular 
format containing data elements of specified types. The 
literature covers data base management, data base adminis
tration, data definitions, and so forth; but articles on data 
base generation are conspicuously absent. To state the 
issue more graphically, there is a vast amount of literature 
on the care and feeding of data bases, but none which 
addresses the more fundamental questions of where data 
bases come from. In fact, as is well-known, data bases are 
generated by laborious manual procedures which no one 
really wants to discuss. Although formatted files of data 
elements offer considerable advantages for analytic manip
ulation of data in knowledge processing applications, little 
progress can be made in developing and utilizing data bases 
unless the generation process can be automated. 

Of particular interest is the automatic creation of data 
elements from natural language text, since this effectively 
achieves the transformation of non-quantitative textual data 
into discrete data elements and relations which can be input 
to quantitative algorithms. This process involves an in
depth syntactic and semantic analysis of the natural lan
guage text in terms of some model of knowledge represen
tation for a particular universe of discourse in order to 
synthesize meaningful information records. An automated 
"understanding" of the input text is necessarily implied. 

The automated understanding of text is a more complex 
undertaking than the automated analysis of natural language 



queries, since a text-bas ed-rather than a sentence-based
grammar is required. Referential and anaphoric elements 
(e.g., articles, pronouns, appositives, reference by syn
onym) operate within a larger discourse context and conse
quently, are more difficult to unravel. Moreover, a formal
ism for knowledge representation such as Minsky's 
"frames," Schank's "scripts," Reiger's "Commonsense 
Algorithms" t is necessary to provide a basis for the 
computer to infer information implicit in the text in order to 
reduce its content into a set of discrete information records. 

Despite the formidable problems involved in simulating 
the understanding processes of a knowledge worker scan
ning a text and distilling its content into information items 
of interest to him, automating the generation of data bases 
which are susceptible to quantitative processing from non
quantitative natural language text is ultimately the only 
feasible means of exploiting knowledge in the form of 
naiurallanguage. As an example of such a development, for 
the last few years, the author and some colleagues have 
been pursuing the goal of automated data base generation 
from the natural language text of reports describing events 
of various types. 3 :j: The objective is to synthesize a data 
base of event records which can then be statistically 
manipulated to define event patterns, associated patterns, 
and changes in such patterns, providing a basis for event 
prediction. The basic structure for knowledge representa
tion is an event template, which is a relational structure 
linking the predicate that defines the event or event se
quence (e.g., "overfly") with the objects that can form its 
arguments ("aircraft," "ship"), attributes of the objects of 
significance to the event ("bomber"), attributes of the 
event (location, time, and other dynamic attributes), and 
links to other events (temporal, causal). A text can thus be 
analyzed into a sequence of one or more event templates, 
which also form the basic structure of the event records 
generated for the data base by the synthetic processor. 

HOW A KNOWLEDGE WORKER KNOWS WHAT TO 
DO NEXT-Partnership with an active information 
system built around an introspective data base. 

Now, assuming that such an event data base has been 
composed and that quantitative algorithms have operated 
on the data, what have we really done to improve the lot of 
the knowledge worker who needs this information? The 
answer is "not much," if the knowledge worker must 
laboriously seek out the information he needs through a 
tedious series of data base accesses, involving many false 
starts and unproductive lines of inquiry, in the course of 
which the user may become confused and forget his original 
objective. 

Clearly, a serious deficiency of current information sys
tems is that the model on which they are based is essen
tially passive: it is up to the user to recognize an informa-

t These and other approaches to knowledge representation are discussed in 
[2]. 
:j: This work was sponsored by the Air Force System Command's Rome Air 
Development Center, Griffiss AFB, New York. 

Natural Language Knowledge Processing 3 I 5 

tion need and to seek out the required information via user
initiated communication with some information system. 
Thus, the user is the active element-the processes of 
information analysis and synthesis are user dependent and 
completely external to the system. The burden of informa
tion flow and control is on the user, who is forced to define 
a bottom-up query strategy involving many low level ques
tions to answer a high level question such as assessing the 
feasibility of acquiring a corporation. 

With the volume and complexity of available information 
on the increase, this burden is rapidly becoming intolerable 
to the user, whose abilities to assimilate and integrate 
information are essentially saturated. 

What is required is the development of an active informa
tion model: that is, one in which the system-rather than 
the user-is the active agent, assuming the burden of 
information flow and control according to prestored infor
mation goals and algorithms. 

The processes of assimilating and evaluating new data, as 
well as the self-organizing processes built around these, 
provide a basis for generating hypotheses about future 
changes in the state-of-affairs represented by the data base. 
For an event-oriented data base, such hypotheses consti
tute predictions about future events. 

In essence, these on-going analytical and synthetic pro
cesses provide the data base with an awareness of its 
contents; the self-organizing capability also provides a 
higher level of self-awareness, i.e., of its procedures. It has 
a self-knowledge such that it can be described as intro
specting about its contents to produce new information 
about the state-of-affairs represented in its contents. The 
data base's knowledge about its own procedures for operat
ing on data gives it the capability to manifest goal-oriented 
behavior in planning how to apply these procedures. 

Thus, in addition to the already complex dimensions of a 
data base shown as vectors in Figure 2, we introduce the 
more significant dimension of "introspectability"-or de
gree to which a data base is capable of exhibiting introspec
tive, initiative assuming, goal-directed behavior. 

An introspective data base is capable of initiating trans
actions with a LISe{ and guiding the user through a complex 

Figure 2-Dimensions of a data base 



3 16 National Computer Conference, 1977 

task-oriented interaction, based on knowledge of its own 
contents, acquired through introspective algorithms which 
permit it to: 

• monitor newly acquired data to detect changes in the 
real world system or state-of-affairs it models; 

• reorganize its contents to reflect such changes; 
• purge irrelevant or obsolete materials; 
• validate data in several dimensions; 
• request new data to resolve conflicting information or 

to complete fragmentary data; 
• correlate multisource data reporting on the same event; 
• assign credibility ratings to incoming data and update 

credibility ratings of stored data; 
• summarize the contents of its files to provide a concise 

report on the current state-of-affairs; 
• acquire additional models of state-of-affairs, objects, 

and events in order to accommodate differing user 
world views; 

• generate hypotheses about probable changes in the 
state-of-affairs; 

• for each hypothetical change, suggest alternative 
courses of action and probable consequences of such 
action; 

• present information to the user so as to maximize his 
ability to assimilate and comprehend. 

In addition to the usual data base management and user 
interfacing functions of storing, retrieving, updating, purg
ing, statistics and report generation, editing, querying, and 

so forth, the functions of an introspective data base listed 
above assume a high level of inferential capability, the 
ability to represent, analyze, and synthesize knowledge 
from many disparate sources, the ability to create, modify, 
retain, and compare patterns of various types, and a 
capability for making probabilistic predictive judgments 
based on information which may be incomplete and is often 
erroneous. 

Obviously, for a long time to come, successive approxi
mations to this ideal will involve an enlightened partnership 
between human and machine; however, it is important to 
keep such a model in mind as an ideal to approximate to. 
The model thus serves to direct the evolutionary steps in 
hardware, software, data management, artificial intelligence 
and other technologies which will be required to progres
sively offload such functions from the human onto the 
active information system. As these developments are 
realized, the knowledge worker's objective and intuitive 
knowledge processing abilities will be incrementally en
hanced by the automated system, allowing him to more 
fully exploit his analytical and judgmental potential. 

REFERENCES 

I. Altshuler, G. and B. Plagman, "User/System Interrace Within the Con
text of an Integrated Corporate Data Base," Proceedings of the NCC, 
1974, pp. 27-33. 

2. Silva, G. and C. A. Montgomery, "Knowledge Representation for 
Automated Understanding of Natural Language Discourse," To appear in 
Computers and the Humanities. 

3. Kuhns, J. L., C. A. Montgomery and D. K. Whelchel, "ERGO: A 
System for Event Record Generation and Organization," RADC-TR-75-
51, 1975. 



The intelligence cycle-A differentiated 
perspective on information processing 

by PETER G. W. KEEN 
Stanford University 
Stanford, California 

ABSTRACT 

This brief position paper presents a framework for mapping 
computer-based information aids onto the mental activities 
involved in the full problem-solving process. It argues that 
these activities are best described in terms of operators
the verbs and commands that the individual uses in a 
particular stage of the Intelligence Cycle. 

The cycle begins with Discovery, the recognition of some 
signal requiring response. Discovery filters data into infor
mation and mainly involves operators that attenuate or 
amplify data: "alert," "keep track of' (amplification) and 
"summarize," "report averages" (attenuation). Few com
puter tools support amplification. The second stage, Inter
pretation is one where the machine generally outperforms 
the human mind, especially in inference and statistical 
analysis. Examples of operators for this stage are "com
pare," "review" and "suggest." The final stage, Analysis, 
is strongly supported by management science, especially 
through optimization models; typical operators are "test 
the impact of' and "evaluate." 

N one of our current tools supports the full Intelligence 
cycle. The position paper suggests that the development of 
a science of information-processing must both identify the 
cognitive operators underlying the activities within the 
~)- de auJ {Hatd. [lie tecllflkdl buHJing 110~ks LV thefn. 

INTRODUCTION 

Developments in information-processing are mainly driven 
by technology; new tools generate new uses. As relational 
data base or pattern recognition methodologies move from 
the laboratory to commercial availability, we will extend 
our ability to help Knowledge Workers make more effective 
and more efficient use of their information resources. This 
process is fragmented and relies on serendipity; it also 
obscures the broader concern: 

What is the objective of the science of information
proces sing? 
What are the activities its tools support and augment? 

The aim of this presentation is to step back and map the 

317 

technoiogy into its context-the cycle of Intelligence, a 
process of Discovery, Interpretqtion and Analysis! which 
begins from an initial awareness of a stimulus or problem 
and ends with a decision. By clarifying the operations 
within this cycle, we can both assess the techniques we 
now have and define the areas of most need and payoff. It 
is this analysis that should drive the technology and deter
mine the tools we require. 

The scheme presented here is a paradigm, a conceptual 
framework for organizing current knowledge, rather than a 
formal theory. It derives mainly from cognitive psychology, 
the science of human information-processing.2 Its emphasis 
is descriptive; before we can prescribe tools for improving 
an activity, we must first describe its dynamics and con
text. In general, our technical focus has stressed prescrip
tion at the expense of this understanding.3 

The paradigm clarifies some traditional distinctions in 
discussions of human response to and use of information: 

structured versus unstructured 
data versus information 
qualitative versus quantitative 
problem-finding versus problem-solving4 

The presentation is influenced by Miller's5 definition of a 

focuses on the activity of information-processing, in terms 
of operators-verbs such as "show me," "scan" and 
"summarize." Tools can best be understood in relation to 
the operators they support. 6 

THE CYCLE OF INTELLIGENCE 

Most existing tools assist a Know~edge Worker who 
already has a purpose: a researcher scanning a database, an 
analyst reviewing a situation or a manager requesting 
summary reports. The Intelligence cycle begins well before 
this stage and includes Discovery-identifying and defining 
the problem and purpose. At an extreme, the Knowledge 
Worker sits daydreaming while the world around him 
randomly throws in his direction signal and noise. The 
cycle begins only when he is alerted to some signal. 



318 National Computer Conference, 1977 

Sometimes, the Discovery process is passive; he may not 
be actively scanning his environment. He may thus over
look "relevant" data. 

Many commentators have emphasized that data becomes 
information by being filtered through some mental model 
that gives it meaning and relevance. The mind outperforms 
most computer-based tools in this process, which relies on 
alertness, pattern-creation and pattern-recognition. Of 
course, human limitations on memory, attention span and 
capacity for assimilating large masses of data make machine 
support invaluable in many instances. 

Discovery filters data into information. 7 In many ways it 
is the key stage in the cycle, in that it involves problem
finding. Once alerted to a signal, we can generally respond 
to it if only through some barely adequate rule of thumb or 
standard operating procedure, but we may easily overlook a 
potentially critical signal. If we can scan more alertly or 
provide better filters, we reduce the risk of doing so, but 
the effort needed may exceed our resources. It is thus 
desirable to automate part of the filter. What are the 
criteria for doing so? The technical focus does not in itself 
define any criterion. 

Stafford Beer,S the British cybernetician, describes the 
filter in terms of attenuation and amplification. Discovery 
reduces chaos to singularity. Huge volumes of data are 
attenuated through summary, selection and aggregation. 
Key signals are amplified and drawn to our attention. In 
general we have many tools for attenuation-for reducing 
the load on our limited attention and capacity; most report
ing systems organize mass data into "meaningful" sum
mary. Beer gives an example of amplification in the CY
BERSTRIDE system he helped build for the Chilean 
government. 9 A forecasting algorithm, based on Bayesian 
decision theory, traps the stream of data on ongoing eco
nomic activity and tests if new signals imply a change in 
current trends and consequently a need to revise the mental 
model: if they do not the data is ignored and the Knowl
edge Worker not burdened with it. If the input implies a 
shift, the signal is amplified and the worker alerted to it. 

The operators relevant to attenuation include "alert," 
"keep track of' and "locate any discrepancy." These are 
clearly different from "summarize" and "report averages," 
operators relating to attenuation. Information tools for 
Discovery thus need to be differentiated. We have far more 
tools for attenuation than for amplification; since the latter 
is central to problem-finding, this is clearly an area of great 
potential payoff in the selective development of new tools. 

Attenuated information needs interpretation while ampli
fication leads to Search, to a response to the signal and a 
more active effort at Discovery (see Figure 1). In either 
instance, only now is the worker aware of purpose and 
ready to select information and analytic aids. The second 
stage in the cycle, Interpretation, is largely inferential. The 
operators-the commands the worker gives to his tools
include "suggest," "review," "compare" and "deduce the 
(often statistical) meaning of." It is fairly easy to map 
techniques into this activity. Interactive Decision Support 
Systems such as Gerrity's portfoiio management system are 

explicitly designed in terms of such operators as "SCAN" 
and "HISTO" (provide histograms). 

While man outperforms machine in most aspects of 
Discovery, he is much less effective in Interpretation. 10 

Tversky and Kahnemanll emphasize the frequency with 
which individuals make simple statistical errors. Edwards12 

similarly points up our inability to make effective use of 
information we already have (to update probability esti
mates, for example). Tools such as MYCIN, 13 which aids 
medical diagnosticians in the process of inference, exploit 
the machine's comparitive advantage in Interpretation. 

The final stage of the cycle is Analysis, the assessment of 
interpreted information; this usually results in some con
scious decision. Discovery is mainly perceptual and there
fore hard to observe or make explicit but Analysis is 
generally conscious, methodological and sequential. 14 It is 
concerned more with the use of information than informa
tion itself. Its operators include "evaluate," "compare 
these alternatives" and "test the impact of'-and of course 
"what if." The tools of management science-optimization 
and simulation models-obviously support these. It is not 
clear where man outperforms machine or vice versa. Many 
problem-solvers prefer to rely on their own intuitive meth
ods although in structured situations they will rely on 
formal models. 

Because Analysis is conscious and sequential, it is often 
constrained by time and computational effort. In many 
cases, we simplify the problem to the point where it is 
feasible for us to handle its demands, even if this involves 
misrepresentation-and sometimes peversion. 15 In many 
cases, by automating the operators it involves, we encour
age the individual to make more comparisons,_ to enlarge his 
"bounded rationality; "16 a frequent benefit cited for inter
active computer systems is simply that they allow a user to 
test out more alternatives. More is not necessarily the same 
as better; such support may thus improve efficiency but not 
effectiveness .17 In developing tools for Analysis, we must 
consider which operators they support and what' 'improve
ment" means (and is worth). Automative mechanical as
pects of Analysis (comparisons, summarization) looses the 
bounds of rationality and potentially releases time for more 
attention to issues of effectiveness. 

TOW ARDS A DIFFERENTIATED PERSPECTIVE 

The paradigm presented here can be expanded to give a 
fairly rigorous summary of both human information-proc
essing activities and computer-based aids. The latter are the 
building blocks for a system to support the full cycle of 
Intelligence. If we focus on the operators needed by the 
Knowledge Worker, we will define those blocks in a far 
more differentiated way than we do now. The issue is not, 
simply for example, between qualitative and quantitative 
data or structured and unstructured problems. In the Dis
covery stage, attenuation generally involves numeric, and 
amplification judgmental, information. Our tools should 
refiect this. 



FILTER 

DISCOVERY 

Operators: 

A Differentiated Perspective on Information Processing 3 19 

[_THE OUTSIDE !40RLO I 
Noise and Signal 

..---.--~ ;X:-\f 
~~~------------------~ Human analyst notices data 

Machine attenuates data; summaries, reports
Human/machine amplifies signals

Recogni ze s i tuati on pofenfl a 11y -neeu i og -re-spons~
Convert data into information
INFOR~1
ALERT
PAY ATTENTION TO
CONSIDER

SEARCH/SCAN
LOOK FOR
CHECK

,---RE_V __ I E_W_~
-- - ---- ------------- ----------------------~

INTERPRETATION Determi ne \",hat the i nformati on I meansj
Or unize information ---
INFER
SUGGEST
CO~1PI\RE
I OENTI FY I~1PL I CATIONS

DEDUCE/SELECT
-----------------04

~~t_-==~_-____ _ BUILD a comnlete
picture

ANALYSIS Reach a decision or resolution
of the situation

Evaluate the information
ESS

COr1PARE AL TER~IATIVES
TEST HYPOTHESIS
CHOOSE BETHEEN

MODEL
--------------------1

DEVEL0P methodology
DEFINE new data, models

or hYl10theses

Figure I-The cycle of intelligence

The paradigm implies selective development of new tech
niques, matched to specific operators, rather than imposi
tion of the methods on the overall cycle. Any catalog of
existing tools will show an abundance of aids for Interpreta
tion and Analysis and near absence of support for Discov
ery. Any detailed examination of the operators involved in
Discovery will, as a corollary, suggest that retrieval meth
ods suitable for scanning and directed search are of little
value for amplification and alerting the Knowledge Worker.

There is not space in this position paper to explore the
paradigm in detail. The following assertions summarize its
intent:

1. None of our tools can support the full Intelligence cycle,
nor should we assume that they are other than building
blocks;

2. In developing information aids, we must look at tq.e
activities involved in the cycle and draw on descriptive

320 National Computer Conference, 1977

and psychological models;
3. Tools are best defined in relation to operators;
4. We do not yet have a science of information processing;

even if this paradigm is inaccurate or incomplete we
need such frameworks that force us to develop a clearer
sense of what our efforts should aim towards and what
our techniques really are.

REFERENCES

I. cf Simon's model of the decision process: Intelligence, Design & Choice:
Simon, H. A., Elements of a Theory of Human Problem Solving,
Psychological Review Vol. 65, No.3, May 1958.

2. More recently, the term "cognitive sciences" has been used by re
searchers to define a fusion between developmental psychology, Artifi
cial Intelligence & information-processing theories.

3. Keen, P. G. W., and M. S. Scott Morton, Decision Support Systems: An
Organizational Perspective, Addison-Wesley (in press), Chapter 3, Deci
sion Making: Description versus Prescription.

4. This distinction is discussed in Leavitt, H. A., Beyond the Analytic
Manager, California Management Review, Spring-Summer, 1975.

5. Miller, R. B., Psychology for a Man-Machine Problem-Solving System,
Technical Report TROO 1246, IBM Data Systems Division, 1965.

6. Gerrity, T. P., Design of Man-Machine Decision Systems: An Applica
tion to Portfolio Management, Sloan Management Review, Winter 1971.
for an example of a formal design strategy based on this approach.

7. Druzhinin, V. V., and D. S. Kontorov, Concept, Algorithm and Deci
sion, Soviet Military Thought No.6, U.S. Government Printing Office,
1972.

8. Beer, S., Platform for Change, Wiley, 1975.
9. Beer, S., "Fanfare for Effective Freedom," in Reference 8, pp. 423-451.

10. Dawes, R. M., "Objective Optimization under Multiple Subjective
Functions," in J. L. Cochrane and M. Zeleny, eds., Multiple Criteria
Decision Making, University of South Carolina Press, Columbia, South
Carolina, 1973,9-17.

II. Tversky, A., and D. Kahneman, Judgment Under Uncertainty: Heuris
tics and Biases, Science, Vol. 185, September 1974.

12. Edwards' work is summarized in Beach's comprehensive survey: Beach,
B. H., Expert Judgment About Uncertainty: Bayesian Decision Making
in Realistic Settings, Organizational Behavior and Human Perronnance,
Vol. 14, pp. 10-59, 1975.

13. Shortliffe, E. H .• S. G. Axline, B. G. Buchanan, and S. N. Cohen,
"Design Considerations for a Program to Provide Consultations in
Clinical Therapeutics," Proceedings of the 13th San Diego Biomedical
Symposium, February, 1974.

14. However, there are significant differences between individuals' cognitive
strategies and styles of problem-solving. See McKenney. J. L., and P.
G. W. Keen, How Managers' Minds Work, Harvard Business Review,
May 1974.

15. Taylor, R. N., Psychological Determinants of Bounded Rationality and
Implications for Decision Making Strategies, Decision Sciences, Vol. 6,
No. S, pp. 409-429.

16. Simon, H. A., Administrative Behavior. (2nd Edition), McMillan. 1957.
17. See Reference 3, Chapter I for a discussion of the relevance of this

distinction for the design of computer systems.

Plans for a program in medical
information science

by ALLAN H. LEVY and THOMAS T. CHEN
The University of Illinois
Urbana-Champaign, Illinois

ABSTRACT

Although the "information revolution" has pervaded nearly
every other aspect of modem industrial life, the health care
system-replete with an overdose of information-lags be
hind in management and control. Although there are iso
lated examples of the use of information technology in the
health delivery system, these are fragmented and usually
limited to isolated processes, rather than to an integrated
information system.

This underutilization is largely the result of an isolation of
the health professional and the physician from any substan
tive knowledge of computing. "Computer ignorance" has
led to overexpectation and consequent disappointment and
failure. We propose that formal structured training of health
professionals at the postgraduate level will provide the
knowledge base that will lead to intelligent planning and
practical implementation. The details of a graduate training
program, with a strong embedded research component, are
presented.

INTRODUCTION

Although the nation is in the third decade of the "informa
llufl re\uIutiun," ..:lini..:ai lTicuidne aau the htaIth \"al~

delivery system are only now beginning to realize the
substantial impact of computer technology and information
science. Developments in medically-related computing date
back scarcely ten years. In health care delivery, the scope
of applications has substantially broadened: early efforts
were limited to hospital accounting; the present spectrum
encompasses applications ranging from health information
systems to laboratory automation to computer consulta
tion. 1 In addition, the digital computer has become a
research tool of high utility to both the basic medical
scientist and to the clinical researcher.

Computer technology has made practical the accumula
tion of large data bases; their actual utilization, however,
has been limited in both patient support and in health
.planning functions. It is ironic that some of the heaviest
users of large health data bases have been insurance
carriers concerned with economic risk factors. Parentheti-

321

cally, this reminds us that substantial ethical and legal
issues relating to individual rights of privacy must be taken
into account when considering the management of health
data bases. 2

Minicomputers are now out-pacing monolithic large com
puters in terms of both variety and versatility. Costs of
processors have decreased almost exponentially. Minicom
puters are now widely used in medicine, for patient moni
toring, for control of laboratory instruments, and for a wide
variety of other applications. The effective amalgamation of
large central computers with minicomputers into integrated
information networks is a developmental area of high
potential.3

Educational and training activities related to medical com
puting lag far behind. 4 The responsibilities for biomedical
computing have been assumed in an unstructured manner
by most American medical schools. In some, departments
of physiology have subsumed the task and have placed
primary emphasis on research applications involving hard
ware development. In a number of medical schools, special
computer research resources have been established under
the Biotechnology Resources Program of the National Insti
tutes of Health; these function as service centers, as well as
local foci for computer-related research. The attention of
such centers to medical education has been relatively
il.linul, primarily because of the statuatory" !imita1ions tv
research inherent in the program.

Consequently, it is fair to state that although computer
applications in medicine are increasing both in variety and
extent, there has not been a commensurate increase in
developing programs in medical information processing
science. There is the real danger that unless more programs
are developed, health professionals will become less capa
ble of adequately specifying sensible requirements for med
ical information processing, will be less able to make
effective use of computer technology, and will be less
capable of evaluating the impact of the computer technol
ogy to which they are exposed. Furthermore, if such
uncoupling between health professionals and computer sci
entists should continue, new developments will inevitably
grow less relevant to the real needs of the health care
delivery system.

It is therefore postulated that effective educational pro-

322 National Computer Conference, 1977

grams in medical information science are a necessary
component of a health science educational institution. We
propose that such a program should be designed and
effectively implemented.

PROGRAM DEVELOPMENT

The establishment of the School of Clinical Medicine at
Urbana-Champaign campus of the University of Illinois is
projected for July, 1977 with the first class of students
entering in Fall, 1978. A proposal to establish a Center for
Medical Information Science in the School of Clinical
Medicine [Appendix A], Urbana-Champaign has been sub
mitted to the planning officers of the School of Clinical
Medicine. It will be a basic instructional unit within the
School of Clinical Medicine. Since July 1975, ongoing
programs have been coordinated, new research projects
have been initiated, and the instructional goals and learning
objectives in medical information science for professional
students have been developed. An application for a physi
cian training grant in medical computer science has been
submitted to the National Library of Medicine and has been
approved.

Instruction

The goals and learning objectives of instruction in medi
cal information science have been defined as:

Goals
• to enhance the understanding of computer science and

its relations to clinical medicine, basic health sciences
and the health care delivery system.

• to encourage career development in medical informat
ics.

Learning Objectives
To provide physician-in-training:

• the basis for understanding in cybernetics, mechanisms
of human intelligence, and the clinical decision proc
esses.

• the means for acquiring, structuring, analyzing, and
displaying data to enhance its usefulness in the health
care process.

• skills in the appropriate important applications of com
puters in clinical consultation; medical record mainte
nance; pattern recognition in ECG, EEG, and other
physiological recordings; utility of computer assisted
tomography; and patient monitoring.

• experiences in the usefulness of simulation and model
ling, both as a learning tool and as a means for enhanced
decision making.

• skills in the use of problem oriented and computer
based medical records through the development of a
school ~ clinical affiliate system.

= opportunities fVi complementary experiences via com
puter-assisted and managed instruction.

Program Description

• Undergraduate Medical Education

The instructional efforts will be directed to the needs of
the medical students in the School of Clinical Medicine as
listed in the learning objectives above. It will also be
coordinated with the activities at the School of Basic
Medical Sciences, Urbana-Champaign (SBMS-UC).

The curriculum of SBMS-UC is self-paced and is problem
oriented. Computer based instructional materials and a
sophisticated diagnostic examination system through the
PLATO IV terminals are an integral part of the present
basic science experience. Thus, students here are familiar
with computers and terminals. We will capitalize on such
familiarity: the use of computer by medical students as an
integral part of their regular medical education, in our
opinion, will be the only effective method for providing an
operational understanding of medical information science.

During their clinical years, students will be using a
computer based and problem oriented medical record sys
tem which is currently being developed here. A few lec
tures will be given in medical information science; but more
important, the use of terminals in actually creating and
inspecting medical records will provide that element of
familiarity which can be obtained in no other way. Partici
pation of developmental and research activities in this field
will be encouraged on the same basis as in other clinical
areas. Education in medical information science will be on
the same level as biological and physiological components
of medicine.

• M.D. Master in Computer Science Training (This pro
gram has been approved by. the National Library of
Medicine. Funding will begin in fiscal 78.)

The purpose of the program is to provide an effective
medicine computer science interface for four physicians per
year who have completed or partially completed their
residency training in a conventional specialty. They will be
enrolled here in an individualized but intensive two year
program in computer science. Upon completion of the
program, the trainees will receive the degree of Master of
Computer Science from the Department of Computer Sci
ence, University of Illinois and may pursue the doctoral
program if they so desire.

It is anticipated that demand and opportunities for gradu
ates from this program should be and will remain high for
the foreseeable future. Most projections indicate that the
health field will become one of the major, and perhaps the
major user of computer technology after the developmental
threshold of minimally acceptable systems has been
reached. As physician graduates of a program of this type
are needed to reach this threshold, their own work should
contribute to the future rapid expansion of demand for
similarly qualified personnel.

Research

The training experiences of our students will be condi
tioned strongly by the ongoing medical computing research
activities of our faculty. Our research activities can be
summarized in two areas:

1. PLA TO-Based Health Science Network Activities

Since 1972, SBMS-UC of the University of Illinois Col
lege of Medicine has been extensively committed to the
development of basic medical sciences CAl materials. Dur
ing the last three years, under contract support from the
Bureau of Health Manpower, a group of faculty has been
developing basic sciences lesson materials on the PLATO
IV system. 5 The target of this project is 300 hours of CAl
lessons in basic medical sciences. There are about 200
lessons currently available.

Since the College of Medicine of the University of Illinois
consists of six schools in four cities (Chicago, Peoria,
Rockford, and Urbana-Champaign), it was natural to think
of a small medical CAl network for the schools. Our work
has been directed toward coordinating system development
and use by the several campuses.

In late 1973, we recognized that the College of Medicine
PLATO IV health science activities should encompass
institutions outside the University, in order to facilitate
more multi-institutional participation in lesson development
and delivery, and to get a wider experience with student
needs. We consider it desirable to explore the feasibility of
expending these CAl activities to a "Health Science Com
puter Network" which includes computer management of
instruction (CMI), as well as CAl and a medical information
system (MIS). 6

The four campuses of the College of Medicine are the
nidus of this presently existing ad hoc health sciences
network. The University of Southern California, the Uni
versity of Oklahoma, the Southern Illinois University, the
University of Tennessee, and the University of Maryland
are among the participants. The Regional Health Resource
CeJJ.t~r. the~ Chq.Q1P,:;ij~~L.COUP.ty BlQod~l~<;lnk;~ the .Mercy
Hospital Pathological Laboratory, three private physicians'
offices, and the University of Illinois McKinley Health
Service are also local users in the Urbana-Champaign area.
A terminal at the Lister Hill National Center for Biomedical
Communication is presently in use for their staff s observa
tion of the activity. Eighty terminals are currently in
operation, within and without the University of Illinois
College of Medicine.

2. A Depository Health Science Computer Network

One of the objectives of our research in the PLA TO
based activities is to specify the design for the creation of a
dedicated regional medical information system suitable for
linkage to networks of small individual units. The current
research in developing a depository health science com
puter network is an effort directed toward that goal.

Program in Medicai Information Science 323

A depository network consists of two types of nodes: the
depository node and the local node. The depository node is
an information center into which the local nodes put and
through which they inquire and access information. Each
local node provides independent computational power and
support, administratively and physically, the man-machine
interface to its users.

The successful implementation of a depository computer
network requires the presence of both local and depository
nodes. The experience gained in the past indicates the
practicality of a small to medium size computer supporting
PLATO-like system for such activities. We have proceeded
to implement and operate a PLATO-like system on a
minicomputer.7 System development efforts are now di
rected toward the refinement of the existing system, the
development of a multiple terminal, mUltiple user, PLATO
like system. CAl, CMI and MIS programs developed on the
PLATO IV system are being transferred to the small
system. Such development is important to the application
of computer technology to health education and health care
delivery because:

• in the framework of such a system, health professional
education, patient education, consultation, monitoring,
and referral programs can be effectively integrated and
utilized.

• the distributed computer network makes it feasible to
share courseware developed at different institutions on
a locally administered computer system.

• via such a system, it is feasible to develop a compre
hensive, incremental, and detailed health and clinical
data base. Such a data base is essential to resolving
problems in other areas of computer application to
health care, particularly in those domains involving
probabilistic decision and prediction algorithms, and
. those involving validation of criteria of quality of
care-decisions that are now largely made on an intui
tive basis.

SUMMARY

Plans for a program in medical information science have
been developed at the Urbana-Champaign campus of the
University of Illinois College of Medicine. Curricula for
undergraduate and postgraduate medical students are being
planned. Several research projects in medical computing
are well under way.

Like many other institutions, our University is facing
reduction in federal funding for many programs. The rele
vance of health care technology to a better health care
delivery system is under close examination by various
governmental agencies. With the tight budget situation,
every institution is now experiencing greater cooperation,
and a coordination among all institutions and members of
the health computing profession is a necessity for the future
progress of medical computing systems. A greater emphasis
should be placed on the direct education of senior medical
and other health professional manpower: the present abyss

324 National Computer Conference, 1977

between potential and realization may well be largely due to
the expectation by health professionals without the accom
panying knowledge that would enable them to effectively
implement. We believe that structured training will remedy
this and provide a more realistic basis for a national
cooperative effort.

APPENDIX-GOALS AND OBJECTIVES OF A
PROPOSED CENTER FOR MEDICAL
INFORMATION SCIENCE

GOALS

• To advance the quality of health care delivery by
increasing understanding of the effective uses of com
puter science and information processing in clinical
medicine; and

• To advance basic knowledge in medicine, both clinical
and experimental, through research in medically-re
lated information science.

OBJECTIVES

Instructional

• Develop an educational program in the principles and
use of information science and computer science as
related to clinical medicine and health care delivery;

• Define the specific learning goals and objectives in
information science for medical students (including
students in basic science and in the clinical program),
as well as students in allied health science programs:

i. Identify objectives and goals common to all health
science students.

ii. Define specific objectives for individual health sci
ence careers (including allied health) relevant to the
needs of the particular disciplines.

• Develop teaching and instructional programs to fulfill
the defined objectives. The instructional programs are
designed to be integrated into the overall curriculum
and learning goals of the students. They encompass:

i. Basic principles of computer science related to
medicine.

ii. Information processing technology related to data
analysis and medical records.

lll. Systems design related to health care delivery in
community health maintenance, ambulatory care
systems, and hospital information systems.

• Participate in curriculum development and the defini
tion of learning goals and objectives in information
science related to medicine for University undergradu
ate students (particularly those majoring in the Depart-
ment of Computer Science).

• Participate in instruction to such undergraduate stu
dents.

• Participate with the Department of Computer Science
in the design of a curriculum for graduate instruction in
medically-related computer science for those students
majoring in Computer Science who wish to specialize
in health areas.

• Provide opportunities for advanced training (fellow
ships) for physicians and others on the doctoral level in
medical information science.

• Serve as overall coordinator of the PLATO Medical
CAl project within the College of Medicine.

i. Assist in the definition of goals and objectives.
ii. Assist in preparation of instructional material.

iii. Develop tools for the evaluation of the utility of
computer-assisted instruction in various settings.

Research

• Engage in original research and development in medi
cal information science.

• Broaden scientific knowledge by the delineation and
identification of important interdisciplinary problems.

l. Define those areas where important health-related
problems may be solved only by the application of
skills from medical and other University disci
plines.

ii. Cooperate in the structuring of such interdiscipli
nary research and participate in its execution.

• Provide opportunities for research and research train
ing for medical students, graduate students and under
graduates.

• Advance scientific knowledge by contribution to the
scientific literature.

Service

• Professional

i. Provide professional and technical support to the
affiliated hospitals in the areas of medical comput
ing.

• Assist in the development and operation of
medical data bases shared by the University and
affiliated hospitals.

• Assist in the creation of specialized information
modules and information systems utilized jointly
by the University and affiliated hospitals.

ii. Provide a supportive educational resource in the
field of medical computing and information systems
for health professionals throughout the State.

iii. Make available consultative support to health
professionals throughout the State.

iv. Provide special support services for health-related
information processing for health professionals and
State and local planners.

• Assist in the design and maintenance of health
resources and health manpower inventories.

• Develop software for specialized health data
management needs.

v. Provide assistance, consultation, and support to
health professionals and other departments in the
University involved in:

• developing systems of data collection and classi
fication.

• developing models of clinical management.
• developing computer-based quality assessment

and assurance systems.

vi. Assist other faculty and departments by providing a
computer and information technology support base
for categorical discipline research problems.

Program in Medical Information Science

• Public Service

Assist in the wider understanding of the impact of tech
nology and systems organization on the quality of health
care delivery.

REFERENCES

I. Collen, M. F., ""Hospital Computer Systems," Wiley, Johnson, and
Sons, Inc., 1974.

2. Lindberg, D., "Special Aspects of Medical Computer Records with
Respect to Data Privacy," Proceedings, Second Illinois Conference on
Medical Information System, SBMS, University of Illinois, 1976.

3. Chen, T. T., B. T. Williams, and A. H. Levy, "A Depository Health
Cumputer Network," 8th Annual Conference, Society for Advanced
Medical Systems, 1976.

4. Anderson, j. and j. M. Forsythe, Editors, World Conference and First
Medical Informatics, Medinfo 1974, North Holland.

5. Bitzer, D. and D. Skaperdas, "The Design of an Economically Viable
Large-Scale Computer-Based Education System," Report x-5, CERL,
University oflllinois, 1971.

6. Chen, T. T., "An Overview of a Health Science Computer Network,"
Digests of Papers, CompCon Fall 75, IEEE Catalog No. 75CH0988-6C,
1975.

7. Chen, T. T., A. B. Baskin, and D. Jones, "A Local Node of a Health
Depository Computer Network," to be published.

The health care computer user-"Where will
we find the integrators?"

by ROGER H. SHANNON and MARION J. BALL
Temple University
Philadelphia, Pennsylvania

ABSTRACT

This paper assumes that the primary objective of the
medical care system is patient welfare. To best accomplish
this objective the medical specialties must communicate
and be well coordinated. The organization and distribution
of information, which is the domain of the medical informa
tion scientist, is of central importance. In practice, medical
information scientists often influence reorganization of hu
man institutions, and thereby become change agents. They
are commonly consulted about problems crossing discipli
nary lines and see trends that allow them to predict and
guide future developments. Many information scientists
also simultaneously fill a role in some other specialty so
that they exert influence both from inside and from outside
the medical practice structure. The medical information
scientists described are in an excellent position to be profes
sional integrators. Good integration like any art is predi
cated on appropriate attitudes and has basic skills that can
be taught. This paper suggests that formal preparation to
integrate the activities of the medical practice environment
is a desirable adjunct .to the traditional preparation of
students of medical information science.

WHERE WILL WE FIND THE INTEGRATORS?

The traditional academic hierarchy has served medicine
well as a framework for dividing tasks in a knowledge-rich
environment. However, specialty has tended to produce
autonomy if not mutual isolation of one discipline from the
other. Since patients continue to function as integrated
units and patient care continues to be medicine's prime
objective, there exists a constant counter-demand to inte
grate the diverse activities of the specialty oriented health
care team. But where do the integrators come from?

To answer the question, one must make some presump
tions about integration. Integration can perhaps best be
attacked as a boundary problem. It therefore focuses on
communications--both technical and human. "Communi
cation" has been defined by Mortensen and Sereno as "a
process by which senders and receivers of messages inter
act in given social contexts.''! It is fairly simple to see
embedded in this definition the concept of input- a link- and

327

output. But this still leaves unresolved the issues of data
compatibility, data perception (information), and social
context with all the mystery of its deep structure. Going
one step farther, one may presume that the problems of
data are solvable, at least at a technical level. The issue of
social context remains.

It is a position of this opinion paper that to exclude
consideration of social context from the process of integra
tion makes the process not only worthless but often danger
ous. Good integration is still, in the last analysis, an art,
and the artists are still emerging randomly and by accident.
It would seem to be precarious for the stewards of complex
systems to rely on accident to produce an essential skill.

Fortunately, the principles underlying these artists' ex
pertise are being SUbjected to increasing scrutiny and an
abundant literature is appearing addressed to "communica
tion theory," "social organization," "change dynamics"
and a host of other related subjects. The tools exist for us
to recognize aptitude and train artists of integration. These
people will then be competent generalists as well as special
ists.

Since a major concern of Medical or Health Information
Science is systems, and since systems imply integration,
the question which must be confronted is "Should the skills
of integration be included in the basic curriculum of the
Medical Informatiun S"it:nti~t:~

A tight academic viewpoint might well generate a nega
tive answer, contending that the medical information scien
tist should be limited to the technical aspects of interface
design. This view would be predicated on the assumption
that other specialists exist to deal with associated problems.
In addition, such an academician could rightly assert that
the field is already overburdened with content and that the
addition of more material could only act to degrade the
quality of current medical information science programs.

This view of any discipline, perceived from within,
rightly emphasizes quality and tends to keep the specialty
manageable. It also pragmatically recognizes that it is
commonplace to deal with both information overload and
increasing social complexity by repeated division of respon
sibility. It fosters the ability to maintain personal and
academic order without which there would be a rapid
erosion of effectiveness.

328 National Computer Conference, 1977

Unfortunately, the process of progressive specialization,
as beneficial as it may be to integrity within the specialty,
defaults on the need to preserve integrity among the
specialties. The larger social or academic blocks which
spawned the specialties are left untended, and the network
of boundaries which permeates the interstices among the
specialties is attacked late and with a total absence of
coordination. In its default, specialization can be both
socially and academically destructive.

This destructive element has not gone unnoticed. The
public response is seen in consumerism, centralization of
control, the explosion of the planning industry and, indeed,
even among esoteric academics in the quest for a general
system theory. These responses bear testimony to the fact
that the ultimate purpose of specialties resides in combined
rather than isolated effect. They are testimonies of the
value of integration and of the need for competent general
ism.

It may then be acceptable to say the skills of integration
have value to the medical information scientist who leaves
training to be a full time integrator, but what value will such
skills have for the other graduates?

Sias in "An Analysis of the Job Market for Biomedical
Computer Scientists"2 has suggested that training program
graduates will be absorbed by three major categories of
medical computer applications, (I) business data process
ing, (2) database management, and (3) automated medical
instrumentation. In his conclusion, Sias states that, "It is
likely that biomedical computer scientists will be matched
most appropriately to positions with computer systems
supporting large medical data bases that will be needed to
establish a nationwide comprehensive health-care system."
Regarding development of this field he said, ''Computers
have been found useful in the ambulatory care setting so it
is likely that this rapidly growing segment of medicine will
require significant support while the larger hospitals will
over a period of time introduce computer automation first
in such areas as clinical laboratories and later in medical
records and hospital-wide information and communications
systems." A listing of graduates of training programs sup
ported by the National Library of Medicine, while still too
few in number to be a reliable trend setter, tends to support
the Sias prediction and suggests a fourth, perhaps self
limited, market in university faculties. 3

Business data processing appears to find its manpower in
the general pool of data processers or through training new
personnel on the job. Consequently, detailed preparation
for that market need not be a major concern in training
medical information scientists. Medical instrumentation is
heavily oriented to engineering and is an appropriate field
for the technicaiiy oriented computer scientist. The true
medical information scientist, as his title implies, is the
individual who may be expected to find his way into the
world of data bases and medical systems.

It appears generally recognized that the popularity of
large computers shown in the 1960's is being overshadowed
by a rush to smaller computers in this decade. The pressure
exerted by the maxis to agree and share can once again be
circumvented by those who would rather go it alone. This is

resulting in numerous applications that are counterparts of
the laboratory systems to which Sias refers above. Most of
these specialty oriented, standalone systems, although of
fering some service of process control, at a minimum
develop some raw data for human consumption. Many
systems include small verbal records even when their
primary purpose is to produce data in other forms. Some
examples in addition to the now familiar laboratory sys
tems, are physiologic monitoring systems which display
analog signals and derived numeric data but frequently keep
patient mini-records as well; nuclear imaging employs com
puters to manipulate digitized pictures and to derive associ
ated data, but patient records and registries are a frequent
accompaniment. The computerized tomographic (CT) scan
ner probably outstages all the other special applications at
the present time, and it too carries verbal data with the
expectation that there will be more in the future.

Primarily verbal stand-alone systems are also proliferat
ing. Specialty registries, patient records banks, reporting
systems and scheduling applications (many of them struc
tured) are a few examples. These merge smoothly into
ambulatory care and the chain of development suggested by
Sias where burgeoning hospital information and medical
records systems are bearing out his predictions. Just over
the horizon, one can see the combination of these commu
nications oriented systems with more effective decision
systems including the promising work in artificial intelli
gence. At some time, integrated with communications, the
data base will have come into its own, and the stand-alone
systems of today will have become prologue.

It is inconceivable that medical information scientists can
be fully effective designers, administrators or implementors
during the socially critical years comprising their profes
sional lives without understanding and specific skill in the
art of integration. It is also inconceivable that medical
information scientists will always be in positions where all
of the desired support expertise will be available. In fact, if
past experience is any indication, they will often be the lone
"vox c1amantis in deserto"-the voice crying in the wilder
ness, and their main resource will be themselves.

If the current popularity of stand-alone systems can be
accepted as only a phase of the trend projected in the
preceding paragraphs, one would then have to reply with
"yes" to the question of "Should the skills of integration
be included in the basic curriculum of the Medical Informa
tion Scientist?"

If the medical information scientist were entering a
society with a mature demand, and his only role were to be
filling that demand in a pre-defined manner, then the value
of adding generalism to his expert base might again be
questioned. But he cannot expect the iuxury of such a
predictable professional life. He will live, instead, in a
world of transition and turmoil, and his professional activi
ties will be punctuated by surprise.

There are four roles which many medical information
scientists will play, that may further accent the need for
skills of integration. These are the roles of (I) change agent,
(2) internal medical and health care l:onsuitant, (3) multi or
at least dual specialist and (4) futurist.

Change agent

One becomes a change agent whenever he is charged
with the responsibility of introducing new technology or for
revising organization. By their nature, computer systems,
small or large, are innovations, and the medical information
scientist will be viewed as their champion. It makes no
difference whether the computer scientist acts as applica
tion consultant, systems analyst, administrator or advisor;
he will be the harbinger of change and instability. How he
acts will affect the course of change, perhaps even to the
extent of success or failure. Basic principles of psychology
and management of change have been well explicated4,5 and
their teaching can be well accommodated by any degree
granting educational program.

Internal consultant

By virtue of his aSSOCiatIon with new methods and
because of the cross disciplinary nature of his specialty, the
medical information scientist is often consulted when other
members of his institution are actively considering innova
tion. These other members may be themselves change
agents or in search of solutions to specific problems or
merely curious. In addition the computer scientist may
expect to make contributions to in-house educational pro
grams. The quality of contribution made by the medical
information scientist will be influenced by his understand
ing of the boundary conditions in his institution, including
interrelation of medical expertise, the impact of financial
constraints and policy, and internal politics. To truly inte
grate, he will have to understand overall medical objec
tives.

Dual specialty-niche

During at least the next few years of the current transi
tional period, the medical information scientist may have to
continue to operate in two different specialties simultane
ouslY .TI'iis pnlcti~c is perhaps most clearly detmeM'edin
the domain of the M.D., Ph.D. Anyone who has personally
investigated the job market has recurrently encountered
situations where expertise in medical information science is
recruited with no appropriate slot. Instead the physician is
offered a clinical position and salary with the expectation
that he will divide his time. Cursory reflection will reveal
that much current research is conducted by people fitting
this description. On the other side of the coin, academia is
beginning to have people with advanced degrees in informa
tion science apply for training as M.D.'s or for residencies
in medical specialties. Some of these candidates are already
well established, recognized professionals in their original
discipline. Others, according to the reports to NLM, are
recent graduates of the ,NLM funded training programs. 3 In

The Heaith Care Computer User

at least the near future, one can expect to see many more
niches provided by established disciplines than by formal
positions for medical information scientists. Those filling
dual roles will be living interdisciplinary lives which will be
more comfortable and of greater value if they are general
ists in possession of skills of integration.

The futurist

Finally, the medical information scientist will have to be
to some extent a futurist. The health care science is
changing at an astounding rate, both clinically and politi
cally. Shifting power is redistributing the machinery of goal
and policy setting. By the time an innovation is established,
it is on the way out. The people who are most effective in
such mercurial times are those who are reacting, not to
what is, but to what will be. The success of these people is
the proof of their ability to predict. Good futurism is still
largely intuitive, but it is yielding to examination. Tech
niques of forecasting and simulation have become common
tools. There is a literature on the sociology of complex
organizations. And "long range planning," although con
traversial, has become a household phrase.

One well known futurist, Robert Theobald,6 has posed
the challenging question, "Are we more interested in com
ing up with sophisticated answers to obsolete questions
than defining the new questions that are developing as the
world continues to change?" The call for papers for the
Conference led off with the still young question, "How
should health computer facility directors and staff be
trained to interact effectively with actual or potential health
users?" As a partial answer, this paper has suggested that
the early efforts of a minority of programs to include
training in the skills of integration and to foster the attitude
of generalism be recognized and supported.

In conclusion one should again ask, "Where will we find
the integrators?" The answer-probably always from a
variety of sources, but Medical Information Science should
be a major contributor.

REFERENCES

I. Mortensen, C. D., and K. K. Sereno, Foundations of Communication
Theory, Harper and Row, New York, 1970, p. 5.

2. Sias, F. R., Jr., "An Analysis of the Job Market for Biomedical
Computer Scientists," 14th Annual Southeastern ACM Conference, April
22-24, 1976.

3. National Library of Medicine Report of Training Program Directors, May
ll-I2, 1976.

4. Judson, A. S., A Manager's Guide to Making Changes, John Wiley and
Sons, Inc., New York, 1966.

5. Shannon, R. H., and M. J. Ball, "The Role of the Medical Information
Scientist as a Change Agent in Future Health Care Delivery," Journal of
Clinical Computing, VI (1): II-l3, 1976.

6. Theobald, R., Beyond Despair, New Republic Book Company, District of
Columbia, 1976.

NAA-An approach to analyzing backpanel crosstalk

by J. S. HEBHARDT, C. F. GROVES and R. BARDAS
Sperry Univac: Philadelphia Systems Development (PSD)
Blue Bell, Pennsylvania

INTRODUCTION

Commensurate with the trend towards higher packaging
density in wire wrap backpanels is the problem of crosstalk
between the wires which distribute signals. The Noise
Analysis Approach (NAA) described in this paper is an
attempt to develop a general technique to assess the status
of a new machine or a new packaging approach with
regards to crosstalk noise in the backpanel. Although
generally applicable, the technique was first applied to the
Sperry Univac 90/30 computer system. This system is
microprogrammed, and is the first user of a TTL packaging
technique of high backpanel wirewrap density called Modu
lar Performance Packaging-l (MPP-l).

Picture a computer backpanel with several thousand
wires each carrying signals that switch in response to an
operating program being executed by the machine. The
spacing between wires is not uniform, nor are the wires at a
uniform height above a ground plane. The complexity of
this picture and the lack of uniformity make a theoretical
prediction of crosstalk virtually impossible. Backpanel
crosstalk is a pervasive problem affecting almost every
signal to some extent. Hypothetically, if the number of
signals were small, "worst case" crosstalk measurements
could be made on each signal in the backpanel. These
signals could then be ranked from low (those with the least
crosstalk) to high (those with the most crosstalk). The large
number ur sigi}'ar~ifi d~~~uhiplile"i~t5acKp[fiel;~ rlo\~ec~'~'i< ,'ana
the difficulty of defining worst case conditions in an operat
ing machine environment make this approach impractical.

Another alternative to theoretical prediction is to use an
empirical/statistical approach-define the parameters criti
cal to the creation of crosstalk; derive an estimating equa
tion relating these parameters; apply the equation to signals
and their associated backpanel wires; and, rank signals
based on the value computed using the estimating equation.
This ranking is an estimate (based on the parameters
defined) of the' 'worst case" ranking mentioned previously.
To use the ranking, signals with high estimated crosstalk
(e.g., top 200) can be measured on the test floor in an actual
machine. If no crosstalk problems are found in these cases,
a confidence is achieved concerning the crosstalk suscepti
bility of the remaining signals. If problems are found, the
ranking data is useful in pinpointing logic areas that are

331

most susceptible and should be re-wired. This, in brief, is
the framework of the Noise Analysis Approach.

Requirements

To proceed with the approach outlined, the following
basic elements are required: (1) a physical description of
backpanel wire routing, containing information concerning
adjacency between wires; (2) a means of linking crosstalk
estimation to the actual signal switching activity which
exists during program execution; (3) a crosstalk estimating
equation; and, (4) an "analyzer" to combine the above and
produce a ranking. Data of the type required in item 1 has
been provided by PSD Design Automation for past systems
through the Length of Adjacency Process (LOAP), which
describes backpanel adjacency and routing for wires associ
ated with specific signals selected by the user. The existing
PSD Logic Simulation Process was used to provide the data
required by item 2. The 90/30 System had undergone
extensive logic simulation during its development and accu
rate models were available. The crosstalk estimating equa
tion required by item 3 was not available, and had to be
developed by the PSD Hardware Applications Section. The
equation was synthesized from data obained from crosstalk
measurements made on wires threaded through a wired 90/
~6brrdcpmTd; An,·.l\aT!'a'i~,~I., ~t"t" .. ~ A~~*,
Program (N AP) is the fourth and final element required in
the Noise Analysis Approach outlined above. The function
of NAP is to compute a crosstalk estimate by applying the
estimating equation to each set of wires associated with a
signal. The estimate represents the susceptibility of that
signal to crosstalk, and is used as the basis for signal
ranking.

NAA BASIC ELEMENTS

This section describes in more detail each of the four
basic NAA elements mentioned previously: (1) Physical
Backpanel Description; (2) Logic Simulation; (3) Crosstalk
Estimating Equation; and (4) Analyzer (NAP).

332 National Computer Conference, 1977

Physical backpanel description

90/30 Backpanel hardware

The 90/30 wired backpane1 assembly (motherboard or
module) consists of two rows of connectors (51 connectorsl
row) assembled on a drilled pc board (l2"x 14.5'') with
voltage artwork on the connector side and ground artwork
on the opposite or wire wrap side. Six such modules
contain the 90/30 Processor logic. Connector pins protrude
through the pc board and are used for wire wrap connec
tions, and the area between these pins form channels for
the routing of backboard wires. Figure I shows an enlarged
portion of a module and illustrates ground artwork, pin
spacing and channels. Three levels of wire wrap are al-

HORIZONTAL _1'~~~1!'-!!!~ CHANNEL "E" t

HORIZONTAL
CHANNEL "0" --r---+--+-t--t--t---+-t--t--t---r

(.100" PIN
SPACING)

HORIZONTAL
CHANNE.L "C"

(.100" PIN
SPACING)

TYPICAL
HORIZONTAL
GROUND BUS

TYPICAL
VERTICAL

GROUND BUS

lowed per pin, with level 1 being closest to the ground
artwork and level 3 being at the top of the pin at a
maximum distance from the ground artwork. The wire used
for wrapping is a mylene insulated, 30 gauge wire with an
O.D. of .0175 inches. A logic card consists of either Series
74 or TTL III Integrated Circuits on a 1.45"x5.25" printed
circuit board which mates with a motherboard connector.
Where possible, printed circuit card artwork is routed such
that inputs and outputs from each gate are brought out to
the 96 contact fingers of the card, allowing all logic inter
connections to be made via wire wrap on the connector
pins. All of the wires or wire segments (links) associated
with a specific logic signal or source are defined as a net.
Due to the three level per pin limitation mentioned earlier, a
net may have up to three branches with each branch having
several wires or segments. A three branch net is shown in

a:
w
CD
:E ::J} CABLE
~ CONNECTOR
a:: AREA

02

10

20

30

40

96PIN

50 CONNECTOR
AREA

60

70

80

+ INDICATES PIN

VERTICAL CHANNEL "AU ~.
(.100" PIN SPACING~ VERTICAL CHANNEL "B"

----. (.150" PIN SPACING)

Figure ! .. ·Section of MPP-l backpanel vie\ved from v-lire \llrap side

BRANCH

LINK

NODE

DRIVER
NODE

Figure 2-Three branch net

Figure 2. The connection technique illustrated is commonly
called "chaining."

Wires as victims/culprits

In general terms, crosstalk is the coupling of an unwanted
signal from an active signal carrying line, or "culprit," to a
nearby line termed a "victim." For the NAA, only wires
adjacent to the victim in the victim channel were consid
ered to be "nearby." If crosstalk is of sufficient magnitude
and duration, it wilJ affect gates being driven by the victim
line, causing them to switch unintentionally. Potentially,
crosstalk can be induced on any of the backpanel wires
which comprise a branch and can affect any of the loads
tied to that branch. For reasons given in a later section, it is
unlikely that crosstalk induced on one branch of a victim
will affect loads attached to another branch of that victim.
Consequently, each branch was considered a potential
victim for noise analysis. The victim example shown in
Figure 3 is treated as two separate cases; one having
adjacencies with cUlprits C2, C3 and C4, and another case
having adjacencies with cUlprits Cl and C5. Neither C6 nor
C7 would be considered as having any effect on either
victim branch.
·~Beiore~H~tte"mpting to estimate the crosstalk on a specific

branch assumed to be a victim, knowledge of adjacent
wires or potential culprits is essential.

LOAP

The Length of Adjacency Process mentioned previously
provides complete routing information for any branch se
lected by the user. It also supplies a list of components
which drive wires that lie adjacent to the victim in the
victim channel and indicates that the length of each adja
cency in inches. These components are the "potential
cUlprits" for the selected victim. To assure that only
manageable amounts of data are generated, LOAP informa
tion is controlled by two cut-off parameters. One parameter
sets a minimum adjacency limit for components in the list.

Approach to Analyzing Backpanel Crosstaik 333

If set at 3" for example, a component will not be listed as a
potential culprit unless it drives a wire that lies adjacent to
the victim for 3 or more inches. The second parameter sets
a minimum limit for the total adjacency of all the compo
nents listed. If this limit is not met, the entire branch is
eliminated from the edit. If set at 100" for example, only
"cases" (branches and their potential culprits) would be
listed that had component adjacencies which totaled 100 or
more inches. A sample page from the LOAp Edit is shown
in Figure 4. The minimum adjacency cut-off was set at 3"
for the N AA on the basis of empirical measurements. The
total cut-off was set at 135" based on a sample taken from
LOAP data. The 90/30 Processor contains an estimated
10,000 branches, 2000 of which were included in the sam
ple. It was found that total adjacencies for these branches
went from five inches or less, to greater than 1200 inches.
Figure 5 shows a cumulative percentage chart representing
approximately 1500 branches which remained after the 3"
minimum cut-off was imposed on the 2000 branches sam
pled. Applied to the entire number of branches in the
Processor, this indicates that 7500 branches would remain
with the three inch cut-off imposed. From the graph, it can
be seen that 20 percent of the branches have total adjacen
cies greater than 135". Applying this fact to the 7500
remaining Processor branches implies that 1500 cases
would have to be analyzed. With the resources available, it
was decided to accept the 135" total cut-off knowing that as
time allowed, it could be relaxed to pick up additional
cases.

Once the LOAP list of potential culprits associated with a
specific victim is available, logic simulation is used to
determine which of these components actually s'witch in a
machine environment.

+ + + + + + + +

+ + + +
VrCTIM· + + +

SOURCE + + + + +

+ + + C1 + + + + + +

+ + + + + + + + +

+ + + + + + + +
VICT. LOAD C4

+ + + + +

+ (±) + + +
VICT. VICT. Cs

LOAD LOAD

+ INDICATES BACKPANEL PIN

® INDICATES NODE (WIRE WRAP CONNECTION POINT)

Cj INDICATES CULPRIT

Figure 3-Victimlculprit adjacencies in a backpanel

334 National Computer Conference, 1977

X)

r-~~~~~~~~~~~5IS:~~~~~~~LU~?-~~ "I""'V" .OJ.CE"CY > 1 I"CHES ,NO TOTAL ADJaCENCY>
TO F TO 0.. TC,

LLL.SSSSSS b CH'''''lL I. I(kl(kTTT KuRT TT
A)--{"UCl3(j ell)IIH'!>!> JA 51 1/15S .\. S

Q"40

JO I
OOl

00"
001
001

''''"''£L L KKI(IUTT KK,,'HTT IN. 8NO C"'''''EL. ~ KKl(iHn I(KKRTTT
11v170 17.5u 17,5!> .J 001 11".:.) 29, ~1 ~." 50

IN. 8NO
'I ... 00 ..
2.2 OOl

B)

~06U IS
50.0J"
551007
551010
!lS206S
:'550JI>
!oS"" .. 6
65SO;!S
'590';0
'.IUJ2
.,1071
677(j Ii Z
677u 9 J
.7H,'il
70 I O'll
70l() 17
70l,,3'1
709(':'5
11 OO/>~
71lu~2
715001
715Ciu'l
715(j1'l
715021
71 ~O~l
11 "Oil I
72103l
7 l'lO"o

73"CI~7

21HA95 21. 98 291. 97
21V~66 ~ •• S~ ~7" 63
2I H"Sl l~ S~ ~!>. 5)
~ 1".9~ lA 9~ "loA '17
21.UY!'o 2AI'17 1Y~11)7

2 I"''''!. 2'1'.1', ~r,'lud
21"""S 1 !'of') I I. luI
~Ih"<;o; 1!'o~IO" ~'IAIU7

2IV""0 ~ "78 .. 'I
i 1".95
21 HA~"
~ \'U!.J
II HA55

HIOI,

JA It."
.; I> ~~

JA S!>

'0&107
,7ll Gij
~v. S;.

17 .. S7
"IHA9!o 2. 'IF! 201> 'III
2IV~"t- ~7.]<I 'I"'" dO
2PUSJ j",.!oJ "o~ 56
2.t"A~C; l'lA "17 "'")J\ 1.17

':1~""6 .", ~"" 9U
lI""<;5 9~IOe l2AliHI
21"A9~ 9'107 ~~A\lJ7
dll""!. lOA 1;:1" ~~'IOS
:':101&";; "~I(l~ l'iA107
21 .. A"!> ;;AI.~6 IqAlutl
~ IHA'I!> 7. YI ,.,A 97
.IV'l6.. ~7& ~'1 "6S 56
2Iv.... 000& 9b "7~ 117

2IV.... "7 ... !J "1>" oil
<'1 V~I>6 .,71. J.l "loA 72
~1\f'«t61'1 '17~ bt} -'01'\ 1t.
~1'tA9!> 17l 0', l'ill Y7
;.1 9.. 18A "tI 37 .. 98
21V"00 "I .. A 2" ~78 77
ilIV~'. "7~? "08 II
<!I V'I6/> <I". Ji 'de 7'1
1.1 J"~o b 1. ~7'" ,;

(, .6

0,)1
&./0 OJI
3. 'I 30 I
J." 201
!>.8 3u I

Qui
001

J.e OO~

l.S 001
6." OIlJ
S. II 20 I
1.9 20 I
I. R)Q I

".;; 2JI
J 0) 30 I
3.5 III 1
3 ... 30 \
). 'I 3D I
.l.S lJ I
J.e 30 I
~. 7 3() I

ZIV020 2A 98 2. 57 2.000l 21a9J 29. 97 294 5~

;<1 V'Io6

<il' 'Ib"
;<1 v'llot.
./ 1 .. ,,"5
21 HA'I5
.ll v~ol>

'I7A 87

'I'") J
't'A 1.'1

\ 'i~ .l
1910 'illi

~7B 37

'178 35
'loll

'1/011 08
'1011 '1_

~J& I Od
l7a 911
'1611 l •

'loa 3'1
'1611 ~.

2. 'I ",JI

5.8 00'1

I.l 2ol1
I. ° 302

~. 2 301

5. d 30 I
'I. J lui
I.u 202
2.'1 '101

• I 317

• I 311
2.1 l27

'Ibtl 12 ~ 18 Il

'178 17

'70C.U'l 21"&~!> 11'la" 27&107

.5 201
!>.8 lOI

.11 101
2.7 20 I
.5 201

~.6 201
S.8 30l

.1 lZS
s.e 30l

.1 l20
J.9 00 I

".0 001 .70020 21 ~5 I II A108 l7AIOI
TOTAL CL'L,P"IT LEIHih' Of' AOJ&CENCT

REFERENCE

A

B

C
X

Y

DESCRIPTION

VICTIM IDENTIFICATION AND BRANCH NUMBER, VICTIM ROUTING DATA AND VICTIM
WIRE LENGTH IN INCHES.

SOURCE IDENTIFICATION AND ROUTING DATA FOR POTENTIAL CULPRITS OF VICTIM,
EACH POTENTIAL CULPRIT LIES ADJACENT TO THE VICTIM FOR THE LENGTH SHOWN.
TOTAL ADJACENCY OF ALL POTENTIAL CULPRITS,

MINIMUM ADJACENCY CUT·OFF WHICH EXCLUDES FROM THE POTENTIAL CULPRIT
LIST ANY POTENTIAL CULPRIT THAT IS NOT ADJACENT TO THE VICTIM FOR AT LEAST
"X" INCHES, IN THE SAMPLE X=3",

MINIMUM TOTAL ADJACENCY CUT-OFF WHICH EXCLUDES ANY VICTIM FROM THE
LOAP EDIT THAT DOES NOT HAVE A TOTAL POTENTIAL CULPRIT ADJACENCY OF AT
LEAST "Y" CULPRIT INCHES, IN THE SAMPLE, Y=135",

Figure 4-Sample page from Loap edit

2.0 "01
Je 0 lO 1

.1 l2l

• I l20

TOTAL
ADJ.

S ••
0 •• ...
l ...
3 ...
8.7
•• '1
•• OJ

3.8
9.l
6.5
!>.I
l. I
3. OJ

5.1
l.l
l.5
l.S
3 ...
3.5
l ••
3.7
OJ .7
S ••

•••
9.0
'1.5
5.0

'.1
'.2
l.9

(A

(B

(C

Logic simulation main storage which is limited to 512 bytes. The contents of
these storage areas is input to the model prior to simulation.

Model description

The PSD logic simulator exercises a model derived from
transcription data stored in a Master Data Bank (MDB). An
MDB exists for each of the major functional blocks of the
90/30 System (Processor, Integrated Peripheral Channel,
etc.). The parallel nature of data path logic is expected to
create the best environment for crosstalk. Since the Proces
sor contains a significant amount of data path logic, it was
selected as the main target for NAA application. The
approach, however, is applicable to the logic comprising
each of the remaining functional blocks.

Storage capability (including main storage, control stor
age and general registers) for the processor model is pro
vided through the logic simulator via the normal processor
logic intenaces. The model storage areas have a capacity
equal to that of the actual machine with the exception of

The logic simulator provides timing pulses to the model
at intervals selected by the user. The 90/30 System uses a

I
Z

100

~ 80 t------::3II~
a:
w
~60
>
~40
~
::::I

~20
u

1499 BRANCHES OVER 3
INCHES PLOTTED

oL-----~--~--~------~----~------~----~ o 100 200 300

INCHES

400 500 600 OR
MORE

Figure 5-Cumuiative distribution of adjacencies for 90i30 processor sampie
of branches

four phase clock which was simulated by using five inter
vals or passes. The relationship between these intervals and
the 90/30 clock timing is shown in Figure 6. The five passes
(four clocks) constitute a cycle.

To exercise a model, initial conditions for storage areas
must be specified along with input levels for critical system
signals such as System Clear, Run etc .. The model control
storage is initialized with the micro-code written to execute
the full 90/30 instruction set. Initial main storage conditions
are merely the series of macro instructions (program) and
operands which are to be simulated. Taken together, these
conditions constitute a simulation "run" and the model will
respond, cycle for cycle, as an actual machine executing
the same program.

The Logic Simulation System allows the selection, sam
pling, and recording of the activity of any set of logic
elements during a simulation run. This set of elements is
input to the simulator via the PR File. The run output data,
termed "display," contains the value (1 or 0) of each of the
selected elements (or logic gates) at each pass during the
run. Display data is output onto a tape called the DP File
from which a printout can also be obtained. Initial main
storage conditions and register contents are specified by the
user on punched cards and then transferred to the PR File
for input to the logic simulator. These cards can also be
read into a 90/30 Processor via a card loader thus providing
the machine with the same initial conditions as the simula
tor.

Simulation of LOAP components

LOAP produces a list of components or logic elements
adjacent to a specific victim branch under the two cut-off
parameters mentioned previously. With this list as an input
to the simulator (via the PR File as elements to be dis
played) it is possible to determine at each pass of a program
being simulated which of the potential CUlprits actually
switch. The link that enables LOAP Files to be entered
onto a PR File for Simulation is a program called DISSEL.
A flow diagram illustrating the parts of the N AA described
lhu~ fal i~ ~huV\- n in FiguJt; 7.

ONE CYCLE - 600 NSEC. -I
en I~EC I=EC I=EC I~EC I~SEC
w
en
<t TP1 :I:
A.
~
(J TP2 0
....I
(J

a: TP3

~ w
8 TP4 I I
a: I I A.

! I 1

t t
SIMULATlONl

PASSES PASS 1 PASS 2 PASS 3 PASS 4 PASS 5

Figure 6-Simulation vs. processor timing

Approach to Analyzing Backpanel Crosstalk 335

Figure 7-Loap and simulation elements of NAA

Simulation run

Ideally, the program or sImulatIOn run useo to identify
CUlprits affecting a branch at each clock phase or simulation
pass should be developed to cause as many operand de
pendent logic elements to switch together as possible, while
exercising the entire macro and micro instruction set. A
program with this ideal capability was not available for the
90/30 Processor. What was available, however, was a test
program developed to check the accuracy of the Processor
model following updates. The test program executes 96
percent of the 90/30 macro instruction set and 90 percent of
the micro instruction set. When simulated, the program
provides the best available sample of actual signal switching
activity for crosstalk considerations.

So far, it has been shown how victim/culprit, adjacency
and routing data can be obtained from LOAP and how
switching activity can be obtained via logic simulation. The
next step is to combine these parameters into an estimate of
crosstalk using an empirically derived estimating equation.

336 National Computer Conference, 1977

Crosstalk estimating equation

Test details

As part of the NAA effort, the PSD Hardware Applica
tions Section was requested to make crosstalk measure
ments on test wires threaded through a wired 90/30 module
and to use the data to derive an estimating equation
expressed in terms of relevant variables controlled during
the tests. The following parameters were controlled during
the tests:

1. Adjacency between each culprit and the victim (6, 12
and 18 inches).

2. Number of culprits (l, 2, 4, and 8).
3. The number of culprit loads (l, 2 and 3).
4. The number of victim loads (l, 2 and 3).
5. The victim wire wrap level (levels 1 and 2).
6. The victim channel type (channels identified in Figure

1 as b, c and d were tested).

While not all combinations of the above were tested,
approximately 120 crosstalk measurements were made and
approximately 90 of these were used as data points in the
derivation of the equation. Half of the card complement of
the module was in place during the tests, and power was
applied to the module to simulate actual system impedance
levels. TTL III gates were used as drivers and receivers
due to the faster switching times of these circuits as
compared to Series 74. For both victims and CUlprits, quad,
2-input NOR gates were used as drivers while hex-inverter
gates were used for receivers. For cases involving more
than one culprit, the maximum time span from the first
driver switching to the last switching was 1 nsec. Culprit
lines were caused to switch through both positive and
negative transitions while a measurement was made of the
maximum peak positive noise on the victim line. For all
tests, the victim line was held in the low state where these
gates have the smallest noise margin and are therefore most
susceptible to crosstalk noise. Because the low impedance
at the victim driver output tends to reduce noise at this
point, measurements were taken only at the receive end of
the victim line. The low driver impedance also tends to
eliminate interaction between branches so that noise in
duced on one branch does not affect loads attached to
another branch driven by the same source.

Equation derivation

Before obtaining an empirical relationship between mea
sured noise and the parameters controlled, the data was
normalized to isolate the dependence of crosstalk on each
of the parameters. The normalized data was then graphed,
and curves were fitted to the data points. The fitted
functions Vv'ere then concatenated to produce a final equa-.
tion with a multiplying constant selected such that approxi-

mately 80 percent of the data points fell on or below the
estimating equation. The equation thus tends to predict
higher levels of crosstalk than would actually be found, a
bias that was chosen throughout the derivation and in later
applications. This bias is reflected in the use of TTL III
drivers for initial measurements, for example, knowing that
the results would later be applied to Series 74 gates which
would, because of their slower switching time, produce
crosstalk lower than the predicted value. The final derived
equation is shown in Figure 8. It should be noted that the
six basic terms (or functions) in the equation were chosen
from a basis of fit and have no theoretical interpretation.

Application

Each of the six functional terms will be briefly reviewed
to indicate how a computation would be made. The first of
the six functional terms indicates the relationship between
crosstalk and the number of CUlprits that switched (N). By
comparing successive passes of simulation data for a spe
cific case (branch and its associated potential culprits) the
number of CUlprits can be determined and this becomes the
value used for "N" in the crosstalk equation. The second
term shows the influence of CUlprit loading on crosstalk.
The AC load value at a node (see Figure 2) represents the
amount of transient loading presented by that node to the
source component during switching. If the number of AC
loads driven by each culprit is known, then Lc is the
average load for all these CUlprits (i.e., the sum of individ
ual culprit loading divided by N). Loading data is available
for each of the potential CUlprits from LOAP. The third
term indicates the contribution of victim loading to cross
talk and also shows that it is dependent on CUlprit loading.
Empirical measurements were made with both victim and
CUlprit loads clustered at the end of the respective lines. It
was found that distributing CUlprit loads did not signifi
cantly alter the crosstalk on the victim and therefore the
culprit loading was merely averaged. On the victim line,
however, distributing the loads changed the crosstalk,
which measured greatest at the victim node with the
smallest load. On the basis of these results, it was decided
to use the AC load found at the smallest loaded victim node
for the value of Lv. This value is also obtained from LOAP
data. The fourth term of the estimating equation indicates

CT = 169 [4.5 (1-e-N/41]

I "--1~ roULDRIT

[.S+.2LC] [.9+.1 (~:)] [.S+.4Ch]

L2~ '--3---.J "-4~

I "TERM I

CULPRIT VICTIM CHANNEL
LOAD LOAD TERM
TERM TERM

MUL TlPLYING
CONSTANT

[W(1.3 - .3Chl]

"-- 5---1
WRAP LEVEL

TERM

[1.19 (1-e-A/SI]
"-- S---.I

ADJACENCY
TERM

Figure 8---Crosstalk estimating equation

the relationship between victim channel type and crosstalk.
A complete description of victim routing is available from
LOAP and must be translated into the basic channel types
illustrated in Figure 1. Channel types A through E were
assigned values of 2.5,2,1,3 and 1 respectively. For a
victim routed in more than one channel, a weighted channel
type is determined based on the portion of total branch
length that lies in each of the defined channel types. This
weighted value is used for Ch in the equation. The fifth
functional term shows the effect of wire wrap level on
crosstalk and shows that it is dependent on channel type.
For single wire branches, the value used to represent wrap
level (W) in the equation is the wire wrap level itself (Le., 1,
2, or 3). For most branches, however, a weighted level
must be calculated based on the portion of the branch at
each level. This is the value of W used in the estimating
equation and is obtained from the victim routing description
on the LOAP output tape. The final term in the equation
indicates the relationship between adjacency and crosstalk.
From the LOAP tape, the aqiacency between each cUlprit
and the victim branch can be obtained. The value of" A" in
the equation is the average of these adjacencies (Le., sum
of individual adjacencies divided by N).

Three elements of the N AA have been described thus far;
LOAP, logic simulation, and the estimating equation. The
final element is the Noise Analysis Program (NAP) which
uses the above three elements to assign one value of
crosstalk to each branch and then ranks the branches
accordingly.

Noise analysis program

The NAP considers one case at a time from the LO AP
tape. It computes a crosstalk estimate for that case for
successive passes of simulation data starting at the begin
ning of the simulation run. A computation is only made
where simulation display data indicates that the victim is
low. It was felt necessary to separately maintain the maxi
mum value of calculated crosstalk for each of the five
simulation passes. While the crosstalk at a given pass may
be 'high"en~()ugh"to' att~ciiogI'c"gaies attadiedto" the 'victlffi
branch, the output of these gates may not be sampled until
another pass where there is very little crosstalk. It is the
function of the cognizant logic design personnel to establish
which pass or passes are noise critical for a specific victim
branch. If, for example, a comparison between pass one
and pass two of a given cycle shows that five potential
CUlprits have switched, a computation would be made
based on these five CUlprits and the result would be
interpreted as a pass two calculation. Each time a new
computation is made, it is compared with the previous
value for that pass and only the largest is kept. After the
entire simulation has been exhausted, pass by pass, the
maximum values (one for each pass) are assigned to the
branch being analyzed along with the simulation cycle and
pass where each maximum was computed.

Figure 9 shows a sample of the final results for a single
branch. Note that the values of predicted crosstalk are

Approach to Anaiyzing Backpanei Crosstaik 337

VICTIM/BRANCH - 600001/2

DATA

I
PASS PASS PASS PASS PASS

DESCRIPTION 1 2 3 4 5

CROSSTALK
2250.00 500.00 1600.00 2650.00 2300.00 ESTIMATE (MV.)

SIMULATION
819 29 163 1162 720 CYCLE

Figure 9-NAP results-Single case

much higher than would normally be expected due to the
"predict high" bias mentioned earlier. A table is available
from the Simulation Process to translate the cycle specified
into the macro- and micro-instruction being executed at that
cycle. The crosstalk shown is the maximum value calcu
lated for the specific branch and was computed based on
switching activity which occurred at the simulation cycle
and pass indicated.

After evaluating one branch, the NAP proceeds with
each of the remaining branches in a similar manner. When
this is complete, the branches are ranked as shown in
Figure 10. Five rankings are shown, one for each pass, and
each victim branch will appear only once within a ranking
for a given pass. A fixed number of branches can be listed
for each pass (e.g., top 200 as shown) or only those
branches which surpass a minimum crosstalk level can be
listed (e.g., all branches over 2000.00 millivolts.) Also, a
single average ranking can be produced in which branches
are ranked according to an average crosstalk value com
puted from the 5 separate pass values of each branch. Still
another single listing can be produced which contains the
same information as in Figure 10, but is sequenced accord
ing to cycle numbers. This listing would be helpful when
trying to validate estimates with actual measurements.

NAA RESULTS

When applied to the entire 90/30 Processor file using the
cut-off parameters, the NAP produced a total of 1186 victim

DATA PASS PASS PASS PASS PASS
INDEX DESCRIPTION 1 2 3 4 5

VICTIM/BR. 714001/2 900001/3 622007/0 492001/3 829050/3
1 ESTIMATE 700.00 0000.00 300.00 2000.00 1800.00

CYCLE 214 516 216 100 350

VICTIM/BR. 500010/0 832001/0 500010/0 600001/2 900001/2
2 ESTIMATE 1500.00 350.00 800.00 2200.00 2100.00

CYCLE 743 1196 19 ff1 290

VICTIM/BR. 829050/3 714001/2 900001/2 900001/3 600001/2
3 ESTIMATE 1660.00 400.00 1000.00 2300.00 2300.00

CYCLE 10 1243 66 85 720

· ~ ~ · ~ ~ ~

· VICTIM/BR. 429017/0 722010/3 900001/3 722010/3 714001/2
199 ESTIMATE 2100.00 700.00 1500.00 2700.00 2660.00

CYCLE 512 29 699 860 35

VICTIM/BR. 800001/2 580080/0 600001/2 714001/2 492001/3

200 ESTIMATE 2250.00 800.00 1600.00 2800.00 3100.00
CYCLE 819 819 163 aoo 1000

Figure IO-Sample NAP ranking

338 National Computer Conference, 1977

branches. The distribution of these victims for each pass is
shown in Figure 11. Before actually measuring the crosstalk
of a sample of these victims in the machine, a means of
assuring accurate measurements is required.

Provision for system measurements

As mentioned earlier, the initial main storage/register
contents simulated for the N AA can be loaded into a 90/30
System via a card loader. The machine response to the
program (initial conditions) matches, cycle for cycle, the
results of the simulation. The cycle where the maximum
crosstalk was predicted for each victim is available from
NAA results. To make crosstalk measurements on the
victim branch, a triggering unit was designed and built to
provide a flexible means of triggering a scope at or before
the specified cycle. The unit is initialized by a spare bit set

CROSSTALK
CLASS PASS 1 PASS 2 PASS 3
INTERVAL # OF # OF # OF

(VOLTS) VICTIMS VICTIMS VICTIMS

3.4 - 3.5 1 0 2

3.2 - 3.3 2 0 4

3.0 - 3.1 5 2 2

2.8 - 2.9 11 4 7

2.6 - 2.7 19 12 11

2.4 - 2.5 15 5 18

2.2 - 2.3 47 11 26

2.0 - 2.1 66 16 49

1.8 - 1.9 85 20 61

1.6 - 1.7 120 30 100

1.4 - 1.5 112 55 82

1.2 - 1.3 103 94 84

1.0 - 1.1 105 90 101

0.8 - 0.9 74 136 126

0.6 - 0.7 77 133 82

0.4 - 0.5 54 163 99

0.2 - 0.3 74 131 87

0.0 - 0.1 17 47 28

TOTALS 987 949 969

into a micro-word accessed prior to the measurement cycle.
Switches allow the user to trigger a scope by entering the
number of cycles between the micro-word containing the
spare bit and the measurement cycle. Provisions have been
made to eliminate multiple triggering which would occur if
the micro-word containing the spare bit were accessed
several times during the program. Switches allow the user
to select anyone of these accesses to initialize the trigger
ing unit and blank out the spare bits from the remaining
accesses. With this unit, the user can obtain a reliable
scope sync at any program cycle and observe CUlprit
switching and crosstalk.

NAA validation

Since the 1.95 volt and above class still contained a
substantial number of victim cases (416) with high predicted

PASS 4 PASS 5
OF # OF TOTALS CUMULA-

VICTIMS VICTIMS TIVE

0 0 3 3

0 0 6 9

0 1 10 19

0 2 24 43

0 4 46 89

2 7 47 136

6 18 108 244

9 32 172 416

8 38 212 628

18 69 337 965

37 63 349 1314

83 87 451 1765

105 86 487 2252

144 98 578 2830

150 130 572 3402

145 137 598 4000

152 139 583 4583

89 45 • 226 4809

948 956 4809 4809

Figure II-Distribution of predicted crosstalk

crosstalk, an attempt was made to measure a significant
number of these cases. A total of 131 crosstalk measure
ments were made under the conditions specified through
NAP. The distribution of measured values is shown in
Figure 12. Cases with measured crosstalk below 400 milli
volts were not investigated because they fell within the
guaranteed d-c noise margin of the iogic family. Although
only 400 millivolts is guaranteed, a TTL gate typically
exhibits a d-c noise margin in excess of 1.0 volt. Typical a-c
noise immunity for low-nanosecond region pulse widths
(10-15 nsec) is even higher. For these reasons, cases
exhibiting crosstalk below 700 millivolts were not investi
gated. Each of the remaining 37 cases were investigated to
determine whether victim receivers were sensitive to the
noise during the pass in which the noise occurred. Results
indicated that in all cases the noise was present during a
clock interval in which the victim receivers were not
susceptible. Consequently, no fe-wiring of these cases was
required.

ACCURACY OF NAA ESTIMATES

Several factors limit the accuracy of the NAA estimates,
and to that extent must be considered when applying and
interpreting the results. First, the estimating equation was
derived from a limited number of points taken from mea
surements made under controlled conditions. Its application

Measured
Crosstalk Number of
Class ~mV~ Occurrences Cumulative i

0- 199 19 19 14

200- 399 41 60 46

400- 599 27 87 66

600- 799 15 102 78

800- 999 13 115 88

1000-1199 7 122 93

1200-1399 6 128 98

1400-1599 2 130 99

1600-1799 0 130 99

1800-19~9 1 131 100

2000-2199 0 131 100

2200-2399 0 131 100

TOTALS 131 100

Figure 12-Distribution of measured crosstalk

Approach to Analyzing Backpanel Crosstalk 339

to backpanel branches involved weighing certain parame
ters and, in some cases, using the equation slightly beyond
the range for which it was developed. It is unreasonable to
expect the equation to provide accurate predictions in such_
cases. Second, in the backpanel, all CUlprits were consid
ered equally close to the victim, even though the number of
wires (potential culprits) in most channels makes this a
physical impossibility. This consideration tends to bias the
predicted results high compared with actual measurements.
A more severe problem may be caused from a victim
located along the side of a channel (adjacent to the backpa
nel pins). The possibility exists that wires in the adjacent
channel (separated from the victim by .025" square pins)
could induce noise on the victim. It was felt that the effect
of these wires would be secondary in nature, and no
provisions were made to include them in the current
version of the NAA. It would, however, be possible to
include the effect of these wires in the analysis. A third
limitation to the accuracy of the N AA estimates is the fact
that all levels of logic in a given logic net were assumed (via
the logic simulation data) to switch together within a clock
phase, a condition which reflects the method used for logic
simulation. In the actual machine, each gate is a net
switches one circuit delay after the previous gate. With the
wide range of circuit propagation times for the basic logic
gates (between 3nsec. and 15nsec.) used in the 90/30
System, it was felt more desirable to accept the high bias,
which results from assuming zero delay between gates, as
an estimate of worst case switching conditions. Finally, the
estimates are limited by the fact that the contribution of
cable crosstalk was not considered in the ranking of
branches which drive cables. There are several methods of
including the effect of cabling on these branches, but the
time/resource schedule of the N AA prohibited implementa
tion. Estimates for branches which drive cables are made
only based on the adjacencies, loading, etc., found in the
source and destination motherboards.

For all of the reasons described in this section, the
estimates or values assigned to each branch by NAA are
not accurate estimates of absolute crosstalk magnitude.
When choices were a~a.ilable. the .predictions werealwavs
biased high. The values are, however, valid relative to one
another, and can be used to produce ranking mentioned
earlier.

CONCLUSION

NAA is a unique approach combining adjacency data,
switching coincidence data and crosstalk measurement data
into a single crosstalk analysis tool. Useful in locating
potential problem areas during the development cycle,
N AA can also be used to evaluate the effects of test
changes intended to remedy crosstalk problems. By provid
ing a ranking of backpanel branches based on their esti
mated susceptibility to crosstalk, NAA directs the user to
specific backpanel branches where high crosstalk is ex-

340 National Computer Conference, 1977

pected and where crosstalk measurements should be made.
For each branch, it specifies the point in the operating
program (cycle and clock phase) where the worst crosstalk
condition is expected. With modification, NAA can be used
for various packaging techniques. While originally devel
oped for wire wrap backpanels, the approach should pro
vide more accurate results when applied to packaging tech
niques with controlled conductor spacing.

ACKNOWLEDGMENTS

For contributions to the NAA effort, the authors wish to
thank the following individuals:

E. J. Crossen
C. J. Hammond
M. A. Hebhardt

H. A. Nidecker
A. B. Pataki
A, T. Wissink

True liquid cooling of computers

by E. A. WILSON
Honeywell Information Systems, Inc.
Phoenix, Arizona

ABSTRACT

True Liquid Cooling means removing the heat from the heat
source with a liquid instead of just pre-chilling air with cold
water. One of the major advantages of True Liquid Cooling
over pre-chilling air is that the heat may be rejected from
the internal liquid into either chilled water or computer
room air, at the option of the customer.

The basic problem, which must be solved in order to
achieve such a cooling system, is to get the liquid to and
from the heat source without getting everything else wet.
This paper describes how this is accomplished for both
multichip integrated circuit packages and high wattage
power supplies. Also, described is the implementation of a
True Liquid Cooling system for a large central processor.

INTRODUCTION

The heat rejection problem in Honeywell's new top of the
line Model 66/85 has been handled with TLC (true liquid
cooling). This cooling system qualifies for the status of true
liquid cooling because the liquid is taken to the heat sources
(integrated circuits and power supplies) instead of the liquid
being used to pre-chill air which is then used to cool the
h~,':lt~~9~.r~e.~ (qua.~j~liguid cootil).g orQLCJ. In ,this,.paper.
the full cooling system from the novel SLIC (silent liquid
integral cooler) to the PERU (pump, exchanger, reservoir
unit) and COOL (cools off our liquid) will be presented.

Before addressing the system as a whole, it is worthwhile
to show the inherent advantage of liquid (in this case,
water) over air as a cooling fluid. The Honeywell micro
packaging technology not only has made TLC practical but
has also made it necessary. The micropackage shown in
Figure 1 has a pattern which may accommodate 76 chips.
Different chip placement patterns are used depending on
the mix of SSI, MSI, and LSI chips. The number of chips
mounted in an 80 mm by 80 mm micropackage is equivalent
to half of a 300 mm by 300 mm printed circuit board with
the result of increasing the planar power density by approx
imately a factor of 10 (since more high power chips are used
in the micropackage than on the board). With this increase
in planar power density, came the problem of how to cool
the micropackage coupled with the goals to have a quiet

341

system and to not force low packaging density in the
mainframe cabinets by using up space with large blowers
and air ducts.

The solution of '"more air" would violate the second of
the aforementioned goals and the solution of many small,
local fans or blowers would violate the first goal. The
solution required a fundamental change; the coolant itself.
The simplified analysis below shows why such a change
provides the easiest solution.

The coefficient of convection (h) of a fluid flowing over
an object is obtainable from the dimensionless grouping of
the Nusselt, Reynolds, and Prandtl numbers:

where

Nu=(Re)II{Pr)m
hL/k = (VLp/ p,)n(cp,/k)m

h=coefficient of convection,
L = significant length of the body,
k=thermal condllctivity of the fluid,
V =velocity ,
p =density of the fluid,
p,=viscosity ofthe fluid,
c=specific heat of the fluid,
m and n range from .3 to .8 depending on the
body and type of flow.

Sinl:e the lhermai resistance between the heat source and
the coolant is h times the surface area (A), and the
significant length is not dependent on the type of coolant,
we may write (Jetting m=n=.5 for the sake of this simple
comparison):

Resistancecx:A v'Vk pc

N ow consider what happens if the planar power density
has increased by a factor of 10, The only two alternatives
would be to increase A by adding a finned heat sink or
increase the velocity by a factor of 100. Obviously the
increase in velocity will not yield a quiet system. The
addition of a finned heat sink to the micropackage was
considered but rejected because of the negative impact on
replacement of the chips in the micropackage and the fact
that large air ducts had a negative impact on c&binet
packaging density and maintainability access.

If we consider the term v'k pc to be a representative

342 National Computer Conference, 1977

Figure I-The micropackage pictured above may contain 76 integrated
circuit chips plus decoupling capacitors. The 80 mm by 80 mm
alumina substrate has several thick film signal and insulation layers
screened and fired on it to form the equivalent of an ultra high density
printed circuit board. This type of packaging is applied to SSI, MSI,

LSI and mixes of chips.

figure of merit for various fluids, then we can easily
substitute values for air and water into the term and find
that air yields .051 and water yields 4.5 or about 100 times
better. The obvious practical conclusion is to use the
micropackage area, low velocity, and water instead of air.
The problem which had to be overcome in order to take
advantage of the high coefficient of convection for water
was how to get the water to the heat source. The solution to
this problem is explained later in this paper, but first, in
order to better appreciate the need for such a solution, it is
important to understand the difference in systems with true
liquid cooling and quasi-liquid cooling.

TLC VS QLC

The most common application involving liquid cooling of
computers (quasi-liquid cooling), as mentioned briefly in
the introduction, employs air convection between the heat
sources and water cooled heat sinks. In such a system,
chilled water from some sort of refrigeration source is used
to cool the internal liquid which circulates in a closed loop.
The internal liquid in turn pre-chills the air which then cools
the heat sources. The inherent problems should be obvious:

I. the relatively low h between the heat source and the
air represents a significant thermai resistance;

2. the relatively low h between the air and the water

cooled heat sink likewise adds to the thermal resist-
ance;

3. the internal water must be colder than the air, hence
leading to a critical condensation control problem (no
user wants a rain storm in his computer);

4. the customer supplied chilled water usually must have
a very low temperature.

Figure 2 represents the impact of such a system on the
computer room's air conditioning and chilled water require
ments.

True liquid cooling as used in the Honeywell Model
66/85, on the other hand, eliminates the air exchanges
between the heat source and the internal water by using a
conduction path between the back (opposite of the chip
side) of the micropackage and the SLIC (which is described
in detail later). With the first and second problems listed
above being non-existent with TLC, problem 3 is solved by
operating with a water temperature which is above the dew
point of the ambient air, or even above the temperature of
the ambient air. Problem 4 is significantly relaxed by
problems 1 and 2 not existing.

If the computer user does supply chilled water into the
computer room, the heat is rejected from the internal water
to the chilled water through a compact water-to-water heat
exchanger in the PERU. The internal water temperature is
easily controlled by regulating the chilled water with a
three-way valve and bypass system built into the PERU.
This permits the chilled water temperature to range from

HEAT
SOURCES

It

COLD -- COOLING -AIR SYSTEM

I I

INTERNAL OUTSIDE
WATER

~

,
CIDLLED - WATER

WATER CHILLER

Figure 2-Heat flow with quasi-liquid cooling showing the requirements of
the computer room cooling system

O°C (as long as it is not ice) to 20°C, yet the internal water is
maintained at 32°C. This system is represented in Figure 3.
The economic benefits of such a system should not be
overlooked in these days of increasing utility costs. The
power consumed by the computer itself is only part of the
utility bill. The heat generated must be removed from the
room and depending on climatic conditions, this may cost
as much as $.53 for every $1.00 spent in operating the
computer if conventional air cooling is used. If chilled
water is cooled by a water tower and provided to the
PERU, this cooling cost may be reduced to $.14 for every
$1.00 used by the processor. If the user does not have a
water tower, even a standard refrigeration type water
chiller can reduce the $.53 to $.43.

If the computer user does not supply chilled water, this
TLC system is still feasible because the relatively high

HEAT
SOURCE

l'

INTERNAL
WATER

, .
CHILLED
WATER

..
WATER

CHILLER

,r

OUTSIDE

Figure 3-Heat flow with true liquid cooling when chilled water is available

True Liquid Cooling of Computers 343

HEAT
SOURCE

.,
INTERNAL

WATER

.,

ROOM
AIR

,r

COOLING
SYSTEM

0

OUTSIDE

Figure 4-Heat flow with true liquid cooling when chilled water is not
?'''?!t:!t<re ? .. (! !!!~L l"!L<!! M'1tt*m't~e~(! .. ~ !"~d~ ~!:" !t ~~e:!

internal water temperature permits an option which is not
possible with quasi-liquid cooled systems. With this option,
the water-to-water heat exchanger is omitted frpm the
PERU and the COOL is placed next to it. The COOL unit
is nothing more than a simple cabinet containing a large row
speed blower and two large water-to-air heat exchfingers
(coil and fin units) in parallel. The floor space required for
the COOL is the same size as for the PERU, only 760 mm
by 760 mm.

An obvious question is how can this arrangement be
quieter than ordinary air cooling? The answer is twofold.
First, for standardized manufacturing considerations, an
ordinary air cooled system would have to be designed on
the basis of the worst (or hottest) micropackage, although
many of the micropackages would dissipate much less heat.

344 National Computer Conference, 1977

Therefore, the heat rejected through the COOL unit repre
sents an averaging of all of the micropackage powers.
Second, the water to air heat exchangers have a large
surface area due to many fins, hence the total air flow can
be low and the air management task is very simple.
Because almost all of the air pressure drop is through the
fins (virtually no plenum or duct losses), 4000 CFM can be
moved with a low speed blower. The result is an 8°C
difference between the internal water and the ambient air.
Since the cooling system is designed to allow the water
temperature to be as high as 40°C, it is obvious that even
abnormally warm computer room air can adequately cool
the internal water. Figure 4 represents this variation of the
TLC system which is possible only because the intermedi
ate air exchanges required in QLC are eliminated.

CERAMIC
SUBSTRATE

FIRED
DIELECTRIC
AND
CONDUCTOR
LAYERS

CONVECTION
SURFACE

CHIP

Figure 5-Representation of heat flow in a muHil:hip mil:rupackagt:

Figure 6---Explosion of the SLIC. micropackage, and connector. The hold
down ring is bonded to the SLIC, and in the installed position, the
assembly presses the micropackage into the connector and the connector
against a printed circuit board which serves as the interconnection

vehicle between micropackages

A SLIC WAY OF COOLING MICROPACKAGES

The silent liquid integral cooler (SLIC) is basically a
simple chill plate with one important feature, the cooling
surface automatically conforms to the shape of the micro
package and requires no oil, grease, or any other "filler"
material to provide good thermal contact.

The thermal path in the micropackage is represented in
Figure 5. The region populated by chips is 65 mm by 65 mm
and the total dissipation could be as high as 60 Watts. An
exploded view of the operational configuration of the SLIC
and micropackage is shown in Figure 6. The hold down ring
is required to hold the micropackage into the connector no
matter what cooling method is used. For the sake of
manufacturing reasons, the SLIC and hold down ring are
integrated into one common assembly. Although the back
of the micropackage is smooth, it is not flat as a result of
the thick film fabrication process. The copper diaphragm on
the SLIC, when pressurized with as little as 3.5 kPa (1
psi=6.895 kilo-Pascals), conforms to the slightly concave
surface of the micropackage. The molded plastic back of
the SLIC has baffles which produce uniform flow coverage
in the chamber. The unassembled parts are shown in Figure
7.

Accessability for micropackage replacement is not im
paired by the SLIC because the "plumbing" connections
are made by flexible hoses, hence a natural hinge exists as
shown in Figure 8. In fact, the replacement of a micropack
age can be performed while the water is still flowing. This is
possible because of the conservative design of the assem
bly. The maximum pressure which a SLIC can see in

1 ,

Figure 7-Top left is the blacked (for better bonding characteristics) copper
diaphragm. Top right is the inside of the molded plastic back. Bottom right

are the hold down ring and the two copper nipples. Bottom left is the
completed assembly

service is only 35 kPa yet the SLIC assembly can withstand
700 kPa in the installed position and 200 kPa in the open
position.

The thermal resistance between the micropackage and
the water (which includes the surface contact resistance
between the copper diaphragm and the micropackage as
well as the convective resistance between the diaphragm
and the' water) is shown in Figure 9. At the flow design
point of 1 litre per minute, the resistance is only .123°C/W
(where the power basis is the total micropackage power,
not an individual chip power). This value of thermal resist
ance is less than half of what is needed to keep the chip
junction temperature to less than 85°C even with the worst

Figure 8-Micropackage removal without disconnecting any of the
plumbing. The water may continue to flow during this operation.

True Liquid Cooling of Computers 345

.17
~
'--

E
f;I;1

.16
u
Z
<C
Eo<
rn
Fij
f;I;1
p::

.15 ...:l

~
p::
f;I;1

~
.14 ~

Eo<

~

.

131 ~ ~ u
~ o

.12 5
~

~\~\~1------~1------~1----~1~----1~1------1~11
.6 .7 .8 .9 .0 .

WATER FLOW RATE (LITRES PER l\fiNUTE)

Figure 9-Thermal performance of a SLIe

case combinations of chips, micropackage locations, and
internal water temperature (at PERU) of 40°C.

The utilization of SLIC's in the total system will be
covered after looking at the cooling of the power supplies.

SUPER SLIC'S FOR POWER SUPPLIES

Since the internal water is available in the cabinet,
advantage is taken of this to cool the power supplies as well
as the micropackages. This significantly reduces the air
flow r~91.1!r~IIl~~!~~!l:~ ~~Il~~, ~h~ !!gl~~l~v~l.Qve:r. ~Qf
the heat rejected by the power supplies is now removed by
water cooling and this allowed replacing a double squirrel
cage blower by two small propeller fans which provide
flushing air for a few resistors, capacitors, etc.

A chill plate concept similar to the SLIC is used and
hence it was dubbed the super SLIC. The basic electrical
design required that the diodes be mounted on a common
electrical bus which is easily achieved by using a rectangu
lar aluminum plate. This same plate then is used to hold the
reactors and SCR's which are mounted on smaller alumi
num blocks and electrically isolated from the main plate by
a thin layer of insulation (which is still adequately thermally
conductive). Two of the plates with their mounted compo
nents form the "bread" of a sandwich structure. The need
for grinding the surfaces of the aluminum flat is eliminated
by using the super SLIC. This item consists of a rectangular
frame with copper sheets soldered on the sides. Two edges

346 National Computer Conference, 1977

Figure lO-The pwer supplies are connected to the cabinet plumbing via
automatic shut-off quick disconnects which permits replacement without

shutting down the cooling system

of the frame are copper tubes with strategically placed
holes to form inlet and outlet manifolds. The copper sheets
flex outward when pressurized and provide the conforma
bility required by the assembled sandwich. The super SLIC
is electrically isolated from the aluminum plates by thin
sheets of mylar. This yields a sandwich in which the super
SLIC is the "meat" and the mylar is the "cheese."

The power supply is connected to the cabinet plumbing
by flexible hoses and automatic shut-off quick disconnects
(Figure 10). Hence, replacement of a power supply can be
performed without shutting down the cooling to the rest of
the cabinet.

MYLAR

ALUMINUM \
PLATE

\

SUPER
SLIe

\

Figure II-Representation of the power supply cooling elements

Figure 12-ln this view of the power module portion of a 3000 Watt power
supply are the diodes, SCR's, and reacters mounted on one of the aluminum

plates of the cooling sandwich

The cooling efficiency of the super SLIC sandwich is so
high that a 3000 Watt power supply can be cooled with a
water flow rate of only 2 litres per minute. The pressure
required to flex the sheets is less than 7 kPa but the actual
operating pressure is 50 kPa because of the location of the
power supplies in the cabinet. Even the 50 kPa pressure is
less than 10% of the test pressure during production testing
of every super SLIC.

Figure 11 is an exploded representation of the parts of a
sandwich and Figure 12 shows the power module portion of
a 3000 Watt supply.

SYSTEM IMPLEMENTATION AND OPERATION

The two preceding sections explained how the heat gets
from the sources into the water. The block diagram of
Figure 3 showed the overall approach to heat movement.
This section describes how Figure 3 is implemented and
how the SLIC's fit into the system.

Figure 13-Water-to-water heat exchanger installed in the PERU

The PERU serves as the heart and kidneys of the system.
From the distribution manifold of the PERU, internal water
can flow to four independent cooling loops, one or two per
main frame cabinet. The water returns to the in-line reser
voir where it is then recirculated by the pumps through the
shell side of the heat exchanger (or the COOL if that option
is used) and to the distribution manifold again. The impact
of water cooling on packaging sizes can be appreciated by
noting the size of the water-to-water heat exchanger in
Figure 13. This unit is capable of transferring 20 KW with a
difference in entering water temperatures of only 1 OQC.

Anyone of the cooling loops may be disconnected
without interrupting the flow through the other loops since
automatic shut-off quick disconnects are used (Figure 14).
This permits repairs or cabinet removal without total loss of
mainframe availability to the user (assuming a configuration
of more than one processor, which is available in the Model
66/85 line).

This design concept of parallel flow extends into the
cooling loops in the mainframe cabinets. Each loop is
designed to cool micropackages on up to nine planar

Figure I ~This view shows how up to four individual cabinet cooling loops
can be attached to one PERU. The end of the water-to-water heat

exchanger can be seen above the man's head

True Liquid Cooling of Computers)47

HEAT PERU
EXCHANGER

HEAT
REJECTION ----+-+-' '-~--,---.---.,.--,

ONE MAINFRAME CABINET

Figure IS-Block diagram of flow in the cooling system

FROM
MAlNFRAME
CABINETS

boards. Each flow path to a board is connected to the
cabinet plumbing in parallel with all other boards. This
allows many option configurations with no impact on the
cooling performance. Even the 12 SLIC's on each board
~r~~~qryl).~c:t~9!n ,fgY:.tir.P1J..PS .. 9f tbree,SLIC',sin ~s. In
addition to the parallel flow through the board paths, the
power supplies are connected to the cabinet plumbing in
parallel. This highly parallel flow pattern allows the reslllt
ant low pressure in the system which directly contributes to
the high safety margin and reliability of the system fompo
nents. The flow pattern is shown symbolically in Fi~ure 15.

The system pressure is set at the time of installatiol1 by
adjusting a bypass valve on the PERU manifold, and no
further regulation is required while the system is opera
tional. The total flow rate through all four cooling loops for
a Model 66/85 dual processor configuration is 150 litres per
minute. This is provided by two magnetic driven seal-less
pumps operating in parallel. Two parallel pumps were
chosen instead of one large pump for machine availability
reasons. If one pump should ever fail, the other pump alone
provides adequate flow to cool the machine (recall that the
flow design point was chosen to be far higher than required
for a safe design). Check valves at the outlet of each pump

348 National Computer Conference, 1977

prevent backflow through a failed pump. A pressure switch
senses a reduction of pressure at the pump discharge and
triggers a warning to the operator that the cooling system
requires attention, but the computer does not shut down
and continues its normal operation.

Over-pressure conditions (such as due to removing one
or more cooling loops without adjusting the bypass valve on
the manifold) are prevented by a pressure switch on the
manifold which automatically turns off one pump if the
pressure exceeds the normal operating pressure.

A two position float switch in the reservoir indicates first
alarm, then shutdown conditions if there is a loss of internal
water. Under the alarm condition, the computer is still
available to the user.

In each cooling loop in the cabinet there is a pressure
switch to indicate cooling availability. This switch serves as
an interlock to prevent the power supplies from being
turned on unless the cooling loop is connected to the PERU
and water is being pumped. In addition to this switch, all
power supplies have thermal switches which automatically
disable them if they are not being cooled.

Except for the SLIC and super SLIC, the rest of the
components in the system are "'off-the-shelf' items or built
from standard plumbing parts. The pumps, heat exchanger,

mIxmg system (three way valve and servo motor), quick
disconnects, etc., are used in a wide variety of applications
ranging from industrial air conditioning control and marine
engine cooling to pumping of corrosive chemicals. There
fore, these items are not only readily available as a result of
mass production, but they are designed to operate reliably
under conditions far more severe than this application to
computer cooling.

The plumbing in the PERU is fabricated from cop
per/brass parts and the major assemblies are connected by
reinforced hydraulic hose to eliminate all tolerance prob
lems. The pressure ratings on these parts (including the
hose) are 1700 kPa and higher. The plumbing assemblies in
the cabinets are fabricated from schedule 40 PVC (rated at
4000 kPa) and these assemblies are connected with thick
walled PVC flexible tubing (rated at 270 kPa).

The result of using "off-the-shelf' components and
standard plumbing materials is a system of extremely
conservative design, which can be assembled in small
quantities at a low cost, virtually equivalent to mass pro
duced cost. Coupling the high safety factor of the parts with
the low pressure of the system and the warning devices
previously mentioned yields a highly reliable cooling sys
tem and high computer availability to the user.

GO System-Design and implementation
of an output generator*

by ROLAND R. BONATO and KENNETH C. YANG
The George Washington University
Washington, D.C.

ABSTRACT

This paper concerns a conceptual model for a general
purpose output generator and its implementation. The Gen
erated Output (GO) System is based on two major criteria:
(1) user oriented and (2) easy maintenance. Its goal is to
produce tailored output in an unambiguous, camera-ready
form. Basically, the system is comprised of a derived file, a
descriptor file and an interface module which integrates the
two files according to externally supplied specifications.
Derived data are usually numeric results such as percent
ages, totals, subtotals, etc. Descriptors are defined as
alphanumeric labels whose function is to clearly identify
derived data. Classification of different types of calculated
and label files are discussed with accompanying examples
and illustrations.

BACKGROUND

In a society where computer output is being widely used for
business and scientific reporting, this medium has become
an increasingly accepted vehicle for human communication.
A review of computer output during the past two decades
indicates that there is a trend toward more complex format
.'t~ 'f~ ~:mg~ ." ..,.,~tJ~, due t~ :!T! e:",:~::mdi:1g ::nd ~~;e
varied usership; i.e., as the consumer became more sophis
ticated, the demand for custom-tailored or even camera
ready output increased. For the most part, the DP commu
nity responded to these demands by developing a compiler
approach to producing statistical tables. The Report Pro
gram Generator (RPG) by IBM and Table Producing Lan
guage (TPL) by the Bureau of Labor Statistics are examples
of systems that were specifically designed to accommodate
a variety of output displays.

INTRODUCTION

A major problem in the production of computer output
involves the manipulation of alphanumeric descriptors, i.e.,

* Preparation of this paper was supported by Grant #5-ROI-MH-22019-03
from the National Institute of Mental Health, U.S. Public Health Service.

349

labels whose sole function is to clearly identify data format
ted output. As opposed to calculations, labels are not
readily derived from algorithmic models. At the Biometric
Laboratory, The George Washington University, we re
viewed the problems associated with output formatting and
came to the following conclusions:

(1) Labeling requires extensive amounts of tedious for
matting effort. Consequently, labeling tends to be
sparse and abbreviated.

(2) Revision of output formats is equally tedious.
(3) General purpose programs, in order to maintain their

generality, tend to resort to generic labels, e.g. % or
$. However, there are many instances where such
generic labels do not suffice.

(4) When unambiguous labeling is required, the program
mer resorts to "one shot" programming consisting of
repetitive calculation logic and unique alphanumeric
formats; i.e., the programmer is forced to "re-invent
the wheel" calculationwise because of labeling spe
cifics.

In order to reduce these problems and provide flexibility
in generating output, we have developed a system based on
two major criteria:

(1) User oriented-users should be able to specify not
only numerical results but also the terminology to be
employed and the positioning and ordering of their
output.

(2) Easy maintenance-utilization and maintenance of
the system should be accomplished mostly by trained
technicians.

The following sections describe the design, basic con
cepts, implementation, and example output from our sys
tem.

DESIGN

Given the above-mentioned criteria. we decided to treat
derived data and their associated descriptors as separate
entities, i.e., independently-generated files.

350 National Computer Conference, 1977

encral Purpose
C.lc tlon Hodules
(n\aerle manipuilltion
logIc)

"label Generator
Hodules
(a I phan.....,rIe
manipulation logic)

Figure I-Design of an output generator

Derived data are viewed as calculated results such as
percentages, totals, subtotals, etc. Descriptors are defined
as those alphanumeric labels needed to identify results.
Merged output is achieved via an interface module which
accdses both the results and descriptor files as shown in
Figure t.

This design has the following advantages:

(I) General purpose calculation programs can be written
independent of formatting constraints.

(2) The descriptor file can be modified and maintained as
a separate entity.

(3) The interface module provides flexibility in the ar-

rangement of final output, e.g., configuration of out
put can be tailored to the individual user without
extensive reprogramming.

BASIC CONCEPTS

The purpose of the following discussion is to explore
concepts that will yield results and descriptors with some
degree of generality and a minimum of effort.

As viewed here, all output can be subdivided into a series
of component parts.

Figure 2 represents the concepts involved in the GO
system, from the most elementary to the most complex and
their interrelationship. Starting at the top of the schematic,
TOTAL OUTPUT is made up of PAGE IMAGES, and one
or more TABLE(S) constitute a PAGE IMAGE. TABLES,
in tum, are derived from RESULT CLASSES and LABEL
TYPES. Finally, results and labels are composed of ele
ments, i.e., a single calculation or an alphanumeric word.

A page image is defined as an output unit whose content
forms a logical whole within the total output. Although the
dimensions of a page image are theoretically unlimited, an
actual page image introduces certain constraints; e.g., ma-

TOTAL
OUTPUT

MATR I X TYPE A

RESULT CLASSES
VECTOR~~~-E __ ~_T_Y_P_E_H-, LABEL TYPES

TYPE S
DATUM

TYPE 0

RESULT ELEMENT LABEL ELEMENT

Figure 2-Components of output

chine limitations, such as finite number of print positions,
tend to influence the page size.

A table is defined as a merged display of results and its
descriptors or labels (whenever a single table is involved,
the page image is the table). All results can be divided into
three classes: a datum (1 x 1), a vector (1 xN), and a matrix
(NXN). Descriptors are divided into four types: All alpha
numeric (TYPE A), Headers (TYPE H), Stubs (TYPE S)
and Others (TYPE 0).

Label definitions

(1) All alphanumeric (TYPE A) labels consist of one or
more lines of pure alphanumeric output. As opposed
to TYPES Hand S, their position is minimally
correlated with the result classes; i.e., the form and
alignment of TYPE A is not determined by derived
output. TYPE A is commonly used for table descrip
tion, footnotes, etc.

(2) Headers (TYPE H) are defined as labels that describe
columnar results. The position of TYPE H elements
is a function of the format of the result matrix and
vector.

(3) Stubs (TYPE S) are labels that define results row
wise and are similar to TYPE H in that the location of
TYPE S elements is determined by results.

(4) Other (TYPE 0) labels describe data plus special
characters that are not necessarily associated with
results elements.

Results definitions

The meaning of the three result classes is commonly
known. However, the definitions apply to output require
ments as opposed to the calculated results format.

Usually, the most convenient type of output involves the
juxtaposition of related data on a single physical page. This
saves paging back and forth, transcribing, or cutting and
pasting. In addition to convenience, interrelatedness and
machine limitations, aesthetics may be a major determiner
of the page image, e.g., neat and uncluttered output.

From the above, it becomes apparent that specification of
page images is a function of the number, redundancy,
symmetry, extent and variety of page elements. For exam
ple, when the same page image can be repeated across
many physical pages (redundancy), the cost/benefit ratio is
enhanced. Similarly, when label and result elements are
evenly spaced, symmetrical tables are produced and the
positioning of the table is simplified. Usually, the most
"costly" tables to specify are a series of non-redundant
asymmetrical labels and results.

GO System 35 !

IMPLEMENTATION

An experimental model of GO (Generate Output) System
has been developed and implemented at the Biometric
Laboratory to test the concepts previously described.
Throughout the developmental phase, we have designed
numerous utilizable functions and implemented 3 principal
modules and 9 sub-modules, serving key functions, for the
GO System. All programs are written in FORTRAN and
PLiI for an IBM 370/135-265K-OS/VSI System.

The following represent the modules that have been
implemented for the GO System:

T
T
R
E
A
T

(1) GO MAIN (Interface Main Module)-This module
accepts input parameters, refers to appropriate re
sult and label files, and combines appropriate sub
modules for flexible output. Its flexibility can be
observed from the ensuing examples.

(2) GOCLAR (Interface sub-module)-To clear the
area, buffer, in which the results and labels will be
merged.

(3) GOREST (Interface sub-module)-To restore a page
image for repetitious use of the same page image
with differential results.

(4) GOGRED (Interface sub-module)-used as input
function for generation of graph displays.

(5) GOGRPD (Interface sub-module)-used in conjunc
tion with GOGRED to generate and plot data for
displays.

(6) GODATM (Interface sub-module)-to transfer da
tum results to output buffer.

(7) GOVECT (Interface sub-module)-to transfer vec
tor results to output buffer.

(8) GOMATX (Interface sub-module)-to transfer ma
trix results to output buffer.

(9) GOUPDT (Interface sub-module)-used as update/
modify function for previously-created page images.

NOT PRSNT

MILD
~

T
Y

MODERATE P

SEVERE

NOT AS CRT

PRETREAT.
TOTAL

E

TOTAL N -

NO CKIINGE -

TABLE I-Page Image

(TYPE 0)

N - NOT "SCRT -

IMPROVED -

POST
TOTAL

WORSENED·

352 National Computer Conference, 1977

TABLE II-Merged Page Image and Results

(TYPE A) PSYCHIATRIC RATING SCALE - ANXIETY

PRETREA TMENT

NOT MILD MOD- SEV- NOT POST
PRSNT ERATE ERE ASCRT TOTAL

NOT PRSNT 0 14 11 4 0 29

P
0 MILD 2 22 11 0 36
S
T MATRIX
T
R MODERATE 0
E
A
T

SEVERE 0

NOT ASCRT 0 0

PRETREAT.
TOTAL 18

TOTAL N =

~ NO Ct-i4NGE = 11

DATUM

(10) GOPRNT (Interface sub-module)-prints the
merged output which resides in the buffer in user
specified format.

(11) GOPAGE (Label Generator Module)-to create
Page Directory constituted of page images tailored
to user-specified output.

(12) GO STAB (General Purpose Calculation Module)
Multiways cross-tabulation and computations of n,

2 16 20

2 7 11

0 0

1 I ~VECTORS 38 38 2

N - NOT ASCRTI

IMPROVED =~ WORSENED =~
DATUM DATUM

LX, X, and (J" conducted (inclusive of row %,
column %, table %, cumulative row %, cumulative
column % for n and LX). The results are docu
mented and stored on temporary disk file (result file)
to be utilized by the GOMAIN.

During the developmental and design phase of the GO
System, we also envisioned a spin-off from this concept,

TABLE III-Frequency Table

PRESCRIPTION FillED IN DRU PAGE I

TABLE 3 - DAYS OF THERAPY PERMITTED ON A SINGLE P FREQUENCY (N)

I-WEEK 2-WEEKS 3-WEEKS I-MONTH 2-MONTHS PRN AS DIR. UNKNOWN R. T.
KEY DRUGS

MAJOR TRANQ.
MELLARIL 207 830 718 798 428 35 III 27 3184

SPARINE 84 133 65 70 29 22 34 444

STELAZINE 158 524 681 634 239 80 32 2374

THORAZINE 436 887 597 701 331 58 155 33 3223

TABLE IV-Percent Table

PRESCRIPTION fltlED IN DRU II'.GE 3

TABLE 3 - DAYS OF THERAPY PERMITTED ON A SINGLE P - PERCENT (%)

I-111:EK 2-111:EKS 3-WEEKS I-MONTH 2-HONTHS PRNAS DIR. UNKNOWN R.T.
KEY DRUGS

MAJDR TRANQ.
HELLARIL 6.50 26.07 22.55 25.06 13.44 1.10 3.49 0.85

SPARINE lB.92 29.95 14.64 15.77 6.53 4.95 7.66 1.13

STELAZINE 6.66 22.07 2B.69 26.71 10.07 0.34 3.37 1.35

THORAZINE 13.53 27.52 IB.52 21.75 10.27 1.80 4.Bl 1.02

TABLE V-Summary Table (Scientific Application)

BLOOD DISTRIBUTION STUDY - % BREAKDOWN PAGE 1

(REGION) JACKSON- TUCSON KANSAS BAL TI- MEMPHIS PH I LA- TOTAL
(INPUT) VILLE CITY MORE DELPHIA

WHOLE BLOOD

COLLECTED-FACILITY: 63. O. O. 162. 532. 624. 1322. 6549.
(% WHOLE BLOOD) 4.74 0.0 0.0 5.18 21 .71 47.38 13.83 18.49

RECEIVED:
WITHIN REGION 1208. 731. 2425. 2510. 1772. 403. 8060. 26592.

(% RECEIV-WB) 95.34 84.61 96.69 84.57 92.34 58.15 97.89 92.11
(% WHOLE BLOOD) 90.83 84.61 96.69 80.19 72.30 30.60 84.34 75.08
(% RECE I V-WB+RC) 57.52 40.59 57.25 66.74 65.36 45.38 86.23 67.98
(% TOTAL INPUT) 49.77 37.85 57.01 59.49 42.79 23.21 66.55 53.05

OUTS I DE REG I ON 59. 133. 83. 458. 147. 290. 174. 2278.
(% RECE I V-WB) 4.66 15.39 3.31 15.43 7.66 41.85 2.11 7.89
(% WHOLE BLOOD) 4.44 15.39 3.31 14.63 6.00 22.02 1.82 6.43
(% RECEIV-WB+RC) 2.81 7.38 1.96 12.18 5.42 32.66 1.86 5.82
(% TOTAL INPUT) 2.43 6.80 1.95 10.86 3.55 16.71 1.44 4.54

TOTAL RECEIVED 1267. 864. 2508. 2968. 1919. 693. 8234. 28870.
(% WHOLE BLOOD) 95.26 100.00 100.00 94.82 78.29 52.62 86.17 81.51
(% RECE I V-WB+RC) 60.33 47.97 59.21 78.92 70.79 78.04 88.09 73.80
(% TOTAL INPUT) 52.20 44.15 58.96 70.35 46.34 39.92 67.99 57.59

TOTAL WHOLE BLOOD 1830. 864. 2508. 2451. 1317. 9556. 35419.
(% TOTAL INPUT) 54.80 44.15 58.96 59.19 75.86 78.90 70.66

354 National Computer Conference, 1977

TABLE VI-Tables of Contents

GEORGE WASHINGTON UNIVERSITY - - BIOMETRIC

TAB LEO F CON TEN T S

STUDY: INVESTIGATOR: TI TLE:

OUTPUT DESCRIPTION

NARRATI VE SUMMARY

DATA INVENTORy •••

APDI - SECTION (DEMOGRAPHIC DATA)
APDI - ADULT PERSONAL DATA INVENTORY (FORM 45) DATA LiSTING ..••

APDI - ADULT PERSONAL DATA INVENTORY (FORM 45) FREQUENCY DISTRIBU

PTR - SECTION (DEMOGRAPHIC DATA)
PTR - PATIENT TERMINATION RECORD (FORM 32) DATA LiSTING •••.•••••

PTR - PATIENT TERMINATION RECORD (FORM 32) FREQUENCY DISTRIBUTION

CGI - SECTION (EFFICACY DATA)
CGI - CLINICAL GLOBAL IMPRESSIONS (FORM 28) DATA LiSTING ••.•••••

CGI - CLINICAL GLOBAL IMPRESSIONS (FORM 28) MEANS & STANDARD DEVIA

CGIINGI - GLOBAL IMPRESSIONS (CLINICAL AND NURSES - FORMS 28 AND

SELECTION CRITERIA FOR NEXT AVACOV ANALYSIS ••••.•••••••••••••••

LISTING OF RECORDS INCLUDED IN THE FOLLOWING ANALYSIS ••••••••••

ANALYSIS OF VARIANCE (REPEATED MEASURES) •••••••••••••••••••••••

SELECTION CRITERIA FOR NEXT AVACOV ANALYSIS •••••.••••••••••••••

LISTING OF RECORDS INCLUDED IN THE FOLLOWING ANALYSIS ••••••••••

ANALYSIS OF VARIANCE (REPEATED MEASURES) •••••••••••••••••••••••

PAGE

3

7

10 ~

· 35

· 37

· 54

· 56

· 58

· 64

· 65

· 66

· 67

· 68

. 69

which could enhance the documentation need of the drug
studies data we process, i.e., the implementation of a book
system. The Book System searches the completed output
files for a given study and then organizes the output in book
form with a table of contents, organized and paginated
output, and a key terminology index.

as a field of 132x66 matrix, and any number of sub-fields
can be constructed within the field. Table I shows the upper
left quadrant of a Pretreatment/Posttreatment cross-tabula
tions page image. Since the output requires juxtaposition of
four identical tables, only this table is generated and then
reflected onto three other quadrants for the complete page
image. Three types of label (H, S, and 0) are identified in
this table.

EXAMPLE OUTPUT

When the output requires formulation of symmetrical
tables, a page image on the printer paper can be envisioned

Table II shows calculated results from GOST AB being
merged with the table produced above. One type of label
CA) and all three classes of results are identified in this
table.

GO System 355

TABLE VII-Subject Age Table (page 10)

STUDY: I NVEST I GATOR: TITLE:

APDI - ADULT PERSONAL DATA INVENTORY (FORM 45) FREQUENCY DISTRIBUTIONS

GROUP 1

TABLE NO. -------------SUBJECT AGE
HISTOGRAM OF PERCENT

CATEGORY CODE FREQ- PER~ CUM- CUM- --------------------
NAME NO. UENCY CENT FREQ. % 10 20 30 40 50 60 70 80

•••• x •••• x •.•• x •••• x •••• x •••• x •••• x •••• x •••
21 YRS.OLO. 21 5 5.2 5 5.2 : 11
23 YRS.OLD. 23 8 8.2 13 13.4 : 11 1 1
24 YRS.OLD. 24 11 11.3 24 24.7 : 111111
25 YRS.OLO. 25 14 14.4 38 39.1 : 1111111
27 YRS.OLD. 27 20 20.6 58 59.7 : 111111111
29 YRS.OLO. 29 16 16.5 74 76.2 : 11111111
33 YRS.OLD. 33 13 13.4 87 89.6 : 111111
43 YRS.OLD. 43 7 7.2 94 96.8 : 11111
44 YRS.OLO. 44 3 3.1 97 99.9 : 1

N = 97 MEAN = 28.54 S.D.= 8.00

MISSING DATA CODE= 99 FREQ.= 0 PER CENT = 0.0 TOTAL N = 97

(10) ~

TABLE VIII-Index

STUDY: INVESTIGATOR: TITLE:
~---~~---~~.--.-----~--------------------------------------

I N 0 E X

DEMOGRAPHY OF PATIENTS AND STUDY
MEAN AGE ••••••.•••••••••••.•.••••••••••••••••••••••••.••••••••••• 10 <E---
TOTAL NUMBER OF DAYS IN THIS STUDY ••.•••••••••••••••••••••••••.•• 37
EARLY TERM I NA TORS •• 38
OUTPATIENTS DISPOSITION AT TERMINATION •••.•••••••••••••••••.••••• 53

PSYCHIATRIC RATING
SIGNIFICANT AT .05 LEVEL ••••.••.••••••••••••••••••.•••••••.•••••• 66,69,120,122,126,127,128,

186
SIGNIFICANT (G. G.) •• 66,69, 127, 128, 131,137,139,

TOXICITY
RIG IOITY •••••.•.••• 228,229,231,232
TREMOR •••••••.•••••••••.•..•..•.•..•.••.•••.•••.••.••..•••.•••.•• 228,229,231,232

356 National Computer Conference, 1977

Tables III and IV illustrate the tailoring of output accord
ing to user specifications. For this application, GOSTAB
accepted a two-way cross-tabulation of Drug by Duration
(42x 14) design, results generated and stored in design
order; i.e., 14 elements (frequency, percent, cumulative
percent, etc.) are stored together for each cell of the design.
However, the user wanted the data displayed as separate
tables (frequency table, percent table, cumulative percent
table, etc.). Here, only one page image was created and
results were distributed selectively to the appropriate tables
for output.

Table V shows summaries that are frequently used in
both industry and science, i.e., percentages, subtotals, and
totals.

Tables VI, VII, and VIII are illustrated to show some

extracted materials from one of our completely documented
studies. (Page 10, E-arrow marked, has been selected to
demonstrate page reference capability of this book system).

CONCLUSION

Based on our experience with the GO System, we firmly
believe that our approach is a viable one. We continue to
develop more general algorithms for the Interface executive
monitor, so that it will accommodate more flexible output.
Descriptors and results files are generated separately and
are maintained by trained technicians. Our first generalized
computational module (GOSTAB) proves that other mod
ules can be readily incorporated into the GO System.

A talking computer terminal

by JAMES A. KUTSCH, JR.
West Virginia University
Morgantown, West Virginia

ABSTRACT

In an attempt to provide a communications medium for
blind computer users, the requirements for an optimal
method of communications were set forth. Previous solu
tions to the problem were studied and their shortcomings
were noted. Through a combination of ideas from previous
approaches and the author's personal experience, a new
and unique direction was taken, which resulted in a host
independent talking computer terminal.

The hardware for the terminal, consisting of a micro
processor, a speech synthesizer, a keyboard, and a modem,
were assembled to form a prototype system. An analysis of
algorithms for the translation from text to synthesizer
commands was conducted, resulting in a decision to use a
technique designed by McIlroy from Bell Laboratories,
with modifications to tailor it to the needs of the talking
terminal. The necessary software was written and the
talking terminal was demonstrated using the University of
Illinois' PDP 10 as the host computer. It is currently being
used at West Virginia University on an IBM 360-75 as a
research tool of the author.

Pictured is the Talking Terminal which is currently con
nected to West Virginia University's IBM 360-75. It is used
extensively by the author and others as a research tool.

357

INTRODUCTION

Finding a reading aid or method for the bUnd has been a
long standing research problem. The earliest significant
contribution to the problem was the work of Louis Braille
in the mid 1800's. More recently, computers and other
sophisticated electronic equipment have been used in an
attempt to find a better solution.

Because of the specific nature of the problem, or perhaps
because it affects only a small percentage of the population,
it has not received the research attention it deserves. Some
major contributions have been made, but they are few and
far between. Further, almost all of the research that has
been done was conducted by sighted individuals, with little
or no input from blind persons who would be the eventual
users of any discovery.

A sighted person's opinion of what he would want or
need if he were blind is not always a true reflection of the
needs of the blind. The author, himself blind, hopes that his
personal experience will lend an insight into the problems
of the blind which is sometimes lacking in other research.

MAN-TO-MAN COMMUNICATIONS

Communications through a non-verbal medium is a diffi
cult problem for a blind individual. Since the visual channel
~ 1tiCt :.!V!rihHe~ aftpriT!ted-and'~~,~e ¥~M~","~~

must be converted to data suitable for one of the remaining
senses. The most commonly chosen secondary channels are
auditory or tactile. Both are seriously limited in bandwidth
as compared with vision.

Common solutions include transcription to Braille and
the reading of printed material either face to face or via a
tape recorder. Even though many textbooks and novels are
available on tape and records from the Library of Congress
and Recordings for the Blind and in Braille from the
American Printinghouse for the Blind, there are still serious
drawbacks to the loss of the visual channel. Of primary
concern is the availability of this material. That is, although
brailled and recorded books are adequate, they are not as
readily available as the printed word. Not every book,
paper, or magazine that a blind person might wish to read
has been converted. Further, the conversion is time-con
suming and requires the assistance of a sighted person.

358 National Computer Conference, 1977

A major contribution to the solution of this problem was
made by Telesensory Systems, Inc. when they began
production of the OPTIC ON (optical to tactile converter).!
A small camera is moved across a line of printed informa
tion. A tactile image of each letter so scanned is presented
through a matrix of vibrating reeds. These raised impres
sions are read (felt) by the user. The user of the GPTICON
can, without assistance, read the printed page. It should be
noted that it takes considerable training to recognize the
raised impressions of the letters, and even then, reading
rates remain disappointingly low. Experienced users have
not been able to exceed 70 words per minute. 2

MAN-TO-MACHINE COMMUNICATIONS

A blind computer user is faced with the same problems of
communications except that he is communicating with a
computer rather than another person. Obviously, the input
to the computer is not a problem, since keypunches and
terminals are keyboard devices and although the location of
the keys may vary, they are quite similar to those of a
typewriter. Thus, input to the computer can be achieved
with only the inconvenience of learning a new keyboard,
which is also required of the sighted computer user.

The transfer of information from the computer to the
blind user is similar to the man-to-man communications
problems discussed above. However, there are two major
differences. First, the data cannot already have been tran
scribed into BraiJJe or recorded on tape because every
computer output listing is unique. This means that the blind
user must make arrangements to have someone transcribe
or read his output or he must read it himself with an image
to-tactile converter. Further, it is quite difficult, if not
impossible, for the average blind person to use a time
sharing terminal interactively without someone with him to
read the output or without the use of an OPTICON.

The second difference is that the data is already in
computer readable form. If the computer could itself pre
sent the data in something other than a visual medium, the
man-to-machine communications problem would be solved.
Now, only how to convert and present the data needs to be
determined.

DETAILS OF THE PROBLEM

The purpose of this study is to design an optimal method
for a blind person to communicate with the computer and to
assemble whatever hardware and software is necessary to
achieve such communications, The criteria against which
the adequacy of a solution can be measured will be set forth
so that any shortcomings of a particular system can be
more easily discovered.

One of the most important qualifications of any commu
nications technique is that it should be available whenever
the individual wishes to use the computer system. This
precludes the use of another human being to read the
output, since scheduling can be quite difficult. Therefore,

the communications method should involve some machine
or mechanism that is available whenever the computer itself
is available to the average user.

Second, the communications method should be as com
plete and as versatile as possible. It should be able to be
used in many aspects of computer communications. For
example, if the computer system can be used in a batch
mode through punch cards and listings or in a time-sharing
mode from a terminal, the communications method should
be applicable to both.

Third, the converted data presented to the user should be
as thorough and complete as that presented to a sighted
user. All system messages, job control language, log-on
preambles, etc. which are generated from normal use
should be presented unmodified to the blind user. Further,
all system resources should be available. This precludes the
use of restricted or specifically modified languages, compil
ers, editors, etc. for use by the blind.

Fourth, the communications method should not require
that the user acquire some special or unusual skill, e.g.,
Morse code or the ability to distinguish musical chords. The
user of the system should be able to interact with the
computer with no more training than is expected of a
sighted user.

Fifth, in the same way a teletypewriter can be attached to
many widely varied computers, the communications
method should be computer independent. This would allow
the blind computer user to communicate with many differ
ent computers without requiring totally different methods
for different computers. This goal is considerably more
difficult to realize, but is very important.

Finally, the communications method should be equiva
lent in cost to devices required by a sighted person to
communicate with a computer. A company wishing to hire
a blind person should not be expected to pay large sums of
money for equipment to enable the blind person to do the
same job as a sighted person who would need no special
equipment.

These six criteria will be used to measure the effective
ness of various methods of communications. Input to the
computer will not be discussed because it is easily achieved
through keyboard devices which blind people can operate
without any difficulty. Emphasis will be on ways to convert
and present data through a non-visual medium.

INADEQUACIES OF PREVIOUS SOLUTIONS

Braille is the most common and perhaps the easiest form
of output for the blind. However, it is not without disad
vantages. The Braille character consists of a matrix of dots,
two wide and three high. Counting horizontal and vertical
spacing between characters, 40 Braille characters would be
120 characters wide and four lines high on a printer. Thus,
what would appear on one line of 120 characters of print
requires a maximum of twelve lines of dots and spaces in
Braille. Even with the use of compression techniques for
blanks and short lines, Braille is still very bulky, For
example, a thirty volume encyclopedia would consist of 145

volumes of five inch thick books in Braille. Further, com
puter generated Braille requires some sort of change to the
line printer, which means a time delay in most computer
installations. Special forms jobs are seldom run more than a
few times a day. Because of its bulk, Braille output is quite
wasteful, especially if only a few lines of each listing are
needed, as is commonly the case in debugging a program.
Braille output does provide a good means of storing infor
mation for later use and providing a listing which can be
studied many times. However, it is easily destroyed by
placing many listings or other heavy objects on top of it,
causing the raised dots to be erased. Properly embossed
Braille on special paper has an average life of fifty read
ings.3 (Embossing against a soft base does not produce as
well as when a metal die is used. The soft base limits dot
height by al10wing the dot base to expand.)

On the surface, the OPTIC ON seems to present a very
satisfactory solution. It is computer independent, readily
available, reads all forms of output (it can even be used to
read the face of a cathode ray tube display), and presents
no restrictions on what computer services are used. It is, in
fact, quite adequate for reading listings in a batch environ
ment. But, since it presents the tactile data on the user's
fingertip, it is inconvenient to use at a time-sharing termi
nal, since the user must continually move his hand from the
OPTIC ON to the keyboard and back again. Also, the
reading speed with the OPTIC ON is a consideration against
its use, as stated earlier.

Additionally, with both Braille and the OPTIC ON , a
sensory fatigue problem enters after prolonged use without
rest. This fatigue could be compared to eye strain. The
Braille or OPTIC ON reading finger becomes tired and the
ability to detect and distinguish characters lessens, causing
errors and slowdown in reading. Although experienced
readers may be able to work for several hours before
becoming fatigued, others cannot continue for more than a
half hour without giving the reading finger a rest. Since
most computer programmers spend several hours at a time
at a terminal. this drawback would present serious prob
lems.

DIGIT AL SPEECH SYNTHESIS SYSTEMS

The final medium to discuss is that of synthetic speech.
Many companies are producing various types of voice
response systems.4 However, in most cases, system details
are proprietary. Synthetic speech seems to be the optimal
medium for the computer to communicate with blind users,
indeed, with man. There is sufficient reason to believe that
no arbitrary letter-by-Ietter code could ever be as efficient
and understandable as the spoken language of the user. To
bridge the gap betwee}1 the computer and the blind user, the
computer must "speak. "5,6

Recently, Masters Specialties Company has developed a
technique for digitalizing and storing whole words in metal
oxide semiconductor (MOS) read only memory (ROM)
chips. By a complex plotting of waveforms. engineers have
converted analog audio signals into digital signals requiring
a minimum of storage.

A Talking Computer Terminal 359

In the earliest voice response systems words, phrases,
and occasionally syllables were recorded on photographic
film or magnetic drums. 4

,1l These methods are very useful
in systems that require a small fixed vocabulary, e.g., time
and temperature units. However, their adaptation to more
sophisticated systems is limited.

Rather than dealing with large units such as phrases or
words, the most versatile synthesizers deal with phonemes,
the smallest unit of the spoken language. They accept
digital phoneme commands and return their audible coun
terpart. This approach requires sophisticated software to
convert from letters to phonemes. There are several algo
rithms for this translation ranging from dictionary look-up
techniques6

- S to synthesis by rule.9 - 10

The problem with this method of synthesis is that the
words to be synthesized must be converted from graphemes
to the corresponding phonemes. (Graphemes are the 26
letters of the alphabet and all special symbols.) This is not a
trivial process since the English language does not follow
any simple set of rules for letter to sound correspondence.
This is most apparent with vowels. For example, the sound
corresponding to the grapheme "0" in "women" and
"Bob" is clearly quite different. Since phoneme translation
is context dependent, these algorithms usually require large
tables and a moderate amount of computation. However,
computer generated speech systems using synthesis by rule
have been designed to produce quite satisfactory and un
derstandable output. 10,12

An example of such a system is the one at Michigan State
University.12,13 This system is a very significant step to
wards an optimal communications method between a com
puter and a blind user. Nevertheless, there are some
serious shortcomings. First, the translation to phonemes is
done in the host computer system, not in the terminal.
Thus, the system is computer dependent. Although the
software might be moved to another computer, such a
transfer would almost certainly involve modification to the
software, perhaps major revisions if the transfer were to
another model or another manufacturer's computer. Fur
ther, only a subset of the system's resources are available
to users of the special terminal. This may be adequate in
bc~fnf1!tIg . co:nputer science edm:'atio!! ·bttt ~ .. "ot hftt 1tH
satisfactory for a more advanced and experienced computer
user. The most serious drawback, however, is that since
the conversion to phonemes is a process on the host
computer, some messages are sent directly to the terminal,
bypassing the translation process. These characters, if sent
directly to the speech synthesis device, would not produce
words, and if sent to a teleprinter or CRT for printing, they
could not be read by the user.

A TALKING TERMINAL

Considering all aspects of the above discussion, an opti
mal communications system for blind computer users was
designed. Such a system should clearly be an interactive
terminal, rather than a batch system, to allow more com
plete access to computer facilities. All batch facilities are

360 National Computer Conference, 1977

usually available through an interactive terminal, but sel
dom is the reverse true. That is, in a terminal system, long
jobs can be scheduled for execution in batch mode and
have the output sent back to the terminal for later reading.
However, interactive computing, and especially text edit
ing, is available in a batch environment only in a very
limited way.

Interactive text editors are of great advantage to the blind
user. Corrections to program files can be made easily by
reference to line numbers without the inconvenience and
difficulty of finding specific punched cards in a deck.

Many sighted programmers use on-line terminals to write
and debug their programs. This two-way communication
speeds up the process. However, the blind programmer
does not have this capability. Clearly, this disadvantage is
felt. Recently, the ACM Special Interest Group for Com
puters and the Physically Handicapped circulated a ques
tionaire among blind programmers about their special needs
and interests. The results were published in SIGCAPH
Newsletter Number 8, July I, 1973. In response to "What
special tools or equipment would you like to see devel
oped?" readers wrote: "A faster means of reading than
Braille;" "A machine to read ink output from the com
puter;" "Auditory output or input echo;" "Random access
books;" "An easier way of finding or inserting cards in a
deck;" "A card reader enabling me to make corrections
myself."

Computer-generated speech of the phoneme synthesis
variety is the best means of presenting the output. How
ever, the translation from graphemes to phonemes clearly
should not be done in the host computer due to the
computer dependency problem and the inability to translate
certain messages as mentioned above. Therefore, an intelli
gent terminal of some description must be incorporated so
that the translation can be done in the terminal. This solves
both problems. Since all messages are sent to the terminal
and are translated there for presentation to the synthesizer,
no messages can bypass proper translation. Also, the
terminal can be constructed in such a way that it appears to
be a teletypewriter or other conventional terminal to the
host computer system. Thus, computer independence is
maintained.

Additional advantages are present which can be attrib
uted to the intelligence of the terminal. That is, some
special processing of the data presented to the terminal can
be performed if desired, e.g., reading only the first few
characters of a line, selecting a mode of operation whereby
the terminal spells all output, and other local features.

It appears that such a talking computer terminal would be
the optimal method of communications for blind computer
users. Specific details of the talking terminal will foHow.

HARDWARE COMPONENTS

An analysis of a teletypewriter or a CRT type terminal
yields the following components: a keyboard to enter the
data; a coupling device such as a modem to communicate
with the computer; and an output device, such as a tele-

~080

Micro
processo

Modem

Ispeakeri

i
\votrax I

Keyboard

Figure I-The diagram shows the relationship of the individual components
with each of the others. Arrows indicate the path of data transfer.

printer or cathode ray tube display. The talking terminal
retains the keyboard and coupling device, and adds a
speech synthesis device for output presentation, driven by
a micro-processor. The micro-processor is necessary to
maintain host independence, since synthesis devices need
special codes to drive them. The standard ASCII characters
sent to a terminal need to be converted to these special
codes.

In the selection of a specific manufacturer and model of
the above equipment, several factors were taken into con
sideration. The talking terminal is considered to be a
prototype device for experimentation. Therefore, ease in
entering, modifying, and debugging the system's software
was of great importance. In a final version of the terminal
such features as front panel display lights and control
switches, which were essential in the system's development,
would not be necessary, and, in fact, might be undesirable.
Other considerations in hardware selection were keeping
the cost of the terminal as close as possible to the cost of a

standard terminal, within the constraints of delivery time
and availability of components.

The V otrax unit, manufactured by the Vocal Interface
Division of Federal Screw Works was selected for the
speech synthesis device. 14 This decision was based on sev
eral factors. First, the majority of speech synthesis applica
tions found in the literature make use of the Votrax, and
therefore, many of the algorithms for translation from text
to phoneme codes are designed specifically for use with the
Votrax. Further, after hearing the device demonstrated on
several occasions, it was deemed adequate for the purposes
of the talking terminal based on clarity of speech and speed.

The micro-processor system was selected to provide the
intelligence for the terminal. Due to the slow data rate of
ordinary speech, (on average, two to three words per
second), the speed of the computer was not an important
factor, even with a complicated algorithm for text-to
phoneme translation.

The Altair 8800 computer system manufactured by
MITS, Inc. was used in the talking terminal. This decision
was based on availability, low cost, modular design, and a
bus structure that allows the system to be configured with
any amount of memory and any number of input/output
ports.

Input/output drivers and 16K bytes of static random
access read-write memory were obtained from Processor
Technology to complete the Altair computer system. Read
write memory was selected for the prototype terminal so
that program changes could be easily effected. A final
version of the terminal would require only 2K bytes of
read-write memory for buffers and program variables. The
remaining 14K bytes could be replaced with read only
memory, permitting non-volatile storage of system software
and tables.

SOFTWARE DESCRIPTION

The software for the terminal consists primarily of rou
tines to perform the translation from English text to the
dig~tal ~om~ands nec~ssa.rY to drive the speech synthe~is
device. Routines to handle the commtl'mcations between
the terminal and the host computer system, as well as those
to manage character storage buffers, complete the list of the
terminal's software. The algorithms for the text to phoneme
translation used in the terminal are those described by
McIlroy from Bell Laboratories. 10 However, the algorithms
have been modified to better suit the needs of the talking
terminal.

The decision to use McIlroy's algorithms was based on
several factors. First, his approach was designed specifi
cally for use with the Votrax synthesizer. His rules and
tables map directly into the phonemes used by the Votrax.
(The phonemes used by the Votrax are not in a one-to-one
correspondence with those in the International Phonetic
Alphabet.) Further, McIlroy's algorithms deal with each
word individually. That is. no attention is paid to context
during the translation to phonemes. The talking terminal is
designed to be used mostly, if not primarily, with computer

A Talking Computer Terminal 361

languages. Abbreviated system messages of the type fre
quently found on the average time sharing system and other
output data are usually not complete sentences. Therefore,
the more expedient, less complicated method of independ
ent processing of each word is better suited to this applica
tion than a context-dependent process.

The main body of the software is a 10,000 byte table
which contains the letters of the alphabet, special symbols,
some exception words, and word fragments, all with their
corresponding phoneme equivalents.

The program consists of routines to access this table and
preprocessing routines which mark long and short vowels.

CONCLUSIONS

The talking terminal does provide an optimal means for a
blind programmer to communicate with the computer.
However, the applications to the sighted world should not
go without mention. For instance, there are security sys
tems where an individual must constantly monitor a CRT
screen for messages. This tedious task could be eliminated
by using the talking terminal in place of the silent CRT. The
employee is then freed to do other tasks and still not miss
any incoming messages.

The terminal has potential in computer aided instruction.
Young children have conversation ability developments
that far exceed their reading skills. The talking terminal
could communicate with these children more extensively
than the printed page. Also, in a classroom environment,
the talking terminal could be coupled to a public address
system allowing everyone in the room to hear the com
puter's output. Thus, one talking terminal would do the job
of many conventional terminals.

It is hoped that the design and construction of the
prototype talking computer terminal will enable blind pro
grammers to be more self-sufficient and productive and will
find many applications among sighted users.

REFERENCES

I. Bliss, J. c., "A Relatively High-Resolution Reading Aid for the Blind,"
IEEE Trans. Man Machine.

2. Bliss, J. c., M. H. Catcher, C. H. Rogers and R. P. Shepard, "Optical
to-Tactile Image Conversion for the Blind," IEEE Trans. Man-Machine
System, Vol. MMS-ll, March 1970, pp. 58-65.

3. Loeber, N. C., "Proposed Braille Computer Terminal Offers Expanded
World to the Blind," Proc. AFIPS Fall Joint Compo Conf., Vol. 39,
1971, pp. 79-87.

4. Hornsby, T. G., Jr., "Voice response systems," Modern Data, Novem
ber 1972, pp. 46-50.

5. Liberman, A. M., F. S. Cooper, D. P. Shankweiler and M. Studdert
Kennedy, "Perception of the speech code," Psychol. Rev., Vol. 74,
1967, pp. 432-461.

6. Lee, F. F., "Reading Machine: From Text to Speech," IEEE Trans. on
Audio and Electroacoustics, Vol. AU-17, No.4, Dec. 1969, pp. 275-282.

7. Allen, J., "Machine-to-Man Communication by Speech, Part II: Synthe
sis of Prosodic Features of Speech by Rule," Proc. AFIPS Spring Joint
Camp. Coni, Vol. 32, 1968, pp. 339-344.

8. Allen, J., "Reading Machines for the Blind: The Technical Problems and
the Methods Adopted for Their Solution," IEEE Trans. Audio and
Electroacoustics, Vol. AU-21. No.3. June 1973. pp. 259-364.

362 National Computer Conference, 1977

9. Gerstman, L. J., and J. L. Kelly, "An Artificial Talker Driven from
Phonetic Input," Journal of Acoustical Society of America. Vol. 33,
1961, pp. 835(A).

10. McIlroy, M. D., "Synthetic English Speech by Rule," Bell Telephone
Laboratories, March 1974.

11. Rabiner, L. R., and R. W. Schafer, "Digital Techniques for Computer
Voice Response: Implementations and Applications," Proc. IEEE, Vol.
64, No.4, April 1976, pp. 416-433.

12. Rahimi, M. A., and J. B. Eulenberg, "Modes of Information Presenta
tion for the Blind Programmer," Proc. Assoc. for Computer Machinery
Annual Con/., 1974.

13. Rahimi, M. A., and J. B. Eulenberg, "A Computing Environment for the
Blind," Proc. AFIPS National Computer Conference, Vol. 43, 1974, pp.
121-124.

14. Votrax Audio Response System Operators Manual, Vocal Interface Divi
sion, Federal Screw Works.

Hard-copy computer output
and its future

by IRVING L. WIESELMAN
Dataproducts Corporation
Woodland Hills, California

ABSTRACT

Descriptions provided for classes of products availabie for
hard-copy output of computers include: impact and non
impact printer technologies; serial character and parallel
line printers; shaped character and dot matrix character
images; and plotters which use movable pens or dot matrix
imaging with non-impact printing technologies. The signifi
cance of factors such as print quality, speed, flexibility,
reliability and cost, which determine the selection for a
given application, will be discussed.

The future of these products depends on the utilization
and enhancement of microelectronics, new materials and
new manufacturing processes, as well as the needs of users
in the marketplace. New products will have even higher
price/performance ratios, better reliability and increased
output flexibility and graphic capabilities.

INTRODUCTION

The principal hard-copy output of computer systems is
alpha-numeric data produced on computer output printers
which range in speed from 10 cps (characters per second) to
18,000 lpm (lines per minute), and the prices range from
S j;OOOtoS3OC,uaO. 1°TIlc; h\'u~ oa'~k ffl'ethDcts cfprt!iting :r!"c
impact and non-impact. Impact printers utilize mechanical
pressure to transfer the character image from an inked
ribbon to the paper. Non-impact printers utilize other
technologies such as thermal printing where the character
image is formed by using heating elements with the shape of
the character to heat a sensitized thermal paper which
changes color with applied heat. Printing is performed
either a character at a time in a serial format by a character
printer, or a line at a time in a parallel format by a line
printer. Character images are printed either as shaped
characters, which is the familiar form of book printing, or
as a set of dots representing the character out of a dot
matrix pattern. Thus, a printer is classified by three charac
teristics: impact or non-impact. character or line printer,
shaped or dot matrix characters. Table I lists printer speed
classes with the associated types of printers and typical
U.S. end user price ranges when interfaced to a computer.

363

The three general types of plotters in use are the drum,
the flat-bed and the electrostatic printer/plotter. 2 It is also
possible io use certain types of computer output printers for
plotting if the printed symbol spacing can match the plotting
requirements. The ink-based plotters contain means of
moving the pen in two dimensions across the paper. The
flat-bed plotter uses a pen which is moved in two dimen
sions. The drum plotter utilizes paper motion for one
dimension and moves the pen for the other. Electrostatic
plotters move the paper for one dimension and use a set of
styli across the paper which is selected to cause printing on
dielectric-coated paper. Plotters are utilized for hard-copy
whenever graphical data is the prime output of the com
puter.

The applications for different speed classes of output
printers have been dependent on the volume of output
required and the price of the printers. The most widely used
printers are the low cost 10 cps (characters per second)
character printers used primarily in terminals. Higher speed
character printers, with speeds up to 200 cps, are also used
with minicomputers and small business systems. Medium to
high-speed printers in the 300 to 2000 lpm class represent
the major output devices for small, medium and large
computers. Very high-speed printers in the 4000 to 18,000
lpm class are utilized by very large computer systems with
volume~Lof prilltoulgr~l:l,t~IJQ,at} Im~lt.ion f9rrl1~ l?~~ ~~~t~.

The particular choice of a hard-copy output device for a
given system depends on the application, the print quality
and/or graphic output requirements, the volume of the
output, the speed of data availability and output speed
capabilities, the flexibility and availability of output charac
ter sets and symbols, system costs, expendable costs and,
finally, the maintainability and reliability. The significance
of these factors as they affect the choices will be discussed.

IMPACT PRINTING

Printer units consist of a printing mechanism which pro
duces the printed characters and a paper moving mecha
nism which moves the paper past the printing mechanism.
Impact printer mechanisms consist of some means of scan
ning the characters past the printing positions, some means

364 National Computer Conference, 1977

TABLE I.-Typical U.S. End User Printer Equipment Prices and Speeds

IMPACT CHARACTER (SHAPED CHARACTER)
Speed-Characters/sec.
Price-$(OOO)

IMPACT CHARACTER (DOT MATRIX CHARACTER)
Speed-Characters/sec.
Price-$(OOO)

IMPACT LINE (SHAPED CHARACTER)
Speed-Lines/min.
Price-$(OOO)

IMPACT LINE (DOT MATRIX CHARACTER)
Speed-Lines/min.
Price-$(OOO)

NON-IMPACT CHARACTER (DOT MATRIX CHARACTER)
Speed-Characters/sec.
Price-$(OOO)

NON-IMPACT LINE (DOT MATRIX CHARACTER)
Speed-Lines/min.
Price-$(OOO)

90-250
3-17

of impacting the character to transfer the character image
through the inked ribbon to the paper and a ribbon moving
mechanism. There are many techniques of scanning the
characters past the print station, and these will be discussed
with individual printer types.

There are two basic methods of impacting the character.
One method is to impact the ribbon and paper with the
character to be printed, as is done with an ordinary
typewriter. This is known as a front-striking character
impact mechanism. The other technique is to place the
character to be printed behind the ribbon with the paper in
front of the ribbon. The character image is formed when the
hammer impacts the paper causing pressure on the ribbon
and the character. The characters are scanned past the
hammers and are moving when impact occurs as shown in
Figure I. The latter hammer-impact technique is the one
employed in all drum, chain, and train printers and this
represents the majority of the installed impact medium and
high-speed printers.

The ribbon mechanism uses either a wide towel-like

64 CHARACTERS A. ROUND PERIMETER OF DRUM d
.:;-.....

CHARACTERS ACROSS DRUM ___ '~~ _

"~·'r,; ~:!.;;; .. .1 ~
:;,;,~:,;;:~

010101"' ••

(~

Figure i-Dataproducts Mark IV hammer impact technique on drum printer

300-700
3-51

300-600
5-10

10-55
1-6

30-100
2-8

800-1800
22-87

125-500
4-10

10-300
1-5

1000-3600
4-25

60-120
4-7

115-660
3-12

2000
87-102

4000-21 ,000
145-310

ribbon which passes the print station in the vertical direc
tion, or a narrow ribbon like a typewriter which passes the
station horizontally. One form of the paper moving mecha
nism consists of utilizing paper with sprocketed edges so
that a sprocket-feed mechanism moves the paper. The
friction feed rollers are normally used in low-speed printers
or in very high-speed printers which do not intermittently
stop for printing. Printing of forms is normally accom
plished by means of sprocketed paper since the form must
be aligned with the printer mechanism to print properly on
the form. The two basic sizes of printers permit 80 column
or 132 column print widths at to columns per inch. Higher
print densities are available on some printers which permit
132-column printing on II-in. wide forms.

Printer units also contain control electronics and power
supplies. There is an interface to the computer or to the
control unit which is used to transfer data to be printed and
format control information. The control electronics contain
timing control, electromechanical control, power circuits
such as hammer drivers and, if required, code translators.
Character printers generally accept a character at a time,
and the printer mechanism prints the character and moves
to the next column to print the next character accepted.
Line printers contain print line buffers. All the characters
for a print line are sent to the printer and they are stored in
the buffer. The printer control electronics scan the buffer
and actuate the hammers, at the correct time, to print the
line. The power supplies provide power to operate the
control electronics and to operate the electromechanical
portions of the printer.

Impact serial character printers (shaped characters)

The printing mechanism of a serial character printer
moves serially across the printing area, usually from left to
right, as the characters are printed a column at a time. Both
the character impact and hammer impact methods are
employed. The majority of serial printers, over 700,000, are

the character impact printers produced by Teletype Corpo
ration. Teletype printers use a cylinder with characters on
the cylindrical surface to print at 10 cps. IBM uses a
replaceable sphere with characters on the spherical smface
on their Selectric printers to print at 15 cps. Univac uses
the hammer impact method with a one-character-wide drum.
to print at 30 cps. The Xerox-Diablo and Qume printers use
a daisy wheel with characters mounted on flexible arms at
the outer perimeter and print at speeds up to 55 cps. These
printers can also be used for plotting, since incremental
motions of 1124 in. are possible.

General Electric Terminet printers use a belt on which
the characters are mounted. Hammers behind the belt
impact the characters and then, in tum, impact the ribbon
and paper. It is not really a character printer since the print
mechanism does not move across the print line. Some
versions are character printers since the hammers fire in
groups from left to right, while other versions are line
printers up to speeds of 340 lpm.

Impact serial character printers have been utilized in two
different types of applications. The difference in the appli
cation depends on the print quality obtainable with the
printer. Printers in the teletype class, such as the Teletype
Model 33, have been primarily used in communication
situations where print quality is not very important and low
cost is a desirable feature. On the other hand, the IBM
Selectric and the daisy wheel printers are utilized for
printout where good print quality is a requirement, such as
the output of word processing equipment for business
letters.

Impact dot matrix printers

Most of the printers in the field using impact dot matrix
printing are character printers, but there are some which
are line printers. Most character dot matrix printers use a 7-
wire matrix to produce matrix characters ranging from 5 x 7
to 9x7 dots. The use of an 8-wire or a 9-wire matrix permits
character generation for characters which extend below the
ywtfH: iffie., MaRy diUereRt charac.tersets can be gen~(ated
with the same print head using different dot matrix charac
ter generating ROM's (read-only-memories). Character sets
with different shapes than English, such as the Japanese
Katakana, may be generated by merely changing the ROM.

Recently, Centronics and others have introduced printers
with ROM's to generate high density character sets of up to
15 cpi (characters per inch), instead of 10 cpi normally used
for computer printout. In this way, a I32-column printout
can be produced on an II-in. width sheet. Plotting may also
be performed by dot matrix printers using the dot grid
available from the print mechanism. The plotting capability
requires additional electronic control and software, and is
available on very few matrix printers.

Several line printers in relatively low production volume
are available which use dot matrix printing. There are two
basic approaches used for printing. The first approach, used
by Tally, Okidata and Printronics, uses a matrix comb of

Hard~copy Computer Output and Its Future 365

wire actuators across the page which moves back and forth
to print dots for one row of dots across the sheet. The sheet
is moved to print the 7 or 9 dots vertically to generate
characters. Potter manufactures several models with speeds
up to 500 lpm which utilize a rotating print drum consisting
of a cylinder with helical ridges on its periphery. The
impact hammer, which is several columns wide with the
height of a dot, is used to print all the dots for the columns
it covers. The impact of the hammer on the paper and
ribbon at the time that the ridge is at an appropriate
position, causes the dot to appear.

The use of character dot matrix printers has greatly
increased in the past few years. They permit printing at
lower prices for applications between the 30 cps shaped
character printers and the 100-300 lpm low-speed line
printers. A whole new series of products is just emerging in
the 30 cps to 100 cps speed range with generally higher
prices than the Teletype Model 33, but with speeds at least
tripled and with reliability greatly increased over the Tele
type printer. Higher speed models use multiple heads to
increase speeds. The prices for these printers in the 60-120
lpm speed range have been priced lower than line printers
in the 100-300 lpm range. Although the dot matrix printers
are lower priced than line printers, they generally suffer
from lower reliability and require more maintenance.

Impact line printers

The hammer impact class of line printers constitutes the
major popUlation of medium and high-speed printers. Tech
nology improvements have increased the speed from 600
lpm in 1960, to 2000 lpm in 1972. In addition to increasing
speeds, the prices for equipment have been reduced and the
reliability increased. Although printing appears to occur a
line at a time, it actually occurs by sets of characters being
printed simultaneously on a line and eventually all the sets
of characters get printed to form a line. The print mecha
nism contains one hammer per column of print position.
The printable character set is scanned past the hammers.
When a character reaches the column to be printed with
that ch'aracter, the printer comroi cau~t;~ tht; 'haiTIi11Ci" to
impact the character at that column.

The two basic methods for moving character sets past the
hammers are the horizontal moving techniques and the
vertical moving drum. IBM pioneered the chain- and train
drive printers with its 1403Nl at 1100 lpm. while the
majority of non-IBM printers use drums. Chains and trains
use slugs constrained by tracks which need lubrication to
keep friction down and to minimize wear due to sliding
friction. Drums are more reliable since they are rotated on
bearings and have no friction in moving the character set.
Chains and trains are more flexible since character sets can
be larger and can be changed by the operator. Drums, on
the other hand, last longer because 35 times as many of the
same characters are used for printing.

The other approaches to horizontal scanning use belts
which move in one of two planes. The first moves like the

366 National Computer Conference, 1977

tread of a tractor and is used by the Teletype Model 40 and
the Dataproducts Charaband. The second moves like a belt
that wraps around one's waist and is used in the G.E.
Terminet and the IBM and Univac steel belt printers. These
belt mechanisms vary in the amount of friction encountered
due to the basic design approach. The Dataproducts Char
aband uses print slugs attached to a band riding on a ball
bearing mechanism which minimizes friction and wear and,
thus, eliminates complex lubrication systems and increases
life. Printers using belts have speeds which range from 30
cps to 2250 Ipm.

Printer performance is measured by print quality, flexibil
ity, speed, reliability and maintainability. 3 The principal
factors which determine print quality are horizontal and
vertical character registration, character smear, character
tilt, character clipping, ghosting, character voids, and varia
tions in character density. These print quality fac;tors are
determined by the design of the print mechanism, the type
of ribbon used and the ability of the print mechanism to
stay adjusted. Designs such as Dataproducts printers use
components, such as the Mark IV friction-free hammer
mechanisms, which retain their adjustment for over 150
million printed lines.

The speed of line printers is a function of the character
scan speed, the size of the character set, the characters
printed on the line and the time it takes to move the paper
to the next line. The speeds of line printers vary from 75 to
2000 Ipm with increments generally of 300 Ipm. The most
widely used speeds are 75, 150, 300, 600, 900, 1200, 1500
and 2000 Ipm.

The last factors of reliability and maintainability are
influenced by the general technology used and the mechani
zation of the principal subsystems consisting of the charac
ter scanning mechanism, the paper feed mechanism and,
most important of all, the hammer impact mechanism. Most
manufacturers use an electromagnet and push rod which
impacts a pivoted or flex-pivoted hammer slug. Parts of the
electromagnet mechanism are subject to wear as weB as the
push rod-slug interface.

The Dataproducts friction-free Mark IV hammer actuator
consists of the hammer impact slug which is mounted on a
flat coil and suspended by two flex-pivot springs which also
carry current to energize the coil. The coil is placed
between permanent magnets and, hence, an electromag
netic field is produced which causes the hammer to impact
the paper, ribbon and the character to be printed. Field
experience indicates that the mean number of strokes
between failures for the hammer actuator is approximately
2,000 million, and flight time adjustments are required at
about 150 million strokes. It is a more reliable hammer
mechanism and requires less maintenance than other de
signs.

Impact line printers-somewhat serial

This class of printer is used for medium to low-speed line
printing in the range of 100 to 700 Ipm. Lower product cost
is achieved than is possible with a line printer by sharing

some of the components in the printer, hence, fewer parts
are used.

Dataproducts pioneered this approach in 1 %9, and pro
duced its 80-column Model 2310 printer by sharing 20
electrical hammer drivers for 80 hammer actuators. This
same sharing technique is used in the Dataproducts 2910
military line printer with speeds ranging between 356 and
1110 lpm depending on the number of columns printed.
IBM uses a double width hammer in its new steel band
printer for the 3770 terminals and the System/32 at speeds
between 50 and 150 Ipm. One hammer is used for two
columns, hence, only one-half the hammer mechanisms are
required. An9ther version of IBM's steel band printer is
available with one hammer per column which prints at 400
Ipm.

Dataproducts offers the 2230 printer which uses one-half
the number of hammer actuators to achieve a print speed of
300 Ipm. The hammer bank with the Mark IV friction-free
hammer, is flex-mounted and servo-driven to two positions
by means of a voice-coil positioner. An optical transducer
is used for position sensing and a magnetic transducer is
used for velocity sensing.

NON-IMPACT PRINTERS

A variety of technologies exists for printing with non
impact printers. Some utilize special papers such as elec
trostatic, electrolytic, photographic or thermal, and others
utilize ordinary paper. Printing speeds range from 10 cps to
45,000 Ipm. All impact printers have the property that they
can produce multiple copies at the time of printing, since
the impact pressure through the carbons is transmitted to
the copies. Non-impact printers produce only one original
copy.

The two technologies of non-impact printing which utilize
normal paper are the ink-jet and xerographic printers. Low
speed ink-jet printers are used in word processing applica
tions. High-speed xerographic printers are used for high
volume printing. These printers are just emerging in the
marketplace.

The other techniques of non-impact printing employ
special papers which have properties for producing print
without impact. The most widely used is thermal paper
which is printed upon by heating dot elements which form
dot matrix characters on the paper. Thermal printers utiliz
ing this technique are employed as interactive keyboard
terminals. Next in use is electrostatic printing which is
performed by using a paper which is dielectric coated and
used in applications which require printing and plotting.

Each of the technologies will be discussed with the
printers' speed range, advantages and disadvantages, price
range and significance for use as hard-copy output devices.

Thermal matrix printers

Most of the thermal printers in the field utilize an array of
5x7 individual elements within one head. Each element in

the array can be switched on and off to impart heat. The
head stops at each printing position as it is stepped across
the paper. Dark marks are produced on the thermally
sensitive paper at those points of the array which have been
heated. Speeds of up to 120 cps are available using this
technology, but most of the printers operate at 30 cps.

The prime suppliers of thermal printers are Texas Instru
ments and NCR, with TI being the dominant supplier. Until
recently, impact dot matrix printers have been considerably
more expensive than thermal printers. The new 30 cps
impact printers of Digital Equipment Corporation and GE
are still more expensive than the thermals, but they are
closer in price than they were. Thermal printers are also
being utilized for calculators and small personal computers.
They are quiet and have a lower initial cost than compara
ble impact printers. If the volume of printing is not high,
then the cost of the paper is not a deterrent for its use.
Paper costs can be two to four times the cost of normal
paper.

Electrolytic and electrographic printers

Both processes use specially coated papers which change
in color with the application of a voltage on the writing
element. The electrolytic process is a wet process where
moist paper is drawn between electrodes. The electro
graphic process is a dry process which uses electrosensitive
paper which has a metallic sheen and retains finger mark
impressions when handled. Applying a voltage to the paper
causes a light surface layer to bum away and leave a dark
layer underneath. Both processes have been used in facsim
ile systems, military communication equipment and com
mercial terminal equipment.

The printing mechanism in commercial terminal equip
ment, such as the UNIV AC printer, uses a dot matrix print
head containing 9 styli that etch 7 columns of dots per
character as the print head moves across the page.

The technology provides fairly low printer prices with
fairly high serial printer speeds, up to 300 cps. The principal
,p.tub1em with,ut.iliziug the" le~lo~ ,is. theapJlearancJ~ of
the paper and its expense. The approach could be used for
output plotting at the plot densities available from the head
configuration. Further developments in the paper technol
ogy could make this approach more viable in the market
place.

Electrostatic printers

Electrostatic printers utilize specially coated paper and
are line printers, since a row of conductive sty Iii are used
with a density of between 100 and 200 stylii per inch. 4 Each
stylus is selectively charged according to the required
output, so that each character is formed out of a mosaic of
charged spots on the paper. The data for successive rows
are produced as the paper moves. The paper is subse
quently passed through the toner bath where the charged
areas attract ink particles. The appeal of the technology

Hard-copy Computer Output and Its Future 367

stems from its ability to both print and provide relatively
rapid plotting. Printing speeds vary between 300 to 3600
lpm for most printers, except for Honeywell which has a
speed of 18,000 lpm. The prices are quite competitive with
the fastest impact printers and often are significantly lower.
Very fine resolutions are possible, which makes a variety of
good quality character styles available.

Three vendors are supplying printer/plotters: Versatec,
Varian and Gould.

Versatec is the dominant supplier. A new printer has
emerged which is low cost for printing only and is manufac
tured by Houston Instruments. Honeywell has a high-speed
version of this technology printing up to 18,000 lpm. The
prices range between $5,000 to $13,000 for lower speeds,
and up to $165,000 for the high-speed Honeywell printer.

The principal disadvantage of this technology is the cost
of paper. If very high printing volumes are expected, then
the cost of paper could be prohibitive to its use. Honeywell
sells their paper at a fairly low price, but charge for use of
the printer on a per copy fee. When these printers are used
as printer/plotters, then the cost of paper is not a significant
factor since the convenience of the output is the prime
driving force for its use. Plotters are available with widths
up to 72 inches using this technology.

Magnetic printers

One currently available printer, manufactured by Inforex,
uses a technology that can be described as indirect mag
netic. In this printer, a tape coated with magnetic material
is passed over a recording head, which creates a magnetic
latent image of a complete character mosaic. This tape is
then toned with a magnetic ink powder. When a full line of
text is ready, the tape is placed in contact with the paper
and the ink particles are transferred. The ink powder is
fused into place as the tape is wound on past an erasing
head. Speeds of 200 lpm can be achieved in this way. It is
being manufactured in fairly low volume, and has poor
printing quality. It is not too cost effective and is not a
si.iAmC~I).t J~~l}VQl.Qgy in ~h,e IIli:!r~,e.tpJac.e.1()~:lY ~.,F~ture
developments could make this technology more viable.

Ink-jet printers

Ink-jet printers produce a jet of ink droplets which are
directed against plain paper. The droplets first pass through
an electric field which places an electrostatic charge on the
droplet. They next pass through a deflection plate which
deflects the droplets in proportion to their charge. At points
where no ink mark is required, the ink droplet is deflected
into a gutter, leaving the paper clear. There are two ink-jet
printers in the marketplace today at opposite ends of the
speed spectrum. Ink-jet printing technology is also used in a
variety of applications outside of the data processing indus
try. such as the printing of containers.

The IBM 6640 document printer produces output at 92
cps with print quality that is very close to that produced by

368 National Computer Conference, 1977

the IBM Selectric typewriter, and is used in word process
ing applications. This print quality is achieved by utilizing a
dot matrix structure of dots at 240 per inch both horizon
tally and vertically. A single ink jet is used which is
directed vertically and moves horizontally in a serial man
ner. Although the 6640 does not currently have a graphics
plotting capability, it certainly would be possible to provide
very good quality graphical output provided the control
were designed into the printing mechanism. This certainly
could happen in the future.

The Mead Dijit printer system produces printout at
45,000 Ipm, or 600 feet per minute, in terms of press
speeds. The print head utilizes 100 jets per inch and a single
jet for each droplet position. It is an expensive printer, and
is currently being used in specialized applications such as
very large volume direct mail letters. Its utilization is closer
to that of a high-speed printing press with variable informa
tion being printed as controlled from a computer output.

More ink-jet printers will be appearing in the marketplace
in the future. Higher speed serial printers will be available
with lower print quality than the IBM 6640. The success
will ultimately depend on how reliable and maintainable the
printers are, and how cost effective they are in relation to
comparable impact printers. Specialized applications will be
found for the very high-speed printer, but it will not be used
widely for high-speed computer printout, since other meth
ods which are somewhat slower are available and are cost
effective in the marketplace.

Xerographic printers

Xerographic printers utilize a printing process identical to
that utilized by xerographic copiers. The difference be
tween a xerographic copier and a xerographic printer is the
method of imaging. The Xerox 1200, first delivered in 1974,
utilizes a photographic drum with character images similar
to a line printer drum, but uses flashes of light to image the
characters on the xerographic printing drum. The IBM
Model 3800, first delivered in 1976, uses a laser beam
character generator to generate a dot matrix character on
the surface of the photoconductor. In both cases, after the
images are formed, the toner is applied to the photoconduc
tor surface and the image is created by the toner on the
surface. The image is then transferred to output paper and
fused into place. Both systems contain a forms overlay
feature which allows a form created as a photographic
image to be reproduced on the printed output. This elim
inates the need for utilizing forms which are pre-printed and
saves the costs of purchasing forms printed by a printing
press.

The Xerox 1200 uses 8ix 11 in. sheets, prints at 13.3
characters/inch and 8 lines/inch, at a speed of 60 sheets/
minute, or 4000 Ipm. It prints 95 ASCII symbols including
upper and lower case alphabetics, numerics and special
characters. The cost is $145,000 and a usage charge, based
on the number of copies, is added to take care of mainte
nance.

The IBM 3800 utilizes continuous sprocketed forms and a
dot matrix structure for its output characters, with 180 dots/
inch in the horizontal direction and 144 dots/inch in the
vertical direction. The dot structure is fine enough to
produce output characters which appear to be shaped
character images. The dot matrix structure permits many
different character sets to be printed by the printer with the
possibility of mixing character sets on a particular sheet. 5

There is no graphic capability in terms of graphical curves,
but it would certainly be possible to provide that capability
with suitable software modifications by IBM. The output
speed depends on the size of the form and the number of
lines per inch utilized in the printout and ranges from 8,180
lpm to 20,820 Ipm. The cost is $310,000, and there is a
maintenance charge based on the number of forms used per
month.

In order to utilize a printer with a speed capability and
with the cost of the IBM 3800, the user should have a
volume greater than Ii million copies of printout per month.
The pricing of the printer is such that it becomes cost
effective if the user does have volumes this high or greater,
and utilizes a considerable amount of pre-printed forms.
Computer operations which utilize more than 3 high-speed
computer output printers, are candidates for these high
speed non-impact xerographic printers.

DIGIT AL PLOTTERS

Digital plotters provide graphical output in the form of
lines on paper from digital inputs. Digital plotters utilize
writing instruments, such as pens to mark the paper, which
are moved in two directions to generate the graphical
output. Another type of plotter is available, which utilizes
the technique described under electrostatic printers.

There are two basic types of moving pen plotters: the
flatbed plotter and the drum plotter. The flatbed plotter
plots on a flat sheet of paper which is held in place, and the
pen is moved in two dimensions to draw lines from one
point to another. Roll sheets can also be used which consist
of paper, vellum or plastic. The paper sizes range from
II x 17 in. to 54x76 in. Pen speeds range from 3 in.lsec. to
100 in.lsec. The number and types of pens range from 1 to 8
including liquid ink, ball point, fiber tip and scribe. The
prices range from $4000 to $200,000 depending on the size
of the equipment, number of pens, flexibility and accuracy.

Drum plotters utilize paper motion to provide one direc
tion of motion and the pen to provide the other. In addition,
the drum can be moved in either the forward or reverse
direction to achieve complex graphical output. Very long
graphical outputs can be achieved by using roll sheets and
continuing the drawing over many sections. Paper sizes
vary from II in. to 30 in. in width. The plotting speeds
range from a minimum of 200 steps/sec. to a maximum of
5000 steps/sec. The types of recording media used and pens
are similar to that which is used with the flatbed plotters.
The number of pens ranges from I to 4. The prices range
from $3,500 to $23,000. The majority of plotters used in the

field are drum plotters, since they are much lower priced
than the flatbed plotters. Very large drawings, such as are
used for drafting applications, are usually handled by
flatbed plotters.

Electrostatic plotters use a row of styli in the horizontal
direction to produce dots. These range in density from 80 to
200 dots/in., and plotting widths range from 8i to 72 in.
Vertical plotting is performed by moving the paper as in a
drum plotter. The plotting capability is similar to that which
could be achieved by using as many pens as are needed for
a drum plotter. The principal advantage of these plotters is
speed. The horizontal plotting speed is one scan in the time
it takes to move one vertical increment. Since paper speeds
vary from 0.5 in.!sec. to 7 in./sec., the horizontal plotting
speed can be as high as 6000 in.!sec. The time for plotting is
not dependent on the complexity of the plot, but only on
the paper speed. For pen plotters, the speed also depends
on the pen velocity, the number of pens, and the complex
ity. Prices for the printer/plotter mechanism range from
$6,000 to $52,000. Complete systems which interface to
computers add from $2,000 to $12,000. Dielectric-coated
paper ranges from two to four times the cost of plain paper.

The required physical characteristics of the graphical
output produced by plotters are described in terms of the
accuracy, resolution, and repeatability of the device. The
accuracy of the plotter is the error between where the
points should be and where they actually are. Accuracy is
expressed either in terms of a percentage of the total span
of the graph, or in terms of absolute accuracy in inches.
Accuracies range from .001 in. to .012 in., and from .05
percent to .1 percent vertically, or from half a step to a
single step vertically. Resolution determines the minimum
dimension which can be drawn and the minimum distance
between lines. This ranges from .001 in. to .005 in., or from
50 points/in. to 200 points/in. Repeatability refers to the
ability to return to a previously plotted point. The ranges
for repeatability are based on the resolution and accuracy,
and are generally closer in value to the resolution than to
the accuracy.

The method of plotting for pen plotters depends on the
~Rnd ~nwkH'~ RVRilabie tflthe ~~WRH~ and CRn et:fec;t
the quality of the output plot. One of the most widely used
methods is to move the pen one increment to the right, the
left, up or down, or diagonally right-left-up, or diagonally
right-left-down. This is a total of 8 different kinds of motion
which are possible. Another approach uses dots placed at
given locations determined by coordinate addresses. A
third method utilizes straight lines drawn between two
specified points. The quality of the final output depends on
the resolution of the system and the kinds of commands
which are available. If the resolution is fine enough, the
jagged appearance of curves looks smooth to the viewer.

There are a multitude of choices available to the user.
Once the requirement for the graphical output is decided
upon, one can find a plotter which meets the needs. The
size and type of paper needs to be specified, the number of
pens required (perhaps with different colored inks), the
accuracy, the resolution, the repeatability and, finally, the

Hard-copy Computer Output and Its Future 369

speed. If there are incompatible requirements, such as a
speed requirement which is too high for the capability in
terms of resolution, then judgments must be made as to
what parameters are really the most important.

THE FUTURE

The characteristics of various alternatives to obtaining
hard copy from computers have now been discussed. The
changes in price/performance for existing products in the
past few years have been primarily due to improvements in
large scale integration (LSI), new materials technology, and
in production automation. New products using new tech
nologies, such as the ink-jet printer and the laser beam
electrophotographic printer, are based on the refinement of
new inventions and concerted investment in new develop
ment.

The expanded use of LSI and the emergence of micro
processors has not only made dramatic improvements in
existing products, but has also affected the way in which
we conduct our day-to-day affairs. Electronic hand calcula
tors are available for under $10.00. Microprocessors have
been applied to control the automobile engine so that more
efficient fuel utilization occurs as well as producing fewer
pollutants. The utilization of LSI microprocessors, inex
pensive semiconductor ROM's and random-access-memo
ries has caused computer capabilities to be distributed with
networks and low cost terminals.

The use of microelectronics in hard-copy output equip
ment has not only reduced the cost for electronic control,
but it has provided more flexibility and the increased use of
electronics to perform functions which were previously
handled by mechanical or electromechanical equipment.
The reliance on a paper tape reader for vertical format
control was replaced by Dataproducts when lower cost shift
registers became available. These are planned to be re
placed by microprogrammed logic to provide additional
flexibility. Dot matrix formed characters, which have the
appearance of being produced from shaped character im
'!lQct fonts. are· ~ss4~·.du@ 10 the ~wef {;~. 9f stOfRge
The IBM 6640 uses a dot structure of 24x40=960 dots
now, as compared to other dot structures as low as 5 x 7 = 35
dots to produce characters.

The possibilities for lower cost production techniques,
using more plastics and less metals, are emerging in prod
ucts for the marketplace. The hammer bank for the Data
products 2230 printer, using the Mark IV hammer actuator,
has been designed so that the hammers and the magnets are
mounted in plastic parts which are attached to tubular
segments. New magnetic materials are available which
provide magnetic fields which are 50 percent stronger than
those currently used. This means reducing electromagnetic
fields and, hence, lower currents, less power, and simpler
driving electronics. New plastic materials and new epoxies
also mean lower cost mechanisms. Hence, new versions of
the 2230-type printer will appear with much lower costs.

The emergence of the laser beam as the energy source for

370 National Computer Conference, 1977

character generation has affected both non-impact and
impact printing. The very high-speed non-impact printers
will use laser character generation, and other printers
besides IBM will be available in the next few years.
Although high-speed impact printers are available today
which print at 2000 lpm, it is expected that future high
speed impact printers will peak at 1500 lpm, and that the
higher speed printers will be non-impact printers. The
impact printers in the 1000 lpm speed region will continue
to be cost reduced as the technology for the cost reduction
of the lower speed printers is applied to higher speeds.

The emergence of the IBM 6640 printer is an example of
a new product based on technology available today and a
concerted investment in new development. Ink-jet printers
had been in the marketplace, but they were not successful
because of reliability problems and non-competitive price/
performance ratios. IBM decided to invest in ink-jet tech
nology and found solutions to many of the problems caus
ing poor reliability. The electronic sophistication required
to produce the high quality print of the 6640 could only be
possible with the use of microelectronics available today.

The use of finer dot matrix structures for printing has had
an effect on graphical output. The use of electrostatic
technology for printing or plotting is an already established
and accepted technique. Not many impact dot matrix
printers have been used for plotting, but they could be if
they were modified to handle the task. Both the laser beam
electrophotographic technology and the ink-jet technology
have the basic capability to do a respectable plotting job

comparable to drum plotters. Whether or not these tech
niques will be used for graphical output depends on the
demands of the marketplace. If there is a real need which
could develop into a sizable market, then manufacturers
will commit their resources to the developments required to
satisfy the need.

In conclusion, the future will provide improved products
based on the printing technologies used today with even
higher price/performance ratios, better reliability, and in
creased output tlexibilities. Additional graphical capabilities
exist in many forms of output equipment, but they will not
be made available to users without sufficient pressure from
them. Impact printers will still dominate the marketplace,
but there will be increased use of non-impact printers for
specific applications.

REFERENCES

I. Wiesel man , Irving L., "Printer Technology And Its Future," Modern
Data, November 1975, Vol. 8, No. 11.

2. Datapro Research Corporation, "All About Digital Plotters," Datapro 70,
January 1977, Delran, New Jersey.

3. Freund, Ken, "Make No Mistakes When You Buy Your Next Printer,"
Electronic Products, April 28, 1975, Vol. 17, No. II.

4. Bakey, Tom, Jill Peters and David Sloan (Varian Staff), Printer/Plotter
Considerations, Varian Data Machines, Palo Alto, California, 1972.

5. International Business Machines Corporation. Introducing the IBM 3800
Printing Subsystem and Its Programming, GC26-3829-4, File No. S370-
03, White Plains, New York, 1976.

Variable-length hash area entries

by M. H. McKINNEY
University of Southwestern Louisiana
Lafayette, Louisiana

ABSTRACT

A study is presented of the behavior of hashing when
implemented with variable-length entries in a hash area.
Neither bucketing nor pointers are necessary to achieve the
variability. Significant space savings may be realized by
reducing the amount of space required for each entry while
providing for entries of any length. Savings in time may
also be realized by improving the locality of reference.
Simulation results are presented which demonstrate the
potential savings along with some interesting behavioral
aspects of using a variable-length entry approach. Variabil
ity by a fixed block size as well as variability by atom is
discussed. An algorithm to accomplish the placement of
variable-length entries in the hash area is given.

INTRODUCTION

Hashing involves transforming the numeric representation
of some key value into an address such that the address
corresponds to the location within a storage area (hash
area) at which the key value and accompanying non-key
data are stored. Here, the term "key" carries the conven
tional meaning, i.e., a key is the attribute by which an entity
is uniquely identifiable. When two keys hash to the same
~ddr~~~1 ~ cJ!m~iC!n i~~~i~ to 9C.C:uf.: Colli~;<?n~ arc~ ~~ be
expected when hashing and must be handled by a collision
recovery algorithm. This may be handled in a number of
ways, although the simplest such collision recovery algo
rithm is the linear probe open address (linear rehash)
method. 1 In the event of a collision, the linear rehash
method simply advances repetitively to the next higher
contiguous location in the hash area until the desired
location is found. The frequency of collisions depends on
the distribution of addresses generated by the hashing
algorithm, the collision recovery algorithm used, and the
denseness of occupancy of the hash area. The measure of
hash area densene~s is called loading, which is defined as
the percentage of occupied space in the hash area.

Although hashing has received considerable attention in
the literature,1-7 placement of data directly into the hash
area is discussed with reference only to fixed-length parti
tions of the hash area such that the partitions are either the
same size as the fixed-length logical entries or large enough

371

to accommodate mUltiple logical entries. The term bucketing
is used to describe the latter approach with the fixed-length
partition being termed a bucket. Thus, with bucketing,
collisions are no problem until the bucket is full.

Accommodation of variable-length entries is generally
accomplished by one of three methods:

(1) Utilizing fixed-length partitions in the hash area such
that the length of the partitions is equal to the length
of the longest variable-length entry.

(2) Utilizing bucketing such that each bucket may ac
commodate one or more variable-length entries.

(3) Utilizing a hash area containing only pointers to the
variable-length entries which are stored elsewhere as
a dense list. This is often referred to as the scatter
index table method. 2

The first and, generally, the second method require
predetermination of the maximum entry length of all the
entries. In addition, these methods may render an apprecia
ble amount of space unusable due to internal fragmentation
within the partitions. The second method also requires a
directory within each bucket to indicate its contents.

The scatter index table method requires a hash area for
the. l?()i~~~r~ ~nd "~~9~h~r, ~r~~, for ,th~ c ~~!~~Iltri~~: ,With, ?
random file residing on a dIrect access storage device, one
physical access may be required to reference the pointer
area with another to reference the dense list area. Collisions
may cause several such dual accesses before the desired
location is reached. A similar situation exists when the hash
area and dense list are maintained in a paged virtual
memory system. Each reference may well cause a page
fault. 2

The variable-length entry approach, by reducing the
amount of hash area space required for each entry and by
using a linear rehash, maximizes locality of reference.
Within the context of hashing, locality of reference, or
simply locality, is defined as the distance beyond the initial
probe address at which the entry is actually located.
Locality is used as the primary performance metric in this
paper. Certainly, locality of reference is desirable in a
paged system as well as when performing random access to
files on direct access storage devices.

372 National Computer Conference, 1977

DESCRIPTION OF THE ALGORITHM

The term atom is defined as the smallest addressable unit
of information (byte, word, or array element) as is appro
priate to the particular application. A block is a fixed-sized
grouping of one or more contiguous atoms. A segment is a
contiguous group of blocks containing an entry. The entry
length is defined as the number of blocks in the segment
containing the entry. A free block is a block of unused
space. A descriptor is an atom within each block that
describes the contents of the block. The algorithm as shown
in the appendix uses the convention that a descriptor of
value zero implies a block of free space, while any non-zero
value implies that the block is part of a segment. The
algorithm also uses the convention that the descriptors of
each block of a segment indicate the number of remaining
blocks in the segment. For example, the first descriptor of a
five block segment contains the value five, the second
descriptor contains the value four, etc.

The most fundamental approach involves variability by a
block size greater than one atom, although atomic variabil
ity is possible with a few restrictions. Both types of
variability are discussed below.

Transformation of an entry's key to an address in the
hash area may be performed by any of the well-known
hashing methods 1,3 with the restriction that the hash ad
dress (location of the initial probe) references an atom
containing a descriptor. Thus, if the descriptor occupies the
first atom of each block, and there are m blocks in the hash
area with n atoms per block, the range of the hash algo
rithm output, h, must be from 0 to m - 1. The hash address
is then h*n + 1, with the hash area ranging from atomO)
through atom(m*n).

Adding new entries

The methodology for insertion' of new entries into the
hash area is as follows. Upon computation of the hash
address from the entry key, the atom at the hash address (a
descriptor) is inspected to determine whether or not the
block is free. If the block at the initial probe is free, a
forward scan is made to determine if there exist enough
contiguous free blocks to accommodate the entry. If adequate
free space exists, the entry is inserted beginning at the hash
address. If there is not enough contiguous free space at,
and immediately beyond, the hash address, the segment
preventing the insertion is skipped. The skip is made by
advancing the forward scan according to the value in the
descriptor in the first block of the segment. If the block
beyond the skipped segment is itself part of a segment, this
collision is also skipped. Skipping continues until either
enough contiguous free space is found or some predeter
mined locality limit is exceeded. In the latter case, one of
many auxiliary collision handling methods3 may be used. If
the block at the initial probe is part of a segment, all the
remaining blocks of the segment involved in the collision
are skipped by advancing the scan according to the value in

the descriptor at the initial probe. Then the algorithm
proceeds as described above.

Example

The simplified example in Figure 1 shows a hash area
containing 20 usable blocks. The hash area is initialized by
filling it with descriptors of value zero to indicate free
space. The last two blocks shown are used by the algorithm
given in the appendix to simplify detection of the end of the
hash area during a forward scan, i.e., the free block at
location 21 assures that a free block is detected, and the
descriptor at location 22 causes the scan to stop and test for
a wrap-around before testing for adequate contiguous free
space.

The blocks may contain any number of atoms greater
than one. If, for example, each of the 20 blocks contains 100
atoms, the actual usable hash area size is 1980 atoms (2000
total atoms minus the 20 descriptor atoms). For simplicity,
only the descriptors are shown.

The first entry is a 5 block segment shown hashed to
block 9. The forward scan determines that adequate contig
uous free space exists beginning at that location, so the
segment is inserted there. The next entry is a 6 block
segment which is placed in blocks 14-19. It should be noted
that this segment is inserted in those blocks if the initial
probe is anywhere in the range of block 4 through block 14.
If, for example, the entry key hashes to block 4, there exist
only 5 contiguous free blocks at and beyond that location.
Therefore, when the scan detects the descriptor of 5 for the
segment at location 9, a skip is made directly to location 14
by advancing over the number of blocks indicated in the
descriptor at location 9. As another example, if the initial
probe is made to location 11, a skip is similarly made over
the last 3 blocks of the segment to location 14.

The third entry requires 4 blocks and is placed in block
locations 1 through 4 if the initial probe is made to any of
the blocks 6 through 20 or block I. If the initial probe is
made to any location 6 through 20, the forward scan detects
the end of the usable portion of the hash area and the scan
wraps around to the first block in the hash area. For
simplicity of programming a segment is never split, i.e.,
segments are always inserted in physically contiguous
blocks. The last entry is inserted in blocks 5 and 6 if the
hash address refers to any block but 6 or 7.

Location and deletion of entries

The only complication of locating an entry using the
variable-length approach arises when the initial probe is
made to a block of a segment. In that case, it is not readily
apparent whether the block at the initial probe is the first,
or some subsequent, block of a segment. This determina
tion, however, is made as follows. If the initial probe is
made to a block, h, of a segment, the immediately prior
block, p, is examined. If the descriptor at p is numericaiiy
greater than the descriptor at h, the initial probe is known

Variable-Length Hash Area Entries 373

Relative block location in hash area * *
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Initial values
0

hash to location 9
5--4--3--2--1

0 0 0 0 0 0 0 0 5--4--3--2--1 0 0 0 0 0 0 0 0 1

hash to any location 4-14
6--5--4--3--2--1

0 0 0 0 0 0 0 0 5--4--3--2--1 6--5--4--3--2--1 0 0

hash to either location 1 or any 6-20
4--3--2--1
4--3--2--1 0 0 0 0 5--4--3--2--1 6--5--4--3--2--1 0 0 1

hash to any location but 6 or 7
2--1

4--3--2--1 2--1 0 0 5--4--3--2--1 6--5--4--3--2--1 0 0

* dummy blocks for wrap-around detection.

Figure I-Example of the method

to be referencing other than the first block of the segment.
Thus, the collision may be skipped without performing any
key comparison because a segment is only stored at, or
beyond, the initial probe location. Once the skip is made,
the scan is synchronized such that thereafter the first block
of each segment is directly addressed.

Deleting a segment involves locating it and setting all the
block descriptors to zero (free block identification). When
frequent delete activity occurs and reorganization is
deemed appropriate, the reorganization more closely re
~e.f!1lJ.I~~~~rlJ~g~ ~,?Il~~t~0I18,tll~n c.2nv~nt!gn~1 h!a.§h are::!
reorgamzatIon. ;

Modification of an entry such that the modification
changes the entry length may be performed by deleting the
original entry and then adding the new one. If the new entry
is smaller than the original one, the new entry may possibly
be placed with better locality than the original entry.

Variability by atom

Atomic variability is achieved by imposing certain re
strictions on the data in the segments. An adaptation to
byte variability using EBCDIC is described below. Similar
adaptation to ASCII character, word, or other atomic
variability may be made.

Obviously, there must be some means for determining
whether an atom represents free space, a length code, or
data so that the scan becomes synchronized with the first

byte of a segment. This distinction is made by taking
advantage of unused coding combinations in the atoms
containing data. For example, there are no printable char
acters in EBCDIC having a bit configuration numerically
lower than 01000000, i.e., decimal value 64. Thus, a length
code of 1-63 may be used with no confusion if the segment
contents are restricted to character strings. Free atoms may
use the bit configuration 00000000. The only differences
between such an implementation and the block variability
described above are:

(1) With atomic variability, the first, and only the first,
atom of each segment contains a length code.

(2) If an initial probe is made to an atom that is neither
free nor a length code, an atom-by-atom scan is made
to skip over the segment. Once a length code is
encountered, direct skipping over segments may be
performed.

An alternate approach to atomic variability removes the
restrictions on the length codes and the data values. This
approach involves imposing the restriction that the length
codes must always immediately follow an atom coded as
free. Thus, there is no confusion as to which of the atoms
represent a length code. Obviously, an extra atom is
required for each entry, but length codes may be of any
magnitude storable within an atom, and data-containing
atoms may contain any bit combination other than that
chosen to indicate free space.

374 National Computer Conference, 1977

SIMULATION AND RESULTS

The simulation models are implemented in PL/I on the
Honeywell 68/80 MUL TICS system. The hash addresses
are determined by use of a uniform distribution generator,
while the entry lengths are developed by either a uniform,
an exponential, or a Poisson distribution generator. When
appropriate, the generated entry lengths are truncated such
that regeneration is performed when a number outside the
specified range is developed. Standard MUL TICS random
distribution generators are used to develop hash addresses
and entry lengths with the exception of the Poisson distri
bution generator which follows the method described in
Reference 9.

Entries are generated and inserted into a simulated hash
area using block variability with only one atom per block in
order to conserve simulation memory space. Clearly, an
increase in block size accompanied by a corresponding
increase in hash area size would produce similar statistical
results.

Two variations of the simulation model are used for the
following analysis. One displays statistics at specified load
ing intervals, and the other produces statistics at a specified
cumulative average locality value. Figure 2 contains part of
an actual run of the first version of the model. This model

hash area size=50000 blocks

generates entries and inserts them into the simulated hash
area until insufficient contiguous free space remains to
insert another entry. To reduce confusion, however, Figure
2 does not show the complete run. To provide a direct
comparison, the model is rerun assuming the same area size
but with all entry lengths equal to the maximum length.
This corresponds to a fixed-length entry approach.

It can be seen in Figure 2 that a cumulative average,
along with the maximum and average figures for each
display interval are produced. Within each of these groups,
figures are given on the number of probes, collisions, and
skips. The number of skips is the number of groups of free
space encountered that are too small to accommodate the
entries, and the number of collisions is the number of
segments encountered while seeking the requisite contig
uous free space. The number of probes is based upon the
sum of the collisions and skips for each of the individual
entries. The columns headed "away" indicate how many
blocks away from the initial probe address the entries are
ultimately placed, i.e., this is the measure of locality. Also,
for each display interval, the cumulative space used, the
loading percentages, the number of entries inserted during
the display interval, and the cumulative number of entries
are given.

Figure 3 is a plot taken from the complete simulation run

exponential entry length distribution with min=2, avg=5, max=20 blocks

cumulative average I interval maximum I interval average Icumul ld no. entries , I

prbe call skip awaylprbe call skip awaylprbe call skip awaylspace % this cumul
I I l I I

0.0 0.0 0.0 1 / 2 2 2 30/ 0.0 0.0 0.0 n 5000 10 827 827
0.2 0.1 0.0 2/ 10 5 5 1141 0.3 0.2 0.1 3110006 20 826 1653
0.4 0.2 0.1 31 10 8 6 871 0.7 0.4 0.3 6115000 30 796 2449
0.6 0.3 0.2 51 23 13 12 1871 1.2 0.7 0.4 10120000 40 853 3302
1.0 0.6 0.3 8\ 38 22 17 309\ 2.7 1.7 1.0 21125005 50 789 4091
1.5 1.0 0.5 12\ 96 50 46 8131 4.1 2.7 1.3 30130009 60 798 4889
2.4 1.6 0.7 18\ 111 75 36 8401 7.8 5.5 2.2 55135001 70 829 5718
4.2 2.9 1.3 311 440 299 141 3319117.0 12.0 5.0 122140003 80 819 6537

same area size with fixed length entries of size=20 blocks

cumulative average I interval maximum I interval average Icumul ld no. entries I !

·prbe call skip awaylprbe call skip awaylprbe call skip awaylspace % this cumul
I I I
I ! !

0.0 0.0 0.0 1 1 2 2 0 401 0.0 0.0 0.0 1 ! 5000 10 250 250
0.1 0.1 0.0 31 4 4 0 801 0.2 0.2 0.0 4110000 20 250 500
0.2 0.2 0.0 41 5 5 0 100\ 0.3 0.3 0.0 7115000 30 250 750
0.3 0.3 0.0 r I

0, 11 11 0 2201 0.6 0.6 0.0 12/20000 40 250 1000
0.5 0.5 0.0 10/ 22 22 0 440/ 1.3 1.3 0.0 27125000 50 250 1250
0.7 0.7 0.0 161 23 23 0 4601 2.1 2.1 0.0 43130000 60 250 1500
1.2 1.2 0.0 261 68 68 0 1360/ 4.2 4.2 0.0 84135000 70 250 1750
2.0 2.0 0.0 401 67 67 0 1340/ 7.0 7.0 0.0 140/40000 80 250 2000

Figure 2-Sample simulation run

l.°l .9

.8

07! .6

.5 !,
~ .3

03. 2

.1

50.000 blocks
Exponent~al dl.str~but~on

Max~mum entry length=22~0,c.~6:5~37;e~nt~n~· e;"s _---====-c:'Hmum entry length=2

'-2000 entries

"- 50.000 blocks
Fixed length=20 blocks

10 20 30 40 50 60 70 80

Locali ty (blocKs)

Figure 3-Loading vs. locality

producing Figure 2 showing the loading versus the locality
for both the variable-length and the fixed-length ap
proaches. Even though the curves appear quite similar, the
actual performance is significantly different. For example,
when the loading factor is 80 percent, the fixed-length entry
hash area contains 2000 entries, while the variable-length
entry hash area contains 6537 entries. This may also be
seen by examination of the 80 percent loading (ld percent)
columns on the sample output shown in Figure 2. Note that
for the fixed-length entry version, the locality is 40 with 2.0
average probes, but the locality is 31 blocks away with 4.2
average probes for the variable-length entry version. This
indicates that, along with greatly increased entry storage
capability, the variable-length approach also achieves better
locality of reference.

Due to the above considerations, a more appropriate
measure of performance is that shown in Figure 4 using the
plot of the number of entries versus the locality. In Figure
4, the performance of the variable-length approach is seen
to be superior to the fixed-length approach even as the
average entry length approaches the maximum entry length.

Figure 5 contains a plot of the number of entries versus
locality for various values of different distributions of entry
length. It demonstrates that regardless of the distribution

10

50.000 blocks
Minimum length=2 blocks
Maximum length=20 blocks
Exponential distribution Average=3

Average=5

Average=ll

_--:=================:-;~.verage=16

'I(~ . ___
~ ".~ , .. ""~"

10 20 40

Locality (blOCKS;

50

Figure 4.-Entries vs. locality

60 70

til

Variable-Length Hash Area Entries 375

50,000 blocks
Minimum entry length = 2 blocks
Maximum entry length = 20 blocks

Exponential
verage=5

Poisson
__ ----Lambda=5

Exponential
Average=15

.~ Uniform

t3
t:: Poisson
(j) Lambda=15

~ ~ --------= Fixed-length=20
~ ~
ZI

10 20 30 40 50 60

Locali ty (blocks)

Figure 5-Entries vs. locality by distribution

fixed-length entries when the minimum/maximum entry
length ratio is 1/10. Examination of relative performance
with larger minimum/maximum entry length ratios is de
scribed below.

Figures 6 and 7 are used to demonstrate the performance
as the minimum entry length approaches the maximum
entry length. These plots reflect performance when the
average cumulative locality becomes 40 using both expo
nentially and uniformly distributed entry lengths. The fixed
length entry size is 20, thus a locality of 40 is equivalent to
two collisions. The model uses a hash area of 50,000
blocks, thus 2500 fixed-length entries are maximally possi
ble. Theoretically1 at 80 percent loading using a linear
rehash, 2000 fixed-length entries are possible with an aver
age of two collisions. As can be seen in Figure 2, empirical
results bear this out. The abscissae of Figures 6 and 7
reflect the minimum entry length. A maximum length of 20
blocks is used for all the results shown.

The plot for the exponentially distributed entry lengths in
Figure 6 shows that with a minimum entry length of 2 and
an average entry length of 3, approximately 9,500 entries
ma, ·twe·~~ wm~·'~~Mt~,"'!!age··foc.!!Hty ~-4e

50,000 blocks
Maximum entry length = 20
Cutoff at locality = 40

"- Fixed=20 blocks

9 10 11 12 13 14 15 16 l7

Minimum entry length

Figure 6-Number entries vs. min:max ratio

376 National Computer Conference, 1977

50

45

" ~40

~35

~3

50,000 blocks
Maximum entry length = 20
Cutoff at locality = 40

9 10 11 12 13 14 15 16

Minimum entry length

Figure 7-Space required vs. min:max ratio

blocks. Similarly, approximately 5000 entries may be main
tained when the minimum entry length is 4 and the average
entry length is 5. Furthermore, the performance using
variable-length entries is superior to fixed-length entries
until the minimum/maximum ratio is approximately 70
percent regardless of the average entry length or the
distribution used!

Figure 7 is a plot of an extrapolation reflecting the hash
area size required to maintain 2000 entries within the
locality metric of 40. It should be noted that with exponen
tially distributed entry lengths such that the minimum
length is 2 and the average entry length is 3, approximately
11,000 blocks are required for the hashing area in order to
achieve the same performance as 50,000 blocks using the
fixed-length approach.

A slight modification to the algorithm as presented above
effects a small improvement in performance at the expense
of elegance in the insertion and location algorithms. The
original algorithm is affected only when an initial probe is
made to a free block, but adequate, contiguous free space
does not exist beyond the initial probe to allow insertion of
an entry. The modification incorporates a leftward scan
from the initial probe address to determine if adequate
contiguous free space exists immediately surrounding the
initial probe to allow an insertion. If so, the entry is placed
such that the first block is as close to the initial probe
address as possible. Simultations using this modified ap
proach show that, on the average, 1.3 percent more entries
may be stored with the same locality performance. This
conclusion is based upon 188 runs similar to those used to
develop Figure 6. In approximately 70 percent of the runs,
this alternate approach yielded more total entries.

CONCLUSIONS

Simulation results comparing the variable-length entry ap
proach to a fixed-length entry approach demonstrate the
viability of the use of variable-length entries to a hash area.

U sing a fixed-length entry approach such that the entry
length is the same as the maximum size variable-length

entry, the variable-length approach is superior until the
minimum entry length is approximately 70 percent that of
the maximum entry length. Exceptional performance is
achieved when the maximum entry length is several times
that of the minimum.

Unlike the fixed-length and the bucketing approaches,
the use of variable-length entries does not require a prede
termination of the maximum entry length.

The simulation models described in this paper can be
used to estimate performance of particular situations by
modifying the entry length distribution generation and other
parameters to fit a particular situation. The algorithm itself
is quite simple and is adaptable for use with variability by
any desired block size.

The advantages of locality of reference are obvious when
hashing to addresses on external storage devices, and in the
context of virtual memory systems, page fault minimization
is also advantageous. Thus, the use of variable-length
entries should be at least considered whenever the logical
entry length possesses any variability. Regardless of the
desirability of locality of reference, significant space sav
ings may be realized by use of variable-length entries.

In addition to the use of variable-length entries in such
applications as symbol tables and conventional random
files, some other interesting potential applications are indi
cated. For example, the sharing of address space by multi
ple files having different record lengths may be reasonable.
In addition, the notion of block descriptors might be
expanded so that a hardware/firmware implementation of
variable-length data storage may be realized. Preliminary
investigation of such an implementation is now under way.

ACKNOWLEDGMENTS

I would especially like to thank two of my good friends and
colleagues, Dr. Wayne Dominick and Dr. Bruce Shriver,
for their extremely critical readings and pertinent comments
regarding this work.

REFERENCES

I. Knuth, D. E., The Art of Computer Programming, Vol. III: Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973.

2. Morris, R., "Scatter Storage Techniques," Comm. ACM Vol. II, No. I,
January 1968, pp. 38-44.

3. Maurer, W. D. and T. G. Lewis, "Hash Table Methods," Computing
Surveys Vol. 7, No. I, March 1975, pp. 5-19.

4. Brent, R. P., "Reducing the Retrieval Time of Scatter Storage Tech
niques," Comm. ACM Vol. 16, No.2, February 1973, pp. 105-109.

5. Coffman, E. G. and J. Eve, "File Structures Using Hashing Functions,"
Comm. ACM Vol. 13, No.7, July 1970, pp. 427-432.

6. Severance, D. G., "Identifier Search Mechanisms: A Survey and Gener
alized Model," Computing Surveys Vol. 6, No.3, September 1974, pp.
175-194.

7. Bays, c., "The Reallocation of Hash-coded Tables," Comm. ACM Vol.
16, No. I, January 1973, pp. 11-14.

8. Knuth, D. E., The Art of Computer Programming, Vol. I: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1968.

9. Maisel, H. and G. Gnugnoli, Simulation of Discrete Stochastic Systems,
SRA, Chicago, 1972.

APPENDIX-THE ALGORITHM

/* Enter here after obtaining hasIL-address from hashing algorithm /*
/* hasIL-address must point to a descriptor */
/* all lengths refer to the number of blocks */
/* areCL-.size is the number of atoms in hash area which

is equal to the total blocks times lengtIL-block */
inserLentry: proc;

q = hasIL-address;
wrap--switch,spact!-.foun~switch =false;
do while (spact!-.foun~switch=false);

if area(q)=free
then do;

contiguouL-space=O;
p=q;
do while (area(q)=free & contiguouL-space<lengtIL-entry);

contiguouL-space= contiguouL-space + 1;
q=q+lengtIL-block; end;

if q>areCL-.size+ 1
then if wrap--switch=false

then do;
wrap--switch = true;
q=l; end;

else call(insufficienLcontiguouL-space);
else if contiguouL-space = lengtIL-entry

then spact!-.foun~switch=true;
else q=q+area(q)*lengtIL-block; end;

else q=q+area(q)*lengtIL-block; end;
lengtIL-remaining= lengtIL-entry;
do i=p to q-l by lengtIL-block;

area(i) = lengtIL-remaining;
lengtIL-remaining= lengtIL-remaining-l; end;

/* here install the data portion of the new entry * /
end inserLentry;

V ariable-Length Hash Area Entries 377

Decomposition of data flow
graphs on multiprocessors*

by W. C. BRANTLEY, JR., G. W. LEIVE and D. P. SIEWIOREK
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

Methodologies are presented for decomposing algorithms
on a classical mUltiprocessor. The class of algorithms
considered are those that can be represented as data flow
graphs without decision elements. Two passive sonar signal
processing modes are used as detailed examples. Decompo
sitions are performed by modeling data memory bandwidth
and data memory interference as the primary constraints on
execution speed. Algorithms with low interference between
data flow graph nodes require only simple models of
memory interference to be successfully decomposed. For
high interference algorithms the memory interference can
be (1) modeled using a linear model of interference, (2)
modeled by a queuing network of exponential servers
which is solved computationally, or (3) modeled exactly
and then simulated. These three techniques give estimates
of the aggregate effect of memory interference to be factors
of 10.9, 2.11, and 1.82, respectively (the latter being the
most accurate).

INTRODUCTION

!!! reee!!t~'e~~ !!!te~ h~ heighter!ed !" !!!'-~t;V~f'4II~ffl"
structures constructed from low cost mini and microproces
sors. 1 While such multiprocessors offer a significant cost!
performance improvement over traditional uniprocessors,
that advantage cannot be obtained unless effective metho
dologies exist for decomposing problems to execute in
parallel. Effective decompositions have been made for
specific applications2 and small grain parallelism;3 however,
no methodology has been developed for a general problem.
This paper presents a methodology for decomposing problems
represented as data flow graphs on a classical mUltiproces
sor. The methodology requires only minimal restrictions on
the data flow graph. These restrictions are met by at least
one imp0l1ant class of applications, passive sonar process
ing, which will be used as illustration. The restrictions on

* This investigation was partially supported by the Naval Research Labora
tory, Washington, D.C. under Contract Number NOO173-76-C-0048.

379

the data flow graphs are:

• The system must operate within realtime on the multi
processor. Realtime operation means that in a given
repetitive cycle the system data processing rate ex
ceeds the data input rate.

• The data flow graphs are compositions of macros
between which data flows. In the case of signal proc
essing these are convolutions, digital filters, FFfs, and
transforms.

• Macros are considered to be indivisible and non
preemptable; once started they run to completion.

• The processing times for macros are modeled as con
stants.

• Macros are initiated by the availability of data.
• There are no data dependencies in control flow; data

dependent decisions must be made within the macros.

Constraints on the methodology and the example decom
positions are:

• The decomposition techniques discussed are only valid
for a predictable, repetitive data flow process operating
f.ft·m-eRd~ ~fHe·:·~em'*9ft-H~ 3fl~~ are f~flOf~.

• The methodology only applies to multiprocessor archi
tectures with identical processors.

• The decomposition methodology assumes static bind
ing of macros to processors.

The second section of this paper depicts the architecture
of the multiprocessor assumed in the example decomposi
tions. General methodology and methodology for low inter
action data flow graphs is given in the third section. The
fourth section illustrates the methodology on a passive
sonar algorithm: Constant Percentage Resolution LOF AR
(LOw Frequency Analysis Recording). Another class of
data flow graphs, those with high interaction, is treated in
the fifth section followed by an example decomposition of
Constant Resolution LOFAR Beamforming (CRBF) in the
sixth section. The last section summarizes the results and
indicates some areas for future research.

3S0 National Computer Conference, 1977

MULTIPROCESSOR ARCHITECTURE

The decompositions are performed for a classical multi
processor typified by C.mmp.l C.mmp (Figure 1) consists
of 16 Digital Equipment Corporation PDP-II processors
communicating through a central crosspoint switch (Smp)
to 16 memory modules. The major features of C.mmp are:

Mp: The primary memory consists of 16 modules
of 65k 16 bit words. The memory access or
cycle time (including switch and bus delay)
is approximated as 1.0 microseconds.

Smp: The memory/processor crossbar switch con
nects any of the 16 processors to any of the
16 memory modules with a maximum con
currency of 16.

Pc: The processing elements may be any mem
ber of the PDP-II family. The current imple
mentation actually has a mixture of PDP-Ill
20s and PDP-I1I40s.

Dmap: The address mapping component is the
Dmap which intercepts IS bit addresses gen
erated by the processor and converts them
to 21 bit physical memory addresses.

Functionally specialized processor definition

With PDP-I 1/40 processors, C.mmp is unable to execute
any of the passive sonar signal processing modes in real
time.4 Since the primary goal was to evaluate the memory
switch architecture, each C.mmp processor must be re
placed with a functionally specialized processor (P.fs). P.fs
is defined such that memory bandwidth and memory inter-

Kio

o
o

o

o

15

Smp

Figure I-The architecture of C.mmp

ference are the architectural constraints on the decomposi
tions. Memory access time will be the limiting constraint on
execution speed if P .fs executes primitive data operations
in one main memory cycle time. To satisfy this require
ment, instructions for executing the signal processing func
tions would be microcoded and stored in a high speed ROM
within each P.fs. All accesses to main storage are for data.
A P.fs will directly replace each C.mmp processor for the
example decompositions.

The specification for P.fs may be put into perspective
with other signal processors by considering the time to do
an FFT. A butterfly of the FFT would take 10 micro
seconds or 10 memory cycles on the C.mmp architecture
using P.fs processors. Therefore, a 1024 complex point FFT
could be executed in 51.2 msec on the augmented C.mmp.
The commercially available SPS-415 is a functionally spe
cialized, high performance processor which takes S.3 msec
for a 1024 complex point FFT. In comparison with the SPS-
41, the augmented C.mmp FFT with the P.fs specification
is quite conservative.

GENERAL METHODOLOGY AND LOW
INTERACTION DATAFLOW GRAPHS

In this section, general methodologies for decomposing
algorithms are discussed. First, an outline is presented of a
preliminary analysis that can be used for general decompo
sitions. Subsequently, the methodologies for low memory
interference and high memory interference data flow graphs
are discussed. The goal of the methodology is to maximize
the number of identical instantiations of a given data flow
graph running on the multiprocessor concurrently and in
realtime. Each instantiation of the data flow graph is called
a channel.

Preliminary analysis

The following items are determined before trial decompo
sitions are started:

• A data flow graph for a single channel must be avail
able or must be developed.

• The processing time for each node of the data flow
graph must be determined or estimated.

• The node processing times must be normalized to a
convenient time interval (one second was used
throughout the examples).

• The number of memory references (per unit of time) on
each arc of the data flow graph must be determined
(estimated) and then normalized to the same intervai
used for the processing times.

• The input data rate must be determined and normal
ized.

The following preliminary analyses are performed to
detect degenerate cases:

• If any node requires more than one normalized unit of

time to execute, there is no feasible decomposition
(nodes are not decomposable).

• If the sum of all the node execution times for all the
channels is less than one normalized unit of time, the
processing requirements are met by a uniprocessor.

• Ignoring memory interference, determine the process
ing required for one channel.

• An upper bound on the number of channels that can be
supported is determined by dividing the number of
available processors by the total normalized processing
time required for one channel.

Initial decompositions-Low interaction data flow graph

The following steps are preformed in a trial decomposi
tion. The example is keyed to the methodology identifiers
below.

ML-I

ML-2

ML-3

ML-4

ML-5

~vIL-6

ML-7

All special nodes which are not part of the
cyclic processing defined by the data flow
graph are bound to the minimum number of
processors and memories that satisfy process
ing time requirements. This class of nodes
would include input and output functions.
Normalize node times. If the normalized exe
cution time for any node exceeds one, no
possible decomposition exists.
Decompose one channel by assigning the larg
est number of adjacent nodes to processors
such that the sum of all normalized node times
assigned to any processor does not exceed
one.
Replicate the decomposed channel until avail
able processors are exhausted.
To assign overflow channels, determine if any
processor has enough slack time to execute at
least the largest node of a channel. If there is
not enough time available, no overflow chan
nels can be allocated. Determine if the sum of
the available slack times is large enough to
process at least one channel.
Decomposeovecrl1ow dl~mnd~ unGl :)Iack is
exhausted or until a complete channel will not
fit in the remaining slack time.
Determine the effect of memory interference
on the trial decomposition by using a linear
model of memory interference. If the normal
ized execution time requirement (including
memory interference) for any processor ex
ceeds one, remove nodes from that processor
until the requirement drops below one. Re
move any nodes that do not belong to integral
channels.

Memory interference determination-Low interaction data
flow graph

Memory interference encountered in tree structured data
flow graphs is caused by several processors attempting

Data Flow Graphs on Multiprocessors ..,01
,]01

simultaneous block transfers involving a single memory
bank. Memory interference is seen as an apparent increase
in memory access time. The apparent increase in memory
access time is linear with the number of processors in
contlict. To illustrate this concept, consider the following
logical connection of processors and memories in Figure 2.

In Figure 2 memory'MI is accessed by processors PI, n,
and P3 for a total of b, c, and e accesses, respectively.
Memory M2 is accessed by PI and P3 for a total of a and d
accesses, respectively. Interference results if the proces
sors attempt to reference a memory simultaneously. For
example, consider transfers b, c, and e to maximally
interfere (i.e., they start simultaneously) and c<e<b. From
the point of view of PI, b accesses now takes
b+min(b,c)+min(b,e)=b+c+e time units. Similarly, from
the point of view of n, its c accesses to MI will require
c+min(c,b)+min(c,e) or 3c time units.

DECOMPOSITION EXAMPLE-LOW INTERACTION
DATA FLOW GRAPH

Constant Percentage Resolution (CPR) LOF AR is an
example of a passive sonar mode whose data flow graph
has low interaction. CPR LOFAR computes the power
spectral density by octaves for each channel. Figure 3 is the
data flow graph for one channel of CPR LOF AR. Typically,
as many as 16 channels of data are processed concurrently.

The CPR LOFAR modes are described below. The node
execution times given were determined by scaling similar
node times for a specific military signal processor.4 The
scale factor was determined by taking the ratio of the P .fs .
FFf butterfly time to the butterfly time for the military
signal processor. Exact algorithms for the nodes are given
in References 6-8.

INPUT:

DEMOD:

Pi

P2

P3

Receives the digitized transducer data
and provides blocked data to DEMOD.
Divides the real input data into two
parts: a low pass filtered part which is
decimated by a factor of two and passed
ta . the next D~MOD stage, :md a high
pass filtered part which is transformed

c

e I
Ml

b a

d

M2
Figure 2-Block transfer memory interference example

382 National Computer Conference, 1977

FFf:

WEIGHT:

Figure 3-CPR LOFAR data flow graph

into the real and imaginary components
of complex data points. The complex
data points are band shifted to baseband
and the resulting complex array is
pas sed to the FFf. From 2048 real
points as input (2048 R in Figure 3),
DEMOD produces 512 complex points
for FFf (512 C) and 1024 real points for
the next DEMOD. The execution time
for DEMOD is 97.5 msec. on P.fs.
The Fast Fourier Transform (FFf) is a
complex FFf that converts the time
domain data to frequency domain. The
execution time for the 512 complex
point FFf is 23.2 msec.
Enhances certain aspects of the data by
computing weighted sums of four com
plex terms.6 From each 512 complex
point buffer from the FFf, WEIGHT
produces 256 complex points. The exe
cution time for WEIGHT is 9.1 msec.

DETECT:

STI:

POST:

Calculates an approximation to the mag
nitude of each complex intensity. DE
TECT produces 256 real points from 256
complex points. The execution time for
DETECT is 3.3 msec.
Short Term Integration averages a num
ber of spectra to smooth data and to
eliminate false alarms due to non-recur
ring noise in a sample. STI takes the
block of data from DETECT and accu
mulates to a real vector of size 256 real
points. The execution time for STI is 3.3
msec.
Is a summary term for various calculat
ing, formatting, and display processing
to interface the data to the display.
POST is not shown in Figure 3.

The sample rate is 8192 Hz on each channel. Real data are
represented with one 16 bit word- and complex data with
two such words. More details of the decomposition can be
found in Reference 4.

Preliminary analysis

The initial step of the decomposition determines if it is
possible to decompose CPR LOF AR on the modified
C.mmp architecture. The execution times given show that
the node requiring the most time is DEMOD. The ratio of
required execution time to available time (97.5 ms/250 ms)
is less than one, so a feasible decomposition is possible.

Decomposition

By method step ML-I, one processor/memory pair IS

dedicated to data acquisition and display storage. The
remaining 15 processors are available for CPR LOF AR
computations. The 110 processor receives data samples
from all transducers and distributes the data samples to the
appropriate channel processes. The 110 memory bank
stores the processed data from all octaves of all channels. The
110 processor is available for any post processing of the
data and for distribution of the processed data to the
display.

The normalized execution time of node i in octave j for
channel k is represented as ti,j,k for the remainder of the
CPR LOFAR decomposition. The normalized execution
time for octave j of channel k is Tj,k=~r;.l ti,j,k, where the
limit m is the maximum number of nodes in an octave (m=5
in this example).

CPR LOFAR (refer to Figure 3) is a tree data flow graph
where octaves depend on preceding octaves for data input.
The input data buffer to each octave is separated into two
groups: half of the input is processed by the receiving
octave and the other half of the data is filtered then passed
to the next octave. An octave can initiate when its input
buffer is full. Input buffers for all octaves are the same size.

An octave executes twice for each execution of its succes
sor. Octave eight executes once for each data buffer
supplied by INPUT. The normalized octave execution
(method step ML-2) times are given in seconds per second:

T 8,k=0.5456
T 7,k=0.2728
T 6,k=0.1364
T 5,k=0.0682

T 4,k=0.0341
T3,k=0.0171
T 2,k=0.OO85
T l,k=0.0043

Step ML-3 of the methodology is used next. Since the
largest normalized octave execution time (T 8,0 is less than
one, CPR LOF AR is decomposed by octaves rather than by
nodes. To minimize memory interference, octave groups
are bound to processors starting with octave eight. Succes
sive octaves are bound to a processor until unity normal
ized time would be exceeded by adding another octave. In
this example, octaves six, seven and eight fit on one
processor (T6,k+T7,k+T8,k=0.9548<1). The execution time
for the other five octaves is ~f=lTj,k=0.1312 seconds/
second. Thus one processor can support the lower five
octave processing requirements for 1/0.1312=7.56 channels.

The decomposition on 16 processors for 12 channels of
CPR LOF AR is as proceeds as follows using steps ML-4,
ML-5, and ML-6. One processor is allocated to 110 proc
essing. The remaining 15 processors are allocated in two
groups of seven processor/memory pairs. Within a group,
six processors execute octaves eight, seven, and six for
each of six channels. The seventh processor within a group
executes octaves five through one for the six channels. One
processor on C.mmp is not needed. Figure 4 is a diagram of
a portion of the decomposition for CPR LOFAR.

The single 110 processor (P.io) and 110 memory (M.io)
are shown in the diagram. A processor and memory dedi
cated to the upper three octaves of one of the twelve
channels (P.086 and M.086) is shown. A processor and a
memory dedicated to the lower five octaves of six channels
(P.051 and M.051) is shown. The data access variables (a
through t) represent the accesses for only one channel. The
variables are normalized to data accesses per second so
that memory interference can be determined (method step
"ML-i). The values assoCiafed with the data access variables
are:

a=248 words per second.
b=9984 words per second.
c=an unspecified (large) number of accesses available for

display data processing.
d=954800 words per second.
e = 132138 words per second.
f = 1024 words per second.

The maximum number of apparent memory accesses/
second for each processor (one channel) is:

P.io:

P.086:
P.051:

a + mine a,e) + b + min(b ,d) + min(b,f)
+c=21448+c

d + mine d,f) +min(d,b) =%5808
e+min(e,a)+f+min(f,d)+min(f,b)= 135458

Data Flo\v Graphs on ~1ultiprocessors 383

P.io
b

a
c

P.o86
d

e

I f I
P.o5!

M.io M.o86 M.oS!
Figure 4-Part of CPR LOFAR decomposition

The maximum memory access rate for C.mmp is 106

words per second. The maximum normalized execution
times are computed as:

(Number of channels) (apparent accesses)-:- (max ac
cesses)

P.io:

P.086:
p.051:

(12) (21448)/106=0.257 (does not include "c")
(utilization available to "c"= 1.0-0.257)
(1) (965808)/106=0.%6
(6) (135458)/106=0.813

The normalized execution times for all processors are
less than one for the best and worst cases of memory
interference. All processes are able to complete execution
in sufficient time to maintain realtime operation of the
system. When a processor is finished processing a block of
data, it will execute aWAIT instruction to wait for the 110
processor to interrupt it with the next block of data.

METHODOLOGY FOR HIGH INTERACTION DATA
FLOW GRAPHS

Data flow graphs having a high degree of interaction
between some nodes cannot utilize the decomposition tech
nique described for low interaction data flow graphs. The
linear model of memory interference used for low interac
tion crnrnfiow grnpm ~~gm ftH' merel""ooesSOfs ami
memories than are necessary when memory interference is
intensive but complex enough to be modeled as a random
process. The example is keyed to the methodology identi
fiers below. The decomposition technique with a more
sophisticated model of memory interference is:

MH-l

MH-2

Allocate the low interaction nodes to mem
ory-processor pairs using the procedure de
scribed for low interaction data flow graphs.
Assign the data shared by the highly interac
tive nodes to the remaining memories and
assign the nodes to the remaining proces
sors. Formulate a queuing model of the
resulting network of processors and memo
ries. The queuing model is a fully connected
network of servers, each with a queue,
where servers represent memory modules

384 National Computer Conference, 1977

MH-3

MH-4

MH-5

and customers represent processors. Associ
ated with each edge of the network is a
probability that the edge will be traversed
when the source server finishes. These prob
abilities are determined by the assignment of
nodes and their data.
For each server in the queuing network
determine the average time between the ar
rival time to the queue and the departure
time of the customer (called the time in
system). Time in system for a server corre
sponds to the effective memory cycle time of
the memory as seen by a processor. Approx
imate the memory cycle to be exponentially
distributed with mean equal to the real mem
ory cycle time (a constant). To estimate the
time in system, use Buzen's method. 9

U sing the effective cycle time for each mem
ory and the number of memory references
made by processors memories, calculate
normalized finish times. Increase normalized
finish times to include interaction with pro
cessors in the low interaction group. From
finish times calculate slack times (i.e., one
minus the finish times). The slack times
must be positive.
If any slack times are negative, reassign
nodes.

The methodology for high interaction data flow graphs is
illustrated by CRBF in which memory interference is a
dominant part of the processing load. Unlike CPR LOFAR,
CRBF cannot be broken into memory-processor pairs that
have little interaction. The processors performing the BF
nodes uniformly access all of the memories containing FFf
results and all of the memories for the resulting beams
(Figure 5).

DECOMPOSITION EXAMPLE-HIGH INTERACTION
DATA FLOW GRAPH

Constant resolution LOFAR beamforming (CRBF) calcu
lates the power spectrum of the acoustical energy received
along an azimuth. 7 Data for beamforming is acquired by
sampling the output of an array of transducers in a known
geometry. The beamforming algorithm is derived from the
geometry of the transducers. Beamforming may be per
formed in the time domain or in the frequency domain;
frequency domain beamforming is considered here. The
equation for frequency domain beamforming is

2M-l

R(w)= L S(w,n) exp «-27T in d sin O)/c)
n=O

Where S(w,n) is the Fourier transform of the signal from the
nth channel, i is (_1)1/2, and W is 27Tf.

Figure 5 is the data flow graph of the CRBF mode which
forms B beams from C transducers. The various nodes in

o

,,-
''WEIGHT, DETECT and STl

C Input channels

1024 Frequency Bins

B Beams

Figure 5-CRBF data flow graph

the CRBF data flow graph are:

INPUT:

LPF:

FFf:

BF:

WEIGHT:

DETECT:

Is identical to the input process of CPR
LOFAR.
The Low Pass Filter limits the high
frequency components of the sampled
data and separates samples into inphase
and quadrature components. From a
block of 2048 real points, LPF produces
a block of 1024 complex points. The
execution time for LPF, T LPF, is 61.7
msec.
The Fast Fourier Transform (FFf) is a
complex FFf that is used to convert the
complex time domain data to complex
frequency domain data. The execution
time for the 1024 complex point FFf,
T FFT, is 51.2 msec.
Forms B beams for the lh frequency bin
from FFfs of the C channels using
Gortzels method. 7 The execution time
for BF is 56.3BC msec.
Is identical to the WEIGHT of CPR
LOFAR. From each 1024 complex point
buffer from the FFT, WEIGHT pro
duces 1024 complex points. The execu
tion time for WEIGHT, TWEIGHT, is 25.7
msec.
Calculates an approximation to the mag
nitude of each complex intensity (same
as CPR LOFAR). From 1024 complex
points, DETECT produces 1024 real
points. The execution time for DE
TECT, TDETEcT, is 12.9 msec.

STI:

POST:

Is the same as STI of CPR LOF AR. The
size of STI is 1024. The execution time
for STI, T STh is 12.8 msec.
Is identical to POST of CPR LOFAR.

The first order analysis (method step MH-l) of the
capacity of C.mmp for CRBF ignores memory interference
within the pre-BF or post-BF nodes. The decomposition
proceeds by first allocating NpRE=[C*(TLPF+TFFT+TIN)]+
processors and memories for pre-BF processing ([x]+ sym
bolizes the least integer greater than or equal to x). Next,
N POST = [B *(T WEIGHT+ T DETECT + T STI+ TOUT)]+ processors and
memories are assigned for the post -BF nodes. The remain
ing NBF=16-NPOST-NpRE-1 processors and B+C of the
memories are allocated for the BF nodes. The maximum
number of BF nodes any processor must compute is [10241
NBF]+. Slack time, SB~C,B), is the minimum idle time
remaining in each one second period for any of the BF
processors. If SBF is positive then, to first order, B beams
can be formed from C channels of data on C.mmp using
P.fs.

SBF(C,B)= 1000-4*(TI/O+C*B*T BF*
(l/(l024*Up(N BF, B+C))*[l024/NBF]+) msec.

Where C*B*T BF is the beam forming time given for ~ne bin,
Up is the processor utilization from Table 1, and T"o is the
time to move the data and results in the BF memories to
other memories. To simplify computations, TI/o is calcu
lated assuming no memory interference, but this assump
tion must be verified. Figure 6 is a graph of the capacity of
C.mmp in beams (B) and channels (C).

BF with five channels and four beams will now be
decomposed in detail. The computation time to reduce 1000
msec of data for the pre-BF and post-BF nodes are T PRE
and T POST, respectively, giving:

T PRE=4*(T LPF+T FFT)
=4*(61.7+51.4)=452.4 msec.

T POsT=4*(T WEIGHT+ T DETECT+ T STJ
=4*(25.7+ 12.9+ 12.8)=205.6 msec.

Data Flow Graphs on ~1ultiprocessors 385

B
1°1 BEAMS 9

8

7

6

5

4

3

2

It
,

0

C CHANNELS

Figure 6-Capacity of C.mmp doing CRBF

Therefore, NpRE =3 and N POST = 1. With one processor for
110, eleven processors are left for BF nodes so that one BF
processor will compute 94 BF nodes and the other ten will
compute 93. Memory is allocated as follows: one bank for
110, one bank for the post-BF processor, three banks for the
three pre-BF processors, and B+C=nine banks for the
eleven BF processors. The allocation of processors and
memories is shown in Figure 7. The pre-BF nodes are
divided among the three processor-memory pairs (PREl,
PRE2, PRE:J: PREl has LPFl, LPF2 , and FFTl; PRE2 has
LPFs, LPF4 , and FFfs; and PREs has LPF5 , FFf5 , FFf2 ,

and FFf 4 (subscript on a node indicates channel number).
Both channel two and four have their LPFs in one proces
sor and their FFfs in another processor, causing 8192
words to be written to memory PREs from both processors

TABLE l-Up(N ,M) in percent

Number of Memories, M

I 2 3 4 5 6 7 8 9 10
N I 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0 2 50.0 66.7 75.0 80.0 83.3 85.7 87.5 88.9 90.0 90.9

33.3 50.0 60.0 66.7 71.4 75.0 77.8 80.0 81.8 83.3
p 4 25.0 40.0 50.0 57.1 62.5 66.7 70.0 72.7 75.0 76.9

5 20.0 33.3 42.9 50.0 55.6 60.0 63.6 66.7 69.2 71.4
0 6 16.7 28.6 37.5 44.4 50.0 54.5 58.3 61.5 64.3 66.7
c 7 14.3 25.0 33.3 40.0 45.5 50.0 53.8 57.1 60.0 62.5

8 12.5 22.2 30.0 36.4 41.7 46.2 50.0 53.3 56.3 58.8
N 9 Il.l 20.0 27.3 33.3 38.5 42.9 46.7 50.0 52.9 55.6

10 10.0 18.2 25.0 30.8 35.7 40.0 43.8 47.1 50.0 52.6
II 9.1 16.7 23.1 28.6 33.3 37.5 41.2 44.4 47.4 50.0
12 8.3 15.4 21.4 26.7 31.3 35.3 38.9 42.1 45.0 47.6
13 7.7 14.3 20.0 25.0 29.4 33.3 36.8 40.0 42.9 45.5
14 7.1 13.3 18.8 23.5 27.8 31.6 35.0 38.1 40.9 43.5
15 6.7 12.5 17.6 22.2 26.3 30.0 33.3 36.4 39.1 41.7
16 6.3 11.8 16.7 21.1 25.0 28.6 31.8 34.8 37.5 40.0

386 National Computer Conference, 1977

Memories

I/O 16.4 16.4 8.2 16.4

PRE -
1

699.2 8.2 8.2

PRE - 699.2 8.2 8.2
2

PRE - 863.6 8.2 8.2 8.2 3

P POST - 822.4 r 4.1 4.1 4.1 4.1

a
BF! 46.0 46.0 46.0

C
46.0 46.0 46.0 46.0 46.0 46.0

e
BF2 S

46.0 40.0 46.0 46.0 46.0 40.0 46.0 40.0 40.0

S
BF3 0

46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0

r
Bf4 S

46.0 46.0 46.0 46.0 46.0 46.0 40.0 46.0 46.0

BF5 'W.O 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0

BF(j 46.0 46.0 46.0 46.0 46.0 46.0 40.0 46.0 46.0

SF., 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0

B~ 46.0 40.0 46.0 40.0 46.0 46.0 46.0 46.0 46.0

Br; 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0

8~o 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0

8~1 46.5 46.5 46.5 46.5 40.5 40.5 46.5 46.5 46.5

Figure 7-Thousands of memory cycles required by processors per second

PRE} and PRE2 • P.io deposits 16384, 16384, and 8192 words
into the first, second, and third pre-BF memories, respec
tively. P.io also reads 16384 words from the post-BF
memory. Figure 7 shows all data references between each
processor and memory. Data is written to the BF memories
at the end of each of the FFfs in the pre-BF processors and
data is read from the BF memories by the WEIGHTs in the
post-BF processors. More details of the decomposition are
given in Reference 4.

Following step MH-2, a queuing model of memory inter
ference model is developed. The linear model of memory
interference developed for low interaction data flow graphs
is too pessimistic since it assumes references to a bank of
memory occur in bursts. In the case of BF nodes, the

accesses are distributed in time. The interference between
the BF processors is modeled by the queuing network of
Figure 8 where servers and customers represent memories
and processors, respectively. The queuing model operates
as follows: when a customer (processor) enters a queue
(initiates a memory request), service (a memory cycle) is
begun immediately if the customer is alone in the queue,
otherwise he awaits his turn. After service, the customer
enters, with equal probability, one of the queues for his
next memory cycle. The ratio of average service time to
average time in system is the utilization of a processor, Up.
Up depends on the number of memories, M, and the
number of processors, N. For C.mmp neither N nor M can
exceed 16.

N customers
in system

11M

11M

11M

Figure 8-Queuing model of C.mmp

o
o
o

1

2

M

Memory cycle time is a constant one microsecond and
corresponds to service time in the model. Since the service
times are constant, the queuing network must be simulated
to get Up. If the service times, however, are modeled as an
exponential distribution then Up(N ,M) can be determined
analytically using the method of Buzen.9 From the table of
Up(N ,M), for eleven processors and nine memories, the
processors are waiting l-Up(Il,9)=52.6 percent of the
time, leading to an apparent processor cycle time of 1/
Up(11,9)=2.11 microseconds instead of one microsecond.
For comparison, a simulation of eleven processors and nine
memories having constant service time gives 55.5 percent
processor utilization or an effective cycle time of 1.82
microsecond. In this case, the exponential assumption is a
more conservative estimate of the effective processor cycle
time. With the Up data, CRBF can be decomposed for a
classical multiprocessor as follows: Isolate the BF nodes to
minimize their interference with other nodes. Group the
remaining nodes into two classes: those preceding the BFs
(!..Pf' nnd F'Ff} und these fcM~~r!ng the BF! ~WE!GH!.
DETECT, and STI).

Now the effect of memory interference on the decompo
sition is determined (steps MH-3 and MH-4). To operate in
realtime, each processor must finish processing before the
next block of data arrives. Finish times of the PRE-BF
nodes are:

where Ttransfer is the time for the longest transfer involving
any of the BF memories. The longest transfer is from
P.post and takes 24.432 msec. The maximum time for any
of the BF processors to finish is 896.8 msec, leaving 103.2
msec of slack from the 1000 msec interval. For post-BF
processors, finish time is 822.4+ 16.4+4*4.1 =855.2 msec.
The finish times for the pre-BF processors are 756.6, 756.6,

Data Flow Graphs on Multiprocessors 387

and 912.8 msec., respectively. These finish times leave a
worst case slack time of 87.2 msec., thereby insuring
realtime operation.

It is enlightening to compare the interference predicted
by this method and the method used in the low interaction
case. The finish time of BFll predicted by the low interfer
ence model used by the decomposition is approximately
(ignoring the interference from the PRE, POST, and I/O
nodes): 9*(46.5+ 1O~6.0)=4558.5 msec. This far exceeds
the one second allowed for the BF mode to run in reahime.
That is, the linear estimate is far too conservative when
used on the high interaction case.

CONCLUSIONS

The methodology of decomposition varied with the type of
data flow graph. CPR LOFAR has little interaction between
nodes of the data flow graph. A simple memory interfer
ence model for CPR LOFAR estimates interference as a
linear function of the number of processors referencing a
memory bank. When concurrent block transfers interfere
with one another, this linear estimate of interference is
appropriate and accurate. CR Beamforming has a highly
interactive data flow graph which requires a more sophisti
cated queuing model of memory interference. To calculate
effective processor cycle time from the queuing model, the
memory cycle time is assumed to be exponentially distrib
uted. This queuing model is solved using (1) simulation
(constant access per unit time), (2) Buzen's method (expo
nentially distributed memory cycle time), and (3) the linear
interference model. These three techniques lead to effective
processor cycle times of (82, 2.11, and 10.9 microseconds,
respectively.

The methodology presented may not lead to optimal
decompositions. However, in the examples presented, the
processing time required for each channel was large enough
to preclude more economical decompositions (i.e., [N/T]+
was the number of concurrent channels). This situation may
often be true in practice.

All these methods are useful des,ign tool.s. The Buzen
method is useful when memory references are random; the
linear interference model is useful when memory references
are mainly block transfers; simulation is useful as a final
validation of a decomposition. It is anticipated that more
complicated signal processing modes will require more
detailed queuing models and simulation to verify decompo
sition.

REFERENCES

1. Wulf, W. A. and C. O. Bell, ·'C.MMP-A Multi-Mini-Processor," AFlPS
Conference Proceedings, Vol. 41, 1972, pp. 765-777.

2. Heart, F. E., S. M. Ornstein, W. R. Crowther, and W. B. Barker, "A
new Minicomputer/multiprocessor for the ARPA network," AFIPS Con
ference Proceedings, Vol. 42, NCC 1973, pp. 529-537.

3. Baer. J. L.. "A Survey of Some Theoretical Aspects of Multiprocess
ing,"Computing Surveys, Vol. 5, No.1, March 1973.

4. Siewiorek, D. P., W. C. Brantley, and O. W. Leive, "Modeling Multi-

388 National Computer Conference, 1977

processor Implementations of Passive Sonar Signal Processing," Final
Report-NRL Contract Number NOOI73-76-C-0048, Carnegie-Mellon
University, Pittsburgh, Pa., October 1975.

5. Allen, Jonathan, "Computer Architecture for Signal Processing," Proc.
of IEEE, Vol. 55, No. 12, December 1967.

6. Smith, H. H. and L. E. Russo, "Microprogrammed Benchmarks for the
Signal Processing Arithmetic Unit for the AN/UYK-17(XB-I)(V) Signal
Processing Element," Naval Research Laboratory Report No. 7831,
January 29, 1975.

7. Froscher, Judith N., "Evaluation of Algorithms for Linear Beamforming
on the AN/UYK-17 (XB-l)(V) Signal Processing Element," Naval Re
search Laboratory, January 1975.

8. Shay, Barry P., "Design Considerations of a Programmable Prediction
Digital Signal Processor for Radar Application," Naval Research Labora
tory, NRL-7455, December 1972.

9. Buzen, Jeffrey P., "Computational Algorithms for Closed Queuing Net
works with Exponential Servers," CACM, Vol. 16, No.9, September
1973, pp. 527-531.

Implementation and application of
a function data type*

by MARK B. WELLS
Los Alamos
Scientific Laboratory
of the University of California
Los Alamos, New Mexico

ABSTRACT

The modularization construct of subroutine, function, or
procedure is well established in the scientific programming
languages of today. In most cases, however, the construct
is static in that once a function is defined and named it
remains unchanged throughout the scope of its definition.
We are concerned in this paper with the generalization to a
function data type, that is, to the situation where one may
have variables of type function which assume different
specific procedures as their value within their scope. Nota
tionally, implementation of the concept is made feasible by
use of a juxtaposition operator. Computationally, the con
cept derives its usefulness from use of the contour model
which allows activation record retention. Examples are
given which show that the function data type concept
subsumes less general techniques such as "coroutines" and
"stream functions."

INTRODUCTION

~~rtain s?n<:,~pt~ of high-I~v.~11 ~cit!ntifi~ pr~gr.all1tniI1g lan
guages such as recursive procedures, block structuring, and
the general while and if-then-else control structures are well
accepted due to their generality and usefulness in writing
readable, well-structured programs. Other concepts such as
hierarchical data structuring and abstract data types, while
of more recent vintage, are fast proving their worth in the
context of high-level languages. In this paper, we discuss
experience with a function data type, a concept which we
believe has promise of becoming as important as those
mentioned above. This belief is based on the fact that
function variables significantly assist with the high-level
implementation of "generation procedures" and "back
tracking" 1 and a number of other less general organiza
tional approaches such as "coroutines."2 Furthermore, our

* This work was sponsored by the Division of Physical ResearchIMolecular
Sciences of the United States Energy Research and Development Adminis
tration.

389

implementation of the function data type helps resolve the
"harmful global variable" problem.3

The particular programming language involved in this
work is Madcap, for which documentation is fragmented
and incomplete. 4

-
6 However, this paper is s~lf-contained

since all relevant notation is either self-explanatory or
explained herein.

NOTATION AND IMPLEMENTATION

Data of a Madcap program are categorized into objects
called ' 'spaces. ' , A space includes a description of the
operations that can be applied to the associated data items
and, if the space is defined by the user, may include a
description of the representation of a typical item. 6 There
are certain spaces, called base language spaces, which have
a syntactic construct for constants from that space. For
example, REAL is a base language space with constants
written 5.15, -623.9, 17, This space contains various
operations-add, divide, square root, etc.-some being
predefined by the particular computer system and others
being defined at the language level. Terminologically, we
ia¥.' ~a ~ -i.i. .of ty.perea1! ' . .gr .,:.:.bas~t~pe"'~"

when the values it may assume and the primary operations
that may be applied to it are from the space REAL. The
base language spaces and examples of their constant form
are given in Figure 1.

Note with regard to functions that the formal parameters
are listed first using a colon notation and that the value of
the last evaluated expression is returned as the result of a
function's evaluation.

Madcap is a block structured language in which the text
of a function definition, i.e., a constant of type function, is
a block. Identifiers are local to a block if they are under
lined at their point of definition within the block; they are
global otherwise. Since identifiers are used solely as names
of variables and there are no explicit declaration statements
in the language, this point of definition will either be on the
left of an assignment statement as in

1:. ~7.1

390 National Computer Conference, 1977

i2lkl

REAL
BDGLEAN
STRING
FUNCTION
SEQUENCE
SET
HIERARCHY
SPACE

£'!Ullllnl_t:.! r..m

1.264. 372. -0.019
t.ru@. false
·'deg". "::/A="
«K: rea 1: 3)(-2»
(2.65.-1.98)
{O.4.8.27}
('x:true: 'y:17.7)
$(~rorm:p: ,pls:«···»)$

Figure I-Base language spaces

or in the range of a loop statement (or loop expression) as
in

for 0:51<1: AiE-2i-l

The data type of an underlined variable is derived from
context, in the case of an assignment from the type of the
expression on the right of the arrow. For instance, the
assignment statement above serves to declare v to be a
local variable of type real as well as indicating that when
executed the value 7.1 is to be assigned to the variable v.

There exist well-defined rules of type propagation
through expressions; and since there are no jump state
ments in the language, it is possible to compute the types of
all variables at compile-time by a direct flow analysis. 7 (Of
course, the program must be complete, including all refer
enced spaces, and must be properly ordered, with all
variables defined before they are used. This last require
ment does not preclude the use of recursive functions and
data which are an integral part of the Madcap language.)
The precise operation that is being specified by an expres
sion depends on the types of the operands as well as on the
operator. For instance,

x+y

indicates a real addition if x and yare of type real while it
indicates a matrix addition if the operands are of type
matrix. In the latter case, a function for actually performing
the matrix addition would exist in the (user-defined) space
named MATRIX and would be called upon to perform the
operation.

There are about ninety operators in the Madcap language
for which operations can be defined in various spaces. 6

Some of these are predefined for base language spaces. For
instatwe, +, -, x, I, V, etc., imply established opera
tions in the space REAL, while l, V, and 1\ specify base
language operations available on boolean variables. The
only predefined operation of the FUNCTION space is
evaluation. If the function value has no arguments then this
operation is specified by the dagger (t) prefix operator, for
example

t proc.

If the function has arguments, the evaluation is usually
specified by the juxtaposition operator (one of the ninety),
for example

f(x+ 1) g(x, y) exists x f(x) (f)x.

Since juxtaposition for identifier formation takes prece
dence over juxtaposition as an operator, it is not possible to
have the immediate juxtaposition of two letters of the same
case imply function evaluation (or any other operation for
that matter). However, this is not serious since spaces
separate tokens as in the third example above, and the dot
(.) infix operator also specifies function evaluation as in

fx g'(x,y) f(a)'b

for example. (The juxtaposition operator has precedence
over the dot operation.)

The contour computational modelS is used by Madcap.
This means that the environment of a function value (block)
is retained if needed for use by all activations of that value.
Therefore, a function value must be represented by a pair
of pointers, a pointer to the code associated with the value
(code pointer) and a pointer to the activation record of the
environment of the function definition (static link). A (code
pointer, static link) pair can be passed around arbitrarily as
the value of various function variables; it will be used to
set up an activation record when evaluation of a function
variable having it as value is requested. The static link of an
activation record, which derives from the static link of a
function value, is used to access global variables according
to the block structure (i.e., function definition structure) of
the program. (Incidentally, the static link of an activation
record should not be confused with the "dynamic link" of
an activation record. Dynamic links chain together the
activation records according to function calls rather than
function environments.)

Use of the contour model and its associated activation
record retention allows functions values to be used freely as
inputs and outputs of other functions and we truly have a
function data type. Indeed one can specify additional oper
ations besides evaluation, e.g., composition, within the
FUNCTION space (see Reference 6 and Figures 9 and 10).
(It should be emphasized that at any point in time only
those activation records "accessible" (potentially still
needed) are truly retained.)

APPLICATIONS

We present in this section several examples of applica
tion of the function data type. In most cases the program
pieces have been abstracted from existing programs. They
are categorized according to the characteristic application
we wish to illustrate.

Isolation of Global Variables: The program piece given in
Figure 2 illustrates the basic use of activation record
retention. The variable trace is assigned to the output of the
evaluation of a constant function. Here that output is a
function. When trace is called, that function will be evalu
ated in an environment which includes the variable n. Thus
n is global to the trace function but hidden from all parts of
the program which call trace. (This application is reminis
cent of the own-variable concept of Algol 60 in that only the
trace routine itself and not its calls need be a\llare of the
existence of n.)

Impiementation and AppHcaiion of Function Data Type

i!.i&g 4- 1'«
n+-O
«

»
»

~: str i ng: g: general
n +- n+1
dis pIa y 4- "::/"; dis pia y ... s
display ~ If .. : display 4- 9
If n ~ 43:

keyb"ard
dis pIa y ... 1I::r"
n+-O

Figure 2-Simple retention

A similar application but with more levels appears in
Figure 3. Here a function is assigned as value of
SPACE.FORMER upon evaluation of a constant function.
The subsequent evaluation of SPACE.FORMER then pro
duces a space which has two hidden levels of environment
to work under. Computation involved in forming the outer
environment need only be repeated when the original
constant function is reevaluated, while the inner environ
ment will be recomputed, making use of the outer environ
ment, at each call to SPACE.FORMER.

The essential characteristics of the function data type in
these examples are retention and the fact that a function can
change by virtue of a change in its environment. Following
examples illustrate the effect of changing the value of a
function variable to a new constant value.

Stream Functions--Generation of Sequences: Burge9 dis
cusses an abstract scheme, called "streaming," for generat
ing successive elements of an arbitrary sequence. The idea
is that a function call returns one element of the sequence
and a new "stream function" for generation of the next
element and the next stream function. Successive calls to
the sequence of stream functions successively produces the
desired sequence. (This desired generation effect was ac
compli~b~d by ~peci(ll "gen~.ration procedure~" in an ear
lier version of Madcap.1) The program of Figure 4. is a

.

. (Duter envirenment)

t«
p:parameter

• (inner @nuir&nm@nt)

S{ •••)$ ethis space is returned~

···SPACE.FORMER<x)···
Figure 3-Two level retention

£ ~ c8mpesitiltn
n.g'M ... H!!!2.!!Hlitn. .. c·

n: rea 1
g: real
new.c~mpltsitjen .. «

n: real
~: rea 1
i ... 0; UJh i 1 e c. 0: .. i +1

I

if i = .c-1: false
else:

c (C
j
-1: O:1S~Si; C

i
+

1
+1; Ck:i+2St.<-C)

true

C .. (d' 0: n i telas>
true .

while new.c&.pesitien(N,M):

. (use compos it ion c)

Figure 4-Stream generation of compositions

concrete realization of streaming using the function data
type concept. The stream functions are successive values of
the function varable new. composition. Each call of
new.composition in the while statement produces the next
composition (a composition of N into M parts is a vector
(c1 , c2 , ••• cm> such that 2.1:5i:5MCi=N) as the value of the
global variable c and changes the value of the variable
new.composition. Each function evaluation also returns a
boolean value to control the iteration. (Recall that the value
of the last evaluated expression is returned from a function
call.) The value true is returned while the generation is
active and false is returned when the generation is com
plete.

A somewhat more involved example of streaming ap
pears in Figure 6. This is a program piece, taken from the
Madcap compiler itself, which forms the sequence of char
acters representing an identifier; the syntax diagram for
identifier appears in Figure 5.

In Figure 6 the stream functions are successive values of
the function variable stream. As before, these functions (l)
1\; lli iTJ. lh~ seqilel-ICC .:kmcrtt as the vz..!ut of u gtobat
variable, here of c (c is known to be either an upper or
lower case letter upon entry to the initial value of stream),
(2) assure that the value of the stream function is correct for
the next generation, and (3) return true or false according
as the generation remains active or is complete. In this
example, the successive values of c are accumulated in a
sequence using the structure former notation of Madcap.5

Figure 5-Syntax diagram for identifiers

392 National Computer Conference, 1977

~ ~ undefined.character
ilr.~!m f- «
(Y2~!t'!~~~L,glg11) ~ «baalean»
upper ~ « ... or-."It ~

»

1 eUler ... «· .. 8 -
digit ~ ce .•• , ~»
c ~ 1"character
stream ..

if s is. upper: upper
else: 16wer

true

!g~~li[i~r ~ (c: while Tstream)

r

c ~ ~next.character
,f c is.upper v C is.period:

true
e 1 s e: ; f' cis. 1 8IJJe r :

stream 4- 18wer
tru.e

else:if c is.digit:
stream +- digit
true

else: false

c ~ tnext.character
if cis. 1 Dwe r :

true
else:if c is.digit:

stream +- digit
true

else: if c is.period:
stream ... upper

else: false

c ~ tnext.character
if c is.digit:

true
else:if c ;s.peri&d:

stream ~ upper
true

else: false

Figure 6-Identifier parsing using streaming

When complete this sequence is assigned as the value of
Identifier.

Coroutines: The function data type allows a high level
realization of the idea of coroutines2

•
1o routines of equal

stature that call each other and continue calculation at their
previous point of departure when called themselves. A
schematic illustration of this construction using Madcap
notation appears in Figure 7.

In this scheme, two coroutines are implemented as the
function variables f and g. A current evaluation off changes
f to a new value just prior to caning g and vice versa. As
shown by the actual examples of this section, changing the
value of a function may involve either changing the envi
ronment of a constant function value or assigning a new
constant value to the function variable.

Backtrack Programming: The scanning of hierarchical
structures, either actual or logical, is often called "back
track programming." Backtrack programs usually take the
form of a sequence of nested iterations, the nesting accom-

<[,g) ,
r. ..

f' ~ «

f ..
»

1"9
»

1'9

f-

"

«

(<< » « ... ») .
l

f

9 ... «

9 ~ «

»
tf

»
'tf

Figure 7-Coroutine outline

Implementation and Application of Function Data Type 393

plished by recursive procedure calls. Using function varia
bles, a different organization is possible that allows the
handling of the terminal nodes to be extracted from the
depths of the recursion. An example using this organization
appears in Figure 8. (While perhaps not truly backtracking,
the hierarchical search structure of this simple problem is
characteristic of all backtrack programs.) This program
collects the terminal nodes of a tree into a sequence called
A. For instance, if the structure (1, «2,3, (4),5),6, (7,8),
9,10» were used as input tog, then A would equal (1, 2,3,
4, 5, 6, 7, 8, 9, 10) upon completion of the program. Each
call to g produces a new environment for the successive
activations off at a deeper level of the tree, each activation
being associated with one node of the tree. The parameters
h save the function values to be used when backtracking.
Note the function <rlals~ being used in the initial call to g;
this terminates the entire scan when called as the value off.

(... «trUe»
~ ~ term'nal.type
9 +- «
I: <terminal.type: ? items)
h: ,
1 .. -1
«

i .. i +1
if i < .s:

j .. S.
t

if terminal a:
)(.. a
true

else:

else:

f +- g(a"f)
fF

r 4- h
ott

»
»
f +- gCS. 4tfalse») e ~ (x: ~hile ~f)

Figure 8-Function variables in backtracking

The important feature of this example is that one terminal
node (here, one value of x) is handled (or produced) by
each call to the stream function (here, each evaluation off
during the formation of A).

Function spaces: The function and abstract data type6

concepts combine to permit the construction of spaces in
which the elements are functions. A number of useful
operations besides evaluation-composition, integration,
differentiation-may be defined within such function spaces
and referenced using natural notation-fog, If, ago In Fig-

S • $(..• >$

h ~ f(blank,a)

···h(3.2)···

J.JU:':: «
E: «(~.y):real: real»
a: rea I
b: real
if 1(3tt):

«

»
else:

«

y: real
F(a,Y)

x: real
F(x.b)

Figure 9-Partially evaluated functions

ure 9 we illustrate partial function construction using the
juxtaposition operator.

In this example, f is an element of a space of real valued
functions of hyo real variables. The juxtaposition operator
is used to specify the partial function formation as illus
trated in the assignment of h, a real valued function of one
real variable. The formation operation itself (see the func
tion labeled ~ jux) is a function of three formal parameters
F, a, b; F has the same form as f, while a and b are real
numbers. As shown, the value returned (last expression
evaluated) is a function of one variable. The importance of
retention is seen in this example, since when h itself is
evaluated, it must do so within the environment of this
formation'in order tv l1a"y-e access to lht: proper varues of u
or b.

Another potentially more important application of func
tion spaces is suggested by the routine appearing in Figure
10. This is an abstract one-dimentional root finder routine.
Its sole input is an arbitrary member, f, of a function space
called FCT. All of the information needed to carry out the
algorithm, left and right endpoints, error tolerance, etc., is
extracted using operators (or function calls) of this space.
The evaluation of f is specified using the natural juxtaposi
tion operator, and the subtraction, mUltiplication, etc.,
operations of the argument space are also indicated with
natural notation. Nevertheless,. the precise form of the
input function or type of its arguments are unspecified
within this routine. That information is contained in the
definition of the function space FCT and its environment.
In a sense this algorithm is a higher level algorithm (a well
defined search) which is built upon lower level algorithms

394 National Computer Conference, 1977

(: 'FeT
.a ~ lefttFCT-'
b ~ righttFcT-r
fi ~ f(a)
f.1! f- f(b)
)(.. a: L)(... f a
wh i 1 elf x, > , f , :

b-a a + fa x ------

#f
»

.. f()() f)(
if Ix-bl <

a +-)(

fa 4-

else:
b .. x
fb t-

fb-f a

Ix-al-

f)(

fx

Figure 1~"Functional" algorithm

(e.g., evaluating particular functions over some domain) but
which maintains its independence from those lower level
algorithms. (In mathematical terminology such a routine
might be called a "functional".) Indeed there are many
other algorithms-Fibonacci search, adaptive quadrature,
etc.-which benefit by having their input parameters be of a
type defined by an external class of function spaces.
Routines for these algorithms can be programmed once and
for all efficiently, in a natural notation, and will remain
unchanged over a wide variety of applications.

These examples are characteristic of the many already
proven applications of the function data type. Investiga
tions in its use are continuing. Rechard ll has formulated a
rather neat solution to the reader/writer problem of concur
rent processes that uses function variables. This author has
derived a reasonably natural decision table notation com
bining the function and set data types, an extension of the
already useful Madcap sequence-of-functions notation used
for "case" constructions. 5 Other applications are undoubt
ed�y forthcoming as this simple yet powerful tool becomes
more widely used.

CONCLUSION

The function data type concept appears in programming
languages as early as Lisp12 and Euler13 and is one of the
advanced characteristics of Algol 68. 14,15 It also appears
unimplemented in the work of Burge9 and, in a somewhat

different form using sets, in SETL. 16 Nevertheless, partly
because of notational questions, this concept has not re
ceived the attention befitting such an important unifying
idea.

We believe that the use of activation record retention, a
simple bracketed form for function constants, and the
juxtaposition operator makes our scheme particularly natu
ral and easy to use. Furthermore, our scheme benefits from
and enhances other notational features of Madcap: (1) The
type propagation scheme, which obviates explicit declara
tions, makes it more convenient to write algorithms that are
completely independent of their data (Figure 10). (2) The
structure former notation along with streaming provides a
natural mechanism for constructing arbitrary sets, se
quences and other structures (Figures 6, 8). (3) The value
returned by a function being the last evaluated expression
of the function body permits a concise yet readable form for
deferred evaluation of expressions (Figure 8).

The existing Madcap compiler which implements the
function data type described here does not possess a
complete type-checking system. This deficiency is due both
to expediency and to a lack of understanding with regard to
type-checking for function values. However, we do now
feel reasonably confident that the various values assigned
to a function variable must at least have the same number
of input parameters and output parameters. Also, corre
sponding parameters should, in some sense, have the same
type. The question of global variables is less clear. We have
determined that for certain optimizations to be applicable,
the compiler must be able to determine all global variables
referenced by any value of each function variable.

There is much work to be done with regard to compiler
construction and optimization for languages with a function
data type. Nevertheless, we consider the function data type
to be a significant step in the quest for a very general,
concise, and readable scientific programming language.

REFERENCES

I. Wells, M. B., Elements of Combinatorial Computing, Pergamon, Ox
ford, 1971.

2. Knuth, D. E., The Art of Computer Programming, Volume I: Funda
mental Algorithms, Addison-Wesley, Reading, MA, 1969.

3. Wulf, W. and M. Shaw, "Global Variable Considered Harmful," SIG
PLAN Notices, 8:2, Feb. 1973, pp. 28-34.

4. Wells, M. B. and J. B. Morris, "The Unified Data Structure Capability
in Madcap 6," International Journal of Computer and Information
Sciences, 1:3, Sept. 1972, pp. 193-200.

5. Morris, J. B. and M. B. Wells, "The Specification of Program Flow in
Madcap 6," Proc. of 1972 ACM National Conf 2, 1972 Boston, MA, pp.
755-762.

6. Wells, M. B. and F. Cornwell, "A Data Type Encapsulation Scheme
Utilizing Base Language Operators," SIGPLAN Notices, 1l:1976 Spe
cial Issue, March 1976, pp. 170-178.

7. Wells, M. B., "The Madcap Programming Language," (in preparation).
8. Johnston, J. B., "The Contour Model of Block Structured Processes,"

SIGPLAN Notices, 6:2, Feb. 1971, pp. 55-82.
9. Burge, W. H., Recursive Programming Techniques, Addison-Wesley,

Reading, MA, 1975.
10. Conway, M. E., "Design ofa Separable Tmnsition-Diagmm Compiler,"

CACM 6, 1963, pp. 396-408.

Implementation and Application of Function Data Type 395

II. Rechard, 0., (private communication).
12. McCarthy, J., et aI., LISP 1 Programmer's Manual, M.LT. Computa

tion Center and Research Lab. of Electronics, Cambridge, MA, 1960.
13. Wirth, N. and H. Weber, "Euler: A Generalization of ALGOL, and its

Formal Definition: Part II," CACM 9:2, Feb. 1966, pp. 89-99.

14. van Wijngaarden, A., et aI., "Report on the Algorithmic Language
ALGOL 68," Numerische Mathematik, 14, 1969, pp. 79-218.

is. Tanenbaum, A. S., "A Tutorial on Algol 68," ACM Computing Sur
veys, 8:2, June 1976, pp. 155-190.

16. Mullish, H. and M. Goldstein, A SETLB Primer, Courant Institute of
Mathematical Sciences, New York Univ. 1973.

A general purpose
dialogue processor

by JAMES L. BLACK
Science Applications, Inc. *
San Francisco, California

ABSTRACT

This paper describes work done on the Automatic Program
Generator project at the Sperry Research Center. The
overall aim of this research is to discover techniques that
will make computers more directly accessible to non
technical users.

The approach taken is based on the use of interactive
dialogue, using CRT terminals or work stations. A general
purpose Dialogue Processor has been implemented whose
function is to facilitate the creation and management of
interactive dialogues. A high-level Dialogue Specification
Language (DSL) is used, in which dialogues are repre
sented as choice trees. Interactions with a user translate
into selection or rejection of available paths plus any
required data entry. Trees may be specified which present
steps in the formulation of commands or transactions in the
way that appears most natural to the user. User responses
are then mapped into an appropriate format for output to
the process that is to be dialogue driven. A Dialogue Editor
enables the user to backtrack during a dialogue session, or
at a later date to reformulate his responses.

The Dialogue Processor is a universal facility which has
many potential uses; essentially, it can front-end any pa
rameter or transaction driven system. It is currently being
usea~ as'aniilldacti\eprografl15pecificatlofl tecl'J.'niqae in
conjunction with an application customizer. Among other
possible applications are its use as an aid to formulating
complex command language statement (e.g., JCL) and as a
query language interface for data bases.

We believe that the approach described in this paper,
coupled with declining hardware costs and other technolog
ical advances, makes it possible to extract increasing bene
fits from interactive dialogue, while minimizing some of the
traditional drawbacks.

IMPORT ANCE OF EASE OF USE

It would be hard to overstate the importance that ease of
use will assume in future computer products. This feature is
given prominence in the list of design priorities for all new

* Previously at Sperry Research Center, Sudbury, Massachusetts

397

Sperry Univac products; and indeed, it is being stressed
increasingly by the computer industry as a whole.

Ease of use becomes critical to the success of small
business systems aimed at the first-time user market. For
such customers, the cost of programming, if it were carried
out in the traditional way by hiring application program
mers, would easily overshadow the rental cost for the
machine. At the lowest level, small business system cus
tomers have typically depended on the vendor, or a third
party, to supply application programs. These generalized
application packages have then to be tailored to the particu
lar customer's business methods by the vendor's support
personnel, either manually or in a more or less automated
fashion through an application customizer. Such a situation
arose when Sperry Univac OED decided to introduce the
BCn small business computer. The Sperry Research Center
participated in a joint effort with Sperry Univac to develop
an interactive customizing facility for application packages,
some details of which will be described later in this paper.

Ease of use considerations are not, of course, restricted
to small machines; probably the most fertile area is to
provide facilities for a whole range of users to gain access
to distributed computer networks for a variety of purposes,
with particular emphasis on shared data base applications.

STANDARD SOLUTIONS TO PROVIDING EASE OF
USE

Easy to use languages

The traditional approach to providing solutions to the
ease of use problem has been by designing languages.
Because of the number of languages that have been created,
and the lack of consensus on what are the criteria for
deciding whether or not a language is easy to use, a
discussion of computer languages will not be attempted
here. While some general purpose languages make a claim
to be easy to use, such as COBOL, BASIC or APL,
another approach has been the design of special purpose
languages. Very High Level Languages 1 could be charac
terized as languages in which the user specifies "what" he
wants done rather than "how" to solve the problem; such

398 National Computer Conference, 1977

an approach, almost by definition, limits the field of applic
ability of the language. Other examples of special purpose
languages are data base "query" languages, such as Sperry
Univac's UNIQUE and QLP languages which operate in
IMS 90 and DMS 1100 environments respectively. These
languages permit an end user to perform a restricted
number of file operations, such as retrieval and/or update of
data items which satisfy search criteria submitted by the
user.

The two above mentioned, as well as many other lan
guages, are designed to be used through terminals, in which
environment the user both receives diagnostic and prompt
ing messages at the time of submitting his program, and in
many cases will receive output at the terminal on execution
of the program. Interactive operation is one of the keys to
ease of use.

Another approach to ease of use is to make the computer
language approximate to natural language as closely as
possible. Thus, there have been many efforts and proposals
to use English as a programming language. 2 We are seeing
much effort in the Artificial Intelligence community being
directed towards English-understanding systems. However,
even if it were conclusive that natural English was well
adapted to expressing user needs (which is arguable), we
are still a long way from being able to propose practical and
economic systems using English as a programming lan
guage.

Other man-machine intetfaces

Procedural languages are one form of man-machine inter
face. Another way we frequently communicate with the
machine is through a command language (e.g., JCL). How
ever, there are also many non-linguistic methods of getting
the computer to execute the functions we desire. The most
basic of these is typified by the computer operator's use of
a console consisting of switches and lights. In some cases a
standard terminal may be used in console-like fashion.

An off-line analogue to setting switches is the use of
forms. The use of a check mark or one of a set of code
symbols in a fixed position on a form is the equivalent to
the setting of a switch, once the form is transcribed to a
machine readable medium.

A third non-linguistic interface is interactive dialogue. In
this case the operator responds to machine requests for
decisions or values which will determine the succeeding
course of events.

In general, non-linguistic interfaces are much less versa
tile, offering only a restricted range of possibilities, when
compared to a general purpose programming language.
However, generality is not always desirable or necessary
when ease of use is the goal, and the amount of built-in
prompting and control possible with non-linguistic systems
makes them candidates for further development.

EASE OF USE THROUGH DIALOGUE

The use of computer dialogue is now, of course, com
monplace; we see it used in a host of applications. 3 It is

worthwhile, however, to reexamine some of the pros and
cons of this technique.

Advantages

The advantages of dialogue driven systems may be sum
marized as follows.

• Learning is reduced or eliminated. The dialogue serves
as a prompting mechanism or, depending on its verbos
ity, even as a tutorial, to guide the user's next re
sponse.

• User responses can be minimal. In a typical case an
entire line of information might be displayed to the
user, and his reply could consist of a single keystroke:
Y for yes or N for no.

• User response can be validated immediately. Any
unacceptable responses can be detected at the ideal
time and the question either simply repeated or a
diagnostic message displayed.

• The sequence of computer initiated questions is dy
namically changeable, depending on the response to
previous steps; thus, an appropriate subset of ques
tions can be asked, depending on the problem, without
the user's being exposed to irrelevant dialogue.

• As the dialogue proceeds, the user can save and review
the previous interactions.

It is clear that dialogue is an invaluable tool in making
computers easier to use. Well designed dialogue is "natu
ral," if the computer's questions are phrased in terminology
that is clear to the user. We can consider the computer as
playing the role of an "automated consultant," asking all
the necessary questions, and only the necessary questions,
for some particular purpose. The function of the dialogue
may be to control a process directly in real-time (such as in
many time-sharing systems dialogues), or to extract infor
mation from the user. If information gathering is the pur
pose, the answers obtained from the user may represent the
specification for some subsequent process; i.e., the re
sponses could consist of language statements or a set of
parameters.

Where a complex set of specifications is required, a form,
or set of forms, is often employed. An example is the
specification of a report using RPG, in which various forms
describe the format of the output, the nature of the input
and any calculations, summarizations or editing that is
required. An alternative way of obtaining this information is
through an interactive dialogue in which the user fills out
the "form" step by step, by responding to questions about
the problem he is specifying. One benefit of this approach
over an actual form is apparent in situations where the
consequence of indicating one choice implies that another
section must be completed. No manual method can guaran
tee the user will complete the form correctly, but in an
interactive environment, all relevant sections can automati
cally be presented as a dialogue sequence. Conversely,
many columns, or even entire forms, may be unnecessary

for specifying a simple problem; the equivalent questions
would not be seen by the user responding to a dialogue; he
is thus shielded from any more compiexity than that needed
to solve his problem.

Disadvantages

There have traditionally been several disadvantages to
the dialogue approach to offset the advantages discussed
above. Often, interactive dialogue mode has been consid
ered simply as a crutch for beginners, to be discarded as
soon as they have learned the series of steps through which
the dialogue is taking them.

What are some of the problems that make people unwill
ing to tolerate dialogue once they have used the same
sequence a few times? Some contributing factors are:

• Type of Device-Most dialogue up until now has been
conducted on typewriter devices, in particular the
Teletype Model 33. These devices are slow and noisy.
In addition, they are linear devices and not well
adapted to two-dimensional presentation.

• Speed of Display-This is related to the type of device;
but even if a buffered CRT such as a Model 100
U niscope ® terminal is used for dialogue, it will be
limited by the throughput of the telecommunication
line.

• Response Time-Most present-day dialogue driven
programs reside on large, centralized systems which
time-share the dialogue user with many other proc
esses. Usually, each step in the dialogue incurs com
munications, processor and operating system overhead
plus disc access time, all of which can amount to a
noticeable delay between steps of the dialogue which
may be irritating to an experienced user.

• Dialogue Design-Many dialogues appear to be poorly
designed for their intended audience. It is common to
encounter stylistic extremes ranging from verbose in
structions intended to be helpful but ending up making
ihecu~sei---feerihe'''dGirogue+'oesigne'r' assumes ne'is an
idiot, or alternately of cryptic messages and symbols
that reinforce the user's feelings of confusion and
mystery when using the computer. Other faults are a
poor ordering of questions, designed more for the
benefit of the machine than the user, and poor "sign
posting," so that the user can easily lose his way in a
series of questions, or suddenly find unexpected things
happening.

• Cost-Typically, dialogue driven processes have re
quired large systems, and have consumed large
amounts of memory and other system resources. Tele
communication lines, particularly with high through
put, are another heavy expense. If one takes a narrow
view and simply counts tangible costs, dialogue driven
processes are not an "efficient" way of utilizing re
sources. Lastly, the development cost of software for
on-line applications has been considerably greater than

Generai Purpose Diaiogue Processor 399

the cost of developing equivalent applications running
in a non-interactive environment.

DIALOGUE APPROACH

Our approach to finding solutions to the ease of use
requirement is essentially dialogue based. Many of the
problems discussed above are tending to be diminished by
current technological trends. For example, CRT terminals
are no longer considered exotic, high cost items; similarly,
communications technology is tending towards higher ca
pacity at less cost. The possibilities offered by intelligent
terminals suggest a new distribution of functions, outside of
the host system. In such an environment it is clear that at
least a part of the work associated with managing dialogue
could be performed by the terminal itself.

While technological advances are tending to eliminate
most of the disadvantages associated with the mechanics of
computer dialogues cited above, we still see one serious
problem remaining-that is the design and implementation
of effective dialogues. Our approach has been to separate
the dialogue activity from the system that is to be dialogue
driven, by creating some specialized software: a Dialogue
Specification Language, which encodes a dialogue from a
high-level description, and the Dialogue Processor, which is
a run-time interpreter, managing the interactive process of
presenting the steps of the dialogue to the user and captur
ing his responses.

In a typical present-day situation, the dialogue is inextric
ably embedded in the application or system program. The
form of the dialogue is entrusted to the software designer,
who is frequently not an expert in human communications.
Ideally, we believe, dialogues should be written by skilled
communicators, such as technical writers, educators, in
dustrial psychologists or specialists in the subject matter of
the dialogue. Dialogue design should be made more respon
sive to human needs; the format, presentation and choice of
words should reflect the user's familiarity with the interac
tive process. The terminology used should vary to suit
different user communities, for example, people whose
n&[rve~tongue is not'E'ngtis1i.'·

The above requirements suggest that, for a given applica
tion, many dialogues could exist simultaneously, each
turned to a different user need. The Dialogue Specification
Language and Dialogue Processor were designed to meet
these goals.

DIALOGUE PROCESSOR

The Dialogue Processor is a program that supervises an
interactive process in which a succession of messages is
displayed on a CRT screen. For each message the user's
response is obtained, analyzed and used to control succeed
ing interactions. The Dialogue Processor is a general pur
pose program; it will operate with any dialogue that has
been suitably encoded. In addition to the display output
described above, the Dialogue Processor produces two

400 National Computer Conference, 1977

other outputs: firstly an audit file from which a listing of the
dialogue, expressed in natural language style, can be ex
tracted for the user, and secondly a formatted output file
that embodies the essential information of the user's re
sponses.

The Dialogue Processor is essentially one component of a
two-part system, the other component consisting of the
process that is to be dialogue driven. Figure 1 is a block
diagram of the Dialogue Processor; it depicts the output
extracted from the user's responses as a string of parame
ters that might drive one of many different processes, such
as an application customizer, operating system or file
management system.

The questionnaire of Figure 1 is expressed in Dialogue
Specification Language and encoded by the DSL compiler.
It is worth noting that in general the writer of the dialogue
will not be the same person as the interactive user, the
former will need some specialized skills, while the latter is
assumed to be non-technical.

Choice trees

Consider a dialogue as represented by a tree, with nodes
corresponding to points at which the user has a choice and
branches corresponding to messages and user input. The
whole tree corresponds to the dialogue structure, and paths
through the tree are permissible sequences of user re
sponses. The dialogue can be conceptualized as having a
syntax which can be represented with the following meta
linguistic symbols:

{ } [] 1111

The following example illustrates the steps by which we
can go from a syntactic structure to a dialogue. Figure 2

QUESTIONNAIRE

Figure I-Dialogue processor block diagram

l.[~ ·~~~ ~J[,{~ii[,ai]) }][,{~[.aj]) } " ..]['OLD]
PRI (pi%[.ci]) (pj%[.cj])
SUB

tOLD]

Figure 2-0S/3 job control EXTENT statement

shows the syntax for the EXTENT statement in the JCL for
Sperry Univac's OS!3 Operating System. Using the format
and the accompanying rules as set out in the Reference
Manual,4 the syntax can be expressed rigorously in the
format shown in Figure 3. Figure 4 shows the substitution
of messages for mnemonics and codes. If we were to make
a dialogue in which each group of parameters in turn were
to be offered to the user, we could represent the syntax
internally as the tree shown in Figure 5. Here the nodes
exercise the following control over the branches which
emanate from them:

K = Sequential-The Dialogue Processor follows the
branches one by one in sequence (the user does
not have control).

A = Mandatory Exclusive-The user must choose one
and only one branch. The Dialogue Processor
follows the path indicated.

B = Optional Exclusive-The user may choose one
branch, which the dialogue Processor will follow;
alternately, he is permitted to signify a null
choice-"none of the above."

We emphasize it is the Dialogue Processor that enforces
the choice rules at each node, making it impossible for the
user to violate them. Thus, any path the user is able to
trace through the tree results in a syntactically correct
EXTENT statement.

As we will see later, the Dialogue Specification Language
has features enabling us to write dialogues embodying the
syntactic structures illustrated above, directly.

r
rr~:'~ {.~ 1

11
{addr} {m)

(~1
CYL

(split) ,id[,CI. (i~C} ,
PAl, e'," J [,OLD]

~J II "" i;:l g J J If[symbol] EXT
pi% [,ci) ...

OLD

'-'" m I<l, C~} , w':"
Cbi, aJ

J [0'",] ~addr} (m} .
CYL

OLD

"
Figure 3-EXTENT statement syntax

General Purpose Dialogue Processor 40 I

r ~rr"u'~' r DIRECT ACCESS "I
~ :~~~N:T~~~D ~ r:-ALLOCATE -, L CONTIGUOUSL ~

r INCREMENT CHANGED

rAUTOMATIC EXTENSION By'Il r~ORMAT AT ALLOCATION TIME I
~ INCREMENTS OF inc ~ I ALLOCATE BLOCKS (

"NO OYNAMiC EXTENSION) l~LLOCATE BLOCKS.)

[AVERAGE BLOCK LENGTH = b7.\
\.. NUMBER OF BLOCKS = .i) l

EXTENT

l

SET MEMBER, lSYSTEM ACCESSJ
TECHNIQUE

FILE, SET MEMBER id

NON-SPLIT
CYLINDER,

{

DIRECT ACCESS }
NON-INDEXED AUTOMATIC EXTENSION
INDEXED SEQUENTIAL. FILE I.ALLOCATE CONTIGUOUSLY!. ~Y INCREMENTS OF inc }
SEQUENTIAL
SYSTEM ACCESS NO DYNAMIC EXTENSION
TECHNIQUE

ALLOCATE CYLINDERS I,BEGIN AT ABSOLUTE ADDRESS addr! (~~~BER OF CYLINDERS)

PRIMARY MEMBER OF SET

l SUBSEQUENT MEMBER OF
SET

{

NUMBER OF TR.ACKS/CYLINDER = bi, NUMBER 01
CYLINDERS = al

,%oF TRACKS/CYLINDER = pi%, NUMBER OF
CYLINDERS = CI

~
r.NUMBER OF TRACKS/CYLINDER = bi I.NUMBER O~J

CYLINDERS = cil

,% OF TRACKS/CYLINDER = pi%, NUMBER OF
CYLINDERS:: ci

~
INCREMENT CHANGED

f
ORMAT AT ALLOCATION TIM]

ALLOCATE BLOCKS

ALLOCATE BLOCKS

(AVERAGE BLOCK LENGTH = bZ\.
\"NUMBER OF BLOCKS = ai J

l ALLOCATE CYLINDERS I.BEGIN AT ABSOLUTE ADDRESS addr!
,NUMBER OF
CYLINDERS = mi

1
J

I

J

Figure 4-EXTENT statement re-expressed in Engiish

Functions of the dialogue processor

The Dialogue Processor is responsible for the presenta
tion and sequencing of dialogue elements. Dialogue ele
ments consist of specific messages to the user (concerned
with the subject of the dialogue); standard messages to the
user (concerned with control, prompting, error notifica
tion); requests for the user to specify choice (menu selec
tion) and request for the user to enter data. For each step in
the dialogue, the Dialogue Processor provides the appropri
ate mechanism for the user's response. Thus, the user may
be confronted with a list of elements from which to choose;
accompanying the list will be instructions on how to signify
his choice and what rules govern this particular choice.
Choices may be mandatory or optional, mutually exclusive,
or inclusive. In each case the Dialogue Processor automati
cally enforces the choice rule. Each interaction is termi
nated by the user signifying choice, acknowledgment, or
by entering data. Following verification that the user's
response. was ¥alid. the Dialogue .Processw: proceeds to the
next interaction called for by the dialogue structure. Decid
ing where to go next is a Dialogue Processor function which
will, in many cases, be dependent on the previous re
sponse. As the user follows a path through the dialogue, he
may discover he has taken a "wrong tum" or may wish to
review and change some earlier response; a feature of the
Dialogue Processor is the ability to back up or assist the
user to recover from an unintended response.

DIALOGUE SPECIFICATION LANGUAGE

DSL is a high level language especially designed for the
creation of dialogues which will run under the control of the
Dialogue Processor. It has facilities for specifying the
dialogue structure, messages to be displayed, input to be
entered by the user and the content, format, and mapping
rules for both the formatted output file and the natural

language report output. DSL source programs are compiled
into a mixture of tables and interpretive code-the output
of the DSL compiler is termed the encoded dialogue. The
Dialogue Processor is the run-time interpreter for encoded
dialogues.

A reference manual for DSL has been documented else
where. 5 In this paper we will only attempt to highlight some
of the unusual features of the language.

Trees

DSL has the facility to describe trees which are used to
represent dialogue structures. The language has a tree
declaration statement, the syntax of which is shown in
Figure 6. The DSL tree is essentially a specialized program
structure consisting of an optional subroutine called the
trunk, a control mechanism called the node type, and a
collection of subroutines called the branches. DSL pos
sesses a unique command

PRESENT tree

which, when executed, starts an interactive process in
which the Dialogue Processor displays messages and elicits
responses to enable it to traverse the tree under guidance
from the user.

Associated with each branch are branch actions. These
actions may display messages, request input or perform
output and other processing functions. At the time the
branch is initially displayed, all the branch actions are
performed on a temporary basis; only after the branch has
been selected are the actions made permanent. A branch
may terminate with another tree, thereby providing a nest
ing structure.

Control of execution of the branch actions is governed by
the node type of the tree. For an exclusive node, all the
branches are executed temporarily, then the one selected
by the user has its actions made permanent. An inclusive

402 National Computer Conference, 1977

SPLIT CYLINDER
MEMBER

NON-SPLIT
CYLINDER

DIRECT ACCESS FILE

NON-INDEXED FILE

SEQUENTIAL FILE

SYSTEM ACCESS TECHNIQUES FILE

-SET MEMBER id -~B ALLOCATE CONTIGUOUSLY

AUTOMATIC EXTENSION BY INCREMENTS OF inc

A

NO DYNAMIC EXTENSION

INCREMENT CHANGED

FORMAT AT ALLOCATION TIME - 0 -ALLOCATE BLOCKS, AVERAGE BLOCK LENGTH = bi, NUMBER OF BLOCKS = ai

ALLOCATE BLOCKS -0 AVERAGE BLOCK LENGTH = bi, NUMBER OF BLOCKS = ai

~
BEGIN AT ABSOLUTE ADDRESS addr

ALLOCATE CYLINDERS - K

NUMBER OF CYLINDERS = mi

Q
NUMBER OF TRACKS PER CYLINDER = bi -0 NUMBER OF CYLINDERS = ci

PRIMARY MEMBER OF SET - A

. % OF TRACKS PER CYLINDER = pi% -0 NUMBER OF CYLINDERS = ci

Q
NUMBER OF TRACKS PER CYLINDER = bi -0 NUMBER OF CYLINDERS = ci

SUBSEQUENT MEMBER OF SET - A

% OF TRACKS PER CYLINDER = pi% - 0 NUMBER OF CYLINDERS = ci

DIRECT ACCESS FILE

INDEXED SEQUENTIAL FILE

SYSTEM ACCESS TECHNIQUES FILE

ALLOCA TE CONTIGUOUSLY

r:;<AUTOMATIC EXTENSION BY INCREMENTS OF

\::..(NO DYNAMIC EXTENSION

ALLOCATE BLOCKS - 0AVERAGE BLOCK LENGTH = bi, NUMBER OF BLOCKS = ci

Q:
-0- BEGIN AT ABSOLUTE ADDRESS addr

ALLOCATE CYLINDERS - A

NUMBER OF CYLINDERS mi

Figure 5-Tree structure for EXTENT statement diaiogue

General Purpose Dialogue Processor 403

tree ..

{
{

INCLUSIVE ~
[OPTIONAL] EXCLUSIVE

TREE [trunk] SEQUENTIAL
PARALLEL

REJECT

{
(branch) } Gil mask clause rl
(branch name) ... L SELECT {array name} ... I~

mask clause .. MASKED BY logical expression

branch :: = [branch element] . .. [(tree J [mask claUSe]]
tree nam

trunk

branch element ..

trunk element

trunk element

raSSignment;
branch block

J ENTER {array name} ... ,

\ [DISPLA~

l OUTPUTJ {string expression}
PRINT

conditional branch element

l
.. J

(

assignment; }
trunk block

DISPLA

G~I!."~~ jstring expression} ... ;

conditional trunk element

Figure 6-Syntax of DSL tree and branch declarations

node has a similar effect, except that the branches that
remain unchosen after the first interaction are again pre
sented to the user. In the case of a sequential node, only
one branch at a time is executed. The purpose of a
sequential node is to present branches in order. Parallel
nodes are used for data entry sequences; neither parallel
nor sequential nodes require a choice to be exercised by the
user. The reject node type is the inverse of an inclusive
choice-in this case it is those branches the user does not
indicaU,(,thata,(ecJ~~xe"cut~d",If.a~IlQ~,!Y~.e ,i~qu.alifj~d ,(lS
optional, the user can indicate that he does not want to
select any branch.

Branches and trees can be either written in line, or
declared and named. If a tree is named, multiple references
to it are possible, enabling a dialogue structure that is a
network to be easily represented in DSL.

The trunk subroutine is executed once only, on presenta
tion of the tree; its intended purpose is to display a heading
for the user.

The optional MASKED BY and SELECT clauses will be
explained following the discussion of DSL masks, below.

Data items, arrays and masks

DSL has facilities for declaring data items and arrays.
Associated with every array is a mask with a bit corre
sponding to each element of the array. The effect of the

mask is to only allow the DSL program to see those
elements of the array for which the corresponding mask bit
is set to 1.

If an array is referenced in a branch subroutine, it will
have the effect of replicating the branch once for each
element of the array; thus the array reference in the nth
instance of a replicated branch is implicitly a reference to
the nth element of the array. The above mechanism can be
used to display all the elements of an array to the user as
the, brao.clles.,of a tree •. and. thr.Ol~,the ,us.e oLthe.select
facility that exists in DSL, the array's mask bits can be set
to mask off those elements that correspond to the branches
not chosen.

Masks can also be used to condition the branches of a
tree, this is the function of the MASKED BY clause. If this
clause is used, the nth branch of a tree will only be
presented to the user if the nth bit of the mask is set to 1.

Block structure

DSL uses a block structure to control looping, initializa
tion and the scope of variables. The syntax for block
declarations is shown in Figure 7. Looping may be con
trolled by a count, or continue while or until a certain
condition is true.

Arrays can also be used to control looping. Using the DO
FOR EACH array-name construction, a program block

404 National Computer Conference, 1977

block .. DO [block control header] block body END

;::es(Si~LIIJMES { array name I ... [mask clausel

EAC [INDEX index name]

(UNTILl conditional expression

lWHILJ

block control header ..

CASE expression
CONTROLLED BY {array name} ... [mask clause]

block body·· {general statement t . . .
Figure 7-Syntax of DSL block declaration

controlled by an array will iterate through each element of
the array for which the corresponding mask bit is set to 1.
Any reference to the controlling array within the block is
actually a reference to the current element of the array.
This mechanism provides an implicit subscript feature in
DSL.

The case statement has its conventional meaning, but the
CONTROLLED BY mechanism provides a powerful ex
tension of case-the effect of this construction is that for
each I bit set in the mask of the controlling array. the
corresponding general statement is executed.

The block mechanism is also used to control initializa
tion. Variables are automatically initialized on entering, or
re-entering the block in which they are declared. The scope
of a variable is the block in which it is declared and all
nested blocks.

Other features of DSL

There are powerful formatting facilities in DSL which can
control the way data appear in the various outputs from
the Dialogue Processor. Facilities include decimal place
ment and/or suppression, left or right justification, zero fill
and centering.

DSL is also a general programming language with arith
metic, logical expression and string manipulation capabili
ties. The language has a simple macro facility.

The DSL programmer does not have to write explicit
routines for handling user choices-the display of standard

. control and error messages, the positioning of headings and
the tabulation of choices are all done automatically; simi
larly, the programmer does not have to concern himself
with writing backtracking or error recovery procedures, as
these are built in to the Dialogue Processor.

OUTPUTS OF THE DIALOGUE PROCESSOR

As the user progresses through a dialogue, he is building
two distinct outputs. (We are not including, in this discus
sion, output messages to the CRT.)

Target file

As previously observed, the Dialogue Processor is one
component of a two-part process; it is essentially the front
end to some dialogue driven process. The larget file con
sists of exactly the input required by the complementary
process. The Dialogue Processor is responsible for format
ting the input correctly as well as ensuring a syntactically
correct stream of data to the dialogue driven process.

The input requirements of many proposed target proc
esses are machine-oriented rather than designed with good
human factors (for instance, the cryptic codes and rigour
ous punctuation rules of JCL). One important function of
the Dialogue Processor is to insulate the user from such
problems, and to do so, it possesses a powerful mapping
capability.

Figure 8 shows the syntax of a dialogue that is part of the
information needed to specify a payroll. As the user re
sponds to each element of this dialogue, he is specifying a
rule that pertains to his payroll program; in this particular
example, the rules for overtime pay. The use to which this
information will be put is to furnish parameters to a
customizer which will adapt a generalized payroll package
to the user's partjcular methods. The input requirements of
the customizer are, in fact, a collection of short procedural
statements in a fixed assembly language-like format which
are interpreted at run time. Figure 9 shows the paths
selected during two passes through the tree; and beneath
each statement is the code needed by the customizer to
cause the processing to be carried out in the way described .
The Dialogue Processor is able to map a human-oriented
statement of requirements to the machine-oriented version
required by the target process.

Report document

The other output created by the Dialogue Processor is an
audit file from which a user oriented report document is
extracted. Essentially the report summarizes, for the user's
benefit, the dialogue that was transacted. Figure 10 is an

Generai Purpose Diaiogue Processor 405

SCREEN 100, OVERTIME PAY CALCULATION FOR employee-type EMPLOYEES

NO OVERTIME PAID TO THIS EMPLOYEE TYPE

ONLY AFTER min-hrs
REGULAR HOURS WORKED,

MAXIMUM NUMBER OF OVERTIME
HOURS PERMITTED = max-hrs,

OVERTIME IS PAID USING
THE FOLLOWING RULES:

NO MINIMUM NUMBER
OF REGULAR HOURS,

UNLIMITED OVERTIME HOURS
PERMITTED,

FIXED FOR ALL OVERTIME HOURS @ fixed-rate X (HOURLY RATE)

RATE IS
VARIABLE: FOR FIRST hrs-1 HOURS
@ rate-1 X (HOURLY RATE),

FOR NEXT hrs-2 HOURS@
rate-2 X (HOURLY RATE),

FOR NEXT hrs-3 HOURS @
rate-3 X (HOURLY RATE),

FOR REMAINING HOURS
@ rate-4 X (HOURLY RATE)

FOR REMAINING HOURS @rate-4 X (HOURLY RATE)

Figure 8---Syntax for overtime rules in payroll dialogue

example of part of the report produced in specifying the
payroll that was discussed in the previous example. The text
of this report can be identical with the messages associated
with each path selected during the interactive process (as is
tb~ <;~§,e_",wjtbfjg1JJ~ Ull. or jt C:lIIQ~ §"~l?qr~1~lj' §l?"~~I::!fiedJo
provide any suitable documentation. It should be noted thfit
the style of the report can be close to a natural English
description of the problem and thus be readily understanda
ble to a non-technical person.

DIALOGUE EDITOR

The purpose of the Dialogue Editor is to enable the user
to change his responses to a dialogue that has already taken
place. The user may wish to change the data that he
previously submitted in response to a data entry request, or
he may wish to change a previously made choice selection.

The editor is intelligent in the following sense: Certain
changes that the user can make will affect the subsequent
dialogue. e.g., the deletion of a branch should result in all
nested branches also being deleted. The editor will attempt
to effect all consequent changes automatically, however,

where the result of an earlier change lead to a situation
where the user must provide more information, the editor
solicits this via the corresponding dialogue.

AuJlt!;lt:

The editing mechanism is based on an audit file which is
produced during a dialogue session and which contains
essentially two kinds of information: firstly, the data that
goes into the Report Document, which is user visible and is
the means through which the user signifies any changes,
and secondly, control information which is not user visible,
but which is a trail of everything the user did during the
session. The Dialogue Professor always operates with four
files, Figure 11. The user indicates which paragraphs he
wishes to change by writing the paragraph numbers to the
change file. During an editing session, the Dialogue Proces
sor reads unchanged paragraphs from the old audit file,
produced at the previous session, interpreting the control
information in the same way as if it had come from the
keyboard. When it reaches a change paragraph, it displays
the old version on the CRT screen, and waits for the user to

406 National Computer Conference, 1977

SCRE~N t0~, OVERTIME PAY CALCULATION FnR TYPe 2 WEFKLY FMPLOYEESI
nVFRTIME IS PAID USING THE FOLLOWING RUL~SI ONLY AFTER 4~.~ RFGULAR
HOUR! WORKED, MAXIMUM NUMBER OF ~~ERTIME Hnu~s. a0.0, RiTF ts VARrA~LFI
POR FIRST 2~.~ HOURS' 1.5 x HOURLY RAT~, NEXT 1~.0 HOU~S' 2~0 v
HOURLV RATE, REMAtNI~G HOURS' 2.5 X HOURLV RATE

.._.-.-.. -._ .. -.-.. _-._-_.-.----_._._------------------ --_ ---..... -
WW.x~ REGHRSI4~.0 ,WWAXU2tRETURN#WwRXU2
WWB2XTR~GHRS+OTHRS .!SAVEAI40.~ ,WwR2VS'WWB2XR.WWR2VR
WWA2XS!SAV!A-4~.~ .OTHRS J40.P' .REGHRStwWB~U~
WWA2XR~SAVEA.RF.GHRS#WwBXU2

WwBXU20THRS 14m.0 #Ww~XJ2#WW8XT~#WWRXT2
WweXJ240.0 -OTHRS #ww9XT2
WWAXT20THRS -2~.0 -!SAVEAI0. #WwRXR2'W~BVQ~#WWAXR2
WWR.XR2~. .$SAVEA*wwAX~2
WWRXQ20THRS -SSAVEA.OTHRS *SRATE *t.~ .OTPAY #wWRx'2
WWAX12SSAVEA.l~.0 .~SAVEBI0. #WWAXN2'WW8VM?#WWQXN2
WW~XN2~. .S~AVER#wwBXM2
WWBXM2SS.VE.-SSAVER.~SAV~A*SRATE *2.0 +OTPAY .OTPAV jWW8XG~
WW8XG2SSAV~B-$SAVEA#wwRX22
WW~X22SRATE *S~AVEA*~.~ .OTPAY .OTPAV *~w.~2

._***

SC~EfN 10P, OVfRTIME PAY CAL~ULATInN F~R
OV~RTIME' IS PATD USING THE FOLLOWING RULFSI
HOURS, MAXIMUM NUHRER OF OVERTTME HOURS •
nVF~TIME HOURS' t.5 X HOURLY RATF

TYPE 3 HOURLV ~MPLnYEE51
NO MINI"'U~ NU M8FR OF ~EbULA~

2~.~ , ~ATE 15 FIVE" FOR ALL

.. ----.-..... ---.... --.-.----.. -----.-... -.---.-.--.-~ ... _--_._.-----_._-----
WW.X3 OTHRS 12~.0 #wwAXJ3twW8XTJ.wW8XT3
WW8XJ320.0 -OTHRS #WWRXT3
WwRXT3SRATE *OTHRS *1.5 -OTPAV #WW.R~

Figure 9-Customizer code for two sets of overtime rules

indicate the desired change. If a choice change is requested,
the user is shown the original menu at that point, and the
Dialogue Processor takes further input from the keyboard
until the user terminates that particular request. Following
a change, the information on the old audit file mayor may
not be valid. Whenever a conflict is detected, the Dialogue
Processor returns to the user for responses that will resolve
the inconsistency.

APPLICATIONS FOR THE DIALOGUE PROCESSOR

The initial application for the Dialogue Processor is in
conjunction with a customizer that has been developed for
use with packages for the small business machine market.
The Dialogue Processor will replace the questionnaire
forms that have been used with previous customizers.

Both the Dialogue Processor and customizer can run in
the user's own machine; thus, it will be possible for the
users to create their own applications without knowledge of

a computer language. The automatic documentation fea
ture, in conjunction with the Dialogue Editor, will also
enable users to modify and maintain their own applications.

We are currently investigating other areas where the
Dialogue Processor should prove effective. Some of these
applications are:

• Formulation of commands by users in the traditionally
difficult command language areas such as Job Control,
System Generation, Network Specification and Con-
trot, and other instances where the user is required to
submit complex specifications to a process .

• Creation of on-line applications (such as financial,
medical, etc.) where the dialogue for receiving user
requests and transactions has traditionally been an
integral part of the application. We will attempt to
demonstrate the advantages of flexibility and lower
development costs the Dialogue Processor wi!! pro
vide.

General Purpose Dialogue Processor 407

SCk~~N 1~~, avtRTIM~ PAY CA~CU~ATION FO~ TYPE 1 SA~A~IED EMP~OYEESI

NO OV~RTIMe PAID TO THIS EMP~UYEE TVPE

SCk~tN 1~~' QVtRTIMt PAY CALCULATION FOk TYPE ~ ~EfK~Y EMP~OYE!SI

OV~kT!M~ 15 PAlU' USl~G T~E fOLLDwIN~ ~U~ESI ONLY ArTER 4~.0 REGULAR

HOU~S ~o~~tU, MA~lMUM NUM~ER UF OVE~TIME HOU~S • ~0.0, HATE IS VARIABLE.

5C~ttN 1~~, OVtHTIM~ PAY CA~CULATION FOR TYPE 3 HOURLY EMP~OYEESI

QVtwTIME l~ PAID uSINb T~E ~O~LUwING ~ULESI NO MINIMUM NUMBER OF REGU~AR

OV~RTIME "OURS '1.5 X HOuwLY KATE
Figure IO-Part of the payroll report output

DIALOGUE
PROCESSOR

Figure II-Dialogue editor

• Creation of end user facilities for interfacing with data
base management systems; in particular, using dia
logues to enable non-technical users to generate valid
queries or transactions against data bases having com
plex structures and interrelationships. We plan to ex
perriTler1t \\:ith a varl~ty orsryie~' of'iflh:iadi0h'appru
priate to different users, which the Dialogue Processor
will map to a standard interface with the DBMS.

• Creation of dialogues for engineering diagnostics,
which would enable the Dialogue Processor to be used
by the customer to step through a series of tests and
produce a detailed report of the fault, prior to calling
the customer engineer.

We have already started to investigate some of the above
areas. It is obvious there are many other applications for
the Dialogue Processor.

CONCLUSION

In the first part of this paper we have identified some of the
issues that affect ease of use. Particularly in the area of

408 National Computer Conference, 1977

business applications, we can see the emergence of certain
trends: Application generators, problem oriented languages,
interactive systems and some serious effort to develop
systems that employ natural language.

To aid in the development of easy-to-use systems we
have created the Dialogue Processor and Dialogue Specifi
cation Language. With these tools we believe the utility of
interactive dialogues can be greatly extended.

The Dialogue Processor is seen as one component of a
two-part system. Since many different processes can be
dialogue driven, the Dialogue Processor is truly a general
purpose facility. Initially, the Dialogue Processor will inter
face with existing systems; however, once proven, we can
expect the development of new systems especially designed
to operate with a dialogue front-end.

With the Dialogue Processor, a user can express complex
commands and specifications without being burdened with
the effort of learning a programming language. All commu
nications can be conducted in natural language; and further
more, syntactic considerations are handled automatically.

DSL will encourage the development of effective dia
logues tuned to users' needs. Dialogues can be developed
as a separate activity from the processes they drive.

The Dialogue Processor has been designed with very
modest processor and memory requirements; it is, there
fore, feasible for it to reside in a programmable terminal.
With this arrangement, the user will obtain very quick
response between successive steps in the dialogue so it may
be acceptable to use dialogue as the regular mode of
expressing commands, and not simply to regard it as a
training aid.

We expect the Dialogue Processor not only to make
computers more accessible to non-programmers but also to
help computer professionals become familiar with new
facilities more quickly and use them more effectively.

ACKNOWLEDGMENTS

The author is greatly indebted to Mr. Jerome Holland for
many discussions and insights, without which the work
described in this paper would never have become a reality.
Acknowledgment is also due for the efforts of Messrs.
David Monk and William Overholt of Sperry Univac, who
first saw the relevance of the Dialogue Processor to cus
tomizing small business applications, and who were respon
sible for supporting the research effort and its implementa
tion in the Sperry Univac BCn. Lastly, a large debt of
thanks is due to Mr. Theodore Bonn for his encouragement
and support and to numerous colleagues at the Sperry
Research Center for their invaluable technical assistance.

REFERENCES

I. Leavenworth, B. M. and J. E. Sammett, "Overview of Nonprocedural
Languages," SIGPLAN Notices. Vol. 9, No.4, 1974.

2. Petrick, S. R., "On Natural Language Based Computer Systems," I.B.M.
Journal of Research and Development. pp. 314-325, July 1976.

3. Martin, J., Design of Man-Computer Dialogues, Prentice-Hall, 1973, pp.
25-34.

4. Sperry-Univac, Operating System/3 (OS/3) Job Control User Guide, UP-
8065 Rev. I, 1975.

5. Black. J. L., "Dialogue Specification Language Reference Manual,"
Sperry Research Center Working Paper CM18-25, 1976.

A study in man-machine interaction*

by LAWRENCE H. MILLER
University of Southern California
Marina del Rey, California

ABSTRACT

The performance of users in man-machine interaction
(MMI) is described in terms of a number of user- and
machine-oriented parameters. The general linear model for
experimental design is used as a model of the interaction.
Performance measures are selected and a questionnaire
developed to gauge user attitudes toward the man-machine
system (MMS) and its environment. The interface parame
ters selected are hypothesized to have a significant effect
on the performance and attitude measures.

The effects of varying CRT display rates and output
delays upon user performance and attitudes in a series of
message retrieval tasks were evaluated experimentally. The
results support the somewhat surprising conclusion that
doubling the display rate from 1200 to 2400 baud produces
no significant performance or attitude changes; increasing
the variability of the output display rate produces both
significantly decreased user performance and a poorer
attitude towards system and interactive environment. The
generally held notion that increasing output display rates is
associated with better user performance is not supported.

INTRODUCTION

Within computer science, it is now possible to divert
:ittentiGn a:y;:ay fr0rh fundamental theoretical issues tuward
refinements in systems and applications design for the
greater satisfaction of end users. To this end, the previous
ad hoc methods of refining systems to users' needs-based
on the intuition of the designer or programmer-ought to
give way to the more rigorous and reliable techniques of
controlled observation, experimentation and development.
The research reported here demonstrates that certain pa
rameters of the man-machine interaction environment are
manipulatable as a means of improving user performance.

An interactive message processing system now used at
the University of Southern California's Information Sci
ences Institute (lSI) and other locations was used for this
research. This program has been modified to provide a

* This research was supported by the Advanced Research Projects Agency
under contract No. DAHC 15 72 C 0308, ARPA order No. 2223. Views and
conclusions contained in this study are the author's.

409

useful means of examining the relationship between the
performance of the user and the variables influencing that
performance.

Later sections discuss in greater detail the parameters of
the interaction, which are shown to influence performance.
Appropriate measurements are developed for evaluating
performance in these kinds of interactive tasks. The ration
ale for performing research on the effects of changes in the
system parameters upon user performance is to make
possible the development of interactive computer systems
that are more compatible with the needs, expectations,
motivations, limitations and abilities of the potential users
of that system.

A number of broad-ranging questions occur as one stud
ies the ways in which people interact with computer sys
tems: what are suitable input languages, keyboard and
terminal designs, format and intensity of displays, amount
of material, content of responses, speed and variability of
display rates, etc. A complete theory of man-machine
interaction (MMI) would take these factors as well as those
relating to user differences into consideration in attempting
to predict user performance for a given man-machine sys
tem (MMS). The theory would also include parameters
relating directly to the individual system, and perhaps as
well factors which relate to the supporting computer sys
tem-CPU speed, memory capacity, etc. A preliminary
step in developing a model or theory of MMI includes the
seiection o(iisetlif' performance measures. '

The set of MMI parameters may be divided into those
which represent the man (user) and those which represent
the machine. The machine parameters, in tum, may be
divided into those which represent the particular interactive
program, those which represent the interactive environment
(the terminal, display and input language form), and those
which represent the background processor. By fixing all of
the parameters except the display ones, the research re
ported here explores the effects of changes in the display
upon user performance in a given (though not untypical)
MMS. In fixing the user popUlation, the MMS, the input
language form and the background computer system, we
still tacitly assume that the levels at which these have been
fixed are representative of a broad class of interactive
systems and users. It is this assumption of the generaliza
bility of the research which makes the results of potential
interest outside the immediate system and subject sample.

410 National Computer Conference, 1977

BACKGROUND

The number of controlled studies-either of specific
systems and their user population, or broader theoretical
studies of MMI-is extremely limited, although a number of
authors express the opinion that these studies are needed.
Willmorth1 states:

Designing an information system for human use implies
task analyses to determine the human actions to be
performed, the decisions to be made, and the information
required to be displayed to the human and expected from
him, followed by the optimal design of the man/system
interface . .. Time and effort must be devoted to design
ing a well-human-engineered system.

Willmorth goes on to note that there is virtually no
verified human engineering data for software and suggests
an experimental methodology for examining the relation
ships between various versions of on-line planning systems
and a set of (unnamed) performance measures or character
istics.

Bennett2 concludes that "After a careful search of the
major human factors and applied psychology jour
nals . . . there is remarkably little evidence of research un
dertaken for the express purpose either of increasing our
understanding of man-computer interaction or of providing
information that will be useful in the development of
systems that are optimally suited to user's needs." He
identifies three areas that would benefit from human-engi
neering expertise: (1) conversational languages, (2) the
effects of computer system characteristics on user behav
ior, and (3) the problem of describing, or modeling, man
computer interaction. He notes that early work with inter
active facilities had computer efficiency as the paramount
consideration, and that "the experience that makes opti
mum usage patterns obvious to the designer rests on a
computer-oriented lore unknown to people who are not
computer professionals." His final remark clearly ex
presses the need of a discipline of MMI design:

Because the theoretical basis for incorporating user
problem-solving characteristics into analytical models is
so rudimentary, the resulting user interface technology
will take the form of procedural rules used by designers
to guide their creative judgment. Indeed, the challenge
for research is to transform the current art of design into
an engineering discipline by developing an agreement on
lvays for characterizing user tasks, for allocating inter
face resources to meet task requirements, and for evalu
ating user effectiveness in task performance.

Specific examples of research designs, methodology and
results in the MMI literature include Walther and O'Neil,3
who studied the effects of both user characteristics (for
example, evaluative attitude [i.e., prior attitude toward
computers], experience with on-line systems), and program

and terminal characteristics (TTY vs. CRT, flexible vs.
inflexible command recognizer). They found significant
effects for terminal type and interface flexibility, as hypoth
esized, but there were often significant interactions with
user experience or evaluative attitude. Since some of their
results were counter-intuitive, they add evidence that there
is a need for carefully designed, well controlled experi
ments on the relationship between user and system charac
teristics and user performance.

Hansen4 examined differences in performance of groups
of users in solving complex problems in on-line vs. batch
environments. He concludes his work by noting "It is not
necessary to predict accurately and in detail in order to be
useful. Man-machine research may be effective if it serves
only to help the designer to organize his thinking about how
[users] perform, to enable him to distinguish those variables
which are likely to be important, and to design ad hoc
experiments to answer specific questions."

The few researchers who have performed experimental
research on interactive systems feel that the user's view of
the system is as important to the success of a man-machine
system as more objective performance measures such as
time to complete tasks, errors, cost, etc. Sterling5 discusses
the need for "humanizing" computerized information sys
tems and the difficulty in deciding just what that term
means. Martin, Carlisle and Treu,6 in examining the man
machine interface in a number of interactive bibliographic
systems, note that there is a lack of "knowledge about the
blend of ingredients that produces a comfortable man
machine interface."

Thus it is reasonable to optimize systems in terms of
user-oriented performance measures. A questionnaire (see
Appendix 3) was administered to the subjects of this study
as a means of eliciting their attitudes toward the system as
they had just experienced it. The post-test questionnaire
data was further analyzed to determine whether differences
in the versions of the system of this study are associated
with differences in user attitudes toward the system.

The study of time and delays in interactive systems is
presented by Miller,1 who lists a number of interaction
modes (from first logon through requests for lengthy compi
lations) and discusses reasonable time delays for system
response. The reasonableness of a delay is based upon user
expectation and psychological closure. He does not discuss
the possible effects of continuous excessive or unantici
pated delays in response upon the user over a period of
time. The effects of repeated delays upon the user's per
formance and attitudes form the foundation of the research
reported here.

METHODOLOGY

The experimental design used to test the effects of the
variables of this study on the performance measures was a
2x2x2 factorial design, with repeated measures on each
subject across the two output volumes. A diagram of the
factorial design is presented in Figure I. The levels of the

UJ 2400
I«
~

c
::J

~ 1200

OUTPUT VARIABILITY
Figure 1-2x2x2 factorial design

independent variables selected for this study were:

Output baud rate
Output rate variability
Output volume

1200
Low
< 1000 Chars.

2400
High
> 1000 Chars.

Performance measures included the total time to com
plete a series of message search and retrieval tasks (see
Appendix 2 for the tasks performed) and the number of
functions used (keystrokes) in completing the tasks; CPU
time used in completing the tasks was measured and gives a
gross measure of computer performance. A questionnaire
(see Appendix 3) was administered to the subjects after
finishing all of the tasks, as a means of eliciting their
attitude toward a number of system features and the over
all interactive environment. The questionnaire consisted of
18 questions which required the subject to rate on a five
point scale his attitudes toward four different groups of
system properties: input language and sufficiency of com
mands; physical characteristics of the display, the CRT and
keyboard; the speed and variation in speed of the system;
and the ovuall utility: of the 1llC~sage. processing s¥-stew.

THE SYSTEM

The system used to test the influence of the independent
variables on the performance measures is an interactive
message retrieval system in use at lSI and other locations.
It works on text files which conform to a standard message
format. The program is routinely used by all of the subjects
of these experiments; the subjects required essentially no
additional training. This system has been modified to permit
performance measurements to be taken on-line. Further
modifications were made to the program in order to mold it
to the simulated travel department environment of this
study. The data base consisted of approximately 200 travel
request messages (see Appendix 1 for examples of mes
sages from the data base).

The usual result of a search through the data base is a

Study in Man-Machine Interaction 411

listing of just the headers of the messages satisfying the
search request. From these headers, the user may specify
the exact message or messages to be displayed on the
screen. If the user has reason to believe that the selected
messages will not be too numerous, or knows that he will
want to read all of the selected messages, he may have the
system immediately begin typing them on the screen rather
than first displaying the headers.

THE SUBJECTS

Subjects for this study represent a population of experi
enced interactive message search and retrieval system
users. Such individuals might include, but are not limited
to, librarians or other users of interactive bibliographic
systems, airline reservations personnel, hotel reservations
service personnel, users of data base management or re
trieval systems, etc.

Actual subjects used for these experiments were mem
bers of the professional and secretarial staff of lSI. In order
to minimize training time and to better represent a popula
tion of experienced interactive computer users, subjects
were taken from those who have had some experience in
using the system. Though most users of interactive com
puter systems do require training and experience with a
particular system in order to reach maximum efficiency, the
learning and adaptive phase represents only a very small
fraction of the total time in which they will be interacting
with the system. Subjects were randomly selected from the
entire lSI staff. The number of subjects used was 9 per cell,
a total of 36. Each subject was randomly assigned to one of
the four cells of the factorial design.

EXPERIMENTAL SETTING

The experiments were conducted in an office at lSI (see
Figure 2). The room contained the usual lSI office furni
ture, including a Hewlett-Packard 2640A CRT and key
board (HP), the computer terminal which all participants in

Terminal

Subject

Experimenter

Figure 2-Experimental arrangement

412 National Computer Conference, 1977

the experiments ordinarily use for a large part of their daily
activities, and a table with answer sheets for writing re
sponses to the series of tasks to be performed. The HP
includes a 24 line by 80 character (5 inch by 10 inch)
rectangular CRT display and keyboard. The normal display
rate is switch-selectable from 110 baud to 2400 baud. At
lSI, terminals are used at the 2400 baud rate (approximately
240 characters per second). To simulate the 1200 baud
display rate used in these experiments, each line of output
was interleaved with "null" characters, which produce no
output on the screen, but have a bit string and are handled
as an ordinary character, in order to increase the display
time for a given output string by a factor of two.

For each of the tasks, the task question appeared in a
reserved area at the top of the screen, where it would
remain until the subject pressed the "N" key to go to the
next task. All requested output would then appear below
the reserved area and would scroll in the normal manner.
Figure 3 indicates the way the screen looked to the subject
with the first sample task description in the reserved area,
and sample output in the working area.

Each task required the subject to read or count a number
of messages and write the appropriate information on the
answer sheets provided. After all of the tasks were com
pleted, the instructions for the post-test questionnaire ap
peared on the screen. The subject completed the question
naire, including an open-ended question which allowed him
to express his general comments on the system and, in
particular, to comment on any areas about which he might
have felt strongly but which were not adequately covered
by the previous questions. Each subject's total time in the
experimental session varied with the particular combination
of independent variables experienced; the average was
about 1 to I Yz hours.

DATA ANALYSIS

Classical analysis of variance8 provides the framework
for testing the significance of the observed performance
differences between the various treatment conditions of the
factorial design. For the post-test questionnaire, the experi
mental design is simply a 2 x 2 factorial design, two levels of
the nominal output rate (1200 baud vs. 2400 baud), and two
levels of output rate variability (see Figure 4). Analysis of
variance was used for testing for significance the differ
ences in responses to the questionnaire items. Initially,
each question was analyzed independently. Then an index
was constructed which was just the average response to the
18 questions. Finally, indices were constructed giving the
average response to the questions within the four groupings
described above. The results of the task and questionnaire
data are presented below.

RESULTS

Data was pooled across all II tasks. Additionally, tasks
were divided into ones requiring low output volume and
those requiring high output volume. The task with the
median output volume was eliminated in order to further
enforce the high-low dichotomy.

The main conclusion, that there is a significant effect for
output variability on user performance, is supported,
p<.05, across all volume levels. Analysis of variance sum
mary tables for the repeated measures design, with re
peated measures across the two volume levels (Table I(a)
(c», appear below, and support this conclusion.

In Table I(a), note that the effects for baud, var x baud,

S I) HOW MANY REQUESTS WERE MADE TO THE TRAVEL DEPARTMENT for travel to San Diego?
Follow the instructions on the answer sheet to answer this question.

E-beaders destination or date string: san diego

8 Larry Miller Travel. San Diego. April 2. a.m.
II Jane Doe Travel. San Diego. March 26 p.m.
24 Larry Miller Travel. San Diego, March 25 a.m.
39 Alan Schwartz Travel. San Diego. May 26 a.m.
46 T. Smith Travel. San Diego. May 15 a.m.
5) John Wilson Travel, San Diego. March 16 p.m.
55 Sim Farar Travel, San Diego, March 13 p.m.
57 Alan Schwartz Travel, San Diego, Feb. 13 p.m.
69 Alan Schwartz Travel, San Diego. Feb. 26 a.m.
8) John Wilson Travel, San Diego. March 20 p.m.
90 Bob Wilson Travel, San Diego, June 7 p.m.
92 Bob Wilson Travel, San Diego. March 17 p.m.
97 David Simpson Travel, San Diego, March II p.m.
101 Sim Farar Travel, San Diego, April 2 a.m.
122 Sim Farar Travel, San Diego. June 8 p.m.
130 David Simpson Travel, San Diego. Jan. 21 a.m.
137 Larry Miller Travel, San Diego, May 10 a.m.
155 Bob Wilson Travel. San Diego. Feb. II a.m.

Figure 3-Travel message system display after completing first sampie task

Study in Man-Machine Interaction 4 i 3

vol X baud, and the triple interaction are not significant
(p>.05).

~ 2400
<C

It is instructive at this point to view the data as a 2 x 2
factorial design combining low and high Baud groups. The
results are plotted below (Figure 5). This more clearly
shows the effects of increased output variability and in
creased output volume.

a:::::

o
:::l

~ 1200 The nominal baud rates for the low and high variability
conditions and the low and high baud rate conditions are
indicated in Figure 6. The numbers in brackets indicate the
average baud rate over the row or column, as appropriate. lOW HIGH

OUTPUT VARIABILITY
Figure 4-2x2 factorial design

Since the high variability conditions yielded a nominal
baud rate of 1800, and the low variability conditions one of
900, we might expect differences in performance to accom-

TABLE I(a}-Analysis of Variance Summary Table

Independent Variable: Total time in seconds to complete tasks

SOURCE SS df MS

Variability 1370340 1370340
Baud 398 398
VarxBaud 54 54
Error (bet) 7196608 32 224894
Vol 17743917 17743917
VarxVol 583020 583020
BaudxVol 3160 3160
Varx Volx Baud 2%2 32%
Error (w/in) 2434000 32 76063

TABLE I(b}-Analysis of Variance Summary Table

Independent Variable: CPU time used

SOURCE SS

Variability 9.90
Baud 1245.80
VarxBaud 4.7
Error (bet) 2042.60

Vol 1099.00
VarxVol 26.00
BaudxVol 599.20
VarXBaudx \01 3.30
Error (w/in) 1%2.00

df

32

i
32

MS

9.90
1245.80

4.70
63.80

1099.00
26.00

599.20
Y30

61.30

TABLE I(c}-Analysis of Variance Summary Table

Independent Variable: Keystrokes used

SOURCE SS df MS

Variability 80.20 80.20
Baud 288.00 288.0
VarxBaud 312.50 312.50
Error (bet) 14095.60 32 440.5

Vol 53.40 53.40
VarxVol 450.00 450.00
Baud x Vol 555.60 1 555.60
VarxBaudxVol 501.40 1 501.40
Error (w/in) 9570.00 32 299.10

F P

6.10 <.05
<1.00 N.S.
<1.00 N.S.

233.30 <.01
7.67 <.01

<1.00 N.S.
<1.00 N.S.

F P

<1.00 N.S.
19.60 <.01

<1.00 N.S.

17.90 <.01
<1.00 N.S.

9.80 <.01
<-i.GO N.S.

F p

<1.00 N.S.
<1.00 N.S.
<1.00 N.S.

<1.00 N.S.
1.50 N.S.
1.90 N.S.
1.70 N.S.

414 National Computer Conference, 1977

1900

1800

1700

1600

1500

1400
...-
Vl
U
w

1300 Vl ---
W

~
I-

800

700
~e,.A

...Jo~"
600 \.o~"

" "
500

400 ~----------
LOW HIGH

OUTPUT V ARIABI LlTY
Figure 5-Graph of time to complete tasks vs. output variability for low

volume and high volume

pany these differences. Similarly, the average difference in
baud rate is also 900 vs. 1800. But here, no significant
performance differences are observed, p>.05. Thus the
significant performance difference between the low and
high output variabiiity groups can not be accounted for by
differences in nominal output rates.

In Figure 6, note that there are two cells with identical
nominal output rates-2400, high variability, and 1200, low
variability. Each yields a nominal 1200 baud output rate. It
seems clear that any performance differences between
these two cells can be attributed to output variability
differences only. A t-test was performed comparing these
two cells of the factorial design. The mean difference in

time to complete the tasks between cells was significant:
t=4.28, p<.Ol.

POST-TEST QUESTIONNAIRE

The 18 questions making up the post test questionnaire
may be thought of as comprising an "index of satisfaction"
of the user with the system. If we simply average the
responses of each subject this average may be considered
the satisfaction index. Figure 7 presents the average re
sponse for the subjects in each of the four cells of the
factorial design graphically.

An analysis of variance was performed using this index
as the dependent measure. The results of the analysis of
variance are presented in Table II. We note that there is a
significant effect for output variability on the average
response to the questionnaire, F(1,24)= 19.4, p<.Ol. The
effects of baud rate and var x baud are not significant.

This analysis allows an unequivocal view that users
experiencing the high variability versions of the system
expressed a significantly lower view of the system, its
commands, its display, its speed and its overall utility than
those experiencing the low variability versions of the sys
tem.

It is useful to examine the average response of the
questions in each of the four question groups. For ease of
later reference, the groupings of questions will be denoted
[C] for 1-4 (commands), [D] for 5-8 (display), [S] for 9-13,
(speed), and [U] for 14-18 (utility). Table III presents the
analysis of variance summary tables for the average re
sponse within groups.

When the answers are viewed as groups, each represent
ing a common component of the interactive environment,
we find that there are significant differences between sub
jects in low vs. high variability groups in the average
response within the three groups [C], [S] ahd [U], but not
for [D].

Figure 8 presents graphical results of the average re
sponse to the questions within the four groups ([C], [D], [S]
and [U]), vs. output variability, for 1200 and 2400 baud.

[1800] [900]

w 2400 2400 1200 [1800] I-« a:::

" L...I

::>

~ 1200 1200 600 [900]

LOW HIGH

OUTPUT V ARIASI LI TY
Figure 6-Nominal baud rates

a::::
w
3
V)

z
«

5

4

3

2

........
24

00 BAUD

'--!<Q ,VB , ~U ',Z) , ..

o~--~--------------------~ LOW HIGH

OUTPUT VARIABILITY
Figure 7-Graph of average response to post-test questionnaire vs. output

variability for 1200 and 2400 baud

DISCUSSION AND ANALYSIS OF TASK RESULTS

Variability eifec ts

There is a significant difference in time to complete the
tasks, across the output variability. Further comparisons of
the two conditions, 2400 baud/high variability vs. 1200

TABLE II-Analysis of Variance Summary Table

Independent Variable: Average answer to 18 questions of post-test
questionnaire

SOURCE

VARIABILITY
BAUD

VARxBAUD

ERROR

SS df

2.77
0.43

0.29

3.40 24

MS

2.77
0.43

0.29

0.14

F P

19.4 <.01
3.02 N.S.

2.05 N.S.

Study in Man-Machine Interaction 415

TABLE III-Aniaysis of Variance summary tables for the Post-Test
Questionnaire by groups: [C]-questions 1-3; [D]-questions 4-8; [S]-

questions 9-13; [U}-questions 14-18

SOURCE SS df MS F p

[C]
Variability 1.38 1.38 3.93 -.05
Baud 0.14 0.14 0.40 N.S .

VarxBaud 0.39 0.39 1.1 N.S.

Error 8.45 24 0.35

[D]
Variability 0.93 0.93 2.45 N.S.
Baud 2.04 2.04 5.41 <.05

VarxBaud 0.\3 0.\3 0.35 N.S.

Error 9.06 24 0.38

[S]
Variability 7.26 7.26 16.24 <.01
Baud 0.04 0.04 0.09 N.S.

VarxBaud 0.04 0.04 0.09 N.S.

Error 10.73 24 0.45

[U]
Variability 2.64 2.34 13.63 <.01
Baud 0.83 0.83 4.31 <.05

VarxBaud 1.02 1.02 5.26 <.05

Error 4.65 24 0.19

baud/low variability were done in order to ascertain the
possibility of confounding effects. These two cells produced
equivalent nominal output rates: 1200 baud (see Figure 6).
The variability algorithm was designed such that the total
time to display N characters on the screen would be
approximately double the amount of time to display the
same N characters without the variability. Therefore, any
performance differences between these two conditions can
reasonably be ascnbed to vamlbllity" of output differences
rather than total output time differences. The result of the
comparison of performance differences between these two
conditions is that there is a significant difference in the time
to complete the tasks. The amount of CPU time used also
varied but this may be attributed to the additional process
ing needed to implement the 1200 baud display rate, and the
high output variability. There was no significant difference,
however, in the number of keystrokes used in performing
the tasks.

The conclusion is that increasing the variability of com
puter output is associated with significantly decreased user
performance in the interactive tasks. To the extent that the
test population for these experiments represents a broader
category of potential interactive system users, and the test
system is representative of a broader class of interactive
systems, we may conclude that variability in display rate
has per se a detrimental effect on user performance.

416 National Computer Conference, 1977

a::::
w
3
V')

z «

5

4

3

2

O'---------I-------~ LOW HIGH

OUTPUT VARIABILITY
Figure 8(a~raph of average response to the (C) questions vs. output

variability

Baud rate effects

Presenting the requested information at 1200 baud vs.
2400 baud produced no significant differences in perform
ance. In particular, even though the nominal baud rate was
1800 for the 2400 baud gro\lPS and 900 for the 1200 baud
groups (see Figure 6), there was no significant difference in
time to complete the tasks for the two groups. This result
holds across high volume as well as low volume tasks (i.e.,
the baud x volume interaction was not significant). It
appears that both 1200 and 2400 baud display rates are
faster than the typical subject can read, so that time to read
a page of material depends on the individual's reading
speed rather than system display rates. One would then
conjecture a plateau in the curve of time to read a screen of
text vs. display rate, somewhat like the one below (Figure
9). Apparently the plateau is reached at display rates of less
ihan 1200 baud. In fact, 1200 baud corresponds to approxi
mately 1200 words per minute, a rate faster than the rate at
which the average person reads.

However, the result is still somewhat curious. A number
of tasks required the subject to visually search message
bodies for particular names. While it would seem reasona
ble to expect that doubling the display rate should lead to
shorter times in completing those kinds of tasks, this was
not observed to occur. We may conclude that doubling the
display rate from 1200 to 2400 baud does not produce
improved performance for the subjects and system of these
experiments. It should also be noted that the total time to
present the typical amount of material was only about
seven percent of the total time subjects needed to perform
the individual tasks.

This result makes the one involving output variability
seem that much stronger. Examining Figure 6 again, we
note that there was a difference in average display rates
across the two variability conditions. It is not immediately
clear whether the effect for variability might be confounded
with the average display rate. That there is no significant
difference across baud rate leads us to reject that possibil
ity.

a::::
w
3
V')

z «

5

4

3

2

o ~-----~--------~ LOW HIGH

OUTPUT VARIABILITY
Figure 8(b)-Graph of average response to the (D) questions vs. output

variability

5

4

a::::
W 3
~
V')

Z
«

2

o
LOW HIGH

OUTPUT VARIABI L1TY
Figure 8(c)-Graph of average response to the (S) questions vs. output

variability

DISCUSSION AND ANALYSIS OF POST-TEST
Qt;E:STIOX:~ATRE

A fundamental conclusion, which is supported both by
the task data and the questionnaire data, is that the. nominal
output baud rate, at 1200 baud vs. 2400 baud, has at best a
very weak effect upon the user's performance and attitude
towards the system. Specifically, over a number of tasks,
involving both low and high output volumes, there was no
significant performance difference between those receiving
the 1200 baud version and those receiving the 2400 baud
version. This result is observed across the low and high
volume tasks, and across the low and high output variabil
ity groups.

Examining the questions by groups, we notice a strong
effect of output variability upon the attitudes of the users
toward the system on three of the four question groups.
Subjects experiencing the high variability conditions had a
lower response index to the questions in the [C], [S] and

Study in Man-Machine Interaction 4 i 7

5

4

3

a::::
W

~
V')

z
« 2

o
LOW HIGH

OUTPUT VARIABI LlTY
Figure 8(d)-Graph of average response to the (U) questions vs. output

variability

[U] groupS. Examining more closely the meaning of the [C],
[D], [S] and [U] indices, the following are concluded:

{O ~Migh ~utput vmiabttfty subje'cts perceived the' cern·
mand structure as less adequate to their needs. As

riME

DISPLAY
RATE

Figure 9-Graph of time to read screenful of material vs. display rate

418 National Computer Conference, 1977

indicated earlier, the experimental design assumed a
fixed terminal type with its own display characteris
tics. The HP terminal used in these studies works on
a scrolling method where each new line of output is
presented on the bottom of the screen and all lines
above scroll up. The top-most line is lost as each new
line is appended at the bottom. Some of the apparent
dissatisfaction with the command language (and the
terminal itself) may be associated with the scrolling
typical of the HP and other terminals.

(2) High output variability subjects were less satisfied
with the physical display. Though this result is some
what ambiguous, the general conclusion is that in
creasing the variability of the output display rate
reduces the user's overall image of the system. Put
another way, users with low variability of output
seemed more likely to find the particular display
satisfactory.

(3) Users who experienced the high output variability
version were bothered by the slowness of the system,
and noticed the reduced speed and the increased
variability of the output rate. However, merely cut
ting the output rate in half (from 2400 baud to 1200
baud) did not produce a noticeable reduction in the
answers for users in either the high or low variability
groups.

(4) In general, subjects experiencing the high variability
versions of the system had a lower view of the overall
utility of the system, as evidenced by their average
response to questions concerning the usefulness of
the system, the desirability of using the system vs.
performing the tasks by hand, need for more mate
rials, and their overa)) rating of input to and output
from the computer.

Examining the intercorreJations between the answers to
the questionnaire provides a useful insight into those parts
of the system which are viewed as a whole. For example,
looking at those questions which correlate significantly with
the [S] questions, 9-13 (Table IV) a))ows one to identify
those aspects of the interactive system with which a user is
least satisfied as the system becomes more stressful. It
would be expected, of course, that there would be signifi
cant correlations between questions within the [S] group
ing, and this is observed. Identifying those questions out
side of the [S] group which correlate with questions within

Question

9
10
II
12
13

TABLE IV

Questions with which it correlates
significantly (p<.05)

10,11,12,13
4,5,8,9,12
9,12,13,14,18
1,5,9,10,13
9,11,12,16,18

the group, the following are concluded:

(1) Those who perceived the system as being slower had
a significantly poorer view of the ease of using the
commands and the overall utility of the system, felt a
need for more materials on the system, and generally
had a lower overall view of system output, than those
who perceived the system as being relatively faster.

(2) Those who perceived the system as being relatively
high in variability of output and processing speed had
a significantly lower view of the ease of using the
commands, found the brightness and size of the
display screen less satisfactory and found that the
data presented was less sufficient for their needs,
than those who perceived the system as having rela
tively little variability in output or processing speed.

CONCLUSIONS AND RECOMMENDATIONS

The major emphasis of the research presented in this report
is that there are a number of parameters of the man
machine interaction which affect the performance of the
user. Specifically, it was hypothesized that changes in the
nominal display rate of the presentation of computer out
put, and the variability in the display rate, would have
significant effects on the performance and attitudes of the
users of the man-machine system.

This research has found that doubling the display rate of
system output to the user of an interactive message proc
essing system does not improve performance, nor does it
lead to an improved view of the system or attitude toward
the system on the part of the user. What then are the effects
of increasing system output, and what ways might be
effective in both improving user performance and improv
ing attitude? At this point, a confounding problem occurs.
It has been a (seemingly not unreasonable) assumption on
the part of system designers that increasing the display
rates leads to better performance in interactive systems. If
we could guarantee that the variability in the display rate
were held constant as the display rate was increased, the
results of these experiments allow us to conclude that
performance and attitude are not diminished. They may
even be improved, though this does not appear to be the
case in this research. So there is certainly no immediately
apparent drawback to providing faster displays. However,
as systems become heavily loaded, increased display rates
are associated with increases in the variability. The actual
display rate may not be improved, and the results of this
research strongly demonstrate that performance is de
creased and that user attitudes towards the system deterio
rate. These conclusions are so strongly supported by the
data presented that a general recommendation to system
designers would have to be that increasing output display
rates should not be attempted without a corresponding
increase in CPU power in order to guarantee consistency in
the output display rate.

APPENDIX i-SAMPLE MESSAGES FROM THE
DATA BASE

To: TRAVEL DEPT.
From: Alan Schwartz
Subject: Travel, San Francisco, Feb. 2 a.m.
Date: 31 JAN 76 1303-PST
Message:
Please reserve 2 seats to San Francisco on Feb. 2 a.m. for

me and Arnold Serkin
Return: OPEN
Thanks

To: TRAVEL DEPT.
From: David Simpson
Subject: Travel, Des Moines, Jan. 4 p.m.
Date: 31 JAN 76 1303-PST
Message:
Please reserve 4 seats to Des Moines on Jan. 4 p.m. for me

and Jane Doe
Arnold Serkin
John Wilson

Return: Jan. 8
Thanks

To: TRAVEL DEPT.
From: Arnold Serkin
Subject: Travel, Miami, April 23 a.m.
Date: 31 JAN 76 1303-PST
Message:
Please reserve 3 seats to Miami on April 23 a. m. for me and

Sim Farar
Alan Schwartz

Return: April 27
Thanks

To: TRAVEL DEPT.
From: Larry Miller
Subject: Travel, San Diego, April 2 a.m.
Date: 31 JAN 76 1303-PST
M~~'
Please reserve 3 seats to San Diego on April 2 a.m. for me

and
David Simpson
John Wilson

Return: April 6
Thanks

APPENDIX 2-TASKS TO BE PERFORMED

S 1) HOW MANY REQUESTS WERE MADE TO THE
TRA VEL DEPARTMENT for travel to San Diego?
Follow the instructions on the answer sheet to an
swer this question.

S2) WHO WANTED TO GO TO DES MOINES DUR
ING THE MONTH OF JANUARY? Again, follow

instructions on the answer sheet to answer this
question.

1) WHO WANTED TO GO TO LONDON IN
MARCH? If there is more than one person who
wanted to go, write down all of their names. If
nobody wanted to travel to London in March, write
"NONE."

2) WHO WANTED TO GO TO KANSAS CITY DUR
ING THE MONTH OF FEB? Answer this question
similarly to the previous question.

3) WHO WANTED TO GO TO PORTLAND DURING
THE MONTH OF FEB? Answer this question simi
larly to the previous questions.

4) WHO WANTED TO GO TO MIAMI ON FEB. 2?
Answer this question similarly to the previous ques
tions.

5) WHO WANTED TO GO TO SAN DIEGO ON
APRIL 2? Answer this question similarly to the
previous questions.

6) HOW MANY REQUESTS FOR TRIPS TO SEAT
TLE ARE THERE IN THE DATA BASE?

7) WHO TOOK THOSE TRIPS, and how many trips
did each of these people take to Seattle.

8) FOR THOSE WHO TOOK FIVE OR MORE TRIPS
TO SEATTLE, to which other cities did they RE
QUEST travel?

9) LIST THE LOCATIONS AND REQUESTED
DATES OF TRAVEL, that Alan Schwartz made,
where he requested Sim Farar to also travel. Simi
larly, list locations and dates of travel where Sim
Farar requested travel with Alan Schwartz.

10) LIST THE DATES WHEN ALAN SCHWARTZ
AND SIM F ARAR BOTH TRA VELED TO
GETHER TO SEATTLE.

11) ON THOSE OCCASIONS WHERE BOTH SIM
FARAR AND ALAN SCHWARTZ TRAVELED
TOGETHER TO SEATTLE, list those who also
traveled with them.

APPENDIX 3-POST-TE,~T QUESTIONNAIRE

You are now requested to answer a brief series of questions
concerning your opinions of the computerized system
you've just been using. It is important that you answer
these questions with the answer that best represents your
attitude to the particular area of the question. Specifically,
the questions require you to numerically rate certain as
pects of the computerized system. Even though you may
not have a strong feeling one way or the other, please select
one of the numerical ratings that best characterizes your
attitude to that particular area.
You will note that the questions are answered using the
computer. Please be careful that you select the correct
number for your answer. If you make an error, press the
"DEL" key. When you are satisfied with your answer for
that particular question, press the "RETURN" key.

420 National Computer Conference, 1977

Please answer the following series of questions with a
numerical rating in the range of 1-5. I = Very Poor,
Unacceptable, etc. 5 = Excellent, Completely Accepta
ble, Easy to Use, etc. (1-2 implies a generally negative
response, 4-5 a generally positive one.) However, a
specific numerical scale will be given for each question.
I) COMMANDS: EASE OF USE-
I = Difficult to use
3=Easy to use, but somewhat confusing
5=Easy to use, no confusion as to meaning
2) COMMANDS: CLEAR AND MEANINGFUL

FUNCTIONS-
I =Commands produced results completely different from

what was expected.
3=Some commands were clear and simple, others were

very confusing.
5 = All commands were completely clear.
3) COMMANDS-
I =Would liked to have had a number of additional

commands available to make the tasks easier to ac
complish.

3=Some additional commands would have been useful.
5=Available commands were completely adequate to

accomplish tasks.
4) SCREEN: BRIGHT ENOUGH?
I =Too dim, completely unreadable.
3=Too dim, but readable
5=Brightness just right.
5) SCREEN: LARGE ENOUGH?
I = Screen size too small, completely unreadable
3=Screen size too small, but readable
5=Screen size just right
6) CHARACTERS: LEGIBLE, ADEQUATE SIZE,

ETC.-
I = Characters too small or awkwardly shaped
3 = Character size and shape adequate, but some difficulty

in reading
5 = Character size and shape just right
7) PRINTING FORMAT: READABLE?
I = Format unclear, jumbled, etc. Unreadable.
3=Format readable, but not outstanding.
5=Format excellently arranged and completely readable.
8) PRINTING FORMAT: SUFFICIENT DATA?
I =Completely insufficient data to adequately complete

tasks.
3=Just barely sufficient data, but would have been able

to utilize more.
5 = Data presented was completely adequate to complete

tasks.
9) COMPUTER SYSTEM SPEED-
1 r"'p _ __ 1 ___ _ ,= lUU S1UW

3=Just right
5=Too fast
10) VARIATION IN COMPUTER SYSTEM SPEED
I = So much variation in computer and printing speed that

system was difficult and bothersome.
3=Some variation in computer speed and printing speed,

but not enough to be bothersome.

5 = Little or no variation in the speed of the computer
system.

II) PRINTING SPEED
I=Too slow
3=Just right
5=Too fast
12) VARIATION IN PRINTING SPEED-
I = Far too much variation for easy reading of output
3=Some variation, but no great difficulty in reading
5=Output was smooth and easy to read
13) PROCESSING TIME-
1 =System took way too long to do what should have

been simple tasks.
3=System took about the time you would have expected.
5=Too fast, felt rushed, etc.
14) WAS THE TRAVEL MESSAGE PROCESSING

SYSTEM USEFUL IN ANSWERING THESE
QUESTIONS?

1 =Completely useless, confusing, etc. Answering the
questions was an exercise in futility.

3=Found the system marginally useful, but some aspects
were difficult to use, too slow, confusing, etc.

5 = Completely useful, no confusion in the use of the
system. Speed of system was just right, easy to adapt
to.

15) SUPPOSE YOU HAD TO ACTUALLY ANSWER
THE TRA VEL QUESTIONS BY GOING
THROUGH THE MESSAGES BY HAND. HOW
MUCH IS THE TRAVEL MESSAGES COM
PUTER PROCESSING SYSTEM WORTH TO
YOU IN ORDER TO SAVE YOU THE EFFORT
OF DOING THIS BY HAND?

1 =No advantage seen in using the computer system.
Would much prefer to perform these tasks by hand.

3=No strong feeling one way or the other.
5 = Much prefer using the computer system rather than

having to answer these questions by going through the
messages by hand.

16) DID YOU FEEL A NEED FOR MORE MATE
RIALS ON THE FUNCTIONS AVAILABLE IN
THE SYSTEM?

1 = Available materials were completely useless.
3=What was available was useful, but more information

was needed.
5=All available material was useful, no more information

was needed.
17) YOUR OVERALL RATING OF INPUT TO THE

COMPUTER-
[Use a 1-5 scale as explained in the top portion of the
screen.]
is) YOUR OVERALL RATING OF OUTPUT FROM

THE COMPUTER-
[Use a 1-5 scale as explained in the top portion of the
screen.]

Please type your general comments on the functions pro
vided, their ease of use, and your general feelings of
frustration or satisfaction in the use of the system. Be

certain to address yourself to your feelings in regards to the
delays in output, and the general speed of the system,
particuiariy if the load average was high and you noted
unacceptable delays in system performance.

REFERENCES

1. Willmorth, N. E., "Human Factors Experimentation in Interactive Plan
ning," in Sackman, H. & Ronald L. Citrenbaum (eds.), ONLINE
PLANNING, Towards Creative Problem Solving, Prentice Hall, 1972,
pp.281-3l3.

2. Bennett, John L., "The User Interface in Interactive Systems," in
Cuadra, Carlos A. (ed.), Annual Review of Information Science and
Technology, Vol. 7, 1972, ASIS, Washington, D.C.

3. Walther, George H. and Harold F. O'Neil, Jr., "On-line User-Computer
Interface-The Effects of Interface Flexibility, Terminal Type, and Expe-

Siudy in Man-Machine Interaction 421

rience on Performance," in AFIPS Conference Proceedings, Vol. 43,
1974, AFIPS Press, Montvale, N. J.

4. Hansen, James V., "Man-Machine Communication: An Experimental
Analysis of Heuristic Problem-Solving Under On-Line and Batch-Proc
essing Conditions," in IEEE Trans. Systems, Man, and Cybernetics, Vol.
SMC-6, No. 11, November, 1976, pp. 746-752.

5. Sterling, Theodor, D., "Guidelines for Humanizing Computerized Infor
mation Systems: A Report from Stanley House," in C. ACM, Vol. 17,
No. 11, November, 1974.

6. Martin, Thomas H., James Carlisle and Siegfried Treu, "The User
Interface for Interactive Bibliographic Searching: An Analysis of the
Attitudes of Nineteen Information Scientists," in 1. ASIS, March-April,
1973, pp. 142-147.

7. Miller, Robert B., "Response Time in Man-Computer Conversational
Transactions," in AFIPS Conference Proceedings, Vol. 33, Part 1,
AFIPS Press, Montvale, N.J., 1968, pp. 267-277.

8. Winer, B. J., Statistical Principles in Experimental Design, McGraw-Hill,
New York, 1971.

Responsive environments

by MYRON W. KRUEGER
The University of Wisconsin
Madison, Wisconsin

ABSTRACT

This paper introduces the concept of a responsive environ
ment which perceives human behavior and responds with
intelligent auditory and visual feedback. Several exhibits of
responsive environments, implemented by the author, com
bining computer graphics, video projection and two-way
video communication are described. VIDEOPLACE, an
evolving exhibit which defines a conceptual telecommuni
cation environment uniting geographically separated people
in a common visual experience, is discussed at some length.
Based on these examples a new art form of composed man
machine interaction is defined. Finally, practical applica
tions are suggested for the fields of education, psychology
and psychotherapy.

INTRODUCTION

Man-machine interaction is usually limited to a seated man
poking at a machine with his fingers or perhaps waving a
wand over a data tablet. Seven years ago, I was dissatisfied
with such a restricted dialogue and embarked on research
exploring more interesting ways for men and machines to
relate. The result was the concept of a responsive environ
Ill.e11t. in whi~h a c,omput~r p~rc::ei\ft::~, the ~c::tion~ <:)f those
who enter and responds intelligently through complex vis
ual and auditory displays.

Over a period of time the computer's displays establish a
context within which the interaction occurs. It is within this
context that the participant chooses his next action and
anticipates the environment's response. If the response is
unexpected, the environment has changed the context and
the participant must reexamine his expectations. The expe
rience is controlled by a composition which anticipates the
participant's actions and flirts with his expectations.

This paper describes the evolution of these concepts from
their primitive beginnings to my current project, VIDEO
PLACE, which provides a general tool for devising many
interactions. Based on these examples an interactive art
form is defined and its promise identified. While the envi
ronments described were presented with aesthetic intent. their
implications go beyond art. In the final section, applications
in education, psychology and psychotherapy are suggested.

GLOWFLOW

In 1969, I became involved in the development of
GLOWFLOW, a computer art project conceived by Dan
Sandin, Jerry Erdman and Richard Venezsky at the Univer
sity of Wisconsin. It was designed in an atmosphere of
encounter between art and technology. The viewer entered
a darkened room in which glowing lines of light defined an
illusory space (Figure 1). The display was accomplished by
pumping phosphorescent particles through transparent
tubes attached to the gallery walls. These tubes passed

. through opaque columns concealing lights which excited
the phosphors. A pressure sensitive pad in front of each of
the six columns enabled the computer to respond to foot
steps by lighting different tubes or changing the sounds
generated by a Moog synthesizer or the origin of these
sounds. However, the artists' attitude toward the capacity
for response was ambivalent. They felt that it was impor
tant that the environment respond, but not that the audi
ence be aware of it. Delays were introduced between the
detection of a participant and the computer's response so
that the contemplative mood of the environment would not
be destroyed by frantic attempts to elicit more responses.

423

While GLOWFLOW was quite successful visually, it
succeeded more as a kinetic sculpture than as a responsive
environment. However, the GLOWFLOW experience led
ffl~ t~~."..tffl'~" Af flee ~·

1. Interactive art is potentially a richly composable me
dium quite distinct from the concerns of sculpture,
graphic art or music.

2. In order to respond inte11igently the computer should
perceive as much as possible about the participant's
behavior.

3. In order to focus on the relationships between the
environment and the participants, rather than among
participants, only a small number of people should be
involved at a time.

4. The participants should be aware of how the environ
ment is responding to them.

5. The choice of sound and visual response systems
should be dictated by their ability to convey a wide
variety of conceptual relationships.

6. The visual responses should not be judged as art nor

424 National Computer Conference, 1977

Figure I-Glowtlow tubes on gallery wall

the sounds as music. The only aesthetic concern is the
quality of the interaction.

METAPLAY

Following the GLOWFLOW experience, I conceived and
directed MET APLA Y which was exhibited in the Memorial
Union Gallery of the University of Wisconsin for a month
in 1970. It was supported by the National Science Founda
tion, the Computer Science Department, the Graduate
School and the loan of a PDP-12 by Digital Equipment
Corporation.

METAPLAY'S focus reflected my reactions to GLOW
FLOW. Interaction between the participants and the envi
ronment was emphasized; the computer was used to facili
tate a unique real-time relationship between the artist and
the participant. An 8' by 10' rear-projection video screen
dominated the gallery. The live video image of the viewer
and a computer graphic image drawn by an artist, who was
in another building, were superimposed on this screen.
Both the viewer and the artist could respond to the result
ing image.

Hardware

The image communications (Figure 2) started with an
analogue data tablet which enabled the artist to draw or
write on the computer screen. The person doing the draw
ing did not have to be an artist, but the term is used for
convenience. One video camera, in the Computer Center,
was aimed at the display screen of the Adage Graphic
Dispiay Computer. A second camera, a miie away in the
gallery, picked up the live image of people in the room. A
television cable transmitted the video computer image from
the Computer Center to the gallery and the two signals
were mixed so that the computer image overlayed the live
image. The composite image was projected on the 8' x 10'
screen in the gallery and was simultaneously transmitted
back to the Computer Center where it was displayed on a
video monitor providing feedback for the artist.

The artist could draw on the Adage screen using a data
tablet. By using function switches, potentiometers and the
teletype keyboard the pictures could be rapidly modified or
the mode of drawing itself altered. In addition to the effects
of simple drawings, the image could be moved around the
screen, image size could be controlled and the picture could
be repeated up to ten times on the screen displaced by
variable X, Y and size increments. A tail of a fixed number
of line segments could be drawn allowing the removal of a
segment at one end while another was added at the opposite
end. An image could be rotated in 3-space under control of
the pen. Although this was not true rotation, the visual
effect was similar. A simple set of transformations under
potentiometer and tablet control yielded apparent animation
of people's outlines. Finally, previously defined images
could be recalled or exploded. While it might seem that the
drawing could be done without a computer, the ability to
rapidly erase, recall and transform images required consid
erable processing and created a far more powerful means of
expression than pencil and paper could provide.

Interaction

These facilities provided a rich repertoire for an unusual
dialogue. The artist could draw pictures on the participants'
images or communicate directly by writing words on the
screen (Figure 3). He could induce people to playa game
like Tic-Tac-Toe or play with the act of drawing, starting to
draw one kind of picture only to have it transformed into
another by interpolation.

Live graffiti

One interaction derived from the artist's ability to draw
on the image of the audience. He could add graffiti-like
features or animate a drawn outline of a person so that it
appeared to dance to the music in the gallery. The artist
tried various approaches to involve people in the interac
tion. Failing to engage one person, he would seek someone
more responsive.

It was important to involve the participants in the act of
drawing. However, the electronic wand designed for this
purpose did not work reliably. What evolved was a serendi
pitous solution. One day as I was trying to draw on a
student's hand, he became confused and moved it. When I
erased my scribblings and started over, he moved his hand
again. He did this repeatedly until it became a game.
Finally, it degenerated to the point where I was simply
tracking the image of his hand with the computer iine. In
effect, by moving his hand he could draw on the screen
before him.

The relationship established with this participant was
developed as one of the major themes of MET APLA Y. It
was repeated and varied until it became an aesthetic
medium in iteslf. With each person we involved in this way,
we tried to preserve the pleasure of the original discovery.
After playing some graffiti games with each group that

Responsive Environments 425

Figure 2-Metaplay communications

entered, we would focus on a single individual and draw
around the image of his hand. After an initial reaction of
blank bewilderment, the self-conscious person would make
a nervous gesture. The computer line traced the gesture. A
second gesture, followed by the line was the key to
discovery. One could draw on the video screen with his
finger! Others in the group, observing this phenomenon,
would want to try it too. The line could be passed from one
person's finger to another's. Literally hundreds of interac
tive vignettes developed within this simple communication
channel.

Drawing by this method was a rough process. Pictures of
any but the simplest shapes were unattainable. This was
mainly because of the difficulty of tracking a person's

finger. Happily, neither the artist nor the audience were
concerned about the quality of the drawings. What was
exciting was interacting in this novel way through a man
computer-video link spanning a mile.

PSYCHIC SPACE

The next step in the evolution of the responsive environ
ment was PSYCHIC SPACE, which I designed and exhib
ited in the Memorial Union Gallery during May and June of
1971. It was implemented with the help of my students, the
Computer Science Department and a National Science
Foundation grant in Complex Information Processing.

426 National Computer Conference, 1977

Figure 3-Metaplay drawing

PSYCHIC SPACE was both an instrument for musical
expression and a richly composed, interactive, visual expe
rience. Participants could become involved in a softshoe
duet with the environment, or they could attempt to match
wits with the computer by walking an unpredictable maze
projected on an 8' x 10' video screen.

Hardware

A PDP-II had direct control of all sensing and sound in
the gallery. In addition, it communicated with the Adage
AGT -10 Graphic Display Computer at the Computer Center
(Figure 4). The Adage image was transmitted over video
cable to the gallery where it was rear-projected on the 8' x
10' screen. The participant's position on the floor was the
basis for each of the interactions. The sensing was done by
a 16' x 24' grid of pressure switches, constructed in 2' x 4'
moduies, each containing eight switches (Figure 5). Since
they were electronically independent, the system was able
to discriminate among individuals if several were present.
This independence made it easy for the programming to
ignore a faulty switch until its module was replaced or
repaired. Since there were 16 bits in the input words of the
PDP-II, it was natural to read the 16 switches in each row
across the room in parallel (Figure 6). Digital circuitry \vas
then used to scan the 24 rows under computer control.

~ .. 'I
~S\",a., Grid..

-...

~.~
~.\ro. .. li:~~

J "'Di'3 i t.&.
'SiS"'.!! of
"P",rti~lfa....t-I.s.-7 ~f"'-'-~Ce-kr-
F\~""
?O$;"~

§;~~
s\..~

Vi~ Mcu.P-
/ \N\~'<- ~r-O-
"'"

Figure 4-Data and video communication for psychic space

Input and interaction

Since the goal was to encourage the partICIpants to
express themselves through the environment, the program
automatically responded to the footsteps of people entering
the room with electronic sound. We experimented with a
number of different schemes for actually generating the
sounds based on an analysis of peoples' footsteps. In
sampling the floor 60 times per second we discovered that a
single footstep consisted of as many as four discrete
events: lifting the heel, lifting the toe, putting the heel down
and putting the ball of the foot down. The first two were
dubbed the "unfootstep." We could respond to each foot
step or unfootstep as it occurred, or we could respond to
the person's average position. A number of response
schemes were tried, but the most pleasing was to start each

Figure 5-Flooring sensing modules in psychic space

'P~r-h~
o 0 000 0 0 0 0 o 0 0 0

0 0 o 0 0 0 0 0 0 0 0 0 0

o ('I 0 0 0 o ('I 0 o 0 o 0 0 0 0 0

o 0 0 0 0 o 0 0 o 0 o 0 0 0 o 0

o 0 o 0 o 0 0 0 o 0 o 0 o 0 o 0

0 ('I 0 0 o 0 0 0 o 0 0 0 o 0 0 0

0 0 0 0 000 0 o 0 0 0 o 0 0 0

0 0 o 0 000 0 0 000 0 C () 0

Co 0 () 0 0 0 0 0 0 000 o 0 o 0

o 0 0 000 0 0 o 0 o 0 o 0 0 0

o 0 o 0 0 0 0 0 0 o 0 0 o 0 o 0

o 0 0 o 0 0 0 0 000 0 o 0 o 0

o 0 0 0 0 0 0 0 o 0 0 0 o 0 o 0

o 0 o 0 o 0 0 0 o 0 0 0 o 0 o 0

o 0 o 0 0 0 0 0 0 0 o 0 o 0 o 0

o 0 o 0 0 0 0 0 0 0 000 0 o 0

Co 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0

o 0 o 0 0 0 0 000 0 0 o 0 o 0

o 0 o 0 o 0 0 0 o 0 o 0 o 0 o 0

o 0 0 0 000 000 o 0 o 0 0 0

o 0 o 0 o 0 0 0 o 0 o 0 o 0 0 0

0 o 0 0 0 0 0 0 0 o 0 0 0

o 0 0 0 0 0 o 0 0 0 o 0 o 0

o 0 o 0 o 0 0 o 0 o 0 o 0

Figure 6---Participants' feet are seen by the computer as ones in a field of
zeroes

tone only when a new switch was stepped on and then to
terminate it on the next "unfootstep." Thus it was possible
to get silence by jumping, or by lifting one foot, or by
putting both feet on the same switch.

. Tye!<:~.!reactio!! ~~the sounds ~~~hinst~~,t unders~~~~in.~:
followed by a rapid-fire sequence of steps, Jumps and rolls.
This phase was followed by a slower more thoughtful
exploration of the environment in which more subtle and
interesting relationships could be developed. In the second
phase, the participant would discover that the room was
organized with high notes at one end and low notes at the
other. After a while, the keyboard was abruptly rotated by
90 degrees.

After a longer period of time an additional feature came
into play. If the computer discovered that a person's
behavior was characterized by a short series of steps
punctuated by relatively long pauses, it would use the
pause to establish a new kind of relationship. The sequence
of steps was responded to with a series of notes as before;
however, during the pause the computer would repeat these
notes again. If the person remained still during the pause,
the computer assumed that the relationship was under
stood. The next sequence of steps was echoed at a noticea-

Responsive Environments 427

bly higher pitch. Subsequent sequences were repeated
several times with variations each time. This interaction
was experimentai and extremely difficult to introduce
clearly with feedback alone, i.e., without explicit instruc
tions. The desire was for a man-machine dialogue resem
bling the guitar duel in the film "Deliverance."

MAZE-A COMPOSED ENVIRONMENT

The maze program focused on the interaction between
one individual and the environment. The participant was
lured into attempting to navigate a projected maze. The
intrigue derived from the maze's responses, a carefully
composed sequence of relations designed to constitute a
unique and coherent experience.

Hardware

The maze itself was not programmed on the PDP-II, but
on the Adage located a mile away in the Computer Center.
The PDP-ll transmitted the participant's floor coordinates
across an audio cable to the Adage. The data was transmit
ted asynchronously as a serial bit stream of varying pulse
widths. The Adage generated the maze image which was
picked up by a TV camera and transmitted via a video cable
back to the Union where it was rear-screen projected to a
size of 8' x 10'.

Interaction

The first problem was simply to educate the person to the
relationships between the floor and the screen. Initially, a
diamond with a cross in it representing the person's posi
tion appeared on the screen. Physical movement in the
room caused the symbol to move correspondingly on the
screen. As the participant approached the screen, the
symbol moved up. As he moved away, it moved down. The
next step was to induce the person to move to the starting
.I,lQ.!n.Lof th~. m.9Z~., "Which~. b~sjlJ&t y~t~P'P~c,tJ:~q. J.J.I}. t,he
screen (Figure 7). To this end, another object was placed on
the screen at the position which would be the starting point
of the maze. The viewer unavoidably wondered what would
happen if he walked his symbol to the object. The arrival of
his symbol at the starting point caused the object to vanish
and the maze to appear. Thus confronted with the maze, no
one questioned the inevitability of walking it.

Software boundaries

Since there was no physical constraints in the gallery, the
boundaries of the maze had to be enforced by the com
puter. Each attempt to violate a boundary was foiled by one
of many responses in the computer's repertoire. The com
puter could move the line, stretch it elastically, or move the
whole maze. The line could disappear, seemingly removing
the barrier, except that the rest of the maze would change

428 National Computer Conference, 1977

o
~

-<E: - - - - .. - .- .. - .- _.-

o

Figure 7-Composed environment-Maze

simultaneously so no advantage was gained. In addition,
the symbol representing the person could split in half at the
violated boundary, with one half held stationary while the
other half, the alter ego, continued to track movement.
However, no progress could be made until the halves of the
symbol were reunited at the violated boundary.

Even when the participant was moving legally, there
were changes in the program contingent upon his position.
Several times, as the goal was approached, the maze
changed to thwart immediate success. Or, the relationship
between the floor and the maze was altered so that move
ments that once resulted in vertical motion, now resulted in
horizontal motion. Alternatively, the symbol representing
the participant could remain stationary while the maze
moved.

Ultimately, success was not allowed. When reaching the
goal seemed imminent, additional boundaries appeared in
front of and behind the symbol, boxing it in. At this point,
the maze slowly shrank to nothing. While the goal could not
be reached, the composed frustration made the route inter
esting.

Experience

The maze experience conveyed a unique set of feelings.
The video display space created a sense of detachment

enhanced by the displaced feedback; movement on the
horizontal plane of the floor translated onto the vertical
plane of the screen. The popular stereotype of dehumaniz
ing technology seemed fulfilled. However, the maze idea
was engaging and people became involved willingly. The
lack of any other sensation focused attention completely on
this interaction. As the experience progressed, their per
ception of the maze changed. From the initial impression
that it was a problem to solve, they moved to the realiza
tion that the maze was a vehicle for whimsy, playing with
the concept of a maze and poking fun at their compulsion to
walk it.

VIDEOPLACE

For the past two years I have been working on a project
called VIDEOPLACE, under the aegis of the Space Sci
ence and Engineering Center of the University of Wiscon
sin. This work is funded by the National Endowment for
the Arts and the Wisconsin Arts Board. A preliminary
version was exhibited at the Milwaukee Art Center for six
weeks beginning in October 1975. The development of
VIDEOPLACE is still under way and several more years
will be required before its potential is fully realized both in
terms of implementing the enabling hardware and exploring
its compositional possibilities.

VIDEOPLACE is a conceptual environment with no
physical existence. It unites people in separate locations in
a common visual experience, allowing them to interact in
unexpected ways through the video medium. The term
VIDEOPLACE is based on the premise that the act of
communication creates a place that consists of all the
information that the participants share at that moment.
When people are in the same room, the physical and
communication places are the same. When the communi
cants are separated by distance, as in a telephone conversa
tion, there is still a sense of being together although sight
and touch are not possible. By using television instead of
telephone, VIDEOPLACE seeks to augment this sense of
place by including vision, physical dimension and a new
interpretation of touch.

VIDEO PLACE consists of two or more identical envi
ronments which can be adjacent or hundreds of miles apart.
In each environment, a single person walks into a darkened
room where he finds himself confronted by an 8' x 10' rear
view projection screen. On the screen he sees his own life
size image and the image of one or more other people. This
is surprising in itself, since he is alone in the room (Figure
8). The other images are of people in the other environ
ments. They see the same composite image on their
screens. The visual effect is of several people in the same
room. By moving around their respective rooms, thus
moving their images, the participants can interact within the
limitations of the video medium.

It is these apparent limitations that I am currently work
ing to overcome. When people are physically together, they

Figure 8--Videoplace

Responsive Environments 429

can talk, move around the same space, manipulate the same
objects and touch each other. All of these actions would
appear to be impossible within the VIDEOPLACE. How
ever, the opposite is true. The video medium has the
potential of being more rich and variable in some ways,
than reality itself.

It would be easy to allow the participants to talk,
although I usually preclude this, to force people to focus on
the less familiar kinds of interaction that the video medium
provides. A sense of dimension can be created with the
help of computer graphics, which can define a room or
another spatial context within which the participants appear
to move around. Graphics can also furnish this space with
artificial objects and inhabit it with imaginary organisms.
The sense of touch would seem to be impossible to dupli
cate. However, since the cameras see each person's image
in contrast to a neutral background, it is easy to digitize the
outline and to determine its orientation on the screen
(Figure 9). It is also easy to tell if one person's image
touches another's, or if someone touches a computer
graphic object. Given this information the computer can
make the sense of touch effective. It can currently respond
with sounds when two images touch and will ultimately
allow a person's image to pick up a graphic object and
move it about the screen.

While the participants' bodies are bound by physical laws
such as gravity, their images could be moved around the
screen, shrunk, rotated, colorized and keyed together in
arbitrary ways. Thus, the full power of video processing

Figure 9-The video outline sensor

430 National Computer Conference, 1977

could be used to mediate the interaction and the usual laws
of cause and effect replaced with alternatives composed by
the artist.

The impact of the experience will derive from the fact
that each person has a very proprietary feeling towards his
own image. What happens to his image happens to him. In
fact, when one person's image overlaps another's, there is a
psychological sensation akin to touch. In VIDEOPLACE,
this sensation can be enhanced in a number of ways. One
image can occlude the other. Both images can disappear
where they intersect. Both images can disappear except
where they intersect. The intersection of two images can be
used to form a window into another scene so two partici
pants have to cooperate to see a third.

VIDEOPLACE need not involve more than one partici
pant. It is quite possible to create a compelling experience
for one person by projecting him into this imaginary domain
alone. In fact the hardware/software system underlying
VIDEOPLACE is not conceived as a single work but as a
general facility for exploring all the possibilities of the
medium to be described next.

RESPONSE IS THE MEDIUM

The environments described suggest a new art medium
based on a commitment to real-time interaction between
men and machines. The medium is comprised of sensing,
display and control systems. It accepts inputs from or about
the participant and then outputs in a way he can recognize
as corresponding to his behavior. The relationship between
inputs and outputs is arbitrary and variable, allowing the
artist to intervene between the participant's action and the
results perceived. Thus, for example, the participant's
physical movement can cause sounds or his voice can be
used to navigate a computer defined visual space. It is the
composition of these relationships between action and
response that is important. The beauty of the visual and
aural response is secondary. Response is the medium!

The distinguishing aspect of the medium is, of course, the
fact that it responds to the viewer in an interesting way. In
order to do this, it must know as much as possible about
what the participant is doing. It cannot respond intelligently
if it is unable to distinguish various kinds of behavior as
they occur.

The environment might be able to respond to the partici
pant's position, voice volume or pitch, position relative to
prior position or the time elapsed since the last movement.
It could also respond to every third movement, the rate of
movement, posture, height, colors of clothing or time
elapsed since the person entered the room. If there were
several people in the room, it might respond to the distance
separatiQg them, the average of their positions or the
computer's ability to resolve them, i.e., respond differently
when they are very close together.

In more complex interactions like the maze, the com
puter can create a context within which the interaction
occurs. This context is an artificial reality within which the
artist has complete control of the laws of cause and effect.

Thus the actions perceived by the hardware sensors are
tested for significance within the current context. The
computer asks if the person has crossed the boundary in the
maze or has touched the image of a particular object. At a
higher level the machine can learn about the individual and
judge from its past experience with similar individuals just
which responses would be most effective.

Currently, these systems are constrained by the total
inability of the computer to make certain very useful and
for the human, very simple perceptual judgments, such as
whether a given individual is a man or a woman or is young
or old. The perceptual system will define the limits of
meaningful interaction, for the environment cannot respond
to what it cannot perceive. To date the sensil}g systems
have included pressure pads, ultrasonics and video digitiz
ing.

As mentioned before, the actual means of output are not
as important in this medium as they would be if the form
were conceived as solely visual or auditory. In fact, it may
be desirable that the output not qualify as beautiful in any
sense, for that would distract from the central theme: the
relationship established between the observer and the envi
ronment. Artists are fully capable of producing effective
displays in a number of media. This fact is well known and
to duplicate it produces nothing new. What is not known
and remains to be tested is the validity of a responsive
aesthetic.

It is necessary that the output media be capable of
displaying intelligent, or at least composed reactions, so
that the participant knows which of his actions provoked it
and what the relationship of the response is to his action.
The purpose of the displays is to communicate the relation
ships that the environment is trying to establish. They must
be capable of great variation and fine control. The response
can be expressed in light, sound mechanical movement, or
through any means that can be perceived. So far computer
graphics, video generators, light arrays and sound synthe
sizers have been used.

CONTROL AND COMPOSITION

The control system includes hardware and software con
trol of all inputs and outputs as well as processing for
decisions that are programmed by the artist. He must
balance his desire for interesting relationships against the
commitment to respond in real-time. The simplest re
sponses are little more than direct feedback of the parti<:;i
pant's behavior, allowing the environment to show off its
perceptual system. But far more sophisticated results are
possible. In fact, a given aggregation of hardware sensors,
displays and processors can be viewed as an instrument
which can be programmed by artists with differing sensitivi
ties to create completely different experiences. The envi
ronment can be thought of in the following ways:

1. An entity which engages the participant in a dialogue.
The environment expresses itself through light and
sound while the participant communicates with physi-

cal motion. Since the experience is an encounter
between individuals, it might legitimately include
greetings, introductions and farewells-all in an ab
stract rather than literal way. The problem is to
provide an interesting personality for the environment.

2. A personal amplifier. One individual uses the environ
ment to enhance his ability to interact with those
within it. To the participants the interaction might
appear similar to that described above. The result
would be limited by the speed of the artist's response
but improved by his sensitivity to the participants'
moods. The live drawing interaction in METAPLA Y
could be considered an example of this approach.

3. An environment which has sub-environments with
different response relationships. This space could be
inhabited by artificial organisms defined either visually
or with sound. These creatures can interact with the
participants as they move about the room.

4. An amplifier of physical position in a real or artificially
generated space. Movements around the environment
would result in much larger apparent movements in
the visually represented space. A graphic display
computer can be used to generate a perspective view
of a modelled space as it would appear if the partici
pant were within it. Movements in the room would
result in changes in the display, so that by moving
only five feet within the environment, the participant
would appear to have moved fifty feet in the display.
The rules of the modelled space can be totally arbi
trary and physically impossible, e.g. a space where
objects recede when you approach them.

5. An instrument which the participants play by moving
about the space. In PSYCHIC SPACE the floor was
used as a keyboard for a simple musical instrument.

6. A means of turning the participant's body into an
instrument. His physical posture would be determined
from a digitized video image and the orientation of the
limbs would be used to control lights and sounds.

7. A game between the computer and the participant.
This variation is really a far more involving extension
of the pinball machine, already the most commercially
'successfuT iftte(adi'\;e ~fivitoftmertt.

8. An experimental parable where the theme is illustrated
by the things that happen to the protagonist-the
participant. Viewed from this perspective, the maze in
PSYCHIC SPACE becomes pregnant with meaning. It
was impossible to succeed, to solve the maze. This
could be a frustrating experience if one were trying to
reach the goal. If, on the other hand, the participant
maintained an active curiosity about how the maze
would thwart him next, the experience was entertain
ing. Such poetic composition of experience is one of
the most promising lines of development to be pursued
with the environments.

IMPLICATIONS OF THE ART FORM

For the artist the environment augurs new relationships
with his audience and his art. He operates at a metalevel.

The partIcIpant provides the direct performance of the
experience. The environmental hardware is the instrument.
The computer acts much as an orchestra conductor control
ling the broad relationships while the artist provides the
score to which both performer and conductor are bound.
This relationship may be a familiar one for the musical
composer, although even he is accustomed to being able to
recognize one of his pieces, no matter who is interpreting it.
But the artist's responsibilities here become even broader
than those of a composer who typically defines a detailed
sequence of events. He is composing a sequence of possi
bilities, many of which will not be realized for any given
participant who fails to take the particular path along which
they lie.

Since the artist is not dedicated to the idea that his entire
piece be experienced he can deal with contingencies. He
can try different approaches, different ways of trying to
elicit participation. He can take into account the differences
among people. In the past, art has often been a one-shot,
hit-or-miss proposition. A painting could accept any atten
tion paid it, but could do little to maintain interest once it
had started to wane. In an environment the loss of attention
can be sensed as a person walks away. The medium can try
to regain attention and upon failure, try again. The piece
has a second strike capability. In fact it can learn to
improve its performance, responding not only to the mo
ment but also to the entire history of its experience.

In the environment, the participant is confronted with a
completely new kind of experience. He is stripped of his
informed expectations and forced to deal with the moment
in its own terms. He is actively involved, discovering that
his limbs have been given new meaning and that he can
express himself in new ways. He does not simply admire
the work of the artist; he shares in its creation. The
experience he achieves will be unique to his movements
and may go beyond the intentions of the artist or his
understanding of the possibilities of the piece.

Finally, in an exciting and frightening way, the environ
ments dramatize the extent to which we are savages in a
world of our own creation. The layman has extremely little
ability to define the limits of what is possible with c\lrrent
technolOgy and so ,~'tn accept at! sorts 0fcu.cs as represent
ing relationships which in fact do not exist. The constant
birth of such superstitions indicates how much we have
already accomplished in mastering our natural environment
and how difficult the initial discoveries must have been.

APPLICATIONS

The responsive environment is not limited to aesthetic
expression. It is a potent tool with applications in many
fields. VIDEOPLACE clearly generalizes the act of tele
communication. It creates a form of communication so
powerful that two people might choose to meet visually,
even if it were possible for them to meet physically. While
it is not immediately obvious that VIDEOPLACE is the
optimum means of telecommunication, it is reasonably fair
to say that it provides an infinitely richer interaction than

432 National Computer Conference, 1977

Picturephone allows. It broadens the range of possibilities
beyond current efforts at teleconferencing. Even in its fetal
stage, VIDEOPLACE is far more flexible than the tele
phone is after one hundred years of development. At a time
when the cost of transportation is increasing and fiber
optics promise to reduce the cost of communication, it
seems appropriate to research the act of communication in
an intuitive sense as well as in the strictly scientific and
problem-solving approaches that prevail today.

EDUCATION

Responsive environments have tremendous potential for
education. Our entire educational system is based on the
assumption that thirty children will sit still in the same
room for six hours a day and learn. This phenomenon has
never been observed in nature and it's the exception in the
classroom where teachers are pitted against children's
natural desire to be active. The responsive environments
offer a learning situation in which physical activity is
encouraged. It is part of the process. An environment like
VIDEOPLACE has an additional advantage. It gives the
child a life-size physically identical alter ego who takes part
in composed learning adventures on the video screen. In a
fully developed VIDEOPLACE the size and position of the
child's image on the screen would be independent of actual
location in the room. In an interactive Sesame Street a child
would be mesmerized as his own miniaturized image was
picked up by a giant Big Bird (Figure 10). Conversely he
would be delighted if the scales were reversed and he were
able to pick up the image of a tiny adult teacher who spoke
to him from his hand. The most overworked educational
cliche, "experience is the best teacher," would have new
meaning in this context. The environments provide an
exerience which can be composed and condensed to dem
onstrate an educational point.

Figure IO-Interactive sesame street

While it is easy to generate examples of how the environ
ments can be used to teach traditional subjects, their
significance does not lie only in their ability to automate
traditional teaching. More important, they may revolution
ize what we teach as well as how we teach. Since the
environments can define interesting relationships and
change them in complex ways, it should be possible to
create interactions which enrich the child's conceptual
experience. This would provide the child with more power
ful intellectual structures within which to organize the
specific information he will acquire later. The goal would be
to sophisticate the child, not to feed him facts.

PSYCHOLOGY

Since the environments can monitor the participants'
actions and respond with visual and auditory feedback, it is
natural to consider their application to the study of human
behavior. The use of the computer allows an experimenter
to generate patterns and rhythms of stimuli and reinforcers.
In addition, the ability to deal with gross physical behavior
would suggest new experimental directions. For instance,
perception could be studied as part of physical behavior
and not as a sedentary activity distinct from it. Also, an
environment like VIDEOPLACE is very general. The same
aggregate of hardware and software could be programmed
to control a broad range of experiments. The scheduling of
different experiments could be interspersed because only
the software would have to be changed.

Since the university students used as subjects in many
experiments are quite sophisticated about the concerns of
psychologists, what is often being studied is the self
conscious behavior of people who know they are in an
experiment and are trying to second-guess it. On the other
hand, environments open to the public offer a source of
spontaneous behavior. It is quite easy for the computer to
take statistics without interfering with the experience. Or,
interactions can be composed to test specific experimental
hypotheses.

PSYCHOTHERAPY

It is also worth considering the application of responsive
environments to psychotherapy. Perhaps most important
for a psychotherapist is the ability of the environment to
evoke and expand behavior. We have found in the past that
people alone in a dark room often become very playful and
flamboyant-far more so than they are in almost any other
situation. SinCe the environment is kept dark, the patient
has a sense of anonymity; he can do things that he might
not do otherwise. The fact that he is alone in the dark
serves to protect him both from his image of himself and
from his fear of other people. The darkness also is a form of
sensory deprivation which might prevent a patient from
withdrawing. If he is to receive any stimulation at all, it
must be from acting within the environment. Once he acts,
he can be reinforced for continuing to act.

In the event that the subject refuses to act, the environ
ment can focus on motions so small as to be unavoidable
and respond to these and as time goes by encourage them,
slowly expanding them into larger behavior, ultimately
leading the patient to extreme or cathartic action.

In certain situations the therapist essentially programs
himself to become mechanical and predictable, providing a
structure that the patient can accept which can be expanded
slowly beyond the original contract. It is possible that it
would be easier to get a patient to trust a mechanical
environment and completely mechanized therapy. Once the
patient was acting and trusting within the environment, it
would be possible to slowly phase in some elements of
change, to generalize his confidence. As time went by,
human images and finally human beings might be added. At
this point, the patient could venture from his responsive
womb, returning to it as often as needed.

CONCLUSION

The responsive environment has been presented as the
basis for a new aesthetic medium based on real-time
interaction between men and machines. In the long range it
augurs a new realm of human experience, artificial realities
which seek not to simulate the physical world but to define

Responsive Environments 433

arbitrary, abstract and otherwise impossible relationships
between action and result. In addition, it has been sug
gested that the concepts and tools of the responsive envi
ronments can be fruitfully applied in a number of fields.

What perhaps has been obscured is that these concepts
are the result of a personal need to understand and express
the essence of the computer in humanistic terms. An earlier
project to teach people how to use the computer was
abandoned in favor of exhibits which taught people about
the computer by letting them experience it. MET APLA Y,
PSYCHIC SPACE and VIDEO PLACE were designed to
communicate an affirmative vision of technology to the lay
pUblic. This level of education is important, for our culture
cannot continue if a large proportion of our population is
hostile to the tools that define it.

We are incredibly attuned to the idea that the sole
purpose of our technology is to solve problems. It also
creates concepts and philosophy. We must more fully
explore these aspects of our inventions, because the next
generation of technology will speak to us, understand us,
and perceive our behavior. It will enter every home and
office and intercede between us and much of the informa
tion and experience we receive. The design of such intimate
technology is an aesthetic issue as much as an engineering
one. We must recognize this if we are to understand and
choose what we become as a result of what we have made.

Computer technology in data-base publishing

by D. B. BAKER and R. E. O'DETTE
Chemical Abstracts Service
Columbus, Ohio

ABSTRACT

The experience and the expectations of a large scientific
society publisher of chemical and chemical engineering
information tools provide a broad context for considering
the history and probable future impact of computer technol
ogy on information dissemination. Chemical Abstracts Ser
vice (CAS) was in good health for half a century before
computer technology was available in practical application
to the production of information services. It is now in
satisfactory technical and economic health largely because
computer technology is available.

Early applications of computers to practical word and
chemical structure manipulation were for the most part
probes to determine how, or even if, the machines could be
useful. Today the computer is the heart of the CAS
production system in the same sense as the reactors are the
heart of a chemical plant. Regardless of the forms or media
of the output, the computer is essential to their production.

The future sees computers as the means by which all
scientific and technical information dissemination activities
can be helped to coordinate their functions and improve
their services to information users.

INTRODUCTION

In l:oH:-.iut:1 ing "tht: ~nlPd~l uf ~UmpUlt::l le~jUllJrog~ on

information dissemination," the information-accessing ser
vices such as Chemical Abstracts Service (CAS) can be
pardoned for wondering where the question-mark is. To us,
this impact is like the impact of a cooling breeze upon a
sweaty brow: in part, we did not realize how hot and
sweaty we were until the breeze struck; in part we know
that we need the breeze to continue our work.

Chemical Abstracts (CA) was, or course, in very good
health for half a century before computer technology was
available in practical application. It is now in good health
technically and economically-because computer technol
ogy is available. The organization and the services it
provides could not exist without computer technology. And
many other organizations share our experience.

Long gone are the days when we wondered about "the
role" of "the computer" in our business. Gone also are the
days when we seriously asked ourselves questions about

435

whether "the computer" would, or could improve upon
manual processes without degrading the quality of our
services.

We no longer think about "the computer." We do accept
"computer technology," and we understand this to mean
"machines supporting people," not "people adapting to
machines." At this point in time, computers are effectively
cooling our sweaty brows-we could not exist without
them. We don't intend to try.

INFORMATION-ACCESSING SERVICES

In discussing computer technology as applied to informa
tion dissemination, this paper emphasizes, almost exclu
sively, the use of computers in data base manufacture. The
bodies of information, large and small, from which dissemi
nation takes place are routinely called "data bases." And it
is as a data base manufacturer that CAS is best able to
speak.

Figure I is a drawing that CAS has used for ten years. It
is a useful aid in the discussion of an important fundamental
concept in information transfer. The figure shows the
information user as the center of a universe, not only of
different services but of different kinds of services. The
information user needs different kinds of information sup
P(H't at different tirne:-.; somet~imes he needs different kinds
in combination at the same time.

As we survey what has been happening in information
dissemination through the years, we recognize that while
the names and the forms may change, the functions de
picted in Figure I have not changed very much, and they
are unlikely to change conceptually for some time to come.

To begin at the beginning, there must be some means for
capturing and communicating the first disclosure of new
information. At one time, letters between scientists served
as those means. Later, more formal means--the primary
journals-became pre-eminent. Today, the primary journals
of the world are still pre-eminent as the basic means for the
first disclosure of new information. The traditional primary
journal is being augmented by some new forms and media,
but regardless of the form or medium, serious information
dissemination will continue to begin with the creation of a
record of disclosure. That record, whether or not it is a

436 National Computer Conference, 1977

Libraries

Data
Centers

Original
Literature

Figure I

Accessing
Services

Community
Information

Centers

primary journal article, becomes, when it is made public,
the "primary" source of the information.

Because even the people who are most interested cannot
expect to collect, or even to be aware of, all pertinent
recorded original information, past as well as current, they
must depend on two other functions of information dissemi
nation. They need libraries to keep large, organized collec
tions of recorded information. They need accessing services
such as CAS to help them gain an impression of the
contents of those collections and what is being added to
them. Libraries and accessing services existed for many
years without thought of computers, but today both are
becoming more and more heavily involved with automated
retrieval.

The remaining two components of the information uni
verse shown in Figure I are less firmly established than the
first three, but, in one form or another, will assume major
roles in the future. This transition will come about because
of the need for the services and because computer systems
will make them feasible and effective. The community
information center is specifically a computer-based infor
mation center. It may be on-line or batch-oriented, com
mercial, academic, or not-for-profit, but its function is to
serve an inquiring public by manipulating a collection of
computer-readable files obtained from a variety of produc
ers. The data center shown sharing equal status with the
other functions does not truly occupy that position at
present, but will undoubtedly do so in the future. Com
puters will playa major role in that transition, owing to the
tremendous power of computational technology to organize
data.

Computer technology is being introduced into each com
ponent of the user's information universe, but a break
through is needed to achieve closer coordination and inter
linkage among the components of the universe.

EVOLUTION OF USE OF COMPUTER TECHNOLOGY
AT CAS

With these concepts of an information universe as a
starting point, it is appropriate to trace the evolution of the
use of computer technology at CAS to help explain the
present and clarify a perspective on the future.

Figure 2 depicts the logical arrangement of the CAS
computer system today. 1 That system consists of founda
tion systems which support data entry and validation, data
base management, and basic output functions. Separate
production sub-systems are responsible for determining the
subset of information to be selected from the data base for
inclusion in a particular output package, for specifying the
medium and format in which it is to be produced, and for
driving the appropriate output devices.

THE ONSET OF MECHANIZATION

As noted, Chemical Abstracts had been published for
more than 50 years before the first computer started work
ing for the organization. As an abstracting and indexing
service first in chemistry and later also in chemical engi
neering as that newer technology took shape, we were
modeled after our German forebears who started such a
service in the 1830's. Even as late as 1960 mechanization
was limited. Our scientific staff used pencils, pens, and
paper, and our clerical staff used typewriters to translate
the handwriting. In the mid-1950's our indexers had begun
to dictate their entries into magnetic wire recorders as a
step forward from handwriting. Even though our typists
had to learn to transcribe the complex dictation, this early
application of modem information processing technology
was found to be cost-effective.

In 1961, CAS made the first production scale application
of Hans Peter Luhn's keyword-in-context index:! programs
by producing a periodical, Chemical Titles, completely
from punched card input and computer processing. Four
years later, in 1965, CAS produced a specialized abstract
ing publication, with indexes, called Chemical-Biological
Activities (CBAC). That publication embodied a number of
significant advances. Abstracts were input to an IBM 1410.
Several kinds of indexes were derived by a combination of
machine and manual means, and the journal was composed
in a highly formatted output using a l20-character print
chain created for this purpose. It not only had a much more
attractive and readable typeface than the common 48-
character chain, but it produced lower and uppercase

Figure 2

Roman and Greek letters, exponents, and other typography
that was, at that time, sophisticated for computers. In fact,
the problem of typography has been a key to many practical
problems over the years.

In parallel with the CBAC development, the beginnings
of the CAS Chemical Registry were established. The Regis
try concept was not generally understood at the time,
although it did attract attention because the President's
Science Advisor personally announced coordinated federal
funding of the initial test of the Registry concept with
support by the National Science Foundation (NSF), the
National Institutes of Health, and the Department of De
fense. 3 The Registry System is a pre-eminent example of
the power of computer application in information process
ing.

These beginnings must be stressed in order to underscore
how recently it was that such simple matters were looked
on as being difficult. A flow diagram of CAS at that time
would have shown many parallel, simultaneous production
streams. Each stream involved the selection of source
documents appropriate to the files being built. A computer
was used in at least three of the production streams, for
CBAC, Chemical Titles, and Polymer Science & Technol
ogy, a service analogous to CBAC, but in another scientific
field.

In 1966, there was a breakthrough. The IBM 2280 Film
Recorder was announced, and we negotiated with IBM to
make some special modifications on a 2280 for character
generation. That modified 2280 was the first fully opera
tional, production-line photocomposer that had all the nec
essary attributes to bring photocomposition to fruition in
helping solve the problems of computer production of
publications such as ours. Our modified 2280 was computer
driven; it was very fast. Individual characters and full
column formatting were program-generated and output
speedily by the device, and the visual product was of
satisfactory graphic-arts quality. In summary, we had a
high-speed photocomposer which produced output that was
visually comparable to the hot-type composition we had
been doing.

One important technique that the 2280 enabled us to use
" '. . ,t"I ~. '" ~ . ," .~ ~ .. . •. !. Y''' . '" _

was [ne OUtput Ol lI1e ~amt: lfllUlllli:tllUn ill l "HJ I i:"il~ctll)

different forms-a proof sheet produced in high-speed, low
quality output for internal proofreading, and a final, high
quality output from which to prepare printed information
services.

The reason that the 2280 must be stressed in our com
puter-related history is that its capabilities were the catalyst
that enabled us to conceptualize a complete redesign of our
procedures and really begin to experience profoundly the
impact of computer processing on our kind of information
dissemination. It was then that we could begin to visualize
the reality of data base pUblishing.

A NEW MANUFACTURING SYSTEM

Prior to the use of computer technology and even prior to
the photocomposer of 1966, the CAS manufacturing system

Computer Technology in Data-Base P"ublishing 437

depended on stepwise improvement in the analysis of each
source document intended for Chemical Abstracts, our
principal output. An abstract was prepared, transcribed,
proofed, recopied, edited, recopied, proofed, recopied, and
sent to the printer. While galleys were proofed, indexing
entries were prepared, transcribed, edited, assembled, ed
ited, and so on. Other similar procedures were used for
recording bibliographic information, and still other proce
dures for producing five-year collective indexes by reas
sembling, and re-editing the entries created for the semian
nual indexes. A flow diagram for the creation of pre-1966
issues of CA and their corresponding indexes would look
like Figure 3. There would be many steps, many loops for
proofing and copying, and hardly any interlinks.

The present CAS production system looks like Figure 4.
Instead of the dozens of sequential steps of the "tradi
tional" system, we have large blocks of integrated proce
dures. The intellectual processes that were necessarily
distributed throughout the manual system are now tele
scoped at the beginning of the computer-based system.
Instead of abstractors, abstract editors, indexers, and index
editors, we now have document analysts. This change is
much more than semantic. Over a period of several years, it
was necessary to gradually retrain the entire editorial staff
of subject matter and language specialists so that they could
do both abstracting and indexing. As the training of small
subject-related groups was completed, part of CAS cover
age was converted to the newly integrated analysis proce
dure.

The new system subdivides the bibliographic identifica
tions and analysis of incoming source documents into a
large number of relatively small data elements. This accom
plishes two purposes. Automated error detection becomes
easier to design and program, and the system-in both its
people and its machine functions-is freed of the former
restraints of dealing with large, complex blocks of associ
ated information.

Raw Materials

Input
Processes
~ AUTHORITY

~ DATA
BASE

PUBLICATION ~
DATABASE LP

,...---L---, ~
Packaging

Processes

Figure 3

438 National Computer Conference, 1977

CA Issues
Primary journal indexes
Other ahstract journals

CA Volume Indexes
CA Collective Indexes
Special indexes

Figure 4

Acet. Chern. Res.
Anal. Chern.
Inorg. Chern.
J. Agri. Food Chern.
J. Med. Chern.

TAILORED INFORMATION SERVICES

Our user audience has always wanted to receive, and we
have always wanted to be able to produce, whatever cut of
the data base was needed. Now that all of the CAS data is
processed through the computer system of Figure 4, we can
think freely about non-traditional combinations of bits of
subject matter, aspects of index entries, chemical struc
tures, trade names, chemical names, and so on, into ser
vices precisely defined for a specific user audience. To
illustrate, CA is divided into 80 sections representing mean
ingful subdivisions of chemically-related science and tech
nology. The 80 sections are a basic, but by no means the
only possible way to structure the science and technology
of chemistry and chemical engineering. Towards the end of
last year, for the first time we were able to take advantage
of our completely computerized processing system to pro
duce the first of six topic-oriented alerting services which
we expect to be followed by many more. The six new
printed services contain abstracts that are the same as
abstracts that appear in CA, but the set is selected individ
ually from the data base. This selection can be precise: in
the specialized field of high-speed liquid chromotography,
18 abstracts were selected from nine CA sections in a
recent issue.

To achieve the freedom of output options that computer
processing has brought requires that details of format and
typography not be imposed on the information until the
output stage. That is, data elements comprising biblio
graphic information, abstracts, and index entries are input
free of typographic or format coding. Details of typography
and format are resident in output programs only. Similarly,
output programs to reproduce computer-readable files can
select data elements, ignoring questions of typography and
printing format, and simply arrange the data elements in the

Standard Distribution Format in which all CAS computer
readable files are distributed.

INFORMATION CENTERS

There are 90 computer-based information centers li
censed to provide services to the public from various CAS
computer-readable files. Most of these centers also process
files from a number of data base producers. In the case of
Lockheed and Systems Development Corporation, for ex
ample, the number of different data bases offered is large.

It was not long ago that the prospect of interacting with a
computerized file of information at a terminal was consid
ered to be a dream. But there are now discussions on the
cost effectiveness of on-line search in a company library
environment. The Chemline-Toxline services of the Na
tional Library of Medicine (NLM) are a major example of
integration of information from multiple sources. Com
puter-readable input from BioSciences Information Ser
vices (BIOSIS), CAS, and several other sources is con
verted by NLM into one coherent multidisciplinary file for
on-line search. Improved compatibility among data base
suppliers would surely simplify the development of future
systems in multidisciplinary areas.

USE OF AUTHORITY FILES

Figure 4 shows a two-part data base. One part, the
Publication Data Base, contains information directly related
to individual source documents, while the other, the Au
thority Data Base, contains lists of acceptable index terms,
chemical names, synonyms, structural formulas, standard
ized journal title abbreviations, and so on. Information
people call such files "authority" files because they repre
sent what the processor allows himself to do in various
aspects of producing his services. An integrated computer
system such as CAS's makes possible the prompt updating
of such authority files.

Users might profit from access to these files which they
could use to support their searching activities. CAS has
produced a number of search aids to support users of its
biweekly computer-readable subject index service, CA
Subject Index Alert. These are derivatives of some CAS
authority files. It would not be possible to produce them
without the help of both the authority file content and
computer technology. To illustrate, one aid is a list of all
main subject headings for the CA General Subject Index,
including the taxonomic headings we use. Another aid links
CAS Registry Numbers for more than 3,000 frequently
indexed chemical substances to the many names commonly
used for those substances. Still another aid is a Key-Letter
In-Context Index of CA Nomenclature Terms, which is a
listing of words used in the highly systematic CA Index
Names, fragmented, and listed at each letter. That list,
combined with a word frequency list of the index words, is
helpful in developing search strategies using chemical name
fragments.

Two of the largest and most active of the CAS authority
files are the chemical Nomenclature File and the chemical
Structure File of the CAS Registry System. At the end of
1976, the Nomenclature File had 5,800,000 different names
and the Structure File had 3,710,000 different structures in
digitized form. In a typical recent year, the files grew by
about 350,000 new structures and about 500,000 names. A
number of excerpts of both files have been published: parts
are in Chemline-Toxline at NLM, parts are in the Lockheed
on-line offerings, and other proprietors of on-line services
are making plans to incorporate portions. Several chemical
organizations in the US and abroad are experimenting with
the files.

DATA IDENTIFICATION AND DISSEMINATION

It was noted earlier that data centers had to grow in
importance and that computer technology was essential to
that growth. One of the major needs of information users is
for numerical and factual information with some indication
of the reliability of the data. The data center has the
responsibility of providing evaluation, but the original infor
mation and accessing service producers can help by clearly
calling attention to the existence of data in documents so
that the data centers need not recomb the world's publica
tions looking for the desired numbers.

CAS staff, with support from interested agencies in the
community, have been experimenting with data tags. These
are pointers to be added to the computer-readable files to
mark documents in which analysts have found data to be
reported. In 1976, CAS went through some 380,000 source
documents. There is a tremendous amount of data in these
documents, and CAS is working to determine how much
and how to handle the tagging of it.

PRIMARY JOURNAL PUBLICATION

As noted above, the deep-seated changes in the way CAS
does its business have created, among other things. an
entil'dy ne\\- ~\ppr()(id; to c()mp()sing 'puniic'atiuns. The
American Chemical Society (ACS), of which CAS is the
largest operating division, is also the publisher of some 20
scientific and technical periodicals. Over the last several
years the ACS has been developing similarly advanced
composition systems for these primary publications. A key
to this system was an analysis of the procedures humans
use to layout journal pages. This analysis enabled staff of
CAS's Research and Development Division to devise com
puter programs that accomplish page layout to virtually the
same standards. 4 ACS is now gradually converting publica
tion of its journals to this system, using techniques that
permit each journal to retain its own personality with
respect to typography, placement of various elements of an
article, etc. The same composition technology is being
examined for application in the Editorial Processing Center
(EPC) concept that NSF has been espousing through sup
port of studies and experiments. 5 This application of shared

Computer Technoiogy in Data-Base Pubiishing 439

computer technology has the potential to become one of the
most important developments for the near- and medium
range future of information dissemination. Like many im
portant concepts, the basic idea is simple and persuasive,
but it leads to many design and operational challenges. In
essence, a publications production system more-or-Iess like
that of CAS could be used remotely by publishers of small
journals. The investment required to develop and operate
such a system could not be justified for an individual
publisher's use alone.

Ultimately, according to one version of the EPC concept
advanced by Aspen Systems in an NSF-funded study,6
authors, editors, and reviewers for each of the primary
journals using the center would have on-line access to a
central facility which would provide the whole gamut of
services needed in publishing the journals, including page
proofs, final composed pages, by-product computer-reada
ble files, indexes, directories, membership and subscription
records, labels, a variety of form letters, and financial
accounting.

Achievement of such a configuration will require much
hard work and some systems development but no technical
breakthroughs. The most difficult problems to solve will be
to establish effective interfaces between the people and the
system. A successful EPC must preserve the primary
journal editor's traditional independence of choice; the EPC
must be a processor, not a publisher. At the same time, if
he is to take maximum advantage of EPC support, the
journal editor must objectively differentiate between edito
rial stature and window dressing. There is no doubt that the
advanced configuration postulated by Aspen would permit
journal editors considerable latitude in typography and
format, as does the present ACS primary journal system
operated by CAS.

INTERLINKING PRIMARY AND SECONDARY
PROCESSING

There are great possibilities for improving the overall
efficiency and effectiveness of information dissemination by
im;rea~irlg Up't:1 alIUl1ar';U'uIUirliltiuil 'bdvvt:e'lllflt: "p'l imdl y
and the secondary information communities. Computer
based information technology is an important key to prog
ress in this area. CAS staff have stated elsewhere, "There
should be one total publication system for scientific docu
ments. The system must have a number of components,
with great variety of character and freedom of intellectual
action, and the responsibility for its operation and manage
ment must be decentralized, but the system must be con
ceived and made to function as a single entity." 7 Such a
sweeping statement can be seen as realistic and practical,
only if one understands the necessity of the present and
potential impact of computers on primary-secondary inter
linking.

This is a well-advanced example of cooperation between
the primary-journal and the accessing-service activities of
the ACS that helps to highlight this important contribution
of computer technology to information dissemination. An-

440 National Computer Conference, 1977

other is the provision of CAS Registry Numbers for sub
stances identified in primary journal manuscripts.

The CAS Registry System, which was previously men
tioned, is an automated vocabulary control system for
indexing chemical substances based on the details of their
molecular structure. The CAS Registry is inconceivable
without computer technology, and it is an essential compo
nent of CAS processing. Beginning ten years ago, CAS also
began to use the Registry in behalf of the ACS Journal of
Organic Chemistry to provide CAS Registry Numbers to
the journal at its manuscript stage so that the journal could
include the numbers in its issues. Registry Numbers are
also provided in a similar way to the journal, Inorganic
Chemistry, and the German journal, Angewandte Chemie.
CAS Registry Numbers are used in CA abstracts and
indexes, in a number of non-ACS handbooks, in publica
tions of BIOSIS, in the TOXLINE and CHEMLINE on
line services of NLM, in various other government files,
and so on, and the use of Registry Numbers is steadily
spreading. Thus, including Registry Numbers in the pri
mary literature establishes the identification of the sub
stance from earliest disclosure and provides a link to other
references to the substance.

SHARED INDEXING

In addition to the complex matter of chemical substance
identification, CAS and 14 ACS primary journals coordi
nate their indexing of document subject content. CAS
began over five years ago to prepare annual indexes for
these journals by extracting from the CAS publications data
base for each journal, the keyword index terms prepared
for the abstracts of papers from that journal. CAS also
provides this indexing support for two journals published
by Verlag Chemie in Germany, one journal of The Chemi
cal Society in London, and one commercially published US
journal.

COORDINATED EFFORT

BIOSIS and CAS have been working together for some
time in seeking improved cooperation and coordination. A
part of that effort has had NSF financial support. Progress
has been made and there is room for much more. In the
area of computer technology alone, several accomplish
ments are worth noting. BIOSIS has modified its produc
tion stream and CAS its output system to enable CAS to
photocompose the issues of Biological Abstracts and two
other specialized abstract publications of BIOSIS. BIOSIS
in Philadelphia prepares the output of its editorial process
ing in computer-readable form compatible with CAS photo
composition procedures and ships the tapes to Columbus.
CAS returns fully composed pages for the BIOSIS printer.

CAS also supplies Registry Numbers to BIOSIS for their
special service, Health Effects of Environmental Pollutants
(HEEP). In 1975, CAS prepared for BIOSIS a Chemical
Index Guide to HEEP by compiling all of the synonyms

that pertained to chemical substances mentioned in HEEP.
This index is valuable in relating trade names and chemical
names, and because the index includes CAS Registry
Numbers and CA index nomenclature, the users of HEEP
are helped in utilizing the CAS data base if they need
further information on chemical aspects of substances.

More recently, BIOSIS, CAS, and Engineering Index
have been jointly studying questions of overlap and have
been evolving a concept which sets forth a collective view
of a "total" information system that the three services
might be able to help achieve. Working within the three
organizations could improve individual and joint efficien
cies while providing more effective service to users.

THE FUTURE

Computer technologists have been criticized in the past
for painting a too optimistic picture of the future. In many
cases, such pictures were perhaps technologically sound,
but failed to recognize economic and institutional barriers
to progress. So the final section of this paper will describe a
vision of what can be achieved without asserting that this
vision is necessarily a prediction.

Our future system will be a network of networks, whose
workings will be transparent to the user who, in the act of
searching from a console, will be supported by software
and hardware that automatically switches among networks
as interim search results and strategy modifications de
mand.

We envision EPC's as major factors in the capture of
original information, a set of activities now usually named
in a more limiting way as primary pUblishing. A functioning
network of such centers could expedite authors' finding the
right outlet for new information that warrants disclosure
and, possibly, could be reservoirs for the future electronic
or microform equivalent of today's text and graphical
presentation of information. (In fact, such centers might
store, for search or retrieval, computer-readable copies of
an author's original data, gathered by machine. There will
be EPC's for accessing services, as well, putting at the
disposal of this part of the information community the same
economies of high technology and scale as are expected of
the primary EPC. We foresee the two EPC networks
interconnected to coordinate coverage; to share hardware,
software, and information files; and to seek, where feasible,
mUltiple use within the community of sharable resources.

There will be new and closer relations between libraries
and accessing services where there is at present a lack of
directed coordination among their related activities. The
acquisitions programs of libraries and the selection policies
of accessing services appear to be closely related only' in
the minds of users, rather than in the actions of libraries
and accessing services. While the basic functions of these
services are different, they could be brought much more
closely together for the benefit of the user by the computer
technology that each community is employing to an ever
increasing extent.

The computer-based link between accessing services and
computer-based information centers is already a strong one.

There is a need for improved compatibility in computer
readable information transfer formats among data-base pub
lishers and in data-element form and content. It also seems
inescapable that computer technology will be one of the
major forces to bring information dissemination centers and
libraries into functionally closer relations. And there will be
new links developed between accessing services and data
centers.

Thirty years ago, when digital computers were quite new,
this concept would have verged on science fiction, albeit
serious, almost believable science fiction. Ten to fifteen
years ago, a Delphi study among the frontiersmen of
information and computer science might have produced
predictions like these. Yet today, at least three conserva
tive, traditional organizations are convinced that they can
make such a vision become reality.

Computer Technology in Data-Base Publishing 441

REFERENCES

1. Fanner, Nick A., Carole A. Schenner and Roland L. Wigington, "The
American Chemical Society Composition System," CAS Report, 5, 3,
1976.

2. Luhn, Hans Peter, "Keyword-in-Context Index for Technical Literature
(KWIC) Index)," American Documentation, XI, 4, 1960, p. 288.

3. CAS Staff, "CAS to Study Registry of Chemical Compounds," Chemical
& Engineering News, June 7, 1965, p. 23.

4. Bammel, S. E., "Automatic Full-Page Fonnatting of Technical Primary
Journals," Proceedings of the National Computer Conference, Anaheim,
California, 1975.

5. Rhodes, S. N. and H. L. Bamford, "Editorial Processing Centers: A
Progress Report," The American Sociologist, II, 3, 1976, pp. 153-9.

6. Editorial Processing Centers, Feasibility and Promise, Aspen Systems
Corporation, Rockville, Maryland, 1975, 70 pp.

7. Tate, F. A. and R. E. O'Dette, Interlinking of Primary Publications and
Secondary Infonnation Services, XXIVth International Congress of Pure
and Applied Chemistrj, 7, 15, 1974.

Improving corporate information services in
an automated word-processing network

by HENRY L. MAYFIELD
Shell Oil Company
Houston, Texas

ABSTRACT

The flow of corporate information is destined to change
considerably with the arrival of word-processing technology
and the expansion of computer communication networks.
Computer programs will extract indexing information from
documents prepared in word-processing clusters and pass
the data to a central computer complex for filing. By
querying that database, employees will gain access to
documentation corporate-wide. This paper follows the steps
in a document's life cycle. A methodology is examined by
which corporate information service departments may plan
for, and ultimately provide, the benefits of enhanced infor
mation access.

INTRODUCTION

Attention has recently focused on the reaction of corporate
management and office support staff to revolutionary
change brought with office automation. Many organiza
tions, through distributed word-processing centers, docu
ment improved clerical productivity. 1 Several experiments
in electronic mail cite speedier information flow as having a
positive impact . on high-level decision-making. 2 Largelv
19~~;~((·~ntit'~o~i, IS' -ihe-~meth~do]ogy:'·'5Y" whlch'-'th~
corporate information service department (CISD) will ena
ble almost all corporate employees to derive immediate
benefit from the new technology.

The potential beneficiary of improved information ser
vices is anyone who comes in contact with textual docu
ments. The known benefits of word-processing are seen in
the composition cycle ofletters and reports. With the use of
these services, corporations are better equipped to produce
paper in what has been termed the "technical information
explosion era." Present world-wide information growth
rates of 12-13 percent are predicted to be four to seven
times as large in the mid-1980's. Employees flooded by
unstructured information will find they are ill-equipped for
minor job crises unless new mechanisms are devised to aid
them in the document reaction cycle, Standards and ser
vices. developed by CISDs, could act as one such positive
mechanism.

443

Ultimately, employees will have access to computer
reports indexing documents authored by themselves or
their co-workers. (This paper does not explore information
access to extra-corporate literature.)

Document retrieval from a locally available micrograph
ics archive will then take only a few minutes. Supervisors,
higher management, and other authorized personnel will
dial into a central computer database and retrieve any
(externally transmitted) documents by typing in keywords
describing their content. Some documents will be transmit
ted via electronics. Others which formerly were reproduced
in great quantity prior to shipping will arrive in an envelope
on microform and be printed at the receiver's site. When
appropriate, information specialists will ,provide personal
ized assistance to the information-seeker.

Before looking at how all of this may be achieved, a
review of present systems-modified by word-processing!
computer network technology-is in order.

INFORMATION FLOW IN THE NETWORK

The components of an automated word-processing net
work, including communications linking terminals and/or
computers at the network nodes, have passed through
several phases:

Phase I-Communications link remote-job-entry or time
sharing terminals to a physically distant computer complex.

(READ\
RETRIEVE FilE

~FORGET~
Figure I-Document reaction cycle

444 National Computer Conference, 1977

Automatic text-editing systems permit operators to key
enter and edit documents using low-speed typewriter/CRT
devices. Documents are filed on disk storage at the central
complex.

Phase 2-Installation of "intelligent" terminals at the
satellite nodes permit documents to be stored locally on
cassettes or diskettes.

Phase 3-By replacing intelligent terminals with multi
terminal minicomputers, the enlarged network serves a
greater number of operators. These low-cost shared logic
systems placed within a local word-processing cluster re
place the function of the distant central system of Phase 1.

Phase 3 networks can be utilized in several ways. Most
user composition activity takes place at the network's
satellite nodes. Documents are entered, edited, and printed
within the cluster. When the network is used for distribu
tion, a document may be transmitted electronically via
communication links to other network nodes for printing at
the addressee's cluster. When it is used as an electronic
message center, the addressees are notified at their on-line
terminals of the newly-arrived document. They may check
the sender, date, and subject of the documents before
printing or destroying selected ones. Replies may be com
posed and distributed electronically.

A method for document filing, storage, and retrieval to
aid the "reaction cycle" spoken of earlier is being evalu
ated by researchers at the Massachusetts Institute of Tech
nology. 3 Their DMS Message System takes document mes
sages and transmits them to other points at a satellite node
or to other computers attached to the ARPANET commu
nications network. The ARPANET, begun in the 1960's, is
an experimental network linking over 100 private and public
computer/research installations from Hawaii to Europe.
Users are able to lower their computer operating expense
by sharing computer resources, e.g., central processing
units, mass storage devices, plotters, and microform sys
tems.

In preparing the documents for filing, messages are
broken down into fields, such as subject, date, text, action
to, carbon-copy, etc. The assigned field-values are used to
index and store/retrieve documents to/from a database.
How DMS would economically interface with a variety of
vendors' computer hardware/software in a corporate net
work is not clear at this time. Conceptually, features of
DMS are certainly among those that could enhance corpo
rate information services.

ENHANCING SERVICES IN THE NETWORK

There are two immediate goals that CISDs should seek in
a Phase 3 network:

I. Specification and enforcement of corporate documen
tation standards. When satellite word processing dus
ters use common report-numbering, author/name, and

date-entry formats (among other documentation stand
ards), the problem of computer indexing becomes a
manageable function.

2. Word-processing clusters able to communicate with
each other and with a central computer complex.
Local word-processing terminals unable to communi
cate with terminals elsewhere in the network fail to
maximize their usefulness in an electronic message
environment.

These goals, together with a corporate records manage
ment program, put CISDs in a position to meet the present
demand for information at a lower cost, while increasing
overall service levels.

In reality, fulfilling the two goals may parallel the actual
services improvement, with each activity reinforcing the
other. In analyzing how this may evolve, composition,
distribution, and reaction cycles of a document will be
examined in detail. Emphasis will be on a methodology
which can be integrated into any Phase 3 network meeting
the two objectives cited above, regardless of vendor soft
ware/hardware utilized.

Composition

"Information mapping"4 is a method for defining and
enforcing corporate documentation standards. Originally
used in training materials on technical subjects, mapping
structures textual writing by dividing the page with horizon
tal and vertical lines to form logical blocks. Only informa
tion of one functional type exists in a given block. The
concept, while extendable to almost the whole of corporate
documentation textual in nature, wiIl be illustrated in the
context of internal and external correspondence.

The typical business letter or memo may be divided into
logical blocks, as in Figure 2. It should be noted that the
text-block could relate to abstracts for other types of
documents.

Within each of these blocks, a typist enters words

DATE "J

TO

GREETING

'TEXT

h~OM

OTHER

Figure 2-Information map

fi\CENTRAL COMPUTER
~DATABASE

• CLUSTER MINI
COMPUTERS

o ON-LINE TERMINALS

~ ~ COMMUNICATIONS
............", NETWORK

Figure 3-Phase 3 word-processing network

fulfilling a unique function-a type of information map.
Chances are that not too far from the typist's keyboard is a
secretarial handbook outlining the function and format for
each block: specifications for vertical and horizontal spac
ing; addressee format and punctuation; in internal corre
spondence, when to use top-down or bottom-up departmen
tal hierarchical TO, FROM identification; layout for
dictator, typist, enclosures, copies, filing, references, at
tachments.

When correspondence is prepared on conventional type
writers, strict standards are often compromised. When
using '"intelligent terminals" programmed to validate oper
ator entries, the skill in and practice of documentation
standards are improved. At Dun & Bradstreet, Inc., an
operator types a continuous string of characters prefixed by
the logical block into which they are to be stored for
printing. 5 When applied to information mapped correspond
ence, the typist may enter:

: DATE: December 1, 1976
:TO: A. R. Jones President, Software Inc.
2100 Broadway
New York, NY 10000

:GREETI~G: Dear AI1:

: TEXT: Further to your letter of

and early resolution of the problem.
: FROM: Sincerely, T. R. Smith
: OTHER: DRJISWC

This type of data entry has been found superior to
traditional CRT template orientation. Standards of 12,000
strokes per hour (equivalent to a typing speed of 40 wpm)
have been established. Blocks of a document may be
entered in any order and immediately validated for content,
format (punctuation, indentation, spelling), and block
length. The program which performs these activities may

Improving Corporate Information Services 445

also establish page-positioning for display. Dun & Brad
street has found that a new terminal operator can reach full
productivity . in one-quarter of the time that would be
required in using a manual system .

lndexinglkeywording

The most important aspect of standards established and
enforced via information mapping comes to bear in com
puter indexing of documents.

With text-editor/data entry systems operating on a multi
terminal minicomputer, the indexing of material in the
cluster is now feasible. Even when equipment manufactur
ers provide no generalized software specifically supporting
data entry based upon information mapping, programs
tailored to corporate specifications are installable. Indexing
a document, in which physical position on the page defines
the context in which keywords and phrases are used, is a
straightforward approach to an otherwise difficult problem.

At Shell, a computer program has been written to process
correspondence as mapped in Figure 2. Several activities
are carried out by that program:

1. Non-text blocks are validated for content and format.
2. Non-text blocks are indexed (as multi-valued fields,

when required).
3. As an alternative to keying all significant single words,

keywords and phrases specified by the document's
author are extracted from the text blocks.

The distinction at this point between '"indexing" and
'"keywording" is important. In indexing correspondence,
for example, an individual name (,JONES, T) appearing in
the TO or FROM or COPIES blocks is an index field value.
The context in which 'JONES, T is used is clear-cut, both
in how a computer would store the· index field-value and
how an information-seeker would query the computer data
base:

FIND TO IS 'JONES, T'

A document with multiple authors would be assigned multi
ple index field-values:

FIND AUTHORS ARE 'JONES, T AND 'SMITH, A'

On the other hand, 'JONES T appearing as a keyword in
the documents' text-block is subject to varying degrees of
usefulness in retrieval:

FIND 'JONES, T

might retrieve documents in which the name was only
mentioned incidently or miss documents where 'T JONES'
appeared in the text-block. Clearly, terms which appear in
document text do not always provide an adequate basis for
retrieval, even when specified by the document's author.
Automatic extraction of all non-stop keywords, like speci-

446 National Computer Conference, 1977

fied keywording, may at times produce too few or too many
terms, causing a wide variability in the completeness and
relevance of documents retrieved. Thus, other keywording
is advised.

Extra keywords which enrich or clarify the subject con
tent of documents may be assigned by a local information
specialist from a controlled corporate thesaurus. Entered as
a special information-map block, the keyword contents
would not be routinely displayed in the distributed docu
ment.

Distribution

Once a document's composition cycle and indexing!
keypunching based upon information mapping concepts are
completed, the delivery may be carried out in several ways.

The document itself may be printed within the word
processing cluster and transmitted via regular mail. For
speedier transmission to a physically distant addressee, the
network may be used to transmit the document in a fraction
of the time it took for initial entry (based upon an average
2400-characters-per-second transmission speed versus 40
WPM entry rate).

Indexing and keyword information may be held in the
database of the local cluster for security considerations or
for documents of narrow interest. Otherwise, indices, key
words, and the document itself are transmitted to the
central computer for processing by the CISD.

Storage

Textual documents historically have arrived at CISDs in
printed form. The effort in manually indexing, filing, and
micro-filming documents of diversified formats is a task
many CISDs are already hard-pressed to handle. With the
projected increase in printed matter arriving at CISDs,
staff-time now given to information seekers may be shifted
to meet the increased indexing and filing burden. The
completeness and relevance of information retrieved is
bound to degrade unless the two objectives cited earlier are
sought.

In an enhanced services environment, computers will
perform many of the indexing, filing, and retrieval functions
that earlier required human manual and intellectual effort.
The information specialist will coordinate the receipt of
electronic messages from all nodes of the corporate net
work that have been directed to the central computer
complex. Electronic transmission of documents from one
node to another need not pass through the central node.
However, if the document sender or recipient wish to
participate in the new services provided by CISD, the
indices/keywords and, optionally, the document itself must
be enqueued for processing by the CISD specialist.

Filing and retrieval services provided by CISD include:

1. Processing (computer) index/keyword messages. Vali
date format and control posting in corporate database.

Maintenance and distribution of corporate thesaurus
for keyword enrichment.

2. Collecting documents for archival tape storage and
output to film.

3. Preparing and distributing micrographic files to desig
nated word-processing clusters, with their accompa
nying computer generated subject-indices.

4. Maintaining employee interest profiles. Matching pro
files to updated database. Distribution of relevant
information via the network or regular mail.

Retrieval

With the document life cycle described above, a mecha
nism now exists to help anyone in the document reaction
cycle.

The recipient or author of a document mailed electroni
cally need only retain a printed copy until the arrival of the
next set of micrographic files in the departmental word
processing cluster. Archival retrieval may always take
place using the computer-generated subject index and film
readers located in the cluster. If extra copies of a document
are needed, a film-to-paper copier is available.

For documents not authored or mailed to the departmen
tal cluster, authorized employees may interrogate the CISD
maintained corporate database on the central computer.
'Queries are entered at a low-speed terminal, transmitted
over the network to computer programs interacting with the
database, and the results returned to the user.

A variety of traditional retrieval tools are available to aid
the on-line information seeker. In formulating a query
which will be complete and precise, a user may selectively
display at his terminal:

1. An alphabetical thesaurus listing of index fields (TO,
FROM, SUBJECT, TITLES, AUTHORS) and key
words with a count indicating the frequency with
which the terms appear in the database.

2. Vocabulary analysis of terms, indicating possible al
ternate terms, e.g.,

-SEE ALSO'S-
Data Management-See File Management

-GENERIC RELATIONSHIPS
Information Systems Manager-
BROADER TERM-Center General Manager
NARROWER-Information Design Manager

Information Support Manager

Retrieval using index/keyword techniques discussed earlier,
together with aids for query formulation, has been meas
ured and the performance judged competitive with pre
coordinate, strictly controlled keywording approaches. 6

If further retrieval assistance is required, a user's query
may be processed by a CISD specialist at the centrai
complex and the results displayed on the user terminal

within the cluster. Together, they are able to obtain suffi
cient information to learn which documents are relevant to
the information seeker's interests and where the entire
document may be retrieved. For locally authored/received
documents, the film reader may once again be consulted.
Another alternative is to interface a CRT to a micrographic
retrieval device, which in turn is linked to a database index.
When the computer responds to a user query, the resultant
micro-image may be transmitted directly to the microfilm
reader and the image displayed automatically. Otherwise,
there are several alternatives for delivery of the document
set:

1. Transmission over the network for high-speed printing
within the cluster.

2. Normal mailing of batch print-out from the central
computer.

3. Normal mailing of film for reproduction.

OTHER CONSIDERATIONS

As the services described above are put into place, the
benefits which follow may be measured by more than just
the availability and immediacy of information.

Word-processing is estimated to yield increases in docu
ment productivity of 100 to 500 per cent. 1 With the saving,
an initial capital equipment expenditure of $15,000 to
$20,000 per cluster operator station is expected to be paid
out in two or three years.

The one-time expense of manual filing, mailing, and
retrieval of a 750-character document is estimated at $.59. 7

To store the document prepared via word-processing for
on-line retrieval would run approximately .004 cents per
month. A retrieval using one of several popular storage and
retrieval systems would run $.05 to $.25, depending on a
variety of factors.

The expense of present information services versus en
hanced services in a word-processing network environment
may justify the implementation of the latter.

O~h~T~ bent:t1t~ ar~ l~§§ 2~vi0tl~. In order for the word
processing network to function properly, there exists within
it a directory of corporate employees. Each is identified by:

1. Employee number
2. Name/Title
3. Cluster assignment
4. Hierarchical department/function/role designation
5. Network security authorization
6. Telephone number

With the directory, documents may be related to authors/
recipients with employee numbers alone. The formatted
report, depending on its type, will substitute the appropri
ate employee text. Tags grouping different employee collec
tions or hierarchical department designations may be built
and stored to aid in the automatic preparation of routing
information. Combinations of employee number, depart
ments, and security authorizations will also be used to

Improving Corporate Information Services 447

permit only qualified individuals to interrogate cross-sec
tions of the CISD document database. The directory may
serve other purposes as well.

As an interface with the corporate personnel database,
the inventorying of employee skills, training, job history;
the preparation and distribution of payroll are aided. The
directory also acts as a convenient source for compiling
organization charts and telephone directories.

Improved documentation standards and services, if
adopted within the cluster, mean that personal filing prac
tices may be impacted. The employee and a cluster infor
mation specialist will enter keyword/indexing information
into the local database. Film and paper files are maintained
by the technologist, leaving more time for the employee to
pursue normal job responsibilities.

CONCLUSION

It is said that 5-10 years will elapse before the declining
hardware costs will make widespread corporate word
processing clusters commonplace. In that time-frame,
". . . the cost of communications systems will drop so far
that all kinds of applications which seem exotic today are
going to become feasible and attractive."8 Arthur D. Little,
Inc., has reported that by the 1980's, decreases of 50
percent for central processing, 66 percent for communica
tions, and 80 percent for terminals are likely. Costs for
storing a page of information will decrease by a factor of 30
when paper is replaced by other media.

In the interim, lack of planning could result in divergent
objectives and disparate systems implemented throughout
the corporation. The potential for waste and duplication of
effort is very real in parochial approaches to corporate
word-processing.

Information service departments should move to:

1. Establish documentation standards for use in word
processing clusters to facilitate automatic indexing;

2. Cast a frame-work for decision-making in cluster im-
l:)I~ITl~nt~tion .~~~ ?p'~rati<:)n~1 proc~du~~s ~

j. Coordmate planmng in anticipation of providing fuii-
fledged services in a Phase 3 word-processing net
work.

ACKNOWLEDGMENT

The comments and support of H. D. Baade, M. K. John
son, and J. M. Wainright were invaluable in the drafting of
this paper.

REFERENCES

I. Purchase, Alan and Carol F. Glover, "Office of the Future," Business
Intelligence Program, Menlo Park, California: SRI, April 1976.

2. Martin, Shirley M., Edgar S. Von Gehren and Ronald P. Uhlig, Practical
Experience in Computer Based Message Systems.

3. Vezza, A. and M. S. Broos, "An Electronic Message System: Where

448 National Computer Conference, 1977

Does it Fit?," Massachusetts Institute of Technology, Laboratory for
Computer Science.

4. Hom, Robert E., "Information Mapping," Datamation, January 1975,
pp. 85-88.

5. Gaudette, J. M., "Word Processing at Dun & Bradstreet," Datamation,
November 1975, pp. 76-88.

6. Lancaster, F. W., Vocabulary Control for Information Retrieval, Wash
ington, D.C., Information Resources Press, 1972, pp. 135-152.

7. Dartnell Corporation, "Inflation Soars 1975 Business Letter Cost to
$3.79," Analysis and Staff Report, Chicago, Illinois, 1975.

8. Ferreira, Joseph and Jack M. Nilles, "Five-Year Planning for Data
Communications," Datamation, October 1976, pp. 51-52.

A subject-content oriented retriever for
processing information on-line (SCORPIO)*

by CHARLENE A. WOODY, MICHAEL P. FITZGERALD, FRANCIS J. SCOTT, and D. LEE POWER
Library of Congress
Washington, D. C.

ABSTRACT

Traditional obstacles to the development of on-line soft
ware for library/information center functions are overcome
in the design and implementation of SCORPIO, an on-line
information retrieval system developed at the Library of
Congress, through the use of an "elastic" data base archi
tecture, the phased development of reusable/disposable
software, and the design of an open-ended, non-technical
retrieval language. The data base architecture allows arbi
trarily large files with no limit on the size of individual
records. Software is developed in short time intervals to
minimize investment and maintain customer interest; and
the software itself is isolated from environmental factors
most subject to change. The retrieval language is non
technical and system responses are people-oriented.

INTRODUCTION

Throughout the United States, automation supports the
library/information center function with administrative
tasks, circulation control, selective dissemination of infor
mation (SDI) and on-line information retrieval. As more
information center functions become automated, customers
00ma00 8.R ex~ SGOpe of 8@rv~8·;;mG, OR-line ~~~"
to more and more data bases. SCORPIO, an on-line infor
mation retrieval system, was developed by the Information
Systems Office of the Library of Congress to address the
special problems that the information centers in the
Congressional Research Service (CRS) confronted in meet
ing quickly the demands of their customers-members of
Congress and researchers in the CRS.

Traditionally, on-line access to library-type data has been
constrained by the variety and size of both data bases and
individual data records, by the huge investment required for
software to maintain the data bases and to retrieve informa
tion on-line, and by the complexity and restrictiveness of
retrieval languages. In the design and implementation of
SCORPIO, such problems have been circumvented

* A paper to be delivered at the National Computer Conference, Dallas,
Texas, in June, 1977, on behalf of the Special Libraries Association and the
American Society of Information Science.

449

through: the use of an "eiastic" data base architecture, the
phased development of reusable/disposable software, and
the design of an open-ended, non-technica.l retrieval lan
guage which can be used directly by customers, without an
information specialist as intermediary.

Functional description

By using the SCORPIO retrieval language, a terminal
user can perform any of the normal functions available from
on-line information retrieval systems. After specifying the
file to be searched, the user may browse the text dictionary
or the index of available retrieval terms, select documents
based on relevant terms, and combine selected documents
with the Boolean operators "and," "or" and "not." Some
files have hierarchical thesauri to aid in search term selec
tion. Resulting sets of documents may be displayed, in part
or in full, at any point in the search. The same commands
are used for all files; and documents from any. file known to
SCORPIO may be displayed, though not selected, at any
point. In effect, each file contains the data of the others.

Operating environment

The 37 working programs and 63 tables comprising
SCORPIO, all re-entrant and written in ALC, require 99K
bytes of storage. These programs running under control of a
multi-tasking monitor (IBM's Customer Information Con
trol System (CICS», share resources with other on-line
programs in a I-megabyte region of the Library's IBM
S/370 Model 158 computer.

THE "ELASTIC" DATABASE

Each data base that is a candidate for on-line access has
its peculiarities as to content, number of data records,
record size and requirements for display. To allow data
bases to grow, and to accommodate new ones, the follow
ing design goals were set for the data base architecture:

• no limit on the number of records in the data base

450 National Computer Conference, 1977

• no minimum or maximum size for a single data record
• direct access to any data record or part of a data

record (required for on-line display)
• on-line access concurrent with file maintenance
• addition/deletion of data fields without total file reorga

nization
• efficient use of auxiliary storage

Figures 1 through 4 illustrate the data base architecture
developed to meet the design goals.

Physical space organization

A basic file consists of two physical files: a prime data
space and an index file (Figure I). The prime data space is
partitioned into fixed-length areas, called "bins." Initially,
all bins are elements of a "free space" list, each containing
a link pointer to the next bin in the list. When a logical
record is created or updated, bins are removed from the
"free" list for use in data storage. To limit the number of
auxiliary storage accesses required to process a logical
record, the size of each bin is set at '13 of the projected
average logical record length (which varies for each data
base). Each bin contains an 8-bit "bin status" indicator and
space for a "chain pointer," which allows for the logical
continuation of data from one bin to another. The index file
consists of fixed-length records, each containing a symbolic
key and a pointer (bin number) to a "base" bin in the prime
data space.

Data organization

Each logical record consists of data stored in one or more
bins. The first bin, called the "base bin," contains (I) the

INDEX
FILE

D
Bin 0

Bin 5

Bin 10

Bin n-4

FREE SPACE OVID;

PRIHE DATA SPACE

Bin 1 Bin 2

Bin 6 Bin 7

Bin 11 Bin 12

• • •
Bin n-:;

I

Bin n-2

Bin n

Figure I-File creation

Bin 3
i

Bin -l I

Bin 8 Bin 9

Bin 13 Bin 14

I
Bin n-1

I

Bin n I

fixed length fields which occur in every record and (2) the
beginning of the "field directory." The "field directory"
affords direct access to any "variable" field-a field of
varying length which mayor may not exist in each logical
record. An entry in the field directory, consisting of a 16-bit
field "tag" and a pointer (bin number) to the bin containing
the data field, is present only for fields actually present in
the record. If a field extends over more than one bin, the
chain pointer of the bin points to a "continuation" bin,
providing for fields of any length. The "field directory" is a
data field that may be continued in the same fashion,
affording an unlimited number of data fields. Data fields are
updated "out-of-place"-new bins are acquired to hold the
modified or new data, and the "field directory" entry is
updated. Supplanted data bins are restored to the "free"
list using standard list maintenance techniques.

Each data field (Figure 3) is represented within a bin by a
16-bit binary number, or "tag," followed by a 16-bit length
field. The data field may be subdivided further into sub
fields of fixed or varying length, each of which may be
tagged (as to content) with an 8-bit code.

To achieve a degree of data independence each ,file is
described by a File Descriptor Table, which contains a
description of the physical characteristics of the file and,
for each field, its storage format. In addition, each data
field is associated with a symbolic name and other informa
tion used in the file maintenance and display programs.

Each data file has an associated "inverted" file for
subject access. The inverted file entries are updated on a
regular schedule after the data file is updated (Figure 4).
Data in the inverted file are stored in the same format as
data in the prime data file so that both may be processed by
the same data management software. Symbolic keys in the
inverted file are subject terms; and data fields in the
inverted file are lists of symbolic keys of data records in the
prime file.

Due to the data base architecture, the same software
(with well-defined, customized "special processing" exits)
may be used to maintain and access any file available to
SCORPIO-shortening development time and minimizing
investment in new software.

REUSABLE/DISPOSABLE SOFfWARE

Software development is a major expenditure in any
automation project, especially since personnel costs are
rising as hardware costs are beginning to fall. A major
component of SCORPIO is the software development phi
losophy, which requires a new product or facility every
three to four months, and requires "dependency isolation"
in programming.

The literature of automation is full of horror stories
describing software projects laboring to produce a mouse.
Millions of dollars have been expended for three or more
years to develop a product which failed to meet the current
needs of the sponsoring organization. In recognition of the
fact that organizational requirements change over time,
each new facility for SCORPIO is developed in three to

INDEX RECORD

S Symbolic
Key

BASE DATA BIN

Fixed
S Fields

STATUS BIT VALUES

Bin Type x

Updated .x
.. x

Inactive ... x
Deleted x •..
Split x ..
Defective x.
Continued x

FLDl

FLD2

DATA BIN

0= Base Bin
1= Data Bin
1= Updated recently
Not used

FLDl

FLD3

FLD3

1= Candidate for addition to "free" list
1= Available for reuse; not on "free" list
1= Last field on bin has been split
1= Defective or incomplete
1= Last field on bin is continued on bin

addressed by chain pointer

Figure 2-Logical record structure

(
.)

r
J

(

Direct-
... -"" ory - .;'

Cont'd

FLD3
.-+---/1 Cont ! d

FLDl
Cont'd

four months ___ re9uiring a minimum investment bX the. orga:
niz<lrloli malntafn'lni·cu'stomer i;}tere~t"~~~Tp;~~,idi~g for" a
customer "feedback loop." With a working product in
hand, customers can visualize future automation require
ments and evaluate knowledgeably other cost/benefit trade-

2ff~:)f I!~~.1y-g~ye.IQP~d prQdu.cts fail to m~et~~:
requirements, they may be rewritten or simply discarded
with minimum loss.

I
data data data

8
1

fixed len,th

Il.l
dat~ data

8 1 l-tl rariahlc 1 ength

(c) I data
data

LRL 1 I tit!
Tap.geu, rariablc Ll'n~ th

Figure 3-Data field structure

For the software development team, programming in a
changing environment is simplified by "dependency isola
tion." In the development of SCORPIO, three major envi-

flat.
Entry

Iooex Data Index Data

SI>Kl2620 BILL sn02620 QV>.."W SPON 002619
DATE ll/S/7S • s;o2620
SPON ~Ir. Cannon • TNllX r"",t, • !N!JY ~!'lJ2f19

Interest Rates lRUSTS SN02620

Figure 4-File maintenance and inverted files

I

452 National Computer Conference, 1977

Hnl

'100

800

700

600

500

400

300

200

100

QU;\Im:R I:~1l1\C 11Xn

Figure 5-SCORPIO searches per day, September 1974 to September 1976

ronmental dependencies were identified:

• Terminal characteristics
• Data base characteristics
• Intra-program communication protocols

To avoid terminal dependencies, an "internal terminal"
of limited functional capability was defined. Specifications
for the "internal terminal" were:

• Upper case only (during input)
• Variable number of 79-character display lines
• Variable buffer size (minimum 960 characters)
• Limited functions:

-NL (skip to a new line)
-SOM (provide a start-of-message space)
-NP (new page (erase screen for CRT»

During input, a sub-program converts the device-dependent
message to the internal format. In processing, each func
tional unit composes a response which is translated to an
output form acceptable to the terminal which originated the
request.

To circumvent data dependencies, a table-driven, data
directed display language was devised. With the data base
architecture as a base, it is possible to define display
functions based on the presence or absence of data ele
ments in a data record. A programmer defining a display
merely names the display option and defines a series of
display commands ("skip to a new line," "move litera! x to
output," "move data field x to output") for interpretation
by the Display Format program. Through subroutine calls,
the Display Format program composes a response to a
request for display.

To minimize dependencies in intra-program communica
tion, all programs communicate at the external level, as
though a terminal user had requested a service. All pro
grams are written as "stand-alone," primitive functions,

available to other programs as well as to the terminal user.
Each functional component is isolated as much as possible
from others. Individual programs, written in Assembler
language, make heavy use of macroinstructions for com
mon functions and local subroutine calls, including the
Assembler language macroinstructions: IF, ELSE, DO,
and CASE, developed by IBM.

The "dependency isolation" techniques used in SCOR
PIO have led to gratifying flexibility: new terminal types are
accommodated with ease; new display formats are installed
and discarded in a matter of hours; changes to a major
feature of the system-the structure of keys in the inverted
file-have been made with no consequences in system
reliability; new commands are added without affecting the
performance of existing ones; and the Mean Time Between
Failure (MTBF) for the software in SCORPIO is six to eight
months.

NON-TECHNICAL RETRIEVAL LANGUAGE

A major goal of the SCORPIO retrieval language IS ItS
use by "end users"-without specially-trained intermedi
aries. Contributing to ease of use are: the language conven
tions, the "accommodating" nature of system functions
and the people-oriented nature of system responses.

As concerns the retrieval language, the only major re
striction is that the first part of an input message must be a
command code. The number of commands is deliberately
limited; and all commands are free-form, imperative de
mands that something be done: "Select," "Find,"
"Browse." No change of "mode" is required for using
search term selection, negotiation and display functions.
Continuation of most commands requires a single key
stroke.

System functions are "accommodating" in that the ter
minal user always receives a useful, specific response. For
example, the response to an unsuccessful FIND command
is an alphabetic display of the term index, providing the
terminal user with information to be used in deciding how
to proceed. In addition, the retrieval language is "tailored"
for each data base, with different default processing options
assumed for each function. Alternate command forms,
including common mis-spellings, command abbreviations
and fully-spelled command names are accepted in place of
command codes.

System responses are "non-threatening" in recognition
of two facts: most casual users approach a computer
terminal with trepidation, and most consistent users dislike
being scolded by a machine. No imputation of fault or error
on the part of the user is made in any system message. The
words "error" and "invalid" are not in the system vocabu
lary; rather, messages suggest that "SCORPIO was unable
to interpret. ... " In addition, all prompting messages are
passive-"READY FOR NEW COMMAND" rather than
"ENTER NEXT COMMAND," so that the user does not
feel pressed to "keep up with" the computer. So far as
possible, responses to commands appear in a form familiar
to human beings, rather than in a rigidly-controlled form

suitable for machines. For example, the prompting message
in a multi-page response advises the user that the current
page is "1 of 15" instead of "0001 of 0015." All of the
preceding examples illustrate the elaborate precautions re
quired of an on-line system which is to be used frequently
by a "computer-naive" customer group.

CURRENT STATUS

Current usage of SCORPIO by the staffs of members of
Congress, the Congressional Research Service and the
Library of Congress indicate that an end-user-oriented
information retrieval system can enhance the traditional
services offered by information centers in a library environ
ment. Daily use of SCORPIO began in February 1974; and
Figure 5 shows the 1000 percent growth in SCORPIO usage
from September 1974, to September 1976. Increased use
appears to depend on two factors: an increase in the
number of terminals and the availability of new files.

As of September 1976, the Library of Congress supported
over 500 remote terminals, of all types, located in Congres
sional offices, the Congressional Research Service and all
departments of the Library, of which approximately 250 are
used primarily for accessing data bases under SCORPIO.
Over 2,000 individuals have been trained in the use of
SCORPIO, and records show that each terminal is used for
four to six searches a day, with each search requiring eight
to ten commands in a twenty-minute period. Terminals in
the Library reading rooms are used by Library patrons with
no training and only a few simple charts for guidance.

Seven data bases, requiring two billion characters of on
line storage, are available through the Library of Congress
on-line system (processing 40,000 transactions a day, of
which over 17,000 are SCORPIO commands).
The data bases are:

• Legislative Information Files for the 93rd and 94th
Congresses: containing information on public general
bills and resolutions. Retrieval terms are: bill number,
pu~lic law numb~r, sp<:m~or, c.0~pon~or, committee,
index terms, actIons and the short title of the bIll.

• Major Issues File: a collection of concise, objective
briefs on key issues of public policy. These briefs are
written by CRS specialists in a set format that includes
precise definition of the issue, a background and policy
analysis, references to major current legislation, and
additional references. As new issues emerge, they are
added to the file. Retrieval terms are: issue number,
title and index terms.

• Bibliographic Citation File: a collection of over 150,-
000 references to significant, current periodical arti
cles, GPO and U.N. documents, selected CRS reports
and interest group or lobby group publications. This
collection is selected by the bibliographic staff of the
CRS Library Services Division. Retrieval terms are:
accession number, author and index terms.

• Congressional Record Abstracts for the 94th Congress:
a collection of abstracts of the daily Congressional

SCORPIO 453

Record, prepared by Capitol Services, Inc., which
guides a terminal user to relevant pages of the
Congressional Record. Retrieval terms are: accession
number, bill number and index terms.

• National Referral Center Resources File: a collection
of more than 10,000 descriptions of "information re
sources" , which are organizations qualified and willing
to answer questions or otherwise provide information
on virtually any topic in science and technology,
including social sciences. Retrieval terms are: acces
sion number, name of organization, geographic de
scriptors and index terms.

• Library of Congress Computerized Catalog: a file of
over 600,000 references from the Library's MARC
(Machine Readable Catalog) data base. This file con
tains references to English-language books catalogued
since 1969, various foreign language books catalogued
in the i970s, and to the Science Reading Room collec
tion of some 6,000 titles. Retrieval terms are: LC card
number, LC classification number, title, author, and
index terms.

Evaluations of end-user satisfaction with SCORPIO have
been sporadic and unquantified. A study conducted by the
Congressional Research Service for the Senate Subcommit
tee on Computer Services did find significant use of the
Legislative Information files by the professional staff in
Senate offices. Positive comments were made regarding the
speed of response and ease of use of the system. Negative
comments related to lack of training and system "down
time" due to terminal or central-site hardware failure.
Reference cards, as opposed to voluminous reference man
uals, were praised for brevity and clarity. Other measures
of end-user satisfaction, such as the "comments log"
maintained in the Science Reading Room for the walk-up,
untrained customer who uses one of the three public
terminals, are relatively unused, although the terminals are
used over 100 times a day. More adequate user feedback
mechanisms are planned for the future.

PLANS

Plans for the future development of SCORPIO include
both new facilities and new files. Files planned for 1977
include:

• Legislative Information File for the 95th Congress:
including expanded status information and the tracking
of amendments, printed and unprinted, in a coopera
tive effort with the automation staffs of the House of
Representatives and the Senate

• Congressional Record Abstracts for the 95th Congress:
including retrieval by names of Senators and Congress
men

• Several General Accounting Office Files: including the
Reports Required by Law data base.

454 National Computer Conference, 1977

New SCORPIO features include:

• Installation of SCORPIO in the computer centers of
the Senate and House of Representatives

• Text retrieval (in addition to term retrieval)

• Various utility functions, such as on-line/off-line print,
sorting of results sets, execution of stored queries, and
on-line update of data records

• Investigation of machine-aided indexing, natural lan
guage retrieval and the addition of computational facili
ties.

Comparing equivalent network services through
dynamic processing time prediction*

by SANDRA A. MAMRAK
The Ohio State University
Columbus, Ohio
and
National Bureau of Standards
Washington, DC

and

STEPHEN R. KIMBLETON
National Bureau of Standards
Washington, DC

ABSTRACT

Computer networks provide the potential for resource shar
ing. Realization of this potential requires knowledge of the
available resources within the network. Moreover, if a
given resource is available at more than one host, selection
of the most appropriate host is required. This paper devel
ops a dynamic means for host selection assuming that the
evaluation metric is processing time. An experiment is
described which provides an initial evaluation of the key
component of the methodology on two separate systems.
The paper concludes with a discussion of some overall
insights into the applicability of the methodology and its
implementation requirements.

INTRODUCTION

Computer networks provide a mechanism for sharing re
sources. At present, realization of this potential is limited
by: the lack of a support facility for identifying available
resources such as compilers, editors, transaction proces
sors, etc., and their locations;! problems in educating users
regarding access requirements of individual systems;2 the
problem of supporting any necessary data translation in an
automated manner;3 the requirement for translation of Job
Control Languages;4 and the need to select the "most
suitable" of a collection of functionally identical services
given that these other requirements have been met.

This paper describes a methodology for selecting the
"best" host from among a collection of hosts providing a
functionally identical service under the assumption that

* CONTRIBUTION OF THE NATIONAL BUREAU OF STANDARDS.
NOT SUBJECT TO COPYRIGHT.

455

processing time is to be used as the selection criterion. This
requires development of a means for estimating the proc
essing time of an application job. We have adopted an
empirical approach based on the observation that job proc
essing time is the sum of the standalone processing time,
the queuing time for the processor, and the queuing time for
the 110 devices accessed by the job. Assuming, as we shall,
that a synthetic module characterization of the job is
known, it is straightforward to estimate standalone process
ing time. Thus it only remains to evaluate the queuing time.
This is accomplished by initiating a Micro Benchmark
which accesses each 110 device referenced by the applica
tion job and consumes a small amount of processing time in
order to permit determination of average 1/0 and processor
delay.

The general problem of selecting a processing site, here
after referred. to a§. the IQc,:;ttjQU sele.ction ,PJQbkm •. will. be
formulated in section two; section three describes the
general, dynamic methodology which has been developed
to meet the identified requirements. Section four then
discusses the results of an experimental investigation of the
suitability of the approach and section five concludes with
some remarks regarding general implementation aspects.

NETWORK RESOURCE SELECTION

Developing an approach to network resource selection
requires the specification of at least: (l) the entity responsi
ble for performing the selection; (2) the support capabilities
available for implementing the result of a selection decision;
and (3) the metric used for making the selection decision.

The entity performing location selection decisions can be
either the user or some network process. In either case one
requires a capability for obtaining the information to be

456 National Computer Conference, 1977

used in selecting the specific host computer containing the
resource to be used.

At the present time, automated aids for network resource
selection do not exist. This is not surprising in view of the
fact that the basic components of a methodology are only
now being developed. However, some theoretical analyses
have been performed based upon queuing theory and inte
ger programming techniques. 5 -

7

Given that either the user or a network mechanism
serves as the selection entity, the collection of possible
decisions is still limited by the support capabilities avail
able. A spectrum of such capabilities can be envisioned
ranging from the rather unlikely, but very general case of
decompilation of object code to generate source code
capable of being executed on a different vendor's main
frame, to a relatively straightforward selection limited to a
set of homogeneous systems having installed modules
which are functionally identical. We note in passing that the
capabilities being investigated under the names Network
Access Machines2 and Network Operating Systems3 will
significantly reduce the difficulties in providing ease of
access to heterogeneous systems as well as those of moving
jobs and data among machines.

Metrics for network resource selection can be based on a
variety of factors including cost, ease of utilization or
processing time. The issue of cost based selection has been
investigated in other papers8,9 with significant results. It has
been shown that there are significant intersystem variations
across product lines in the cost required to perform a
specific job such as a compile or compile-load-go. Thus, the
utility of cost based selection has been demonstrated.
Moreover, work has been done in the area of maintaining a
data bank of information on job types and the costs of their
execution on different systems.

Selection based on ease of utilization is of natural inter
est. However, support of such an approach will require a
model of the user since current research demonstrates that
user perceptions regarding the adequacy of a command
language are dependent upon the level of sophistication of
the user. lO As a result, there is no single "best" command
language but rather only the most appropriate language for
a given user. Indeed, the collection of constructs deemed
appropriate to the accomplishment of a specific job will
vary based upon user sophistication.

The two preceding metrics are relatively static since the
decision made will be valid for relatively lengthy periods of
time. There is also a need for a more dynamic metric
allowing selection among systems with time varying work
loads. This requirement has led to our interest in processing
time as the metric for selection. Specifically, we assume
that a user has access to a collection of functionally
identical capabilities located on different hosts. The metric
to be used to select the host-resource pair is processing
time, and our concern is the development of a practical
methodology for processing time estimation. That is, we
will develop a means for predicting the processing time for
functionally identical resources located on a collection of
hosts and we assume that the user can determine the
"best" host given this information. If the decision is solely

based on processing time minimization, it is evident that the
entire selection process can be automated. However, selec
tion may also involve subjective factors such as reliability
which force the user to make the decision. Note that we are
not explicitly concerned with the identification of the set of
hosts containing these functionally identical capabilities nor
with the precise manner in which processing time estimates
are evaluated to determine the host-resource pair to be
used.

PROCESSING TIME PREDICTION

The collection of (non interactive) jobs processed by a
computer system can be categorized depending on whether
or not resource requirements are known. If resource re
quirements are unknown, it is unlikely that meaningful a
priori statements concerning processing time (elapsed time
from initiation to termination of job processing) can be
made.

If job resource requirements are known it is reasonable to
seek to predict the processing time of the job as a function
of the state of the system at the time of the request for its
processing. To accomplish this, two basic approaches can
be considered: prediction based upon static or dynamic
information.

Static prediction of processing time attempts to develop
correlations between processing time and job resource
requirements such as amount of core, total CPU time,
number of disk accesses, etc. Such an approach has the
attractive advantage of being simple to implement. Unfortu
nately, its independence of the state of the system at the
time of arrival of the job renders the results relatively
imprecise as previous investigations have shownll and as
the intuition of the reader would suggest.

Dynamic prediction of processing time provides a poten
tially more accurate estimator; the disadvantage is the
requirement for sampling either each time a location selec
tion decision is made or, alternatively, on a continuing
sample driven basis.

The basic approach used in this paper for estimation of
the processing time (PT) of a job requires: (1) assuming that
the synthetic module characterization of job resource re
quirements is known; (2) expression of the processing time
of an application job, PT(AJ) , in terms of this synthetic
module characterization plus terms representing processor
and 110 device delays reflecting the existence of other jobs
in the system; and (3) estimation of these device delays for
the application job through their measurement based on
utilization of a Micro Benchmark which is a small test job
for determining the average deiay for the processor and
each 110 device accessed by the application job whose
processing time is to be estimated. Thus, execution of the
Micro Benchmark results in the generation of a table of
processor and 110 device delays. This information, in tum,
combined with the synthetic module characterization of
application job resource requirements permits estimation of
job processing time. We now develop this basic idea in
more detail.

Synthetic modules 12
-

14 provide an abstract characteriza
tion of a job in terms of its resource requirements on an
individual system. Such characterizations consist of at
least: an average CPU burst representing the amount of
processor time used between I/O operations, a probability
distribution characterizing the selection of an I/O device
following the completion of a processor burst, and expres
sions for the amount of information to be read/written from
a given device given that an I/O operation is directed to it
(this permits determination of the I/O service time for the
device).

Given the synthetic module characterization, one knows
the total CPU time required to process the job and the
number of 110 operations which will be made to each
device. Thus, the processing time of the job can be ex
pressed in the form:

* PT=TCPU + 2 (NIO(i)*SIO(i»
+ wCPU + L (NIO(i)*QIO(i»+ ST

where the sum is over all the 110 devices i in the system
and:

PT
TCPU
NIO(i)

SIO(i)

QIO(i)
WCPU
ST

denotes the processing time of the job
denotes the total CPU time of the job
denotes the number of requests to I/O device

I

denotes the standalone time to service a
request to device i

denotes queuing time per request to device i
denotes the total processor wait time
denotes the system scheduling time for the

job.

Note that the first and second terms in equation (*) are
known from the synthetic module characterization of the
job, the third and fourth are to be determined via utilization
of the Micro Benchmark, and the fifth will be determined in
a side experiment.

To estimate the third and fourth terms, observe that it is
conceptually straightforward to construct a Micro Bench
mark which accesses each I/O device in the system once,
p~rt~~~~~"~ ~n;;fC~'k~o~7t"'aI11ou'n~t~ or CPU ~'proces-slng'and
terminates execution. In fact, since one is performing
something conceptually analogous to sampling from a ran
dom phenomenon, suitable estimation of the average delay
requires more than one access to each device. Thus, a
Micro Benchmark consists of a series of NIO(i) requests
to each device i in the system alternated with the utilization
of known amounts of processor time.

Given that the Micro Benchmark has been executed, the
anticipated average delay in accessing each I/O device can
be tabulated, as can the average delay per unit time in
utilizing the processor. (This argument tacitly assumes the
scheduling of an individual job is independent of its re
source utilization. If this is not the case, such scheduling
effects must be estimated either through expansion of the
size of the Micro Benchmark to place it in the appropriate
scheduling class or, alternatively, through post processing
of the delay estimators yielded by the Micro Benchmark.)

Dynamic Processing Time Prediction 457

The fifth term reflects time used in scheduling the indi
vidual job which is, therefore, chargeable to the job but is of
an overhead nature. The estimation of this term is dis
cussed in the example.

To summarize, one first forms the synthetic module
representation of the job, then runs the MB to obtain the
delay estimators, and then uses (*) to estimate PT. We now
describe the results of an experiment aimed at providing
some insight into the accuracy of the results which can be
obtained.

AN EXPERIMENT

To gain insight into the quality of the prediction afforded
by our processing time prediction technique, test runs were
made on two systems for a job accessing a single disk
device. One of these systems is a computer used primarily
for research, a DECSystem-tO mnning the TOPS-tO Moni
tor. The other is a production oriented UNIVAC 1108
running EXEC 8. *

THE MICRO BENCHMARK

The Micro Benchmark was written in Fortran in the
interests of portability and is essentially a DO Loop whose
interior consists of two major components. The first com
ponent is another DO Loop whose parameter can be
adjusted to consume a specified amount of processor time.
Thereafter, a routine is called which performs a READ
from a file located on a disk followed by a WRITE.
Utilization of the combination of a READ and WRITE to
estimate average delay was adopted to "average out" any
differences due to the existence of different scheduling
poliCies for READs and WRITEs.

A key issue requiring resolution before execution of the
Micro Benchmark is the determination of the index of the
DO Loop. As commented earlier, it is unlikely that an
index of one would yield a sample value for processor delay
or I/O device delay sufficiently close to the population
average. In view of this one can seek to use either a
I)J~agiiiari(;. ~ut-aiIJ-tI'yappi0adl vI Tu iirovi'Je d llieoI:akcil
justification for index selection. We have adopted the latter
approach.

Theoretical justification of index selection is naturally
approached via statistics. The underlying population is
stochastic in view of the well-known time variation in
computer system loading. However, if we assume that the
rate of time variation in the basic population parameters is
small in comparison with the time required to execute the
Micro Benchmark, it is reasonable to use standard statisti
cal techniques. Thus, we seek to determine that index N
such that for a sample of size N, the difference between the
population mean and the sample mean will be likely to be
"small enough."

* The identification of certain commercial equipment and products in this
report is done to adequately describe the experiments conducted. In no
sense does the identification imply recommendation or endorsement by the
National Bureau of Standards.

458 National Computer Conference, 1977

Note that the determination of N is specific to each
individual system; indeed, in view of its dependence upon
the performance of the Micro Benchmark, it may be time
varying. However, one could determine an upper bound for
N and use that as the common value. The indices used for
N in our experiments are presented in the top two sections
of Table I. Derivation of the value of N is discussed in the
appendix.

Although the preceding discussion of the technique for
selecting N is reasonable, some experimental justification
seems desirable. As a result, test runs were made with jobs
whose iteration parameter in the DO loop was a multiple of
those in the Micro Benchmark. The agreement proved to be
very satisfactory. Thus, if the DO loop index was 20 times
that of the Micro Benchmark, the required 110 processing
time was very close to 20 times that needed for the Micro
Benchmark (actual values were 20.06 for the DECSystem-
10 and 19.98 times on the UNIVAC 1108). This observation
also lends credence to our assumption that system delay
parameters change slowly in comparison with the Micro
Benchmark processing time.

EXPERIMENTAL RESULTS

Two assumptions were made to simplify the initial evalu
ation of the adequacy of Micro Benchmarks. These are: (I)
job resource requirements are mUltiplicative factors of
those of the Micro Benchmark, and (2) CPU and 110 delay
WCPU(MB) and QIO(MB) are combined into a single wait
term W(MB)=WCPU(MB)+QIO(MB). PT(MB) can now be
expressed as:

PT(MB)=TCPU(MB)+ NIO*SIO(MB)+ST + W(MB)

where ST denotes the system scheduling time. As a result,
the experimental data presented in Table I now permit us
to write the following equation for the DECSystem-lO:

PT(MB)=.186+5.248+.08PT(MB)+W(MB)

where, through a side investigation, the system scheduling
time was found to be proportional to the total processing
time of the job and is represented by the term .08PT(MB).
(This proportionality to total processing time rather than
standalone processing time seems generally consistent with
knowledge concerning the properties of operating systems

scheduling.) Given this information, if PT(AJ) denotes the
processing time of the application job, whose processor
requirements are n 1 times those of the Micro Benchmark
and whose disk requirements are n2 times those of the
Micro Benchmark, we can now write:

PT(AJ)=nl *TCPU(MB)+n2*NIO*SIO(MB)

+ .08PT(AJ)+ W(MB)*PT(AJ)/PT(MB)

This equation assumes that the ratio of the wait time to the
total elapsed time for the application job will be the same as
the ratio for the Micro Benchmark (for the special case
which we are considering of a system consisting of one
processor and one 110 device-the more general case would
require modification of these arguments on a per device
basis). Substituting the values provided in Table I and
solving for PT(AJ) now yields:

PT(AJ)=(.186n 1 + 5.248n2)/(.92- W(MB)/PT(MB»

Empirical investigation of the accuracy of this equation has
shown that the predicted processing time was within 20
percent of the observed processing time approximately 75
percent of the time, regardless of the system load.

Prediction proved more difficult for the UNIVAC 1108
reflecting, perhaps, the more dynamic workload of this
system. As a result, it proved necessary to enlarge the
values of the indices of the DO loop to the "revised"
values listed in Table I. Using the information displayed in
Table I, the basic processing time prediction becomes:

PT(AJ)=(1.125n 1 +5.805n2)/(I-W(MB)/PT(MB»

and was found to predict within 20 percent of the observed
processing time 75 percent of the time. Figures 1 and 2
graphically display the prediction error for both of the
systems under study.

DISCUSSION AND CONCLUSIONS

The objective of this paper was the development of a
methodology for selecting among hosts providing function
ally identical services using processing time as the basis of
selection. This requires development of a means for esti
mating processing time which, in tum, requires considera
tion of possible alternatives.

TABLE I-Stable Micro Benchmark Components

Mean
MB I DO Loop Processing

I Component Index Time (ms.)

DEC System-IO
CPU 6000 185.7 I
10 50 5247.9

UNIVAC 1108 CPU 30000 I 224.5

(initial) 10 10 I 326.9

UNIVAC 1\08 I CPU I 150000 I 1124.81 I
(revised) 10 250 5805.75

...
0
W
C
0
.~

(J

:c
0) ...
0.

Q) 100
C)
ca
C
0)

75 (J ...
0)
0.
0)

50 > . ~
ca
"S
E 25
::::J

CJ

•

97% of the predictions
have errors of ~"'\ •
50% or less •• ~,

•• • 'e'\ --,
•• 75% of the predictions

••
-,.

•
• •

10

have errors of
20% or less

20 30 40 50
Percent Error

100

Figure I-Error in response time prediction: DEC System-IO

Intuitively, it seems reasonable that a dynamic approach
to processing time prediction based on utilization of a
Micro Benchmark should prove more satisfactory than a
static approach based on a limited number of system
performance measures. Acceptance of this statement, how
ever, requires demonstration of the feasibility of the Micro
Benchmark approach. This requires formulation of the
general approach coupled with experimental evaluation.

Although these advantages are attractive, they must be
weighed against the disadvantages reflecting: (1) costs of
executing the Micro Benchmark, (2) difficulties in deter
mining the synthetic module characterization of job proc
essing requirements, and (3) questions concerning the feasi
bility of the approach in a complex environment with jobs
accessing a large number of system resources.

The first problem is essentially a sampling problem and
seems amenable to further investigation via sampling meth
odologies. The second is effectively an organizational issue

Q)
C)
ca

0 c ... 0) ... (J w ...
c 0)

0 0.
.~ 0)
(J > :c .~

0) ca ... "3 0. E
::::J

CJ

100

75

50

25 • •

92% of the predictions
have errors of ~,_
50% or less (•) •• ... '-'

t'.\ ',-,
I 75% of the predictions

have errors of

•• •

10

20% or less

20 30 40 50 100

Percent Error
Figure 2-Error in response time prediction: UNIVAC 1108

Dynamic Processing Time Prediction 459

since most of the required information is available to the
operating system and, via some of the more sophisticated
system accounting packages can be made available to the
userY The third problem requires further investigation.
Although it is our opinion that the Micro Benchmark
approach is generally feasible, verification requires contin
ued testing and evaluation in operational environments. In
addition, extension of this approach to' include estimators
for scheduling time, i.e., the elapsed time from arrival of the
job until initiation of service, would also be of interest.

In summary, it would appear that development of a
methodology for processing time based selection among
host computers is feasible, that the overhead cost in utiliz
ing the methodology is acceptable, and that continuing
investigation is in order.

REFERENCES

1. Benoit, J. W., E. Graf-Webster, "Evolution of Network User Ser
vices-The Network Resource Manager," Proc. 1974 Symposium, Com
puter Networks: Trends and Applications, IEEE Inc., May 1974, pp. 21-
24.

2. Rosenthal, R., "Network Access Techniques-A Review," AFIPS 1976
Conference Proceedings, National Computer Conference, Vol. 45, June
1976, pp. 495-500.

3. Kimbleton, S. R. and R. L. Mandell, "A Perspective on Network
Operating Systems," AFIPS 1976 Conference Proceedings, National
Computer Conference, Vol. 45, June 1976, pp. 551-559.

4. Uzgallis, R. c., "Four Language Experiments in Computer Language
Design," University of California, Los Angeles, California, July, 1975.

5. Balachandran, V., J. W. McCredie, and O. I. Mikhail, "Models of the
Job Allocation Problem in Computer Networks," COMPCON 73-
Seventh Annual IEEE Computer Society International Conference,
IEEE Inc., 1973, pp. 211-214.

6. Barr, W. J., "Cost Effective Analysis of Network Computers," Dept. of
Computer Science, University of Illinois at Urbana-Champaign, Report
No. VI-DCS R-72-538, August 1972.

7. Bowdon, E. K., "Network Computer Analysis," Dept. of Computer
Science, University of Illinois at Urbana-Champaign, Report No. IU
DeS R-72-505, January 1972.

8. Alsberg, P. A., "Distributed Processing on the ARPA Network
Measurements of the Cost and Performance Tradeoffs for Numerical

... Iash.~· eaJ~ •. IJj:.J.b.e, J::.if#aln,"~.inJ.er~Cao/£ulK.:~.~
System Sciences, Honolulu, Hawaii, January 1975, pp. 91-94.

9. Mamrak, S. A., "A Network Resource Sharing Mvdule to Augment
User Cost-Benefit Analysis." Proceedings 1976 Symposium, Computer
Netlvorks: Trends and Applications, IEEE Inc., November 1976.

10. Heafner, J. F., "Protocol Analysis of Man-Computer Languages: Design
and Preliminary Findings," ISIIRR-75-34, Information Sciences Inst.,
Univ. of Southern California, Marina del Rey, June 1975.

11. Mamrak, S. A., "A Predictive Response Time Monitor for Computer
Networks," Proceedings Third International Conference on Computer
Communications, Toronto, Canada, August 1976, pp. 626-630.

12. Buchholz, W., "A Synthetic Job for Measuring System Performance,"
IBM Systems Journal, Vol. 8, No.4, 1969, pp. 309-318.

13. Sreenivasan, K. and A. J. Kleinman, "On the Construction of a
Representative Synthetic Workload," Communications of the ACM,
Vol. 27, No.3, 1974, pp. 127-132 .

14. Kimbleton, Stephen R., "A Heuristic Approach to Computer Systems
Performance Improvement. I-A Fast Performance Prediction Tool,"
Proceedings 1975 National Computer Conference. Vol. 44, June 1975,
pp. 839-846.

15. Durbin, Goo et ai, "Analysis and Validation of the System Management
Facilities of IBM Operating System MVT," Tesseract Corporation
Report, 1976.

460 National Computer Conference, 1977

APPENDIX

Determination of the appropriate value of N given that the
distribution of the underlying population is normal with
known variance requires utilization of the Student's t
distribution. Thus, let s be the population standard devia
tion (determined through a side experiment), and assume
that we wish a confidence level of 100(1-a)% that the true
population mean m will lie in the interval (EX -d, EX +d),

where EX denotes the mean of the random variable X.
Then the appropriate value of N is given by:

N = (tS)2
d2

where t corresponds to the value of the Student's t distribu
tion for (1 - aJ2), N - 1. Since the value of t viewed as a
function of N is effectively constant for N>=30, this
equation permits straightforward determination of N for the
values (>=50) used in the Micro Benchmark.

A structured data base computer
conferencing system

by GEORGE W. ARNOLD* and STEPHEN H. UNGER
Columbia University
New York, New York

ABSTRACT

A system called CBIE (Computer Based Information Ex
change) is described, whose function is to facilitate commu
nications among groups of people who cannot conveniently
meet face-to-face. Each individual, at his own convenience,
examines the existing conference records, via a terminal
connected to the computer by a telephone line, and adds his
own comments. A key feature of CBIE is that the confer
ence record is structured by the users in the form of a
network of elements systematically related to one another.
The system is designed so that, utilizing a simple set of
commands, users can peruse the stored information in an
orderly way in accordance with their own interests. Appli
cations include meetings of faculty committees, govern
mental committees, people engaged in joint research or
development projects, and seminars or courses. An initial
version of CBIE has been implemented under the RSTS
time sharing system running on a PDP 11150. A general
outline of the implementation is presented.

INTRODUCTION

A major occupation of modem man is attending meetings.
Few \lQcatiWlS.axe exempt from large doses of this activity ~
some-such as the academic and governmental profes
sions-are notorious for overindulgence. If one thinks of
meetings as including all occasions on which two or more
people exchange significant amounts of information on one
or more well defined topics often with the object of making
decisions, then we are indeed discussing an important
matter.

Certain basic problems arise when frequent meetings are
necessary in a fast paced, mobile 20th Century environment.
The necessity for such meetings places a severe drain on
the time of those who are frequently involved, and this, in
tum, causes scheduling problems. That is, it is often
difficult to find a time that is mutually convenient for each
member of a set of busy people. The necessity for interac-

* This author is a member of the technical staff of The Bell Telephone
Laboratories and his work on this project was partly supported by that
organization's graduate tuition re-imbursement program.

461

tions among widely dispersed individuals often makes it
difficult to find a suitable place for a meeting. The need for
people to travel to the meeting place constitutes an addi
tional burden on their time-as well as entailing financial
costs.

In a broad sense the necessity for many meetings,
particularly those suffering from the above mentioned diffi
culties, is a consequence of our complex, technologically
based society. Fortunately technology can also be part of
the solution.

The most obvious and widespread form of technologi
cally assisted meeting is of course the two-way telephone
conversation. Many serious two-person meetings are held
via telephone, and at a modest price the problem of
distance is solved. Much less widely used is the multi-per
son telephone conference. Using standard equipment, tele
phone conferences involving up to 30 locations can be set
Up.l At present, with commercial telephone systems, these
must be arranged in advance through a special telephone
conference operator, who calls each party involved. This is
a high cost operation in comparison witl1 directly dialed
two-person calls. However, conferences involving up to
four parties can be dialed up directly by people served by
the most modem telephone central offices, 2 and military
versions of the same equipment are used for direct dialing
uf e ~en larger 1.;0rirerence~."

Contrary to earlier beliefs, two-way telephone conversa
tions are quite satisfactory for most purposes, despite the
lack of non-verbal cues that we use to facilitate communi
cations in face-to-face situations. 4 Furthermore, experi
ments with conference calls involving nine or more people
have shown that they are also quite satisfactory to the
participants; such problems as identification of speakers
and orderly access to the floor are not as serious as had
been anticipated. 5

Video conferences would be still more satisfactory in
general, and where pictorial displays are required, such
facilities are particularly important. But video conferences
are quite expensive and awkward to arrange. This will
undoubtedly remain the case for at least a decade. Less
expensive techniques for conveying pictorial data in re
stricted forms are, however, becoming available, for exam
pIe, the remote blackboard and the scribblephone. 6

462 National Computer Conference, 1977

It thus appears that the telephone plant now in existence
and new facilities rapidly being brought online can be
effectively used for many meetings, both two-person and
multi-person. Where the main problem is the spatial disper
sion of the participants, this can be a very satisfactory
solution.

A very different approach has been taken to deal with the
problem of temporal dispersion as well as certain other
problems not yet discussed. This is to use a computer to
buffer information fed in by conference participants from
(usually) remote terminals. Basically the computer is used
as a bulletin board on which participants can write mes
sages and read those posted by others. A key point is that
each conferee can, at any time, dial up the computer to
review the status of the conference and to add his own
input as desired. Thus it is not necessary that all partici
pants be available at any particular time. This non-real time
feature is a principal advantage of computer conferencing.
Anyone with a terminal that can be linked to a phone line
can participate, and since an ordinary voice channel is quite
adequate for such transmissions, the cost for remotely
located conferees is not excessive.

The idea of computer conferencing seems to have been
first implemented by HalF and TuroffS- lO

• They were
particularly interested in implementing Delphi systems (a
technique for arriving at quantitative estimates of difficult
to assess factors by interweaving the estimates of a number
of individuals), but they also implemented general purpose
systems. Facilities are incorporated for directing messages
to specified subsets of the participants and for the casting,
tabulating and displaying of votes. A number of other
people have also explored the general concept. 6

•
11

-
13

The subject of this paper is an enhancement of the
computer conferencing idea, whereby the items entered are
not simply recorded as a linear sequence, but can be
structured in a meaningful manner by the conferees. The
system, called CBIE (Computer Buffered Information Ex
change), which has been implemented under the RSTS time
sharing system of the PDP-II, will be described from the
user's point of view in the next section and from the
implementation point of view in the third section of this
paper. It has been tested via an ongoing conference, on the
development of the system, which has significantly aided
cooperation between the authors, who are able to meet
face-to-face only once a week.

A USER'S VIEW OF CBIE

Basic concepts

,A conventional meeting whether face-to-face or via tele
phone takes place in real time, that is, every event occurs
and is simultaneously observed by all participating mem
bers. The computer conferences mentioned are not taking
place in real time, since different participants may' 'tune
in" at different times to review past events. However both
classes of conferences may be considered as linear, in the
sense that each input to the conference is added to the end

of a linear list of items. This is obviously true for conven
tional meetings. It is also true for the computer conferenc
ing systems referred to earlier, in the sense that each new
item is entered, and subsequently displayed, in sequence,
immediately after the previous new item.

When a conference is long and ranges over many topics,
it is very useful to have the discussion, and the record at
any time, structured according to topics and sUbtopics.
Each participant (we refer henceforth to computer confer
encing systems) can then review, in a systematic manner,
those portions that are of immediate interest to him and
append comments, questions etc. to the precise portions of
the record that they pertain to. Cross references should also
be possible.

Instead of being a linear list of items, the structure of the
conference becomes a directed linear graph, in which each
item is a node with arcs directed to other items (successors)
that are related in the sense of being subtopics, elabora
tions, refutations, etc. (Actually, since the successors to
each node are ordered, there is somewhat more structure
than is generally true for linear graphs.) It should be
convenient to peruse this graph, or network, moving back
and forth among related items, and appending or deleting
items as appropriate. Jumps to arbitrary items on some
personal list should be possible. Since the type of network
under discussion does not completely order the items
sequentially, it should also be possible for a participant to
ask the system to specify which items have been entered or
altered recently. Other desirable features include arrange
ments for voting, bulletins broadcast to all participants and
the ability to direct private messages (side remarks) to
specified subsets of participants.

As will be discussed later, such a system, properly
implemented, could be useful in a wide variety of situations
including joint research projects, seminars, courses at many
levels, faculty meetings, software development, or even as
a means for an individual to accumulate an organized data
base on some set of topics. It should be emphasized at the
outset that no information is generated or structured by the
computer. Both the content and structuring of the data is
specified by the users. The role of the computer is to
facilitate the inputting, structuring, storage and retrieval of
data by a multiplicity of users.

An example

The operation of CBIE will now be illustrated thru an
example. The implemented version, currently under revi
sion, has most of the features to be discussed.

Assume now that you are a member of the Southwoods
Board of Edul:ation, and that the school year is about a
month old. Several times a week, perhaps as often as every
evening, you connect your home terminal (either CRT or
hard copy type will do) to your telephone data set and dial
up the municipal computer center, logging on to the ongo
ing School Board Meeting. You identify yourself to the
system by entering your personal password and are then
presented with the initial . 'frame" of the conference. Let us
pick up a typical session at this point (Figure I).

SOUTHWOODS SCHOOL BOARD MEETING (S, T) #2
1. RECRUITING OF A NEW SUPERINTENDENT (S, T)
2. BUDGET ITEMS (S, T)
3. TENURE DECISIONS (S, T)
4. CURRICULUM QUESTIONS (S)
5. DISCIPLINARY MATTERS (S)
6. MISCELLANEOUS ITEMS (S)

Figure I-Initial frame

The first line of the frame is the title. After the descrip
tive phrase, the parenthesized symbols indicate whether
there is text and/or a successor list associated with the
item. In this case, there are both, and the fact that the S
appears first indicates that a successor list is being dis
played. The" #2" indicates that the reference number of
the current item is 2. (At any time, the command #2 will
result in the display of this frame.)

The six numbered successors are the titles of topics
under discussion. Each of these has a successor list and
some also have text associated with them-as indicated by
the parenthesized symbols.

Suppose you would like to review the discussion of
budget matters, and assume that you've already seen the
text directly associated with this item (this might give the
total budget figure and a reference to a detailed document
on the budget). In order to see the list of SUbtopics under
budget, you give the command S2, which results in the
display of the frame shown in Figure 2. Seeing this, you
might then wish to examine issue number 5, pertaining to
the superintendent's salary. Hence you follow up with the
command T5 (each command is terminated by a carriage
return) to obtain the text associated with that item. After
reading this material (Figure 3), you might then wish to
follow the ensuing arguments and thus you call for the
successor list by striking the S key (see Figure 4). Note that
each frame can, on command, be accompanied by a line
(not shown in our examples) called a heading, that gives
such information as the author (if he wishes), the date
entered and the date of the most recent change.

Reading the assertion that appears as the title of succes
s6t -l-~irl this fr&ific, ~~ 5Utn: mht -'yet! '':,~'~h tc rrrisrre thi"$
thread further and hence call for the associated successor
list by entering S 1, which produces the frame shown as
Figure 5. Note that the first successor in this frame is an
item (with reference number 17 not shown) that was devel
oped in the course of a discussion of another topic, namely
successor 1 of Figure 1 (the development is not illustrated
here). Someone engaged in the current argument added this
cross reference by the use of a command 1#17.

BUDGET ITEMS (S, T) #21

Structured Data Base Computer Conferencing System 463

Suppose now that, after calling for and reading the text
associated with item 3 of Figure 5 (not shown here), you
decide to enter a rebuttal to the argument. Then, with that
frame in view, you would input the command S, calling for
the successors of the current item. The response would be
to the effect that there are no successors. You could then
enter

I "A pay cut will keep almost any good person away."

The effect could be to insert a successor with the title as
specified within the quotes. In order to add accompanying
text, you would then issue the command Tl (requesting the
text of the newly created first successor). The resulting
response would be a message indicating that there is no
text. Following this, you enter the command I, which
results in a message instructing you to enter the desired
text, terminating your entry with an empty line (i.e., two
consecutive carriage returns after the final character).

At this point, you might wish to examine some of the
other portions of the record. As you progress thru the
network of items, the reference numbers of the items
examined are pushed onto a stack. The command B (for
back-up) pops the top number off the stack, and displays
the corresponding item. The effect of n applications of B
(for any positive integer n) is obtained by the command Bn.
Thus, continuing our example, the command B2 would
restore the frame of Figure 5. One might then examine
successor 1 or 2 etc.

At some point in the debate over the superintendent's
salary, the item shown in Figure 4 may have added to it a
third successor as below:

3. VOTE ON THE QUESTION (Q).

The Q indicates a question to be voted on, and the' 'ballot"
is then displayed (Figure 6) in response to the command
Q3. In order to vote no, for example, one would enter
VOTE N. Each participant is permitted only one vote, and
such matters as to the closing time (if any), whether the
vote is secret or roll call and whether intermediate tallies
are to be made available are specified, in response to
4lidib oy tIle' sSsfeti'l,at nlCtitiiC thchanotlngi~()i'r~-;r:!(t."

More CBIE commands

Other CBIE commands, not illustrated in the example
can be used to

(1) Delete or change items or lines of text or members of
successor lists.

1. APPROVAL OF ROUTINE APPROPRIATIONS
2. REPLACEMENT OF OIL BURNER IN HIGH SCHOOL (S, T)
3. ENLARGEMENT OF MIDDLE SCHOOL LIBRARY (S, T)
4. RENEWAL OF CONTRACT WITH TRASH REMOVAL COMPANY (T)
5. SALARY INCREASE FOR SCHOOL SUPERINTENDENT (S, T)

Figure 2-Result of S2 command when Figure I is on display

464 National Computer Conference, 1977

SALARY INCREASE FOR SCHOOL SUPERINTENDENT (T, S) #32
I. IT IS PROPOSED THAT, IN ORDER TO KEEP IN LINE WITH
2. SALARIES PAID ELSEWHERE IN THIS AREA BY COMPARABLY
3. SIZED COMMUNITIES, WE INCREASE THE SUPERINTENDENT'S
4. SALARY FROM $30,000 TO SOMEWHERE BETWEEN 35K AND 45K.
5. (SMITHVILLE PAYS 41K, LINDEN 38K AND NEW RIVER 43K.)

Figure 3-Example of text (line numbers are to facilitate editing)

(2) Display a predecessor list for the current item.
(3) Display a list of items that have been added or changed

since a specified date.
(4) Transmit a message to a specified subset of conference

participants. As they next log in to the conference they
will be notified that they have a message and can then
call for its display. If currently logged in, they will be
notified at once. Messages received can be saved if
desired.

(5) Post a bulletin which will be displayed to all conferees
as soon as they log in or at once if they are already
logged in.

(6) Compile a stack of item reference numbers, each of
which may be accompanied by a comment. This data
can be appropriately displayed and used to call for
displays of the items involved.

(7) Call for a list of all commands, with short descriptions,
or for a detailed explanation of a specified command.

(8) Specify who may read or modify any item or set of
items.

(9) Specify whether the items one is generating should be
signed or anonymous.

(10) Change the number of lines in a frame. Where a text or
successor list exceeds this size, it will be displayed in
appropriately sized pages, each of which, except for
the last, terminates with "-more-." A carriage return
then commands display of the next page.

(II) Control whether heads should or should not be dis
played.

(12) Stop further printing of a display either irrevocably or
until a resume command is given.

Still other features have been implemented or are under
consideration, but enough has been said to indicate what
the system is like. A principal goal is to keep the command
structure as simple as possible so as to facilitate use of the
system by technologically unsophisticated people, with a
minimum amount of instruction.

Other aspects and problems

The problem of security is important. Access to certain
conferences, or even to selected portions of conferences

must often be restricted to certain sets of individuals.
Voting privileges must also be controlled. Where very
confidential matters are being discussed (e.g., personnel
questions in the Board of Education example) it is impor
tant to ensure a high degree of protection against attempts
to breach security. The problem is by no means unique to
conferencing systems and known techniques employing
passwords and the encrypting of stored information are
applicable.

Some special problems arise if it is proposed to use
computer conferencing for meetings of public bodies such
as legislative committees, zoning boards, or boards of
education. Care must be taken to avoid blocking the general
public out of the process. Several remedies are possible.
Since one of the principal advantages of a CBIE conferenc
ing system is that a complete, well structured record of the
proceedings is stored at all times, provision should be made
to have appropriate printouts made available to the public
on a regular basis. Complete records could be made avail
able in public libraries and issued to the press, while
summaries (perhaps all titles of items) could be printed in
the newspapers. In order to allow direct public participa
tion, terminals open to public use could be situated in post
offices, libraries, schools, etc. Public participants might be
allowed to read all items not of a confidential nature and to
insert questions and comments-that might be appropri
ately labelled or located to indicate their origins. Finally, in
cases where public meetings are now being held, there is no
reason not to continue that practice-perhaps on a some
what reduced scale-for the primary purpose of letting the
public have its say and to inject into the discussion some of
the non-verbal elements missing in a remote system. In the
somewhat longer run, it may be that home terminals,
installed mainly for other purposes, may become so wide
spread as to allow private citizens to participate even more
directly and conveniently. For this and other reasons it is
essential to maintain simplicity in the command structure
and compatibility with simple terminal equipment.

SYSTEM IMPLEMENTATION

CBIE has been implemented under the DEC RSTS/E
timesharing system and runs on the Columbia University

SALARY INCREASE FOR SCHOOL SUPERINTENDENT (S, T) #32
I. SALARY INCREASE ESSENTIAL TO ATTRACT TOP CANDIDATE(S)
2. HOW MUCH ARE WE TALKING ABOUT? (S)

Figure 4-Associated successor list

Structured Data Base Computer Conferencing System 465

SALARY INCREASE ESSENTIAL TO ATTRACT TOP CANDIDATE(S) #91
1. HANSEN'S CURRENT POSITION IN THE PINE WOODS SYSTEM (T)
2. WHAT WOULD IT TAKE TO GET WILSON? (T)
3. I DON'T BELIEVE MORE MONEY WILL GET US A BETTER MAN (T)

Figure 5-Elaboration of argument in Figure 4.

Computer Center's PDP 11/50 minicomputer. A host sys
tem for a conferencing system such as CBIE should exhibit
several important characteristics: orientation toward inter
active applications, support of file sharing among multiple
concurrent users with a granular record locking scheme,
and support of a programming language with convenient
string manipulation facilities. These requirements are satis
fied by RSTS and the version of extended-basic which it
supports.

The CBIE processes run as an ordinary user program
under the timesharing system. The program is divided into
four functional categories: an upper level user interface, a
lower level interface which controls user interactions within
conferences, command execution modules, and a data
management module. The upper level interface is the mod
ule invoked on entry to the system. Its function is to
request and authenticate the user's identity and determine
what he wishes to do. He may wish to perform any of
several "housekeeping" functions, such as creation of a
conference, seeing a list of conferences in progress, chang
ing conference membership, etc. These functions are also
handled by the upper-level interface. In most cases, how
ever, the user wishes to enter a conference and control is
passed to the conference interaction controller.

This module accepts and interprets user commands,
which fall into three broad categories: item retrieval and
display, item modification, and miscellaneous functions.
Item retrieval commands include requests to see an item's
text, a successor list, or various other information associ
ated with specified items. Item modification commands
include requests to edit an item's text, add a link to another
item (i.e., insert an element in a successor list), create and
possibly link to a new item, change a title, etc. Examples of
mis.cellaneous furu;tiollS in~lude selldi~ private Jne~sages
to other users, asking for tutorial information on system
features, asking which users are logged on the conference,
etc.

Item retrieval operations are handled by a retrieval and
display module. Retrieval of information associated with an
item is accomplished through communication with a confer
ence data base manager, which extracts the requested

VOTE ON THE QUESTION (Q) #173

information from the conference data base. The item re
trieval module may also request portions of items not
explicitly requested by the user in anticipation of a forth
coming request. For example, if the user requests a display
of the first frame of a given item, the retrieval module asks
the data base manager for all the item's text and retains the
information in a buffer for subsequent display.

The data-base manager extracts data associated with
specific items and incorporates requested changes to them
in the data base. Because multiple users must be able to
interact with the conference simultaneously, the data-base
manager must ensure exclusive access to affected portions
of the data-base during up dates. This can be accomplished
if the host timesharing system has a record locking mecha
nism. Due to the logically linked structure of conferences,
modifications requested in one item may require changes in
related items. For example, a request to remove an item
from a successor list also requires a modification to the
successor item's predecessor list. Update commands which
operate on subnetworks rather than individual items also
require exclusive access to many items simultaneously. The
possibility of deadlock therefore arises if two or more users
simultaneously attempt updates on the conference. The
data-base manager must either prevent deadlocks from
occurring, or detect and break them.

In a system which allows processes to request exclusive
access to resources dynamically during execution, there are
essentially two methods of avoiding deadlock. The first is
through a hierarchical ordering of resources which con
strains the order of requests. In CBIE, determining which
items to reserve often requires traversing a subnetwork of
the conference during which the required reservations be
come known. Imposing an ordering on the sequence of
reservatiQnsw'.ollld require. flfst . traversing. th.e .. subnetwork
to construct an ordering reservation list, followed by a
sequence of requests in the allowable order to lock the
appropriate records. The second method of avoiding dead
lock is through preemption of resources when a deadlock
situation occurs. An algorithm is required to detect dead
locks, and an algorithm such as Chamberlin's 14 is required
to manage preemptions. The preemption approach in con-

SHALL THE SALARY OF THE SUPERINTENDENT OF SCHOOLS
BE RAISED TO $40,000 PER YEAR
Y: YES
N: NO
A: ABSTAIN
VOTING WILL CLOSE AT 12:00 11/3/76.

Figure 6---Example of a ballot item

466 National Computer Conference, 1977

junction with a very simple scheme for detecting potential
deadlock situations, has been used in the initial version of
CBIE.

There are a number of ways in which the data base
management module can physically structure the confer
ence data base. The following structure is used in CBIE.
Each conference item consists of certain information which
is of fixed size. Most of the information is variable in size,
however. Space is therefore allocated to items as needed in
noncontiguous, linked records. To avoid the need for
occasional compaction of storage, which would introduce
undesirable delays in the interactive system, fixed size
records are used. The penalty is less efficient utilization of
space, but this penalty tends to diminish as users add
information to items and they grow in size.

One or more linked lists comprise an item, depending on
what information is associated with it. These lists are
pointed to by a directory record, which also contains all
fixed-size information associated with the item. Some of the
variable length information (e.g., text or successor list) is
also contained in the directory record. Brief items, there
fore, may consist of only a single directory record. - To
reduce the number of 110 operations needed to display a
successor list, item titles are stored redundantly, not only in
the corresponding item's directory record, but also in the
successor list of any predecessor item.

Several types of files are associated with CBIE. There is
a global directory of conferences in progress. Each confer
ence has a file of directory records and a file containing the
remainder of the linked structure. Also associated with the
conference is a file containing member names and other
global information. Each conference member owns an indi
vidual system-created file which contains a scratch-pad
memory and other information needed to provide continuity
between the user's sessions in the conference.

CONCLUSIONS

In addition to making meetings involving people who can
not conveniently find common places and times to meet
face-to-face more convenient, computer conferencing has
certain other unique advantages. Problems often arise in
conventional meetings as a result of mismatches among the
styles of participants. Those whose minds and tongues
operate swiftly must often sit, drumming their fingers
impatiently, while others are expressing themselves at a far
slower pace. Some enjoy participating in the exploration of
tangential issues, or listening to or relating humorous anec
dotes that they feel add depth to the discussion-while this
may exasperate the more businessiike, "get to the point"
types. A CBIE system makes it possible for each conferee
to operate according to his own style and at his own pace.
Some may quickly scan the item titles, select the texts they
wish to read in detail, make their terse remarks and exit.
Others might carefully work thru all that has been said,
ponder over each item, enjoy the digressions, perhaps even
address some side remarks (in the form of messages) to

some particular colleague and carefully compose their own
additions. Both extremes can find satisfaction with the
same proceedings.

Obviously the elapsed time of a computer conference will
be relatively long (some may never actually end, as new
topics are occasionally added and old business completed).
A compensating aspect is that, unlike a conventional meet
ing, where topics are dealt with serially, in a CBIE confer
ence, all agenda items whose consideration is not depend
ent on the outcomes of discussions of as yet unresolved
items may be discussed in parallel. Note also that the
power of the chairman is greatly reduced. This is because
there is no need for rulings on who has the floor. A more
subtle point is that, when frequent meetings are inconve
nient, chairmen are often assigned interim authority to make
certain decisions. The power to call a meeting may indeed
fall in this category. Such delegations are less necessary
where computer conferencing is used.

People who, because of physical handicaps, find it diffi
cult to get around easily, are obvious beneficiaries of
remote conferencing techniques. Those who are hard of
hearing or who have speech impediments derive special
advantages from computer conferencing.

Reference was made earlier to the ease of producing well
organized transcripts and summaries of CBIE conferences.
Methods for accomplishing this in a flexible manner are
now under deVelopment.

There are two modes of perusing a CBIE conference.
One is to enter at the head node and then systematically
follow selected paths of successors, and the other is to call
for the display of specific items identified by their reference
numbers. At present, these reference numbers can be on
some list compiled by the user from previous excursions
thru the network, or they may have been retrieved from the
system by a command requesting those items that have
been changed or added since some specified date. Tech
niques for retrieval on the basis of logical functions of
author, date and key words in the title are under considera
tion.

At least one computer conferencing system,15 which is
related to the PLATO system,l1 has some graphics capabil
ity, and certainly it would also be desirable to allow speech
input. Both of these features will probably be available in
future systems.

In addition to the kinds of meetings discussed thus far,
there may be great value in using a CBIE type system for
educational purposes at all levels ranging from elementary
school subjects thru advanced seminars. Unlike conven
tional teaching machine programs, which rigidly dictate the
actions of the student and accept only stereotyped re
sponses from him, a CBIE system can be used to set up
structures that allow genuine dialogue between instructor(s)
and student, and which allow the student considerable
leeway in selecting the order in which he wishes to learn
the material and to some extent, what material he wishes to
explore in depth. This reflects the basic concept put for
ward by Theodor Nelson l6,17 whose ideas were influential in
motivating the CBIE concept.

ACKNOWLEDGMENTS

The authors wish to thank Professor Christian Gram of
Danmarks Tekniske H(bjskole for stimulating discussions
during the initial stages of this development. Dr. Howard
Eskin of the Columbia University Computer Center has
been most helpful with advice and cooperation concerning
the implementation.

REFERENCES

I. Kuebler and Reid, "A Party-Line for 30," Bell Laboratories Record,
January 1969, pp. 18-21.

2. "No. I Electronic Switching System," Bell System Technical Journal,
September 1964, complete issue.

3. Gorgas, J. W., "AUTOVON-Switching Network for Global Defense,"
Bell Laboratories Record, April, 1968, pp. 106-111.

4. Reid, A., "Comparison Between Telephone and Face-to-Face Conversa
tion," London Symposium on Human Factors in Tele-Communications,
September 1970.

5. Remp, R., "The Efficacy of Electronic Group Meetings," Policy Sci
ences, May, 1974, pp. 101-115.

6. Bedford, M., "Trends in Teleconferencing and Computer Augmented
Management Systems," Proc. IEEE National Conf, 1975, pp. 32.20-
32.22.

Structured Data Base Computer Conferencing System 467

7. Hall, T. W., "Implementation of an Interactive Conference System,"
AFIPS Conference Proceedings, Vol. 38, 1971. pp. 217-229.

8. Turoff, M., "Delphi Conferencing: Computer Based Conferencing with
Anonymity," Technological Forecasting and Social Change, March,
1974, pp. 159-204.

9. Turoff, M., "Delphi and its potential impact on information systems",
AFIPS Conference Proceedings, 1971, pp. 317-326.

10. Turoff, M., "Party line and discussion-computerized conference sys
terns", Proc. Int. Conf on Computer Communications, 1972, pp. 161-
177.

11. Turoff, et ai, "Computer Based Conferencing: A Progress Report,"
Summary of panel discussion, Proc. ACM Annual Conf., San Diego,
November, 1974, pp. 741-742.

12. Englebart, Watson and Norton, "The Augmented Knowledge Work
shop," AFIPS Conference Proceedings, Vol. 42, 1973, pp. 9-21.

13. Prager, D. A., "A Proposal for a Computer Based Interactive Scientific
Community," CACM, February 1972, pp. 71-75.

14. Chamberlin, D. D., et ai, "A Deadlock-Free Scheme for Resource
Locking in a Data Base Environment", Proc. IFIP Congress, 1974.

15. Carter, G., Presentation at workshop on Computer Conferencing, Na
tional Computer Conference, June 1976.

16. Nelson, T., "No More Teacher's Dirty Looks," Computer Decisions,
September 1970, pp. 16-23.

17. Nelson, T., "A Conceptual Framework for Man-Machine Everything,"
AFIPS Conference Proceedings, Vol. 42, 1973, pp. M21-26.

18. Smith and Sherwood, "Educational Uses of the PLATO Computer
System," Science, 192,23, April 1976, pp. 344-352.

19. Unger, S. H., "Technology to facilitate citizen participation in govern
ment", Center for Policy Research Report, Feb. 1972. Talk on same
material entitled "Technology for getting people involved", 1973 IEEE
Conf and Systems, Man Cybernetics, Nov. 5-7, Boston, Mass.

An analytic model for parallel computation

by ROGER M. FIRESTONE
New York University
New York, New York

and

Sperry Univac
Roseville, Minnesota

ABSTRACT

A mUltiprocessor (MP) system is defined to be two or more
independent processing units accessing a common memory
for instructions and data. The common memory may be
divided into independently accessible banks. A parallel
program is a program operating on an MP system which
makes use of more than one processing unit to achieve its
computational goals.

An analytic model is constructed which exposes certain
properties of parallel programs, based on certain idealized
assumptions. These assumptions are that:

1. the program algorithm may be divided into independent
parallel-executable sections in any way desired;

2. the program is compute-bound, so that input-output
considerations do not affect its behavior;

3. there exist linear cost functions for elapsed time and for
computer time used;

4. initiation and termination of each independent activity of
a parallel program incurs an identical amount of over
head;

5. c?~p.~titi?n for acces~ ~? st()r:ilge, ~:ilu~~~ de~radati()n in
performance, mamfested as reduced computational
speed; and

6. references to storage are independently and uniformly
distributed.

Under these assumptions, the model gives an optimal
numbeI of processing units to use for the program in order
to achieve minimum cost. This optimum is dependent on
the overhead, the degradation, and the ratio of the cost of
elapsed time to the cost of computer time. In the limit of
very large compute time, a bound for the cost ratio is
established, below which the use of parallel methods is not
economically feasible. This lower bound depends only on
the behavior of the degradation factor. Further analysis
shows that the degradation factor is linear in the number of
processing units employed, inversely linear in the number
of independent storage banks, and quadratic in the relative
storage accessing rate.

469

A Monte Carlo model was constructed by J. L. Rosenfeld
which gave similar results for those situations where the
assumptions of the two models coincided.

INTRODUCTION

A multiprocessor (MP) computing system consists of two or
more computational units able to access a common storage
unit. Independent computational units ("processors") may
thereby share in instruction stream or data area. Examples
of such systems are the Sperry Univac® 1100 Series, the
Burroughs D825, and the IBM® System 360/67. The number
of processors available is usually less than ten.

When a particular computational task is constructed in
such a way as to take advantage of instruction and/or data
sharing through the use of more than one processor, the
task is said to be mUltiprocessed or programmed in parallel.
Since most computations are not constructed in such a way
as to be processable in parallel, some program redesign is
required to run in parallel, if indeed the underlying algo
rithm permits such a redesign.

Assuming that an algorithm can be programmed in paral
lel, th.t: qu~~~!on~ri~.~~ as to wht:ther t~~r~ i~ a~y a~v~mtage
to be gamed relative to a conventIOnal sequential imple
mentation. Secondly, if there is some advantage, it may
exist only under certain conditions, and it is then desirable
to inquire what these conditions are. They will normally
depend on the nature of the problem and the structure of
the target system hardware and software. One way of
answering this question is to build a simulation model of a
typical program, and, by varying the model's parameters,
attempt to deduce behavior characteristics which may gen
eralize to other problems. A number of researchers have
chosen this method; some of this work is briefly reviewed
in the second section. An alternative is the construction of
an analytic model of the behavior of an abstract program,
making simplifying assumptions where necessary, and then
applying the derived relationships to specific cases, hoping
that the simplifying assumptions do not destroy the validity
of the model. Such an analytic model will be constructed in
a later section.

470 National Computer Conference, 1977

SIMULATION MODELS FOR PARALLEL
COMPUTATION

A number of researchers have built simulation models of
parallel programs, such as Draughon, et al. 1 Lehman,2 and
Rosenfeld. 3 Of these, we shall consider the Rosenfeld
model in more detail, as the computer system modeled
there more closely resembles the commercially available
systems mentioned above.

Rosenfeld modeled the operation of a program to solve
the distribution of currents in a resistive network by a
procedure of Chazan and Miranker4 called chaotic relaxa
tion, a close relative of the classical Gauss-Seidel iteration,
altered to run in parallel. The simulation was performed on
a 7094 using a program called SIMP. The alterable parame
ters were: an internal program characteristic, the number of
processors, and the number of storage modules (independ
ently accessible subunits of storage, later referred to here
as "banks").

By varying each of these parameters in a series of
experiments, Rosenfeld obtained a number of results, pre
sented as graphs in his article. These may be summarized
briefly as follows:

I. Run time decreases as the number of processors used
increases, but not as much decrease is observed as
would be predicted by a simple inverse proportion law.
(Rosenfeld, Figure 6)

2. Total processing time is an increasing function of the
number of processors used. (Rosenfeld, Figures 6 and 7)

3. Increasing the number of processors used beyond a
certain point produces negligible additional decrease in
run time and may in fact increase the run time. (Rosen
feld, Figure 4)

4. Storage interference increases in a roughly linear way
with the number of processors used. (Rosenfeld, Figure
8)

5. A measure of quality may be defined which is maxi
mized for one particular choice of the number of proces
sors used. (Rosenfeld, Figure 12)

These conclusions are extremely valuable to planning for
parallel computation, as the model is sufficiently general to
assume that they apply to other programs. The drawback is
that, except for the specific case studied, these conclusions
are purely qualitative. Moreover, it is not clear what other
characteristics of the program, besides the independent
variables already mentioned, will affect the results, and in
what way. Thus, if there is an optimum number of proces
sors to use for a problem, Rosenfeld's model gives one no
way to compute it, except by his series of experiments.

A model is therefore desired which will indicate the
important parameters and allow direct computation for the
program behavior. In the following section, such a model
will be developed. The concept of optimality will be based
expiicitly on cost functions, to provide a more concrete
representation than Rosenfeld's quality factor.

THE ANALYTIC MODEL

Assumptions underlying the model

We shall now examine a model for the operation of a
parallel program. This model will be of an analytic (i.e.,
statistical) nature rather than of an experimental or simu
lated construction. Hence, certain restrictive assumptions
will be made in order to allow the computations to proceed.

The first assumption to be made is that the program can
be divided into independent sections in arbitrarily many
ways or at least in N ways, where N will be some
sufficiently large number. This assumption is a very strong
one, as most known algorithms have a strongly sequential
nature. Chaotic relaxation is one of the few algorithms
known that satisfies this assumption. It is clear that if a
program can be run in N parallel sections, any smaller
number will also suffice. Further, we shall assume that the
program under consideration is compute-bound or com
pute-limited; in other words, all time available to the
program for execution of instructions will be used by the
program to perform useful work. Finally, we shall assume
that an indefinitely large number of processing units are
available to the program.

Determination of optimal number of processors

Introduce the following notation:

T=elapsed time (may also be used as denotative
subscript)

C=compute time (may also be used as sUbscript)
t=time required for execution of an instruction se

quence
s, p=subscripts used to indicate sequential and parallel,

respectively
I =time required to create and terminate an independ

ent process
G=cost factor (cost per unit time, with sUbscript

indicating kind of time)
E=cost (time mUltiplied by cost factor, also sub

scripted)
d=degradation due to storage interference (compute

time will increase by a factor of 1 +d)

We assume that there are two cost factors GT and Gc ,
corresponding to costs incurred for elapsed time and for
compute time, measured in the same units, of course. The
objective is to reduce the actual cost of running the
program by introducing parallel operation, which is to say
we want Ep<Es. For each of these, we have

Now,

Es=GTTs+GcCs

Ep=GTT p+GcC p

(1)

and

(2)

where we use ti to indicate the compute time (=elapsed
time) of an independent portion of the program, and n is
some integer, n$N. On the other hand,

T p=I +(1 +d) max {tJ (3)

and

n

Cp=nI +(1 +d) 2: ti (4)

since T p will be the length of time it takes the longest subset
of the program to execute (where ti must be mUltiplied by
1 +d to account for storage competition among the various
activities), and Cp must be augmented by the storage
interference value and also by the time necessary to initiate
and terminate the extra processes. Since Cp is strictly
greater than Cs, reduction of Ep must come from a decrease
of T p' Therefore, we shall seek to minimize T p'

We may assume, without loss of generality, that
t12:t2 2:···2:tn2:0. Let Te=2:ti . It is then clear that T p is
minimized if t 1=t2 = ···=tn=Te/n. We then have, for all n,

Ep=GT[I +(1 +d)Te/n]+GdnI +(1 +d)T e] (5)

We shall now assume that d=an+b, where ibi<l, a>O.
This assumption will be supported later. Let us temporarily
allow n to be a continuous real variable, n>O, instead of a
positive integer. Then Ep(n) is convex for n>O and thus has
a minimum at no, where

(6)

and the minimum for Ep with integral n is either [no] or
[no] + 1, where [x] denotes the greatest integer not exceed
ing x. What is significant about this result is that the values
of GT and Gc are no longer important; rather, the quantity
that appears is the ratio of the two cost factors, as one
might suspect should be the case. Moreover, we now have
an expression for the optimum number of processors to use
on a problem. It is interesting to observe that no has a limit
"lis T,,~x,'w men ;[HllCafesffiat fSfgi\"en ··cest fa"C1Cr"S,' there
is a maximum number of processors that can be used
effectively. This limiting value is developed in the following
section.

In order to make parallel processing useful on a given
task, we must have Ep<Es. We now assume that n> 1 to
exclude the sequential case. Then we have

Es- Ep=GT(Te-(I +an+b)(Te/n»

+Gd(1-n)I-(an+b)Te]

=GT[(n-I-an-b)/n]Te

+Gd(l-n)I -(an+b)Te]

(7)

which we shall require to be positive. We next assume that

n2:l+an+b

which, as noted, will be discussed further later. Then

Analytic Model for Parallel Computation 471

Es - Ep>O becomes

GT>Gcn[(an+b)Te+(n-1)I]/(n-l-an-b)Te (8)

which must be true for parallel execution to be less expen
sive than sequential. The n on the right hand side may be
taken as no, which is the integer value of n minimizi,!lg Ep.

It may already have become apparent that b should be
equal to -a for the degradation value to be zero when n= 1.
U sing this fact, we shall examine the results of the previous
calculations as T e~OO'

or

GT/Gc>n(an-a)/(n-l-an-a)=anl(1-a) as Te~oo

Letting n=no in the second relation, we have, using (9)

G T /GC>(GT /Gc)1I2(1-aJa)1/2(a/(1-a» (10)

=(GT/GC>1I2(a/(1-a»1/2

or

(GT /Gd>a/(1-a) (11)

Since the right-hand side of inequality (8) is decreasing in
T e, if this relation (11) is not satisfied, then (8) cannot be
satisfied for any finite value of T e' Thus we have a
necessary condition for parallel processing to result in a
lower cost than sequential computation. For a sufficient
condition, the more complex relationships (8) and (6) must
be used.

Analysis of storage intetference

It is now necessary, as promised, to examine the calcula
tion of d. Let us begin by defining two storage areas as
independent if accesses (reads or writes) can be made
simultaneously to both. The alternative is dependent stor
age, where, if two accesses are made simultaneously, one
must wait until the other has completed its data transfer.

!ig~~n~~~s~';r&~" ;~1~J~~lb1~E~!~::~~/~t~rt~:·~:~I~~
ent. (Industry practice for binary computers is to use
certain bits of a memory address, perhaps several high
order and a few low-order, to select the appropriate bank,
while the remainder of the bits specify the word within the
bank. Thus, the number of banks is a power of 2; also the
desirable feature obtained is that words whose address
differs greatly are in distinct banks, and consecutive words
are also in different banks.)

Suppose j accesses to a single bank are attempted. The
first is made immediately; the second waits one unit of time
for the first to complete before it is granted; the third waits
two time units for the first and second; and so on. (In
general, the accesses are granted in an arbitrary order, so
the terms "first" and so on are not meant to imply any
ordering process performed on the access requests before
anyone is granted.) The total delay in this situation is
j(j -1)/2.

472 National Computer Conference, 1977

Let us assume that a storage reference is made on every
storage cycle by each of the processors operating on the
program. This assumption will not, in general, be war
ranted, so it will be removed later on. Let k be the number
of banks; n will continue to be the number of processors
operating. The degradation value d will then be the average
total delay divided by n, which is the average delay per
processor. Execution thus takes longer by a factor of
(1 +d).

Omitting some tedious calculations in which the average
total delay for each storage reference assignment is
summed over all possible combinations of storage assign
ments and then averaged again, the value of d as a function
of nand k is given by

den; k)=(n-l)/2k

Notice that d has the desired form an-a, where a= 1I2k.
Now we introduce q, the probability that a storage

reference is made by a processor on a particular cycle and
drop the previous assumption that q = 1. The degradation
factor may then be recomputed as a function of n, k, and q
by a similar lengthy set of calculations, giving the final
result

den; k; q)=q2(n-l)/2k

As before, this has the form d=an-a, and the analysis is
complete.

Justification of assumptions

We must now examine this model to determine the extent
of its correspondence with the real world. More precisely, a
number of assumptions have been made which should
briefly be examined for validity. One of these assumptions
dealt with the number of processors available to the pro
gram. Although we assumed an indefinitely large number
were available, the actual maximum number required is [no]
or [no]+ I. If fewer than this number are available, maxi
mum possible cost decrease would be obtained by using the
maximum number of processors available, so no severe
problem arises. In any case, values for no are not likely to
become too large. The expression for no in (6) is increasing
in T e with the limiting value given in (9). Since, for a
reasonable value of a=q2/2k given by q=.5, k=8, we have

n0
2=63(GT /Gd

if compute time is only five to ten times as expensive as
elapsed time, no will fall somewhere between 2 and 4. This
is well within the number of processors provided on cur
rentiy manufactured MP hardware. Nevertheless, there are
situations where elapsed time may be assigned costs equal
to or even greater than those for compute time, such as real
time operations. An example might be weather prediction,
when it is clearly desirable to produce a 24 hour forecast in
less than 24 hours. In such cases, presently available
hardware cannot reach no, and programs cannot be run at
minimal cost. Generaily, the costs involved for elapsed time
in these latter cases are of a different nature, where the

results of the program become worthless after a certain
moment. The cost function is thus no longer linear (nor
necessarily continuous), and one of the other assumptions
is thus violated.

The other assumptions made deal more with the type of
the program to be run. We have already seen that the
results obtained so far are meaningless without the assump
tion of a linear cost function. This assumption is reasonable
in light of the general use of linear cost functions by
computer center managements, as well as by businesses in
general. As far as the restrictions to compute-limited pro
grams is concerned, such programs do exist and are fre
quently those with largest Te as well. (For a discussion of
the types of FORTRAN programs being written, see
Knuth5

.) Whether or not a program may be divided into
arbitrarily many parallel segments, it will still be possible to
obtain a minimum feasible cost by selecting a permissible
number of processors as mentioned above. The integer
programming problem is easy to solve, as we have noted in
the discussion of the behavior of Ep as a function of n. An
example of this situation might be a loop of M iterations,
each iteration being independent of the others. The possi
bility of separating the problem into parallel tasks may
depend on the factorization of M if strict equality is to be
maintained among all individual parallel tasks; however, if
the strict equality is relaxed, it is clear that n processors
can be assigned in such a way that each processor executes
[Min] or [Min] + 1 iterations, which should be close enough.

The assumptions dealing with storage accessing and
interference are more difficult to justify, particularly those
dealing with uniform random distribution of accesses in time
and among banks. One possibility is that enough factors
such as differing instruction execution times, background
activity, and so on would produce the necessary random
ness, while any deviation from a uniform random distribu
tion would be more orderly and should therefore produce
less degradation. It is of course true that without this
assumption the above analysis would be impossible. Note,
however, that it is not necessary to require that the access
pattern for any individual processor be random (this is
usually not the case, of course, as computer addressing
designers are aware), but only that the overall pattern is
randomized such that each access assignment is equally
probable.

A final criticism of this model is that the storage interfer
ence analysis should proceed by Markov chain methods,
considering the system as a finite popUlation queueing
system (with population=n, servers=k). It is hard to an
swer this criticism directly without completing the analysis
and comparing the results. The Markovian analysis may be
found in the work of Baskett and Smith,6 but the results
derived there are not in a form which permits easy compari
son with the present approach. In general, it may be said
that the Markovian analysis will provide greater detail of
the statistical behavior of the system (such as standard
deviation, fluctuation magnitude, and so on). In the system
described here, however, the real concern is a long-period
time average, since that is the significant observabie param
eter. It remains the author's contention that the simpler

analysis presented here is adequate to calculate this long
period average under the assumptions made for this model,
and the correspondence to the results of Rosenfeld's model
are significant evidence to support this contention.

COMPARISON OF MODELS

Before assessing the similarities between the simulation
model of Rosenfeld and the analytic model presented here,
it is proper to mention the two main differences. First is the
introduction of cost functions in the analytic model. The
effect of these in the simulation model is hidden, but the
implicit assumption made in that paper is that the cost of
processing time and the cost of elapsed time are identical.
The other difference is that the program used by Rosenfeld
contained a critical section or "lockable block" of instruc
tions which could only be executed by one processor at a
time. If e denotes the fraction of the code which is in the
critical section, then when ne> 1, at least one processor will
always be waiting to enter the critical section. The effects
of this are manifest as non-linear portions of Rosenfeld's
graphs for large n.

Reviewing the five results of Rosenfeld's work described
before, it is evident that each of them also applies to the
analytic model. In particular, the overhead value accounts
for the variation from the inverse proportion rule for run
time as a function of number of processors, while storage
degradation explains the increase in run time. Further, the
storage degradation behaves linearly in the analytic model
as it did for Rosenfeld's model, with similar slopes if q is
approximately 1. Finally, the value of n which maximizes
the quality factor used by Rosenfeld may be determined
from the analytic model to be

(l-a)T e/(I +aTe)'

Of course, this will be the same as no (the minimum cost
value) for only one choice of the cost ratio, but the
behavior of the quality factor as a function of n is similar
for both models.

CONCLUSIONS

The disadvantage of an analytic model is mostly the simpli
fying assumptions made in order to allow the calculations to
proceed, which may then produce an invalid model through
lack of conformance to reality. By examining the assump
tions carefully and by comparison with a simulation model,
it is hoped that the validity of the analytic model can be
established. A valid analytic model may then have signifi
cant consequences for future hardware and software de
sign.

In particular, the model developed here indicates, firstly,
conditions under which parallel computation can produce
benefits in terms of reduced cost. This depends on the
hardware structure (number of banks and number of pro
cessors available), the operating system (overhead), the
program characteristics (compute time required and rate of

Analytic Model for Parallel Computation 473

storage access), and the environment (cost ratio). Further
the exact amount of improvement that can be made by
varying each of these can be calculated. Hardware and
software designers may take advantage of this knowledge
by designing their systems more efficiently. Since storage
degradation is the limiting factor for the cost ratio when T e
is large, as shown by (11), greatest benefits can be obtained
by making a=q2/2k as small as possible. Since a is quadratic
in q but only (inversely) linear in k, greater benefits can be
obtained by reducing q than by increasing k by a like factor.
This means that by providing storage local to each proces
sor, such as buffer memories or scratchpad registers,
thereby reducing q by eliminating the need for temporary
storage locations or reducing the need to access shared
main memory, performance can be improved as much or
more than by the alternative of increasing the number of
independent storage banks.

The model also has consequences for compiler designers
who wish to produce parallel code automatically from
serially written source language. All other things being
equal, the analytic model shows cost to be a decreasing
function of T e' This means that cost is minimized by
converting to parallel that portion of the program which
takes longest to execute. Thus, while optimization tech
niques are most productive when applied to the innermost
loop, parallelization is best applied to the outermost loop,
which will take the longest to execute.

In short, the analytic model presented here not only costs
less to construct and use than a simulation, it also provides
wider applicability, more precise results, greater insight,
and more specific guidelines for future development.

ACKNOWLEDGMENTS

Part of this research was performed while the author was a
National Science Foundation Graduate Fellow at New
York University-Courant Institute of Mathematical Sci
ences. Computer time was provided by Sperry Univac
Division of the Sperry Rand Corporation. I thank Profes
so(§ MaJGQlmC., l,-l(,trrisollqnq JacQb T. Sch\\:,artz for their
advice and assistance.

REFERENCES

I. Draughon, E., R. Grishman, J. Schwartz, and A. Stein, Programming
Considerations for Parallel Computers, Courant Institute of Mathematical
Sciences Report IMM 362. New York University, New York, New York.

2. Lehman, M., "A Survey of Problems and Preliminary Results Concerning
Parallel Processing and Parallel Processors," Proceedings IEEE, Volume
54, Number 12, December 1966, pp. 1889-1901.

3. Rosenfeld, J. L., "A Case Study in Programming for Parallel Proces
sors," Communications of the ACM, Volume 12, Number 12, December
1969, pp. 645-655.

4. Chazan, D. and W. Miranker, Chaotic Relaxation, IBM Research Report
RC-1976, Thomas J. Watson Research Center, Yorktown Heights, New
York, January, 1968.

5. Knuth, D. E., An Empirical Study of FORTRAN Programs, Stanford
University Computer Sciences Department Report CS-186, Stanford,
California.

6. Baskett, F. and A. J. Smith, "Interference in Multiprocessor Computer

474 National Computer Conference, 1977

Systems With Interleaved Memory," Communications of the ACM,
Volume 19, Number 6, June 1976, pp. 327-334.
Note:
This paper contains a comprehensive bibliography of literature dealing
with investigations of storage interference.

APPENDIX: COMPUTATIONAL DETAILS

It is the purpose of this appendix to expound the details of
the computation of the degradation factor d, omitted from
the main body of the paper.

As noted previously, the average delay per bank was
jU-l)/2. In this model, there are k banks with n processors
operating. The degradation factor is computed as the aver
age total delay divided by n, which is the average delay per
processor. Execution will thus take longer by a factor of
I+d.

How many different ways are there of making n accesses
to k storage banks? The answer is k'\ for there are k slots
for each of the n accesses, and each access may be assigned
individually, independent of all the other choices. This
introduces a factor k-n to compute the average delay over
all possible access assignments.

An access assignment may be described by the k-tuple of
non-negative integers (n}, n2 , ••• , nk) where n} +n2 +
···+nk=n. This means that n1 processors are attempting
to access bank I, n2 access bank 2, and so on. The number
of access assignments corresponding to a single k-tuple is
given by the multinomial coefficient which we denote

where

k

(nln}, ... ,nk)=n!/ [J nj!
i=}

L nj=n

This is so because there are n processors to be assigned
with ordering unimportant. The delay resulting from an
access assignment to a k-tuple (n}, ... , nk) is given by

L nlnj-l)/2

which we obtain by summing the delay for each individual
bank.

Combining these results, summing over all possible k-

tuples, and dividing by the factors mentioned, we obtain

den; k)= (k-n/n) L [en In}, ... , nk) L nlnj-l)/2]

There are a number of things we can do to simplify this
formidable expression. First we note that the sum of delays
behaves rather nicely by being symmetric in the variables
nj. All values for anyone nj are taken by all the others in a
different order. Hence, we can replace this sum by k times
one of its terms, obtaining

den; k)=(k-n/2n) L (nln}, ... , nk)n}(n}-l)

Next, we introduce the following generating function

go(x}, ... , Xk)=(X1+"'+Xk)1l

Differentiating both sides of this twice with respect to Xl>
holding all other variables fixed, gives

n(n-I)(x1+ ... +xJn
= L n1(n1-1)(n/n1, ... ,nk)x1nl- 2

••• Xknk

Now, let X1=X2 = ... =Xk= 1 on both sides, giving

n(n -l)kn- 2 = L (n/n1' ... ,nJ n} (n1-1)

Substituting this into the previous expression gives the
result

den; k) = (k- ll/2n)kn(n-l)k ll-:! = (n-I)/2k

This is the result specified in the text.

The above procedure can be followed for the computation
of den; k; q), but each access assignment must be multiplied
by the probability of its occurrence, which is given by the
usual binomial coefficient. The first reduction gives

This is summed using the generating function f(x,y) = (x+
y)'\ which is differentiated twice in x, mUltiplied by x:!, and
then evaluated with x=q, y= l-q. This produces the final
result

den; k; q) = q:!(n -l)/2k

as discussed in the text.

Dominance relations in computing systems

by DANIEL G. HAYS
University of Alabama in Huntsville
Huntsville, Alabama

ABSTRACT

This paper discusses various kinds of dominance relations
that may hold among parts of computing systems, and
between computers and people. That computers enter into
"social relations" seems clear. Four models prevalent in
thinking about computers are discussed: the Master-Slave,
the Egalitarian Workgroup, the Division of Labor, and the
Clamoring Children models. To help explicate the claim
that "dominance" in a computing system may vary both in
type and over time, steps towards a formal treatment of
interacting devices are suggested, involving possible se
quences of influenced behavior. Several varieties of domi
nance are then outlined, such as competition for resources,
or attentional dominance for interrupts. Finally the matter
of computer intentions is noted.

INTRODUCTION

This paper inquires into kinds of social relations which may
hold among parts of computing systems, including some
cases where people are involved. While no assumption is
made that computing machines have feelings, minds, a
sense of group spirit, jealousy, love, or other attributes of
social animals such as ourselves, they do interact. That is,
th~ O.ulpul !)LQo~deyiG.e serxes as inputlQ anQ~ther deyke.
and makes some difference in the behavior of the second
device; device two may return a message; and so on.
Indeed, computers function more and more in social con
texts: among themselves, with people, and with effector
devices such as tail flaps and milling machines. The growth
of computer networks, where a number of fully-functioning
modules and communication devices make requests of one
another and do some useful work, has been pronounced
over the past several years.1 As networks increase in size
and as advances in programming allow more flexible han
dling of requests, the kind of 'computer sociology' envis
aged in this paper should become important as an area of
study.

The class of relations to be examined is dominance of
one part of a system over another. One or another kind of
dominance is widely found in groups in the animal king
dom,z-4 and may be essential to understanding such ar
rangements in general. In the discussion to follow, domi-

475

nance will be treated more as "causal effectiveness" than
in terms of the trappings of human power such as the
wearing of crowns or having a title on the door. (Only
people, to date, wear crowns; both people and computers
may have titles, carpets, etc.) Exactly what dominance can
mean in the context of the moment-to-moment behavior of
a system is a major question to be addressed. One proposi
tion that will be developed is that the answer to the
question, "Who (or what) is in charge here?" is not an all
or-nothing matter, and may change from time to time, for
both computing devices and people.

Thus although in some cases dominance, once gained,
may perpetuate itself, turning into absolute and enduring
power, this will not always be the case; and fears that
computers may come to totally dominate people may be as
unconsidered as the comfortable belief that people are
presently the absolute masters of computers, with the latter
holding no effective demands on the former.

The discussion to follow will be informal, though some
steps towards a formal treatment of dominance relations
among devices will be sketched in the third section. The
second section will examine several common views of
computer relations as social phenomena. The fourth section
will distinguish several kinds of dominance, mostly apply
ing to interacting devices. Finally, several senses in which
machines might dominate people, some quite mundane, will
bellO.ted •.

STANDARD VIEWS OF COMPUTER INTERACTION

Though probably most laymen and virtually all computer
professionals would deny that computers are sentient,5 it is
easy to think of them as analogous to humans. Correspond
ences come to mind so readily that one suspects there may
be something to them. Certainly the apparent similarities
should not be dismissed summarily.

To impute intentions or feelings to a computer would
seem to require more of a leap of faith about things
unknown than to attribute social relations to them. Ques
tions of computer intelligence, will, etc., have attracted
more attention,6 but people also speak of computers in
social terms, with much clearer basis in what can be
observed.

At least four underlying models, or typical pictures of

476 National Computer Conference, 1977

computer interaction seem to be prevalent. They are infor
mal, almost metaphorical, but they seem to capture essen
tial similarities between some human work groups and
arrangements among devices. Only one, the Master-Slave
model, is widely held and really explicit. The other are
more implicit to discussions among workers in the field.

The master-slave model

The image of computers as conceived by the public
frequently involves a Master-Slave relationship. This model
probably also represents a substantial part of basic profes
sional regard of appropriate machine role (at least when the
professional computer person is not engaged in trying to get
something done with a computer, in which case more of a
give-and-take situation probably holds).

Usually it is assumed that people are the Masters, but
they may be Slaves to the computer in fearful fantasies.

This model may also apply to cases where only devices
are interacting. One computer, or central processor, or
supervisory program, is seen as being comprehensively in
charge, demanding instant obedience, serving as the sole
source of permissions, and in some instances making deci
sions about device status, inclusion in the current configu
ration, and so on.

The control may be lenient, when the metaphorical
Despot is Benevolent, or may be structured for close and
frequent supervision. (A summary of research on conse
quences of frequency and detail of supervision in human
groups is contained in Reference 7, which may be sugges
tive for supervisory schedules in computers.) In either
case, one device or creature is viewed as being in charge,
and the main duty of others in the system is obedience.

In popular lore, the Master-Slave imagery is cast in
extreme terms. Computers are regarded as Super-Slaves,
wholly controlled by technical persons, capable of produc
ing magical and powerful results. But conversely, the
insecure edge of the fantasy is revealed by fear that the
computer will gain total control, perhaps deviously, over its
former masters. One may only speculate about deep psy
chological reasons for the apparent wide appeal of this
attribution. It is a plausible but untested possibility that
persons high on the trait of Authoritarianism8 could be
especially prone to such fantasies. Or the fantasies may be
related to beliefs about how much a person's behavior is
under his own control as contrasted with control from
external factors.9 Perhaps also the fantasies of computer
control represent either fears or a deep realization of the
extent of the control of individuals by governmental, corpo
rate, and other social constraints. Or a strong desire to
control computers as contrasted with using them to get
something done could represent a failure in other relation
ships.

Whatever irrational components this model might be
associated with in some individuals, there may be practical
difficulties in its exclusive use. If a person who is designing
an interacting system thinks only in terms of a rigidly
hierarchical model, his or her design choices may be

limited. Thus what people think of computers may not be
just an interesting sidelight in the folklore of technology but
may have practical consequences.

Though some hierarchical arrangement for attention-get
ting and compliance with requests may be desirable in
computing systems, the amount of centralization of func
tion may present a number of design choices if the system
is at all elaborate, multiply redundant, or dispersed. Other
choices may have to do with the closeness of supervision,
or the choice of having a central processing unit dictate a
specific program in contrast with its communicating some
requirements to a subordinate unit and leaving that unit to
produce acceptable results by means of its choice.

Certainly hierarchy and strict control may be advanta
geous in simple systems and in ones where there is very
great risk of zonking out; but other models are based on
more cooperative premises.

Egalitarian task-group model

In this pattern, a number of processors share the work to
be done, and there is no linear dominance ordering except
possibly a transitory one-for example, based on a first
come first-served rule. Another basis is fitting the tasks to
be done to the units or configurations that can best handle
the work (see Division of Labor Model, below). In the
extreme case of this model, any processor may request
activities of any other processor.

The underlying human analogy is that of a work-group of
peers. A political formulation is "From each according to
his abilities; to each according to his needs."

The conceptual key here is equality of units. Equality can
be subsumed in a hierarchical system if there are a number
of units on one level which have no more than transitory
precedence for involvement in tasks. An ordinary mUltipro
cessor system works in this way, with a task evaluator and
scheduler sitting on top as a Honcho Unit. When a proces
sor becomes "dedicated" across possible programs and
moments of time to a certain source or to tasks with some
arbitrary attribute, then the situation becomes less than
egalitarian.

As in the Master-Slave model, the Egalitarian Workgroup
image may involve devices only, or may include persons.
Since people and computing machines differ so drastically
in what they are good at doing, how quickly they do it, and
their ready means of communication, this aspect is perhaps
more relevant to the Division of Labor model.

In popular lore a view of the computer as partner has
emerged over the past few years. Especially in children's
programs on television, robots may work together with
humans. Although they are depicted as having special
abilities, these ambulatory computers are generally
friendly. Computer professionals must find the capabilities
and human-like intuition and foibles of these devices as
tounding indeed, but their depiction seems to indicate some
easing of the tensions that people feel toward computing
devices.

On the professional side, a person can certainly regard a

computing device as a partner in problem solution. It is a
question for empirical research whether attitudes of equal
ity, contempt, awe, or indifference have some effect or no
effect on quality of machine use.

Division of labor model

Though the notion of task specialization of a unit was
invoked in discussing equal status arrangements, it can
apply as well in a Master-Slave model. Perhaps the clearest
case of Division of Labor thinking applies to designs where
the machines are structured for certain classes of activity,
for example by special sensor or effector hardware, by
resident program sequences, or by general characteristics
such as word size or memory depth that are optimal for
special purposes.

Some version of this model is as old as electronic
computing, with the divisions of input, output, and central
computation. The proliferation of program sequencing and
test-and-branch logic over many parts of a computer sys
tem, some quite specialized, is taken for granted today; and
has served to blur the distinction between machine speciali
zation and specialization due to a particular program.

Still, in thinking of devices, there does seem to be a
difference between a machine that is specially constrained
for one kind of processing and a more general purpose
machine that is arbitrarily assigned that processing. At the
one extreme is a mechanical hand, for example, scuttling
across a radioactive area, with specially shaped "fingers"
but little logic of its own. At the other extreme is the Jack
of-All-Trades Processor. Somewhere in between would be
the chunk of logic and memory at a remote batch entry site,
or controlling details of disc storage and retrieval.

There appears to be two underlying motivations for task
specialization. One is efficiency and cost; the other is
convenience. Efficiency and cost apply both to device
construction and to the choice of alternate devices-where
there is a choice-to process more programs appropriately.
In cases where efficiency is problematical (as it may in fact
often be) the motivation of convenience suffices. When
dev'lces are assigned em· pureh arOiLrar) gruun~:T~. uilly
convenience is involved.

Clamoring children model

In this model, a number of physical units or potentially
active programs seek the attention of a central control
source and clamor for the occupation of systems locuses.
The central source emulates the behavior of some kind of
Parent, or Child-Care Unit. This is the familiar model of
various mUltiprocessing systems.

The clamoring of the "children" components may be
insistent. The Parent configuration may adopt various strat
egies of care for the stated needs. (Though a fair-sized
technical literature exists on this subject, the underlying
analogy does not seem to have been enunciated.) Generally
the behavior of the Parent system is post-Dr. Spock, in that

Dominance Relations in Computing Systems 477

attentiveness and a certain amount of permissiveness seem
to be important criteria. Generally it is assumed that the
Parent will devote maximum time and resources to the
behavior of the children components unless some patholog
ical condition exists. Still, insensitivities to the actual needs
of the children, and a lack of understanding may be found.
It is as if the Parent were saying, "I don't know what it is
you're doing, or exactly what you'll need, but you can have
10 milliseconds to do it in." After some period oflenience,
the Parent may unceremoniously toss the Child out of the
system.

A number of dimensions may be involved in giving an
adequate description of the relations in this model. Atten
tion-getting in the sense of interrupts, occupation of proces
sor time, channel use, resource assignment are just a few.
What is interesting is that in this very common kind of
system the relations are far from the Master-Slave paradigm
that seems so readily to describe computer-based interac
tion in the lore of both public and professional. Certainly
the Parent aspects of the system are "in control" and have
decisional evaluation and choice. Yet the Clamor Units are
heavily involved in the determination of the actual se
quences of events which will be realized.

DOMINANCE: BASIC CONSIDERATIONS

In the four informal models discussed above, dominance
of one or another kind seemed very much at issue, though
was fairly implicit. In this section some suggestions will be
sketched for a more precise treatment of interactive com
puting machine behavior, including varieties of dominance.

The arena in which dominance activities of one or
another kind take place may be variously viewed as a world
of devices, logical or functional units, or processes or
procedures. Ordinarily one would think of either device or
program as having some boundary based on coherent
criteria, whether (a) physical and communicational in that
events within the unit are vastly more available than they
are outside the unit, (b) causal, where separate events are
in!heirminut~ c:onn~c:tion~. c.l~tt;rmined v~~tly mort: from
within than from without, or ~c) logIcal, where there IS

some symbolic pattern belonging to the subsystem that
distinguishes it from others.

A unit or process exhibits activity or behavior. It is
assumed that it is possible to identify discrete behavioral
units. (A more general assumption would not require dis
creteness, or would associate a discrete representation of
symbols with some underlying continuity.) The activities or
behaviors may be described in terms of rules of composi
tion which may provide activities composed of more basic
activities, and specify event structure. These rules charac
terize the well-formedness of events in the system; but they
are not the same as the underlying processes which may be
thought of as capable of producing the behaviors in a strong
sense.

Activities are realized in the actual processing of the
system. In considering what might happen in the system,
we are looking at it in a temporal framework and projecting

478 National Computer Conference, 1977

possible sequences of behavior for various parts of the
system. The logician would say that we are quantifying
over moments of time, and possible states of each proces
sor device, perhaps also over programs.

A device A is said to exhibit socially effective action r on
device or process B if ensuing behavior s of B is different
than it would have been, considering possible sequences of
behavior, if A had not exhibited r. In practice, this is not
generally a problem to identify. It ordinarily involves a
clear channel, and it is usually direct social action with no
intermediary process.

The scope of an action r of A on the behavior of B is not
so readily defined, even in these informal terms, but it is an
important notion. Considering just A and B, the scope set
S I of r of A on B is the set of sequences of B' s behaviors that
are distinctly associated with A's having performed r. The
key notions involved are (a) what the sequences are, (b) the
length of the sequences, and possibly (c) some internal
measure for the sequences in the scope set.

The actual scope is that sequence of affected behaviors
of B that is realized, if any. "Scope", thus defined, is open
to complications if more than one process may affect B's
behavior or if remote conditions in other sequences of A or
B might affect the relevant behavior. Even if one assumes
that there are 'program-limited' bounds to the calculation of
sequences, certainly a reasonable assumption for most
systems, the possibility of effective mUltiple interacting
processes presents problems in analysis, perhaps not insol
uble ones. At the worst, formal analysis along the lines
suggested here might uncover deep problems with the
assessment of mUltiple causality. However it may be possi
ble to make definite certain classes of interactive influence,
perhaps to systematically limit the depth of causal influence
among devices, and come up with some useful results. For
present purposes, the notions are important that some
behaviors have more or less impact on the behavior of
other processes; that the behaviors may be directly effec
tive or indirectly effective through 'ricochetting' effects on
the behavior of intermediate units; and that the space of
possible activity sequences is the field in which analysis
takes place.

Dominance by any definition should involve socially
effective behavior, but it is at once more restrictive and
more complex. Either repeated social action, or interaction
(two-way) could be involved.

Dominance effects of behavior a may be said to be
behavior-limited to the effects on the other of that behavior.
If dominance is viewed as stemming from a beha\'ior d of
A, then A is behavior-dominant or B-dominant. If domi
nance is limited to effects of a program or program seg
ment, then it is (program) P-dominant for that segment.

Dominance could be of several types, such as those identified
on content and intuitive bases in a later section. Suppose
the types are at through ak; then dominance would be
further qualified as

B-dominant, type ai, or (B, ail-dominant; or (I)
P-dominant, type ai, or (P, a;}-dominant. (2)

For example, one device might dominate another for
short tasks but not for long tasks, or be able to request disc
access computations but not arithmetic sequences in gen
eral.

If dominance extends beyond a behavior-scope or a
program, there is required some measure of the dominance
over possible programs, or over actual realized programs.
With the provision that it is clear whether possibility or
actuality is being referred to, suitable measure functions
could be constructed,

p.(A acdominates B), (3)
p.(A acdominates B; on condition q). (4)

so that for instance p. would be a relative frequency of
domination in relevant occasions.

Just generally it is not clear that dominance would be a
transitive relation. It is conceivable that, if dominance of
type x depended on the consequent events of B from
something A did, dominance of the same type would
involve establishing that the same could happen from B to
c. Still, those behavior/effect sequences might not hold
from A to C, because of special social arrangement or
hardware characteristics.

If A acdominates B over all situations, then A is said to
totally a,dominate B. Domination over all types would
amount to total domination. Total dominance would de
scribe a partial order of devices.

Though it has been assumed that dominance is based on
behavior of the dominating device or process and the
effects on the dominated party, some kinds of dominance
may be based instead on definition and symbolic accept
ance. In practice, definitional acceptance may lie behind
the behavioral impact of A. For example, if a unit is
labelled in an appropriate entry in a descriptor table as a
VSOP (for very special operations computer), and that
labelling is used to facilitate requests for input-output
service, then label is translated quickly into behavioral
preference. Thus, a special kind of dominance would be the
power of a device to insure the acceptance of a dominance
definition whenever it was transmitted to another device.
Note that the actual behavior need not actually occur, and
there need be no other justification than the labelling itself.

DOMINANCE TYPES

Several kinds of dominance which may be conceived as
holding among parts of a computer system-or person
computer system-will now be described informally.

I. Attentional dominance refers to the gaining of the
attention of a unit by a signal sent to that unit, perhaps
indirectly. Ordinarily this is regarded as a short-term activ
ity, a prelude to further processing. The first unit says, in
effect, "Halloo there," and the receiving unit acknowl
edges with what might be called a Hark!-act. The common
case is an interrupt. Attentional dominance is transitory
uniess there is some priority system for acknowledging
signals involved. The Halloo-ing unit might be said to

dominate the Hark unit upon successful completion of the
behavior cycle; or it might be said to dominate other
competing units (but see below for competition dominance).

2. Channel dominance is similar to attentional domi
nance, and may be involved in it. It has to do with superior
means of accessing a communication channel.

3. Decision-making dominance means that one unit has
the programming necessary to evaluate information leading
to the choice of one of a number of possible act-sequences;
and the other unit does not. As in the discussion of scope
limitation above, decision-making may be perfectly general
(total decision-making dominance), it may be limited to
specific decisions or specific classes of decisions. Since
most computational units have test-and-branch provisions,
decisional dominance would be almost always distributed in
detail. However, since the function is so important, provi
sion for making one or another kind of decision is by no
means trivial, and it is probably the case that at least
systems decisions are highly centralized in present-day
configurations.

As with human decision makers in organizations, facets
of the decision making process in computing devices may
be examined more finely for their distribution over units.
The amount and kind of input to decisions over an interact
ing system could be identified and made quantitative. An
especially important facet of human and machine decision
making is the sources of the alternatives to be evaluated.
Other kinds of input are informational input and evalua
tional participation, including voting arrangements.

4. Resource competition dominance involves another
very widespread function in computer-based systems, and
should usually depend on some kind of decisional evalua
tion. Dominance is construed as over other competing
devices or processes. Both amount of resource use, and
timeliness of use with respect to the requisites of the using
device apply.

5. Request/compliance dominance overlaps resource
competition dominance, in that most competition involves
explicit requests, and the outcome is mediated by a scarce
compliance. It is more general, however. Request domi
!19:g~t:. j§ ,coJIye.miQl1~Jly.d~ijn.eQ ((QOl r:e.qus;:,sting_tQl)Qten:
tially complying unit. As in resource dominance, decisional
evaluations (the alternatives being at least "grant this
request" and "don't grant this request") are generally
involved. The evaluations may incorporate a diversity of
forms, and draw on a variety of information. Or, little
information may be evaluated, for example when treatment
is based on arbitrary grounds such as unit identity alone.
Rejection or acceptance may be limited to some behavior
class for a given unit, also. This evaluation would involve
only the identification of class of behavior and unit identifi
cation.

If a decision making unit which evaluates requests is
especially restrictive, it may be useful to speak of permis
sion dominance, or balk power. Permission dominance is
more general than balk power. Both qualify as behavior
based dominance ploys since they are likely to have notable
effects on the behavior of the requesting unit.

A series of decisions may be involved in a request. For

Dominance Relations in Computing Systems 479

example one unit may approve the worthiness of a request
for storage usage, but the unit monitoring the storage
device may refuse the request temporarily because of
current space usage. Decisions may be not only sequential
but also distributed; and it is always possible for one part of
the system to have information that is inconsistent with
another part of a system.

6. Outcome override and other illegitimate dominance.
Decisions may be evaluated and still overridden by a
suitably programmed unit. Other violations of procedures
"assumed" by someone or some unit to be the case are
found in criminal violations and pranks. For the computer,
unless programmed for "moral" recognition in some sense,
this amounts merely to having consequences irrelevant to a
computational procedure.

7. Nominal and symbolic dominance. Depending on the
label, this kind of dominance was discussed in the last
section. It is used by both humans and supervisory sys
tems.

8. Reprogramming dominance. This kind of dominance
can be vast, if effective programs are available or can be
constructed. It amounts to a kind of second-order domi
nance. Presently it is difficult for a machine to reprogram
another machine, and somewhat easier for a human to do
so.

9. Sanctioning dominance. If the parameters of a process
can be changed by input from outside, as in a learning
program, then the process that supplies corrective feedback
has sanctioning dominance to the extent that its input
changes the target process.

10. Ritual dominance/deference. This is an emotional
matter, of use in computer-human interactions, or good
simulations of those. The computer greets the human with,
"Good morning, Boss," and otherwise expresses willing
ness to comply, flatters the human, and so on. The human
feels good. More humbling interaction may occur later.

CONCLUDING COMMENTS

The ~Q.v.e listiogb)l.llo means. exhausts the possibilitjes for
interaction which may hold among computing devices, or
computers and people. Not mentioned, for example, were
sequences such as negotiations, barter, and more compli
cated structures such as coalitions. These arrangements,
and others, may be subjects for study as computers become
more widely interconnected.

Other considerations not mentioned above are especially
relevant to humans, and to the problem of possible com
puter dominance-at least, the problem of having healthy
relations with these complex devices.

One matter is the issue of intent. It is not necessary for a
device to "intend" anything for it to have an effect. A
stalled car presumably has no possible intentions, but it can
be effectively coercive in some situations. Similarly, the
'blind' behavior of computers can in fact consume great
amounts of time of their human associates. Often this
human time is not counted in evaluations of system effi
ciency. Since computers are symbolic devices, that work

480 National Computer Conference, 1977

in time, it is possible for a person to be effectively condi
tioned to interact with them in certain ways (for example,
frequently, or with a high frustration level, or only on
challenging problems). This can be quite accidental.

If intent is not necessary for influence and for use of
human resources, neither is it beside the point. Suppose a'
machine did "intend" to influence a person in some way,
for instance to enslave the person, or to make him or her
happy frequently, or to send out for refreshments. If a blind
machine can influence behavior, then one with goals should
have a better chance of success. It would be necessary for
the machine to have an "understanding" of the person, or
at least of tactics which were likely to work with members
of the species, in addition to having goals of influencing the
person. There is some controversy whether computing
devices can have intentions and understandings of this
sort.5 Certainly they can have goals in very specific senses,
and can exhibit adaptive behavior in some contexts. How
well a machine, suitably programmed, might do in an
influence attempt is another question. Simply the ability to
have some intentions, for good or evil (as the human views
it), does not mean that a machine would be successful.

People, after all, frequently intend to influence each other,
but do so only with varying success.

REFERENCES

1. Kimbleton, s. R., and G. M. Schneider, "Computer Communications
Networks: Approaches, Objectives, and Performance Considerations,"
Computing Surveys, 7,3, September 1975, pp. 129-173.

2. Blau, P. M. and W. R. Scott, Formal Organizations: A Comparative
Approach, Chandler, San Francisco, 1962.

3. Bernstein, I. E., "Primate Status Hierarchies," in L. A. Rosenblum
(Ed.). Primate Behavior: Developments in Field and Laboratory Re
search, Vol. I. Academic Press, New York, 1970.

4. Jacobs, T. 0., Leadership and Exchange in Formal Organizations,
HumRRO, Alexandria, Va., 1971.

5. Matson, Wallace, Sentience, U. Calif. Press, Berkeley, 1975.
6. Raphael, Bertram, The Thinking Computer, Freeman, San Francisco,

1976.
7. Likert, Rensis, New Patterns of Management, McGraw-Hill, New York,

1961.
8. Christie, Richard, and Maria Jaboda, (Eds.), Studies in the Scope and

Method of "The Authoritarian Personality", Free Press, New York,
1954.

9. Rotter, Julian B., "Generalized Expectancies for Internal Versus Exter
nal Control of Reinforcement," Psychological Monographs, Whole. No.
609,80, 1966.

Structured training-A common-sense
approach to developing ADP skills
for improved job performance

by ALEXANDER P. GRANT and JACK L. STONE
Computer Education International, Inc.
Washington, D.C.

ABSTRACT

"Structured training" is a collection of instructional tech
niques, devices, materials, and methodologies, selected and
tested by the authors, which has been successfully used to
develop ADP technical skills and improve performance on
the job. Structured training, in many situations, should
result in: more effective training than current on-the-job
training programs, and standardized training courses pro
vided by outside suppliers. Structured training has major
applications inside medium and large scale production
oriented computer centers.

A major premise of structured training is that course
design should be specifically oriented to performance im
provements on the immediate jobs to meet training cost!
effectiveness benefits. Structured training courses are
therefore tailored to the needs of a specific installation.
Best results are obtained when computer center objectives,
course content, and student objectives are mutually con
sistent.

Major characteristics of structured learning are these:
instructional modules are designed for an order of presenta
tion that moves from the general to the specific. Reinforce
memgf:~~o ls8{;h+e:y~, wi#t·~Jtteft",·.ve ti~e·~ qUt~~

directed class discussions, and coordinated on-the-job
training or job-related workshop problems.

A case study of a structured training course implemented
by the authors for a multi-mainframe U. S. military installa
tion is presented to illustrate structured training.

It is concluded that, although structured training de
mands a substantial development and implementation ef
fort, the benefits derived seem to be significant and cost
justifiable.

INTRODUCTION

The structured training course approach to ADP technical
training discussed in this paper has been developed by the
authors over the past several years during the process of
designing and implementing a variety of ADP training
courses for a wide range of government and commercial

481

organizaiions. instaHations for which structured training
courses have been developed and presented have been
medium and large scale production-oriented computing cen
ters whose primary workloads consist of "commercial"
type applications.

BACKGROUND

In data processing, as in any field subjected to the
stresses of rapid change and expansion, the general level of
performance of personnel tends to deteriorate over time.
Although, in many installations, concurrent improvements
in management, supervision, technical support and training
have served to arrest or even reverse this tendency, in
others, such measures have not been entirely successful. In
particular, training efforts have often been either absent or
disappointing in their outcomes.

Thus, in far too many modern computer centers, the
status of development of technically trained personnel is
well below that required to apply current computer technol
ogy in an effective and economic manner. Several major
factors have contributed to the development of this situa
tion, including:

(1) Substantial increases in workload volume, coupled
with increasing pressures from users for improved respon
siveness to their needs;

(2) Increasingly diverse and complex workloads;
(3) Rapid changes and increasing capabilities in hard

ware and software;
(4) Higher levels of responsibility imposed on computer

operations and problem programming personnel;
(5) Continuing loss of trained personnel through promo

tion, transfers and terminations.

As to any specific installation, low levels of technical
personnel effectiveness may be evidenced by one or more
indicators:

(1) Excessive or increasing production re-runs;
(2) Excessive or increasing testing activity for equiva

lent program development workloads;

482 National Computer Conference, 1977

(3) Recurrent difficulty in meeting production commit
ments with an acceptable level of data accuracy;

(4) Excessive or increasing overtime to meet normal
development or production requirements;

(5) Difficulty in responding to new or changing user
requirements.

Accompanying these indicators may be more subjective,
but nonetheless real, observations, including:

(1) Decreasing management and user confidence in the
ability of the computer center to meet development and
production commitments;

(2) Low employee morale;
(3) Excessive or increasing rate of voluntary separa

tions, especially of the more efficient workers;
(4) Excessive reliance on a progressively smaller group

of individuals in order to "get things done".

Faced with such problems, computer center managers
have often turned to personnel training as one way of
improving their operations. The outcomes of such training
efforts have varied widely, but it seems reasonably safe to
say that few managers are totally satisfied with the quality
and utility of their training programs. The structured train
ing course approach to training ADP technical personnel
attempts to ameliorate the more common shortfalls of many
current training programs for computer center personnel.

Of the several basic approaches currently in use for
training in the center, none are objectionable in and of
themselves, and any or all of them may find a useful place
in a well designed and implemented training program.
Among the more common techniques in current use, which
are discussed below, are:

(1) On-the-job training (OJT);
(2) Standardized training courses supplied by equipment

manufacturers or independent suppliers, including self
study courses with or without audiovisual aids;

(3) Formal on-site training courses.

On-the-job training is an invaluable adjunct to any techni
cal training program and may be the primary method of
choice in some restricted situations. However, in many
installations, OJT is a mere facade used to mask the lack of
any real commitment to personnel training. In other instal
lations, OJT fails to attain its objectives because:

(1) It is administered on an ad hoc basis without any
meaningful planning, control or evaluation;

(2) The level of training that can be achieved is limited
by the capabilities of the personnel who can be made
available to serve as instructors and the extent to which
they can be made available;

(3) It is often restricted to the most rudimentary skills
and most routine functions of the job;

(4) It is essentially a one-on-one instructional method
and, therefore, relatively expensive.

Standardized training courses available from commercial
sources include both instructor-presented courses and self-

study packages. Instructor-presented courses are usually
conducted at the vendor's site. Because most of those
courses are designed to offer a general curriculum to a wide
variety of installations, they are often not specific enough
to meet the unique needs of a particular installation. Even
when these courses are highly specific, the diversity of
interest among participants from different organizations
tends to reduce the effectiveness of the program.

So-called "self-study" and "programmed instruction"
packages are offered either on an actual self-study basis or
an assisted basis, i.e., a "monitor" or "course supervisor"
is to be provided by the center to assist the student. The
experience of the authors with these materials is that they
have limited effectiveness when used on a self-study basis
because many students have neither the self-motivation to
struggle through the technical details nor the study skills
needed to acquire knowledge in this manner; however,
these materials, especially the audiovisual component, may
have considerable value when used as support to an in
structor in a classroom situation by providing diversity of
presentation and reinforcement of learning.

Formal on-site training courses may be provided by
either in-house staff or vendor sources. Such courses can
be very good, but often fall short of attaining realistic
training goals, because:

(1) Training is used only as a response to ' 'crisis"
situations with little or no planning;

(2) Training is often supervised by technical or adminis
trative personnel who have little training, interest or experi
ence in education or training;

(3) programs are often oriented toward academic objec
tives rather than specifically to job related training needs.

Since the authors are actively engaged in providing
training services to computer centers on a commercial
basis, these problems have had considerable importance
and immediacy. To address these problems, over time a
large number of different devices, techniques, materials and
methodologies were tried by the authors and were either
found wanting and discarded, or were proven and incorpo
rated into a set of training strategies that, for convenience,
are called collectively "structured training."

STRUCTURED TRAINING CONCEPTS

The structured training course approach is built upon the
premise that cost/effective training in the production-ori
ented computer center requires structuring of courses that
specifically provide training to maximize performance on
the job. The conceptual framework underlying this ap
proach encompasses a set of ideas that are neither new nor
unique, but that in current training practice are as often
honored in the breach as in the observance. The more
important of these ideas are discussed in the following
paragraphs.

A major consideration is that each structured training
course be tailored to the needs of a specific installation.

The training objectives of the installation form the basis for
course design as well as for evaluation of the course
outcomes. Each instructional unit must contribute to the
satisfaction of one or more of the computer center's train
ing objectives.

Closely connected with this notion is the idea that course
content must be consistent with the students' job-related
objectives. Adherence to this idea can only be attained if
students either have or are about to have assignments for
which the training course is appropriate. Best results are
attained when the computer center objectives, the course
content, and the students' objectives are mutually consist
ent.

Course content must not only be consistent with student
and computer center or objectives but it must also be
structured so as to facilitate learning. The underlying con
cept here is that new knowledge is most easily acquired and
retained when it can be readily integrated with existing
knowledge. For this reason, the instructional modules of a
structured training course are designed for an order of
presentation that moves from the general to the specific.

Students are first presented with a conceptual overview
of the course that serves both to forecast the material to be
presented during the course and to illustrate the connec
tions between the course content and the students' previous
knowledge and experience. Similarly, each major module of
the course is introduced by an instructional unit that
presents an overview of the module and relates it back to
the course overview. Thus, important ideas are constantly
reviewed, reinforced and related to the students' existing
knowledge.

Further reinforcement of learning is achieved with three
techniques. The first of these is based on the ancient maxim
that, "You teach what you test." The development of tests
and quizzes that emphasize important concepts and details
is basic to the success of this approach. In a structured
training course, the primary objective of testing is not the
traditional one of evaluating student progress but is instead
to:

(1) Provide immediate reinforcement of learning;
(2) l~p'~~~'e" stud~nt";~ft~motiv'atlon by providIng imme

diately realizable goals;
(3) Provide each student with an aid to self-evaluation.

Quizzes are used on a very frequent basis to achieve these
objectives and the fact that such use also provides an
excellent evaluation of student progress is a welcome but
relatively unimportant result.

The second and related technique is the "directed" class
discussion in which the instructor encourages the students
to ask questions and to answer them. In this technique, the
instructor serves as interlocutor: eliciting a question from
one student and passing it to another to be answered. To
the extent possible, the instructor refrains from directly
providing answers.

A third method of reinforcement may take one of two
forms dependent on circumstance: related on-the-job train
ing or related workshop problems. If on-the-job training is

Structured Training AO,,)
'"to.)

used, great care must be taken to assure that such training
is effectively coordinated with formal classroom sessions.
Unless OJT is properly scheduled and consistent with
formal instruction its effect is largely vitiated.

In situations where OJT is not practicable, workshops or
laboratory problems may be used. Laboratory or workshop
exercises should address problems that are based on spe
cific operating situations in the computer center for which
the structured training course was designed.

Design, development and implementation of a structured
training course proceeds in accordance with a common
sense plan. Each step in the plan is necessary, but the
extent to which each step is pursued is dependent on the
needs of the specific installation for which the course is
being developed. If the installation has a training program
plan, the structured training course is developed within the
context of that plan; otherwise, it is developed as a stand
alone course.

A necessary first step in development involves collection
and analysis of information about the training needs of the
installation. Such information may be obtained from: inter
views; personnel records; management reports and plan
ning documents; problem area analyses; and similar formal
or informal sources. The output of this step is a program
description document that is submitted to the installation
for review and acceptance.

The program description document is, in essence, a
preliminary recommendation for a training course. It con
tains an exposition of objectives, scope, student prerequi
sites, proposed student materials, instructional methodolo
gies, and a summary statement of course content.
Normally, this document also includes a detailed and time
phased topic outline. Upon acceptance of the program
description, student materials are selected or developed and
a detailed instructor's guide is prepared. The instructors'
guide is designed to assist the instructor and contains:

(1) A summary description of the course content, meth-
odology and objectives;

(2) A course schedule;
(3) A listing of student materials;
(4) .4 lesson"plan 'for each In'struction unir.

Each lesson plan contains:

(1) An estimate of the amount of time required for the
unit;

(2) A statement of the objectives of the unit;
(3) A topic outline of the content of the unit;
(4) A description of listing of the student materials and

study aids required;
(5) An exposition of student and instructor activities for

the unit;
(6) Suggested instructional aids, i.e., audiovisual mate

rials, chalk board diagrams, handouts and the like;
(7) Suggested tests or quizzes and discussion guides to

be used with the unit;
(8) Where appropriate, case study materials, problem

statements and the like for out-of-class study or workshop
sessions.

484 National Computer Conference, 1977

The first step in implementing the training course is the
course announcement. Such an announcement may be
either in the form of a written bulletin or may be delivered
orally at a meeting. In either case, it can serve several
purposes, including:

(1) Informing all potentially interested persons about
the content of the training course;

(2) Publicizing the organizational and personnel objec
tives of the course;

(3) Providing potential students with the opportunity to
ask questions and to interact with management in relation
to their individual needs and the relevance of the proposed
training to career progress.

Persons selected to participate in the trammg course
should not only meet course prerequisites but should also
have a specific job-related need for the training offered.
Unless a participant is going to apply knowledge and skills
gained shortly after the conclusion of the course, both the
individual and the organizational benefits of training will be
largely dissipated. Additionally, students who lack personal
job-related training objectives can not realistically be ex
pected to have the level of motivation required to accept
the workload and discipline necessary to a successful
training experience.

The structured training course approach assumes and
requires that the students be active participants in the
training experience and not mere empty vessels into which
knowledge is to be poured. Classroom operation is disci
plined, course content is highly structured, and the level of
student participation expected is high. Each class session is
expected to result in a measurable increase in each stu
dent's knowledge or skills.

A typical class session begins with a short review of the
material covered in the previous session. This is immedi
ately followed by a short quiz designed to provide rein
forcement of the important features of the previous instruc
tional unit. The quizzes are then corrected in an interactive
exercise in which the students provide the quiz answers
with minimum intervention by the instructor. This exercise
also affords the students an opportunity to seek clarification
of the subject matter or to discuss related experiences.

This dialogue is followed by a presentation by the in
structor of the next instructional unit. Short duration audio
or video tapes may be used as adjuncts to the instructor's
presentation. Depending on the type and length of presenta
tion, the students may next address exercises or enter the
workshop mode to solve large problems. Finally, the in
structor introduces and discusses the outside reading as
signment that is to be compieted before the next ciass
session.

At the conclusion of the training course, each student is
evaluated by the instructor in terms of the progress he has
made during the course. The instructor's evaluation is
based on: quizzes and occasional formal tests; student
participation and performance in discussions and work
shops; attendance and attitude.

Student evaluation of the course is provided by question
naire that may be submitted anonymously. Each student is
requested to evaluate:

(1) The extent to which the course satisfied his individ-
ual training objectives;

(2) The facilities provided;
(3) The course content;
(4) The instructor's presentations and workshops;
(5) The student materials.

Student evaluations are tabulated and analyzed to provide
data for the improvement of future courses.

CASE STUDY

A recent application of the structured training course
approach illustrates many of its features. This application
was designed and implemented to train computer opera
tions personnel in a multi-mainframe U. S. military installa
tion.

Over the years, this installation accumulated a large
number of second generation mainframes, now at a single
physical location, which were manufactured by a number of
different vendors and are currently being phased out. The
workload presently on this equipment is being transferred
to an IBM 360/65 and an IBM 370/165.

The state of both employee training and morale when the
course was conceived was considerably below an accepta
ble level. None of the operators had received any formal
training in recent years with the exception of a three day
briefing in 1974 on third generation equipment. Because of
the continuing press of current workloads, those operators
assigned to second generation equipment were not even
being considered for training on the 360/370 computers.
These conditions quite naturally led to lowered work effi
ciency and poor employee attitudes.

In this situation, the management of the computer center
consulted Computer Education International, Inc., con
cerning the feasibility of producing a training course to
meet both subject matter training and motivational objec
tives. As a result of these discussions the authors under
took the design and implementation of a structured training
course for the operations personnel of the installation.

After assessing the training needs of the organization, a
set of course objectives was documented and approved by
management. The course objectives were to:

(1) Provide intensive formal training to advance all
computer operators into the third generation system 370/0S
environment;

(2) Introduce or reinforce skills in the purposive use of
technical documentation;

(3) Improve the capability of operations personnel to
communicate among themselves and with other computer
professionals;

(4) Improve empluyee murale.

Investigation revealed that the target student population
in general lacked an adequate understanding not only of as
operations but also of basic data processing systems devel
opment and implementation methodology. Although most
operations personnel could respond adequately 'to routine
situations, they lacked the knowledge to handle the unusual
or problem situations and did not have the study skills
necessary for self-improvement and self-training in the new
third generation equipment.

From this study, it followed that the course content had
to be based on the assumption that the student population
had no prior training in the field of data processing includ
ing hardware, software and applications. Based on this
assumption, the content included six instructional units: (1)
Data processing system concepts; (2) 360/370 computing
system equipment; (3) 360/370 Operating system concepts
and facilities; (4) as/HASP console operations; (5) as job
control1anguage; and (6) OS service programs. The course
was conducted four times during the last six months of
1975. Each offering consisted of thirty two-hour sessions,
ten hours for each unit.

The course content was structured as a set of instruc
tional modules and units organized in a "top-down" fash
ion. Characteristic of this approach to course design is that
both the course and its major modules move progressively
from the general to the particular. The first module of the
course is, therefore, a comprehensive overview of the
course that relates the course content to the students'
background and forecasts the major subject areas to be
covered. This order of presentation provides the student
with a conceptual framework that, while it is constantly
expanding, allows him to easily relate new knowledge to his
past experience.

In the present case, the first ten hours constituted a
major instructional module which served the purpose of
providing an overall conceptual framework. The basic con
cepts of each of the included instructional units were
covered and connected together in the presentation. Each
of the five subsequent instructional modules began with a
recapitulation and review of the concepts presented earlier,
followed by detailed development qf the currentsllbject
area.

Actual course presentation followed the structured train
ing course model rather closely. Consistent use was made
of quizzes and directed group discussions. Reading assign
ments were frequent, and extensive use was made of
videotapes and other audiovisual aids.

Students were provided with a substantial amount of
student materials, including: study texts, illustration book
lets, and technical manuals. Adequate instruction and prac
tice in the use of reference manuals for problem solving was
afforded to all participants. Selected reference manuals
were presented to each student for permanent use after the
conclusion of the training course.

The objectives of the course were met reasonably well as
determined by the installation management and by the
students themselves. Because of the rather difficult person
nel environment that existed prior to the class, the course

Structured Training 485

was initially greeted with some skepticism; however, at the
conclusion of the program, most students were pleased with
the progress they had made and management was satisfied.

Computer center management indicated that, in general,
employee attitudes were more positive, with operations
personnel indicating an increased interest both in their work
and in follow-on self development. Computer operators felt
that they were able to communicate more effectively with
programmers and production control personnel.

Although the course was generally well received and the
course objectives were reasonably well satisfied, the au
thors feel that there were a number of areas where im
provements might have been made; these include the fol
lowing, which are discussed below: (1) Student selection;
(2) Class scheduling; (3) Course design; and (4) Testing.

Subsequent to initial course design, management broad
ened student selection criteria. This resulted in a range of
student experience, capabilities, and individual job-related
objectives far wider than was desired. Work assignments of
the actual student participants ranged from the purely
clerical functions in production control to the highly techni
cal functions of computer operators working at the 370/165
console.

Experience of the participants ranged from none to
nearly sixteen years of operator experience. Among com
puter operators, participants had work experience ranging
from second generation only to two years with the 370/165.
Thus, for many participants, major segments of the course
were not adequately relevant to either their immediate job
needs or their individual job-related objectives.

Instructional efficiency would have been improved had
the student population been more homogeneous. For exam
ple, production control personnel should have been as
signed to one class, second generation operators to another,
and so on; however, this was not possible in the production
situation. This, in fact, may be a problem that cannot be
totally solved in a training environment involving technical
people with production commitments.

A related problem was the scheduling relationship be
tween class sessions and the participants' work shifts.
Although most ~tudent~. were ~ble to handle. the heavy
workload imposed by the daily two hour class session plus
outside reading in addition to their regular eight hour shifts,
some students who attended at the conclusion of their shifts
were simply too tired to benefit fully from training. Stu
dents perform better if they attend class prior to their daily
shift.

All things considered, the course design was reasonably
successful. However, two major changes are suggested for
future courses. The first change is to make the instructional
modules smaller in scope and to increase the number of
levels of detail between the most general and the most
detailed. This change will assist the instructor to more
readily adjust the speed and content of his presentation to
the capabilities and individual objectives of his students.

The other change relates to the establishment of course
objectives. In the design of the course discussed in the case
study presented in this paper, the authors attempted to

486 National Computer Conference, 1977

assure that the design would meet management goals by
delivering a briefing and preliminary outline to management
for their review and concurrence. However, many students
had different views as to their technical training needs. In
the future, it is suggested that a preliminary topic outline
and questionnaire be distributed to all potential class partici
pants to elicit from them their views of their training needs
before the course content is finally adopted.

In the initial presentations of the course, some departure
was made from the structured training course approach to
the use of testing. The frequent testing was thought too
difficult for these students; therefore, testing was infrequent
and used principally for instructor evaluation of student
progress. After evaluating the outcome of these earlier
sessions, the decision was made to return to the original

testing concept. The use of testing was increased and
redirected to reinforce learning, promote student self-evalu
ation and improve retention of learning. This change re
sulted in a noticeable improvement in student motivation
and levels of performance.

CONCLUSION

Experience with this and other technical training programs
has convinced the authors that structured training courses
are an effective, common-sense approach to providing ADP
skills training in commercial-type computer centers. While
it demands a substantial development and implementation
effort, the benefits derived seem to be significant and cost
justifiable.

The role of a formal training program in attracting
and developing computer professionals

by LAWRENCE F. LUNETTA, JR.
Honeywell Information Systems
Phoenix, Arizona

ABSTRACT

Because of the wide range of career choices that face
computer-oriented graduates at the bachelor's level, a for
mal training program is often an effective mechanism to
attract and maintain a high-powered technical staff. Often
the fundamental choice for the new graduate is between
full-time graduate school or full-time work. An explanation
is given of how a training program can combine work
experience and graduate school, and the impact that these
development opportunities have on the organization's re
cruiting, development and planning efforts. Honeywell In
formation Systems' Advanced Engineering Program is used
to illustrate a successful training program, and its constitu
ent parts are highlighted: rotating work assignments, gradu
ate education, and practical problems and seminars. Also,
the importance of permanent placement for program gradu
ates, and the net result of program training, are discussed.

INTRODUCTION

The individual graduating with a bachelor's-Ievel degree is
today faced with a number of difficult, yet important career
decisions. On the most basic level, the choice is between
~~~ ,ft·!'f~ ~.~ ~fflU·~ ~~ 'f'lf'1"'ffleri~ 
the workforce on a full time basis. More specifically, the 
individual who has a computer emphasis in his or her 
undergraduate program of study has still further choices 
besides the two mentioned above. If graduate school is 
chosen, then which program is appropriate? Electrical 
Engineering, Computer Science and Business are all possi
ble avenues of graduate education. The full-time work 
environment is just as varied, whether it be hardware or 
software, applications programming, systems analysis, or 
systems programming. The choices are as diverse as they 
are plentiful. 

Because of this myriad of choices facing the computer
oriented graduate, recruiting and maintaining a high-pow
ered staff of computer professionals is a challenging task for 
any organization. This paper will focus on some effective 
techniques for attracting and satisfying talented computer 
professionals, with a particular emphasis on the role of 

487 

formal training within the organization. The use of training, 
and in particular, a formal training program, has a direct 
impact not only on the quality of individuals attracted by a 
recruiting effort, but also on the career these individuals 
will have as permanent members of the organization. 

As an example of the role a training program can play in 
an organization utilizing computer professionals, Honey
well Information Systems' Advanced Engineering Pro
gram (AEP) will be presented. The experiences and lessons 
learned in implementing and administering the AEP will 
illustrate the effectiveness and importance of a formal 
training program in the computer environment. 

BACKGROUND AND ENVIRONMENT 

Honeywell Information Systems is the "computer arm" 
of Honeywell, Inc. Its products represent complete com
puter systems starting with a line of mini-computers (Level 
6) all the way up to some of the largest computers in the 
world (Level 66). Honeywell appreciably enhanced its 
computer business (particularly at the top end) through a 
merger with General Electric's computer interests in 1971. 
One of the locations acquired by Honeywell at the time of 
the merger was the Phoenix Computer Operations in Phoe
m-lf, .4\';~~ 

Honeywell has built the Phoenix Computer Operations 
into one of the largest integrated computer design and 
manufacturing centers in the world. In this one location, the 
entire design, development, and manufacturing of Honey
well large computer systems (Level 66) is accomplished. 
Within the design and development effort is included all the 
hardware and software for Level 66. 

One of the legacies that GE passed on to Honeywell was 
several training programs in the engineering, finance, and 
manufacturing areas. One of these training programs, the 
Advanced Engineering Program, was started in 1968 in 
Phoenix to attract and develop top computer talent for the 
Phoenix Computer Operations. Along with the finance 
training program and manufacturing training program, 
Honeywell has continued the Advanced Engineering Program, 
and over the years it has evolved into a vibrant, dynamic, 
effective source of computer professionals for Honeywell. 



488 National Computer Conference, 1977 

Today, the Advanced Engineering Program has three facets 
aimed at developing well-rounded, complete computer 
professionals: rotating work assignments, graduate educa
tion, and internal training/problem solving. 

DESCRIPTION OF THE ADVANCED 
ENGINEERING PROGRAM 

The Advanced Engineering Program is a three year 
program and as such affords an individual a substantial 
opportunity to see many different aspects of the computer 
business through the use of rotating work assignments. The 
work assignments are designed to last between six and' nine 
months, thus allowing the program member to see between 
four and six different areas. The AEP takes advantage of 
the fact that Honeywell's Phoenix Computer Operations 
provide almost the entire set of computer technology in one 
location. The assignments are carefully designed by the 
Engineering Unit Managers to provide challenging work 
which contributes to overall product development, and are 
selected on that basis by the program member. 

While a great deal of learning is derived through work 
experiences, continuing graduate education is a key con
tributor to an AEP member's development. To facilitate 
obtaining a technical Masters degree, the program member 
is given time off from each work week to attend classes at 
nearby Arizona State University in Tempe, Arizona. ·The 
Masters degree programs which program members pursue 
are either Electrical Engineering, Industrial Engineering, or 
Math-Computer Science. The technical Masters degree 
generally takes two years to complete after which the AEP 
member has the option to continue towards a Ph D or 
pursue an MBA. 

The third part of the program-the internal trammg
allows for a dynamic tailoring of the three year program to 
reflect state-of-the-art technology. This aspect of the pro
gram involves lectures and seminars conducted by experts 
on the Engineering staff and may cover topics such as 
compiler or operating system design, error detection and 
correction techniques, the impact of microprocessor tech
nology, etc. The criteria for topic selection are applicability 
to Honeywell's design effort, and susceptibility to rapid 
change through technology improvements. The seminars 
are usually followed by a series of practical problems to 
provide "hands on" experience for the program member 
and to further illustrate the use of a particular concept or 
idea. 

RECRUITING FOR THE ADVANCED 
ENGINEERING PROGRAM 

If the Advanced Engineering Program sounds particularly 
rigorous and time consuming, that's because it is. It takes a 
very special individual to be successful on the AEP, one 
motivated enough to spend 50-60 hours a week in work
related activity. There is no "typical" profile for an AEP 
member, but there are certain characteristics (or accom-

plishments) each member must have. Recruiting for the 
AEP is done nationwide through an extensive mailing 
campaign as well as through a corporate recruiter. As a 
result, out of a group of 10-15 new program members 
(hiring is done once a year in June), each one will have 
graduated in the top five percent of his or her class with a 
bachelors degree in Electrical Engineering or Computer 
Science. Perhaps ten different schools will be represented, 
and the group's cumulative grade point average will be 
around 3.7/4.0. 

In addition to a very high GPA, program members tend 
to be very active in social, professional, and honorary 
societies as undergraduates. Since program members are 
expected to work in highly integrated design groups dealing 
with a very complex technology, this "people orientation" 
is very important. Advanced Engineering Program gradu
ates are targeted to be technical and managerial leaders of 
Honeywell's computer business. Thus, the individuals who 
join the program tend to be very motivated persons and 
aspire to a high degree of achievement. It is not unusual for 
program members to publish technical papers and partici
pate in patent developments very soon after joining the 
program. 

ADMINISTRATION OF THE ADVANCED 
ENGINEERING PROGRAM 

Another interesting aspect of the AEP is the manner in 
which it is administered. As Honeywell has designed it, the 
program resides in the employee relations (Personnel) func
tion for the purpose of budgeting and headcount allotment. 
The net result of this is that the program members are 
budgeted in employee relations, but work on a day-to-day 
basis in engineering. This allows tremendous flexibility on 
the part of both engineering managers and the program 
members in setting up and selecting assignments, free of 
any budget constraints. 

There is a full time administrator for the Advanced 
Engineering Program who works directly for the Manager, 
Technical Individual Development in Employee Relations. 
The Manager of Technical Individual Development is re
sponsible for all development activities for the technical 
community in the Phoenix Computer Operations. This 
includes in-plant classes, seminars, etc., in addition to the 
AEP. The job of the administrator is to insure the smooth 
operation of all facets of the AEP, and, in fact, the person 
who fills the job is on the third year of the AEP. The 
administrator and manager jobs are one year positions filled 
by a rotation sequence which starts in the administrator's 
position and ends with a one year appointment as Manager 
of Technical Individual Development. This keeps control of 
the program very close to the program members them
selves, with a large amount of support and guidance from 
upper management. The administrator's job is filled by the 
top performer of all those on the second year of the 
program and, as such, has a tremendous measure of respect 
and influence. 

The program members enjoy the fact that the individuals 



Formal Training Program in Attracting and Developing Computer Professionals 489 

who administer the program have experienced their prob
lems and, in fact, have often shared some of the projects on 
which they have worked. It is much easier to get problems, 
complaints, or requests out in the open since the program 
members easily relate to recent graduates of the program. 
Peer management problems are avoided because the Man
ager of Technical Individual Development is always a 
program graduate and upper management lends support and 
recommendations whenever needed. 

THE IMPACT OF A TRAINING PROGRAM ON 
RECRUITING 

The activity which feels the immediate impact from a 
training program is the recruiting effort. As outlined earlier, 
the computer-oriented graduate faces a myriad of career 
choices upon degree completion. A training program, such 
as the Advanced Engineering Program, which combines 
practical work experience with graduate education is very 
attractive to highly motivated graduates. It allows a "'dual
path" approach to establishing a career (education and 
work experience), relieving the graduate of an often diffi
cult choice. 

The highly successful individual who is attracted to a 
program like the AEP is attracted by the "special" oppor
tunity a training program offers. A common sentiment 
expressed by program members is that the four or five 
years of hard work that their undergraduate record required 
has been "rewarded" by such a wide-ranging opportunity. 

A company like Honeywell establishes a very progressive 
image through its training programs. A formal training 
program is ample evidence that there is commitment to 
individual development, and a measure of career planning 
for the new college graduate. Again, an important question 
which often arises during a job interview is "what type of 
development opportunities are available for me, both in 
education and work experience?" The Advanced Engineer
ing program is explicitly designed to answer that question 
and to allay the fear that the young engineer will' 'get stuck 
in a job that I don't like." 

t\ successfUl [raining program seii~ it~eii. A ke~ a~pe-';l ur 
AEP recruiting is the contact that the prospective program 
member has with engineering managers and current pro
gram members throughout the interview day. Neither the 
managers nor program members are "coached" on what to 
say, but the obvious positive feeling about the program 
comes through again and again in a spontaneous fashion. It 
is impossible to overestimate the value to the recruiting 
effort of this phenomenon of the position "selling itself." 

Now that the AEP has been established for several years, 
the job of finding potential program members on college 
campuses has been made easier. Because of the wide 
variety of schools represented by current and past program 
members, many Electrical Engineering and Computer Sci
ence departments are aware of the AEP and encourage 
their best students to contact Honeywell. By maintaining 
correspondence with their undergraduate schools, program 
members are often able to recommend friends that are a 

year to two behind them in school-a very reliable and 
fruitful source of candidates. 

With the major emphasis in recruiting now shifting to 
minority and female placement, the Advanced Engineering 
Program provides a tremendous advantage in attracting 
high caliber individuals. Given that the training program is a 
springboard for future leadership opportunities, this is a 
natural mechanism for affirmative action. 

Additionally, since there is a full-time program adminis
trator, any special problems or concerns that might arise 
are handled quickly, carefully, and on a personal basis. 
Since the AEP is very youth-oriented, the assimilation and 
adjustment process for each program member, and in 
particular, for females and minorities, is a very comfortable 
one. It is often these intangibles that are overlooked in the 
recruiting and placement process, but a training program 
such as the AEP is very successful in attracting high-caliber 
engineers because of its stress on personal adjustment and 
development. 

DEVELOPMENT OPPORTUNITIES ON THE 
ADVANCED ENGINEERING PROGRAM 

Although the recruiting effort is appreciably strength
ened, the ultimate purpose of a training program is to 
develop technical and business leaders for the future. The 
Advanced Engineering Program is designed to provide 
Honeywell with solid computer professionals, and each 
facet contributes to a program member's development. 

The rotating work assignments allow program members 
great latitude in acquiring practical skills and work experi
ence. By moving to a different technology area every six to 
nine months, essentially software-oriented individuals can 
hone their skills through experience in compiler and operat
ing system design, but still obtain an exposure to one or 
two hardware areas. The converse is obviously true for 
hardware-oriented individuals. 

In addition to learning the multi-faceted computer tech
nology, the program member is also introduced to a wide 
variety of work environments through the rotating work 
a~~ignIIlenl~. Ove! the ~uur~e ur tfIlee yt:al~. ari AEP 
member will have worked for five or six different managers, 
thus experiencing different managerial styles and project 
leadership. This experience is invaluable when it comes 
time to choose a permanent assignment, as the program 
member learns to recognize the work environment in which 
he or she is most comfortable. 

Graduate education at Arizona State University provides 
a good measure of the theoretical foundation needed in the 
development effort. Every program member is required to 
obtain a technical Masters degree in either EE, IE, or 
MATHICS before graduating from the program, and the 
commitment to this education effort is underscored by the 
fact that program members are given time off from the work 
week (up to eight hours per week) to attend classes with all 
tuition, fees, and books paid for by Honeywell. 

The formal educational opportunities provide an addi
tional benefit for those seeking to "cross" specialities or 



490 National Computer Conference, 1977 

change career emphasis. It is not unusual for an individual 
who joins the AEP with a predominantly hardware back
ground to discover an interest in software on a work 
assignment and then decide to pursue that interest in 
graduate school. Even more gratifying is the Computer 
Science major who joins the program with little or no 
hardware background only to discover through classes and 
a carefully selected work assignment that there are career 
opportunities in that area also. 

The bridge between the theoretical emphasis of graduate 
school and the practical application of the work assignment 
is provided by the seminars and practical problems. This 
technique is used to expose the group to a new technology 
very rapidly. This also allows the training program to 
emphasize concepts important to Honeywell as a business, 
while staying very close to the leading edge of technology. 

Because of the wide variety of opportunities that the 
Advanced Engineering Program provides, each program 
member can create a development program specially suited 
to him or her. It is this special feeling of control that each 
program member has over his or her own career which 
"turns on" AEP members. 

BENEFITS TO THE COMPANY 

Honeywell derives many benefits, some obvious, some 
not so obvious, from the Advanced Engineering Program. 
As mentioned earlier, from a recruiting standpoint, the 
program cannot be beat. It is an outstanding vehicle 
through which a large number of high potential graduates 
are introduced into the company. This periodic influx of 
new talent not only bodes well for the future, but also 
reduces the prospects of the engineering staff falling prey to 
technical obsolescence. 

Because the program members continually require chal
lenge, their work assignments usually involve work on 
critical new products. The payoff here is that the activity 
contributes directly to a product so that in addition to the 
program member benefiting via the experience, the com
pany benefits from useful work being done. 

The fact that program members rotate throughout the 
organization provides for rapid technology migration. One 
of the best communication techniques is to have "living 
witnesses" for a particular concept carry the word from 
assignment to assignment. Since there is such close integra
tion between the hardware and software of today's com
puter systems, it is most advantageous to have individuals 
who can carry new product ideas from one area to another. 
It is not unusual to have an AEP member design hardware 
on one assignment and then write software for that hard
ware on a later assignment-a close-to-optimum situation. 

THE CHALLENGE OF A TRAINING PROGRAM 

Graduates of a training program-particularly the Ad
vanced Engineering Program-present a challenge to the 
organization. This challenge is to effectively utilize the 

skills and the training developed by each program graduate. 
An AEP graduate represents a well-rounded computer 

professional. He or she has had three years of intensive 
training in both hardware and software areas through the 
use of formal education and practical work experience. An 
AEP graduate has learned to lead groups, as well as to 
cooperate within a group. In short, since the program 
attracts ambitious, aggressive individuals, there is a poten
tial problem in placing them in suitable permanent assign
ments. 

Expectancy theory postulates that the level of activity 
towards a certain goal depends to a large extent on an 
individual's perceived reward upon reaching that goal. 1 

This concept is quite evident when dealing with the Ad
vanced Engineering Program. There is continual scrutiny of 
the opportunities of program graduates by current members 
of the program. It would be impossible to routinely ask for 
50-60 hours of work per week from these individuals if the 
rewards were not readily apparent. Indeed, the prospects of 
retaining program members and program graduates in light 
of their superior credentials would be dim without a con
certed effort to carefully place and monitor each program 
graduate. 

Honeywell enjoys close to an 85 percent retention rate 
for program graduates. (There are no contracts or binding 
agreements.) Successfully placing each program graduate is 
probably the most difficult aspect of the entire training 
process to accomplish and Honeywell's success involves 
careful human resource planning, along with extensive 
individual counselling. Each program member chooses a 
permanent assignment, not forced into a convenient open
ing. 

Thus, the real cost of training, in terms of time, effort and 
planning is in permanent placement of the program gradu
ates. Unless an organization is willing to commit to provid
ing opportunities of responsibility, leadership and impact 
for its program graduates, the program could fail. As 
computer professionals, graduates of the Advanced Engi
neering Program approach the highest level of Maslow's 
Need Hierarchy---:-that of self-actualization.2 Given the ap
propriate opportunities to grow into leadership roles, these 
individuals are a tremendous resource for the organization. 

SUMMARY AND CONCLUSIONS 

A formal training program such as the Advanced Engineer
ing Program presents a "no lose" situation for both the 
corporation and the individual program member. From 
Honeywell's standpoint, for the dollar investment repre
sented mostly by tuition, fees and book costs for graduate 
school (assuming the positions must be filled anyway), the 
return in increased recruiting effectiveness, work contribu
tion, organization communication and future leadership, is 
tremendous. 

The program member enjoys, of course, the benefits of 
free graduate education and flexible job mobility. The 
accelerated development that the AEP member enjoys is a 
natural outgrowth of experiencing several different learning 



Formal Training Program in Attracting and Developing Computer Professionals 491 

environments. Through the "timesharing" of actIvItIes 
throughout the work week, a program member does not 
have to sacrifice practical work experience for graduate 
school, or vice versa. In fact, the general consensus is that 
each of those experiences is complemented in a synergistic 
fashion because they do occur simultaneously. In addition, 
there is a tremendous advantage in a career with Honeywell 
by being associated with a winner-the Advanced Engi
neering Program. 

This concept of being associated with a winner is what 
makes a training program so effective. Recruiting is made 
easier because both program members and managers alike 
will sell the opportunity. However, success like this does 
not happen overnight. The support of the entire organiza
tion stems from the "small" successes achieved on a day
to-day basis over several years. Since 1968, each facet of 
the Advanced Engineering Program has provided tangible 
proof of its success. There have been over 50 graduate 
degrees awarded to AEP members, 50 patents, and over a 
score of papers published. 

While these statistics alone do not provide the raison 
d'etre for the AEP, they do reinforce the feeling that it is 
"working." Combined with consistently high performance 
appraisals for work assignments, the patents, paper and 

degrees make it very easy to fund the program year in and 
year out. 

Based on the experience with the Advanced Engineering 
Program, it is safe to say that a formal training program can 
play a key role in resource planning in an E DP-related 
organization. Computer technology is very complex and 
computer design and usage requires a good understanding 
of the relationship between the constituent parts of a 
system. Honeywell uses the Advanced Engineering Pro
gram to insure a steady supply of technical and business 
leaders who understand the total computer environment to 
support a growing, dynamic business. 

A growth-oriented organization will find that a formal 
training program provides a return on human investment 
worthy of the most lucrative financial investment, particu
larly in the computer environment. 

REFERENCES 

I. Hersey and Blanchard, Management aJOrganization Behavior, Prentice
Hall, Inc., Englewood Cliffs, N.J., 1972, pp. 9-21. 

2. Torgersen and Weinstock, Management-An Integrated Approach, Pren
tice-Hail, Inc., Englewood Cliffs, N.J., 1972, pp.197-205. 





Personal computing-An overview 
for computer professionals 

bu JIM WARREN 
Dr. Dobb's Journal of Computer Calisthenics & Orthodontia 
Menlo Park, California 

ABSTRACT 

The brief history, current status, and foreseeable develop
ments in the areas of home and hobby computing are 
outlined. Major points in the two and half year history are 
presented. Characteristics of current hardware, software, 
and systems configurations are discussed. Mention is made 
of a variety of activities for which these systems are 
currently being used. Emphasis is placed on those features 
and uses that are unique to personal and hobby computing. 
Differences are noted between personal computing and 
professional computing. Developments known to be in 
progress are outlined. Several interesting and feasible proj
ects that the author believes no one is yet pursuing are 
mentioned. 

INTRODUCTION 

Within the past several years, general purpose digital com
puters have become a consumer product. A number of 
developments have occurred that are unique to this new 
area of personal and hobby computing. More are imminent. 
Some of these developments are beginning to impact the 
pr()fe.~~jg.~a.I.C2~P.l!YI1g~<?~rnl1~!!Y: T~!~ p~~~r ~,!rv~y~ th: 
brief history of home computers, the current situation, and 
the foreseeable developments. The reader should be aware 
that, since this paper was written over six months prior to 
NCC 77, portions of it are either obsolete history or six
month prognostications. And, six months is a fifth of the 
lifetime of the home computing movement. 

There are two distinct subjects within the realm of home 
computing: hobby computing, in which the users view the 
hardware and software systems as the primary items of 
interest, and personal computing, in which the participants 
are primarily interested in the applications of personal 
computers. Up through 1976, users of home computers 
were invariably hobbyists. The hardware that was available 
in a consumer's price range was too complex l for the casual 
user who was primarily interested in serious personal 
applications. Additionally, the available systems software 
was, for the most part, insufficient to support serious 
applications work. This situation was about to change at the 

493 

end of i976. By the middle of i977, there should be a 
number of units on the market in the $1000 range that are 
fully assembled,2 include a useful amount of memory and 
interfacing for low-cost mass storage, and include systems 
software that make them marginally usable3 by the applica
tions-oriented non-professional. 

Typical configurations 

The vast majority of personal computers are 8-bit ma
chines.4 Memory tends to range from one kilobyte to 64K, 
with most users having 4K-20K. A majority of home 
systems appear to use a standard television as their primary 
alphameric output device. Not uncommonly, they have no 
hard-copy capability. Phillips-type audio tape recorders are 
the dominant mass storage medium, usually having a trans
fer rate in the range of 100-800 bytes/second. Assemblers 
are in widespread use. Various versions of BASIC form 
the dominant "high level" language used for most applica
tions. 

Differences from industry 

A number of noteworthy differences exist between per
son~1 computmg and p'rofesslonal ·computing. Within home 
computers: Price is crucial; speed, capability, and reliability 
are secondary. Time and effort is essentially free. The 
primary motivation is entertainment in the broad sense of 
the word. Essentially, all not-for-profit home computers are 
purchased out of the family's entertainment budget. 

Neighborly, noncompetitive sharing is quite widespread 
among home computing enthusiasts. Software, assistance, 
and solutions to problems are readily exchanged among 
hobbyists. 

Attractiveness of the hardware is of minor consideration 
to computer hobbyists. Although they might wish to have a 
beautiful enclosure for their computer, they will be more 
likely to invest limited funds in additional capability than in 
a walnut cabinet. This characteristic will almost certainly 
change, however, as there come to be more personal 
computers than hobbyist computers. 

Second-hand equipment is in quite widespread use among 



494 National Computer Conference, 1977 

hobbyists. This is particularly true of peripherals. To a 
minor extent, used minicomputers are also appearing in 
home computing environments. 

This is a consumer marketplace. Thus, it requires a much 
higher level of customer service and responsiveness than 
has been traditionally available in the small computer 
industry. Users of personal computers tend to have less 
expertise and less patience than industrial computer con
sumers, and tend to expect a level of vendor responsive
ness equivalent to that found in other retail consumer 
markets. 

There is no national organization of the personal comput
ing community. There are several regional organizations, 
however, and 160-200 or more local amateur computer 
c1ubs. 5 

The extreme price sensitivity of the marketplace has 
enabled the widespread development of very small busi
nesses: computer craftspeople. A surprising number of 
highly reputed products-hardware and software-are 
being manufactured or assembled in basement workshops 
or garages. As a small company becomes successful, 
grows, incurs more overhead costs, and finds it necessary 
to raise its prices, it thereby makes room for a new, lower
cost garage shop competitor. 

HISTORY 

The first microprocessor, the Intel 4004, was produced in 
1974. It has been estimated that, prior to 1975, there were 
only 50-200 computers in personal use. Although an Ama
teur Computer Society6 has existed for some years, it has 
remained in the background of the current personal com
puting movement, and has had little if anything to do with 
its growth or popularity. 

The beginning of hobby computing can easily be dated 
from January, 1975. In that month, Popular Electronics' 
carried a cover story on the Altair 8800 microcomputer kit 
newly available from MITS,8 a small electronics kit manu
facturer in Albuquerque. Within three months, two com
puter hobbyist clubs had formed9 on opposite sides of the 
country, unknown to one another. In July, 1975, the first 
retail computer store opened in Los Angeles. 10 By Septem
ber, the new hobby had its first national magazine. 11 May, 
1976, saw the first regional amateur computing conven
tion. 12 Three months later, the first "national" convention 
was held and drew an estimated 4,500 enthusiastsY 

As of December, 1976, the following situation existed: 
There were 16,000-20,000 computers installed in homes. 14 

There were 160-200 local computer clubs, and at least three 
regionai associations of dubs. IS The iargest ciub had 4,000-
5,000 local members. 16 There were 150-400 computer 
storesY (The number is difficult to ascertain since some 
"computer stores" are mail order distributors with only a 
P. O. box. Others are general electronics retailers who 
happen to carry hobby computers. Still others may be 
deeply involved in computer retailing but keep a carry-over 
name implying that they are a hi-fi store or a repair shop.) 
At least two companies are actively pursuing franchise 

licensing in mUltiple states and plan to set up chains of 
computer stores. 

As of December, there were three national magazines 18 
explicitly directed to this audience. Two more were about 
to publish their first issue. 19 Another had published its first 
and only "monthly" issue in August.23 Two more periodi
cals24 existed that were targeted to the broader topic of 
popular computing. The largest of all of these ll had a 
circulation in excess of 60,000. Two others21,25 were report
ing circulations exceeding 20,000. 

Two or three major conventions explicitly concerned 
with personal and hobby computing were planned for 1977, 
as of last December. Additionally, a number of smaller 
trade shows and conferences were being promoted. The 
First West Coast Computer Faire planned for 7,000-10,000 
attendence at a weekend event in San Francisco in April. 26 
NCC'77 expected their Personal Computing Section to 
expand attendance by at least several thousand. 

HARDWARE 

There are three identifiable levels of computers in per
sonal use. The first level is the tutorial unit costing $100-
$400, having a keypad "front panel," a minimal monitor in 
read-only memory (ROM) or programmable ROM (PROM), 
and 256-1 K bytes of semiconductor random-acces s memory 
(RAM). The second level is the hobby computer costing 
$600-$1200, with a full front panel or a turnkey control 
panel backed by a good monitor in PROM, and including 
4K-29K of RAM. The final level is the small industrial 
computer priced at $1,000-$1,500 or more with a full front 
panel and 4K-8K bytes or words of RAM. Used minicom
puters also fall in this third category. 

Two types of home computers can be identified: kits, and 
preas sembled units. The kits are usually-but not al
ways27-less expensive for a given level of capability. They 
generally require some reasonable degree of hardware and 
electronics expertise 1 in order to properly construct and 
debug the hardware. A considerable increase in the number 
of preassembled units2 on the market is expected in 1977, 
and these units are expected to be reasonably cost-competi
tive with the kits. Several manufacturers have reported that 
it is as economical to produce assembled units as it is to 
produce kits and have to staff the large customer service 
activity necessary to back the kits. 

Peripherals 

Severai traditionai computer peripherals are popular 
among hobbyists, most notably used Teletypes, 110 Selec
tric typewriters, and paper tape equipment. Some home 
computers also have joy sticks28 for two-dimensional input, 
or digital-to-analog converters, usually used for output of 
music or voltages to drive CRT's. Fewer systems have real 
time clocks, or sensors or analog-to-digital converters for 
real-world input. 

A variety of peripherals have appeared that are unique to 



home computing. TVT's-television typewriters-are in 
widespread use by hobbyists. These scan a portion of the 
system's RAM, treating the bytes of data as ASCII charac
ter codes and generating a video signal for use with a 
television or video monitor. Video graphic capability has 
been available for over a year in the form of a 64x64 color 
array28 or 128x12828,29 black-and-white display. 256x25629 

black-and-white arrays should be economically available by 
the middle of 1977. That provides half the resolution of a 
standard U. S. television and is quite adequate for interest
ing real-time graphics. 

Several dot-matrix impact printers are appearing in the 
hobbyist market. These are priced in the range of $200-
$40()3° and print 40-80 columns on regular paper. 

Three speech synthesis units were on the market by the 
end of 1976 and a fourth33 one was expected in January. 
They are $400-$750. One3l is based on a much more 
expensive unit that has been in industry use for several 
years. Another,32 with proper editing, allows not only voice 
synthesis, but also singing and music synthesis. A speech 
input experiments unit was also planned for introduction in 
January.34 

Other subsystems that are expected on the hobbyist (and 
industrial) market before the middle of 1977 include several 
mini-floppy disc systems for $600-$700,35 microprogramma
ble microprocessor kits,36 a 16-bit processor4 that will fit in 
many of the hobbyist computers, and 64K byte memory37 
banks on a single circuit board. 

Undone products 

Several products would be of interest to the personal 
computing community that this author believes are not yet 
being planned by any manufacturer. An electronic tele
phone dialing peripheral would be simple to produce from 
current components,38 and could provide hobbyists with the 
hardware necessary for an electronic telephone book. 
Acoustic couplers and modems can be easily interfaced to 
home computers. Then, once the communication protocols 
are developed, personal computers can communicate with 
one anotner', anaw'iih' cetnral"Jaia anJprogr'ai1;J'i;t:po~itu
ries. Somewhat further into the future: interfacing to video 
tapes and video discs would provide the home computing 
enthusiast with on-site encyclopedic storage capacity. 

SOFTWARE 

Hobbyists with tutorial systems often program in ma
chine code and load the programs via the front panel. On 
hobby and industrial level systems, editors, assemblers, 
debuggers, and monitors are in widespread use, often based 
on cassette tape. A variety of BASIC interpreters are 
available. 20 Interpreters for several string processing lan
guages, PASCAL P-Code, APL, and LISP subsets are 
expected to become available in 1977. Compilers for 
BASIC and FORTRAN3i are also expected to appear in 
1977. Several disc operating systems for floppy discs,39 and 

Personai Computing 495 

cassette operating systems40 for Phillips-type cassette tape 
are available, but are little more than simple file systems 
and program development systems. They have little com
parison to the DOS found on midi and maxi computers in 
business or industry. 

1977 should see the introduction of a number of special 
purpose editors, e.g., for manuscript preparation, word 
processing applications, and document generation. Spelling 
checkers should appear around the end of 1977. 

A considerable variety of compilers for machine code or 
pseudo-code to be interpreted are expected in 1977. There 
has been and will undoubtedly continue to be considerable 
experimentation and "homebrewing" of programming lan
guages for home computers. Many of these will be highly 
interactive. Block structured languages are beginning to 
appear. 

There is very widespread demand for business applica
tions software. As of the end of 1976, very little had 
appeared. A considerable number of people were known to 
be working on various business packages, however, and 
these should appear in 1977. 

Software problems 

Several problems exist for home computing software. 
One major problem is that of machine independence. Even 
with machines having identical processors, a variety of 
design decisions have been made by the hardware manufac
turers that impact software. Some assume a given I/O port 
has a specific function. Many furnish software or firm
ware-particularly monitors-that make hardware or ad
dress assumptions. TVT's commonly make some hardware 
assumptions concerning the location of the display mem
ory. Few of the programmers developing software for a 
given CPU give adequate care to isolation of the hardware
and address-dependent aspects of their programs. 

In the purely software realm, there are a number of 
variations of BASIC.20 Rarely will source code for one 
version be acceptable without change to another BASIC 
interpreter. 

Control of proprietary software that the hobbyists con
side;:overpriceo'has been a pr6biem.'Tn Chese \.:a~e'~, Inail) 
hobbyists will freely exchange software with little consider
ation for its proprietary character. Most of the producers of 
software for this market have chosen to sell it for a large 
price to the hardware manufacturers who need it to en
hance their products. Or, they have chosen to sell it for a 
very nominal fee-often including source-code listings
and depend on sales volume to obtain an adequate return 
on their time and effort. It is evident that different market
ing practices must be adopted when marketing software to 
not-for-profit home users than have been used in selling 
software to a more controllable, for-profit user community. 

A possible solution to this problem well may appear in 
the form of software being stored in masked ROM that plug 
into an external socket on the computer. Manufactured in 
sufficient quantity. such firmware units could be priced lC)w 
enough to be economically competitive with the cost of a 
tape cassette, plus being far more convenient to use. 



496 National Computer Conference, 1977 

USES FOR HOME COMPUTERS 

Undoubtedly the question most widely asked concerning 
personal computers is, "What will they be used for?" In 
answering this question, the traditional business and indus
trial uses will be ignored, even though a number of hobby 
computers are being put to traditional uses in traditional 
environments. 

The most widespread use, currently, is unquestionably 
for the purpose of playing games. 22 The games are usually 
single-player games, though an increasing number of multi
ple-player games are beginning to appear. Some of the 
games are simple games of chance. Many of them,' how
ever, involve simulations of varying degrees of complexity. 
Many such games have a significant subliminal education 
value. Most of the games seen through 1976 used only 
alphameric input and output. An increasing number of 
games are beginning to appear that use graphic output,41 
and this trend is certain to continue. 

Self education concerning computer hardware and pro
gramming well may be the next most widespread use of 
these home computers, to date. Probably a majority of the 
owners of personal computers spent most of their time, 
through 1976, learning how to build and debug the hard
ware, and then learning how to use basic systems software 
and program. Much of the software work undoubtedly was 
concerned with learning how to modify some existent 
software so that it would work with a system that was 
"almost like" the system for which it was designed. A 
surprising number of disassemblers have appeared in the 
hobbyist community, included several that were written in 
BASIC. 

A number of systems include simple analog output equip
ment, often used for experimentation with computer gener
ation of music.42 A number of people appear to be experi
menting with biorhythm or biofeedback applications. 
Amateur radio enthusiasts are showing widespread inter
est43 in home computers, both for radio applications-e.g., 
code conversion, antenna control, message processing
and for their own value as a technical hobby. There is 
considerable interest in word processing applications, how
ever the cost of good-quality hard-copy devices has re
strained development in that area. There is also great 
interest among the physically handicapped, though little 
work appears to have been completed in this area, so far. 

Contrary to what many outsiders appear to expect, 
virtually no work has been done in the area of automating 
the house, or kitchen, or sprinkler system, or security 
system. This is not surprising when one realizes that the 
interfacing problems are significant and expensive, the need 
is minimal, and the computers were purchased from enter
tainment budgets rather than home improvement funds. 

Foreseeable personal applications 

Black-and-white, and color graphics is an area of consid
erable and rapidly increasing interest. Economical video 

interfaces of good resolution should be on the market 
before the end of 1977. Somewhat further in the future, 
higher speed processors and interfaces to video tape units 
will give the personal computer user access to exciting 
computer graphics and animation facilities. 

Considerable interest will be shown in 1977 in experi
menting with the several available speech synthesis units. 
As experimentation in this and the graphics area matures, it 
is reasonable to expect self-teaching systems for prereader 
children to begin to appear. Speech units will also prove 
useful for the handicapped. 

Mundane applications such as intelligent music tape 
systems20 and electronic phone books38 may be expected 
before the end of the year, at least as homebrewed designs. 
Some experimentation with holographic art44 and light 
shows has already begun and will slowly develop in sophis
tication. Experimentation will considerably increase in ap
plying computers to amateur radio problems. Work will 
also begin in networking "ham" computers via radio trans
mission. The hams will need considerable assistance from 
the computer hobbyists who are familiar with network 
designs and protocols. 

Word processing, manuscript preparation, and letter 
writing applications will slowly increase as used 110 Selec
trics can be found and interfaced to home computers. This 
application area will explode as soon as someone manufac
tures an inexpensive, reliable, removable, non-destructive 
interface that will fit most electric typewriters. 

Experimentation will continue and grow in the area of 
computer music. 42 This year or next year will see the 
availability of more complex analog output devices which, 
when coupled with faster processors, will allow very excit
ing experimentation in the realm of sophisticated electronic 
music. Input devices appropriate for such music systems 
will develop more slowly. 

As is currently true, there will be unending experimenta
tion with the design and implementation of systems soft
ware and homebrewed hardware. This can be viewed as 
entertaining and intellectually stimulating self-teaching 
(with all of the problems thereof). There will be significant 
developments in the areas of floppy disc operating systems, 
and resident compilers for reasonably interesting high level 
languages. 

The first steps will be taken towards computer network
ing via unconditioned telephone lines using couplers or 
modems. Probably, some of the first results of this will be 
interactive games between users at different sites. Signifi
cant usage of computer-to-computer communications is 
unlikely to occur before 1978 or 1979. 

Personal computers will see an exponentially increasing 
use in hardware, software, and mathematics education, 
both in home and in public schools. 

Applications software will continue to be dominated by 
games and simulation programs of increasing complexity. 
Simple data processing software will appear in 1977 to 
perform such chores as maintain the family budget (balanc
ing a checkbook is too trivial), process club and organiza
tion maiiing iists, keep indices of music aibums, stamp 
collections, etc., and possibly perform dietary intake moni-



toring. Spelling corrector software may appear by early 
1978. Very simple database management systems will ap
pear by late 1977 or early 1978. 

The more distant future: three to five years 

Electronic libraries, in which one may browse by subject, 
keyword, or whatever, will appear. These will include the 
capability of making marginal notes that are stored locally 
and mapped to a single original of the full-text publications. 
Prototyping of this system is already under way45 and 
should be available in a rudimentary form in 1977. 

Various versions of computerized bulletin boards, mes- . 
sage centers, want ads, and "switchboards" will become 
available. A mobile, LSI-II version of this is currently 
being implemented.46 The prototype may be operational by 
the end of 1977. 

An electronic news system into which all of the news is 
fed-at least all of the news concerning, say, the computer 
or electronics industry-may be operational within five 
years. There appears to be a considerable problem in 
extending such a system into the general news media, in 
that newspaper publishers have a significant vested interest 
in keeping it from happening. And, the wire services-from 
whom much of the news flows-are financially tied to the 
publishers. Once implemented, however, it would mean 
that everyone would have access to all of the news, rather 
than having an Editor inserted between them and the news 
source. 

IMPACTS ON COMPUTER PROFESSIONALS 

The immediate impact is already appearing. There are 
more jobs in that there are more applications to be pro
grammed, more systems to be developed, more units to be 
maintained, and more consumers to be served. A rash of 
computer stores are opening. More and more often, they 
are being financed by an entrepreneur who is not a com
puter professional. Yet, they require a person who is 
knowiedgeabie ot computer hardware ami software tu aue
quately serve their customers. It is becoming increasingly 
simple for a competent computer professional to spin off 
from a company, develop his own product, and be his own 
boss through selling that product. Since his overhead is 
often minimal, he can afford to price his product low 
enough to make it highly competitive. 

The impact, further into the future, is less predictable, 
and may best be illustrated by some questions: What 
happens to computer science education when an entering 
college freshman, interested in science or engineering, has 
already designed and implemented three compilers, two 
interpreters, and a parser in a LISP tree? What happens to 
programming jobs when the average manager can program 
in three or four high level languages and does so, regularly, 
on his home computer. What impact will there be on 
undergraduate electrical and computer engineering pro
grams when the average freshman engineering major not 

Personai Computing 497 

only has been programming since he was in elementary 
school, but has been repairing the family computers for four 
or five years, and worked for four summers in the repair 
shop of the local computer store? 

The potential. for computer professionals-and anyone 
owning his own computer-to interact with the society at 
large is even more interesting: What happens to food 
marketing when you can link your home computer to the 
club's grocery price database and run a quick optimal 
shopping program? What effect will there be when you 
have access to all the news; not just all the news that an 
Editor feels is fit to print? What effect will there be on the 
political process when any consumer group or individual 
voter can trivially ascertain a candidates' actual voting 
record? 

As far as this author is concerned, the next several 
decades hold promise for a great deal of excitement. 

REFERENCES 

I. Jef Raskin provided a broad-ranging evaluation of computer hobbyist 
products in "Personal Computers: A Bit of Wheat Amongst the Chaff," 
DDJ,20 September 1976, pp. 15-17. 

2. Fully assembled, good capability machines should be announced by a 
number of companies before June 1977, including units from ECD Corp., 
196 Broadway, Cambridge, MA (news to be released 76-12-1); Apple 
Computers, 770 Welch Rd., Palo Alto, CA 94304 (prototype was 
demonstrated, July 1976), and MITS8 (expected to include a high 
resolution CRn. 

3. Software to support random-access mass storage will still be very 
limited. 

4. Two exceptions are the LSI-II from Digital Equipment Corp., Maynard, 
MA, and the 16/8 microprocessor board already prototyped around a 
custom LSI chip from Western Digital, to be available from the 
Computer Mart of Orange County, 625 W. Katella #10, Orange, CA 
92667. 

5. Extensive lists of computer clubs have been published in PCC,22 and 
IA.21 An up-to-date, computerized list is being maintained by the 
Computer Faire, Box 1579, Palo Alto, CA 94302. 

6. Amateur Computer Society, 260 Noroton Ave., Darien, CT 06820. 
7. Popular Electronics, I Park Ave., New York, NY 10016. 
8. MITS, 2450 Alamo SE, Albuquerque, NM 87106. 
9. Homebrew Computer Club, Box 626, Mountain View, CA 94042. 

10. The Computer Store, now located at 820 Broadway, Santa Monica, CA 
90401. 

~ 1. B)lt:, ~7C ,r;n ·Sf., ~Pcf(r'bot0ugn. ~~r n3'4~. 
12. The Trenton Computer Festival, Trenton, NJ, May 2, 1976. It was 

estimated that there were 1,500 people in attendance, and 45 exhibitors. 
Sponsors were the Amateur Computer Group of New Jersey, VCTI, 
1776 Raritan Rd., Scotch Plains, NJ 07076. 

13. The Personal Computing '76 Trade Fair was held in Atlantic City, NJ on 
Aug 28-29, 1976. It included 103 exhibitors. It was sponsored by the 
Southern Counties Amateur Radio Association of New Jersey. 

14. No "hard data" was available at the time this article was written. 
Venture Development Corp, I Washington St., Wellesley Hill, MA 
02181, distributed a survey to approximately 1,000 hobbyists in the 
summer of 1976, received about 300 responses, and on that basis 
projected that there would be 18,600 computers in homes by January, 
1977. Much more extensive surveys were conducted by Byte magazine, 
DDJ,20 and IA21 in Oct-Dec, 1976, but the results were not available in 
time for this paper. 

15. The Chesapeake Microcomputer Club, Inc., 236 Saint David Ct X4, 
Cockeysville, MD 21030, has six chapters. The Midwestern Affiliation of 
Computer Clubs, 14058 Superior Av #8, Cleveland, OH 44116, has 
eleven affiliates. The SCCS16 has seven chapters. 

16. Southern California Computer Society, 1702 Ashland, Santa Monica, CA 
90405. 



498 National Computer Conference, 1977 

17. The Computer Faires maintains an up-to-date computerized list of stores 
and retail distributors. 

18. Byte, II DDJ,20 and IA.21 
19. Kilobaud, Peterborough, NH 03458, and Personal Computing, Benwill 

Publishing Corp., 167 Corey Rd., Brookline, MA 02146. 
20. Dr. Dobh's Journal of Computer Calisthenics & Orthodontia, PCC, Box 

E, Menlo Park, CA 94025. 
21. Interface Age, Box 1234, Cerritos, CA 90701. 
22. People's Computer Company, a bimonthly tabloid, Box E, Menlo Park, 

CA 94025. 
23. Microtrek, 333 Dows Bldg., Cedar Rapids, IW 52401. Only the August 

issue had been published by the end of November, 1976. 
24. People's Computer Company,22 and Creative Computing. 25 

25. Creative Computing, Box 789-M, Morristown, NJ 07960. 
26. The First West Coast Computer Faire5 was sponsored by a number of 

local and regional educational, professional. and amateur groups inter
ested in personal computing. These included local chapters of the ACM 
and IEEE, Stanford's EE Department. UC-Berkeley's Lawrence Hall of 
Science, the Homebrew Computer Club.9 and the SCCS.I6 As of 
December, 1976, it expected 200 exhibitors. 100 conference sessions. 

27. For example. the Apple2 is priced below many of the kits of equivalent 
capability. 

28. Cromemco. 2432 Charleston. Mountain View. CA 94043, manufactures 
excellent, inexpensive joy sticks. as well as the "TV Dazzler" which 
provides both black-and-white and color TV graphics (of limited resolu
tion). 

29. Matrox. Box 56. Ahuntsic Stn .. Montreal. H3L 3N5 manufactures a 
number of alphameric video units and several video graphics arrays. 

30. For example. Southwest Technical Products, 219 W. Rapsody. San 
Antonio. TX 78216, offers a 40-column printer in kit form for $250. 

31. The Votrax kit from Federal Screw Works. 4340 Campus Dr. #212. 
Newport Beach. CA 92660. 

32. The CT-I from CompuTalker Consultants. Box 1951. Santa Monica, CA 
90405. 

33. A new unit from Logistics Speech, c/o John Ross, 900 Dickson St., 
Marina Del Rey, CA 90291. 

34. Heuristics, Inc., 900 N. San Antonio #CI, Los Altos, CA 94022. 
35. For example, a single drive unit from North Star Computers, 2465-4th 

St., Berkeley, CA 94704, will include a Shugart mini-floppy drive and 
complete controller and interfacing to many hobbyist computers, and 
will be priced at $599. 

36. Ratheon Semiconductor Division, 350 Ellis, Mountain View, CA 94042. 
37. Technical Design Labs, Research Park, Bldg. H, llOJ State Av'., 

Princeton, NJ 08540. 
38. The essential element is a solid state binary-to-dial pulse converter 

available from Collins Radio Group, 4311 Jamboree Rd., Newport Beach, 
CA 92663. 

39. For example, Digital Research, Box 579, Pacific Grove, CA 93950, has 
an excellent floppy disc operating system called CP/M available for $70, 
including a "loaded" floppy disc, documentation, a TECO-like editor, 
transparent debugger, assembler, and a PDP-IO-like command language. 

40. Digital Group, Box 6528, Denver, CO 80001. 
41. Cromemco has "Space War" running on their TV Dazzler. 28 

42. See the Computer Music Journal, PCC, Box E, Menlo Park, CA 94025. 
43. Chod Harris, an organizer for the American Radio Relay League stated 

that there were approximately 290,000 "hams" in the U.S. in Novem
ber, 1976, and estimated that approximately one fourth of them had a 
serious and active interest in hobby computing. Kiiobaud I9 is being 
published by the publisher of 73 Magazine, the third largest amateur 
radio periodical in the U.S. 

44. Multiplex (holograph images), 448 Shotwell, San Francisco, CA. 
45. The Xanadu system, Ted Nelson, Itty Bitty Machine Co., 1316 Chicago 

Av., Evanston, IL 60201 (being implemented on a PDP-II in TRAC, 
Calvin Mooers' trade-marked, copyrighted. and patented string process
ing language). 

46. The Community Memory system. Lee Felsenstein, LGC Engineering, 
1807 Delaware. Berkeley. CA 94703. 



Operational software for restructuring 
network databases* 

by DONALD E. SWARTWOUT, MARK E. DEPPE and JAMES P. FRY 
The University of Michigan, 
Ann Arbor, Michigan 

ABSTRACT 

A high-level "access path" approach to database restruc
turing is described and contrasted with the "elementary 
operations" approach taken by mo~t restructuring systems. 
With the elementary operations approach, restructuring is 
viewed as a sequence of basic or "primitive" operations 
which manipulate a source database in order to convert it 
into a target database. In the access path approach, restruc
turing is seen as the process of accessing a body of 
information represented by the source data, and construct
ing the target database representation of the same informa
tion. While the elementary operations approach is useful for 
restructuring hierarchical databases, it does not generalize 
well for networks. The access path approach is better
suited to the complex structures possible in network data
bases. 

The access path approach permits the specification of 
complex restructuring transformations in terms of applica
tion-oriented concepts such as access strategies and selec
tion criteria. A non-procedural Network Restructuring Lan
guage (NRL) based on this approach is presented, and an 
example of its use in restructuring is given. The architec
ture of an NRL-driven Restructurer for network databases 
is described. 

INTRODUCTION 

Due to the fact that the database design process is essen
tially an opaque art,l an important tool needed by a 
Database Administrator is a generalized reorganization fa
cility. With such a facility the designer can adapt existing 
database structure to conform to new information or proc
essing requirements. For example, a new entity or relation
ship could be added to the database structure to satisfy a 
new information requirement, or a new access path could 
be added to satisfy a processing requirement. 

Although some reorganization schemes exist in database 
management systems, they deal primarily with the physical 

* Supported by WWMCCS ADP Directorate Defense Communications 
Agency Contract No. DCA-100-75-C-0064 

499 

organization of data, e.g., performing garbage collection, 
changing the blocking factors, and to some extent, modify
ing the accessing mechanism. To our knowledge no gener
alized reorganization facility exists in any database manage
ment system and, in particular, we are unaware of a 
restructuring facility which would provide the capability to 
change the logical structure of the database. 

In the current state of the art, the reorganization facility 
has developed only within the context of a Data Transla
tor. 2

- 6 As described in References 2 and 6, a Data Transla
tor is a generalized software system that accepts as input a 
source database, descriptions of the source (input), target 
(output) databases and the mapping between the source and 
target logical structures. Its output is the reorganized target 
database produced automatically by the generalized soft
ware from the input description. The execution of the 
translator invokes three major modules-Reader, Restruc
turer, and Writer. While the function of the Reader and 
Writer modules can be classified primarily as physical 
reorganization or reformatting, the primary purpose of the 
Restructurer module is to logically reorganize the database 
or restructure it. 7 Birss and Fry6 described the physical 
reformatting capabilities of the Reader and Writer through 
the logical restructuring capabilities which were embodied 
in several prototype implementations. In this paper we 
~ OQ. the Qe.vdopment of a geDeraJizMLes1r.uctw:iDg 
capability for the network class of logical structures. 

What is restructuring? 

The purpose of restructuring is to transform the logical 
structure of a database in response to new information or 
processing requirements. Navathe and Fry8 developed a 
categorization of restructuring operations for the hierarchi
cal class of logical structures. Three fundamental logical 
structure modifications were defined-Naming, Relation, 
and Combining-which were refined into several lower 
level restructuring operations. Figure 1 illustrates a few of 
these hierarchical restructuring operations. The first part, 
Figure la depicts a hierarchical relationship among PRESI
DENTS, SPOUSES and CHILDREN. The uppermost box 



500 National Computer Conference, 1977 

PRESIDENTS 

PRESIDENTS PRESIDENTS 

name 

Spouse-Children Married-To Married-To 

SPOUSES 
SPOUSES 

Has-Offspring 

SPOUSE-CHILDREN SONS DAUGHTERS 

CHILDREN name name 

name sex 

Figure I-Restructuring operations 

or record type,** PRESfDENTS,4 contains the names of 
the presidents of the United States. The second level record 
type, SPOUSES, is related to PRESIDENTS through the 
set type "Married to" and contains the names of all the 
spouses for each president. Thus, the set is a one-to-many 
mapping over two record types. In a similar fashion, the 
third level record type, CHILDREN, is related to 
SPOUSES and contains the names of the children born to 
each SPOUSE. 

One restructuring operation is pariiiioning in which the 
occurrences of a record type are divided into two or more 
distinct record types based upon the value of one or more 
data items. This operation is illustrated by the source and 
target logical structure of Figure I where the source record 

** We follow the terminology of DBTG.9 
t For a more compiete description of the Presidentiai Database see Refer
ence 10. 

type CHILDREN has been partitioned into two record 
types, SONS and DAUGHTERS, based on the data item 
"sex." Notice that the data item "sex" has been eliminated 
in the logical structure of Figure 1, since this information is 
now represented by the target logical structure. The dual 
restructuring operation of partitioning is merging. The 
merging operation consolidates occurrences from two or 
more record types into a single record type, often adding a 
data item to the record type to preserve information previ
ously represented by the logical structure. Merging is 
illustrated by the source logical structure and the target 
logical structure of Figure 1, where the occurrences of the 
two record types, SONS and DAUGHTERS, have been 
merged into a single record type, CHILDREN. Note that 
the terms "source" and "target" are relative and depend 
on the direction of the restructuring transformation. Conse
quently, Figure 1 represents the source logical structure for 
the partitioning example, and the target database for the 



merging example. Notice the item type "sex" has been 
added to contain the information previously represented 
semantically by the source logical structure of Figure 1. 
Another form of restructuring involves the compression of 
two or more hierarchical levels into one. This example is 
illustrated by the source and target logical structure of 
Figure 1 where the two source records, SPOUSES and 
CHILDREN, have been compressed into a single record 
type, SPOUSE-CHILDREN. On the record occurrence 
level, this operation would be accomplished by replicating 
the associated SPOUSE record occurrence for every 
CHILD record occurrence. The dual operation, expansion 
expands one level of hierarchy into two or more by 
factoring out selected data items. This procedure is illus
trated in Figure 1 where the SPOUSE-CHILDREN record 
type has been factored into two levels. 

Network restructuring 

Although a complete categorization of such operations 
has been established for the hierarchical class of struc
tures,6 restructuring operations are not nearly as easy to 
classify in the network class of logical structures due 
primarily to the variety and complexity of the structu~es 
involved. For example, an imp~rtant network restructunng 
operation, changing the implementation of many-to-many 
relationships, is illustrated by the restructuring transform of 
Figure 2. The source logical structure represents informa
tion on students, their class standing, all courses taken by 
each student, and the final grade received in each course .. 
The target logical structure represents exactly the same 
information except that the association between students, 
course, and grades is achieved using a LINK record type. 
This example is typical of the restructuring operations 
which may be posed in a network environment, those 
which involve several record and set types. 

Another example, which might enhance processing, 
would be the addition of indexing sets or record types. This 
could be achieved by migrating the data item "class" to the 
ret"{Jrn ~1"e CL~SS-5'fA.:NDfNG, whieh w~Jfd ~!"':,~ tt' 
segment the students into graduate, undergraduate, special, 
foreign ,exchange, etc. (Figure 3). Notice that this operation 
is actually expansion performed on a hierarchical substruc
ture of the target structure of Figure 3, namely the single 
record type STUDENTS. 

SOliRU LOtat \L STRU n IU T\RGtl LOGICAL STRIXTl:Rl 

STlDE'<TS GRADES COliRSES 

r ~TT 
COl:RSES U"K 

1 course.:':l:'l grade 
~----, 

Figure 2-Network restructuring example 

Restructuring Network Databases 

CLASS-STANDING 

class 

STUDENTS COURSES 

grade 

LINK 

Figure 3-Addition of indexing sets 

~{\1 

JUI 

Yet another important network restructuring capability is 
the ability of the restructuring process to extract not only 
data which exists explicitly in the source database, but also 
that which exists implicitly, i.e., the information which may 
be inferred from the actual source data. An example of the 
difference between implicit and explicit information is de
scribed in the hypothetical restructuring transform of Fig
ure 4. 

The example describes a source database containing two 
record types, PERSONS and LINK. The PERSONS record 
type contains name and sex item types, while the LINK 
record type contains no data but provides relationship 
information in conjunction with sets PARENTS and CHIL
DREN. The target structure also contains the PERSONS 
record type, and construction of target PERSONS records 
involves the extraction of data explicitly resident in the 
source file PERSONS record type. In contrast, target 
record types PARENTS and GRANDFATHERS do not 
correspond directly to any source file record type; they 
contain information which is represented implicitly in the 
source file. Needless to say, this transformation cannot be 
described by operations on hierarchical substructures. 

in the next section, we reVIew the prevIOUS work III 

developing hierarchical restructuring capabilities through 
specification of elementary operations. The third section 
comprises a discussion of the access path approach neces
sary to achieve a network restructuring capability, and the 
fourth section describes a Network Restructuring Language 
based on this approach. The implementation of the Restruc
turer is discussed in the fifth section and the paper con
cludes with our observations on building and using restruc
turers. 

THE ELEMENTARY OPERATIONS APPROACH 

An interesting analogy exists between restructuring sys
tems and high-level query systems. In fact, one can con
sider a query as a restricted restructuring transformation in 
which the target is not a database but some other form of 



502 National Computer Conference, 1977 

SOURCE TARGET 

People People 

PERSONS 

Figure 4-Implicit data extraction 

information representation. Efficient, easy-to-use query 
languages for the hierarchical class of logical structures 
have been built through the use of elementary operations 
and have been in existence for some time. 10 These systems 
allow a user to specify a sequence of elementary operations 
on hierarchical structures which will accomplish his query. 
Such languages are easy to learn and use since they employ 
a few rather simple operations to perform most queries to 
hierarchicai structures. 

Several research efforts have addressed the problems of 
restructuring and restructuring language specification from 
the elementary operations point of view. CONVERT, a 
high-level translation language, provides a generalized re
structuring capability for hierarchical structures. The ap
proach is based upon the concept of a "data form" in 
conjunction with a set of restructuring functions called 
"form operations." Shoshanill takes a similar approach to 

restructuring whereby a set of "conversion functions" is 
used to specify restructuring operations. 

In the elementary operations approach, the source data
base is considered to be a collection of data in a specific 
logical structure and format, while the target database is 
viewed as essentially the same data, but in a different 
logical structure and format. Restructuring, therefore, is 
considered to be the process of manipulating the source 
data to conform to the target logical structure and corre
sponding format. Consequently, restructuring research us
ing this approach turns toward the development of low
level or "primitive" operations which transform occur
rences of one logical structure to another. One advantage of 
such an approach is that the architecture of the restructur
ing software system is greatly simplified; it defaults to a set 
of low-level subroutines which correspond directly to the 
elementary operations. Thus, a restructuring specification 



consists of a sequence of primitives which may be directly 
converted to a sequence of subroutine calls which perform 
the actual restructuring. Unfortunately, the user is not 
shielded from any aspects of the restructuring; he must 
thoroughly understand the function of each operation in 
order to be able to use it. Consequently, the language, 
although high-level, still requires the user to treat restruc
turing essentially as a sequence of low-level steps. 

Several other problems arise when the elementary opera
tions approach is applied to restructuring network data
bases. In general, elementary operations are designed to 
operate on small, logical substructures consisting of one or 
two record types and a set, to produce a new, logical 
substructure. Due to the limited number of operations 
which may be defined, only a finite number of source 
substructures can be valid candidates for restructuring. The 
more complex the structure, the greater the probability that 
it will contain substructures which are not valid candidates 
for the set of available operations. Consequently, the re
structuring capabilities of elementary operations decrease 
as the complexity of the structure increases. For this 
reason, elementary operations are not particularly well
suited to describing restructuring transformation upon com
plex network logical structures. In addition, a complex 
restructuring transformation (assuming that it may be per
formed by the elementary operations) will require the 
specification of a complex sequence of elementary opera
tions which is difficult to analyze and to understand. 

Another class of restructuring transformations that is diffi
cult to accomplish with elementary operations is the extrac
tion of implicit information. We have pointed out that such 
transformations (as in the example of Figure 4) cannot 
usually be described by a sequence of operations on hierar
chical substructures. Furthermore, although they may be 
describable by sequences of elementary operations on net
work substructures, such descriptions are generally long 
and complicated. There is also reason to believe that, given 
time, designers of network databases will produce enough 
intricate methods of storing information implicitly to ex
haust any set of elementary operations. 
lioU9wMt~~~·~;,tt~ ~~·~-he·t"~~" 

difficult to generalize the elementary operations of high
level query systems to network databases. 12 The elemen
tary operations approach to developing a query system for 
network databases tends to be less powerful and much 
more cumbersome than its hierarchical counterparts. In 
general, they suffer from the same problems cited above
limited allowable input structures, overly complex specifi
cations, and difficulties with link records and other implicit 
information storage techniques. The high-level access path 
approach to restructuring grew out of attempts to develop a 
restructuring strategy more suited to network databases. 

THE ACCESS PATH APPROACH 

Following the current trend in host language database 
systems which process the network structure databases, we 
chose the high-level "access path" approach to restructur-

Restructuring Network Databases 503 

ing. The source database is viewed as a body of informa
tion, some of which is represented explicitly by data, and 
some of which is represented implicitly, i.e., may be 
inferred from the data. Similarly, the target database is 
considered to contain a subset of information represented 
by the source; this data is created from information pro
vided by the source data. Executing a restructuring trans
formation, then, is simply the process of traversing the 
source database to obtain the information needed to create 
the target database, and storing it according to the target 
logical structure. There are numerous consequences of this 
approach. For one, research in restructuring specification 
turns toward the development of restructuring specification 
languages based on the concepts of access strategies and 
selection criteria. Since this area is closely related to query 
language development, certain concepts from previous re
search in this area may be utilized. A second consequence 
of the access path approach is manifest in the actual 
restructuring algorithm development. Restructuring tech
nology turns toward the development of algorithms which 
efficiently and exhaustively access the source database and 
perform tests upon the data, following externally specified 
access strategies and test criteria. This is a radical change 
from the elementary operations approach which tends to 
develop low-level subroutines. 

The most important consequence of this approach is that 
it produces powerful generalized network restructuring ca
pabilities. Since restructuring is viewed as an operation 
which accesses information (rather than manipulates data), 
the approach is unaffected by the logical structure of the 
database. This independence from the logical structure 
insures that essentially any database is a valid candidate for 
restructuring, regardless of the complexity of the logical 
structure (hierarchical, network, etc.). Furthermore, source 
and target logical structures need not even remotely resem
ble each other since the target is derived from information 
provided by the source rather than from the source struc
ture itself. Also (unlike the elementary operations ap
proach), implicit information may be extracted and restruc
tured as easily as explicit information (as in Figure 4). 
Thtt!; e,;:pt!crt' ;!!ful"!!ntIon rn3:~r becaTne impticit arrd ... tice 
versa. 

Finally, the system is inherently simple. Assuming that 
the user has some familiarity with databases and applica
tions, a restructuring specification language based on appli
cation-oriented concepts such as access strategies and 
selection criteria should be easily understood. Furthermore, 
since all restructuring operations are expressed as informa
tion accessing problems, confusion does not significantly 
increase as the complexity of the restructuring transforma
tion increases. An algorithm designed to carry out this 
process is also simple and therefore, straightforward and 
dependable. All restructuring is performed in an identical 
sequence of steps, regardless of the particular transforma
tion: (1) exhaustively access the source data according to 
the access specifications, (2) test data based on selection 
criteria, and (3) create target record occurrences containing 
the relevant data. For a more complete discussion of the 
theoretical foundations of this approach, see Reference 13. 



504 National Computer Conference, 1977 

NETWORK RESTRUCTURING LANGUAGE 

Architecture 

The architecture of the Network Restructuring Language 
is based upon the high-level specification of access paths. 
The major components of the language describe access 
strategies and selection criteria. Access strategies are de
scribed using an access path statement which specifies the 
traversal scheme required to obtain data for each target 
record type. The selection criteria establishes the source 
(and, indirectly the target) data requirements. It would be 
beyond the scope of this paper to describe the NRL in great 
detail. A complete language specification may be found in 
Reference 14. However, the major points of the language 
will be described. 

The NRL is essentially a block-structured language in 
which each "block" contains a single target record state
ment. There is one target record statement for each record 
type in the target database. This structure reflects the 
access path approach for the following reason: each target 
record type is considered to represent a certain quantity of 
information which may be obtained from the source data
base; consequently, each target record description contains 
the specifications for the source database accessing scheme 
as well as the selection criteria. The second level of 
structure in the NRL is the target set statement (see Figure 
5 for the NRL structure). Each target record statement 
includes one or more target set statements which identify 
the sets of which the target record type is a member. The 
third level of NRL structure is the access path statement. 
The access path statement specifies exactly how the source 
logical structure is to be traversed in order to obtain the 
information necessary to create an occurrence of the target 
record type. There may be many individual access path 
statements-one or more for each target set statement
since the information which contributes to the target record 
type may come from several different source record types. 

TARGET RECORD STATEMENT 
TARGET SET STATEMENT 

ACCESS PATH STATEMENT 
NEW TARGET ITEM STATEMENT 
SOURCE RECORD STATEMENT 

ITEM QUALIFICATION STATEMENT 
ITEM ASSIGNMENT STATEMENT 

• 
• 

SOURCE RECORD STATEMENT 

• 
• 

ACCESS PATH STATEMENT 

• 
• 

TARGET SET STATEMENT 

• 
• 

TARGET RECORD STATEMENT 

• 
• 

Figure 5-Structure of NRL specification 

There are two types of NRL statements at the fourth level 
of structure: the new target item statement, and the source 
record statement. There may be zero or more new target 
item statements for each access path statement. Such a 
statement indicates a target item which receives a constant 
value each time a target record occurrence is constructed 
using the specified access path. Since access paths indicate 
structure in the source database, the new item statement is 
useful when information represented semantically in the 
source structure is converted to actual data values in the 
target structure. 

The second NRL statement at the fourth level of struc
ture is the source record statement. The source record 
statement identifies the source record(s) on the access path 
which will be used in the creation of a target record 
occurrence, to obtain item values and/or test the source 
data. There may be one or more source record statements 
for each access path statement since data may be obtained 
or examined from several different source record types. 
Furthermore, each source record type may be optionally 
assigned an index number. The index number is used to 
identify uniquely a source record within an access path 
which "cycles" or "loops" back on itself such that the 
same source record type appears more than once. Finally, 
there are two statement types at the fIfth and final level of 
NRL structure; they are called the item qualification state
ment, and the item assignment statement. Item qualifica
tion statements are used to establish the selection criteria 
used in testing the source data. Consequently, one may 
specify a constant value to be compared against a source 
item value which will determine whether or not a target 
record occurrence is to be created using the current set of 
source data. The item assignment statement is used actually 
to obtain the source item values and assign them to the 
proper target items. 

It should be noted that the NRL does not explicitly 
describe the logical structure of either the source or target 
database. The Michigan Data Translator obtains appropri
ate descriptions of the source and target databases inde
pendently of the restructuring specifications. The NRL, 
therefore, describes only the information relevant to the 
actual transformation from source to target, and assumes 
that the logical structures of the databases have been 
previously defined and are available to the Restructurer. 

An NRL restructuring example 

The NRL example has been chosen to illustrate the 
capability of the language to specify restructuring capabili
ties which may not be readily classified in terms of hierar
chical structures or elementary operations. The example 
involves the extraction of implicit information from a net
work structure and is taken from Figure 4. This example is 
reproduced in Figure 6 for convenience. The NRL required 
to accomplish the necessary transformation is documented 
in Figure 7. The form of the NRL has been simplified 
slightly for clarity. Th~ block structure of the language may 
be easily observed. Because there are three target record 



SOURCE TARGET 

LINK GRANDFATHERS PARE1\;TS 

I name I name I 
Figure 6-Restructuring example 

types, there are three target record statements. Statement 
#2 begins the NRL description for target record type 
PERSONS. Since PERSONS is a member of only one set 
(from the system access level) there is only one target set 
statement (#3). Statement #4 specifies the source access 
path to be used to locate the data necessary to create the 
target record type. ACCESS PATH=PEOPLE (PER
SONS) describes an access path from the source SYSTEM 
node along set PEOPLE to record type PERSONS. State
ment #5 is the source record statement to indicate that 
source record type PERSONS is to be used to obtain 
information. Statements #6 and #7 are item assignment 
statements which indicate that the values in source item 
types "name" and "sex" are to be assigned to the target 
i tern types "name" and "sex." 

I) NRL 
2) TARGET RECORD PERSONS 
3) TARGET SET PEOPLE 

Restructuring Network Databases 505 

The NRL description for the second record type, 
GRANDFATHERS, begins with statement #8. As before, 
there is only one target set statement (#9) because the 
record type is a member of only one set (GRANDSET). 
Statements # 10, # II, and # 12 specify the source access 
path to be used to obtain the desired information. This 
access strategy may be summarized as follows. The LINK 
record type in the source models the relation between 
parents and children. Given a particular PERSONS record 
occurrence, one may access all of his/her parents by using 
the set types PARENTS and CHILDREN in conjunction 
with the LINK record type. One similarly obtains all 
grandparents of a person by accessing all parents of par
ents. The access path statement on lines # 10, # II, and # 12 
describes the essence of this strategy: use set PEOPLE to 
the PERSONS record type, then set PARENTS to the 
LINK record type, then set CHILDREN back to the 
PERSONS record type, then set PARENTS back to the 
LINK record type, and finally, set CHILDREN back to the 
PERSONS record type. Notice that the source record type 
PERSONS is used three times in the access path specifica
tion: once as a person, once as a parent, and once as a 
grandparent. Consequently, the source record statement 
(#13) must indicate which source group PERSONS is to be 
used. Since the PERSONS record which represents grand
parents is the fifth record on the access path, INDEX=5 
makes the necessary distinction. Statement # 14 is an item 
qualification statement which is used to select only male 
grandparents to yield grandfathers, the desired target rec
ord information. Statement # 15 assigns the value in the 
source item type "name" to the target item type "name." 

It should be clear that the target record type PARENTS 

4) ACCESS PATH = PEOPLE (PERSONS). 
5) SOURCE RECORD PERSONS 
6) NAME = NAME 
ilt .. SEX "" SEX 

8) TARGET RECORD GRANDFATHERS 
9) TARGET SET GRANDSET 
10) ACCESS PATH = PEOPLE (PERSONS), PARENTS (LINK), 
II) CHILDREN (PERSONS), PARENTS (LINK), 
12) CHILDREN (PERSONS). 
13) SOURCE RECORD PERSONS, INDEX = 5 
14) SEX QUALIFY IF = 'MALE' 
15) NAME = NAME 

16) 
17) 
18) 
19) 
20) 
21) 
22) 

TARGET RECORD PARENTS 
TARGET SET PARSET 

ACCESS PATH = PEOPLE (PERSONS), PARENTS (LINK), 
CHILDREN (PERSONS). 

SOURCE RECORD PERSONS, INDEX = 3 
NAME = NAME 
SEX = SEX 

23) END NRL 

Figure 7-NRL specification 



506 National Computer Conference, 1977 

IS created in a manner similar to that of GRANDF A
THERS, except that the accessing strategy is simpler and 
no selection criterion is required. 

OPERATIONAL SOFTWARE 

There are basically two approaches to implementing the 
modules of a data translator: generative and interpretive. In 
the generative approach each module generates an object 
program which, when executed, performs the desired func
tion of the data translator. The advantage of this approach 
is that efficient machine code may be generated for each 
application or function. This efficiency may be irrelevant, 
however, since transformations are rarely executed more 
than once. The disadvantage of this approach is that two 
phases (code generation and module execution) are re
quired to arrive at the final result. 

The interpretive approach consists of a table-driven pro
gram that is applicable to all potential transformations. The 
disadvantage of this approach is the possible inefficiency of 
a general purpose interpreter. However, the program is 
easier to understand and debug. 

Restructurer design decisions 

Overall, the basic design objective of the Michigan Data 
Translator is to provide an operational software system for 
demonstrating, testing, and validating research results on 
generalized data translators. The primary design goal for 
the Restructurer module is the incorporation of general 
network restructuring capabilities. 15 Due to the prototype 
nature of the task, and to reduce the implementation time 
and enhance the experimentation and validation effort, the 
simplest and most straightforward algorithm was selected. 
Consequently, little emphasis was placed on execution 
efficiency. Efficiency development was left to future ver
sions of the Michigan Data Translator. 

The decision to use an internal DBMS as an implementa
tion tool was made early in the design process. It reflects 
the need for an environment in which system tables are 
shared by translator modules, and change often in size and 
complexity. In addition, since the Michigan Data Translator 
was developed in a research environment, the table designs 
themselves were subject to change. Therefore, some degree 
of centralization, integrity control, and data independence 
for system tables was clearly necessary. The translator uses 
ADBMS, a DBTG-type DBMS developed at the University 
of Michigan by the ISDOS Project. 16 All databases, except 
the source and target databases, are ADBMS databases. 
They are manipulated by ADBMS "verbs" which take the 
form of subroutine calls. 

Another design decision to provide generality and to ease 
the complexity of the Restructurer's implementation re
sulted in the development and use of an internal data 
form. 2,13,17 As summarized earlier, the Reader module in the 
Michigan Data Translator accesses the source database and 
converts it into the internal format called the source Re-

structurer Internal Form-source RIF. In addition to main
taining the logical structure of the source database, the RIF 
database has additional system access sets to every record 
type which facilitates fast access by the Restructurer. 

Restructurer algorithm 

The function of the Restructurer algorithm is to provide 
all the restructuring capabilities discussed in the first part of 
this paper. Since the Reader and Writer modules isolate the 
Restructurer from the source and target databases, the 
Restructurer need be tailored only to handle RIF databases. 
The Restructurer, then, is essentially on ADBMS-specific 
data translator and is directed by the contents of the NRL 
tables. The basic cycle of the Restructurer is divided into 
five phases as indicated in Figure 8. 

During the first phase, Target Control, the Restructurer 
determines the next step in its traversal of the target logical 
structure. That is, a target set/record pair is selected for 
construction, as is a current access path to direct the 
construction process. The paths that the Restructurer takes 
in traversing the target database are called "construction 
paths." They are defined implicitly by the TARGET SET 
and TARGET RECORD statements supplied by the user in 
his NRL specification. 

During the Source Accessing phase, the Restructurer 

r IN IT 1 , 
~ TARGET CONTROL -

+ 
SOURCE ACCESSING -, 

QUALIFICATION 

t 
CONSTRUCTION 

i 
"""'-- LINKING 

Figure 8-Restructurer block diagram 



determines the next step in its traversal of the source RIF, 
as indicated by the current access path. In essence, an 
access path is a continuous list of source relations which 
indicates the location in the source of information required 
to create a target instance. 

The purpose of Source Accessing is to exhaustively 
search for every potential target record occurrence that 
could be created from the records on the source access 
path. When a new record occurrence is found, the Restruc
turer enters the Qualification phase. If none is found, that 
is, when the access path has been exhaustively examined, 
the Restructurer returns to the Target Control phase. 

It is during the Qualification phase that the Restructurer 
implements the user's "selection criteria." The source 
record occurrences on the current source access path are 
retrieved and all specific items to be qualified are tested 
against the values specified in the NRL. If all of the 
occurrences pass, the Restructurer enters the Construction 
phase. Otherwise, the Restructurer returns to the Source 
Accessing phase to find another access path. 

During the Construction phase, source record occur
rences along the current access path are retrieved. Data 
items are extracted, conversions are performed on them as 
necessary, and they are stored into a new target record 
occurrence. 

The Linking phase is the most complex phase in the 
Restructurer cycle. Basically, its job is to connect the 
newly created target record occurrence on all appropriate 
target sets. This is no simple task because: 

1. at any given moment, all potential parent record 
occurrences may not exist. 

2.a record occurrence may be incomplete because it 
may obtain partial data from each of several access 
paths. 

During Linking, the Restructurer relies on user-specified 
primary key items for determining whether instances are 
unique. Each time a target record occurrence is created, the 
Restructurer must check all the records in the record type 
aoo ~p8f"e key~ wi.tfl too·oowiy "matOO· .f1}ceRi. A" may 
be obvious, this is not efficient, but is necessary given this 
particular implementation. Upon completion of this phase, 
control is returned to the Target Control phase. 

Restructurer implementation 

The Restructurer was written primarily in ANSI FOR
TRAN to simplify coding and maximize program portabil
ity. In addition, some routines were coded in assembler 
language to perform specialized functions not easily accom
plished in FORTRAN. 

Approximately 5000 lines of FORTRAN code were re
quired to implement the prototype Restructurer. It ran in 
60K words on a Honeywell H6000, and required approxi
mately 10,000 CPU seconds to construct a target RIF 
database containing 2500 record occurrences, an average of 
4 seconds/record. Unfortunately, the Restructurer's execu-

Restructuring Network Databases 507 

tion time was found to be proportional to the square of the 
number of target record occurrences, and an average of 
1500 seconds/record was projected for a target database of 
150,000 record occurrences. 

SUMMARY, PROBLEMS, AND CONCLUSIONS 

Two approaches to the construction of restructuring lan
guages and software for network databases have been 
presented. The elementary operations approach, although 
effective with hierarchical databases, does not extend well 
to network databases. The access path approach, in which 
all source structures are treated in the same way, is more 
naturally suited to complex network transformations, and 
powerful restructuring capabilities are obtained. 

A Network Restructuring Language (NRL) based on the 
high-level specification of access paths was developed. It is 
essentially non-procedural, and its basic constructs-access 
paths and selection criteria-are familiar to users of net
work databases. These factors help to make it generally 
user-friendly. 

The architecture of an operational NRL-driven Restruc
turer was discussed. The internal DBMS used as an imple
mentation tool proved valuable in the construction of the 
Restructurer. It allows last-minute design changes to be 
incorporated easily and provides a facility for tuning inter
nal data management. 

Experience with the Restructurer has revealed two major 
problems. First, as noted above, execution efficiency was 
not a primary concern in its design. It was expected that the 
prototype Restructurer would be slow but practical to use, 
and that efficiency enhancements would be built into subse
quent versions. Unfortunately, execution time was propor
tional to the square of the number of the target record 
instances. The core of the problem was the algorithm 
chosen for the Linking phase of restructuring, which led to 
a very large (approximately 3000 FORTRAN statements), 
very slow Linker module. 

SecoDdl~", altbolll!1b theCOllsU"UCtiOD of .~,ecor.d 
instances was easily specified in the NRL, the means by 
which target sets were established was quite opaque. In 
fact, it required a user writing NRL descriptions to under
stand certain features of the Restructurer algorithm. This 
difficulty compromised the NRL's claim to non-procedural
ity and user-friendliness. 

Both of these problems have been corrected in a second 
version of the NRL and the Restructurer. The basic NRL 
structure remains unchanged although access paths are no 
longer required to be strictly linear-they may be tree
structured-and sets are explicitly established in a way that 
completely hides the restructuring algorithm from the user. 
Changes in the Restructurer's algorithm and enhancements 
to ADBMS, which maintains the source and target data
bases in their internal forms, have lowered execution time 
to a linear function of the size of the target database (with 
what appears to be an acceptable slope). The reader is 
referred to Reference 13 for theoretical details of the 



508 National Computer Conference, 1977 

second version, and to Reference 18 for usage-oriented 
details. 

We feel justified in concluding that, using the access path 
approach, it is possible to build practical, general-purpose 
restructuring specification languages and restructuring soft
ware for network databases. However, since restructuring 
involves the exhaustive traversal of the source database
with some or all of the source data accessed many times
as well as the complete construction of a target database, it 
is an inherently slow process, and serious attention must be 
paid to a restructuring system's execution efficiency. 

REFERENCES 

I. Novak, D. and J. Fry, "The State of the Art of Logical Database 
Design," Proc. Fifth Texas Conference on Computing Systems, Austin, 
Texas, October 1976, pp. 30-39. 

2. Fry, J. P., R. L. Frank, and E. A. Hershey, III "A Developmental 
Model for Translation," Proc. 1972 ACM SIGFIDET Workshop on Data 
Description, Access and Control, Denver, Colorado, November 1972, 
pp.77-106. 

3. Merten, A. G. and J. P. Fry, "A Data Description Approach to File 
Translation," Proc. 1974 ACM SIGMOD Workshop on Data Descrip
tion, Access and Control, Ann Arbor, Michigan, May 1974, pp. 191-205. 

4. Housel, B., V. Lum, and N. Shu, "Architecture to an Interactive 
Migration Systems (AIMS)," Proc. 1974 ACM SlGFlDET Workshop on 
Data Description, Access and Control, Ann Arbor, Michigan, May 1974, 
pp. 157-169. 

5. Rameriz, J. A., N. A. Rin, and N. S. Prywes, "Automatic Conversion of 
Data Conversion Programs Using a Data Description Language," Proc. 
1974 ACM SIGFlDET Workshop on Data Description, Access and 
Control, Ann Arbor, Michigan, May 1974, pp. 207-225. 

6. Birss, E. W., and J. P. Fry, "Generalized Software for Translating 
Data," Proc. 1976 NCC, Vol. 45. AFIPS Press, Montvale, New Jersey, 
pp. 889-899. 

7. Fry, J. P. and D. Jeris, "Towards a Formulation of Data Reorganiza
tion," Proc. 1974 ACMISIGMOD Workshop on Data Description and 
Access, New York, 1974. 

8. Navathe, S. B. and J. P. Fry, "Restructuring for Large Data Bases," 
ACM Transactions on Database Systems 1, 2, June 1976, ACM, New 
York, 1976, pp. 138-158. 

9. CODASYL DATA DESCRIPTION LANGUAGE COMMITTEE, CO-

DASYL Data Description Language Journal of Development, June 1973, 
NBS Handbook 113, ACM, New York, January 1974. 

10. Fry, J. P. and E. A. Sibley, "Evolution of Database Management 
Systems," Computing Surveys, 8, 1, March 1975, pp. 1-42. 

11. Shoshani, A., "A Logical-Level Approach to Data Base Conversion," 
Proc. ACMISIGMOD International Conference on Management of 
Data, ACM, New York, 1975. 

12. Codd, E. F. and C. J. Date, "Interactive Support for Non-Programmers: 
The Relational and Network Approaches," Data Models: Data-Struc
ture-Set versus Relational, R. Rustin (ed.) Ann Arbor, Michigan, May 
1974, pp. 13-42. 

13. Deppe, M. E., "A Relational Interface Model for Database Restructur
ing," Technical Report 76 DT 3, Data Translation Project, The Univer
sity of Michigan, Ann Arbor, Michigan, 1975. 

14. Deppe, M. E., and K. H. Lewis, "Data Translation Translation Defini
tion Language Reference Manual for Version IIA Translator Release 1," 
Working Paper DT 5.2, Data Translation Project, The University of 
Michigan, Ann Arbor, Michigan, 1976. 

15. Birss, E., M. Deppe, and J. Fry, "Research and Data Reorganization 
Capabilities for the Version IIA Data Translator," Data Translation 
Project Technical Report, February 1975, Graduate School of Business 
Administration, University of Michigan, Ann Arbor, Michigan. 

16. Hershey, E. A. and P. W. Messink, "A Data Base Management System 
for PSA Based on DBTG 71," ISDOS Working Paper No. 88, July 1975, 
ISDOS Research Project, Department of Industrial and Operations 
Engineering, University of Michigan, Ann Arbor, Michigan. 

17. The Stored-Data Definition and Translation Task Group, "Stored-Data 
Description and Data Translation: A Model and Language," Information 
Systems. 

18. Bodwin, James, et aI., "Data Translator Version IIA Release 2 User 
Manual," Technical Report 76 DT 3.4, Data Translation Project, The 
University of Michigan, Ann Arbor, Michigan, forthcoming. 

19. UNIVAC, UNIVAC 110 Series Data File Converter, Programmer Refer
ence, UP-8070, Sperry Rand Corporation, March 1974. 

20. Bakkom, D. E. and J. A. Behymer, "Implementation of a Prototype 
Generalized File Translator," Proc. 1975 ACM SIGMOD International 
Conference on Management of Data, San Jose, California, May 1975, 
pp. 99-110. 

21. Shoshani, A., "A Logical Level Approach to the Data Base Conver
sion," Proc. 1975 ACM SIGMOD Conference, San Jose, California, 
May 1975, pp. 112-122. 

22. Shu, N. c., B. C. Housel, and V. Y. Lum, "CONVERT: A High-Level 
Translation Definition Language for Data Conversion," Comm. ACM 
18, 10, October 1975, pp. 57-67. 

23. Lewis, K., B. Driver, and M. Deppe, "A Translation Definition Lan
guage for Version II Translator," Working Paper 809, Data Translation 
Project, The University of Michigan, Ann Arbor, Michigan, 1975. 



A multi-level procedure for design of 
file organizations 

by EIVIND AURDAL and ARNE SQ)LVBERG 
The University of Trondheirn 
Trondheim, Norway 

ABSTRACT 

This paper describes a multi-level procedure for design of 
file organizations. Necessary description of the application 
systems is discussed and a design procedure outlined. The 
main levels of the design procedure are: 

• normalization of messages, 
• synthesis of a logical model of the file organization, 
• making a "best possible" physical realization of the 

logical model using a particular DBMS. 

The final solution is evaluated through a performance 
analysis. 

INTRODUCTION 

The design of large data bases involves a wide range of 
problems, from the application system specification to the 
choice of hardware. The work reported here is restricted 
primarily to the problem of designing a "best possible" file 
organization given the application systems retrieval require
ments, and given a particular database management system 
(DBMS}·fuT the imr~fl A mu*-~vei awf-GaCA to 
the design of file organizations is proposed. 

U sing a multi-level approach to the design of file organi
zations the following advantages can be achieved: 

• transparency of the design procedure, 
• elimination of non-effective solutions at an early stage, 
• hardware/software selection can be postponed until the 

appropriate design level is reached. 

The multi-level design procedure that is proposed here 
consists of 

• specification of the information processing problem, 
• transformation of the specified information structures 

into a logical model of the file organization, 
• modification of the logical model to fit a particular 

DBMS, 

509 

• physical implementation of the modified model using a 
particular DBMS, 

• evaiuation of the finai solution using a performance 
analysis. 

The various levels of the design procedure are described 
with respect to the decisions which have to be made on 
each level, the necessary specifications of the application 
problem, and the DBMS specifications. 

THE INFORMATION SYSTEM SPECIFICATIONS 

We shall concentrate on that part of the information 
system specifications that are relevant to data base design. 
The specifications must model that part of the real world 
which we are interested in, the object system. The object 
system consists of a finite number of objects. An object is a 
unique part of the real world. It is something we are 
interested in, something we want information about. Ob
jects may be concrete as well as abstract entities, like 
persons, enterprises, orders etc. Two kinds of features of 
an object are of interest: the properties of the objects and 
the relationships between the objects. 
~ of a System caI1.be ,par.ti1iolled into. ~Qbjecl 

classes. An object class defines a set of objects which, for 
our purpose, are supposed to have so many common 
properties and relationships that we assign one common 
type of identifier to each object in the set. 

Relationships between objects can be described by four 
different types of binary relations: 

1 : 1 one-to-one relation describes a relationship between 
an object of one class and an object of the same or a 
different object class. 

1: n one-to-many relation describes a relationship be
tween one object of one object class and many 
objects of the same or a different object class. 

n: 1 many-to-one relation is the inverse of the 1: n relation 
described above. 

n: n many-to-many reLation exists if both the relation and 
its inverse are 1: n related. 



510 National Computer Conference, 1977 

Figure I-Features of an object 

01:1 
1 : n 
n : 1 
n : n 

Type 

0.: 1 
1 : n 
n : 1 
n : n 

The different features of an object are illustrated in Figure 
I. The figure shows how objects are related to other 
objects, and how identifier-items and property-items are 
attached to objects. The object description is illustrated 
with an example in Figure 2. The example shows that a 
customer may have a number of orders. The customer is 
identified by "customer no." and described by the property 
items "name" and "address." One order is identified by 
"order no" cmd has the property items "total sum" and 
"order spec." 
In an information processing system, information about 

real world objects are stored in permanent files in a DBMS. 
Information about objects is exchanged between different 
parts of the information processing system by exchanging 
messages about those objects between processes. A con
venient way of specifying this information flow may be 

ReI. 

~
orderNO' 

Order Total Sum 

Order Spec. 

Figure 2 

Customer No. 

~---:. .... Name 

Address 

obtained using the principle of hierarchical systems parti
tioning. This will lead to a level-by-Ievel more detailed 
specification of the application system, where the terminal 
elements will be subprocesses and logical files. 

We shall illustrate our proposal for a multi-level file
design procedure by a case, which will be a simplified 
model of a warehouse (Figure 3). The system handles 
customers' orders for goods, it controls quantity in stock, 
and it produces refill orders for the vendors. 

Suppose that a further detailing of the ORDER MAN
AGEMENT system results in the subsystem structure of 
Figure 4. The logical files "STOCK FILE" and "CUS
TOMER FILE" represent permanent information, while 
the logical files "ORDERS," "ORDER ACCEPTED," 
"ORDER REFUSED" and "ORDER REGISTERED" 
represent message exchange between processes. 

The elements of the logical files can be described by 
message types. 

If we suppose that one customer may give several orders, 
and that one order may consist of a number of orderlines, 
the CUSTOMER FILE elements can be specified by the 
message type: 

MT(CUSTOMER FILE): 
customer no, customer name, customer address, 
(order no, total price, 

(order line no, article no, article name, 
line price, number ordered» 

where identifiers are underlined and brackets ( ) represent 
repeating groups. 

Each of the permanent files have to be specified in this 
way. The permanent files are the basis for the design of the 

I 

\ ! 
Maintain Maintain 

\J 
\// 

Stock 
Management 

Figure 3 



12 If O'dN- -I--

I l Check 

/ 

Figure 4-0rder-handling system 

file organization. Therefore, one has to describe the activity 
between them and the information system processes. This 
can be done with special types of processes, called retrieval 
processes. Each information system process may contain a 
number of retrieval processes. 

Each of the retrieval processes must be one of the 
following four file operations: 

READ, 

UPDATE, 

WRITE, 

DELETE, 

the retrieval process reads element(s) 
from a permanent file. 
the retrieval process changes one or more 
PCQPexty ~erJ;ll~ of .::1J1 elemeI1t of a perma
nent file. 
the retrieval process stores new ele
ment(s) into a permanent file. 
the retrieval process removes element(s) 
from a permanent file. 

A retrieval process must have exactly specified search 
keys. The expected result must also be specified. This 
specification may be a description of which parts of the 
permanent file shall be read, or it may be a description of 
the message(s) which shall be stored. 

The system of Figure 4 consists of two subsystems, 
ORDER CHECK and REGISTRATION. The subsystem 
ORDER CHECK handles orders from the customers. 
When an order arrives, the CUSTOMER FILE is checked 
to see if the customer is already registered. If not, some 
action has to be taken, for instance, to refuse the order, or 
to produce a customer number for this customer. Before 

Design of File Organizations 5 i i 

the order can be accepted, an order number has to be 
produced, and the quantities in stock of the specified 
articles have to be checked. This subsystem will therefore 
contain two retrieval processes, one for checking the cus
tomer file, and one for checking the stock file. The keys are 
denoted by K (=key) and the expected result by 0 (=out
put). 

S 1: Check customer-file 
Operation: READ 
K: --customer name 
0: --customer no. 

S2: Check stock-file 
Operation: READ 
K: -article no. 
0: -quantity 

The system REGISTRATION stores new orders and 
possible new customers. The registration of new orders can 
be illustrated as follows: 

S3: Order registration 
Operation: WRITE 

K: --customer no. 
-order no. 

0: -order no. 
-total price 
-order-line no. 

1 
-article no. for each 
-article name order-line 
-line price 
-number ordered. 

If all the retrieval processes defined by the application 
system are described in this way, then the application 
programs can be considered to consist of retrieval pro
cesses working towards a central data base containing per
manent files (Figure 5). Through the specification of the 
application problem, we have now developed a basis for the 
design of a first logical model of the file organization. 

0 
Read 

Update 

Permanent 
Retrieval 
Processes 

Files 

0 
Write 

Delete 

Figure 5-The basis for designing a logical data base model 



5 12 National Computer Conference, 1977 

DESIGNING A LOGICAL DATABASE MODEL 

A logical model of the file organization must satisfy the 
following requirements: 

• It must be entirely based upon the information analysis 
(i.e., the a priori knowledge of the application prob
lem). 

• It must satisfy the requirements specified in the infor
mation analysis, i.e., the requirements of information 
structure and the requirements of retrieval. 

• It must involve a "best possible" independence be
tween the designed data structures and the specified 
application programs. 

• It must be easy to realize using any particular DBMS. 

The design of the logical model is done in three steps: 

(1) Decomposition of the message types 
(2) Synthesis of the decomposed messages into a model 

which satisfies the information requirements and fi
nally 

(3) A modification of the model in order to satisfy the 
retrieval requirements. 

The decomposition procedure is similar to the normaliza
tion procedure proposed by Codd,1 which results in an 
elementary file system.2 The normalization of message 
types is a three-step procedure: 

1. Elimination of repeating groups, hierarchical struc
tures, or network structures, 

2. Elimination of non-full dependence on the primary 
key, 

3. Elimination of transitive dependence between the 
property terms. 

The decomposition will be illustrated with an example. The 
permanent file CUSTOMER FILE, was described earlier in 
the following way: 

M10: customer no, customer name, customer address, 
(order no, total price, (orderline no, 
article no, article name, line price, 
number ordered) } 

In this case a repeating group is subordinate to another 
repeating group, and the first step is to eliminate the first 
repeating group. The message type is therefore split into the 
message types: 

MIl: customer no, customer name, customer address 
M 12: customer no, order no, total price, (orderline no, 

article no, article name, line price, 
number ordered) 

The description of an order is only dependent on "order 
no," not "customer no." The message type M12 is there-

fore split into: 

M1 21 : customer no, order no 
M1 22 : Order no, total price, (orderline no, article no, arti

cle name, line price, number ordered) 

An elimination of the last repeating group results in: 

MI 221 : order no, total price 
M1 222 : order no, orderline no, article no, article name, 

line price, number ordered 

In message M 1222 there is a transitive dependence between 
the property terms. "article name" is dependent on "article 
no," not the identifier of the message. The message type is 
therefore split into: 

M1 2221 : order no, orderline no, article no, line price, num
ber ordered 

M1 2222 : article no, article name 

Using this kind of normalization procedure, the message 
type M 10 has been decomposed into the five message types 
MIl> MI 21 , M1 22t , M12221 and M1 2222 . The decomposition 
was entirely based upon specification of the application 
systems requirements, i.e., information about objects and 
message types. Normalization is a reversible process. That 
means that the ·original message types can be reconstructed, 
and therefore no information has been lost. 

In the example of Figure 3, the system contains, in 
addition to the CUSTOMER FILE, also the permanent files 
STOCK FILE and SUPPLIER FILE. Suppose that the 
permanent file STOCK FILE contains messages which 
describe the various articles in stock, and that each article 
may have several substituting articles and several suppliers. 
A possible decomposition might be: 

M2t: article no, article name, quantity, price 
M22: article no, article no 
M23: article no, supplier no 

Suppose the SUPPLIER FILE contains messages which 
describe the various suppliers and that one supplier may 
deliver several articles. That supplier may also have several 
refill orders registered. A possible decomposition might be: 

M3t: supplier no, supplier name, supplier address 
M32 : supplier no, article no 
M33 : supplier no, refill order no 
M34 : refill order no, number wanted, article no 

Some of the message types are binary relations which 
represent relationships between objects. For example: 
M1 2l1 : customer no, order no, represents a binary relation 
between the objects of the object classes CUSTOMER and 
ORDER. Other messages may describe properties of an 
object, for example MIt: cllstomer no, customer name, 
customer address. 

Examining the message types, one may determine the 



relationships between the various messages. This will be 
illustrated with examples: 

(1) The message type 
M1 211 : customer no, order no, 
describes an 1: n relationship between messages iden
tified by "customer no" and messages identified by 
"order no." 

(2) In the message type 
M3 4: refill order no, number wanted, article no, 
the secondary key, "article no," is used as a property 
term. This indicates an: 1 relationship between mes
sages defined by "refill order no" and "article no." 

The result of such an examination is illustrated in 
Figure 6. One may observe that there are both a 1: n 
relationship and an: 1 relationship between "article no" 
and "suppliei no." This implies the existence of an: n 
relationship. 

The logical model may be represented in a convenient 
way, using a data structure diagram. The data structure 
diagram has two basic elements; boxes and arrows. Each 
box represents a class of records (or a file) and each arrow 
represents a meaningful relationship between records. Such 
a diagram may easily be drawn using the normalized 
message types. Message types may be represented as 
boxes, and a 1 : n relationship is an arrow between boxes. A 
n: n relationship is represented as a coupling (or a relational 
file) between boxes. 

A data structure diagram based upon the normalized 
message types of the permanent files CUSTOMER FILE, 
STOCK FILE and SUPPLIER FILE is shown in Figure 7. 
This is a logical model which satisfies the requirements of 
the information structure. 

~~ ~"'~ 0 
0 z ~ ~ '0::','~', <~ 0 ~ ci ~ ~~ ~ ~~~~ ~,>~, z z ci Q) 

Z l'-' ,,',,- "."-, ".' '",,',\, "-
~ Q ci "'0 ,i;;..:..;..; .. ~,,,:~,,,,,,,,,,,:,,,,,,,,,.:,,,, ..... ,,:c...:,, 

.~ 
,. ,J.., 

L 

E 2. Z. 
Q) 0 .~ 

~~~~~>~~""~'~ 0 l- I- ~ U a. ..... Q.l Q.l Q.l 
~ ~~~~~'0~~<~~~ en "'0 "'0 "'0 '';:; a.

::J I- a I-

~
Q.l ::J

~~~~~~~~~ U 0 0 a: (f) 

~~~~~~~~~~~,~~ 
Customer No. 1 :n

Order No. 1 :n

Order No.
n: 1

Orderline No.

Article No. 1 :n 1 :n

Refill Order No. n: 1

Supplier No. 1 :n 1 : n

Figure 6---Relationships between identifiers of the normalized messages

Design of File Organizations 5 13

Customer No.
Customers Customer Name

Customer Address

Orders

Order·
Lines

Order No.

Total Price

~ Articles

Article No.
Article Name
Quantity
Price

Refill Order No.

No. Wanted

Refill Orders

Suppliers

Supplier No.
Supplier Name
Supplier Address

Figure 7-Data structure diagram of the normalized information structure

The next step of the design procedure is aimed at
satisfying the retrieval requirements. Suppose that both
"customer no" and "customer name" are used as keys by
different retrieval processes, and that the response time
requirements exclude a sequential processing of the CUS
TOMER FILE. A modification of the data structure dia
gram is then necessary (Figure 8).

A search file consisting of "customer name" is estab
lished and 1: n-related to the customer file. Usually, the
retrieval requirements may be satisfied establishing search
files in a way similar to the one illustrated in Figure 8.

Suppose further examinations of the retrieval processes
show that the items "article no.," "article name," "sup
plier no" and "supplier name" are retrieval keys. Neces
sary modifications of the logical model may result in a data
structure diagram as shown in Figure 9.

~. ~~('~! .~~ h~~ nt'IW ~ ~e~ !!!' 'th~e ~!g!'!
steps. The first step, decomposition of messages, was based
on message description and object description. The synthe
sis of the decomposed messages was based upon relation-

Customer

Customer No,
Customer Name
Customer Address

Retrieval Keys:

Customer Name
- Customer No.

-->
Assumed Requirement
of "Interactive Response
Time"

Customer Name

Custome

~.

Customer No.
Customer Address

Figure 8-Modification of CUSTOMER FILE to satisfy retrieval
requirements

514 National Computer Conference, 1977

Customer

Customer No.
Customer Address

Orderlines

Customer
Name

Refill Orders

Supplier

Supplier No.
Supplier Address

Article!
Supplier
Coupling

Figure 9---Logical model which satisfies the retrieval requirements

ships between objects, and the resulting model was modi
fied, using information about the retrieval processes and the
response time requirements. Thus, a logical model of the
file organization has been developed, without making any
decisions about any particular DBMS. The entire design
process is reversible. Thus, the original information struc
ture can be reconstructed, and the requirements stated in
the information analysis is therefore satisfied.

FITTING OF THE LOGICAL MODEL TO A PHYSICAL
MODEL

The next step in the design procedure is to select a
particular DBMS, and modify the logical model in order to
give a "best possible" physical solution. In this paper the
efforts will primarily be devoted to DBTG-like DBMS
software products, but most of the problems will neverthe
less be of a general character.

The available DBMS may have certain restrictions, like:

• the DBMS does not allow network-structures, only
tree-structures,

• the DBMS allows direct access to only a limited
number of hierarchical levels,

• the DBMS allows only a certain number of hierarchical
levels

• combinations of the restrictions mentioned above.

Therefore, the first modification of the logical model is to

satisfy the DBMS restrictions. Substitutions of lists by
inverted lists will usually solve these problems.

The next step is to make certain adjustments of the
logical model in order to:

• minimize the number of block accesses,
• minimize the data volume,
• minimize the transport of data between memory and

the data files.

Unfortunately, these factors are conflicting, and an opera
tion which takes all the factors into consideration must be
carried out. One may also notice that the less complex a file
organization is, the more it simplifies such operations as
initial loading, reorganization and report generating.

The logical model describes the record design and the
choice of access paths. Any adjustment of the logical model
must therefore either modify the record design or the
choice of access paths. A modification of the record design
which has to satisfy the information structure requirements
must be a choice between storing of duplicate data item
values or the use of references. The modification of the
access paths is a choice between the use of lists or inverted
lists. Duplicate storing of data will be illustrated as shown
in Figure lO.

The present version of· the logical model describes the
customers as illustrated in Figure lO(a). Suppose many
retrieval processes are frequently using "customer no" as
key and want information about "customer name." Such a
situation will result in a large number of accesses from the
member records to the owner records. An alternative
version of the record layout is illustrated in Figure 10(b).
The item "customer name" is stored in both the owner
records and the member records. Such a solution will result
in a decrease in the number of accesses, an increase in the
file size, and an increase in the data read and written. In
order to find the best solution one has to estimate the
decrease in access costs versus the increase of input/output
and storage costs.

Consequently, at this level of the design procedure, there
is a need for an analysis tool which may be used in making
such estimates. The analysis tool must satisfy the following

(a)

Customer
Name

Customer No.
Customer Address

(b)

Customer
Name

Customer No.
Customer Name
Customer Address

Figure 1000AIternative layouts of the customer file

conditions:

• it must be possible to perform an analysis without
making any decisions about physical realization.

• the analysis must be based on a description of the
logical model and the retrieval processes.

• the analysis must form a basis for making decisions of
the type mentioned above.

The logical model describes the file organization, and the
retrieval processes describe the activity against the file
organization. Consequently, it is possible to describe the
activity between the different record types and the activity
between records within the same record type. It will be
shown later that such a description is useful in making
decisions about logical restructuring or about physical reali
zation.

A part of the order management system described in the
previous sections is shown in Figure 11. Suppose the
following retrieval process exists:

S 1 : Read order
Operation: READ

K: -order no
0: -order no

-total price
-orderline no }
-article no
-article name
-line price

for each
orderline

The process uses "order no." as key, and its access path is
illustrated with a dotted line in Figure 11. One may observe
that the process results in transitions between the record

,,------ S1: Read Order
I

I 'f"t: I Orders

11
Orderlines

Articles

S1: Read Order

K : Order No.

0: - Order No.
- Total Price
- Orderline No.)
- Article No. { For Each

Line Price (Orderline
Number Ordered)

Figure II-Illustration of the access path of a retrieval process

Design of File Organizations 5 15

types ORDERS and ORDERLINES and between ORDER
LINES and ARTICLES. These transitions are called re
trievals of the first kind. An order will usualiy consist of
more than one orderline, and there will be transitions
between the records in the record type ORDERLINES.
These transitions are called" retrievals of the second kind.
Suppose the average number of orderlines per order is
seven. The retrieval process S 1 then will result in one
retrieval of the first kind between user and ORDERS, the
same between ORDERS and ORDERLINES, six retrievals
of the second kind within the record class ORDERLINES
and finally seven retrievals of the first kind between OR
DERLINES and ARTICLES.

In order to describe the activity in the data base, one has
to know the frequencies of the retrieval processes, and the
scattering factors which are a result of transitions between
the different record types. A transition from an owner
record type to a member record type results in a scattering
factor equal to the average number of member records per
owner record. It should be obvious that transitions from
user to a record type and transitions from a member record
type to an owner record type result in a scattering factor
equal to one.

The activity in the data base may be represented in a
matrix (see Figure 12):

{Wij}, i=O, 1 ,---, n andj= 1,2,---,n

where

n is the number of record types
W oj is the number of retrievals of the first kind

from user to record type no. j.
Wij i=I,2,---,n,j=I,2,---,n and i+j is the number

of retrievals of the first kind from record type
no. i to record type no. j.

Wjj is the number of retrievals of the second kind
within record type no. j.
n

L Wij, j= 1 ,2,---,n is the total number of re
i=o

trievals of record type no. j.

Suppose the retrieval process S 1 is initiated 100 times a
day. The example described in Figure 11, then results in the
retrieval matrix shown in Figure 13.

The behavior of the retrieval processes will be described
with a few more examples. Figure 14 shows the logical
model designed in an earlier section. The numbers within the
boxes are the numbers of the specific record types and the
numbers on the arrows are the scattering factors for transi
tions from an owner record to the member records. The
access paths of four retrieval processes are drawn as dotted
lines. The retrieval process S 1 has been described earlier,
and a description of the remaining processes shown in
Figure 14, may be as follows:

S2: Read customer name
Operation: READ

K: --customer no
0: -customer name

516 National Computer Conference, 1977

~ From 1 2 --- j - -- n

0 w 01 w02 WOn

I
I

1 w11 w12
I
I
I

2

I
I
I

i ------- w ..
I
I
I

n

n

W·· IJ

wT · 1

IJ

wnn

WT . 2 w T . n

is the number of record classes

is the number of retrievals of the first kind from user
to record class no. j.

i = 1, 2, - - -, n, j = 1, 2, - - -, nand i * j
is the number of retrievals of the first kind from
record class no. i to record class no. j.

is the number of retrievals of the second kind within
record class no. j.

n
~ wij' j = 1, 2, - - -, n

i = 0

Figure 12-Retrieval matrix

is the total number of
retrievals of record
class no. j.

The process results in one retrieval of the first kind between
USER and CUSTOMERS and the same between CUS
TOMERS and CUSTOMERNAMES.

The process removes a refill order and deletes the relation
ships to ARTICLES and SUPPLIERS. The result is one
retrieval of the first kind from USER to REFILL OR
DERS, one from REFILL ORDERS to ARTICLES and
one from REFILL ORDERS to SUPPLIERS. Suppose
that, in addition to the retrieval processes already men
tioned, there are other retrieval processes which complete
the user's communications with the data base. A possible
retrievai matrix may be the one in Figure i5.

S3: Update quantity
Operation: UPDATE

K: -article no
0: -quantity

The process updates the number of articles in stock, and
results in one retrieval of the first kind from USER to
ARTICLES.

S4: Remove refill order
Operation; DELETE

K: -refill order no
0: -textstring (deletion OK/not OK)

One may observe that w46=3990 and W64 =O. This indi
cates that "article no" and "article name" also should be
stored in ORDERLINES. The decrease in the number of
retrievals has to be paid for with an increase of the data
volume.

Such a modification of the logical model results in the
data stmcture diagram shown in Figure 16. Further exami
nations of the retrieval matrix may lead to other modifica-

en
Q)

To c en
en .- Q)
~ ~
Q) Q) Co)

'"0 '"0 .~

~ ~ ~

0 0 «
From

User 100

Orders 100

Orderlines 600 700

Articles

Total ~ ~ ~

Figure 13-The contributions from the retrieval process S 1 to a retrieval
matrix

tions of the logical model and thus the final solution will be
fitted to the selected DBMS in a "best possible" way.

\PHY SICM., IMPLEMENTATION

The final logical model describes the final record design
and the final access paths. The next step in the design

52: Read
I Customer .-----"'---.
I Name
I
I
I

Customer
Name

, 1# . ~~~~-~
I I' /

i //
I /

'- //
Customers

2

Article Name

51: Read
Order

Orders

Orderlines

4

/1 Refill Orders
I

I

:
\

5

8

Supplier
Name

"- 54: Remove Refill Order

Figure 14

Suppliers

9

10

Article/
5upplier
Coupling 10

Update
Quantity

~ From 1 2 I
0 150 195 I

1 150

2 195 150

3 380 i

4

5 I

6 :

7

8

9 I

Design of Fiie Organizations

! I
3 4 5 I 6 i 7

!
8

570 I 155 495 I 5 I 20

I I I I I
I I I I

570
I

1 3420 I 3990 I

155 I I

1535 75 ! I 45

I I
20 : I

! I 31 I

9 I
11 I

I I
i

I

I

i

5!
55 I

I

~1'7
-'II

10

130

1

10 : : 10 I I 1300 i 1177

Figure 15-Complete retrieval matrix

procedure is a~' implementation of the logical
model. This process consists of four main steps:

• choice of storage structures for the record types,
• physical location of the records,
• implementation of the relationships between the rec

ords,
• determination of the file dimensions.

The physical implementation is dependent on the particular
DBMS and consequently it is not possible to formulate any
general rules to solve the problem. Therefore, in this paper,

Customer
Names

Orders

Orderlines

Art~
Names

Refill
Orders

Figure 16

Supplier
Names

Suppliers

Articles/
Suppliers
Coupling

S 1 8 National Computer Conference, 1977

it will be shown how the problems can be solved using a
DBTG-DBMS.

Choice of storage structure

A DBTG-DBMS allows the following types of storage
structures:

• a direct structure (DIRECT)
• a randomized structure (CALC)
• an index sequential structure (INDEX)
• a sequential structure (VIA)

Usually, there will be no problem in making a choice
between these structures. For example a choice between
direct access and sequential access is determined by the
response time requirements. If direct access is necessary,
one should use a direct structured file if possible. If not, an
index sequential or randomized structure has to be used. A
randomized structure is usually cheaper than an index
sequential structure. Therefore, if there is no sequential
searching a randomized structure should be used. Of
course, these rules are not of general validity, but they may
be used in most cases.

Physica//ocation

The physical location may, to some extent, be controlled
by the following statements:

(i)

(ii)

(iii)

{ [{
integer-4}

WITHIN area-name-I data-base-data-name-4

{ THRU } {integer-s }J}
THROUGH data-base-data-name-S ...

The statement may be used to specify in what
physical data file(s) the various record types are to
be placed.
LOCATION MODE IS VIA set-name-I SET
If a sequential record type has more than one
owner record type, this statement may be used to
place the member records close to one of the owner
records.
INTERVAL IS integer-3 PAGES
This statement may be used to place member
records close to their owner record, for example in
the same physical block.

The retrieval matrix describes the activity between records
and it may therefore be a useful tool in determining the
physical locations of the records. High activity between
certain records implies that they should have physical
locations close together.

Implementation of relationships

The implementation of relationships between records
(i.e., set types) are done via list structures in a DBTG
DBMS.

A set may be organized as a one-way or two-way list
using the statement

MODE IS CHAIN [LINKED PRIOR]

The choice of list structure has to be based on the descrip
tion of the retrieval processes. High activity from particular
member records to their owner record indicates the use of a
pointer from the member records to their owner record.
This can be realized using the statement

[LINKED TO OWNER]

Determination of the file dimensions

The final step is to determine the dimensions of the data
files, i.e., determine the parameters:

• file volumes
• volumes of overflow areas
• volumes of index tables
• load percents
• block sizes

A "best possible" choice of values for the parameters
mentioned above is dependent on the particular DBMS and
the particular hardware used. Consequently, such decisions
should be made in connection with a performance analysis.
This will be further discussed in the next section.

PERFORMANCE ANALYSIS

An evaluation of the final solution should be done using a
performance analysis. The most convenient criterion of a
good solution is low total cost per time. Various types of
costs which affect the choice of file organization are:

• storage costs
• access costs
• data transfer costs
• sorting costs
• reorganization costs

In addition there will be costs for using cpu and memory.
In order to get a better picture of the performance

analysis procedure, a simplified case, the one-identifier
case, will be considered. In the one-identifier case the
entire file organization consists of a single file with records
consisting of one identifier item and one or more property
items.

In order to develop a cost function, it is necessary to
have information about

• the retrieval activity
• the storage structure and the dimensions of the file
• the accounting routine of the particular machine sys

tem

The first step is to decide on a storage structure. For a
particular storage structure one may decide on block size
and load percent. Those decisions will usually be results of
local optimizations, depending on the particular computer

system that is used. In addition, it is necessary to estimate
the volume of internal housekeeping data in the file. Thus,
the file may be described by the following parameters:

• number of records
• record size
• block size
• load percent
• size of overflow-area
• volume of housekeeping data

Based on this description, one may estimate the average
retrieval length (measured in block accesses). How this can
be done for the most common used storage structures is
described in Reference 3. Estimates of the average use of
memory and CPU for each retrieval process must also be
made. The retrieval processes are described with the fol
lowing parameters:

• frequencies
• use of memory
• use of CPU
• retrieval lengths

Tl

(a) Multilist

T1

/~
K"\ r--

T2
-,.---

(b) I nverted List

\

T1 T2 Properties

\
Main Fiie

/
Tl T2 Properties

\

\IE---7I---+-+-----I
:

,/ ~--7I--_t_-+_---~

Figure 17-Multilist and inverted list

Design of File Organizations 5 I 9

The parameters mentioned above are used as parameters in
the accounting routine of a particular machine system, and
a price may be computed.

It is then possible to adjust the file parameters, for
example the block size, and look at how these adjustments
influence the total price. Thus, a minimization of the cost
function may be done in an iterative way.

Searching in the multi-identifier case means that logical
conjunctions between the separate identifier items have to
be done. The most common ways to implement conjunc
tions are multilists or inverted lists.

Figure 17(a) illustrates a multilist. Tl and T2 are terms
which are parts of the identifier. A multilist consists of key-

T1

(a) Multilist

I
I • I
I

\~

/
f

I
I

I /

t I
I I
I I , :
1 , --..,....--,~~,

T1

I I
I I
I I
I , , ,

,...... __ ...Io... __ I~, /

Lists

(b) Inverted List

Main File

I • : T2
I
I ,
I
1 , ,
\ ,
\
\

Lists

T2

....................

"

I
I

I
I

I
/

" , ,
" <\

\
\
\
\

\

'.

Main File

Figure 18-Multilist and inverted list in a data structure diagram

520 National Computer Conference, 1977

tables and a main file. A key-table consists of one record
for each key value; the property parts of the records
contain a list address and a list length. The search method
is to find the list addresses in the key-tables and then search
through the shortest list. The retrieval length will be the
number of accesses to the key tables plus the number of
accesses to the main file.

Figure 17(b) illustrates an inverted list. An inverted list
consists of key tables and a main file. The result of
searching in a key table is a record of variable length which
contains all the addresses of the records in the main file
having specified key value. The search method is to find the
record addresses in the key-tables; then logical functions
are computed in memory, and the remaining record ad
dresses are found in the main file. The retrieval length will
then be the number of accesses to the key tables plus the
number of accesses to the main file.

These list structures consist of separate one-identifier
case problems-searching in key-tables and searching in the
main file. Therefore, it is possible to develop a cost
function using the same parameters as for the one-identifier
case.
Fig 18 describes the multilist and the inverted list in
a data structure diagram. The access paths are drawn with
dotted lines. From data structures of the kinds shown in
Figure 18, it is possible to construct any complex data
structure, and any complex data structure can be decom
posed into simple list structures. It should then be obvious
that a performance analysis of a multi-identifier case may
be performed using the same parameters as for the one-

(i)

(ii)

~-----e

Retrieval Process Parameters:

Frequencies

- Retrieval Lengths

Use of CORE

Use of CPU

File Parameters:

- Number of Records

- Record Volume

Block Size

Load Per cent

Volume of Administration Data

Retrieval Processes

(iii) Parameters Which Describe a Particular Accounting-Routine

Figure 19-Necessary parameters to carry out a performance analysis

identifier case. One should, however, notice that the access
paths of the retrieval processes have to be described, and
that the retrieval length, in the multi-identifier case, may be
written as:

where

at =the number of block accesses caused by the retrieval
keys

a2 =the number of block accesses caused by the establish
ing of relationships

Figure 19 gives a summary of the necessary parameters.

CONCLUSION

In the previous sections a multi-level design procedure for
design of file organizations has been developed. The design
procedure was based on an information analysis of the
application system. The information flow was described
using the principle of hierarchical systems partitioning, and
necessary information was extracted from the information
analysis:

• description of objects and relationships between ob
jects,

• description of permanent files, i.e., message types,
• description of retrieval processes.

A logical model was now developed in three steps:

• the message types of the permanent files were normal
ized,

• a synthesis of the normalized message types into a
logical model was made,

• the model was modified in order to satisfy the retrieval
requirements.

So far no decisions about any DBMS have been made.
The logical model was now modified to fit a particular
DBMS in a "best possible" way, i.e., modifying the record
layouts and altering the access paths. The record layout
was modified making a selection between duplicate storing
of data or the use of a reference, and the access paths were
altered by making selections between lists and inverted
iists.

Therefore, a physical realization in four steps was done,
i.e.:

• choice of storage structure,
• physical location of the records,
• implementation of the relationships between the rec

ords,
• determination of the file dimension.

The file dimensioning was done in connection with a
performance analysis.

The design procedure outlined in this paper still needs a
detailed description of the various levels, and further work
has to be done in this area.

An experience during the work already done was the
strong need for computer based tools for documenting
information structures etc., and for analysis of DBMS
schema performance properties. The basis for such a com
puter-based tool is an automatic documentation of the
information analysis. Such documentation systems exist
today, for example, CASCADE, which with a few minor
adjustments would be well fitted for this purpose. A trans
formation of the application system into a logical data base
model will be the next step. It seems that the method
outlined in this paper may be a useful basis for such a
transformation algorithm.

Concerning the modification of the logical model, an
analysis tool has to be developed. With the information

Design of Fiie Organizations

documented through the analysis of the application system
it seems possible to develop an analysis tool based upon
activity between the records.

Finally, the physical realization using a particular DBMS
has to be done. It seems that this may be done in connec
tion with a computerized performance analysis.

Considering the obvious possibilities of automating the
design procedure, there seems to be good hope of achieving
good results in this area in the future.

REFERENCES

1. Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial," 1971
ACM Sigfidet Workshop, Data Description, Access and Control, edited
by E. F. Codd and A. L. Dean.

2. Langefors, B., Theoretical Analysis of Information Systems, Third Edi
tion, Studentlitteratur, Lund, 1971.

3. Bratbergsengen, Hofstad, Wibe: "Filsystemer og databaser."

An effective method for measurement and analysis
of system software performance

by JOHN R. RUMSEY and DAVID W. ABMAYR
Harris Corporation
Dallas, Texas

ABSTRACT

The performance measurement and analysis of software
operating systems which extend basic computing machinery
is discussed. The description of an external monitoring
technique which facilitates the correlation of hardware
events with software functions without the need for soft
ware monitors is presented. A time related Event is
defined to provide the basis for the technique used to
implement the monitor system. In addition, Event analysis
methods are introduced which allow a software system
execution profile to be constructed.

INTRODUCTION

The existence of complex software systems to extend basic
computing machinery is well established and procedures for
implementing these systems are well known. Many of these
extended machines, however, are dynamically responsive
so that a predictable system execution path does not always
exist. The system path is normally a function of the
occurrence of a real-time event or the result of a user
system resource request. The occurrence of either of these
events is usually asynchronous to the system software.
.c~~i,~, t~~~"aDd; ~ .na.tw.:e ,ofs.¥.£
tem software execution paths, the empirical determination
of these paths for the evaluation of extended machine
performance is generally considered a complex and time
consuming task.

Several techniques have been proposed for measurement
and analysis of the performance of extended machines.
Nutt2 surveys the three classical types of computer system
monitors: pure software, pure hardware, and hybrid moni
tor systems. Generally, hardware monitors are considered
to be most adept at detecting a wide variety of events but
are limited in their ability to relate the events to a specific
software function. Software monitors, on the other hand,
are better suited for identifying the source of an event than
responding to a large class of events. Svobodova3 indicates
that system measurability can be achieved only with an
integrated hardware-software approach in which the exter
nal monitoring device complements the internal monitor.

523

To developers of operating system software, the need to
identify and analyze various areas of the software is most
important. Items of interest include task dispatching over
head, the response time required to support a disk access,
and many other similar functions. It seems, however,
inappropriate to burden system software development with
the added task of developing and maintaining software
monitoring support. Similarly, a hybrid monitor system
requires imbedded software to identify certain key func
tions and has limited flexibility. A technique, therefore, is
needed for externally monitoring system software execu
tion.

The objective of this paper is to describe an external
monitoring technique which facilitates the correlation of
hardware events with software functions without the need
for any software monitors, and allows more than one view
of machine instruction execution. To completely character
ize machine execution, the gathering of several different
types of data is required. The data types include:

(1) Time related execution state events-to facilitate ana
lyzing program execution

(2) Selected address references-to allow reference
counts to be accumulated

(3) Instruction operation codes-to allow analysis of the
~~.of ~u:uctions executed

(4) Instruction execution and address reference traces
for analyzing branch patterns and to a;d software
debugging.

Each data type provides a different view of the execution
of a sequence of machine instructions. This allows the
implementation of a comprehensive program analysis.

EVENT DEFINITION

Conceptually it is desirable to monitor the execution of
software with no impact on the system whatsoever. This
includes the elimination of any background trace functions
or special instructions to identify the occurrence of particu
lar events. To accomplish this goal, it is necessary to define
an autonomous device that is capable of capturing states of

524 National Computer Conference, 1977

execution associated with the software system. This, of
course, could be an overwhelming task if no method could
be devised to concisely represent the set of possible execu
tion states. An approach to this problem has been defined
which effectively reduces the set of execution states to a
manageable size.

Consider that any function in a program can be associ
ated with one or more address references. To completely
classify an address reference, however, it is necessary to
identify the reference type, to define the data associated
with the address, and to distinguish mUltiple references
with a time value. A set of primitive elements for defining
execution states, therefore, can be used to define Events in
terms of an address reference five-tuple.

Event=E=(A, R, D, C, T)
where
A =(a 1 , a2, a3 , ••• , an) is an address space
R=(r1 , r2, r3, ... , rj) is a non-empty set of address

references
D=(d1 , d2 , d3 , ••• ,dk) is a set of data types associated

with an address
C=(Fetch, Read, Write, ... , I/O) is a set of reference

classes
T is a time interval in which two consecutive address

references contained in R must be guaranteed to occur
Any Eventt occurs at real-time modulo T.

A profile of the execution of any program can be de
scribed in terms of Events. The granularity of the profile is
controlled by the magnitude of the Event set. Figure 1
illustrates an application of the Event definitions. A mem
ory map of a skeletal representation of an operating system
and associated asynchronous processes is shown. The

rlO. Write
(clock service)

rg. Read

rs. Read

r7. Write

rs. Read

r5. Fetch

r4.Fetch

r3. Fetch

r,. Fetch

Memory Map

Processn

Process2

Process,

ProcessQ
(Job Scheduler)

File System

A

Device Management

Dispatcher

Memory Management

Synchronization

Figure I-Typical event set

address space of interest in this example contains the
operating system and its associated job scheduling process.
The selected Events segment the operating system into
specific functions, but the granularity of coverage is very
loose. The auxiliary Event associated with clock service
guarantees that an Event· will always occur within the
Event time interval T. Since an Eventt is defined to always
occur within an interval real-time modulo T, a time value
may be associated with each Event. Events, therefore, not
only provide execution path data but also provide sufficient
information to determine the time required to execute the
functions described by the profile. Therefore, if the address
space is defined so that all software functions are included,
then the Event set will allow direct determination of pro
cessor utilization for any function of interest. For a particu
lar execution of the software, the Events illustrated in
Figure 1 are sufficient to describe the relative utilizations in
the defined address space.

The determination of the absolute address associated
with each Event of interest may seem to be an arduous
task. This is not the case, however, because Events may be
defined in terms of relative displacements associated with
the set of software functions to be measured. These relative
addresses are then easily converted to match a particular
implementation.

IMPLEMENT ATION

The implementation of the mechanism required for gath
ering the various data types is based primarily on a function
fi E) with a domain consisting of a set of time related events
(E). A set of data is collected by applying h to E. In
particular, for the four data types previously described, the
functions are defined as follows:

fl(EJ = insert ai and real-time modulo T
into the data set if

ajER
and cjECj

where CjECeC*

f2(EJ = counterj~counteri+ 1
if

ajER
and cjECj

where CjECec

fiEJ = counterj~counterj+ 1
if

cj=Fetch
where j=j(dJ which identifies the instruction
code

fiEj) = insert aj into the data set
if
cj=Fetch

* Notation for unordered cross product taken from Reference I.

An Effective Method for Measurement and Anaiysis of System Software Performance 525

The implementation of these functions requires that the
monitoring system must be capable of capturing addresses,
verifying reference types, and associating time values with
the address data. A device to accomplish these functions is
not difficult to implement, consisting only of a logical four
way switch, simple address translation, incremental count
ing, and the associated memory and function generator. A
simplified block diagram is provided in Figure 2.

The monitor device is interfaced to a standard production
system which specifies the data path in the monitor and
performs the analysis of the stored data. Since address,
data and reference type can be captured from the Test
System, each of the required data types can be accumu
lated. The function f1 is implemented by translating moni
tored memory addresses to specify an appropriate reference
type comparison. The Type Comparator, which is dynami
cally programmable, provides indication of a match be
tween address and reference type. If a match occurs the
address data and the current value of the time counter are
inserted into a queue in Temporary Storage. Subsequently
the queued data is written to Auxiliary Storage. The second
function f2 is also implemented by translating monitored
memory addresses. In this case, however, the translated
address specifies the location of a counter in Temporary
Storage which is to be incremented by one. Function f3 is
similar to f2 since both specify that a Temporary Storage
Counter is to be incremented. The third function, however,
invokes translation of memory data if and only if the
reference type is a Fetch. The address generated by the
Translator becomes a function of the instruction operation
code. The last functionf4 is a special case off1' The address
(without time counter) is queued if the reference type is a
Fetch.

EVENT ANALYSIS

Experience with the monitor system has shown that the
most extensively used function is f1' i.e., gathering Events
for profiling system execution. While the method for accu
mulating Events is interesting, the techniques used to
anaiyze the Evehl ~eyuefice to e;~~ract S),3t{!t'n tItitizaticn
and performance information may be more significant.

For the purpose of analysis, each Event in a sequence of
Events may be considered to represent a start, end, or
single Event. Start and end Events are used to define
intervals, the durations of which are of interest. A single
Event has no interval connotation but implies merely a
count of occurrences of some address reference by specific
type. With respect to intervals, several things must be
considered:

(1) Intervals may be nested. Let A represent a set of start
Events and B represent a corresponding set of end
Events. Then it is permissible for Aj to occur simulta
neously with or after Ai but before B i , provided Bj

occurs concurrently with or before B i • The allowable
nesting level depends upon the total number of single
Events and Event pairs. The following example illus-

BUFFER

MONITOR DEVICE

H+-_M_E_MO.o....R_Y--IS~~~;M
ADDRESS

MEMORY

DATA

REFERENCE

TYPE

Figure 2-Monitor block diagram

trates timing calculation. Suppose the following
Event sequence occurs:

Then the intervals associated with each Event pair are
as follows:

Pair Interval Time
A1 B1 at1 + at3 + at7

A2 B2 at2

A3 B3 at4 + at6

A4 B4 ats

(2) An Event may define

a) the start of n intervals
b) the end of n intervals
c} the start of one i!!'te"'2t~ ~md ttw- enrl oi~ aootber
interval
d) the start and end of an interval

Where Ai starts several intervals, the interval count is
accumulated only until the first end occurs and is
associated only with that specific start-end pair.

(3) The percent utilization associated with an interval is
calculated as follows:

If T ij denotes the ith interval time associated with the
jth Event pair and only the jth Event pair, then the
percentage of time spent in thejth interval is

2: Tij

%= 2:
i

2: T
jj

j i

526 National Computer Conference, 1977

Considering the above analysis rules, an effective method
of determining performance is based upon constructing a
profile of system activities.4 The process of defining a
system profile consists of selecting appropriate Events
associated with the software system. These Events may
then ultimately be used to define intervals of time which
collectively account for the total real-time associated with a
particular period of system operation. After selected pro
grams are characterized with the profile, performance char
acteristics may be calculated.

In addition, a data profile may be defined which is a
subset of the system profile. A data profile is generated
when a data sample accumulated with a system profile is
analyzed. Various data profiles may be generated from a
single data sample. The one-to-many mapping from system
profile to data profile facilitates multiple analyses of a single
data sample. For example, data profiles may be generated
for selected combinations of Events in the system profile to
allow analysis of processor utilization, interpretive instruc
tion execution time, disk system physical access time, etc.

When a data profile is generated certain information
relating to intervals is accumulated. The minimum, average,
and maximum interval times are maintained with a coun.t of
the number of times each interval was entered. In addition,
a mUltipoint interval time distribution is calculated which
provides the basis for typical weighted interval residence
times.

An example of a system profile is provided in Figure 3.
Each item of coverage implies that two Events must be
defined to represent the associated interval with the excep
tion of count only items which are implicitly defined by

INTERVAL DEFINITIONS

Entry Exit

F50A,Ol,F51C,02
SC96,02
SOCC,02,SOCE,Ol
7890,02,7B92,Ol
7S20,02,7S22,Ol
179S,02,169A,Ol
7404,04
7146,02,714S,Ol
4E4A,04
44OC,02,440E,Ol
lE1C,01.1E2E,02
1062,01,1074,02
lCC4,Ol,lCD6,02
lC4E,Ol,lC60,02
lAAS,Ol,lABA,02
19C6,Ol,190S,02
1935,Ol,194A,02
lSD6,Ol,lSES,02
lS60,01,lS72,02
OB06,04.0A22,04
OAC2,04,OB44,04
OASA,04,OAC2,04
OAS4,04,OABA,04
OA7E,04,OA70,04
OA74,04,OA70,04
OA70,04,OAC2,04
OA60,04,OA70,04
OOBA,Ol
OOBS,Ol
00B6,Ol

009C,Ol

SOFTWARE FUNCTIONS

USER PROCESS
OPERATING SYSTEM OVERLAY LOADS
PUNCH INTERRUPT SERVICE
TAPE INTERRUPT SERVICE
PRINTER INTERRUPT SERVICE
DISK INTERRUPT SERVICE
DISK START 1/0
READER INTERRUPT SERVICE
OVERLAY REQUESTS
SYSTEM CLOCK
OPERATING SYSTEM PROCESS 1
OPERATING SYSTEM PROCESS 2
OPERATING SYSTEM PROCESS 3
OPERATING SYSTEM PROCESS 4
OPERATING SYSTEM PROCESS 5
OPERATING SYSTEM PROCESS 6
OPERATING SYSTEM PROCESS 7
OPERATING SYSTEM PROCESS S
OPERATING SYSTEM PROCESS 9
WAIT
DISPATCH
SCHEDULER SEGMENT 1
SCHEDULER SEGMENT 2
SCHEDULER SEGMENT 3
SCHEDULER SEGMENT 4
SCHEDULER SEGMENT 5
SVC HANDLER
SVC 15
SVC 14
SVC 13

SVCO

Figure 3-System profile

single Events. Associated with each address is the refer
ence type designation.

A data profile may be generated with any subset of the
system profile. Utilization summaries extracted from the
various data profiles allow an extensive performance analy
sis. For example, considering a disk based operating sys
tem, it is of interest to determine the distribution of the time
required to physically access the disk. This is easily accom
plished by generating a data profile containing an interval
which begins when a Start 110 to the disk is issued and ends
when the first instruction of the corresponding interrupt
service is executed. A data profile is illustrated in Figure 4.
The interval counts have a dimensional value of two
microseconqs.

Data profiles allow a comprehensive look at any part of
the system software. Figure 5 illustrates a summary of the
performance of one of the access methods supported by the
File System. Data profiles similar to Figure 4 were used to
compile the statistics.

The Event analysis method described is certainly not
unique. Function!! generates a sequence of Events that are
written to auxiliary storage. The analysis of these Events is
in no way confined to the method described; however, this
technique has proven to be one of the most useful. An
alternative analysis method has been used which does not
consider intervals as nested. The time for any interval is
accumulated from the first instance of the start Event until
the corresponding end Event is detected. This alternate
technique is useful for determining the frequency of occur
rence of intervals.

OTHER DATA TYPES AND ASSOCIATED ANALYSES

From the viewpoint of performance analysis, the second
most utilized statistics have been derived from machine
instruction operation code data. A simple but very useful
analysis counts the occurrence of each operation code type.
When the data sample is exhausted, a summary is gener
ated indicating the percentage of execution associated with
each instruction. Weighted instruction execution times are
calculated which clearly define processor utilization in
terms of each machine instruction. Excessive use of high
cost instructions is quickly identified.

The benefits of generating an address trace concurrent
with the execution of system software are immediately

INTERVAL SUMMARY

ENTRY EXIT MAX COUNT MIN COUNT AVG COUNT ENTRY COUNT %TOTAL

7698 7404 31766 409 8610 969 037.08

7404 7698 40279 1174 14604 969 062.92

INTERVAL RESIDENCE DISTRIBUTION

ENTRY EXIT MIN GROUP MIN-AVG GROUP AVG GROUP AVG·MAX GROUP MAX GROUP

7698 7404 409-3142 3142-5875 5875-16328 16328-24046 24046-31766

040.86% 016_61% 020_04% 014.65% 007.84%

7404 7698 1174-5650 5650-10126 1012&23162 23162-31720 31720-40279

009.59% 008_66% 079.05% 000.84% 002.06%

Figure 4-Data profile

An Effective Method for Measurement and Anaiysis of Sysiem Sofiware Performance 527

System Buffering Level Avg Disk Accesses
Avg Access Rate2

Avg Access Time3
Functions Transfer Rate Utilization Input Output per Transfer Physical Software

DATA DISK 551.56 RPM1 28.59% 0 0 2.34 21.55 28.25 6.24

DATA DISK 581.69 19.30 0 0.42 4.03 24.56 11.77

DATA DISK 579.87 18.51 0 2 0.22 2.16 30.08 18.10

DiSK DISK 381.49 23.54 0 0 3.83 24.34 33.68 5.02

DiSK DISK 638.25 24.42 0 1.89 20.08 40.17 5.41

DiSK DISK 744.57 27.21 0 2 1.72 21.29 36.54 4.80

DiSK DISK 452.80 22.07 0 2.86 21.61 38.53 4.72

DiSK DISK 478.36 22.48 2 0 2.68 21.40 38.68 4.78

DiSK DISK 1087.45 26.72 0.95 17.21 45.30 3.17

DiSK DISK 1360.39 27.79 2 2 0.56 12.62 60.30 2.95

1 RPM - Records per minute

2Accesses per second

3Milliseconds

Figure 5-File system performance statistics

apparent to programming personnel. Performance data,
however, related to programming methodology can also be
extracted from address data. Consider the simple problem
of searching an array A for a value x. Examples la and 2 of
Reference 2 provide two solutions with differing efficien
cies. The second is considered the more efficient but it also
may execute a greater number of Branch instructions. The
increase in the number of Branch instructions executed
mayor may not have an effect on performance, depending
upon the environment. For example, if the architecture of
the processor executing the software is based on a pipeline
technique, then it is possible that a high frequency of
Branch instructions could certainly affect system perform
ance. Branchanalys.is of address trace data~ therefore,
could reasonably be used to predict performance problems.

CONCLUSIONS

The performance monitoring technique described has been
implemented and successfully used to evaluate the perform-

ance of a general purpose, disk based operating system and
related asynchronous processes. The most extensively uti
lized operating system functions were quickly identified.
Critical real time dependent functions were isolated and the
functions for which execution times were marginally ac
ceptable were rewritten to provide sufficient safety mar
gins. Each release of the operating system or associated
applications is currently profiled to ensure consistently
reliable extended machine performance.

REFERENCES

I. Kortbage, Robert R., Discrete Computational Structures. Academic

2. Knuth, Donald E.. .. Structured Programming with go to Statements,;'
Computer Surveys, Vol. 6, No.4, December 1974, pp. 261-301.

3. Nutt, Gary J., "Tutorial: Computer System Monitors," Computer, Vol.
8, No. II, November 1975, pp. 51-61.

4. Svobodova, L., "Computer System Measurability," Computer, Vol. 9,
No.6, June 1976, pp. 9-17.

5. Warner, Dudley c., "System Performance and Evaluation-Past, Present
and Future," AFlPS Conference Proceedings, Vol. 41, Part II, 1972, pp.
959-964.

The Navy Fortran validation system

by PATRICK M. HOYT
Department of the Navy
Washington, D. C.

ABSTRACT

The FORTRAN Compiler Validation System (FCVS) de
veloped by the Department of the Navy tests the conform
ance of those elements of the FORTRAN language which
are contained in the logical intersection of the American
Standard FORTRAN, X3.9-1966, and the elements pro
posed for the subset language in the draft proposed Ameri
can National Standard Programming Language FORTRAN.

This paper discusses the development of the FORTRAN
Compiler Validation System and presents the rationale for
the FCVS. The design criteria for the FCVS and a descrip
tion of the test production is explained. The capabilities of
the Executive System are described as well as the future
developments anticipated for the FCVS because of the
adoption of the revised FORTRAN Standard and the im
pact of the CODASYL FORTRAN Data Base Facility.

INTRODUCTION

FORTRAN is one of the oldest of the higher level program
ming languages with its roots in IBM in 1954. 1 Standardiza
tion for the FORTRAN language began in May 1962 under
the direction of the American Standards Association Com
mittee X3.4.3. * In 1966, two standards were published for
the FORTRAN language: American Standard FORTRAN,
X~.~"'t96@ 2l!!d ~meriC'M! ~~ ~ ~'HM:N
X3.10-1966, which is a proper subset of the first Standard.

The FORTRAN Compiler Validation System (FCVS)
developed by the Department of the Navy tests the con
formance of those elements of the FORTRAN language
which are contained in the logical intersection of the
American Standard FORTRAN, X3.9-1966, and the ele
ments proposed for the subset language in the draft pro
posed American National Standard Programming Language
FORTRAN.3

One of the principal reasons for developing validation
systems is the principal criteria given for developing the
FORTRAN Standard: "Interchangeability of FORTRAN
programs between processors." 3 The FCVS was developed
as a tool to enable users to acquire FORTRAN compilers

* The American Standards Association (ASA) has since changed its name to
the American National Standards Institute, Inc. (ANSI). The FORTRAN
Committee is now known as X3J3.

529

which meet the ANSI language specifications. The availa
bility of FORTRAN compilers conforming to the Standard
enhances the interchangeability of FORTRAN programs.

The FCVS consists of FORTRAN audit routines, their
related test data, and an executive routine (EXECUTIVE)
which prepares the audit routines for compilation and
execution. Each audit routine consists of series of tests of
FORTRAN language elements, and supporting procedures
which indicate the result of executing these tests. Because
the routines were designed to run on any computer system
purporting to support FORTRAN, the assumptions used to
write the audit tests are very restrictive. Only the simplest
forms of GO TO, Arithmetic IF, WRITE, and assignment
statements are used to write the support code required for
each test. A complete discussion of the FCVS test philoso
phy and a full description of each of the language element
tests are contained in the document FCVS DETAILED
TEST SPECIFICATIONS.4

A SOURCE PROGRAMS file of audit routines with
appropriate implementor-defined parameters inserted into
the source code is produced by the EXECUTIVE. The
EXECUTIVE is a FORTRAN program included in source
form in the FCVS LIBRARY. Once installed, the EXECU
TIVE is used each time that an audit routine or series of
audit routines is selected from the FCVS LIBRARY. Basic
inputs to this process are the FCVS LIBRARY (a file of all
of the audit routines, the EXECUTIVE and related test
data}, and asmes of cnntroti~ to ~teet~·t..~e
the audit routine source code.

A FORTRAN compiler, in a particular computer configu
ration/operating system environment, is tested by the com
pilation and execution of each audit routine. If a compiler
rejects some language element by giving fatal diagnostic
messages or terminating the compilation, then the EXECU
TIVE is used to eliminate the source code containing that
language element. The audit routine is then recompiled and
executed. Output reports (TEST RESULTS) produced by
the execution of each routine indicate whether the code
generated by the compiler passed or failed each test of the
routine. The TEST RESULTS together with the compila
tion listings constitute the raw data from which the Depart
ment of the Navy produces a Validation Summary Report
(VSR). The VSR itemizes the areas where the FORTRAN
compiler being tested does not conform with the American
National Standard FORTRAN specifications.

530 National Computer Conference, 1977

HISTORY

A study of available FORTRAN validation systems was
performed in August 1973. This study analyzed the U. S.
Navy FORTRAN tests developed by Captain Grace Hop
per of the Navy Programming Languages Section,5 and the
National Bureau of Standards FORTRAN tests developed
by F. E. Holberton and E. G. Parker. 6 The study concluded
that the major flaws in these validation routines were that
all the test results were listed on a printer and required
careful examination of the test results by the user, and
these test routines required many manual changes to the
source code when preparing them for execution on a given
computer system.

At this time it was decided that the FCVS developed by
the Software Development Division must evaluate the re
sults of the language tests within the tests themselves, and
print PASS or FAIL for each test in the same manner as the
COBOL Validation System. In 1973 a three stage project
was designed to:

(I) extract and modify existing tests and routines;
(2) add PASS/FAIL/DELETE support code to make the

routines self-measuring; and
(3) build a complete FORTRAN validation system based

on a set of simple assumptions and the self-measuring
techniques used in implementing the second stage.

Due to lack of available resources, the FCVS project
remained in abeya.nce until February 1975 when the deci
sion was made to pursue the third stage as the initial effort.
The scope of the FCVS project was to adequately test all of
the elements of the FORTRAN language based on the
specifications in American Standard FORTRAN. X3. 9-
1966.

DEVELOPMENT OF THE FCVS

The FCVS project was broken into five major phases as
follows:

I. Systems Analysis and Design Phase-

• develop the matrix of language elements to be tested
• develop the list of basic test assumptions, program

ming and naming conventions, EXECUTIVE rou
tine functions and requirements, test and implemen
tation procedures.

2. Program Analysis and Design Phase-

• produce detailed specifications for each audit rou
tine.

3. Coding and Debugging Phase-

• write boiler plate for TEST RESULTS format
• code three programs to test the basic assumptions

• code and debug an estimated thirty elementary rou
tines

• code and debug an estimated twenty advanced rou
tines

• test data to be prepared as required.

4. Integration and Testing Phase-

• write detailed specifications for the EXECUTIVE,
then code and debug the EXECUTIVE routine

• integrate the EXECUTIVE, audit routines and any
test data onto the FCVS LIBRARY

• test the final integrated FCVS as a system.

5. Documentation and Release Phase-

• update all documentation to reflect final FCVS spec
ifications then release and distribute through NTIS.

Based on this scope of the FCVS project, eighteen (18)
manmonths were estimated for completion of the project.
Two computer specialists were assigned to share equally
the responsibilities of the entire project. It was estimated,
based on the experience gained in developing the CCVS74
audit routines, that the two computer specialists could
devote half of their available time to the project. The FCVS
project was to begin October 1975 and was scheduled for
completion on July 1, 1976.

Work proceeded on schedule until January 1976. Very
little progress was made on the FCVS during January and
February 1976 as the available manpower was devoted to
higher priority projects. In March 1976, two major deci
sions were made. The number of tests in anyone routine
were limited to thirty (30), since the TEST RESULTS
report could then be printed on a single page (approxi
mately 56 lines). The draft proposed American Standard
FORTRAN (X3J3-pending), which had been distributed
for public comment, was analyzed with respect to the
language elements identified in American Standard FOR
TRAN, X3.9-1966. It was decided that the FCVS version
1.0 then being developed would test the conformance of
those elements of the FORTRAN language which are
contained in the logical intersection of American Standard
FORTRAN, X3.9-1966, and the elements proposed in the
subset language of the draft proposed American Standard
Programming Language FORTRAN. The previous arbitrary
classification of elementary versus advanced language ele
ments was deemed obsolete since the proposed Standard
contained a subset language.

The FCVS was designed to build the statement tests from
a basic set of FORTRAN language features which are
assumed to function correctly. The remaining language
features are tested using these basic language elements. The
assumptions were made with the goal that these routines
would be executable on most minicomputer systems as well
as on the larger computer configurations.

The basic assumptions are listed below and the refer
ences to X3.9-1966 are enclosed in parentheses.

(1) Six character symbolic names (3.5 and 10.1) and five
digit statement labels (3.4) are permitted.

(2) Comment lines (3.2.1) do not affect a program in any
way.

(3) Execution of the unconditional GO TO statement
(7.1.2.1.1) GO TO k causes the statement identified
by the statement label k to be the next statement
executed.

(4) Branching to a CONTINUE statement (7.1.2.6)
causes the statement following the CONTINUE
statement to be the next statement executed.

(5) The assignment statements (7.1.1.1)

integer variable = integer constant (5.1.1.1)
integer variable = integer variable
real variable = real constant (5.1.1.2)
real variable = real variable

function correctly.
(6) The arithmetic IF statement (7.1.2.2) functions cor

rectly: IF (e) kl, k2, k3 where e is an arithmetic
expression (6.1) of the form

integer variable + integer constant
integer variable - integer constant
real variable + real constant
real variable - real constant

and kl, k2, and k3 are statement labels.
(7) The simple formatted WRITE statement (7.1.3.2.3)

functions correctly: WRITE (u,f) k where u is a
logical unit number (7.1.3.1), f is a FORMAT state
ment label, and k is a list (7.1.3.2.1) of integer and
real variables.

LANGuAGE ELEMENT AREA

Comment lines
Ret~rence~format blanks in vatiahie .. .;;tatemem iaheis
continuation of lines
FORTRAN reserved words
Simple Subroutine call
Subroutine calls another routine
Intrinsic functions
DAT A statement
BLOCK DATA subprogram

Blank COMMON
Labeled COMMON
EQUIV ALENCE statement
EQUIV ALENCE and COMMON
DO loops-simple format
CONTINUE statement
Arithmetic IF statement
Logical IF
Unconditional GO TO statement

The Navy FORTRAN Validation System 53 i

The format statement contains nH Hollerith field
descriptors (7.2.3.8), nX blank field descriptors
(7.2.3.9), Iw numeric field descriptors (7.2.3.6.1), and
Fw.d numeric field descriptors (7.2.3.6.2).

(8) In order for the output report to have the correct
format, the use of the first character of a formatted
record for vertical spacing must function correctly
(7.1.2.4).
Two characters which are used in printing the report
are:

CHARACTER

blank

VERTICAL SPACING BEFORE
PRINTING

Advance to first line of next page
One line

In addition to the preceding basic assumptions, the
following minimum capabilities are assumed for the rou
tines:

(1) Integer variables consist of at least 16 bits of which
one is a sign bit.

(2) The system output device has at least 56 characters
per line.

(3) Real variables contain at least 16 bits in the mantissa
and 8 bits in the exponent.

In order to appreciate the changes in scope made during
the FCVS project, it is essential that one understands what
was considered elementary versus an advanced audit rou
tine in the original identification of the tasks. The following
list shows the language element areas originally chosen for
elementary vs. advanced.

Also shown is a column for whether a given language
element area was tested in version 1.0 of the FCVS.

ORIGINAL LEVEL VERSION 1.0

Elementary Tested
ETeriiental;Y Testea
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Deferred to a later

version
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested
Elementary Tested

532 National Computer Conference, 1977

LANGUAGE ELEMENT AREA

Assigned GO TO
Computed GO TO
TYPE statement
Integer arithmetic tests
Arrays-fixed dimensions, simple constant and variable

sUbscripts
Repeated calls to a subroutine
Inline arithmetic statement functions
FUNCTION subprogram
Multiple RETURN statements
Logical data
Logical expressions
Simple sequential file 110
Character set
Subroutines sharing COMMON
Nested DO loops and extended range of a DO statement
DO index tests
Real arithmetic tests-adjustable accuracy
Double precision data
Complex data
Arrays-arithmetic expressions for sUbscripts
EQUIV ALENCE with COMMON and DIMENSION
arrays
EXTERN AL statement
REWIND
ENDFILE
BACKSPACE
READ
WRITE
110 with implied DO loops
Variable logical unit numbers
Binary READ and WRITE unformatted
Scaling in FORMAT statement
F, E, I FORMAT field descriptors
Evaluation of expressions-many variables, arithmetic,

relational and logical
Assignment rules for expressions with a change in data type
Variable dimensioned arrays in subprograms
External procedure names as arguments in intrinsic

function references

ORIGINAL LEVEL

Elementary
Elementary
Elementary
Elementary
Elementary

Elementary
Elementary
Elementary
Elementary
Elementary
Elementary
Elementary
Elementary
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced

Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced

Advanced
Advanced
Advanced

VERSION 1.0

Tested
Tested
Tested
Tested
Tested

Tested
Tested
Tested
Tested
Tested
Tested
Tested
Tested
Added**
Added**
Added**
Deferred
Deferred
Deferred
Deferred
Added**

Deferred
Added**
Added**
Added**
Added**
Added**
Added**
Added**
Deferred
Deferred
Added**
Deferred

Added**
Deferred
Deferred

** Added elements were included in Version 1.0. Remaining advanced elements are not included in Version 1.0, however, these elements will be tested in future
versions of the FCVS.

Additional manpower resources were added to the FCVS
project in late April 1976 as the number of routines to be
written had increased from fifty (50) to seventy-five (75).

Description of statement tests

The statement tests in the FCVS were built carefully
from the foundation of the basic assumptions. There was a
systematic increase in the complexity of the language
features tested as succeeding FORTRAN audit routines
were developed. Language features other than those in the
basic assumptions were not included in a test until they had
been thoroughly tested themselves. This method provides
for the cross checking of test failures and allows for the

precise identification of problem areas due to nonconform
ance to the language specifications or other compiler errors
and deficiencies.

The first several routines in the FCVS test the language
elements in the basic assumptions. Their correct execution
ensures that the failure of any test in the remainder of the
routines is due to the improper implementation of the
language feature being tested.

A description of the first few tests for the Arithmetic
Assignment Statement is included to show how the tests
build upon previous tests. An Arithmetic Assignment State
ment is of the form:

variable name = arithmetic expression.

The simplest form for the arithmetic assignment state
ment is:

integer variable = integer constant.

The first audit routine which tests arithmetic assignment
statements contains tests of the above form where the
integer constant is unsigned, positively signed and nega
tively signed. The unsigned and positively signed constants
increase in absolute value in succeeding tests to a maximum
of 32767, and the negatively signed constants decrease in
value to - 32766.

The next form of the arithmetic assignment statement to
be tested is:

integer variable = integer variable.

In order to test this form the statements from the previous
tests setting an integer equal to a constant must be used.
The source code lines for these tests are:

integer variable 1 = integer constant
integer variable 2 = integer variable 1,

where the integer constant assumes the values previously
tested. This process is continued with tests of arithmetic
assignment statements of the form

integer variable = integer variable + constant,
integer variable = integer variable - constant,
integer variable = integer variable + integer variable,
integer variable = integer variable - integer variable.

By developing tests in this manner, if a problem with a
language element appears in a particular construct, the
problem is easily identified in all other tests which employ
the same type of construct.

Test support code

the tests in the FCVS comain support source code which
checks the results of the language features tested and
produces output indicating the results of each test. The
support source lines also contain statements which are
executed if a test must be deleted in order to compile a
program. If the compiler cannot handle a particular lan
guage feature which is being tested, that code is deleted by
placing a C in column 1 of the source lines for that test.
During execution, the program falls immediately into the
test deletion source lines.

Section 9.2 of the 1966 FORTRAN Standard states "A
program part may not contain an executable statement that
can never be executed." 2 Since the test deletion code is
only executed when a test is deleted, this specification
required several IF statements to be added to the support
code. The IF statements refer to statement labels which
begin lines of source code which are not executed if the
language element tested performs correctly.

The Navy FORTRAN Validation System 533

An example of the source lines for two tests of the
arithmetic assignment statement is given in Figure 1 to
show the test construction and the support code common to
each test. Figure 2 contains the same tests but test number
227 has been deleted in this example. In the execution of
these tests on a given system, the Executive System will
replace the X02 in the WRITE statement with the imple
mentor-defined logical unit number for the printer.

Audit routine output report

The output report for each audit routine indicates
whether the individual tests in the routine passed, failed or
were deleted. A summary of the results for each routine is
printed at the end of the output report. Figure 3 is an
example of the output report for the audit routine FMOO4.
This report shows that two tests in this routine failed, and
the computed and expected results are given for these two
tests. The comment lines within the program or the pro
gram documentation would have to be consulted to deter
mine what language elements did not conform to the
language specifications and thus caused these tests to fail.

The executive system

The FCVS source library tape contains system independ
ent source programs with implementor-defined aspects such
as logical unit numbers yet to be resolved. The Executive
System was developed to build compilable programs from
the FCVS source library tape. The purpose of the Execu
tive System is to handle the implementation problems
which occur even with programs written in Standard FOR
TRAN.

The Elementary Executive Routine 'was written for exe
cution on a minicomputer system and contains only those
capabilities expected of a system with limited resources.
Because of this, the Executive Routine is written in
FORTRAN using only language elements and features
included in the basic assumptions.
''fhe'F~~1tf'~ F~ecttttye ·~*fflefJefmitf;;-tke·· s@ieGti9R

of a program from the FCVS source library tape by
program identifier and the building of a compilable program
file. Resolution of implementor-defined logical unit num
bers and update capabilities by source line are performed as
the program file is built. The update capabilities include
inserting a source line, replacing a source line, deleting a
source line, and changing a source line to a comment line
by placing a C in column 1.

Testing

During July and August 1976, the audit routines compris
ing version 1.0 of the FCVS were tested on four systems:

• UNIVAC 1108 Field Data compiler under EXEC-8
• Data General NOV A 800 under RDOS version 3.0

534 National Computer Conference, 1977

C
C TEST 225 THROUGH 234 USE PARENTHESES TO GROUP ELEMENTS IN AN
C ARITHMETIC EXPRESSION.
C

2271 CONTINUE
IVTNUM=227

C
C **** TEST 227 ****
C INTEGER V ARIABLE=(2+ INTEGER VARIABLE)+4
C

IF (ICZERO) 32270, 2270, 32270
2270 CONTINUE

IVONOI=3
IVCOMP=(2+ IVONOI)+4
GO TO 42270

32270 IVDELE=IVDELE+ I
WRITE (X02, 80003) IVTNUM
IF (lCZERO) 42270, 2281, 42270

42270 IF (IVCOMP-9) 22270, 12270, 22270
12270 IVPASS=IVPASS+ I

WRITE (X02, 80001) IVTNUM
GO TO 2281

22270 IVFAIL=IVFAIL+ I
IVCORR=9
WRITE (X02, 80004) IVTNUM, IVCOMP, IVCORR

2281 CONTINUE
IVTNUM=228

t
C **** TEST 228 ****
C INTEGER V ARIABLE=2+(INTEGER V ARIABLE+4)
C

IF (ICZERO) 32280, 2280, 32280
2280 CONTINUE

IVONOI=3
IVCOMP=2+(IVONO I +4)
GO TO 42280

32280 IVDELE=IVDELE+ I
WRITE (X02, 80003) IVTNUM
IF (lCZERO) 42280, 2291, 42280

42280 IF (IVCOMP-9) 22280, 12280, 22280
12280 IVP ASS = IVPASS + I

WRITE (X02, 80001) IVTNUM
GO TO 2291

22280 IVFAIL=IVFAIL+ I
IVCORR=9
WRITE (X02, 80004) IVTNUM, IVCOMP, IVCORR

Figure I-Example of source lines for test of arithmetic assignment statement

• Digital Equipment Corporation PDP 11170 under RSX-
11M

• General Electric FORTRAN IV compiler under the
MARK III timesharing system.

Milestones

The following chart shows the actual milestone comple
tion dates to develop the FCVS.

Matrix to Identify FORTRAN
Language Elements

Programming Procedures Document
FCVS Test Plan
EXECUTIVE Routine Specifications
FCVS Test Specifications-Working

Papers
EXECUTIVE Routine Completed
Version 1.0 Test Routines Completed

31 OCT 75

21 NOV 75
26 MAR 76
28 MAY 76

11 JUN 76

26 JUN 76
04 JUL 76

FCVS Detailed Test Specifications
Manual Version 1.0

Testing Completed-FCVS LIBRARY
Tape Version 1.0 Produced

FCVS User's Guide Manual Version
1.0 Completed

C

09 JUL 76

13 AUG 76

13 AUG 76

The Navy FORTRAN Validation System 535

SCOPE OF THE FCVS

The purpose of the FORTRAN Compiler Validation
System is the testing of a compiler's conformance to the
FORTRAN language specifications. The tests in the FCVS
are "positive" in that only statements permitted by the

C TEST 225 THROUGH 234 USE PARENTHESES TO GROUP ELEMENTS IN AN
C ARITHMETIC EXPRESSION.
C

2271 CONTINUE
IVTNUM=227

C
C **** TEST 227 ****
C INTEGER V ARIABLE=(2+ INTEGER V ARIABLE)+4

C

2270
C
C
C
32270

IF (ICZERO) 32270, 2270, 32270
CONTINUE
IVON01=3
IVCOMP=(2+ IVONOl)+4
GO TO 42270
IVDELE=IVDELE+ 1
WRITE (X02, 80003) IVTNUM
IF (ICZERO) 42270, 2281, 42270

42270
12270

IF (IVCOMP-9) 22270, 12270, 22270
IVPASS=IVPASS+ 1

22270

WRITE (X02, 80001) IVTNUM
GO TO 2281

IVF AIL= IVF AIL+ 1
IVCORR=9

2281
WRITE (X02, 80004) IVTNUM, IVCOMP, IVCORR
CONTINUE
IVTNUM=228

c
C **** TEST 228 ****
(: INTE{JhR VA-RtARLE=2+IINTEGER VARIABLE+4)

C
IF (ICZERO) 32280, 2280, 32280

2280 CONTINUE
IVONOl=3
IVCOMP=2+(IVONOI +4)
GO TO 42280

32280 IVDELE=IVDELE+ 1
WRITE (X02, 80003) IVTNUM
IF (lCZERO) 42280, 2291, 42280

42280 IF (lVCOMP-9) 22280, 12280, 22280
12280 IVPASS=IVPASS+ 1

WRITE (X02, 80001) IVTNUM
GO TO 2291

22280 IVFAIL=IVFAIL+ 1
IVCORR=9
WRITE (X02, 80004) IVTNUM, IVCOMP, IVCORR

Figure 2-Example of test deletion procedure

536 National Computer Conference, 1977

FORTRAN COMPILER VALIDATION SYSTEM
DEPARTMENT OF THE NAVY
ADPE SELECTION OFFICE
SOFTWARE DEVELOPMENT DIVISION

PRE-RELEASE FORTRAN 1966---LIMITED DIS
TRI.

FOR OFFICIAL USE ONLY-COPYRIGHT 1975

TEST

21
22
23
24
25
26
27
28
29
30
31
32

PASS/FAIL Computed

PASS
PASS
FAIL o
PASS
PASS
PASS
PASS
PASS
PASS
FAIL -2
PASS
PASS

END OF PROGRAM FMOO4
2 ERRORS ENCOUNTERED

10 TESTS PASSED
o TESTS DELETED

Correct

2

Figure 3-Example of audit routine output report

Standard are included. There are no "negative" tests of
incorrect statement formats which a compiler is suppose to
flag as errors.

The FCVS also does not test vendor extensions to the
language specifications, and does not perform an error
analysis on the results of executing the Basic External
Functions supplied by FORTRAN processors. The FCVS
is not designated to measure the efficiency of the object
code generated or the performance characteristics of a
FORTRAN compiler.

FUTURE FCVS DEVELOPMENT

X3J3 has developed a draft proposed revised FORTRAN
Standard consisting of a full language and a subset language
to replace American Standard FORTRAN, X3.9-1966. X3J3
has also recommended withdrawal of X3.1O-1966, Basic
FORTRAN since a FORTRAN subset is defined in the
revision to X3. 9-1966. The proposed revision is in the
process of being accepted by ANSI and it is anticipated in
the "near" future there will be a new FORTRAN Standard.

A study of the new draft revised Standard and associated
appendices reveals that programs conforming to the 1966
Standard will also conform to the revised Standard. The
changes to FORTRAN from X3.9-1966 to the X3J3 revision
were made "only when such changes were necessary to
correct an error in the previous standard or to add to the
power of the FORTRAN language in a significant manner.
In addition, such changes were only considered when it was

felt that the change would not affect a significant number of
programs. " 3

The FCVS developed for the 1966 Standard will be the
foundation for an FCVS for the complete revised Standard.
Major additions to the current FCVS will be required to test
the new language features in the revised Standard. The
motivation and philosophies previously described for the
current FCVS remain essentially intact in developing a
compiler validation system for the complete revised lan
guage Standard.

The FORTRAN Data Base Committee of CODASYL is
developing a data base facility to allow a FORTRAN user
to manipulate data bases. The data base facility is based on
both the CODASYL Data Base Facility and the revised
FORTRAN Standard. A working document of the FOR
TRAN Data Base Committee, CODASYL FORTRAN Data
Base Facility Journal of Development,7 describes a set of
data manipulation language statements and data definition
language statements "intended to be in the spirit of FOR
TRAN."

If the FORTRAN data base facility is accepted by the
FORTRAN Community then data base validation routines
would be developed for inclusion in the FCVS. The growth
in the use of data base concepts for large and small scale
computer systems makes validation techniques for host
language interfaces important.

CONCLUSIONS

The FORTRAN Compiler Validation System provides a
tool for measuring a compiler's conformance to the FOR
TRAN language specifications. Properly administered, the
FCVS will promote improvements and eliminate compiler
deficiencies from vendor supplied software. The FCVS will
be used by the ADPE Selection Office, Department of the
Navy, in the procurement process. It is an important
addition to procurement procedures and the FCVS will
ensure the selection of computer systems with compilers
that support the FORTRAN Standard.

The FCVS is now available to the user community. Any
comments or suggestions on the FCVS will be appreciated
and should be addressed to:

Department of the Navy
Software Development Division
ADPE Selection Office
Washington, D. C. 20376

REFEE.ENCES

1. Sammet, J. E., Programming Languages: History and Fundamentals,
Prentice-Hall, Incorporated, 1969.

2. American Standard FORTRAN, X3.9-1966, American National Standards
Institute Incorporated, New York, 1966.

3. American National Standards Committee X3J3, Draft Proposed ANS
FORTRAN, ACM Sigpian Notices, Vol. 11, No.3, March 1976.

4. FCVS Detailed Test Specifications, available from the National Technical
Information Service, US Department of Commerce, 5285 Port Royal
Road, Springfield, Virginia, 22151, reference ADA030211.

5. Hopper, Captain Grace Murray, DSNR, "U. S. Navy FORTRAN
Tests," March 1971, unpublished Department of the Navy Documenta
tion.

The Navy FORTRAN Validation System 537

6. Holberton, F. E. and E. G. Parker, "NBS FORTRAN Test Programs,"
U. S. Department of Commerce, National Bureau of Standards, NBSIP
73-250, June 1973.

7. CODASYL FORTRAN Data Base Facility, CODASYL Journal of Devei
opment, Version 1.0, August I, 1976, published by CODASYL FOR
TRAN Data Base Committee.

A two-step approach to the validation of
software engineering methodologies*

by GRUIA-CATALIN ROMAN
Washington University
St. Louis, Missouri

ABSTRACT

A two-step approach to the experimental validation of
software development methodologies is proposed. The first
stage consists of the evaluation of the programming effort
required for the reconstruction of some existing medium
sized program which (1) has known development and
maintenance costs and (2) is anticipated to undergo numer
ous developments in the immediate future. The second step
is shown to involve a comparative study of (1) the pro
grams' performance, (2) the degree of expertise required to
maintain the two programs, (3) the maintenance costs, and
(4) the average adaptation times necessary to integrate a
new programmer into the maintenance team.

The approach is demonstrated for a method called pro
gram control restructuring that was used in the reconstruc
tion of a complex 10,000 line biochemical simulation sys
tem.

THE EXPERIMENTAL ENVIRONMENT

Program control restructuring is a method that was
designed to be a useful tool for constructing large programs.
It provides good quality design and documentation, expe
d~ t~· +"'~~~!l1'ret'~~ " ffll~· tj,e ~~ .. ~
and flexibility of the program, diminishes the frequency of
logical errors, and limits the knowledge needed for making
program alterations. Furthermore, program control restruc
turing was conceived as a method that performs well,
especially in those adverse circumstances where the pro
gram is not an end in itself, but a research tool. In such
conditions the program is under continuous development,
only partially specified, and exposed to frequent changes in
the design specifications. Moreover, programming is often
done by transient personnel, hired on a temporary or part
time basis to accomplish specific developments, or by the
researchers themselves, who may have some limited com
puter science training.

No theory is capable of establishing to what degree
program control restructuring is able to control such ex-

* This research was partially supported by NIH grants (GM-16501, HL-
15622. and RR-15.

539

treme circumstances as those provided by the environment
described above. Only practice can offer the final valida
tion. This is the reason why the project SIMBIOR was
conceived-the first practical experiment using program
control restructuring. SIMBIOR is comprised of two dis
tinct steps. The first one includes the rewriting (based on
the program control restructuring approach) of a large and
complex biochemical simulation system4 which for con
venience will be referred to as BSS. The second step
involves the study of the maintainability, flexibility, and
performance of the new program, called BIOSSIM, over a
two-year period characterized by intensive developments
and numerous changes in personnel.

That SIMBIOR is indeed a fair trial for program control
restructuring may be justified by BIOSSIM's size and
complexity but, more importantly, by the fact that the
environment in which it was constructed and later used is
the very same one described in the beginning of this
section. The key to a convincing validation of program
control restructuring is to be found in the hardships it had
to overcome. From the very beginning of the project, it was
clear that BIOSSIM had to be constructed with limited
financial and no technical support. While satisfying strict
efficiency requirements, it also had to meet demanding
deadlines. Moreover, the environment was to have no
j]eganV~ eff~ct up00llic gUality ofthtpI'0dttt.

Facing these demanding circumstances was a modest and
inexperienced programming team. Its members had never
before coded more than several hundred lines; neither had
they ever used any systematic approach or well-defined
methodology. The situation was made worse by the fact
that all of them were employed part-time, a circumstance
which could cause a team that required considerable inter
action to become very ineffective.

SIMBIOR gained financial support based upon the pre
liminary evaluation of program control restructuring as a
software engineering methodology. A tentative schedule
was adopted. It was estimated that the construction of
BIOSSIM would take eight months followed by two months
of testing and would require a three-person team working
fifteen to twenty hours per week. There was also a general
agreement that the new version would be less efficient and
need more core since it was intended to be machine

540 National Computer Conference, 1977

independent (BSS was not) with the accent on flexibility
and clarity. However, the disadvantages were viewed as
insignificant in comparison to the gains.

To validate program control restructuring, SIMBIOR had
to achieve the following main goals:

(1) a. to adapt the method to the use of FORTRAN and
to the specifics of the problem under implementa
tion (to show both generality and adaptability);

b. to meet the deadlines established for completion of
BIOSSIM (to demonstrate high productivity and
good utilization of available human resources);

(2) to prove the program's maintainability and flexibility
during subsequent developments carried out by tran
sient programmers.

The following sections will describe the test program, the
methodology, the two validation steps, and the conclusions
of the experiment.

THE TEST PROGRAM

A short description of BSS may help the reader gain a
basic appreciation of its complexity and value. BSS was
designed to be a biochemical research tool. It is used by a
number of biologists and biochemists to build, validate, and
experiment with various metabolic models. Its main capa
bility is that of predicting the state (a state is defined by the
concentration vector of all chemical species involved in the
model) in which the system is to be found at various future
points in time. (Time is viewed as being continuous.) BSS
accepts a formalized description of a biochemical system,
simulates its behavior, and displays its state at certain
selected moments in time. Dynamic and state alterations to
the system are permitted.

The original version of BSS was written by one person
within a year's time and has undergone much development
and expansion for more than ten years, reaching a length of
approximately 10,000 cards of highly efficient code. The
system, initially conceived on a PDP-6 and later run on a
PDP-10 computer, was reorganized two times and trans
ferred to an IBM 360. The first attempt required more than
one year during which minor alterations were made and
debugging took place. The most recent transfer entailed six
months of intensive effort made by a team of two persons.
The users became increasingly aware of the inadequacies of
the system (high development and maintenance costs) as
the demand for new facilities and portability intensified.

Because BIOSSIM is intended to be internationaHy dis
tributed, it is written in FORTRAN. It is assumed that most
installations support this language and most users are likely
to have some FORTRAN experience. The language choice
is also considered as appropriate from the experimental
point of view. Since the methodology is language independ
ent, the use of FORTRAN can emphasize the generality of
the method even for those that tend to be very hostile
toward languages such as FORTRAN. A good approach

must be able to function satisfactorily in any environment
even when it is known to work better under certain
conditions than others.

THE METHODOLOGY

A complete description of program control restructuring
and the motivation behind it may be found in Reference 8.
For the purpose of this exposition, it suffices to present at
this point only a simplified view of program control restruc
turing. A control restructured program may be viewed as a
set of subprograms organized top-down in a tree-like hier
archy. Each subprogram in tum is represented by a set of
procedures or routines organized on t'vVO levels. The first
level is represented by a control block while the second one
contains several modules.

The sole function of the control block is that of calling
the various modules that belong to the same subprogram
and the control blocks of lower level subprograms. The
control block is not permitted to alter any data. However, it
is allowed to test the value of a special integer variable
called the control variable. The modules, on the other hand,
are restricted from calling any other procedures. They
perform specific transformations over the data to which
they have access. Among the modules of each subprogram,
there is a distinguished one called the initialization-docu
mentation module. This module is the first ever to be called
by the control block and plays the role of setting all
pertinent variables to their initial values. Such a program
structure is presented in Figure 1.

While other aspects of program control restructuring will
be introduced in the next section as they are needed, it
must be pointed out now that the key idea behind program

"j --- - - - - - - - - ~ - - - - -

I

'---__ -----'I
____________ --.J

- --,
I
I

Figure I-The structure of a control restructured program

control restructuring is that of relying heavily on standard
ization (based upon language and problem dependent crite
ria) in order to achieve very high productivity, good quality
documentation, and inexpensive development and mainte
nance.

THE RECONSTRUCTION

This section is dedicated to describing the construction of
BIOSSIM, the control restructured version of BSS. As
previously stated, this was the first stage of the project
SIMBIOR and was intended to demonstrate the impact that
program control restructuring has upon the productivity
and quality of software production in the context of a most
imperfect and demanding environment. At the same time,
this section provides a concrete example of the way in
which program control restructuring may be adapted to a
specific problem and given circumstances. The reader inter
ested in employing this approach will find here very useful
guidelines.

Prior to starting the actual design of BIOSSIM, a prelimi
nary study of the problem and environment was conducted
in an effort to organize the project and select the appropri
ate standards for program structure. A short and well
structured weekly meeting was viewed as being necessary
for progress reports and handing out programming assign
ments. However, the only precise and correct communica
tion channel was the documentation itself. Each program
mer was expected to work independently and require little
or no interaction with anyone else. Regulations regarding
the usage, of amdliary storage, updating of listings, and
precautionary procedures were also established.

The first step in selecting the project standards was data
structuring. The process resulted in the adoption of the
following types of variables:

• Control variables-as previously presented, they are
used by the control blocks to determine the sequencing
of modules and may be altered by the modules only.

* GeheralvatiaDTes~tl1ey ate global vati'ab1e"s constant
for significant portions of the program and grouped in
labeled commons based upon their functions.

• Local variables-they are represented by those varia
bles local to a given module with the exception of the
do-loop indices.

• Do-loop indices.
• Debugging variables-they are globally defined flags

stored in a labeled common and used to control the
activity of the debugging modules.

• Workspace variables-they are globally defined arrays
(in labeled commons) upon which the transformations
are applied. The structure of the workspace variables
is standardized.

Standards were also imposed upon the modules. They
were chosen in an effort to assure not only low connectivity
but also reduced maintenance and development costs, small

Validation of Software Engineering Methodologies 541

probability of error, and simplified verifications. The most
important standardization rules refer to restrictions regard
ing access to certain classes of variables by certain types of
modules, the preservation of the invariant properties of the
workspace variables, and the definition of a maximum
complexity for each type of module.

Due to certain specific needs of the program, a number of
deviations from program control restructuring were ac
cepted as absolute necessities. The introduction of a group
of modules called heterogeneous routines is one concession
made to assure good portability of the program. They are
not actual modules and therefore may be called from within
any module. The heterogeneous routines include specific
short machine-dependent sections which could be part of
the modules, but the designer felt the need to single them
out. Transferring the program from one system to another
should require only the rewriting of the heterogeneous
routines. Later experiments proved this to be true-the
transfer cost was reduced by 80 to 90 percent.

The use of FORTRAN determined not only superficial
changes in terminology (e.g., control block became control
routine) but also the solutions adopted for a number of
aspects defining the implementation standards. A first set of
language dependent decisions refer to naming and labeling
conventions. One-letter prefixing was selected as the sim
plest way to provide the programmer with immediate ac
cess to the semantics of the named element. Thus, each
class of modules or variables has a unique letter by which it
is identified in an unambiguous manner (e.g., X20UT must
be a control block on the second level). Furthermore,
groups of labels have been associated with specific usages
or constructs.

The second type of language restrictions involves the
usage of constructs within the modules. These conventions
have been designed primarily to assure the generation of
intelligible code and to simplify program verification. In
order to produce block-structured routines, backward and
intersecting GOTO paths have been eliminated. As a result,
the computational flow is naturally divided into logical
blocks.

Tht r.ccd to sub.:ffvi.:le BI'OSSIM ihto & 'numher of
subprograms was justified by the complexity of the pro
gram, the incomplete nature of the program description,
and the instability of the specifications. Being a research
and development project, the construction of BIOSSIM
required that many key decisions be taken or reversed at
times when the program implementation was in an ad
vanced state of completion. The division of the system into
subprograms diminished the impact of such circumstances
and allowed the designer to perform all necessary adjust
ments at a low cost and in a very short time. The criteria
applied in separating the program into subprograms allowed
for the design and implementation of the various subpro
grams taken as a group to be completed in an arbitrary
order, which was by no means top-down or bottom-up.
However, each subprogram in and of itself was independ
ently designed and implemented in a strictly top-down
fashion.

542 National Computer Conference, 1977

The only documentation preceding SIMBIOR was the
user's guide, which provided the initial specifications for
BIOSSIM. The first element of documentation produced
during the course of the project was the introduction to the
programmer's guide. It included a detailed and complete
description of the methodology and program structure
adopted by SIMBIOR. Subsequently, the programmer's
guide accumulated information regarding the algorithms
used, references, debugging facilities, etc.

While maintaining the traditional external documentation
sources, program control restructuring places a special
accent on developing a powerful internal documentation
scheme. Each routine is both an active program segment
and a documentation source of a specific character deter
mined by the role it plays in the structure. From the
documentation point of view, each control block is a
"conversational dictionary." The conversational dictionar
ies indicate the information which may be accessed by each
module and the way it can use the variables made available.
The comments preceding each call also include information
regarding the purpose of the call, in what circumstances it
is made, and the effect it may have upon the control
variable.

Similarly, each documentation module becomes a "data
set dictionary." Among them, the documentation module of
the top subprogram is distinguished as the "main data set
dictionary" while the others are referred to as the "regional
data set dictionaries." The main data set dictionary con
tains all the global variables used by the program accom
panied by a complete description of such things as their
purpose, format, and initial values. In the cases where a
variable is not documented at the top level or is used in a
particular way by a group of modules, references to the
places where the pertinent information exists are included.
If an initialization takes place outside the documentation
routine, an explanation is provided. Those variables that
are not documented in the main data set dictionary appear
in one of the regional data set dictionaries.

Regarding module documentation, each module contains,
immediately after the necessary declarations, a list of all
local variables, their rationale, and their initial values. This
enumeration is vital for quick comprehension of the code
and rapid checking of the type of variables used and is
referred to as "the pocket dictionary."

The duality between program structure and documenta
tion scheme promotes the understanding, in a clear and
precise way, of the logic of the program and the use of
variables. No assumptions have to be made by the reader at
any point in time. All information is there; to reach it
requires an effort comparable to finding a word in a
dictionary.

The quality of this fully standardized documentation was
validated by its use in the design and implementation of the
SUbprograms. By making the program self-explanatory to a
large degree, the documentation scheme used by program
control restructuring eliminated the need for numerous
incomprehensible documents which rarely form a unified
documentation system anyway. As a result, it was no

surprise that developing the documentation parallel to and
as part of the program in a natural and totally interdepen
dent manner registered an unusual success.

The construction of each subprogram always followed
the same pattern: first, the control block was designed and
its correctness informally established; the implementation
of the control block followed; the design and coding of the
modules came next; and, finally, the testing and debugging
of the subprogram took place. The verification of each
subprogram, prior to implementing the control block, was
found to be extremely useful both in eliminating design
errors and also in preparing correct design specifications for
the modules. Although the proofs were carried out in an
informal manner, their effectiveness exceeded the expecta
tions. All logical errors were completely eliminated during
the verification stage. Furthermore, subprogram verifica
tion forced the designer to define the interfaces in a very
precise and careful manner-one more factor that contrib
uted to reducing the number of coupling errors to zero.

V ALIDATION OF THE RECONSTRUCTION STEP

The distribution of the work responsibilities among the
members of a programming team plays an important role in
achieving full utilization of the human resources. A concept
that proved itself very helpful in reaching this goal was the
ideal team notion. The ideal team is a team in which, for
each indivisible project responsibility, one person is as
signed. The structure of the ideal team may easily be
determined by analyzing the processes involved in imple
menting a specific method. In most circumstances one does
not expect to have the resources necessary to form an ideal
team. However, by knowing its structure the allocation of
responsibilities among the available human resources may
be done properly so as to assure the highest possible
productivity. Each member of a real team may assume the
role of one or more members of the ideal team depending
upon his experience and qualifications. On the other hand,
the duties of each member of an ideal team should never be
assigned to more than one person. If this simple rule is not
obeyed, confusion, increased need for communication, and
lower productivity will result. An example of an ideal team
is the chief programmer team concept,2 which was devised
and tested in its pure form by Mills and Baker. The
differences between their approach and program control
restructuring are reflected in the structure of the respective
ideal teams. The ideal team for program control restructur
ing requires a chief designer, a documentation secretary,
several programmers, and technical support personnel.

The CHIEF DESIGNER needs to have an excellent
command of the problem to be solved and a strong structur
alist orientation. His work duties should consist of the
following:

• the selection of the design and implementation stand
ards to be adopted;

• the general design of the system and its correctness
proof;

• the writing of control blocks;
• the specification of work assignments for the team;
• synchronization of the work;
• the ultimate decision as to choice of programming

solution;
• the supervision of any changes to the documentation;
• design of test cases;
• the testing of the whole system.

The DOCUMENTATION SECRETARY has to take
care of the maintenance and updating of

• the module library;
• the documentation modules;
• the external documentation files;
• the manuals and archives;
• the backups;
• the distribution of information regarding any changes

in design or documentation to all interested parties.

No request is to be serviced by the secretary unless
approved by the chief designer.

The PROGRAMMERS have the duty to code, test, and
debug the different modules or subprograms whose specifi
cations are given to them by the chief designer. It is
important that they respect all conventions and restrictions
upon which the system is based. In order to generate unity
of style, they need to be able to adopt easily the program
ming style of the group. A good understanding of the
methodology helps in taking advantage of the available
documentation. The programmer is not allowed to use any
information or data not indicated in the specifications.

A TECHNICAL SUPPORT TEAM with experience in
the kind of work in which the project is involved becomes
an important factor in accelerating the work and in decreas
ing the number of typing and minor syntactic errors.

Material conditions did not permit the employment of the
three-person team estimated as being necessary to meet the
deadtines set by tflt; sl.ntJLi1e. The 'pfUje~lhdd fo adapt to
the situation by reassigning the work duties of the third
person to the two available persons. One of the team
members assumed the responsibilities of chief designer and
documentation secretary and a small part of the program
mers' work load. The remaining programming needs and
most of the required technical support were responsibilities
of the other person. The total amount of time available was
only thirty-five to forty-five hours per week. However, the
project was developed on a very reliable time-sharing
computer, the PDP-IO. A noninteractive machine would
require that the work be somewhat differently organized
due to the possibility of slow turnaround.

Because of the limited human resources, the modules
were not proven correct before coupling them together in a
subprogram. Therefore, the need for a well-defined system
atic testing procedure appeared to be critical for eliminating
any errors existing in the modules. The subprogram testing

Validation of Software Engineering Methodologies 543

(theoretically unnecessary if the modules were guaranteed
to be correct) was structured as a combined subprogram
and module evaluation. Although the modules, when com
piled for the first time, were usually full of typing errors,
the testing proved to be less expensive than one would
expect. An appropriate selection of the modules, the use of
invariant properties, the very effective and precise docu
mentation, and the separation of the very simple control
from the transformations are some of the reasons that
reduced testing costs. Another cost decreasing factor was
the fact that the design of each subprogram was concerned
with minimizing the number of interfaces. Consequently,
the drivers and stubs needed to simulate the subprogram's
connections to the rest of the program were few and easy to
implement. The testing procedure followed the pattern of
the subprogram verification. It was aimed at showing that
each transformational routine preserved the invariant prop
erties of the variables involved and efficiently achieved its
purpose. The analysis moved sequentially from one routine
to the next and attempted to be exhaustive. Special atten
tion was given to those conditions that determined the
termination of the subprogram.

The fact that a large portion of the time was spent in
designing and coding rather than debugging has to be
attributed exclusively to simplicity, clarity of design, and
the use of correctness proofs. All the debugging was strictly
at the level of a programmer's duties. No errors occurred in
coupling the subprograms together. All errors were local
and, as it was, none of them required much effort to be
corrected.

The means by which the subprogram testing and debug
ging were performed were the DDT facility available on the
PDP-lO computer and BIOSSIM's built-in debugging facili
ties. DDT provides the programmer with breakpoint, dis
play, and change commands. At the same time, BIOSSIM
is able to input a set of debugging flags designed to control
the activity of the debugging modules. These modules, built
for specific purposes, are stored in a file separated from the
program itself. They are called from the control blocks and
are permitted to trace or display any variable but prohibited
from altering . any:' data "'belonging to i'he progra"m-:""Yhe"
removal of a debugging module cannot have any side
effects. However, the debugging modules may be kept in
the program (if properly documented) since their activation
occurs only upon the programmer's request.

The control routines and the control variables made
debugging simple and inexpensive. Tracing the control
variable is the best way to analyze the behavior of the
program. By knowing the successive values of the control
variable, one can easily determine from looking at the
control routine what calls have been made and in what
order. Furthermore, the low connectivity among BIOS
SIM's modules made the detection of error origin very
rapid and eliminated the risk of unpredictable side effects
when the correction was performed.

At the beginning of the project, there was little doubt that
a better program would be produced. There were, however,
questions about the time needed to do it and a general

544 National Computer Conference, 1977

consensus that the program would suffer a considerable
loss of efficiency. Nevertheless, BIOSSIM ran faster and
required less core. Furthermore, a construction time of four
months by two programmers employed half-time exceeded
the expectations of the best experts familiar with the
program. The reader is reminded that one person worked
one year on the initial design of BSS; since then programs
have been added to it during a period of more than ten
years. It is reasonable to consider that the intensity of work
was similar in both cases. Productivity is the factor that
generated the significant differences in time and effort.
With a modest team like the one used to build BIOSSIM,
one may justifiably submit that the remarkable success (at
this point only a reduction of time, effort, and cost) is
entirely due to the methodology developed.

MAINTENANCE VALIDATION STEP

Upon the completion of BIOSSIM, the project SIMBIOR
entered its second validation stage: development and main
tainability tests. The results reported in this section cover
the first two years since the completion of BIOSSIM.

The programmers employed to alter BIOSSIM were hired
sequentially on a temporary basis to provide assistance
with the various developments requested by the biological
research team. Only one of them was part of BIOSSIM's
programming team; the others had no previous experience
with program control restructuring or BIOSSIM. They all
were exposed to a two-day training session in which the
principles of program control restructuring, the standards,
and the documentation scheme were explained. Starting
with the third day and from then on, they were given
programming assignments of significant difficulty, which
they handled with surprising success. Information which
could be obtained from the documentation was intentionally
withheld from them as a way of forcing them to make use of
the documentation scheme. The brief adaptation period was
especially surprising since it was shorter than the most
optimistic expectations. Experience with BSS showed that
the accommodation period varied from one to two months
and only after four months could one assign the program
mer to make alterations of some major significance. Con
trast this with the fact that some programmers who worked
productively for BIOSSIM were able to stay with the
project only three months! Furthermore, while working on
BIOSSIM, it was very rare for programmers to' make
serious errors, and in no case did their alterations produce
any unexpected side effects.

Their work has been considered to be very satisfactory
and, indirectly, they evaluated program control restructur
ing as being equal to the claims it makes. Furthermore, the
transient programmers were faced with major developments
in the short time they were associated with SIMBIOR.
Among the new facilities offered to the user were better on
line and post-simulation scope plotting and an extension to
the simulation language allowing one also to include FOR
TRAN-like statements in which chemical names, fluxes,

etc., are used instead of variables. This capability extended
the power of the language to a degree never before
achieved. Consequently, it allowed the research team to
use the language to implement a heart model which previ
ously was produced by tedious hand coding. The price for
implementing this so-called SIMFOR capability was only
two weeks of work. Another major achievement was a
machine-independent compaction of the partial derivatives
matrix for the case where the initial sparseness is known in
advance. This reduced the differential equation solving time
by as much as seventy-five percent. A last surprise was the
construction in two weeks, instead of two months, of a very
much needed program which finds consistent values for
heavily underdetermined environmental inputs. The com
plexity of these developments fully probed the flexibility of
design introduced by program control restructuring.

The experiment was a success that fully justifies the
proposed methodology. BIOSSIM was built as a control
restructured, machine-independent program for large distri
bution. It proved to accommodate rapid and unpredictable
developments. The methodology was shown to assure low
cost maintenance and expansion as long as any changes
made to the program respect the conventions established
when BIOSSIM was initially constructed. Its style and
structure cooperate in preserving its entity.

CONCLUSION

The proposed experimental validation procedure reflects
the recent changes of attitude among those involved in the
development of software-the realization that there are two
distinct productivity requirements that must be satisfied by
any new methodology. The first one is associated with the
construction phase of the system, while the second relates
to the maintenance and future development costs. Subse
quentl y , however, the validation itself must satisfy an
important acceptance criterion-the experimental environ
ment must be a realistic one. Any experimental validation is
relative to the environment in which it was carried out.

REFERENCES

1. Aron, J. D., The Program Development Process: The Individual Pro
grammer, Addison-Wesley Publishing Co., 1974.

2. Baker, T., and H. Mills, "Chief Programmer Teams," Datamation, 19,
12, 1973, pp. 58-61.

3. Dahl, O.-H., E. W. Dijkstra, and C. A. R. Hoare, Structured Program
ming, Academic Press, New York, 1972.

4. Garfinkel, D., "A Machine Independent Language for the Simulation of
Complex Chemical and Biochemical Systems," Computers and Biomedi
cal Research, 2, I, 1968, pp. 31-44.

5. Kernighan, B. W. and P. J. Plauger, "Programming Style-Examples and
Counterexamples," ACM Computer Surveys, 6,4, 1974, pp. 303-319.

6. Mills, H. D., "Syntax-Directed Documentation for PL360," CACM, 13,
4, 1974, pp. 216-222.

7. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into
Modules," CACM, 15, 12, 1972, pp. 1053-1058.

8. Roman, G.-C., Program Control Restructuring-A Software Engineering
Methodology, Ph.D. Dissertation, University of Pennsylvania, 1976.

9. Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall
Inc., 1975.

Surveying the billion dollar chasm-How educational
differences continue to force corporate and
data processing executives apart

by ROBERT S. HOBERMAN
The INSCO Systems Corporation
Neptune, New Jersey

ABSTRACT

Many problems occurring in the use of computers are, in
fact, not machine problems, but people problems centered
around failures to communicate objectives and to under
stand and carry out responsibilities. These problems have
caused computers to become as much a frustration to
management as a useful tool.

Corporate executives, expert in their areas, but naive to
or disinterested in specific data processing efforts, have
trouble defining what they want. They often defer key
judgments on the design of information systems to data
processing professionals who usually lack business training,
experience and perspective. Results include the d.p. profes
sional's use of comfortable techniques that may alter what
the user actually needed and, collectively, produce gross
inefficiencies in a company's data processing effort.

Much of this is fostered by limited education on both
sides. Corporate and data processing groups appear to be
growing apart rather than coming to some point of concilia
tion.

For the 25 years or so the computer industry has existed,
there has been ~reat ~@ffl ahoUf qJ:,.,.~~ering cert~in

management controls to computers, coping with changes in
staff and organization structures due to automation, and
controlling the spiralling costs of information. Companies,
pushed hard by manufacturers and software vendors, re
gard scientific management and automated management
information systems as now essential to the success of their
businesses. Yet the implementation of most of these sys
tems, regardless of the size or wealth of the companies for
which they are being built, will fail before it begins.

Few businesses in the 1970's, except for some small,
owner-run firms, exist outside the direct influence of com
puters. Most medium and large-sized companies have their
own computers. Many supplement their data processing
capabilities by using the facilities of service bureaus. Yet,
because of ineffective organizational and communications
structures which often result in competition and misunder
standings between corporate and data processing staffs,

545

there are numerous cases where brilliant data processing
people link up with brilliant businessmen to produce
streams of meaningless detail. It is accepted in many
companies that computer systems are not expected to be
finished by their original deadlines or within their original
cost estimates.

The perspective of what constitutes a deadline is differ
ent. To the corporate executive it is the date on which he
expects the report. To the data processing executive it is
"x" days after he has received the final input needed for
the system. And, even where deadlines are not at issue,
many computer systems produce long and complex reports
which some corporate executives study to cull out what
meaningful information they can. More often they are
confused by detail and the intended purpose of the reports,
many of which go largely unused.

Shipments of computers during 1975 were estimated by
the U.S. Department of Commerce to run about $11 bil
lion.! Network Information Services, including leasing op
erations, used computer sales, timesharing, software sup
port and education and security services, were expected to
exceed $7 billion. 2 At the same time, the number of
installed computers was expected to ri~e to ::iQQJlJ 21 __ 000
,ind ihc: number of computer terminals Installed in industry
was expected to jump to 1.25 million. 3

Studies by Fritz Machlup of Princeton University in
1958, and by FORTUNE Magazine in 1963, showed that
the percentage of the U.S. Gross National Product spent on
knowledge had risen from 30% to 43% in that five year
period.4 There appear to have been no formal studies since
that time, but it is obvious that the investment in informa
tion and information technology is staggering.

Despite the magnitude of the investment and a failure
rate of as much as 40% attributed to computer installations
in business and industry, there appears to have been little
management thought directed toward optimizing invest
ments in knowledge. Narrowness of views of top level
executives and data processing professionals alike, and lack
of understanding of the sweeping impact computers have on
business suggest there are significant flaws in the education
and communications ability of both groups.

546 National Computer Conference, 1977

This article is drawn from a study whose purpose was to
determine how the education of corporate and data proc
essing executives contributes to the waste of time and
money and the failure associated with computers to pro
duce useful information in line with immediate goals or
corporate objectives.

Many problems occurring in the use of computers are, in
fact, not machine problems, but people problems centered
around failures to communicate, understand and carry out
responsibilities.

It may be said with reasonable certainty that:

1. Corporate and data processing goals are often sepa
rately identified and not in alignment.

2. Top managers often lack either the interest or the
perspective to positively influence the use of com
puters in their companies.

3. The limited education provided to corporate execu
tives too often is oriented towards teaching them how
to program a computer rather than how to apply its
use to their business.

4. Data processing people attach loyalties to a closed
circle within their own "industry" rather than to the
company or industry in which their employers are
engaged.

5. Mutual understanding between data processing and
corporate executives is limited by the vague and
suspicious image each has of the other.

In the study, which included an extensive literature
review as well as original research, 494 corporate and data
processing executives were contacted. They represented
462 companies, nearly all listed in the FORTUNE Double
500 Directory. Of the sample, 267 were corporate execu
tives and 227 were data processing executives. A total of
179 (36.2%) persons returned questionnaires or sent letters.
The response by industry and sizes of companies repre
sented by the respondents are provided in Tables I, II, IIA,
and lIB. The questionnaires sent to corporate and data
processing executives are detailed in Appendix A.

The average company responding to the study, according
to data supplied by the participants, probably has a data
processing staff of 270 persons, average equipment rental of

over $200,000 per month and an annual data processing
budget of over $6 million. These figures are conservative
and do not include participants from very large companies
who did not supply data relating to the sizes of their
installations.

Preliminary figures from the Bureau of Labor Statistics of
the U.S. Department of Labor, sets the non-Agricultural
work force of the United States at 78,817,000 in 19765 and
projections carry it to 107.7 million in 1985.6 Of this work
force, the 1976 FORTUNE 500 Industrial Companies em
ploy 14,412,992; 6,481,693 more are employed by the group
consisting of the fifty largest commercial banks, life insur
ance companies, financial companies, retail companies,
transportation companies and utilities. Additionally, figures
for the FORTUNE Second 500 Industrials show they
employ 1,860,002.7 Thus, the companies from \vhich the
sample for this study was drawn represent about 28.9% of
the estimated non-Agricultural work force of the United
States.

Accordingly, using data from a 1975 study by Hitchcock
Publishing Company, the data processing work force of the
United States would be about 1.3 million of whom 385,004
then probably are employed by the company groups repre
sented in this study. Table III shows the author's calcula
tions based on data from the Hitchcock study and the
FORTUNE Magazine figures.

The author's estimate of 1.3 million data processing
employees compares reasonably to a 1973 study by the
American Federation of Information Processing Societies
which showed an approximate data processing work force
of 1,000,000.8 These calculations do not take into effect the
recession and the effects of unemployment since there
appear to be no figures available on the size of layoffs in the
data processing field. They are assumed here to be of a
similar or lesser proportion than layoffs of the general work
force.

Industrial companies in the FORTUNE 1,000 would
comprise 63.4% of the data processing work force em
ployed by the company groups represented in this study.
The study group was weighted heavily to industrial compa
nies (75.3%) and, of the questionnaire returns, 66.5% came
from industrial companies. Returns from the six other study
group industries ranged from 2.8 to 6.7% of the total; since

TABLE I-Questionnaire Response by Industry

Corporate Executives D.P. Executives Total
Company

Type Mailed Received % Mailed Received % Mailed Received %

Industrial 199 64 32.1 173 55 31.8 372 119 32.0
Banking 10 4 40.0 9 5 55.6 19 9 47.4
Insurance 10 6 60.0 12 6 50.0 22 12 54.5
Financial \0 2 20.0 6 50.0 16 5 31.3
Retailing \0 4 40.0 8 37.5 18 7 38.9
Transportation \0 8 80.0 8 4 50.0 18 12 66.7
Utility \0 6 60.0 11 5 45.5 21 11 52.4
Consultant 8 4 50.0 8 4 50.0

Total 267 98 36.7 227 81 35.7 494 179 36.2

TABLE II-Response by Size of Data Processing Staff

100- 300- 500-
Company Type <100 300 500 1000 >1000

Industrial 51.4% 24.8% 10.5% 03.8% 04.8%
Banking 00.0 44.4 33.3 22.2 00.0
Insurance 25.0 25.0 16.7 25.0 00.0
Financial 50.0 25.0 00.0 00.0 25.0
Retailing 50.0 50.0 00.0 00.0 00.0
Transportation 58.3 16.7 00.0 25.0 00.0
Utility 00.0 36.4 36.4 09.1 09.1
Consultant 25.0 25.0 00.0 25.0 25.0

Composite 42.9% 27.0% 12.3% 08.6% 04.9%

they employ from 2.7 to 10.9% of the data processing work
force, the sample appears reasonably representative of the
industry. Table IV shows the details.

ANALYSIS OF RESULTS

Because the industrial companies are so significant to
both the data processing field and this study, it seems
particularly relevant to show a comparison between one
form of results obtained from this study and similar results
obtained in a Booz Allen Hamilton study in the late 1960's
which showed the median expense for computer equipment
by 108 manufacturing companies to be $5,600 per $1,000,-
000 of sales. 10

A sample of 29 companies, ranging in size from $100
million to $3 billion, was drawn randomly from a list of
industrials that responded to the study. These companies
had 1974 annual sales totalling better than $30 billion and
had approximate 1974 annual data processing expenditures
of about $176 million. Their median expense, then, for data
processing had inched up in the last ten years to about
$5,900 per $1,000,000 of sales.

This appears to track with Booz Allen's finding that
computer investments were rising steadily from 4% of total
investment in plant and equipment in 1961 to 10% in 1968.
Additionally, John Diebold suggested in 1970 that the
percentage of computer Investme"Tlts"' might reach 12% hy
the mid-70's.11 And this for an industry that employs less
than 2% of the total United States work force!

Surveying the Binion Doiiar Chasm

Despite the enormity of the expense, the study shows
there is confusion over how much impact computers ac
tually have on corporate executives' decisions. While cor
porate executives say computer reports have a limited use
in daily decision-making, data processing executives per
ceive the use as very high. And, while both corporate and
data processing executives agree that their companies have
improved significantly since the advent of computers, siza
ble groups on both sides find the efforts inconsistent.

Forty-five percent of the data processing executives say
corporate executives have minimal-to-poor knowledge of
data processing; ten percent more say they find corporate
executives disinterested in data processing; another 35%
say that corporate executives either delegate the control of
systems development projects or remain out of the picture
entirely.

Thirty percent of the corporate executives agree with this
despite the warnings of consultants like Withington, Die
bold, Brandon, Wight and others that computers represent
major investments that ought to be closely managed by top
management.

W. Blake Thompson, senior vice president of financial
planning at Allegheny Airlines offered this comment in the
study, "A close control must be maintained over the data
processing organization and a complete cost vs. benefit
analysis must be made of major applications. In general, an
aggressive manufacturer sells unneeded equipment to will
ing buyers (data processing managers) unless the top man
agement of a company is in a position to understand what
they are being told. In addition, inefficient operations are
paved over with excessive manpower and equipment."

Joseph Orlicky, IBM's leading consultant to the manu
facturing industry, says that "top business executives are
willing to spend money but not their time to improve the
systems efforts of their companies." 12

The question is, "Why?"
In some cases, corporate executives probably still are

awed by the technology and jargon of data processing; in
others, top executives simply find computer systems too
complex and frustrating. They prefer to stick with areas
they know well rather than show ignorance or weakness by
gettIng {ntC) diSCUSSions or compUler'appficatiori~. .

Yet one-third of the corporate executives who responded
to this study said they are not satisfied with the quantity of

TABLE IIA-Response by Monthly Equipment Rental (In $OOO's)

50- 100- 200- 300- 400-
Company type 50 100 200 300 400 500 >500

Industrial 38.1% 22.9% 13.3% 06.7% 03.8% 01.9% 09.5%
Banking 00.0 00.0 22.2 24.2 11.1 11.1 33.3
Insurance 08.3 08.3 08.3 16.7 00.0 16.7 16.7
Financial 25.0 25.0 00.0 00.0 00.0 00.0 25.0
Retailing 33.3 50.0 00.0 00.0 00.0 00.0 00.0
Transportation 25.0 16.7 16.7 08.3 08.3 00.0 25.0
Utility 00.0 00.0 36.4 18.2 27.3 00.0 09.1
Consultant 00.0 25.0 00.0 00.0 00.0 25.0 25.0

Composite 28.8% 19.6% 14.1% 08.6% 05.5% 03.7% 12.9%

548 National Computer Conference, 1977

T ABLE lIB-Response by Annual Budget (In $ millions)

Company type <2 2-4 4-6

Industrial 40.0% 18.1% 12.4%
Banking 00.0 00.0 22.2
Insurance 08.3 25.0 08.3
Financial 50.0 25.0 00.0
Retailing 33.3 33.3 16.7
Tran sportation 41.7 25.0 00.0
Utility 00.0 18.2 18.2
Consultant 00.0 00.0 00.0

Composite 31.9% 18.4% 11.7%

information they get and 25% more say they are not
satisfied with the quality. On top of this, only slightly more
than half say the costs of developing new computer systems
are consistently within budget.

If their attitude is so confused and they are so unwilling
to get involved with an activity that may represent 12% of
their companies' investments, one must question whether
they would be similarly uninvolved in the building of a new
plant or in the marketing of a new product whose overall
annual cost may be far less.

No small part of the problem rests with data processing
executives. According to this study, more than 80% of them
think corporate executives are pleased with quality and
quantity and nearly 95% of them apparently feel that corpo
rate executives are well satisfied with the data processing
organization, generally. They also seem to think that corpo
rate executives think costs are consistently under control.

The president of a large FORTUNE 500 company sum
marized his feelings about questions of quantity in com
puter reports by writing across the questionnaire, "Too
much junk!"

The manager of Data Processing Standards, Controls and
Training at a major oil company says, "Most users are
reasonably satisfied-but only because they don't appreci
ate how much better they could do."

6-8 8-10 10-12 12-16 >16

05.7% 03.8% 03.8% 02.0% 09.5%
33.3 00.0 00.0 Il.l 33.3
00.0 00.0 16.7 08.3 16.7
00.0 00.0 00.0 00.0 25.0
00.0 00.0 00.0 00.0 00.0
08.3 00.0 00.0 08.3 16.7
00.0 27.3 00.0 09.1 18.2
25.0 25.0 00.0 00.0 25.0

06.7% 04.9% 03.7% 03.7% 12.9%

Thp nlrpctor of Tnform::.tlon ~prvicp~ for ::.nothpr brap ---- -------- -- ---------_ .. _ .. -_ ... _-- -_. _ .. __ .. _ .. -.~-
industrial firm says, "Data processing is O.K. However,
many systems demand or provide excessive information to
the manual action areas."

While data processing executives say they would like
corporate executives to play a much larger role in systems
development, they also suggest that corporate executives
don't know enough about data processing to contribute
very much.

The data processing manager of a manufacturing com
pany commented in this survey that, "Management is
unknowledgeable and not interested enough to become
more knowledgeable."

Another data processing executive, from a much larger
manufacturer, comments that "Conventional functions still
view the data processing operation defensively despite the
fact that most major companies' systems are 50-75% com
puterized. This could be termed business 'culture lag'."

Perhaps most directly pointing to the feelings that corpo
rate executives show toward data processing is this quote
from the senior vice president-finance-of a major phar
maceuticals manufacturer:

"A computer is nothing but a glorified adding machine
a good manager gets things done through people and uses

TABLE III-Author's Calculations of Probable Relative Sizes of Data Processing Staffs (by Industry)

% Profile
Total #7 % D.P. to9 Probable of Probable

Company type Employees Total Staff D.P. Staff D.P. Staff

Top 500 Industrial 14,412,992 @ .015 216,195 56.2
2nd 500 1,860,002 @ .015 27,900 7.2

Banking 458,597 @ .027 12,382 3.2
Insurance 421,961 @ .099 41,774 10.9
Financial 381,779 @ .027 10,308 2.7
Retailing 2,652,959 @.Oll 29,183 7.6
Transportation 980,401 @ .011 10,784 2.8
Utilities 1,585,996 @ .023 36,478 9.5

Total 22,754,687 @ .169 385,004 100.1
Therefore,

(Total non· 78,817,000 @ .169 1,332,007 (Total U.S. D.P.
Agricultural Work Force)
U.S. Work Force)

TABLE IV-Relationship Between Questionnaire Response and Estimated
Percentage of Data Processing Work Force Employed

Company Estimated % of Total % Returns of
type D.P. Staff D.P. Staff Questionnaires

Industrial 258,299 64.4 65.3

Banking 12,369 3.1 5.0

Insurance 41,935 10.4 6.7

Financial 10,893 2.7 2.7

Retailing 29,772 7.4 3.9

Transportation 10,111 2.5 6.7

Utilities 38,373 9.5 6.1

Total 401,752

all he can, Computer people can get, gather and shape
information but a manager must himself know what he
needs to run a company or division. There has been too
much glory for the programmers and operators when they
really know little else but the machine."

For all the criticism and dialogue, there is little communi
cation. Corporate executives recognize in large proportions
(74.4%) that data processing efforts in their companies
would improve if they would learn more about data proc
essing. They think data processing planning could be better,
but as top executives of their firms-people for whom
planning is a daily function-they remain largely aloof from
data processing projects despite their expressed good inten
tions.

Repeatedly, this study shows good intentions coupled
with bad performance. Executives recognize the value of a
course in Computer Concepts-80% stress that it is worth
while-yet 40% have never taken such a course. IBM
Corporation has a course which is generally close to what
corporate executives say they want, and the American
Management Association makes some attempts to keep
senior-level executives abreast of changes in technology
and their impact on corporate life. There are few other
m,e.amogfyJ C9JII.s~~ .~<y~ilaQ l.s:~. ft:Qm.J)J.f.l:1W.(~cJ\lr"~.I:~~J ".~,QIJ§1IJJ~
ants and universities, and the problem of getting senior
level executives to class, additionally, is difficult. But
even when these executives have the chance to learn from
their own staffs-and to ask their own questions-they
don't.

The majority of corporate executives who responded to this
study say they think joint meetings would help communica
tions, yet not one industry group indicates that even 50%
of the companies it represents hold joint meetings at all. A
large number of corporate executives think having the data
processing managers attend corporate officers' meetings
would be a fine idea, but they say practically no one does
it. Of the insurance executives responding, not one, accord
ing to his own statements, has ever taken a Computer
Concepts course!

There is general agreement among data processing execu
tives that they would welcome more management involve
ment in data processing. Half of the data processing execu-

Surveying the Billion Dollar Chasm 549

tives say they would like to understand management goals
better and two-thirds of them would welcome the opportu
nity to attend corporate officers' meetings . Yet their pro
posed solutions for improvements seem almost too blame
less.

Just as corporate executives have done little to prepare
themselves to communicate with or to guide processing
executives, data processing people have been reticent about
acquiring business knowledge. Perhaps they do wear rose
colored glasses which allow them mostly to view corporate
executives as pleased enough with the contributions of data
processing to the company. Perhaps they have become
resolved to being regarded as perpetual underlings despite
their control over a resource which is rapidly becoming the
heart of communications in industry.

It is clear that data processing executives feel-with the
possible exception of those in the banking industry-that
senior-level management does not consider them knowl
edgeable enough in business to move into corporate man
agement. They are strong in their belief that senior manage
ment views them as technicians with insufficient
backgrounds in business. Yet they do precious little to
correct the situation. Few data processing executives ap
pear to have had much formal training in business subjects
but perhaps more striking is the fact that few seem to care.
Fewer than 20% express any desire to take business
courses other than those that directly tie into their current
jobs. Their apathetic present, it seems, is causing them to
have little future.

Perhaps what writers have written and the 179 respond
ents to this study have said in retrospect is that the most
common grounds for communication between corporate
and data processing executives is their mutual unwilling
ness to take the first step to convince each other that they,
in fact, have a great deal to learn from each other and a
great deal more they could accomplish together.

One respondent to the study writes, "The most needed
ingredient is an interactive, synergistic relationship between
user and data processing people based on trust and mutual
respect. Then each brings his own expertise. Neither need
be.~kXDkJ1 in.tll~_~Jth~.r~ ~ fj.~l~t. Tl).e.whqJe, .tJe~()rn~~ ,gr(!?!t!r
than the sum of its parts."

Computers, in many ways, have become as much a
frustration to management as a useful tool. Numerous
writers point out that, instead of watching and controlling
this investment, many senior executives have retreated to
the safety of their expertise in other business areas, and,
simply, delegated responsibilities for use of computers to
lower-ranking executives. Corporate executives have trou
ble defining what they want; data processing personnel
must reconcile technical factors that make a system work
and that may alter what the user thinks he wants. Computer
systems force organization and lines of communications
changes which are disturbing to many corporate executives.
This is particularly emphasized by major data base efforts,
their placement in organizations and the accountability they
require.

McKinsey and Company discovered in the 1960's that no
company got effective use from its computers unless there

550 National Computer Conference, 1977

was active participation by top executives. Alarmingly, 18
of 27 of the largest computer users were found to have
marginal returns on their data processing investments.
Things haven't changed much.

Top management's attention should be focused not only
on the huge investments represented by computers, but
also, on bringing into alignment plans for computer systems
and plans for the business in general. Both computer
systems plans and business plans should be reviewed in
exactly the same manner.

Failure of top management to participate actively has an
effect on the makeup and functions of the whole business
organization, as well as its ability to adapt to change.

In the long run, no company can be better than its
computer system. The question becomes: Who actually is
designing and approving the computer systems that are
central to the company-top executives or data processing
people? The responsibility falls too often to data processing
specialists who do not have the same business experience,
training or overall perspective of corporate executives.

When responsibility for the design of systems falls to data
processing executives, they tend to resist changes in sys
tems and programs and, instead, tend to produce what is
more comfortable for themselves, rather than what is most
effective for the user.

McKinsey found that when proposals for new data proc
essing applications were challenged as to their profitability,
good answers rarely were available.

CONCLUSION

Poor definition and inadequate dissemination of corporate
objectives seriously affect the definition of the company's
information systems. Management not only must refuse to
abdicate responsibility for computer systems, but should
make a point of learning enough about computer systems to
control them effectively.

Computer courses available to executives are generally
too technical to be of any significant value. The purpose of
training executives in data processing should be to encour
age them to think of ways of improving existing applica
tions and guiding the development of new ones that can
provide relevant, useful information for decisions that mini
mize operating problems and optimize the potential for
profit. It is absurd to teach corporate executives to program
and then expect them to get intelligently involved in data
processing planning. The bits and bytes of programming are
at totally opposite ends of the . 'big picture" perspective
corporate executives must keep. Interest, understanding,
comfort and appreciation come from being able to read and
use output, not from understanding how a program is
written and run.

Data processing professionals, on the other hand, tend to
limit their education to the extreme of bits and bytes. While
some have moved into corporate executive jobs, most must
be better educated in business matters before they can
expect much personal growth in their companies. Consult-

ants differ sharply on the likelihood of data processing
professionals rising to the top of their organizations. Booz
Allen Hamilton showed that data processing executives
more often than not report to financial officers. Therefore,
considering their lack of training and pertinent experience,
there is little chance they could ever develop in areas of
finance enough technical expertise to enable them eventu
ally to succeed their bosses.

To follow the thinking of Robert Katz, at the first level of
management the emphasis must be on technical and human
skills. (For data processing people rising within a data
processing career path, technical skills can mean data
processing skills; for the data processing executive looking
to succeed a financial executive, the required technical
skiHs are most apt to change to financial skills-skills he
usually does not possess.)

At higher levels of management, Katz sees the require
ment for technical skills diminishing and the new emphasis
placed on human and conceptual skills.

At the top, conceptual skill becomes the most important
skill of all for successful administration. 13 (For top-level
corporate executives, lack of conceptual skills may well
extend to their views of the communications structure of
their organization and of the impact of computer applica
tions.)

Orlicky says it would be far wiser for an executive to
learn something about systems and computers rather than
depend on technical experts to learn the business.

According to corporate executives, if they were to take
data processing courses, those they rate most important
are: Computer Concepts, Using Models, Data Base Con
cepts, Project Planning and Estimating Techniques. Data
processing executives agree except that they think a course
in Systems Analysis would benefit senior executives more
than the course in Estimating Techniques.

The five most important business courses for budding
company presidents-according to corporate executives
are: Economics, Financial Accounting, Decision-Making,
Finance and Writing. The five most important business
courses for future data processing managers-selected by
data processing executives-are: Decision-Making, Prob
lem Solving, Business Information Systems, Writing and
Financial Accounting. Ironically, fewer than 20% of the data
processing executives responding to this study say they
have any interest in pursuing business training.

Perhaps the greatest irony, though, is that we have
evolved into a knowledge society for whom information
processing technology has extended the speed, breadth and
depth of our abilities to make decisions. As our ability to
gather, interpret and disseminate information becomes
more advanced, we should be reaching points of profi
ciency and optimization in business that will ensure contin
ued competitiveness and profitability.

Certainly the caliber of people in business is improving
constantly. The Dun & Bradstreet Directories show an
impressive number of graduate degrees among the top
executives of many corporations.

In terms of technology, we are at a highly advanced state

in which we are capable of processing data at billionth-of-a
second speed and printing it at more than 1,000,000 charac
ters per minute.

Nearly everyone employed in a white collar job is at least
a high school graduate; certainly most people have had
post-high school training in colleges, business schools or
the military.

Why, then, is it that companies of all sizes and all
industries, run by intelligent, educated people, staffed, as
well, with educated and intelligent people at all levels, and
supported by incredibly fast and reliable equipment, rarely
can put together these resources into smooth and proficient
organizations?

In most cases, computers are intended to provide the
closest thing to perfect information within the constraints of
time, available input and cost effectiveness. Certainly, no
executive denies the value of good information and every
executive wants his decisions based on the best information
available.

Most astute executives also are aware of the communica
tions filters that exist in every organization. Information
that rises to the top is rarely pure; it is colored by
individuals at every level who determine what is relevant,
what is politically right and what they feel the individual
above them ought to know. Usually, the information re
leased from each level is that which can be defended or is

. championed by the individual who serves as the filter at
that level. So it is with computer systems when top
executives fail to assign direct accountability or, worse yet,
fail to lend their insights, experience and knowledge to the
thinking that results, ultimately, in computer systems which
provide information essential for key management deci
sions.

By executives' recognition and by their own admission,
computer professionals basically are technicians with lim
ited expertise, at best, in business matters outside the data
processing environment.

When a top corporate executive delegates design respon
sibilities down through his organization, there must be a
point at which those given the responsibilities think they
are asking for~or demanding-information that those
~bov~ - mig'ht . ~~nt' to kn'ow. Lommunlcationwlih d~Ha
processing specialists may be dangerously dictatorial or it
may run to any degree of delegation. It is, unfortunately,
not uncommon for systems designers to be left with the
responsibility for determining how flexible a system ought
to be, the kind and format of data to be handled and the
kind and formats of reports to be issued on the subject and
within the time schedule set by the user. Most systems
designers, given this opportunity, will revert to previous
successes-implemented systems on which complaints
were minimal or at least not loud-and will use methods
and procedures which have worked before.

The end result, predictably, and frequently, is that the
user receives reports on subjects of importance to him in a
format that he and his staff may find difficult to understand.
In many cases, such reports contain infinitely more data
and pages-than they need to contain-and they are more a

Surveying the Billion Dollar Chasm

source of confusion than-help. Data in most systems exists,
not because it is necessary, but because some corporate
executive or some data processing professional thinks
someone, someday, may need it. Instead of producing
clean, informative and useful reports, then, such systems
introduce nothing more than a printout of a filter system
and, as such, contribute little to the decision-making capa
bilities of high-level executives.

The point comes back to someone at the top knowing-or
wanting to know-what computers in his company are
being used for, what information is being produced, and
what decisions are now able to be made that, perhaps,
could not have been made within previous systems. They
need to ask-or advise on-how these information systems
and decisions can be further improved. Most importantly,
they must create the communications climate that first
informs those below them of their interest in what kinds of
usable information are being produced in return for data
processing expenditures, and they need to establish the
mechanism for feedback to ensure that their interests and
desires are, in fact, being satisfied.

Two specific conversations I participated in may serve to
illustrate the communciations gaps that exist and how these
gaps inhibit the education and potential responsiveness of
the people concerned.

A vice president of a multi-billion dollar financial com
pany was asked about scheduling a course in computer
concepts and applications for the top executives of his
company.

"Top down training makes the most sense," he advised,
"we'll start the program with vice presidents, as a group,
and work down to supervisory levels."

I reminded him politely that it seemed more important
and appropriate to have the chairman and president trained
than anyone else, and therefore, to start at the very top.

"In this company," he said, "no one suggests to the
chairman that he needs training!"

I suggested that, given the company's annual data proc
essing investment of over $20 million, that we might invite
the chairman to attend.

"No, you won't or you won't train anyone in this
company," he answered [fHeateningiy.

"Perhaps you need to consider," I suggested, "that
better use of your computers can mean more business but,
also, failure to control the direction and performance of
your computer systems can lead to long-term problems. If
computers fail to keep you competitive or if you lose
control over the information you need to run your busi
ness-or if for any reason someday you couldn't get it
your ability to compete effectively in your markets could be
sharply diminished. Doesn't that make the subject impor
tant to the chairman?"

He answered simply and directly, "When and if the
chairman wants training he will tell us. That is highly
unlikely ... ".

In another conversation, a manager of systems and
programming said that he would like to take courses in
Accounting and Statistics.

552 National Computer Conference, 1977

"Why don't you?" I asked.
"Can't afford them," he answered.
"Doesn't your company have a tuition assistance pro

gram?" I asked, sure that it did.
"Sure it does," he answered, "but they'd never go along

with me taking these kinds of courses. I'm supposed to
know this stuff somehow. I'll wait until I don't need the
money for something else. Then I'll do it and, if they find
out about it, it'll be because I'm answering their questions
smarter. "

Those conversations were real. They mayor may not be
typical. Both persons worked for large, FORTUNE-listed
companies.

Their attitudes and fears may not accurately reflect the
thinking of the chief executives of their companies, but they
do point to basic failures in communicating corporate
thinking and in top management's sensitivity to such com
munciations problems.

The questions to resolve, I think are what education
management ought to get, but perhaps even more fund a
mental1y, how can management be made to recognize the
impact of poor communications on the information systems
of their companies?

A corporate officer of a major oil company, which is one
of the largest users of computers in the world, wrote
incredulously, that no one individual in his company is
. versed enough in their widespread use of computers to
answer questions about their costs and effectiveness. If that
is true, then certainly, it ought to raise questions about
communications and the placement of controls in the orga
nization.

The solution to the problems discussed in this study rest
in the basic thinking of top level corporate executives who,
to again paraphrase Robert Katz, need to be able to see
computers in clear, conceptual terms as central resources
and who may not be equipped to do so.

if training is a partial answer, then business schools,
early in the careers of executives, must teach concepts and
applications and challenge young executives to think crea
tively about the uses of computers. Courses should not be

APPENDIX A-Questionnaire Results

technical and should not be aimed at winning the sympathy
of executives towards technical problems. And they should
be taught by businessmen, not technicians.

If communications is a partial answer, then executives
need now to look at their chains of command and their
charts of organization from a communications viewpoint.
They must determine at what levels decisions are being
made on what information is to be produced, and they must
identify the filters. Top managers should be sure they are
getting enough direct information and should look for ways
in which computer systems might be used better to produce
clearer, more useful information.

Perhaps even more importantly, executives need to look
at what computer systems exist in their organizations and
why. They ought to review them thoroughly enough to be
satisfied they are cost justified.

REFERENCES

I. U.S. Department of Commerce, U.S. Industrial Outlook-I 976, U.S.
Government Printing Office, Washington, D.C.

2. Quantum Science Corporation, Network Information Services Manage
ment Action Summary, New York, 1969.

3. Frost & Sullivan, Inc., "Markets for Insurance Computer Systems &
Services," New York, 1974.

4. Sanders, Donald H., Computers and Management, New York, Mc
Graw-Hili, 1970, p. 3 .

5. Newspaper Enterprise Association, The 1977 World Almanac, New
York.

6. U.S. Department of Labor, Occupational Outlook Handbook, 1975-76
Edition, Bureau of Labor Statistics, Washington, D.C.

7. Time, Inc., "Fortune Double 500 Directory," New York, 1976.
8. American Federation ofInformation Processing Societies, "The State of

the Comupter Industry in the United States," Montvale, N. J., 1973.
9. Marketing and Research Services Department, Hitchcock Publishing

Co., "1975 Salary Survey," Infosystems, June 1975.
10. Dean, Neil J., "The Computer Comes of Age," Computers and Man

agement, New York, McGraw-Hili, 1970, p. 194.
II. Diebold, John, Business Decisions and Technological Change, New

York, Praeger Publishers, 1970.
12. Orlicky, Joseph, The Successful Computer System, New York, Mc

Graw-Hili, 1969.
13. Katz, Robert L., "Skills of an Effective Administrator," Harvard

Business Review, September-October 1974.

QUESTIONNAIRE
to

Corporate Executives

If you care to comment on any point, please feel free to use the back of any page or to add your own pages. AU comments
will be greatly appreciated, particularly if they can be quoted.

I. What is your position in the company?
3.7% Chairman of the Board 14.3% President 6.1% Executive Vice President
11.0 Senior Vice President 26.8% Vice President (Staff)
9.8% Vice President (Line) 3.7% Director of Planning 8.5% Controller
16. I % Other (please specify)

Surveying the Billion Dollar Chasm 553

2. Who has final responsibility for approving major applications of computers to areas of your company's operations?
25.6% President 42.7% Officer Immediately Above Areas Being Affected
7.3% Controller 3.7% Data Processing Manager
20.7% Other (please specify)

3. To whom does your company's data processing manager report?
13.4% President 48.8% Controller or Financial V.P. 18.3% Administrative V.P.
o Personnel Director 19.5% Other (please specify)

4. Who has the main responsibility for deciding what data processing education corporate executives should have?
23.2% President 18.3% Administrative V.P. 3.7% Training Director
20.7% Data Processing Manager 0 Internal Consultant
23.2% Other (please specify)

5. How much a part of your daily decision-making is a direct result of computerized reports?
11.0% None 3005% 26-50% 0% 76-99%
52.4% 1-25% 3.7% 51-75% 0 All

6. Are you generally satisfied with the computerized information you receive?
73.2% Yes 24.4% No

7. How would the effectiveness of your decisions change if you no longer received computerized information?
Greatly Improved Improved Somewhat Unchanged Weakened Considerably Weakened

1.2% 0% 18.3% 48.8% 30.5%

8. Consultants claim that 40% of all companies operated more efficiently with manual systems than they do now with
computer systems. How do you feel?
4.9% Strongly Agree 9.8% Agree 13.4% No Opinion 46.3% Disagree 25.6% Strongly Disagree

9. How do you generally assess your company's performance with computers compared to its performance before
computers?
Much Less Less About Generally Much More
Efficient Efficient the Same More Efficient Efficient

1.2% 2.4% 13.4% 57.3% 20.7%

!~. He'.',' d,::, y~:! !"~t~ ~'~t!" ~'~In kn(l~Aed!l'''' of fi.lttltpfooessing?
8.5% Expert 11.0% Fluent 42.7% Generally Knowledgeable 30.5% Informed 6.1% Light

11. How do you rate your involvement in the development or redesign of information systems?
Take Total Take Part Take Part Approve Delegate

Charge Throughout Periodically Main Steps Control
2.4% 11.0% 28.0% 29.3% 20.7%

12. How do you generally rate the involvement of your company's other executives?
Take Total Take Part Take Part Approve

Charge Throughout Periodically Main Steps
0% 7.3% 31.7% 29.3%

Delegate
Control
23.2%

1.2% None

Do Not
Take Part

8.5%

Do Not
Take Part

4.9%

13. If you could select the business courses for the college freshman who will be president of your company in 30 years, how
would you rate these? Please indicate which courses you have taken and which you would like to take.

554 National Computer Conference, 1977

Wasteful Low Useful High "Must" I Have I Would
Priority Priority Knowledge Taken Like to

Take

Economics 0% 0% 25.6% 32.9% 35.4% 84.]% 1.2%
Financial Accounting 0 0 25.6 34.1 34.] 76.8 3.7
Business Policy 0 6.] 34.] 25.6 20.7 51.2 11.0
Management Psychology 1.2 8.5 37.8 22.0 24.4 56.1 9.8
Marketing 0 2.4 37.8 35.4 18.3 61.0 14.6
Finance 0 1.2 25.6 40.2 24.4 72.0 2.4
Management Theory 2.4]4.6 36.6 12.2 25.6 50.0 8.5
Problem Solving 1.2 6.] 32.9 35.4 15.9 41.5 18.3
Principles of Auditing 11.0 43.9 28.0 4.9 2.4 41.5 6.1
Theory of the Firm 1.2 35.4 26.8 11.0 7.3 24.4 13.4
Writing 1.2 3.7 25.6 36.6 25.6 62.2 8.5
npf'i..,inn_M",!r;nn l\ 7.3 25.6 32.9 28.0 34.1 n.t _____ Au ... '-" .. a ..L,. ... ILA ... ,.,I.I..ltS V

Public Speaking 3.7 4.9 25.6 42.7 17.1 52.4 9.8
Managerial Accounting 2.4 9.8 35.4 31.7]3.4 56.] 7.3
Business Information Systems 1.2 8.5 41.5 31.7 9.8 37.8 18.3
Operations Research Techniques 2.4 29.3 41.5 11.0 4.9 31.7 22.0
Statistics 2.4]4.6 51.2 17.] 6.1 64.6 8.5
Business Cycles & Forecasting 0 15.9 43.9 22.0 7.3 45.1 15.9

14. If you were planning a curriculum for senior-level corporate executives to learn computer concepts and applications, how
would you rate these? Please indicate which courses you have taken and which you would like to take.

I Would
Low High "Must" I Have Like to

Wasteful Priority Useful Priority Knowledge Taken Take

Computer Concepts 2.4% 3.7% 20.7% 20.7% 43.9% 62.2% 7.3%
Programming Concepts 19.5 29.3 25.6 12.2 3.7 36.6 8.5
Operating Systems 20.7 25.6 30.5 7.3 3.7 22.0 11.0
Hardware Configurations 19.5 35.4 19.5 8.5 2.4 20.7 6.1
Data Base Concepts 2.4 15.9 32.9 29.3 7.3 25.6 17.1
Introduction to Teleprocessing 8.5 22.0 43.9 13.4 0 23.2 14.6
U sing Models 6.1 13.4 35.4 24.4 11.0 31.7 20.7
Estimating Techniques 7.3 30.5 39.0 8.5 4.9 14.6 14.6
Project Planning 2.4 13.4 43.9 20.7 7.3 15.9 12.2
Algorithmic Processes 23.2 36.6 22.0 0 1.2 3.7 7.3
Data Communications 6.1 32.9 31.7 13.4 0 14.6 11.0
Systems Analysis 6.1 22.0 40.2 11.0 7.3 20.7 9.8
Systems Design 4.9 35.4 26.8 13.4 2.4 18.3 11.0
Computer Systems Architecture 29.3 35.4 13.4 6.1 0 7.3 4.9
Real-Time Systems 8.5 35.4 30.5 9.8 1.2 14.6 8.5
Systems Simulation 18.3 35.4 23.2 3.7 1.2 11.0 3.7
COBOL 42.7 28.0 8.5 1.2 1.2 11.0 1.2
Assembler Language 47.6 28.0 4.9 1.2 1.2 11.0 2.4
FORTRAN 42.7 29.3 8.5 2.4 0 15.9 1.2
Computer Organization 14.6 23.2 31.7 8.5 4.9 13.4 4.9
Other 0 0 0 0 0 0 0

15. How satisfied are you with the amount of information you get from your company's computer systems?
Very Satisfied Satisfied Uncertain Dissatisfied Very Dissatisfied

8.5% 58.5% 8.5% 15.9% 2.4%

16. How satisfied are you with the quality of the information you get from your company's computer system?
Very Satisfied Satisfied Uncertain Dissatisfied Very Dissatisfied

13.4% 61.0% 7,3% 14.6% 2.4%

Surveying the Biiiion Doiiar Chasm 555

17. Which of these most closely summarizes your overall feelings about your company's data processing effort? (Check as
many as apply.)

14.6% Highly Efficient
18.3% Inconsistent
6. I % Insensitive to

My Needs

68.3% Generally Effective
18.3% Intelligent
24.4% Highly Dependable

9.8% Invaluable
1.2% Worthless
8.5% Too Slow

__ Other (Please specify)

18. How well do your company's data processing personnel understand your activities?
7.3% Not Well at All 11.0% Minimal 48.8% Generally O.K. 29.3% Quite Well 2.4% Expertly

19. How would you generally rate their knowledge of other corporate areas?
4.9% Not Good 18.3% Minimally 46.3% Generally O.K. 28.0% Quite Good 0 Expert

20. Which of these applies to your company's data processing organization?
(Check all that apply.)
Overall performance is
81.7% Satisfactory 13.4% Unsatisfactory
Implementation of new appiications is
36.6% Rarely on Schedule 61.0% Usually on Schedule
Costs are consistently
54.9% Within Budget 35.4% Over Budget
Communications between data processing people and users is
67.1% Good 28.0% Not Good
Turnover among the most competent data processing personnel is
11.0% Too High 85.4% Under Control

21. Data processing would do a much better job in my company if (check all that apply.)
14.6% applications were more realistic.
28.0% there was more corporate management control.
24.4% data processing people had more knowledge of our business.
24.4% data processing operated as a cost/profit center.
43.9% planning were better.
32.9% data processing management had more business knowledge.
74.4% corporate managers knew a little more about data processing.

22. How could communications between corporate and data processing managers in your company be improved? (Check all
that apply. Please circle those that are done in your company.)

Say Do

46.3% 17.1% Frequent meetings
18.3% 3.7% Swap jobs occasionally
BAn 3.7% AUeiiJth'c Sctme COi.Ii'Sts
15.9% 4.9% Have the data processing manager attend all corporate officer meetings
17.1 % 3.7% Have your people visit the computer room periodically
67.1% 13.4% Have joint staff meetings to explain new applications and responsibilities

_Other?

23. How well do your company's data processing personnel identify with the company and its goals?
o Not at All 28.0% Not Enough 18.3% Don't Know 42.7% Strongly 9.8% Very Strongly

24. Can data processing professionals realistically expect to succeed into corporate (non-data processing) management in
your company?
42.7% Yes 31.7% Don't Know 25.6% No

25. Have data processing people ever moved into corporate management jobs in your company?
35.4% Yes 9.8% Don't Know 52.4% No

556 National Computer Conference, 1977

If so, into what job(s)?

If not, what holds them back? (Check all that apply.)
35.4% Their training is too technical and has nothing to do with the rest of the business.
4.9% They are not interested in corporate management jobs.

31.7% They don't have the necessary business background.
7.3% They have enough trouble running their own shop.

_Other?

26. About how large is your data processing organization?
People Equipment

42.9% Less ihan iOO
27.0% 100-300
12.3% 300-500
8.6% 500-1,000
4.9% More than 1,000

28.8% Under $50,OOOimonth
19.6% $50,000-100,OOO/month
14.1% $loo,000-200,000/month
8.6% $2oo,000-300,000/month
5.5% $3oo,OOO-400,OOO/month
3.7% $4oo,OOO-500,OOO/month

12.9% More than $500,000/month

27. What is your company's main area of business?
65.3% Industrial 4.1 % Retailing

4.1% Banking 8.2% Transportation
6.1% Insurance 6.1% Utility
2.0% Financial 4.1 % Consultant Other (please specify)

Overall Budget

31.9% Under $2 million
18.4% $2-4 million
11.7% $4-6 million
6.7% $6-8 million
4.9% $8-10 million
3.7% $10-12 million
3.7% $12-16 million

12.9% More than $16 million

QUESTIONNAIRE
to

Data Processing Executives

If you care to comment on any point, please feel free to use the back of any page or to add your own pages. All comments
will be greatly appreciated, particularly if they can be quoted.

I. What is your official title?
17.3% V.P., Data Processing 27.2% Director, Management Information Systems
8.6% Director of Data Processing 8.6% Manager of Data Processing
4.9% Manager, Systems and Programming

32.1% Other (please specify)

2. Who has final responsibility for approving major applications of computers to areas of the company's operations?
17.3% President 38.3% Officer Immediately Above Areas Being Affected
13.6% Controller 24.7% D.P. Manager
25.9% Other (please specify)

3. To whom do you report?
8.6% President 18.5% Administrative V.P. 3.7% Personnel Director

40.7% Controller or Financial V.P.
28.4% Other (please specify)

Surveying the Binion Doiiar Chasm 557

4. Who has the main responsibility for deciding what data processing education corporate executives should have?
12.3% President 4.9% Training Director 0% Internal Consultant
11.1% Administrative V.P. 46.9% D.P. Manager
21.0% Other (please specify)

5. How much do you estimate that senior executives' decision-making is a direct result of computerized reports?
1.2% None 24.7% 26-50% 6.2% 76-99%
39.5% 1-25% 22.2% 51-75% 0 All

6. Are your company's executives generally satisfied with the computer output they receive?
81.5% Yes 13.6% No

7. How would the effectiveness of their decisions change if they no longer received computer reports?
Greatly Weakened Weakened No Change Somewhat Improved Greatly Improved

34.6% 53.1% 6.2% 1.2% 0%

8. Consultants claim that 40% of all companies operated more efficiently with manual systems than they do now with
computer systems. How do you feel?
2.5% Strongly Agree 6.2% Agree 9.9% No Opinion 34.6% Disagree 42.0% Strongly Disagree

9. How do you rate your knowledge of business management subjects?
9.9% Expert 39.5% Fluent 39.5% Generally Knowledgeable 6.2% Informed 0% Light 1.2% None

10. How do you rate the involvement of senior management in your company in the development or redesign of systems?
0% Take Total Charge 7.4% Take Part Throughout 24.7% Take Part Periodically

27.2% Approve Main Steps 30.9% Delegate Control 3.7% No Interest in Taking Part

11. If you were planning an unlimited curriculum for senior corporate executives to learn enough about computer concepts
and applications to work closely with you and your people, how would you rate these?

Wasteful Low Priority Useful High Priority

Computer Concepts 4.9% 8.6% 42.0% 38.3%
Programming Concepts 32.1 29.6 22.2 8.6
Operating Systems 44.4 34.6 13.6 1.2
Hardware Configurations 24.7 43.2 22.2 2.5
Data Base Concepl~ . " 49.4 ~~~

.... :1 1, • .)

Introduction to Teleprocessing 14.8 27.2 39.5 11.1
U sing Models 3.7 21.0 44.4 23.5
Estimating Techniques 17.3 32.1 32.1 11.1
Project Planning 8.6 22.2 35.8 25.9
Algorithmic Processes 43.2 35.8 9.9 3.7
Data Communications 17.3 38.3 34.6 3.7
Systems Analysis 12.3 30.9 35.8 14.8
Systems Design 17.3 35.8 30.9 9.9
Computer System Architecture 43.2 37.0 11.1 1.2
Real-Time Systems 18.5 34.6 38.3 1.2
System Simulation 30.9 35.8 22.2 2.5
COBOL 72.8 18.5 1.2 1.2
Assembler Language 79.0 13.6 1.2 0
FORTRAN 71.6 21.0 1.2 0
Computer Organization 22.0 27.2 31.2 11.1%
Other 0 0 0 0

558 National Computer Conference, 1977

12. If you could select the business courses for the college freshman who will be your company's data processing manager in
20 years, how would you rate these?

Wasteful Low Priority Useful High Priority

Economics 2.5% 16.0% 50.6% 19.8%
Financial Accounting 0 7.4 35.8 46.9
Business Policy 1.2 6.2 46.9 35.8
Management Psychology 0 7.4 38.3 44.4
Marketing 1.2 22.2 53.1 13.6
Finance 0 12.3 56.8 21.0
Management Theory 1.2 11.1 42.0 35.8
Problem Solving 0 8.6 18.5 63.0
Principles of Auditing 3.7 22.2 44.4 18.5
Theory of the Firm 6.2 21.0 42.0 16.0
Writing 0 6.2 33.3 50.6
n~~:~:~_ lI..r~I,: __ 0 i.2 27.2 61.7 1.JC;~I;:)IVll-IY.1al\.llIt;

Public Speaking 0 9.9 34.6 45.7
Managerial Accounting 0 7.4 48.1 34.6
Business Information Systems 0 3.7 30.9 55.6
Operations Research Techniques 4.9 28.4 25.9 28.4
Statistics 2.5 19.8 42.0 24.7
Business Cycles & Forecasting 3.7 19.8 44.4 21.0

13. How satisfied are d.p. users in your company with the amount of information they get from computer systems?
Very Satisfied Satisfied Uncertain Dissatisfied Very Dissatisfied

6.2% 74.1% 12.3% 4.9% 0%

14. How satisfied are d.p. users in your company with the quality of information they get from computer systems?
Very Satisfied Satisfied Uncertain Dissatisfied Very dissatisfied

16.0% 67.9% 12.3% 3.7% 0%

15. Which of these most closely summarize your overall feelings about corporate management's involvement in the data
processing effort? (Check all that apply.)

2.5% Highly Efficient 50.6% Generally Effective Il.I % Invaluable
42.0% Inconsistent 30.9% Intelligent 1.2% Worthless

4.9% Insensitive to My Needs 11.1% Highly Dependable 9.9% Disinterested
__ Other (please specify)

16. How well do your people understand the workings of your ~ompany?
2.5% Expertly 37.0% Quite Well 40.7% Generally O.K. 17.3% Minimally 0% Poorly

17. How would you rate executives' knowledge of data processing in your company?
0% Expert 13.6% Quite Good 39.5% Generally O.K. 38.3% Minimal 6.2% Not Good

18. How do you think your company's corporate executives would rate the data processing organization?
Overall performance is
93.8% Satisfactory 4.9% Unsatisfactory
Implementation of new applications is
27.2% Rarely on Schedule 70.4% Usually on Schedule
Costs are consistently
76.5% Within Budget 21.0% Over Budget
Communications between data processing people and users is
80.2% Good 17.3% Not Good
Turnover among the most competent data processing personnel is
6.2% Too High 90.1% Under Control

19. Data processing could do a much better job in my company if (check all that apply.)

29.6% application requests were more realistic.
56.8% corporate managers got mo~e involved.

Surveying the Billion Dollar Chasm 559

37.0% corporate managers had more knowledge of data processing applications.
29.6% the department operated as a cost/profit center.
51.9% planning were better.
32.1 % data processing staff knew more about user applications.
65.4% users took part in systems development all the way through the project.
46.9% we had a clearer understanding of management goals.
2.5% corporate managers were less involved.

20. How could communications between corporate areas and data processing be improved? (Check all that apply.) Please
circle those that are done in your company.

Say Do

50.6% 28.4% Frequent meetings
33.3% 7.4% Swap jobs occasionally
24.7% 14.8% Attend the same courses
64.2% 23.5% Have data processing mangers attended corporate officer meetings
35.8% 16.0% Have Your people visited user areas periodicaliy
58.0% 34.6% Have user personnel visit computer room periodically
75.3% 38.3% Have joint staff meetings to explain new applications and responsibilities

_Other?

21. Data processing people frequently are accused of being loyal only to the data processing profession, not necessarily to
the company they work for. How well do your company's data processing personnel identify with the company and its
goals?
2.5% Not at All 34.6% Not Enough 7.4% Don't Know 46.9% Strongly 4.9% Very Strongly

22. Can data processing professionals realistically expect to succeed into corporate (non-data processing) management in
your company?
54.3% Yes 19.8% Don't Know 22.2% No

23. Have data processing personnel ever moved into corporate management jobs in your company?
53.1% Yes 6.2% Don't Know 38.3% No

If so, into what job(s)? _______________________ _

If not, what holds them back? (Check all that apply.)
• ~ ~ ThefT tfHining: is too t.echmcal and has nothill@; to do with the rest of the business.
11.1% They are not interested in corporate management jobs.
18.5% They don't have the necessary business background.
34.6% Corporate management apparently doesn't consider them good candidates.

_Other?

24. About how large is your data processing organization?
People Equipment

42.9% Less than 100
27.0% 100-300
12.3% 300-500
8.6% 500-1,000
4.9% More than 1,000

28.8% Under $50,000/month
19.6% $500,000-100,000/month
14.1% $100,000-200,OOO/month
8.6% $200,000-300,000/month
5.5% $300,000-400,000/month
3.7% $400,000-500.000/month

12.9% More than $5oo,000/month

Overall Budget

31.9% Under $1-2 million
18.4% $2-4 million
11.7% $4-6 million
6.7% $6-8 million
4.9% $8-10 million
3.7% $10-12 million
3.7% $12-16 million

12.9% More than $16 million

560 National Computer Conference, 1977

25. What is your company's main area of business?
67.9% Industrial 3.7% Retailing

6.2% Banking 4.9% Transportation
7.4% Insurance 6.2% Utility
3.7% Financial __ Other (please specify)

APPENDIX B-Business Management and Data Processing Courses Ranked by Executives According to Importance

BUSINESS MANAGEMENT COURSES
Ranked in Order of Importance

for Future
Corporate Presidents

Economics
Financial Accounting
Decision-Making

Finance
Writing
Management Psychology
Problem Solving
Marketing
Public Speaking
Managerial Accounting
Management Theory
Business Information

Systems
Business Policies
Business Cycles &

Forecasting
Statistics
Operations Research

Techniques
Theory of the Firm

Principles of Auditing

for Future
Data Processing Manager

Decision-Making
Problem Solving
Business Information Sys-

tems
Writing
Financial Accounting
Management Psychology
Public Speaking
Business Policies
Managerial Accounting
Management Theory
Finance
Statistics

Economics
Business Cycles &

Forecasting
Marketing
Principles of Auditing

Operations Research
Techniques

Theory of the Firm

DAT A PROCESSING COURSES
Ranked in Order of Importance

for Senior-Level Executives

by Corporate Executives

Computer Concepts
U sing Models
Data Base Concepts
Project Planning
Estimating Techniques
Introduction to

Teleproces sing
Systems Analysis
Systems Design
Programming Concepts
Data Communications
Real Time Systems
Computer Organization
Operating Systems
Hardware Configurations
System Simulation
Algorithmic Processes
Computer Systems

Architecture
FORTRAN
COBOL
Assembler Language

by Data Processing
Executives

Computer Concepts
Data Base Concepts
Using Models
Project Planning
Systems Analysis
Introduction to

T eleproces sing
Estimating Techniques
Systems Design
Computer Organization
Data Communications
Real Time Systems
Programming Concepts
Hardware Configurations
System Simulation
Operating Systems
Algorithmic Processes
Computer Systems

Architecture
FORTRAN
COBOL
Assembler Language

A community of individuals-Cooperation and
individualization in computer science education

by KENNETH L. MODESITT
Indiana University-Purdue University
Fort Wayne, Indiana

ABSTRACT

A model of education based on cooperation among respon
sible individuals is presented. Earlier models are discussed
which involve traditional competitive-based courses as well
as the more recent individualized mode. The latter has been
use9 by the author for several years, utilizing both a
Personalized System of Instruction (PSI) and Computer
Based Education (CBE). Now, however, cooperation has
been introduced as an explicit and integral part of educa
tion. This was done in the belief that most serious problems
of our day are amenable to a cooperative problem-solving
process. The techniques utilized in an introductory com
puter science course include: study partners for PSI units,
computerized personal data base design by a small group,
mutual design and use of interactive programs, use of
cooperative exercises (computer and otherwise) and par
ties. The future of these efforts remains unknown, but there
is a strong belief that cooperation is a preferable model to
competition in the world to come.

INTRODUCTION

In this paper, the concepts of community and the individual
are compared and contrasted. The realization of these
concepts has been implemented in the classroom by main
taining a delicate balance between cooperative efforts and
individualized instruction. Preserving this balance is advo
cated as a preferable alternative to either the traditional
lecture mode or, more recently, the primarily individualized
mode of instruction. Considerable experience has been
gained with the individualized mode, utilizing both Person
alized Systems of Instruction (PSI) and Computer-Based
Education (CBE) over a period of several years. The
explicit introduction of cooperation into the computer sci
ence classroom is of more recent vintage. It comes in
response to a belief that cooperative efforts are most likely
to solve the difficult problems of today, and to fears of
interpersonal isolation which may result from exclusive or
primary reliance on individualization.

561

DEFINITIONS 17

Community-

Common-

Cooperate-

Cooperation-

Individual-

Individualize-

a social group or class having
common interests
belonging equally to two or more;
shared by all alike; joint
work together toward a common
end or purpose
an association of persons for
mutual benefit
of or relating to a single human
being; by or for one person
to modify or suit a particular entity

WHY IS A COMMUNITY OF INDIVIDUALS
DESIRABLE?

Whenever I meet a class for the first time, one of the first
questions I ask them is: "Why?" "Why are you in this
course?" "Why are computers becoming such an integral
part of our lives?" "Why is understanding their uses and
potential so important?" To me. asking "Why" is an
e:'):')~ntiar fit~l :')lep in iuuking al a newiuea. Kuparticuiar
solution is guaranteed to result. Rather, many times, an
increased awe and reverence for the phen'Jmenon results.
Nevertheless, when the phrase "community of individuals"
first began to have some significance for me as an instruc
tor, I needed to ask, and perhaps answer, the "Why"
question.

I believe that a community of individuals, working to
gether in cooperation toward mutual goals represents the
most hopeful and realistic structure whereby the majority of
the important problems confronting us today can be solved.
The difficulties and enigmas which surround us today are
legion and increasingly severe. For cogent and striking
presentations of the present and possible futures, recent
issues in The Portable Stanford Series are outstanding.6,18,20

Of particular import is Harman's An Incomplete Guide to
the Future. Wars, unemployment, famine, inflation, civil
rights, crime, welfare, corruption-the list appears endless.

562 National Computer Conference, 1977

Few of these, if any, are solvable by one person. What
are the alternatives: to continue to accept such problems as
"natural" or treat them as "inconveniences"? I, at least
am not willing so to do. Rather, it is my firm belief that a
dedicated community of strong individuals offers a viable
and desirable alternative.

ALTERNATIVE MODELS IN EDUCATION

The belief in a dedicated community of strong individuals
is manifested within the framework of introductory com
puter science sources at Indiana University-Purdue Univer
sity at Fort Wayne. I strongly believe in the impact that
models have on our later lives. Hence, I try to include in
classroom situations those values which have positive sig
nificance for me, i.e., community of and cooperation among
mature persons. It is this model I wish students to consider
seriously now and in later life.

Students will definitely have other models from which to
choose. One of the most common and powerful ones is
based on competition, and is usually found in a traditional
lecture-oriented course. In earlier papers, my thoughts
were shared about where and when competition may be
appropriate, e.g., sports, and where it is not appropriate,
e.g., educationY,14 In a recent address, Howard Casmey,
Minnesota commissioner of education, noted that education
today is "predicated on failure." I However, a grade of A
or B in a course must indicate that a student has demon
strated mastery of the subject. It must not indicate that she!
he is in the top 10 percent who demonstrate mastery in a
predefined, usually short, time frame, e.g., an hour exam, a
two hour final, a one semester course, or a four year
degree, etc.

So we are led naturally to another, and rapidly growing,
model in education: that of individualization. To again
quote Casmey,

"To me 'individualized instruction' connotes 'mastery
learning.' It's neither a concept nor a process in and of
itself, but rather a concept that requires a process. It is
the great humanizing factor in education, because failure
is no longer possible. All students noll' succeed; some at
a faster or slower rate than others, hut all learn and all
succeed. "

"If one of our children has more difficulty in learning to
tie his shoe, and does not accomplish this task until he is
six years old, we do not label the child as a failure. We
know that, barring any specific physical problems, he will
be able to accomplish this task as his manipulative skills
develop. "

"This is what the educational process should be and
we've known this for 50 years."

Casmey goes on to espouse the use of computer-based
education. Personalized systems of instruction are also
vitally concerned with individualized instruction. This

model is leading to persons increasingly able to become
adults, i.e., persons who assume responsibility for their
own actions. It is a model I view with great respect and
admiration. I have used it for the last four years in several
courses. It continues as a vital and integral part today.
However, and here I quote the frustrated and honestly
concerned housewife who, when asked about her house
work, replied, "It's good, but it's just not enough!" As I
recall the story, she also went on to say she needed
someone to share in those responsibilities.

My feelings about individualized instruction· are similar:
it's good; I like it; I encourage my students to use it; but it
is simply not enough! The process does promote a more
adult, independent attitude. Students do gain an acceptable
and accurate self-image: "I can learn this subject pretty
much on my own." To many people, young and old alike,
this is a dramatic change from ''I'm dumb. I never could do
math (or English or physics, etc.}." In fact, it was the latter
type statement that first prompted me to consider seriously
a major shift in my courses from lecture to individualized.

However, it has been several years since that time, and
I've come to realize that strong individuals, hy themselves,
do not constitute a complete picture. You and I really do
live in a community, several of them in fact. I do not wish
to live a life apart from others. I wish to participate, as a
strong person, in mutual efforts with the other strong
people to solve significant problems and to share with them
at increasingly open and intense levels. The latter quality is
not a "teachable" one in my opinion, but rather flows
naturally from significant mutual content-based concerns.
Therefore, it is this model of a dedicated community of
responsible individuals that I value highly, and conse
quently emphasize in many of my courses.

COOPERATIVE COURSE EFFORTS

The course in which major efforts have been expended to
incorporate cooperation is CS 220, Introduction to Algo
rithmic Processes. Section enrollment is usually between 20
and 25, and consists primarily of science majors ranging in
age from 18 to 30. It represents the first direct exposure to
computers for all but those with some experience in high
school. A course which several take after CS 220 is CS 461,
Algorithmic Languages, which relies extensively on individ
ualized instruction.

The primary cooperative efforts in CS 220 include the
following: study partners for PSI units, data base design by
small groups, mutual design and use of interactive pro
grams, use of cooperative exercises, and parties.

Study partners for PSI units

As is well known, a personalized system of instruction,
also known as the Keller plan, has become one of the most
noteworthy and exciting instructional methods in recent
years. Earlier referenced papers of mine discuss it at some
length, as well as in References 15 and 16. It is appearing in

more and more university settings, both as documented
from within and without. From within, the Center for
Personalized Instruction at Georgetown University holds
annual conferences. 21 They also publish a newsletter19 and a
journalY All these publications relate the increased use and
very positive results in final exam scores, retention, trans
fer, attitudes, facilitation, and self-image. From without,
recent issues of Change magazine contain several articles
on PSI as one of the most promising innovative educational
concepts. 4,12

An integral part of PSI is breaking material down into
digestable pieces or units. For CS 220, there are 15 such
units (two of them review ones), plus a final. Within the
normal PSI framework, each student works through the
objectives, suggested procedure, and unit test by herself!
himself, Within the cooperative PSI framework, each stu
dent is assigned a partner on the first day of the course. The
partner is usually of the opposite sex, roughly the same
year in school, but not necessarily in a related discipline.
During the next couple of class days, the partners introduce
each other to the class informally.

The PSI partners are encouraged to work together on the
objectives and suggested procedure of each unit. The
evaluation, of course, is administered separately. Since
most of the units involve designing and implementing
computer programs, a variant of "egoless" programming is
suggested. 2

The partnership is particularly beneficial in the first
several weeks. The intricacies of working with strange
machines and procedures are not as intimidating to two
people as to one. Therefore, when the units become more
concerned with concepts instead of interactive terminals,
batch jobs, remote job entry, keypunches, etc., partner
ships may deepen, dissolve, or reform. By this time, the
partners are often working at different rates. So, they may
feel free to work with others, or in some cases, by
themselves. In any case, all the students now have first
hand experience in cooperating with another for a common
goal.

As those familiar with PSI know, the peer tutors or
I2rgcJQnI'.~rfQrm m~ro: .QLth~ rQ~~ju~t .. me.utiQ~d. .~Th.e
three peer tutors for CS 220 are excellent, in my opinion.
The students view them as "willing-to-help" experts, and
have no hesitation about asking them questions. However,
the tutor is not a true partner-she/he has been through the
course earlier, whereas the student is still working on it.
Hence, I believe both the tutor and partner have valuable
roles to play in the learning process.

Automated personal data base design by small groups

After nearly one-half of the semester has passed, most
students have a working knowledge of the primary pro
gramming language concepts. It then becomes feasible to
introduce them to a design project. Since such projects
outside the academic world are usually cooperative in
nature, this is a good opportunity for small groups of three
to four to work together. I wanted the design to be for a

A Community of Individuals 563

realistic area and one of some importance. Automated
(computerized) personal data banks immediately come to
mind. A group in the College of Education at the University
of Illinois under the direction of Bruce Hicks has also
investigated such issues. 9 In CS 220, however, the students
are not only users of such data banks, they will also be
designers thereof.

The sample list of such data banks included in the
appendix is almost solely student-generated. Here is an
application in which interest is quite high. Outside speakers
come in to discuss the issues of privacy and society's need
for organization. Students have the necessary skills to build
such a data base. The task lends itself readily to sharing
ideas and feelings, especially about one's right to privacy.
The complete assignment is given in the appendix.

Mutual design and use of interactive programs

After some introductory simple programs which all stu
dents are to complete, students are given a choice. They
may either work on problems assigned in the unit, or they
may choose one of their own, so long as it is of comparable
complexity. Several people have opted for the latter. Here
they can use the computer directly for a problem in their
discipline, or they can design and implement a game,
simulation, drill and practice, etc.

In any case, whether the students work on a preassigned
problem or one of their own, they are encouraged to seek
out an "intelligent but naive" classmate to be a typical
user. This user, who is often their partner, takes the
program. She/he writes comments relating to directions,
accuracy, style, etc., and then signs and dates the listing.
She/he is not expected to examine the coding itself. If
necessary, the author then modifies the program before
turning it and the signed listing in as part of the unit test.

Students realize this as a cooperative venture-one day
they may be the designer/coder, the next they may be the
"naive" user. They expend considerable effort making
certain their program executes properly and is designed for
hu~.~n l!~~. NO! ~I1!!r~!Lt::1: !l.c:c:ig~I)!J. (h,~.La[9.t~<~[D.iggJJ)~
components of good computer-based education lessons,
both as a designer and a user.

Use of cooperative exercises, computer and otherwise

Until relatively recently, this topic virtually did not exist.
However, there appears to be an increasing awareness that
a model of cooperation is at least as important for educa
tion as that of competition. Star Trek, Moonwar, Battle
ship, etc., all have a certain fascination, but how about
cooperative games also? In a recent issue of Computers and
Society, Bruce Hicks discussed several such games. 10

"SOS" is available on PLATO and "Lost and Forgotten
Island" is available in Basic. In these games, cooperation is
espoused for the mutual benefit of all players. After playing
these, students (and instructors) now have some models for
community-building lessons. There have also been several

564 National Computer Conference, 1977

programs in issues of Creative Computing (a great maga
zine!) which promote cooperation rather than shooting
down Klingons.:3

I do not restrict cooperation to be viable only when
interacting with the computer. This is, however, an increas
ingly important type of CBE lesson, in my opinion. Stu
dents also share together in discussion about films. Contro
versial ones such as The Right of Privacy or A Matter of
Survival (both available from Indiana University) prompt
conversation in which significant and honest feelings are
exchanged. People learn to relate to others who may have
strong, but different, thoughts. Many of the exercises in
Values Clarification by Simon, Howe, and Kirschenbaum
are also useful in this domain. 22

Recently, Judy Edwards, new president of the Associa
tion for Educational Data Systems (AEDS) brought to my
attention the BLUE/GREEN classroom simulation dealing
with cooperation within a company framework. This type
of activity is growing in popularity as witnessed by the
recent formation of the New Games Foundation. Quoting
from the director, Pat Farrington, we have:

"If people center on the joy of playing, cooperating and
trusting rather than striving to win, they become part of
the process-not spectators We try to create individ
ual responsibility-helping people create their own
games We're into cooperating rather than compet
ing." i

It would appear that more and more people are realizing
that cooperation is an increasingly vital element in our
lives. That is why I am concerned that students have first
hand experience with this model.

Parties

One of the essential ingredients of community is knowing
one another. Parties provide an excellent first step for
learning one another on an informal and non-threatening
basis. And, because they are so much fun, we try to have
several!

The "content excuse" for most parties is the celebration
of a student's birthday. Donuts and cider usually provide a
common basis for sharing physical sustenance while the
class continues. Frequently the student may indicate their
special plans for the day.

The date of birth is ascertained from the first program
taken by the students. An interview program Query, writ
ten in Basic, asks them for their favorite food, and tries to
identify them by their preference in later interviews. It then
asks them for their birthday, and goes on to ask if they have
any questions. The latter feature is used as a note/comment!
question file throughout the course. The student has the
option of refusing to answer any question, e.g., for privacy
reasons. She/he also has the option of terminating the
interview and thus having no record kept.

These informal in-class celebrations allow us to learn a

little more about a person than simply what courses they
are taking. They are also supplemented by a get-together
every semester, often at the instructor's home. Each person
brings their appetizer speciality, and the evening is spent
with good food and informal conversation. The latter often
arises from a game that each person brings, as well as
programs and games available over the interactive terminal
I bring to the party. Again, people put out individual efforts
to build for common goals and mutual benefit. Cooperation
is not an impossible model. It is, I believe, a most possible,
desirable, and necessary one for any world in which human
beings form a part.

SUMMARY AND FUTURE

In summary, I have tried to indicate why I believe coopera
tion to be a valuable and integral part of education. It is
compared to a traditional mode, usually based on competi
tion, and then to the more recent mode of individualized
instruction. The latter has often been implemented, in my
courses and others, within a PSI environment and fre
quently involves computer-based education. These individ
ualized techniques have done much to eliminate the idea
that only 10 percent of students are able to master the
material presented. However, most serious problems in the
world are solved by a community of responsible people.
For just one example, Howard Casmey, in the address
referred to earlier, dwells at length on the necessity of
partnership (cooperation) between companies and educa
tion for gaining widespread acceptance of quality CBE.

It is in this belief that cooperation is introduced explicitly
in my introductory computer science courses. The primary
cooperative efforts are:

(1) study partners of PSI units,
(2) design of a computerized personal data base by a

small group,
(3) mutual design and use of interactive programs,
(4) use of cooperative exercises, computers and other

wise, and
(5) parties.

I am under no illusion that these are the only or best
ways to introduce cooperation explicitly. Other techniques
with which I am familiar include: computer clubs for
hobbyists and micro-computer users, computer uses for
elders (another project of Hicks),8 designing programs for
the school itself or local community, and, of course, the
very widespread efforts in primary and secondary educa
tion. Learning exchanges, open classrooms, individually
guided education (lGE) programs, etc., are all oriented
toward subject mastery. They also usually occur in a self
paced environment and often involve interpersonal ex
changes. 5 I personally would be very grateful if the reader
would share additional references for cooperative efforts,
games, programs, etc.

What of the future? Only the future itself knows. But I
would hope that my understanding of people and the
learning process would grow and mature. It may well be
that cooperative efforts are "not all they're cracked up to
be." The values of one's own self and of one's God are
probably pre-eminent. Yet at the same time, we live, love,
work, and learn in a community of others. I am grateful for
that opportunity, enjoy helping others, and enjoy being
helped by a community of caring and responsible individu
als.

REFERENCES

I. Casmey, Howard B., "Computer-Based Education: An Approach To
ward Adaptive Learning Procedures," ADCIS Summer Conference,
1976, pp. 1-22.

2. Cheney, Paul. "Egoless Programming: As an Instructional Technique."
AEDS 14th Annual Convention, 1976, pp. 222-224.

3. Ahl, David (editor), Creative Computing, Morristown, New Jersey.
4. Egerton, John, "Teaching Learning While Learning to Teach," Change.

Vol. 8, No.2, March 1976, pp. 58-61.
5. Gehret, Kenneth G., "Children Make the Best Tutors," Christian

Science Monitor, January 14, 1974, p. FI.
6. Harman, Willis W., An Incomplete Guide to the Future, Stanford

Alumni Association, Stanford, California. 1976.
7. Harrington, Pat, "'Earth Ball' Rolls into America," Fort Wayne

Journal-Gazette, Fort Wayne, Indiana. February 15. 1976, p. 2D.
8. Hicks, Bruce and Kathy Jaycox, "Elders, Students and Computers: A

New Team," ISEAC #7, College of Education, University of Illinois.
Urbana, Illinois, 1976.

9. Hicks, Bruce and Zielinski, "SEC-A Simulation of Computer Privacy
and Security Problems," ISEAC # 15, College of Education, University
of Illinois, Urbana, Illinois, 1976.

10. Hicks, Bruce, "Computer Outreach," Computers and Society, ACM
Special Interest Group, Vol. 7, No.3, Fall 1976, pp. 10-14.

II. Sherman, J. Gilmour (Editor~in-Chiet), Journal of Personalized Instruc
tion, Center for Personalized Instruction, Georgetown University,
Washington, D.C.

12. Lincoln, C. Eric, "Equalizing the Opportunity to Learn," Change, Vol.
8, No.6, July 1976, pp. 60-63.

13. Modesitt, Ken, "The Tangled Triangle: Cooperation, Computer-Based
Education and Personalized Systems of Instruction," ADCIS Summer
Conference. 1976. pp. 320-324.

14. Modesitt, Ken. "Personalized Systems of Instruction in Computer
Science: • Adult' Education," National Conference on Personalized
f~"·;" H.,.,;"..,Ii'm".mif'm +Q>7"

15. Modesitt, Ken, "An Excellent MixLure tor PSi: Computer Science.
PLATO, and Knowledge Levels," ACM National Conference, 1974, pp.
89-94.

16. Modesitt, Ken, "PSI: A Valuable Addition to the Alphabet Soup for
Computer Science Education," ACM Special Interest Group on Com
puter Science Education Bulletin, Vol. 6, June, 1974, pp. 37-44.

17. Morris, William (editor). The American Heritage Dictionary of the
English Language, 1969.

18. North, Robert c., The World that Could Be, Stanford Alumni Press.
Stanford, California, 1976.

19. PSI Newsletter, Center for Personalized Instruction, Georgetown Uni
versity, Washington, D.C.

20. Rhinelander, Philip H., Is Man Incomprehensible to Man?, Stanford
Alumni Press, Stanford, California, 1973.

21. Ruskin, Robert S. and Steven F. Bono (editors), Proceedings of the
National Conference on Personalized Instruction in Higher Education,
Georgetown University, Washington, D.C., 1974 to present.

22. Simon, S. B., L. W. Howe, and H. Kirschenbaum, Values Clarification:
A Ha"dbook. of Practical Strategies for Teachers and Students. Hart
Publishing Co., New York, 1972.

A Community of Individuals 565

APPENDIX-DATA BASE DESIGN FOR PERSONAL
INFORMATION

Group Project
CS 220
Ken Modesitt

I know everybody's income and what evelybody earns; and
I carefully compare it with the income-tax returns;

To everybody's prejudice I know a thing or two; I can tell a
woman's age in half a minute·-and I do!

Yet evelybody says I am a disagreeable man! And I can't
think why!

-KING GAMA IN GILBERT AND SULLIVAN'S

PRINCESS IDA

There is today a vast array of data about you and me
stored in computerized data bases. The following list,
although very incomplete, contains types of organizations
and institutions which can input and access data about you
from thousands of computers throughout the nation.

Federal Government
Census Bureau
FBI
IRS
Selective Service
Armed Forces
Social Security Administration
State Department (Passports)

State Government
Police
Department of Motor Vehicles
Department of Revenue

County Government
1 ax Assessor
Board of Elections

City Government
Banks and Savings and Loans
Educational
Insurance
Utilities
Employer
Credit Cards
Professional Organizations

Special Interest Groups
Alumni
NRA
John Birch Society
Book Clubs

566 National Computer Conference, 1977

Record Clubs
League of Women Voters
Audubon Society
etc.

Medical Records (Physicians, hospitals)
Mail-order Houses
Political Parties
Dating and Marriage Services
Retail Stores

The potential good from wise and careful use of such
automated personal data systems is considerable. And so is
the potential harm! I am particularly concerned about the
latter. Incidents, some humorous and some serious~ abound
which relate to computelized personal information systems.
Can you think of several?

In response to a growing concern about the role of the
individual in such computerized systems, the United States
Department of Health, Education, and Welfare published a
special report. "Records, Computers, and the Rights of
Citizens" (1973) is on reserve in the library. The report
recommended the enactment of a Federal "Code of Fair
Information Practice." The Code rests on five basic princi
ples that would be given legal effect as "safeguard require
ments" for automated personal data systems. The following
is taken verbatim from the report (pp. 40-41).

"Here then is the nub of the matter. Personal privac)" as
it relates to personal-data record keeping must be under
stood in terms of a concept of mutuality. Accordingly, we
offer the following formulation:

An individual's personal privacy is directly affected
by the kind of disclosure and use made of identifia
ble information about him in a record. A record
containing information about an individual in identi
fiable form must, therefore, be governed by proce
dures that afford the individual a right to participate
in deciding what the content of the record will be,
and what disclosure and use will be made of the
identifiable information in it. Any recording, disclo
sure, and use of identifiable personal information
not governed by such procedures must be prescribed
as an unfair information practice unless such record
ing, disclosure or use is specifically authorized by
law.

This formulation does not provide the basis for determin
ing a priori l1lhich data should or may be recorded and
used, or why, and when. It does, however, provide a
basis for establishing procedures that assure the individ
ual a right to participate in a meaningjulll'ay in decisions
about what goes into records about him and holt' that
information shall be used.

Safeguards for personal privacy based on our concept of
mutuality in record-keeping l1lould require adherence by

record-keeping organizations to certain fundamental
principles of fair information practice.

There must be no personal-data record-keeping sys
tems whose very existence is secret.

There must be a way for an individual to find out
what information about him is in a record and how it
is used.

There must be a way for an individual to prevent
information about him obtained for one purpose
from being used or made available for other pur
poses without his consent.

There must be a way for an individual to correct or
amend a record of identifiabLe information about
him.

Any organization creating, maintlllmng, using, or
disseminating records of identifiable personal data
must assure the reliability of the data for their
intended use and must take reasonable precautions
to prevent misuse of the data."

Your cooperative group assignment is to design an auto
mated personal data system for a content area of your
choice. Feel free to use those listed earlier. Your design
should include the principles just articulated and any others
you would like.

What features would you want in such a system were you a
user and/or entry thereof?

Would you want to see your record?

What information can others input about you?

Can you challenge and change your record? How?

Who has looked at your record? When?

Who can erase information?

Can you prevent someone from looking?

How do you know incorrect or outdated information was
really erased (corrected)?

Is the information used only for that purpose for which it
was collected?

How would you find out if a record of you is being kept?

Are there levels of information access?

Can you inspect the records of your mate, friend, chil
dren, employer, etc.?

Is certain information purged automatically after a certain
period of time?

The above questions represent only a very few which
could be asked. You will undoubtedly uncover others as
your project unfolds. You might ask others what questions
they have.

The project is a design one only; it does not involve
coding (unless you wish to). However, the design should
proceed in a top-down manner, expanding various steps
where necessary. The final written result of your effort
should be a set of structured programs given in increasing
detail. The most detailed one should be one able to be
coded directly into some programming language.

A typed copy of your design will be presented to class
during the last two weeks of class. (I will supply the
mimeograph service if you give me the typed copy two days
before handing it out.) In addition, your presentation for

A Community of Individuals 567

that day of class may take any form you wish, as long as
each group member has a role. Your group might role-play
a "typical day in the life of a computerized dating service,"
for example. Or someone might indicate how a user might
try to use/access your system, honestly or otherwise.
Perhaps you could incorporate members of the class in your
presentation. In any case, you are to hand in two questions
(and their answers) which could be answered only by a
person attending your presentation. Some of these will
appear on the final exam.

Good luck and hope you enjoy this "realistic" assign
ment involving the world and computers and other people!

Ken

P.S.-Another excellent reference is Privacy JournaL. I
have several copies in my office.

New perspectives for information
systems education

by THOMAS I. M. HO
Purdue University
West Lafayette, Indiana

ABSTRACT

Systems analysis is the examination of a problem situation
in order to define the requirements of a solution, often
computerized, to that problem. The diversity of problems
and the constraints of computing technology require that a
problem be thoroughly analyzed in order to insure that the
problem is clearly understood. Then, and only then it can
be determined how computing technology can be applied to
solve the identified problem. Therefore, systems analysis
education teaches the discipline of clear and complete
problem definition.

Several recent developments offer new perspectives for
systems analysis education. These developments provide a
conceptual framework for understanding information sys
tem and data base characteristics. This framework supports
an improved methodology for systems analysis and thereby
contributes to higher quality systems analysis education.

INTRODUCTION

A pair of technological developments in computer science
are currently making a significant impact on the develop
m~n.t ot ~qmpllte,ri:zeg jnfQrynation ~y§tem§.Qa.t?B,Cl§~
Management Systems (DBMS) support sophisticated infor
mation systems with flexible facilities for the maintenance
and manipulation of large complex data bases. In particular,
a DBMS enables the sharing of data resources in order to
co-ordinate the diverse activities of an environment sup
ported by an information system. Furthermore, a DBMS
enables the representation of complex logical structures in a
data base that models the environment supported by that
data base.

Computer aids to information systems development man
age the activities of personnel engaged in the various
phases spanning a development project from the conception
of a need to the installation of the solution fulfilling that
need. For example, a computer supported data dictionary
manages the definition of data resources in order to provide
a complete and consistent view of data for use in a DBMS
application.

The impact of these technological developments stems

569

from their contribution to relieving the difficulty of applying
computing technology to information systems. The size and
complexity of information systems are the major obstacles
to their successful development. An information system for
a large organization consists of several functional subsys
tems that represent the various functions performed by the
organization. Co-ordination of the subsystems is necessary
in order to achieve organizational objectives. Therefore, a
DBMS enables the sharing of data resources among subsys
tems in order to co-ordinate these subsystems. Further
more, each subsystem is a large problem by itself and so
therefore, responsibility for a complete information system
must be shared among many individuals. Therefore, com
puter aids to information systems development enable com
munication among systems development personnel to aid
co-ordination of their activities.

The impact of these technological developments is fur
ther magnified by the wide spectrum of applications
spanned by computing technology. The breadth of the span
of applications justifies both the creation' and the further
improvement of educational programs that provide instruc
tion in the application of computing technology to informa
tion systems.

The computer science curriculum at Purdue University
inclu~ew~ aJ) infqrwa,ti()n syst,ems program that prqvides
instruction in the application of computing technology to
information systems. This program includes instruction in
both systems analysis and systems design techniques. Sys
tems analysis is the problem definition activity that pro
vides a complete and clear perception of the problem for
which a computing solution must be determined during
systems design. The dissimilarity between the varied prob
lems in the problem domain and the varied technologies in
the computing domain presents a unique situation that
challenges the capabilities of information systems educa
tion.

The dissimilarity between the problem domain and the
computing domain suggests the need for a common inter
face at which the system analysis and systems design
activities can meet. Such an interface is a model of an
information system which provides a conceptual framework
for the statement of requirements of an information system.
The statement of requirements represents the problem

570 National Computer Conference, 1977

requirements determined during systems analysis that must
be satisfied by the technological solution selected during
systems design. The conceptual framework must be con
sistent with a wide class of problems in the problem domain
and with a wide class of technological tools in the comput
ing domain.

The current approach to information systems education
suffers from the absence of a conceptual framework for
information systems. A narrow view of systems analysis
education restricts instruction to a survey of traditional
implementations of common application problems. As a
result, the student encounters a motley assortment of
computerized solutions that are applicable to only specific
proble~s and dependent on specific implementation solu
tions of those problems. Therefore, no genera! prob!em
solving approach is apparent to a student whose education
is limited by this narrow perspective.

Furthermore, a narrow view of systems design education
restricts instruction to a survey of hardware and software
technologies. In the absence of a common conceptual
framework for information systems, such a technological
survey leaves the student with no apparent approach to the
selection of technological tools that are isolated from the
problem domain. The virtually unlimited variety of the
problem domain makes it practically impossible to indicate
the technological solution to each problem. In addition, the
absence of a conceptual framework makes it difficult to
motivate the need for the capabilities of the technological
solutions in the computing domain. For example, the need
for representation of complex data base structure that is
fulfilled by DBMS is not necessarily apparent to anyone
who is unaware of the size and complexity of contemporary
information systems problems. However, characterization
of the role of the data base in the context of both the
information system model and the problem domain moti
vates the need for complex logical structure.

CONCEPTUAL FRAMEWORKS FOR INFORMATION
SYSTEMS

Information system model

The study of information systems is complicated by the
dissimilarity of the organization system and the computer
system. The organization system performs the activities
that must be supported by the information system. The
computer system performs computational and data manage
ment functions. There is no correspondence between the
organization's activities and the computer's functions. The
organization system contains the persons, objects, and
events that are the subjects of organizational activities. The
computer system contains the hardware and software facili
ties that perform computerized functions. There is no
correspondence between the organization's subjects and
the computer's facilities.

The gap between the organization and computer systems
suggests the need for a conceptual bridge between these
two systems. Such a bridge would guide and structure a

systems analyst's actIVItIes while he formulates his ap
proach to an organizational requirement. Such a bridge
would not remove the necessity for the analyst to be
familiar with the application domain with which he is
dealing. Instead, the conceptual link identifies the concepts
common to all applications of management information
systems in order to supplement specific knowledge of organi
zation and computer systems.

The conceptual link is an information system modeJ1 that
provides a standard that enables organization system con
cepts to be expressed in a conceptual framework that is
also compatible with computer system concepts. The infor
mation system model is itself a system composed of inter
acting subsystems:

I. Input subsystem
2. Output subsystem
3. Data base subsystem
4. Process subsystem.

The role of the information system model is illustrated in
Figure I.

The correspondence to the various subsystems of the
computer system is clear and this is no surprise. Corre
spondence to the elements of the organizational subsystem
can be established. The elements of the output subsystem
correspond to the actions and decisions performed by each
functional subsystem. The elements of the process subsys
tem correspond to the procedures and models used to
perform each action or decision. The elements of the input
subsystem correspond to the data received from the envi
ronment by the elements of the process subsystem to
generate the elements of the output subsystem.

Data base subsystem

The data base subsystem serves as a decoupling mecha
nism between the input and output subsystems. The input
subsystem gathers the data from the environment to be
used to generate information to the environment through
the output subsystem. However, the output subsystem does
not necessarily generate information at the same time nor at
the same rate as the input subsystem receives data. There
fore, the data base subsystem is an inventory of data

Figure l-Management information system

New Perspectives for Information Systems Education 571

resources. Furthermore, the output subsystem does not
necessarily request information in a format that is identical
with that of the data used to generate the desired informa
tion. Hence, the data base subsystem maintains a standard
specification for data resources in order to decouple the
incompatibilities between the input and output subsystems.
The decoupling role of the data base subsystem in these
respects motivates the residence of the data base subsystem
in the storage subsystem of a computer system.

With respect to the organization system, the data base
subsystem also functions as a decoupling mechanism. The
various functional subsystems of an organization system
are interacting subsystems that must communicate with one
another to achieve the desired synergistic effect. Again, the
data base subsystem serves as both an inventory and as a
standard for the data resources that are generated by any
functional subsystem and can be used by any other func
tional subsystem in pursuit of that subsystem's objectives.
Similarly, the data base subsystem also decouples separate
procedures and models within a single subsystem. How
ever, it is the data base subsystem's role as a decoupling
mechanism between functional subsystems that elevates it
to its central role in an integrated information system.

Entity-relationship model of data

In its role as a decoupling mechanism, the data base
subsystem should therefore contain representations of the
persons, objects, and events of interest to organizational
activities. The elements of the data base subsystem that
represent these persons, objects, and events are called
entities. Furthermore, the data base subsystem should also
contain representations of the relevant associations among
the organizational persons, objects, and events. The ele
ments of the data base subsystem that represent these
associations are called relationships among the correspond
ing entities. The concepts of entity and relationship for data
base definition have been proposed by both Teichroew,2
Chen,3 and ANSIIX3/SPARC Study Group on DBMS.4
.. ~~n, ,€nti,ty t.Y12~j,§ .. ,?,)J1Q~,eIQL~p"~~§()nl. Ql?i~ct: Qr eVE!l1t o.f

interest to the organization system. An entity occurrence is
the representation of an instance of the person, object, or
event represented by the corresponding entity type. There
fore, EMPLOYEE may be an entity type while JOHN DOE
is an occurrence of EMPLOYEE. An entity type consists
of attributes that describe the entity. An entity occurrence
consists of facts that describe the instance being repre~

sented. Therefore, if EMPLOYEE consists of the attributes
NAME and ADDRESS, JOHN DOE might consist of the
facts NAME is JOHN DOE and ADDRESS is 123 MAIN
STREET. One or more of the attributes must serve as an
identifier whose value distinguishes one occurrence of an
entity from another occurrence of the same entity.

The scope of an entity is arbitrary. Part of one entity can
be separately defined as another entity. For example, an
object entity called Product can also be defined in terms of
another object entity called Subassembly. Conversely, a
collection of entities can be separately defined as another

entity. For example, the collection of object entities Part
and Product can be defined instead as the single object
entity Material. Hence, in any organization system, any
number of entity types is possible. Some guidelines for the
selection of attributes of an entity have been presented by
Brown. 5

An entity type may be associated with some other entity
type, not necessarily different from the first, by a relation
ship type. For each occurrence of one entity type, a
relationship type defined between that fir.st entity type and
some other entity type defines a set of occurrences of the
second entity type that have a common property (implied
by the relationship) with respect to the occurrence of the
first entity type. For example, a relationship type defined
between the entity types CUSTOMER and ORDER defines
the set of ORDER occurrences that were placed by each
CUSTOMER occurrence. An important property of a rela
tionship is its connectivity. For each occurrence of one
entity type, connectivity indicates the maximum size of the
set of occurrences of the second entity type that have the
common property with respect to the occurrence of the first
entity type. For example, the relationship CUSTOMER and
ORDER has connectivity 1 to N (> 1) because each CUS
TOMER may place more than one ORDER, but each
ORDER is placed by only one CUSTOMER.

The relationship concept is essential to the fulfillment of
the decoupling role of the data base subsystem. The inte
gration of the various functional subsystems of the organi
zation system is promoted by relationships among the
entities that represent the various persons, objects, and
events of interest. For example, integration of the activities
of the Order Entry, Inventory, and Shipping subsystems
motivates the relationships indicated in Figure 2. A rectan
gle is used to represent an entity and a diamond is used to
represent a relationship. The relationships indicate the
creation of either SHIPMENT or BACKORDER occur
rences to fulfill each ORDER occurrence. In addition, the
relationship between BACKORDER and SHIPMENT indi
cates creation of a SHIPMENT occurrence when each
BACKORDER occurrence is fulfilled. With respect to a
~lJHQm~r ',§, iI1QlliIY ",£9.1J,c:e_rn!I1g .. ~1!y.QgJ?gg",~h~, C:2.I1~Ijl?tI~
tion to integration is apparent in the ability to respond with
relevant information of either SHIPMENTs or BACKOR
DERs that fulfill that ORDER. Feedback is also apparent in
the ability to inform a customer of the imminent receipt of
his unfulfilled ORDER by virtue of the fulfillment of the
responsible BACKORDER.

Effective organizational control is promoted by the rela
tionship concept. Control is possible only if there exists a
sensor mechanism to detect a system state that is at
variance with some designated system standard. The sensor
mechanism is enabled by the data base representation of a
relationship that enables ready detection of the variance
condition. As illustrated in Figure 2, a relationship type
between BACKORDER and PRODUCT enables easy de
tection of the variance condition exhibited by excessive
backorders for any particular product.

The relationship concept also restores the loss of struc
ture that is apparent when the scope of an entity is

572 National Computer Conference, 1977

I

ORDER I

ENTRY :5HIPPING

I ,

Figure 2

narrowed. When part of one entity is separately defined as
another entity, the original data structure can be preserved
by defining a relationship between the two entities. As
illustrated in Figure 2, when a PRODUCT entity is defined
in terms of a SUBASSEMBLY entity, structure can be
preserved by a relationship type that defines the set of
SUBASSEMBL Y occurrences that compose each PROD
UCT occurrence.

Finally, the relationship concept promotes data non
redundancy and its recognized contribution to data consist
ency and storage savings. Figure 2 includes a relationship
type between CUSTOMER and ORDER that avoids redun
dant representation of CUSTOMER data in mUltiple OR
DER occurrences placed by the same CUSTOMER.

CONCEPTS FOR INFORMATION SYSTEMS
EDUCATION

Requirements statement language

An information system model suitable as a conceptual
framework for information systems education is provided
by a Requirements Statement Language (RSL). An RSL 1 is
a high-level language for describing information system
requirements that are determined during systems analysis
and fulfilled during systems design. An RSL is not a
programming language since an RSL statement expresses
what requirements must be fulfilled rather than how those
requirements are implemented in a hardware and software
solution.

The most advanced RSL is the Problem Statement Lan
guage (PSL) developed by the Information Systems Design
and Optimization System (lSDOS) Project. 6 PSL facilities
for statement of data requirements conform to the entity
relationship model of data. 3 As described by Ho/ the
entity-relationship model instills a data management per
spective that exemplifies the role of the data base in the
information system. To complement this systems analysis
perspective on data management, a systems design per
spective on data management is provided by techniques for
the inference of a data base schema from a PSL statement
of data requirements. s

In the case of statement of data manipulation require
ments, PSL does not provide the desired facilities. PSL
facilities do not provide the capahility for stating detailed
requirements for data manipulation and processing of data
elements. The Accurately Defined Systems (ADS) tech
nique9 provides a practical method for describing system
flow at the data element level. ADS describes the composi
tion of the output, input, process, and data base subsystems
of the information system model. Then, ADS describes
system flow by specifying the source of each data element
occurrence in the output, process, and data base subsys
tems. The source of a data element is an input, process, or
data base occurrence of the same data element. However,
ADS does not provide any facility for the statement of data
manipulation requirements that might be fulfilled by a
DBMS.

Requirements statement analyzer

The effective use of an RSL is supported by a software
package known as a Requirements Statement Analyzer
(RSA). An RSA performs logical checks on an RSL state
ment for compliance with completeness and consistency
conditions defined in terms of the information system
model. 10 The relevance to information systems education is
evident in the RSA contribution to improving the quality of
systems analysis and design. System design is entirely
dependent on the completeness and consistency of the
requirements determined during systems analysis. In addi
tion, an RSA also displays the system requirements in
various tabular and graphical formats that provide a system
perspective of inestimable value to systems analysis and
design.

PSL is supported by the Problem Statement Analyzer
(PSA), an RSA that provides extensive capabilities for
maintaining and displaying system requirements expressed
in a PSL statement. The use of ADS as an RSL is vitally
supported by PSA/ ADS, an RSA for ADS reported by
Nunamaker, Ho, Konsynski, and SingerY

Requirements statement tools in information systems
education

Currently at Purdue, undergraduate instructional activity
in systems analysis is supported by the use of ADS as an
RSL. Students learn the systems analysis task by partici-

New Perspectives for Information Systems Education C'7'l
JIJ

pating in a term project that produces a requirements
statement for an information system described in a case
study. The case study problem includes a diverse collection
of interacting organizational activities in order to create a
problem situation of sufficient size and complexity. These
characteristics of the problem situation create the need for
data sharing and project management that motivates the use
of DBMS and computer aids for information systems devel
opment.

However, ADS has proven to be inadequate for state
ment of the data definition and manipulation requirements
for data management that can be fulfilled by a DBMS.
Furthermore, use of PSAI ADS for requirements statement
analysis is less than satisfactory due to the limitations of its
primitive implementation. All these shortcomings do not
exist in PSA/PSL with one major exception. PSL does not
provide facilities for stating detailed requirements for data
manipulation as might be performed by a DBMS. In addi
tion, PSL does not allow specification of the source of each
data element occurrence as provided by ADS. Our experi
ence in systems analysis education has demonstrated that
the concept of data sources is pedagogically essential to
understanding the flow of data in an information system. In
all other respects, PSA/PSL has proven to be an excellent
tool for systems analysis education. Our experience with
use of PSA/PSL in graduate systems analysis education
here at Purdue has been extremely favorable.

In addition to the more obvious contribution to a concep
tual framework for information systems education, com
puter aids also contribute to the productivity gain that
results from the detection of systems analysis errors and
the automated maintenance of requirements statements.
Productivity is especially vital in the educational environ
ment which is expected to provide relevant student experi
ences in courses of relatively short duration. We therefore
confront students with problems of realistic size and com
plexity that require high productivity for their successful
completion in the short span of a course.

CONTRIBUTION TO INFORMATION SYSTEMS
EDUCATION

The greatest impact of the products described herein will
be higher quality systems analysis education. The capability

for completeness and consistency checking afforded by the
RSA provides feedback on student performance and better
systems analysis technique as a result. The structure inher
ent in RSL statement re-inforces the concept of structured
programming and other progressive software development
disciplines. The productivity gain accomplished by the use
of automated techniques encourages creativity by relieving
the user of the burden of manual systems analysis tech
niques. The exposure to state-of-the-art techniques expands
student perspectives beyond the traditionally confined hori
zons of traditional data processing. In summary, the impact
is most evident in the improved ability to apply computing
technology to the wide and varied spectrum of problems
that could benefit from data management relevant to their
decision-making and other activities.

REFERENCES

I. Ho, T. I. M., "Systems Analysis Perspectives," Proc. 14th Annual
Conference on Computer Personnel Research. July 1976.

2. Teichroew, D., et al.. An Introduction to PSLIPSA. University of
Michigan, Department of Industrial and Operations Engineering, ISDOS
Working Paper No. 86, March 1974.

3. Chen, P. P. S., "The Entity-Relationship Model: Toward a Unified View
of Data," Trans. Database Systems. Vol. I, No. I, March 1976, pp. 9-
36.

4. ANSI/X3/SPARC Study Group on DBMS, Interim Report. Doc. No.
7514TSOI, CBEMA, Washington, DC, February 1975.

5. Brown, A. P. G., "Modelling a Real World System and Designing a

Schema to Represent It," Data Base Description, Douque, B. C. M. and
G. M. Nijssen (eds.), North-Holland Publishing, 1975, pp. 339-347.

6. Teichroew, D. and H. Sayani, "Automation of System Building,"
Datamation Vol. 17, No. 16, August 15, 1971, pp. 25-30.

7. Ho, T. I. M., Data Base Concepts for Systems Analysis. Purdue
University, Computer Sciences Department Technical Report, Novem
ber 1976.

8. Blosser, P. A., An Automatic System for Application Software Genera
tion and Portability. Ph.D. dissertation, Purdue University, May 1976.

9. Lynch, H. J., "ADS: A Technique in System Documentation," Data
Base Vol. I, No. I, Spring 1969, pp. 6-18.

10. Ho, T. I. M. and J. F. Nunamaker, Jr., "Requirements Statement
Language Principles for Automatic Programming," Proc. 1974 ACM
Nu.ti~nul COtiference. November 1974, Pl'. 279-2~8 ..

t l. Nunamaker, J. r., Jr.. -r. i. M. Ho. H. KonsynsKI. and L. Smger.
"Computer-Aided Analysis of Information Systems." Comm. ACM, to
appear during Winter 1977.

Petroleum data system-A network
of energy information

by PATRICIA A. TRACY
University of Oklahoma
Norman, Oklahoma

ABSTRACT

The Petroleum Data System is a comprehensive computer
base of petroleum information. PDS is available worldwide
through the General Electric time-sharing network. It has
received widespread usage since its release in April, 1976.

The software supporting PDS is a group of general
purpose software packages. A driver program links the
packages together and provides the interface between the
packages and the time-sharing network. These packages
handle the problems of information storage and retrieval,
applications, and graphics. They have proved to be adapta
ble to a wide variety of applications. In addition to PDS,
the University of Oklahoma plans to make available data
bases on coal, geothermal, and minerals. These data bases
will be accessed via the same operating procedure as PDS,
creating a complete energy-information network.

The Petroleum Data System consists of information on
over 75,000 oil and gas fields in the United States and
Canada. The Petroleum Data System or PDS, as the group
of data bases is called, is a collection of publicly available
information on all oil and gas fields and reservoirs. These
data bases were developed over the past seven years by the
UDh:,er~il~LufOk.lahoulauod~ .contJ:acl to.thJ;;Uuitkif State~
Geological Survey.

Information from hundreds of published reports have
been incorporated into PDS, creating a library of computer
ized energy data. State annual reports are the primary
source of data. Supplementary sources include the Interna
tional Oil Scouts Association and state geologists. Federal
agencies such as the Federal Energy Administration, Fed
eral Power Commission, Energy Research and Develop
ment Administration, and Bureau of Mines are major con
tributors of data.

These files provide locations, geologic, engineering and
production information. They are being used to analyze
trends and risks, and perform economic evaluations and
enhanced recovery studies.

The University has chosen to use several existing soft
ware systems to help it accomplish its goal of a complete
energy network. These systems are generalized systems,
which have proved themselves adaptable to a wide variety

575

of applications. The use of existing software has freed the
University of many problems in program design and imple
mentation. It has also resulted in lower implementation
costs and lower operating costs.

PDS uses a highly sophisticated storage and retrieval
system called GIPSY. GIPSY was developed at the Univer
sity of Oklahoma and has been operational since July, 1968.
GIPSY is an acronym for General Information Processing
System. The computer environment used by GIPSY is a
mainframe of IBM 360 or 370 series operating under IBM
OS. It is an excellent system for handling the diverse types
of data in PDS, i.e., numbers, codes, and alphanumeric
character strings, both fixed length and variable length.

GIPSY has certain characteristics which are prerequisite
to the management of any large data base system. As I
mentioned before, the Petroleum Data System has over
75,000 records. A single record may have as many as 600
different items of information. Records vary considerably in
the degree of completeness. A typical record may have as
few as 25 items of information or up to approximately 300
items of information. GIPSY uses economical storage tech
niques, compressing all empty spaces from the file. GIPSY
takes advantage of binary searching techniques to locate
data and to decrease costs and computer time.
. , GIPSY ~q.1~9 . . h~s tb~Jl~X~Qm!x n~~e.§"~~n'. t9. haI).(jJc,Jh~
constantly changing facade of the PDS data. A set of utility
programs handle standard file maintenance procedures,
such as adding records to files, deleting records, creating
backups, restoring files, and updating files. The update
utility allows for the addition or replacement of data to
PDS. It also allows for the deletion and for the extension of
existing information such as a comments fields or a source
document.

PDS is continually being updated. New discoveries are
added to the file, and new sources of information are
continually researched to fill in missing data. Frequently it
is necessary to "restructure" the file by defining new data
items, or by deleting items which were defined and have
since been determined unnecessary. For example, we are
currently adding the latitude and longitude of the center
points of the fields to the records in PDS. These items were
not defined when the files were initially created. GIPSY
handles these new data items with ease. All that is neces-

576 National Computer Conference, 1977

sary is to add a new data definition to the file dictionary.
No special programming is required.

GIPSY is a complete retrieval system. It allows the user
to isolate from the mass of information that part which

. satisfies his immediate requirements. GIPSY has its own
retrieval language. It is a simple command language which
can be learned with a minimal degree of effort.

Two commands are available for searching data bases
and retrieving selected subsets of records.

SELECT will peruse an entire record file or the index of
the record file checking records for conditions which the
user specifies. As many conditions as necessary may be
specified. Conditions can be specified which simply check
records for the existence of a particular data item. Numeric
items can be checked to determine whether they are less
than, greater than, or equal to a given number, or to
determine if they fall within a given numeric range. An
alphanumeric item can be checked for a specific character
string, or for strings which fall within a given character
range. Boolean logic (and, or, not) is used to describe how
the conditions should be met in the records.

ITERATE will narrow a subset of records down to a
smaller, more specific set of records.

A command called SORT will order records in whatever
sequence is desired.

U sing a command called PRINT, records in the system
can be printed in their entirety in a predefined format. The
command LIST can be used to print only selected informa
tion from the subset of records.

Ths SUM command will generate sums, averages, maxi
mums, and minimums of specific items in a subset. The
COUNT command generates one way frequency distribu
tions.

GIPSY also provides a method of interfacing the data
with other processing systems. The COpy command will
output data in a fixed format defined by the user to tape or
disk. The data can then be manipulated in any manner,
either with special user-written programs, or interfaced
with statistical packages, plotting routines or report-writers.

GIPSY gives the Petroleum Data System an economical,
flexible, user-oriented retrieval mechanism.

The Petroleum Data System has been available to the
public since August, 1975. Initially, the University at
tempted to make the file available through its own in-house
computer time-sharing system. However, the response
from the industry was so overwhelming that the University
was unable to fulfill the needs of its customers.

In an effort to make the data more readily available to
users of the Petroleum Data System, the University of
Oklahoma has put the system on the General Electric time
sharing network. A validated customer may access the data
via a local telephone call from any major city in the United
States and cities in 20 foreign countries. The Petroleum
Data System is now accessible to any group, large or small,
government or private industry, on any scale they wish to
operate, from a country-wide study to a small area such as
a county or field.

The Petroleum Data System resides on the General
Electric remote batch system. This provides a significant

cost savings as opposed to the cost of trying to keep such a
large volume of data available in an on-line interactive file.

Among the PDS users there is a large variation in user
expertise. Typical users include geologists, consultants,
programmers, systems analysts, and geological secretaries
and librarians. To simplify the use of the remote batch
computer, an interface was developed between the fore
ground interactive time-sharing service and the remote
batch service. This interface, called a foreground driver,
sets up the IBM Job Control Language and the GIPSY
batch retrieval commands and automatically submits them
to the remote batch computer. The driver program also
monitors the job status, retrieves reports, and gives job
statistics.

In a typical terminal session, the user submits a joh to
select a subset of records and to output certain information
from those records. Generally, the user may log back on
the terminal within 30 minutes to an hour after the job has
been submitted to retrieve the results of the job. Printed
reports may be listed totally or in part at the terminal.
Large reports can be printed on the customer's in-house
high-speed printer, or printed at General Electric and
couriered to the customer's office. General Electric also
provides many statistical packages and report generating
programs which can be used for data manipulation.

PDS has been linked to an applications package devel
oped by Amoco Production Company. The Applications
Management System provides data processing, file inter
face, and display capabilities.

AMS is composed of many separate modules. These
modules perform specific functions, which are data inde
pendent and often have general application. This allows the
AMS user to develop custom solutions to a variety of
problems, depending on the manner in which the modules
are blended. Models have been developed for PDS which
will generate scatterplots, histograms, regression analyses,
trend analyses, and write reports.

Scatterplot, for example, will plot any two numeric items
from any data base in PDS. The user responds to a series of
questions asking for such information as the x,y coordi
nates and size of plots.

Sophisticated PDS/ AMS users have the ability to develop
models tailored to more specific needs. AMS provides a
uniform syntax to aid the user in communicating with the
data structure and the computer, thus simplifying and
streamlining the computer process.

The next stage of development will be to incorporate a
graphics package into the Petroleum Data System. This will
give users the ability to plot locations and assign symbolic
values to the graphics data.

Many other energy resource related data bases are being
developed including coal, geothermal, and minerals. It is
the plan of the University to make all of these data bases
available on the General Electric time-sharing network.
While the data bases differ substantially in file content and
structure, the customer will be able to use the same
operating procedure to access the data.

The result of all this has been a highly successful energy
information network. Using developed software has been a

distinct advantage. It has given us a wide range of flexibility
by allowing us to develop applications as the demand
arises. By molding these packages to meet the requirements
of the Petroleum Data System and the many other energy
related data bases, we have been able to provide our users
with a large variety of output options.

Much of the success of the system can be attributed to

Petroieum Data System <:''7'7
J I I

the energy. crisis and to an awakened realization by the
industry for the need to immediate access to a variety of
energy related data. It is our goal to encourage industry and
government agencies to cooperate in the exchange of infor
mation which might be used in the conservation and devel
opment of our resources.

Applications of SPARCOM data base concepts
to a crime combating environment*

by RON ASHANY
Thomas 1. Watson Research Center
Yorktown Heights, New York

ABSTRACT

In this paper only certain aspects of a powerful Data Base
System called SPARCOM, as reflected by some applica
tions in a crime-combating environment are presented.
SPARCOM stands for Sparse Associative Relational Con
nection Matrix. It is a method that was developed for the
analysis, interpretation, organization, classification, update,
and structure of stored data as well as for the search and
retrieval of information from large data base (LDB) sys
tems. The unique approach of this system is the conversion
of data into large sparse binary matrices that enables one to
apply sophisticated sparse matrix techniques to perform
data base operations. The operations are performed on the
matrices as though the entire matrix were present, but great
amounts of storage space are saved, and execution time is
significantly reduced by the storage and manipulation of the
nonzero values only. Additional reduction in storage re
quirements and in execution time is achieved by SPAR
COM's intrinsic normalization process that alleviates the
grave problem of data redundancy, caused by multi-value
attributes.

INTRODUCTION

At the current state-of-the-art, Data Base systems are still
largely the result of ingenious casual and often belated
attention to human factors, users' needs, system configura
tions and programming problems. The methods used in the
development and design of such systems are essentially
trial-and-error. No evidence is to be found in the technical
literature, describing existing systems, to indicate that the
development was based on a sound scientific foundation or
on well established engineering disciplines. Generally
speaking, no unifying concept, general theory, or common
systematic approach is as yet evident in work in the field of

* This work represents applications of some concepts. investigated as part of
the research, reported in the dissertation by R. Ashany, SPAR COM: A
Sparse Matrix Associative Relational Approach to Dynamic Data Structur
ing and Data Retrieval, submitted to the Faculty of the Polytechnic Institute
of New York in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Electrical Engineering) June 1976.

579

data base technoiogy. One of the major contributing factors
to the haphazard approach is the lack of distinction, during
the development phases, between physical and logical con
siderations.

Before contemplating the development and design of any
system, an appropriate conceptual framework must be
established. To understand and communicate the concepts
of such a framework certain definitions must be postulated.
Some of the definitions are precise and have been estab
lished on rigorous mathematical foundations, others are of a
generic nature and still others have been established to
provide a common base of reference. In the new field of
data base technology, there is no evidence of an existing
commonly agreed nomenclature. Many terms, introduced in
this paper are new, others were adopted from different
sources.

BASIC CONCEPTS AND DEFINITIONS

The digital computer cannot deal with physical objects,
optical images, events or abstract concepts directly. A data
model of the physical world or of the abstract concepts
which can be easily manipulated must be constructed first.

Tht: Data ~~f}1!r ~DTvf! is, ~h~ information ~,o.~~~J:l.~,_,?f. the
data base as It IS vlel;l.ed by the users. f.or exampie, a
Regular Data Organization (RDO) in an array form as
illustrated by the criminal file in Figure 1, is an accepted
form of representing data; therefore, it is a data model.

A collection of processable data from which an enterprise
can derive information is called a Data Base. A police
department, a hospital, a court of justice, a university, a
bank or any large-scale administrative, scientific, technical,
commercial or other type of operation is called an Enter
prise. An item of interest to an enterprise about which data
are recorded or computed is called an Entity.

In any given enterprise, there may exist different types of
entities, a criminal, a detective, a bullet's signature, a car, a
firearm, a crime, a portrait, a report, etc. Entities are
identified via their attributes. An Attribute is a specific
class of information about an entity; each entity has at least
one attribute. Because of their wide and frequent usage, a
number of attributes have been given names such as: Age,

580 National Computer Conference, 1977

~ 10 NANE CRIME A.Fu"l LOCATION * SEX EYES Li\NGUl\GE

1 John Murder A Detroit M Blue English

2 Claude Rape B N.Y.C. M Green English
Arm. Rob. French

German

-3 Robert Hijack D Houston M Hazel English
German

4 Nancy Homicide A Chicago F Blue English
I German

5 Ingmar Rape. D Detroit M Blue English
Murder Russian

S~vedish -I 6 Roberto Hurder A Chicago M Black English
Italian ·
Spanish

7 Narcel Kidnap. C N.Y.C. M Green French
Hijack German

Spanish

8 Johanna Drug Push E L.A. t-· Green English-
Arm. Rob. French

Spanish

9 Jurgen Kidnap. B Detroit M Blue English
Homicide German

Russian

10 Tom Drug Push. C L.A. M Hazel English
Arm. Rob. French

S\ .. 'cdish

*(Crime Location)
Figure I-Sample of regular data organization from a criminal file

Salary, Color, Sex, Weight, etc. There is a clear distinction
between the Attribute Name and Attribute Value. An entity
named car has an attribute named color, the value of the
attribute is blue. The ordered pair Attribute-Value is called
a Property. A collection of entities described by similar
attributes is called an Entity-Set. If an attribute assumes a
unique value for each entity in an entity set, it is called an
Identifying-Attribute. An entity may have several identify
ing attributes; e.g., Full Name, Social Security Number,
Employee Number. Prisoner Number, etc. The values of

identifying attributes are called Identifiers. Attributes
whose values can be calculated are called Virtual Attri
butes, such as Age; subtracting from the current year the
year of birth the age value is determined.

In the regular data organization of the criminal file,
illustrated in Figure I, each row in the array belongs to a
specific entity, E1 ,E2 " •• ,Em. Each column belongs to a
specific attribute; A 1,A2 , • •• ,An. Each element of the
array is associated with a specific entity E j and a specific
attribute Aj and represents a specific value Vij selected from

a finite set of values pertaining to attribute A j • The set of
values pertaining to attribute Ai is called the Domain Dj •

The domain of attribute sex contains only two elements
(M,F); the domain of attribute eyes (meaning eye color)
contains five elements (black, blue, brown, green, hazel);
the domain of attribute language is much larger; it contains
all languages spoken in the world. A distinction should be
made between single-value attributes and multi-value attri
butes. An entity can possess only one element from the
domain of a single-value attribute, but it can possess one or
more elements from the domain of a multi-value attribute.
Sex and eyes are single-value attributes; language is a
multi-value attribute. The multi-value attributes cause seri
ous problems in some existing approaches for searching and
retrieving datal- 3 but, they cause no problem whatsoever in
SPARCOM.

The ordered triple (Ei,Aj , V ij) represents an elementary
data item which is the minimum amount of data required
for meaningful information. The ordered pair (A j , V ij) rep
resents the property Pij. Consequently, the ordered pair
(Ei,Pij) represents an elementary data item. Let's illustrate
the meaning of the minimum amount of data required for
meaningful information; the entity John by itself does not
represent meaningful information, the property Eyes Blue
does not represent by itself meaningful information, but the
triple John Eyes Blue is meaningful and precise. It is an
elementary data item. The elementary data item (Ei,A j , Vij)
is also known as the Atom of information because it cannot
be further decomposed without losing its message.

MULTI-DIMENSIONAL ATTRIBUTE-SPACE MODEL

An entity can be represented as a point in a multi
dimensional Euclidean space by a vector. The six-tuple
El(John,23,S.IO,lS0,M,Blue) is a vector representing a
point in a six-dimensional space and it can be interpreted as
a person possessing the properties Name-John, Age-23,
Height-S'lO", Weight-ISO, Sex-M, Eyes-Color-Blue.

The notions of point, line, and plane from the fami1iar
three-~dimensionaispace may oe generallzea to 'hignerui
mensional spaces, and extended geometric interpretations
of algebraic relationships may be given. Starting with a
three-dimensional space, an entity set consisting of "m"
entities can be envisioned as a set of points with corre
sponding coordinates described by a set of ordered triples
Ej(Vil , Vi2 , Vi3) where i= 1 ,2, ... ,m. The values Vil' Vi2 , Vi3 ,

are selected from the respective domains of attributes
A 1,A2 ,A3 • For example, the attributes Age, Height, Weight
can represent the respective orthogonal axes A, H, W. The
first octant of the space is bounded by the three orthogonal
planes; Age-Height, Age-Weight; and Height-Weight or
AH, AW, HW, respectively. The triples

Eo(O,O,O); EA(1,O,O); EH(O, 1 ,0); Ew(O,O,1)

represent the Origin and Unit points, respectively. To
represent the aforementioned properties of the first four
entities from a specific set, the following four triples are

needed:

SPARCOM Data Base Concepts 58 i

E1(23,S.IO, ISO); E2(3S,5.11, 170);
E 3(27 ,6.02,210); E4(19,5.04, 130)

Each tuple represents a vector from the origin to a specific
point in space. Each point can be projected on any of the
three orthogonal planes. The 3-tuples

E 1(23,S.IO,0); El(23,0, ISO); El(0,5.1O, ISO)

represent the projection of the first point on the AH, A W,
and HW planes, respectively. They also represent the
projection of any points that may be found along the
respective perpendicular lines through the points of projec
tion. Clearly, any entity with properties Age 23 and Height
5' 10" regardless of its Weight will be projected on the same
point on the AH plane, the discussion is similar for the
other planes. Much in the same manner the tuples

represent the projection of the first point on the A, H, and
Waxes, respectively. They also represent the projection of
any points that may be found on the respective planes that
are perpendicular to the respective axes and intersect them
at the points of projection. Actually, the triple E 1(0,0, ISO)
represents a plane parallel to the AH plane (perpendicular
to the W axis) and intersecting the W axis at ISO. The triple
E 1(23,0,lS0) represents a line parallel to the H axis (perpen
dicular to the A W plane) and intersecting the A W plane at
the point (23, ISO).

QUERIES AND SEARCHING HYPERPLANES

Following the same line of reasoning, it may be said that
in a three-dimen~ional space, a 3-tuple Q(V1 , V2 , V3) can be
interpreted as a Query (an interrogation, a question) ad
dressed to the data model. The request of the query is to
search all entities represented by the points that coincide
with the point specified by the coordinates of the query
Vector Q. This is defined as the S earrhing Point Query.
Eachotthe j-tupies ~Q(O, V;.'\/3); Q('V1,O,'t'3);d Q("'1' V;:OJ
represents a query vector that requests the search of all
entities represented by the points that their projections
have the coordinates (V2 , V3); (VI' V3); (VI' V2) on the orthog
onal planes.

Obviously, in the multi-dimensional Euclidean space, the
entities and queries are represented by ordered N-tuples.
The five tuple Q(V1 , V2 , V3 , V4 , Vs) represents a searching
point query in a five dimensional attribute space. The tuples
Q(VI' V2 ,0, V4 , Vs) and Q(V1,0, V3 ,0, V4) represent searching
lines and searching plane queries, respectively, while the
tuples Q(V1 ,0, V2 ,0,0) and Q(O, V2 ,0,0,0) represent 3-flat and
4-flat Searching Hyperplane queries respectively.

From this discussion, it should be obvious that the search
is based on the content of the entities, rather than on their
addresses, and that the entities that qualify are determined
by the association that exists between the properties
contained by the entities and those specified by the queries.

582 National Computer Conference, 1977

The query vectors must have the same dimensionality as
the entity vectors searched by them. A collection of t query
vectors is called a Query Set and is represented by an tXn
Query Matrix. Query Complexity Degree (QCD) is defined
as the number of non-zero elements specified in the query
vector. The QCD should not be confused with the Request
Complexity Degree (RCD) which is determined by the type
and number of properties, operators and operations re
quired to get a complete response. The RCD will be defined
in another section when the meaning of type of operators
and type of operations will be better understood. To
illustrate the meaning of QCD; the entity set defined by the
attributes, Age; Height; Weight is interrogated by the
following three requests:

Ql(2 i ,O,O)-Identify ail criminals of age 21.
Q2(35 ,5 .11 ,O)-Identify all criminals of age 35 AND Height
5.11.
Q:/27,6.02,21O)-ldentify all criminals of age 27 AND
Height 6.02 AND Weight 210.
Q 1 is a simple query QCD= 1 and it requires the search of
only one domain.
Q2 is a complex query QCD=2 and it requires the search
of two domains, retrieving two subsets and retrieving the
subset that results from the intersection of the previously
retrieved two subsets.
Q3 is a complex query QCD=3, the same as for Q2, but
with three domains.

If the request is to identify all criminals of age 21, and
retrieve the names of all criminals who live in the same
cities as those of the identified criminals, and speak Span
ish, the request indeed starts with a simple query over one
domain, but, imbedded in the request are complex queries
that require the search of additional entity sets over differ
ent domains; obviously, the RCD should reflect the neces
sary interactions ..

Another type of query known by the name of Range
Query specifies a range of values over a domain rather than
one specific value. For example, the request to identify all
criminals between the age of 21 and 24, when the age is a
discrete type attribute with a domain of positive integer
numbers in increments of one year, the query has an
QCD=4, because in this DM, the request has to be formu
lated as "identify all criminals of age 21 OR 22 OR 23 OR
24". In this data model, if there is a number r of ORs in the
request, what appears to be one query has actually to be
split into q=(r+ 1) queries. The four 3-tuples representing
the above mentioned request are

Ql(21 ,0,0); Q2(22,0,0); Q3(23,0,0); Qi24,0,0)

and four subsets representing the points found on the four
parallel planes will be retrieved. The subset obtained by the
union of the retrieved subsets will represent the requested
answer.

A similar situation will occur when the request deals with
a multi-value attribute. For example, assuming that the
entity set belongs to a 4-D (four-dimensional) attribute
space, and the request is to identify all criminals who speak

English AND French, the query will have to be split into
two 4-tuples

Ql(O,O,O,English) and Q2(0,O,0,French)

but the subset representing the result will be obtained by
the intersection of the two subsets.

It is to be emphasized that the AND operators as
opposed to the OR operators do not require the splitting of
the query except when a multi-value attribute is involved.
The request to identify all criminals who are males AND
have blue eyes AND speak English AND German ad
dressed to a 3-D entity set will be satisfied by splitting the
query into two 3-tuples; i.e., Ql(M,Blue,English) and
Q2(M,Blue,German). The split is caused by the AND of the
multi~value attribute and the answer is obtained
intersection of the two respective subsets.

SEARCH DIFFICULTIES IN THE RDO MODEL

1.. 1.._ uy un:;

In the RDO model where numeric and alphanumeric
values appear in the same array it is very difficult to
perform a search simply by comparing the corresponding
elements of the entity vectors and query vectors. The
search process can be greatly facilitated by encoding all
alphanumeric values into pure numeric values. For exam
ple, the values of the crime attribute can be encoded so that
Murder = I, Rape = 2, Homicide = 3, and so on; the
values of the eyes-color attribute can be encoded so that
Black= I, Blue=2, Brown=3, Green=4, and in the same
manner for all attributes with alphanumeric values.

Assume that each entity and each query, represented by
numeric vectors only, are structured into an m x n matrix
called E and into an t x n matrix called Q, respectively, and
that the n attributes are single-value attributes only. To
perform a search becomes a simple task. It requires deter
mining whether the number of identical elements, when
comparing corresponding elements of an entity vector and a
query vector, is equal to the number of non'"zero elements
specified in the query vector. If the answer is positive, it
indicates that the respective entity is represented by a point
found on the searching hyperplane. Algebraically, if E=[eij]
and Q=[ekj] are the two matrices, and denoting the compar
ison of identical elements (eij=ekj) = 1 and non-identical
elements (eij*ekj)=O, the above condition is met if and only
if (iff)

n

2: (eij=qkj)=tk where tk=n- Zk and tk-:5n
j=l

Zk being the total number of zero elements specified in the k
query vector.

The total search process can therefore be performed by a
Generalized Inner Product (GIP) between matrices E and
Q. The GIP permits the use of any dyadic operator between
corresponding elements of two matrices where the only
necessary condition is, as usual, that the two matrices must
be conformable (the number of columns of the left matrix
must be equal to the number of rows of the right matrix).
Two among many acceptable GIP forms (in the APL

language) are:

A+.xB; and A+.=B

The first form is the known matrix product, the last form is
the one used to perform the search described above.

By "post-multiplying" (using the GIP+. =) the entity
matrix E by the transpose of the query matrix Q a response
matrix R of m x t dimensions is obtained. Denoting by QT
the transpose of Q

n

R=E+.=QT rik= L (eij=qjk) and rik-:5,tk
j=l

where i=I,2, ... ,m j=I,2, ... ,n k=I,2, ... ,to The
point representing entity i is found on the searching hyper
plane defined by query vector k iff rik=tk. Clearly, each
column of the R matrix contains the answer to the respec
tive t queries. If rik<tk the indication is that entity i has
only rik identical properties with those specified in the
query vector k. According to the user's needs entities can
be retrieved for any r ik value.

MULTI-DIMENSIONAL PROPERTY-SPACE MODEL

To illustrate the strength of the model developed and
described in this section, a specific case must be analyzed
first. In the section that describes queries and searching
hyperplanes in the RDO model, the Range Query was
discussed. This is one type of query that is most frequently
used in searching criminal files. A witness may describe a
criminal in the following terms: Age between 18 to 24,
Height between 5.07 to 5.11, Weight between 170 to 190,
Male, Caucasian. The ranges specified for the Age, Height
and Weight attributes indicate that there is a certain Degree
of Uncertainty (DOU). Assume that age is stored in incre
ments of one year, the height in increments of one inch and
the weight in increments of 10 lbs., and the DOU for each
attribute is defined as the number of nonzero values within
the respective specified ranges minus one. (The minus one
comes to indicate that at least one value has to be always
specified.)
·"l~··ti;·eg~ve~ example, the DOL's are O. 4 and 2, respec
tively. As explained previously, each range causes the
query to be split. In this particular case, the query has a
QCD = 7 + 5 + 3 = 15; theoretically, at least 15 queries are
needed to retrieve the set of criminals that qualify. The
following process has to be invoked: (1) Structuring a 5-D
subschema of attributes Age, Height, Weight, Sex, Race;
(2) Formulating three 5-tuples (0,0,170,M,Cauc.) (0,0,
I80,M,Cauc.) (0,0,190,M,Cauc.); (3) Retrieving a subset of
entities obtained from the union of the three previously
retrieved subsets; (4) Searching the retrieved subset by five
5-tuples of the form (0,V2 ,0,0,0) where V2=5.07,
5.08, ... ,5.11; (5) Retrieving a subset of entities obtained
from the union of the five previously retrieved subsets; (6)
Searching the last retrieved subset by seven 5-tuples of the
form (V1.O.O,O.0) where V 1= 18.19 24; (7) Obtaining
the subset of entities that represent the answer, from the
union of the seven previously retrieved subsets.

SPARCOM Data Base Concepts 583

The same result can be obtained by formulating 105 5-
tuples queries (g=7X5x3= 105) of the form (Vt , V2 , Va,M,
Cauc.) obtained from the Cartesian product VI x V2 X Va
where V 1{18,19, ... ,24}; V 2={5.07,5.08, ... ,5.11} and
V a={170, 180, 190}. The final subset that represents the
answer is obtained from the union of the 105 previously
retrieved subsets.

Despite the use of computers where the union, intersec
tion and all other operations can be easily performed on
large number of sets, the approach just described for
handling one request appears to be too complicated, more
so when many similar requests have to be satisfied over a
short period of time. The solution to this problem, to
problems previously described and to additional stringent
requirements is found in the multi-dimensional property
space model, represented by the extended binary vectors
and the binary connection matrices.

THE BINARY CONNECTION MATRIX

An n-D attribute-space containing A 1,A2,' .. ,An attri
butes, with their domains of distinct elements
D1 ,D2 , • •• ,Dn of cardinality d1 ,d2 ,. •• ,dn, respectively,
can be transformed into an N-dimensional property space
where N = ~f=l d; represents the number of distinct proper
ties P 1 ,P2 ,. •• ,PN necessary to map any point from the n-D
attribute-space into the N-D property-space. Obviously N
is larger than n, and to represent a point in a multi
dimensional Euclidean space requires many more coordi
nate axes, thus larger vectors. In the property space,
however, only two distinct points exist on each axis; zero
and one, and each coordinate axis represents a specific
property.

An entity that is described in the attribute-space by n
single-value attributes; i.e., by an n-tuple, is described in
the property space by a binary N-tuple with n one values
and N-n zero values. The one values are inserted in the
positions representing the applicable properties. Since the
cardinal number of attribute Sex is two (M,F) and the
cardinal number of attribute Eyes-color is five
~rslacr. Biue ,HfOwn :Gi:een J1"<1zeTltnc Cmil)· ~\il1i "Pi:ljPt:l~Gt:;
(M,Blue); Le., Sex-M and Eyes-Blue is represented by the
7-tuple EO ,0,0, I ,0,0,0). The 2-tuple is transformed into a 7-
tuple with two nonzero elements, and if the single value
attributes would have respective cardinal numbers, say,
d l = 10 and d 2= 12 the 2-tuple from the attribute-space would
be transformed into a 22-tuple in the property-space, again
a binary vector with two nonzero values but 20 zero values.
These vectors of the property-space are called Extended
Binary Vectors (EBV) and they are usually very sparse.

A set of m entities will be described by a m x N binary
matrix called the Binary Connection Matrix (BCM), be
cause its nonzero elements indicate the connection that
exists between each entity and its respective applicable
properties, it is more specifically called the Binary Property
Matrix (BPM). One important feature of EBV is that single
value attributes and multi-value attributes are represented
by one and the same vector solving the serious redundancy

584 National Computer Conference, 1977

problem described previously. The 6-D attribute-space (the
name-attribute is considered a unique identifier) of the
criminal file from Figure I, is transformed into 32-D prop
erty-space as illustrated in Figure 2. The corresponding
BPM is illustrated in Figure 3. Obviously, in this matrix
numeric and alphanumeric values are represented in the
same manner, there is no need for special encoding as in
the RDO model since the nonzero bit position implies the
value.

The matrix is very sparse and this is another advantage
because the application of sophisticated sparse matrix tech
niques not only provides the capability to save in storage
requirements (only the nonzero elements are stored) but it
provides the means to perform very efficient operations on
the matrices (only the nonzero elements are operated on) as
indicated in References 4 through 7.

Among other advantages the binary matrices enable one to
use Boolean Algebra algorithms to solve data base prob
lems (see References 8 and 9), to eliminate the difficulties
of the range-query, to gather statistical data, to determine

CRIMES l\RM TYPE

tJ'I .
'-= ~ .C .0

0) • .-1 If) 0
'U O. • .-1 ::1 CY.

~ • .-1 o. :1, Pf
CJ 0 rJ 0 '0

~I·~ r: (!) !U tJ <lJ
~ ~ 't.l 0 'n :J (:
::1 0 '.-1 rj • .-1 \..l H -- ...,.. ::.:: ~ :r: 0 ~: A I3 C D "tot

10 NAl1E
1 2 3 4 ~ C 7 1 2 3 4

1 John 1 1

2 Clilude 1 1 1

3 Robert 1 1

4 Nancy 1 1

5 Ingmar 1 1 1

6 Roberto 1 1

7 Harcel 1 1 1

8 Johanna 1 1

9 Jurqen 1 1 1

10 Tom 1 1 1
1 2 3 4 5 6 7 8 9 0 1

10

.Ccrime Location)

E

5

1

2

the relationships among all entity pairs and all property
pairs, to assure privacy and security and many more.

Just looking at the binary matrix of Figure 2, one can
scan the rows and see the applicable properties of each and
every entity, but scanning the columns enables one to
determine all entities that have a specific property. This is
the most important feature of the fully inverted files, where
for each and every property, a list of entities possessing the
property is maintained. Therefore, the BCM in the prop
erty-space represents both a direct file and a fully inverted
file at the same time, which is a very significant feature, to
be fully taken advantage of in this investigation.

SEARCHING THE PROPERTY-SPACE

The search in this model is performed much in the same
manner as the search in the attribute-space model. The
query vector must have the same dimensionality as the
entity vector, it indicates the coordinates of the projection

LOCATIONS SEX EYE COLOR LANGUAGES

~l c
0

rl1 ~y. ~
o ~ C VI ~ v' ..c:: c s:: .c .c
VI . .-1 0 r: 0 t: t.'1 .c C rj rj V1 (''J
rtl 0 ~J d. ~ . .-1 ..Y. C s:: r-I . .-j 0 rj ... ~ i . .-j . .-j . ..;
0 ~ V1 ..r: 0 OJ ~ CJI CJ'.-j s:: E: ..-II t.') c: 'V

• .-1 ~J :.:l V1 '> V1 rj ::1 0 <lJl N I U' CJ ~ r; 1 ~1 r: (.J

.r: ill 0 0 iii rij .-j r-I H HI nl t.: H \.) .., :l C. ~
u a :.r; ~ z 2; 1-1 F co m a:J {j ::.: I [4.l C:.. 0 H ~ :J) U)

1 2 3 4 5 G 1 2 1 2 3 4 5 1 2 3 /1 5 6 7

1 1 1 1

1 1 1 1 1 .1-f-.

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 11

1 1 1 1 1 I 1
3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

20 30

Figure 2-The binary property matrix of the RDO ~amp!e

1 O.eR
10000001000001000010001001000000
ooo100i0100000001010000101110000
00001000001000100010000011010000
01000001000010000C01001001010000
10010000001001000010001001000101
10000010000110000010100001001010
00101000010000001010C00100110010
00000110000100010001000101100010
01100000100001000010001001010100
00000110010000010010000011100001

Figure 3-The binary property matrix (compact form)

point, on the hyperplane defined by its nonzero values, that
all entity points must have in order to qualify. Denoting the
mxN entity matrix by E and the txN query matrix by Q,
the search process is performed again by a generalized
inner product (GIP) between the E=[e,ij] matrix and the
transpose of the Q=[qjk] matrix named QT. By post multi
plying E by QT the mxt response matrix R=[rik] is ob
tained. This time, however, a regular matrix multiplication
is performed, because the search criterion requires deter
mining the number of corresponding nonzero elements
between the entity vector and the query vector (i.e., the
number of identical properties specified in the two vectors)
and, for binary vectors

eij x qkj= 1 iff eij=I and qkj=I;

for other cases eij=qkj=O

N

rik= 2: eijXqjk
j=l

The number ofmmzerovatue~ specified in a H:..:lor i~ ~aned
the weight of the vector, the weight of vector Qk is tk. The
matrices in Figure 4 illustrate the searching process.

The Negation Query is another efficient form of file
searching. Rather than specifying in the query the proper
ties that an entity must have, the one values in the query
indicate the properties that the entities must not have. For
example, the hijacker does not speak English, French and
German. By post "multiplying" E by QT using a GIP form

R=E+.<~ which is

...
rik= 2: (eij<'Lk) rik:::;tk

j=l

The Range Query. Let attribute Age have six distinct
values; 20,21, ... ,25 and attribute Weight, four distinct
values; 160,170,180,190. In the property-space the
Age,Weight attributes for m entities are represented by m

SPARCOM Data Base Concepts 585

IO-D binary vectors representing the respective property
positions

P (20,21,22,23,24,25,160,170,180,190)
E1 (0, 0, 1, 0, 0, 0, 0, 1, 0, 0)
Ql(0, 1, 1, 1, 1, 0, 0, 1, 1, 1)

The E 1 entity vector represents a criminal of Age-22 and
Weight-170, all other (m -1) entity vectors have two non
zero values at different positions. The Ql query vector
represents the range query for the identification of all
criminals of age between 21 to 24 and weight 170 to 190. By
post multiplying the mX 10 entity matrix by the transpose of
the Ql query vector, an mX 1 R1 response vector is ob
tained. The elements R i1 ; i= 1,2, ... ,m of the response
vector have values of 0, 1, or 2. Clearly, only entities
associated with Ril =2 qualify, that Rll =2 is obvious. As
seen in this particular case, the weight of the query vector
is tk=7 and rik'S.2, the cause is selfexplanatory.

Thus, this is the simple and elegant solution to the
complicated range-query problem postulated at the begin
ning of a former section. Instead of 15 queries and the
necessary set-operations, or instead of the 105 queries with
their set-operation, one and only one query vector with a
weight tk = 17 will produce a response vector with elements
rik'S.5, and all the entities with rik=5 will qualify. This is
illustrated in Figure 5, where a number of range-queries
searched simultaneously the entity set.

The OR-Query. In the RDO model the OR operator
always causes a split of the query, in the BPM model it

1 O'fQ
10000001000001000010001001000000
00001000001000100010000011010000
100100000010G1000CI0001001000101
00000~1000010001COOI000101100010

00000110010000010010000011100001

TK++/Q
'TK

67999

RQ+CR+. x ~Q
RQ

6 2 5 1 2
2 3 3 4 4
2 7 3 1 3
3 2 2 2 1
5 3 9 1 3
3 2 3 4 3
1 3 1 3 3
1 1 1 9 5
4 3 5 1 2
2 3 3 5 9

Figure 4-The searching process, query and response matrices

586 National Computer Conference, 1977

AHWSRB IS A BINARY MATRIX mODUC FDBY THE LAMINATION OF AG E HGT. WGT.S EX AND RAe E
Q10 IS A BIlIARY QU FRY MATRIX THAT CONTAINS FIV E; RANG E QU ERI E5
GIL IS A FUNCTION THAT ID FRTIFI E) EJvTl"TI FS THAT QUALIFY FRON T8 E RES PONS E MATRIX
TH E L U'T ARGUU ElIT OF GIL CONTAINS TlJR ESHOLD VALU ES FOR TH E R FE PFCTIV E QU ERI FS
COL U /1,11 S 1 - 32 R E ER ES EN T THE A G ECJ 18 Y R S • - 50 Y R S •
COLUI111S 33- 51 REmESENT HEIGHTS 60 INClI. -78 INCH.
COLUf.JIIS 52-67 RElflFSElJT flEIGHTS 100 LBS. -2 50 LBS.
COLVI,fllS 68-69 R ETR ES [lIT TlI E SEX M AND F RES PECTIV ELY
COLUl1lJS 70-73 RE'lUl:SElJT RACES CAVC., EURAS. NEGRO ORIEN.

1. O,AIHISRB[14;]

~
0000100000000000000000000000000~0000000001000000o'OOO00000010000ooo~oOOOI

00000000000000000100000000000000 000000000010000000000000010000000010100
00000000010000000000000000000000 000000000000010000000000000001000010000
0100000000000000000000000000000000001000000000000000001000000000000 1100

1 O'Ql0

1
111111000000000000000000000000000000001111100000060000000111000000'!'OI'10001

0001111111000011110000000000000000000111111111110000000111111111000101100
0000000000000000000000000000000011111111000000000001111110000000000 11000
0000000000000000000000001111100000000000000000000000011111000000000 01111
1111111111111111000000000000000011111111000000000000001111111110000 1 000

R10+AHWSRB+.xQQ10
R ElO+ 5 5 4 4 5 GIL RiO
R £10 [; 124]

9 0 000 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0
2 12 17 23 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 20
o 0 0 0 0 0 0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 20 23 0

Figure SA-Search by range queries

depends on the form of the request. To identify all criminals
of age 27, height 5'10" and blue or green or hazel eyes
requires the formulation of one query vector, of weight
tk=5; the entities that qualify have an rik=3. The same
request, only this time for criminals of age 27 or 28 or 29,
will require again one query of the same dimensionality
with a tk =7 and rik=3. Actually, these OR queries are range
queries. But, if the request is age 27, height 5' 10" and blue
or green eyes, or age 28, height 5'10" and green or hazel
eyes, or age 29, height 5' 10" and blue or hazel eyes, three
separate queries are required.

Denoting attributes Age, Height and Eyes Color by A, H
and C, respectively, and using switching theory notation,
the three requests can be formulated as

(I) A1H1(C1 +C2+C3)
=A1H1C1 +AIHIC2+AIHIC3~3 triples

(2) (AI +A2+A3)H1(C1 +C2+C3)
=A j H1C1 + A tH1C2 + ... + A3HIC3~9 triples

(3) A1H1(C1 +C2)+ A2H j(CZ+C3)+ A3H1(C j +C3)
=AjH1C1 + AtHjCz+ ... + A3HIC3~6 triples

Obviously, all entities that can be projected in any of the
three points specified by the triples of the first request will
qualify for the first, second and third request, all the
entities that can be projected in any of the six points
specified by the third request will qualify for the second and
third requests but not all entities that qualify for the second

request will qualify for the first and third requests. In the
property-space, m entities can be represented by a sub
schema that contains all the properties specified in the three
requests by m, 7-D binary vectors representing the respec
tive property positions associated with each entity. Each
and every entity can have a maximum of three nonzero
values, because Age, Height and Eyes Color are single
value attributes.

P(Al,Az,A3,Hl,Cl,CZ,C3)
E1(1, 0, 0, 1, 0, 0, 1)
Q10, 0, 0, 1, 1, 1, 1)
Q2(l, 1, 1, 1, 1, 1, 1)
Q;O, 0, 0, 1, 1, 1, 0)
Q~(O, 1, 0, 1, 0, 1, 1)

Q;'(O, 0, 1, 1, 1, 0, 1)

It is apparent, however, that while the Q 1 query vector
defines the three necessary triples and the Q2 query vector
defines the nine necessary triples, to define the six neces
sary triples for the third request three separate queries
Q;,Q~ and Q;' have to be formulated. This is required in
order to exclude the three underscored triples from the nine

AIHjCj;AIHICZ;AIHIC3
A2HICj;A2HIC2;AzHIC3
A3Hl C1 ;A3Hl C2;A3H1 C3

possible triples. The response to the third request is ob
tained by taking the union of the three subsets retrieved by

Q~,Q~ and Q~'. Observe that entity El that possesses the
projection A l H 1C3 , qualifies for the first and second re
quests but does not qualify for the third. Informally, it may
be stated that the number of separate queries to be formu
lated is equal to the number of members in the left-hand
side of the equation.

SP ARCOM Data Base Concepts 587

HUMAN-FACE IDENTIFICATION

Human-face features of a large population can be stored
in a computer. The problem is how to structure the data so
that an efficient search can be performed to identify an
individual when a number of features is specified, or how to

TN E ID ENTIFI m·s FROM R £10 AR E US FJ) IN TH E FOLLOWING TABL IS

Vi
ID AG E HEIGHT W EIGllT SEX

Tl
I D G [I; JAG G [I; J H EG [I; J W EG [I; J S EX G [I;]

ID
9

I-+-RE.10[l;1)

Vl TABL E Tl
AG E HEIGHT

18 5. 11

Vl0

WEIGHT
190

SEX
M

ID NAM E AG E H EIGHT II EIGHT SEX RAC E
Tl0

IDG[I;] NAUC[I; J AGG[I;] H EG[I;] W EG[I;] S EXG[I;] RAC EG[I; J

ID
2

12
17
23
27

I-+-RElO[2;t5]

Vl0 TABL E Tl0
NAME AGE

CLAUDE 35
MARK 24
RUDY 2 5
G BALD 32
DONALD 26

I-+-R ElO L 3 j \ 2]

VlO TABLET10

HEIGHT
5. 11
5. 06
6. 03
5. 06
6.01

ID NAN E AG E HEIGHT
4 N AN C Y 1 9 5. 04

20 JULIA 24 5.05

ID
4

20
23

I+-R E1 0 [5; t 3]

VlO TABL E Tl0
NAME AGE

NANCY 19
JULIA 24
GERALD 32

H EIGllT
S. 04
S. 0 5
S. 06

IlEIGHT
170
1 50
210
150
220

WEIGHT
130
140

WEIGHT
130
140'
160

SEX
U
M
J.1
J.1
J.1

SEX
F
F

SEX
F
F
M

Figure 5B-RetrievaI after range query search

RACE
CAUCASIAN
EURASIAN
CA UCASIAN
CAUCASIAN
EURASIAN

RAC E
CAUCASIAN
CAUCASIAN

RAC E
CAUCASIAN
CAUCASIAN
CAUCASIAN

588 National Computer Conference, 1977

classify individuals in distinct classes as a function of their
features. A few researchers have investigated the prob
lem.IO,11 It appears, however, that more efficient methods
are needed to obtain a quick answer, especially when many
different descriptions are to be considered simultaneously.

Structuring the data in a binary property-matrix form, as
illustrated in Figure 6, and Figure 7, provides the means for
fast identification and classification. The tables are self
explanatory, the attributes can be permuted in any order so
that many different sub-schemas can be derived. If a
witness describes a criminal that had his face covered from
the nose down, only the hair, eyebrows, eyes, forehead and
ears are needed in the sub-schema. A witness may describe
a criminal without being able to assign a specific value to
each and every feature; in other words, features may be
described with different degrees of uncertainty (DOU). For
example, describing the nose, the witness may say that he
is not sure if the nose-length should be considered as short
or medium and if the profile is concave, straight, or
somewhere inbetween. In this particular case, these attri
butes will be covered by a range-query of the form (I, I , I ,-
0,0,1,1,1,0,0).

The strength of the method is not restricted to the
capability of applying range-queries to each and every
attribute at once, so as to overcome the uncertainty prob
lem. Assume that several witnesses describe the same

FOREHEAD CHEEKS CHIN HOUTH

Profile Width Lit
t; ..-4

gl
0'1 +l

~ rj ti ~ .r: 0'1
'1"1 u ~ r: .,...j 0' ~ r: 0)
'0 '1"1 '1"1 CJ '(1 'r-! .,...j .-l ~ & k -BI ~ Q ~ ti ~ l-l .-l CJ I'j oW .-l • ..-1

0 1.1 ..-4 0;:, CJ ..-4 0 1.1 oW nJ 'U 1.1 ef·..-I I :::

:CJ Q :1 :11 !> :1 (!) oW ::;j G QI rJ (;, QlI 0
Ie: > en Vl r::: r....O:: Vl IJ Vl :~: H':J. Z:J

10
1 2 J 4 5 1 2 3 'I 5 1 2 3 4 5 1 2 3 'I 5 1 2 3

1 11 I I 1 11 1 1

2 1 1 1 1 1

3 1 1 1 1 1

.,
1 1 1 1 1 ..

5 III 1 1 1

6 1 ! 1 1 1 1

7! 1 1 1 1 1
I I

8: 1 1 I I 1 I 1 1

911 1 1 1 1

10 I 1 I 1 11 1 1
4 5 6 7 8 9 0 1 2 3 4 5 617 8 9 0 1 2 3 -4 5 6

40 50

.(Lip Overlap)

criminal, or a number of criminals, with different DOUs,
the process of interrogating the entity set with many queries
concurrently, called a parallel search, provides the capabil
ity to check a number of alternatives, as illustrated in
Figure 8.

Distinctive features are easily discovered in this model by
calculating a figure of merit called the Degree of Distinction
(DOD). Assume that an mxN matrix E=[eij] contains the
data of m human faces, some of the N features are
associated with fewer faces than others, these are the more
distinctive features. The DOD for each and every property
can be calculated by dividing the column vector weights of
the E matrix by m,

The lower DODU) values indicate the most distinctive
properties Pj, which are very important indicators in deter
mining the features to be described in a query to get the
most pertinent answer.

The human face file contains n single-value attributes
(eyes-opening, eyes-separation, eyes-color are three dis
tinct attributes) and considering that the row vector weights
of an n-attribute entity set is Lj'~l eij=n, the degree of
uncertainty reflected by each query vector of a Q=[qkj]
query matrix that interrogates the E=[eij] entity matrix can

NOSE EARS

Len:rth Profile Tip Lenath Protusion
+l

.~111 J ~I (!) .r:
E; !> .~ '0 '0 e e

~ ::;j rJ CJ l-l ::;j

~~ ::l g
l-l 'r-! tJ'l 0 rJ ~ r;l '''; . ..;
o 'U c: C 1.1 o ::: HI '~I '0 g :;1 '0 \.i
.C: QI 0 01 oW o p 0 1 01 .c; CJ CJ "J
Vl :s H (,)/ Vl :::~ ::: 0 CJ">I :;: ...:: Vl ~ H

1

1 2 3 'I 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 4 5

1 I 1. III 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
I

I
I' I ! I I I

1 I 1 1 I 1 11

1 1 1 1 1

1 11 1 1 I I 11
7 8 9 0 1 2 3 4 5 6 7 8 9 0 123 Lt 5 6 7 8 9

60 70

Figure 6----Additiona! features of human-faces

SPARCOM Data Base Concepts 589

MN E
/tJOUTli NOSE EARS

0 0 0 0 1 1 () 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 a a 0 0 1 0 0 a 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 a 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 o 0 1 0 0 0 1 0 o 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 o 0 0 1 0 0 1 0 o 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 o 1 0 o 0 1 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 1 ·0 0 o 0 1 0 0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1

FCC..-FOR ,eH·Ej CHI NOS Ei-NOL ,NO P.NOT
1 0 000 o 0 0 0 1 0 1 0 0 0 0 1 0 o 0 o 0 100 0 1 0
0 1 o 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 o 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
0 1 o 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 0 O' 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1

MOUTH~-MO ~l ,1·10L FARS+ D.L , E4 P
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 100
0 1 0 0 0 0 0 1 0 1 0 0 0 o 0 0 0 1
0 0 0 1 0 1 0 0 0 0 o 0 1 1 0 000
1 0 0 0 0 0 1 0 1 0 0 0 0 000 1 0
0 0 1 0 0 0 0 1 0 0 0 1 0 o 1 000
0 0 0 0 1 0 1 0 1 0 0 0 0 o 100 0
1 0 0 0 0 0 1 0 0 .1 0 0 0 1 000 0
0 0 1 0 0 1 0 0 0 0 1 0 0 o 0 100
0 0 0 1 o 0 1 0 0 0 0 1 0 000 1 a
0 1 0 0 o 10 0 1 0 0 0 0 1 10 0 o 0 1

FOR CH E CHI MOW NOL
1 0 000 0 0 001 0 1 000 0 0 0 0 1 0 1 000
0 1 000 0 1 0 o 0 0 0 001 0 1 0 0 0 0 0 001
0 0 0 1 0 0 0 0 1 0 0 0 010 0 0 0 1 0 0 0 100
0 0 1 o 0

0 0 1 o 0 0 0 100 1 0 0 0 0 1 0 000
0 0 001
0 0 0 1 0

1 0 0 o 0 0 1 000 0 0 1 0 0 0 0 0 1 0

0 1 000
0 0 0 1 0 0 0 001 0 0 0 0 1 0 0 0 1 0
0 1 0 o 0 1 0 000 1 0 0 0 0 0 0 o 0

0 0 100 1

1 0 0 o 0
1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 o 0

0 0 o 0 1
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 o 1
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 o 1

Figure 7-Binary matrices of human-face features

590 National Computer Conference, 1977

QFCC
o 0 000 1 1 000 0 0 1 1 1
o 1 1 1 0 0 0 1 1 .1 0 0 0 0 0
o 0 0 0 000 000 0 0 1 1 0
000 1 1 ~ 1 100 0 1 110
1 100 0 1 1 1 0 0 0 0 0 1 1
o 0 1 1 100 1 0 0 1 1 100
1 0 0 0 0 0 0 1 0 0- 1 1 0 0 0
1 1 000 1 0 0 0 000 0 1 0

TK
56277744

VK
2 2 1 3 3 3 3 3

DOUK+TK-VK
DOUK

3 4 144 4 1 1

RFCC+FCC+.x~QFCC

TRFCC+V GIL RFCC
TRF+TRFCC[; t 12]

TRF
2 8 11 14
3 4 6 1 5
3 4 8 12

23 30 0 0
2 27 0 0
4 23 30 0
9 24 0 0
o 0 0 0

VAL3

28 29
19 22
1 5 23
o 0
o 0
o 0
o 0
o 0

o 0
23 2 5
2 5 26
o 0
o 0
o 0
o 0
o 0

000
26 27 30
28 0 0
000
000
000
000
000

o
o
o
o
o
o
o
o

ID NAN E CRIM E LOCATION DAT E D ET ECTIV E
TAG3

I D G [12; J NAN C [12 ;] C R C.[12; J L 0 C C [12 ;] D AT EC [I2; ~ D E1' G (I2; J
I2+TRF[6it3]

ID
4

23
30

VAL3 TABL E TAG3

N AM E
NA·NCY
G FRALD
J FAN

CRIME
HOJ.!ICID E
ARU E1J ROB.
ARU FJ) ROB.

DODJ+(+IFCC)f1tpFCC

LOCATION
D El'ROIT
DETROIT
LOS ANG.

DATE DETETIVE
03/1 5/73 CON ZA L EZ
12 /2 5/ 7 5 B URN SID E
12/2 5/72 F:L lOSITO

4 2,DODJ
.13.17.23.27.20.20.23.23.17.17.23.20.27.03.27

Figure 8-Search and retrieval by queries with different DaUs

SPARCOM Data Base Concepts

MDOD CONTAINS THE 10 MOST DISTINCTIVE FEATURES OF MN-E

31

DOD~-DIAG IS
pDOD

J.fD+~DOD

MDOD+MD[\ 10)
MDOD

18 17 23 24 1 4 13 27 28 31

DOD[UDOD J
3 4 4 4 5 5 555 5

DMN E+UN E[; UDOD J

+IDNN E
3444555555

+/DMN E

£5

0421214123212 110 1 1 0 0 1 1 2 3 2 012 2 2

F5D+(~DMN E) +. xDMN E
PSD

3 0 100 0 2 0 0 3
0 4 101 0 1 2 1 0
1 1 4- o 1 1 1 1 1 1
0 0 o 4 .. 0 0 1 0 0 .L

0 1 1 1 5 0 o '1 0 1
0 0 1 0 0 5 2 1 0 0
2 1 1 0 0 2 5 1 0 2
0 2 1 1 1 1 1 5 0 0
0 1 1 0 0 0 o 0 5 0
3 0 1 0 1 0 2 0 0 5

DIAG FSD
3 4 4 4 S 5 5 555

I+3 IG E +/DMN E
I

2 7 10 24

VAL4 TABL E TAG4

NAN E AGE HEIGHT
CLAUD E 35 s. 11
MARC FL 42 S. 08
TON 44 6.00
J.!ARGOT 19 S. 09

WEIGHT EYES mOF.
170 GR fEN B. K EEPFl?
180 GR Ell: ACTOR
200 BLUE M FrEAN IC
180 BLACK S ECR F:1ARY

Figure 9-Similarity matrix of ten distinctive features

CITY
HOUSTON
N EW YORK
SAN FRAN.
D E:rROIT

<;:()1
..J71

592 National Computer Conference, 1977

be determined as follows

N

DOU(k)= 2 qkk- V(k) where V(k)~n
j=l

The V(k) value is determined by the number of attributes
covered by query Qk' The two defined coefficients DOD
and DOU can be calculated in many ways as illustrated in
Figure 8, but they are readily obtained from Similarity
Matrices.

The Entity Similarity Matrix (ES) is a symmetric mXm
matrix obtained by post-multiplying the entity matrix E by
its transpose

N

ES=E+.x£T=[eij]x[ejk] eSjk= 2 eijejk
j=l

where i=I,2, . .. ,m; k=I,2, . .. ,m. ,

The (iJ)th element of ES represents the number of common
properties possessed by the pair of entities E j and E j • When
i=j the elements (i,i) of ES are the elements of the main
diagonal, each element representing the number of proper
ties specified in entity Ej, which is the weight of vector E j •

The (i J) elements indicate the degree of similarity between
entities E j and Ej •

The Property Similarity Matrix (PS) is obtained by pre
multiplying the E matrix by its transpose E T

, it is an N x N
symmetric matrix PS=£T +. xE. The (iJ)th element of PS
represents the number of entities that possess the proper
ties P j and Pj' The (i,i)th element of the main diagonal
represents the number of entities associated with property
Pj' Dividing the (i,i) elements by m the DODU) is obtained.

The Query Similarity Matrix (QS) is obtained by postmul
tiplying the query matrix Q by its transpose QT, if Q is an t
xN matrix, QS is a symmetric I xl matrix. The (iJ)th
element of QS represents the number of common properties
specified in queries Q i and Q j. The (i ,i)th element of the
main diagonal represents the number of properties specified
in query Q i, this number was defined, previously, as the
query complexity degree QCD. Subtracting from the ele
ment of the main diagonal the VU) value. which represents
the number of attributes covered by query Q;, the DOUU) is
obtained.

The V(i) value is called the Covering Coefficient of query
Qi and as stated previously V(i)~n. If there are n attributes
it is known that N="i.7=1 di is the dimensionality of the
query vector in the property-space. One can, however,
specify in a Q j query vector of dimensionality N, properties
pertaining to k domains (k~n); i.e., the query covers only k
attributes, therefore V(i)=k.

The Query-Property Similarity Matrix (QPS) is an NxN
symmetric matrix obtained by pre-multiplying the Q matrix
by its transpose QT. The (iJ) element of QPS indicates the
number of queries in matrix Q in which properties Pi and P j

are specified, this is a Pair-Usage-Frequency Indicator
(PUFI) because it indicates how frequently pairs of proper
ties are specified in queries. The (i,i) element of QPS
indicates the number of queries in matrix Q in which
property Pi is specified, it is called the Usage Frequency

Indicator (UFI). The UFI is a very important factor in
determining the best strategy for storage allocation.

One of the most important aspects of this associative
approach is its great flexibility in Logical Reconfiguration;
i.e., the capability to "cut and paste" attributes or proper
ties as a function of the time-variable queries. As illustrated
in Figure 7 by the matrices FOR; CHE; CHI; MOW; MOL;
NOL; NOP, etc., one can concentrate on the forehead,
cheeks, chin, mouth's width, mouth's lip overlap, nose's
length, nose's profile, respectively, or any combination
thereof, to create new subschemas or Aggregates. If a
witness recalls that a criminal has a long nose and curly
hair, the search can be performed over attributes hair
texture and nose-length, or over any specific properties.
The flexibility of this approach enables one to create
aggregates of properties that belong to different attributes.
One can also create aggregates of the most distinctive
features stored in a file, for example, the ten properties
with the lowest DOD values as illustrated in Figure 9.

If the intersection of the set of criminals that possess the
most distinctive properties with the set of criminals re
trieved by the search over the properties specified by the
witness is not empty. the interrogator may ask the witness
to try and recall if the criminal did not have any of the most
distinctive features.

CONCLUSIONS

Only a few basic concepts of SPARCOM have been pre
sented in this paper. Many other concepts and algorithms
have also been implemented and tested. The APL is used
here merely as a tool to explain the concepts. The strength
of the method and the efficiency of the system have been
clearly demonstrated in an Assembler Language implemen
tation when a Data Base of 100,000 entities vs. 65,000
potential properties was searched concurrently by 50 com
plex queries. (Each query contained over 30 different
properties from a set of 65,000 potential properties.) On a
system 360 Mod 85 all entities that qualified were retrieved
within 60 seconds. A detailed description of SPARCOM's
concepts can be found in References 7 and 12.

REFERENCES

I. Codd, E. F., "A Relational Model for Data for Large Shared Data
Banks," Comm. ACM 13,6, June 1970, pp. 377-387.

2. Date, C. J., An Introduction to Data Base Systems, Addison-Wesley
Pub. Co., Reading, Massachusetts, 1975.

3. Martin, J., Computer Data-Base Organization, Prentice-Hall, Inc., En
glewood Cliffs. N.J., 1975.

4. Ashany, R., "Sparse Matrix Techniques for Information Storage and
Retrieval," Proc. of Fifth Annual Princeton Conf. on In! Sciences and
Systems. Princeton, N.J .. March, 1971.

5. Ashany, R., "Automatic Classification and Relationship Analysis for
Information Storage and Retrieval." Proc. of Third Southeastern Con!
on System Theory, Atlanta. Georgia, April. 1971.

6. Ashany, R., "Concepts of Data Manipulation-The Connection Matrix
Method," IBM Technical Report T. R. 00.2200, Poughkeepsie. N.Y.,
June, 1971.

7. Ashany, R., "SPARCOM: A Sparse Matrix Associative Relational
Approach to Dynamic Data Structuring and Data Retrieval," IBM
Technical Report T. R. 00.2774 Poughkeepsie, N.Y., july 1976.

8. Delobel, C. and R. G. Casey, "Decomposition of Data Base and the
Theory of Boolean Switching Functions," IBM J. R&D 17, 5, Septem
ber 1973, pp. 374-386.

9. Delobel, C. and J. Rissanen, "Decomposition of Files, A Basis for Data
Storage and Retrieval," IBM Research Report RJ1220, San Jose, Calif.,
May 10, 1973.

SPARCO!\.1 Data Base Concepts 593

10. Goldstein, L. D., et aI., "Man-Machine Interaction in Human-Face
Identification," The Bell System Technical Journal, Vol. 51, No.2,
February 1972, pp. 399-427.

11. Goldstein, L. D. et a!., "Identification of Human Faces," Proc. IEEE,
59, No.5, 1971, pp. 748-760.

12. Ashany, R., "SPARCOM: A Sparse Matrix Associative Relational
Approach to Dynamic Data Structuring and Data Retrieval," Ph.D.
Dissertation, Dept. of Electrical Engineering, Polytechnic Institute of
New York, June 1976.

Integrated data base concepts and
structures for combat models

by WILLIAM A. BAYSE and DEAN P. RISSEEUW
US Army Concepts Analysis Agency
Bethesda, Maryland

and

CHARLESS.MATHENY
Centec Consultants, Inc.
Reston, Virginia

ABSTRACT

Application of computer-based combat simulation models
in support of major Army force design and weapons sys
tems analyses frequently involves the use of large and
complex sets of data from various organizational sources,
reporting systems and data acquisition activities. Emerging
data base technology has resulted in powerful techniques
and operational tools which provide a range of new and
versatile capabilities to structure and handle efficiently the
large data sets which often pervade the analytic process. Of
particular importance in the area of data base management
systems (DBMS) are automated features which facilitate
definition, integration and audit trail of data elements and
structures into a cohesive, useful body of accessible user
oriented information. As a principal activity of a command
wide model/data quality assurance program, the US Army
Concepts Analysis Agency (CAA) is employing the technol
ogy and software of data base management systems to
construct an integrated data base to support simulation
~ Q~~DauQ.Aal.¥tic.~ .. "Ihis .. pape,&:.pJ.:Qen.t.s..a
description of design concepts, mathematical and systems
analysis techniques, quality assurance methodologies, and
resulting integrated automated data base capabilities which
are in use or development at CAA to support major Army
analyses and simulation model operations.

INTRODUCTION

Major mission activities of the US Army Concepts Analysis
Agency (CAA) involve quantitative studies and analyses
directed principally toward mid-range and long-range force
concepts. Additionally, substantial mission effort is allo
cated to special analyses concerning materiel systems mix
and resource management issues important to Army deci
sion-making in PPBS and acquisition processes. To support

595

an increasingly broad spectrum of study areas, a large,
active inventory of automated models, information systems
and utility programs are maintained as primary tools of
analysis. Computer-based combat simulation models ad
dressing theater, intermediate and small unit levels com
prise a major portion of the CAA inventory. Model method
ology development and improvement work is continuous
under an agency-wide program. Application of computer
based combat simulation models in support of major Army
force design and material systems analyses usually involves
the use of large-volume, complex sets of data from various
organizational sources, reporting systems and data from
various organizational sources, reporting systems and data
acquisition activities. Representations of combat activity at
various levels require a wide variety of data. Significantly,
models used to simulate combat at different force or
organizational levels often require varying data elements for
a given weapon system. For example, a high-resolution
model such as CARMONETIE* uses probability-of-hit
data for a weapon system such as the tank; whereas, a low
re.SQIU1iQJJ. J.l\Q~t~1 ~.U~l:1C1~ tl!.e C9n~c.pt§ :t;:val':l?tism M99e.1
lCEM)'"* uses an aggregate measure of tank ftrepower
capability. With about 20 combat models and an equal
number of other types of automated models and utilities
(e.g., mathematical routines) in the CAA inventory at any
time, the collection of technical, operational and manage
ment functions required for models and data necessarily
encompasses an extensive, complex and resource-consum
ing enterprise. Activities such as model logic and user
interface improvements and data validation are integral to
the conduct of studies and are essential to analytic produc
tivity and success.

* High-resolution stochastic model for simulation of ground combat up to
reinforced company level. (Used in Anny Cost and Operational Effective
ness Analyses (COEA's); e.g., XM-\, AAH.)
** Low-resolution theater combat model. (Used in major Anny force design
and capability studies; e.g., Total Force, OMNIBUS, CONAF.)

596 National Computer Conference, 1977

GENERAL REQUIREMENTS FOR MODEL/DATA
QUALITY ASSURANCE

The importance of the role of models and data in Army
studies conducted at CAA prompted the formulation of a
command-wide program for model/data quality assurance
(QA). One of the four foundation constituents of the CAA
QA program is development of a data baset for model
applications. The QA program data base component estab
lishes and maintains a controlled, evolutionary path to an
agency-wide model-oriented data base. Ultimate objectives
of data base development are long-range in nature; how
ever, the project is subdivided and staged in a manner
which yields near-term products useful in studies and
analyses. Under any developmental scheme-short- or
long-range-data base management for models is a chal
lenging and complex task. To demonstrate the wide variety
of data types, Figure 1 contains a sample list of candidates
(now in individual files) for inclusion in a composite, model
oriented data base. Associated quality assurance require
ments are commensurately complex. For example, a vital
and extremely intricate facet of data base management and
quality assurance involves data screening, editing, analysis
and verification. Additionally, driven by the model-orienta
tion of CAA's data base effort is the requirement for
automated user/model/data base interfaces. In this latter
area, user-oriented, conversational (man-machine) linkages
are under development for selected models-a particularly
demanding and advanced technical ADP and human engi
neering task (in this task, a serious complication arises from
the number and variety of autonomous data file schemes
developed in conjunction with models over two or more
generations of digital computers and related software).
Other key ingredients of data base management include
definition of relationships or logical connections among
individual elements (items) of data:j: and audit trail or
journal log of all data changes. The CAA data base program
evolved from a critical need to manage and assure the
quality of model inputs. The complexity of this endeavor
led to a full investigation of data base technology and data
base management tools to underpin and facilitate the effort.
The importance of this investigative work led to the inclu
sion of several ensuing sections of this paper which discuss
the analytical considerations, data base technology and

t .. A data base may be defined as a collection of interrelated data stored
together without harmful or unnecessary redundancy to serve one or more
applications in an optimal fashion; the data are stored so that they are
independent of programs which use the data; a common and controlled
approach is used in adding new data and in modifying and retrieving existing
data within the data base. One system is said to contain a collection of data
bases if they are entirely separate in structure." James Martin: Computer
Data-Base Organization, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975.
t Considerable work in the field of data base technology has been devoted to
terminology; e.g., "An information system deals with objects and events in
the real world that are of interest. These real objects or events, called
'entities,' are represented in the system by data. Information about a
particular entity is in the form of 'values' which describe quantitatively and/
or qualitatively a set of attributes that have significance in the system."
CODASYL Development Committee, "An Information Algebra, Phase I
Report of the Language Structure Group," Communications of the ACM, 5,
4 (Apr 62).

FORCE COMPOSITION

WEAPONS' CHARACTERISTICS

TERRAIN

MOVEMENT RATES

CASUALTY RATES

FFP /WEI/ICE

WEAPON/ AMMUNITION

Pk & P d TABLES ANO FACTORS

BATILEFIELD PARTIONING

SUB-UNIT STATUS (SUSF)

UNIT CHARACTERISTICS

DEPLOYMENT SCHEDULES

AMMUNITION CHARACTERISTICS SENSORS' CHARACTERISTICS

VULNERABILITY RESOURCE REQUIREMENTS/UNIT OR WEAPON

LETHAL AREA

Figure I-Candidate data files

related operational capabilities which are directly involved
in the program and are fundamental to its progress and
success.

DATA BASE CHARACTERISTICS

The model-oriented data base considerations outlined in
the preceding sections lead to a number of characteristics
related to command-wide data base requirements. The
diagram in Figure 2 highlights a number of general charac
teristics which are objectives of the CAA data base.

(I) A keystone feature is application of quality assurance
procedures to the model-oriented data.

(2) Basic data validity targets such as accuracy, consist
ency and currency are tractible where data inputs
flow from identifiable sources (preferably, those des
ignated and recognized as sole competent sources)
and are placed in a visible, central repository.

(3) Management and technical control procedures con
tribute to proper selection and application of data for
use in studies.

(4) As indicated previously, analysis of quantitative data
base entries by means of a variety of quality assur
ance utility programs is a primary area of payoff.

WEAPONS DATA

fORCE DATA

•
•
•

• CENTRAL REPOSITORY
• MANAGEMENT & TECHNICAL CONTROL- QUALITY ASSURANCE

• DATA ITEM RELATIONSHIPS

• AUDIT, ANALYSIS, CORRECTION

• AUTOMATED UTILITIES

• MODEL INTERfA.CES - STUDY SUPPORT

'/

'"""~,,,

Figure 2-Data base characteristics

DATA

//
SOURCES

AMSAA

OTEA

HQ DA
"

TRADOC

• • •

Data Base Concepts and Structures for Combat Modeis 597

Beyond the use of conventional edits, multivariate
statistical analysis can be applied to screen the data
base and identify questionable values or "out-liers"
for closer scrutiny and verification.

(5) Selection of random samples for detailed analytic
verification is another technique-sometimes termed
discovery sampling-for assuring data integrity.

(6) Audit trails are instrumental in tracing modifications
to data quantities. For example, a quality audif is an
attempt to determine through examination of original
and modified data, who or what procedure changed
the value(s). Data may be of poor quality for several
reasons: not good originally; altered by human error;
altered by a program (model) with a bug; altered by a
machine error; or destroyed by a major problem such
as general mechanical failure of an automated storage
device. To enhance data validity, data base facilities
must exist which provide precautionary, diagnostic,
prescriptive and/or corrective measures in dealing
with the challenges of data quality in a modeling
environment. Data audits support such facilities by
making transaction changes and their detailed effects
visible to and traceable by the analyst.

Finally, a characteristic central to data base development
concepts is the capability to remove a portion of time
consuming data preparation and handling work from the
study team and to free them for additional diagnosis and
analysis of inputs, model processes and outputs.

DBMS-THE FACILITATING MECHANISM

Emerging data base technology has resulted in powerful
techniques and operational automated tools which offer a
range of new, versatile capabilities to structure and manage
efficiently the large bodies of data which are often required
to carry out the analytic process. Compatible with concepts
outlined in the foregoing discussion of data base character
istics are the underlying objectives 7 of data base manage
ment technology:

(1) To make an integrated collection of data available to
a wide variety of users-(in our case, analysts and/or
models);

(2) To provide for quality and integrity of the data
(quality assurance);

(3) To insure retention of privacy through security within
the system-(technical control);

(4) To allow centralized control of the data base, which
is necessary for efficient data administration-(cen
tral repository; management/technical control).

Since the late 1960' s, the idea of organizing data bases
into a single collection of files in which (roughly speaking)
each data element appears only once has gained increasing
acceptance. The idea grew out of numerous situations in
which ever larger efforts were required to write new
programs to operate on data used and maintained by other

programs, and to devise systems for insuring that a data
element used in several programs was current in each. A
manager's request to look at data in a new way might entail
several weeks of programmer effort to extract the required
data from several files, perhaps having incompatible time
frames. Changes to record formats in a file to accommodate
new data elements could result in the need to modify many
programs that operate on the file.

To implement the idea of a single integrated data base for
an organization required software for organizing, maintain
ing and accessing the data base. A software package
designed to perform these functions is called a data base
management system (DBMS). A considerable number of
such systems exist today. They have been implemented in
several thousand installations. They have generally
achieved the improvements in data management and reduc
tions in programming that motivated their development.

Current DBMS's may be thought of as primarily second
generation systems, having been developed and imple
mented since publication of the CODASYL recommenda
tions in 1971. The CODASYL report culminated about two
years of intensive study, by users and computer equipment
companies, of the requirements of an effective DBMS.
Experiences with a few first generation DBMS's were
examined in depth. While not all DBMS's have adopted the
CODASYL viewpoint, and none has implemented all of the
CODASYL features, the CODASYL report stands as a
milestone in DBMS development and as a framework
against which to measure the capabilities of a DBMS.

No standards on DBMS design have been adopted to
date. However, the American National Standards Institute
has established a group to study the desirability of defining
standards.

The objectives of DBMS derive naturally and consequen
tially from those expressed for data base technology. To
provide insights into the potential role of DBMS in the
CAA analytic/modeling environment, key objectives and
terminology are summarized as follows:

• Minimize redundancy. Efficiency is often not best
served by complete elimination of redundancy, but the
idea of hoi ding redundancy of data elerTu:!ms to a
minimum is a major objective of DBMS's. It reduces
storage space and reduces the effort necessary to
insure currency and consistency among multiple uses
of the data.

• Data independence. The single most important aim of
a DBMS is often to relieve data users of concern for
the logical and physical structures§ in which data are
stored. This is possible to the extent that data elements
can be retrieved and assembled into records and files
tailored to particular uses as needed. When data inde-

§ " ... infonnation (data) structuring (the selection of entities and specifica
tion of relationships between them) is a modeling process In order to
use a DBMS, the information structure must be mapped to the logical
structure of the system (application). The mapping is expressed in a DDL
(Data Description Language). The instances of data (the data base) are
stored by the DBMS to confonn to this logical structure." J. P. Fry and E.
H. Sibley, already cited.

598 National Computer Conference, 1977

pendence is achieved, programs do not have to be
revised to reflect shifts or expansions in the data base
structure. Also, new programs need not be concerned
with how other programs have chosen to organize the
data.

• Data currency. Data values change. Ease of change
and documentation of change histories are major ob
jectives of DBMS's.

• Data security. Since the computerized data base of an
organization is usually vital to its ongoing operations,
DBMS's incorporate facilities that provide for recon
struction of the data base in the event of loss due to
failures of hardware or power supply.

• Data privacy. It is generally accepted that a compre
hensive DBMS will provide "locks" to protect pro
prietary or otherwise private information from unau
thorized access.

• Data relations. DBMS's are powerful to the degree
that they provide for efficient retrieval of data through
complex relations among data elements. When data
can be stored in a manner that reflects their interrela
tions, it is easier for a user to construct a new report,
model interface or a new analysis.

Most DBMS's achieve the objectives of minimizing data
redundancy and providing a substantial degree of data
independence. Further, most provide efficient facilities for
updating and for reconstructing a data base. Also, most
current DBMS's contain limited features for data protec
tion. DBMS's differ primarily in the kind of logical data
structures they can accommodate, the details of the soft
ware by which they allocate data to physical storage, and
the efficiency with which they access and retrieve data.
Generally, DBMS offers sufficient capabilities to support a
model-oriented data base. For this purpose, especially
important features of DBMS design are those which sup
port and facilitate definition* of data elements and their
structures and those which aid data integration** and audit
trail.

The prospect of using a DBMS to support model applica
tion at CAA led to the formulation of the integrated system
framework for operation portrayed in Figure 3. Although
not discussed to this point, the data dictionary represents
an essential ingredient in an organizational data base sys
tem. Generally, the dictionary provides names, lengths,
representations and descriptions of all data items. (This
feature will be covered in more detail in the next section.)

Diagrammatically, the chart in Figure 3 coalesces the
principal managerial and technical components of the CAA
Model Data Base System.

* " ... generally consists of a statement of the names of elements, their
properties (such as character and numerical type), and their relationship to
other elements (including complex groupings) which make up the data base.
The data definition of a specific data base is often called a schema." J. P.
Fry and E. H. Sibley, already cited.
** Explicit expression (in the data base) of relationships among data. Ian
Palmer, Database Systems: A Practical Reference, (London, England,
CACI) 1975. (Data are interrelated or linked together at lowest (element)
level.)

DATA /
~ 7

~

/' 7'

, ~" --1/
, I~. OA /
y~

BASE

AMMORATES

r-WLi
USACAA '

I C LE
Figure 3-Data base operation

• The Data Dictionary is an instrument for central stor
age and maintenance of descriptive, user-oriented in
formation concerning the format and contents of the
data base.

• The Data Base is a central repository containing input
data for selected models. All data transactions are
managed by DBMS.

• QA programs consist of editing and mathematical!
statistical routines to screen and analyze source data.

• The data base interface module, including a Cathode
Bay Tube (CRT) user terminal device, supports a man
machine dialogue between the model user/analyst and
the tools at his disposal-data base (through DBMS)
and combat simulation models.

This operational scheme has existed at CAA in prototype
form and in limited production mode for several months
using weapon data for the Tank Antitank Simulation
(T ATS) Model of the AMMORATES family. The prototype
system is operational on CAA's UNIVAC Model 1108
computing system. The DBMS is UNIVAC's Data Manage
ment System (DMS-1100). The design features of DMS-
1100 adhere strongly to CODASYL conventions. This
DBMS readily accommodates intricate network structures
required for efficient handling of complex model data
inputs. The man-machine-system link is effected by means
of an interactive conversational interface.

The following section of this paper describes technical
and operational features and characteristics of the data base
system in development at CAA.

CAA DATA BASE SYSTEM-TECHNICAL AND
OPERATIONAL CHARACTERISTICS

The CAA Model Data Base System consists of three
major portions: the Data Base (repository) under DMS-
1100, level 6; Data Base Utility and Service Routines; and
Model Interfaces. Figure 4 provides a general structural
view of the system.

The physical storage medium for the system consists of
removable magnetic disk packs managed by CAA' s com-

Data Base Concepts and Structures for Combat Models 599

& SERVICE ROUTINES

REVIEWS AND UPDATES

DATA BASE OMS 1100

DATA BASE DICTIONARY

WEAPONS FILES

UNITS FILES

ARCHIVE FILES

MODEl INPUT FILES
I r--""

I FUTURE I
I MODELS I L __ :.J

Figure 4--An overview of the CAA model data base system

puter center. Principal ADP support at CAA is provided by
a UNIVAC 1108 computing system with four banks of
magnetic core storage (provides approximately 170K words
of usable main memory). t On-line secondary storage is
achieved through ten removable disk pack drives and four
fixed packs. Users may interface with the system through
batch (via main card reader or one of three remote job entry
devices) or demand (five remote alphanumeric CRT con
soles and three graphic display consoles) modes.

Various utility and service routines allow loading, modifi
cation, retrieval, inspection and display of the data base.
Also, they give the capability of performing various mathe
matical/statistical procedures on the contents of the data
base. The model interfaces can be invoked by the user to
access the data base in order to create an input file for
execution of a particular model.

The CAA Model Data Base may be broadly, and infor
mally, subdivided into five interrelated segments: the Data
Base Dictionary, the Weapons Files, the Units Files, the
Archives Files and the Model Input Files. All files are
integrated (logically interrelated); their structure is defined
under one schema and controlled by the DMS-ll00 system .

...., .. -,-~- n,.;;, .. '",;,; +rt'";." , 'n~ '~ ~ -!-~'.::t-::-"!-:"--;':;O~-'f=-':-.~,:-'=. ' ____ .. ,_o-'-.=:'~~., .
..L Ill... 1....-':l1 I. L.·l LIlt ..)"\.. L..,.i£\.. • -,I.~'} l.l1\,..i.ll.l\Jll\:,:U ~! \..-l" .l\.}U~.l) 1il

this paper, a data base dictionary:j: is a user tool which
contains essential descriptive information for data base
management and application. The CAA Data Base Diction
ary also includes the data item's source, frequency of
update, acceptable range of values and other items of
importance. The Data Base Dictionary can be used by the
analyst to ascertain what data is available to him in the
system. Further, the dictionary indicates to programmer/
analyst the format and the variables. Currently, there are
over 150 data items described in the dictionary, defining

t DMS-IIOO currently requires about 32K (36-bit) words of main (core)
memory. System enhancements such as a Query Language Processor are
expected to increase memory needs substantially.
:j: "A documentation of the types of data units in the data base or available
for inclusion in the data base in terms of their defmition. purpose. controls.
formats, relationships with other data units, and other properties relevant to
data base design and application development." Ian Palmer. Data Base
Systems: A Practical Reference, (London. England. CACD 1975.

each model input variable contained in the weapons and
units files.

The Weapons Files. For each weapon in the system,
there exists a Basic Weapon Record. The Basic Weapon
Record is common to models for which weapon data is to
be stored. The data items in this record contain (1) data for
identification of a given weapon (e.g., generic nomencla
ture, Line Item Number, Federal Stock Number); (2)
numeric values for variables which are common to two or
more models (e.g., crew size, maximum effective range,
rate of fire); and (3) identification data and values of
variables (for certain models) which are so few in number
that it would be inappropriate to form a separate record. If
data for a specific model is to be maintained in the data
base, a unique model record is established for a given
weapon for that model (e.g., CEM record, CARMONETTE
record, TATS record). Data in a model-specific record
pertain only to the identified model. Thus, to support the
simulated play of a given weapon in a given model, only
two records on the data base need be accessed: the Basic
Weapon Record and the Model Record. Figure 5 illustrates
the Basic Weapon Record and the Model Record. Figure 5
illustrates the Basic Weapon Record-Model Record ar
rangement for data base application. Currently, data on 78
weapons are contained in the weapons files; data for many
of these weapons are described for two or more models.

The Units Files. Six different types of records exist in the
Units Files: Force, Army, Corps, Division, Brigade and
Battalion Records. These records are hierarchical in nature,
with the Battalion Record being the basic building block. In
addition to basic unit description data (e.g., Unit name,
TOE strength), each record holds information required by
applicable models to simulate combat activity of the units
(e.g., indices of firepower potential, fuel consumption rate).
Also included are the type and number of subordinate

MODEL RECORD

CARMONETTE
FIRING SIGNATURE
AIM TIME

ACCURACY

CEM
BREAKDOWN· DOWN TIME

GS·IFP

DS·AMMO

TATS
WAIT TIME

WAIT DISTANCE

AUX·WPN· TYPE

BASIC WEAPON
RECORD

RATE OF FIRE

MINIMUM RANGE

MAXIMUM RANGE

EEA

WEI

LIN

FSN

Figure 5-Model record

600 National Computer Conference, 1977

elements. Thus, inspection of a particular Division Record
will reveal various subordinate elements (brigades and
battalions), each of which is described separately in appro
priate unit records. The Battalion Record is the only unit
record which does not contain pointers, or connecting
logical linkages, to other records in the Units Files. The
Battalion Record, in addition to containing unit descriptors,
carries a table of component weapons and quantities. These
weapon identifiers are logically connected to data records
for weapons described in the Weapons Files. On occasion,
a Battalion Record may be used to describe a unit other
than a battalion. For example, a cavalry troop supporting a
division would be described using a battalion record. In
general, all units are composed of aggregations of other unit
types with the exception of baiiaiions which are composed
of aggregations of weapons.

Archives Files. The Archives Files segment of the CAA
Model Data Base is designed to contain a full set of
information related either to basic changes in data base
contents or to past model operations. When a user/analyst
accesses the data base (through special service or utility
routines) and changes the stored value of a specific varia
ble, a transaction record is automatically generated for
audit trail purposes. This operation is highly disciplined by
means of security access procedures. Contents of the
transaction audit record-including analyst identifier, date,
variable identifier, old value, new value, reason for
change-are placed in the Archives Files. For model opera
tions, the Archives Files contain changes to input data used
for execution of a given model relative to the data values in
the data base (e.g., firepower data changes made only for
model sensitivity testing).

The Model Input Files. Consider the case of a user/
analyst constructing input data for model operation. This
work proceeds by means of the model interface module.
Once basic data modifications are completed by the user,
two separate operational files are automatically created by
the Model Data Base System-one external and one inter
nal. The external file is in a form acceptable to the model
and can be immediately used by the model to execute a
simulation. The internal file contains a copy of all the model
data, but is retained internally within the system for future
reference. This internal copy of model inputs may be used
as a base for constructing data for simulation excursions
and as a historical record of the inputs used for the
simulation.

CEM Interface. As indicated in the preceding section, an
interface has been implemented to support the Tank Anti
tank System (TATS) Model. The success of this effort
furnished "proof-of-principle" of an interactive data base
system to prepare model inputs for execution of a selected
model. With the acceptance of the TATS interface by CAA
model users, work commenced on development of a
broader, more complex interface to create the full range of
inputs required for the Concepts Evaluation Model (CEM),
the prime theater level combat model currently used at
CAA. CEM has the capability of simulating a theater level
conflict with 70 Blue divisions fighting 125 Red divisions.
The original input scheme for CEM involved a file of

approximately 3000 card images. In one typical game, 1600
cards were used to describe the Blue force structure,
weapons systems, unit arrival schedule and logistical sup
port activities.

An implementation plan was developed to build in-house
a CEM interface to give the user the capability interactively
to construct from the CAA Data Base the inputs required to
drive the model. The first part of the man-system interface
addresses Blue force units; with minor changes, the design
package can be adapted for the Red unit portion. When a
user at a terminal accesses the system, he will be presented
a list of forces whose data is already available for simula
tion purposes. Subsequently, he may select any of these as
a starting point or he may elect to construct his force
stiucture from individual unit data. "A • .1tematively, a combi
nation of these paths is available. The primary restriction
placed on the user is that any data for a weapon system or
maneuver battalion he chooses must be in the data base.
However, this is not prohibitive since either of these sets of
information may be loaded into the data base in about
fifteen minutes using special utility routines in demand or
batch mode. At any level of force definition, if he selects a
unit whose data is already in the data base, that unit will be
retrieved and all subordinates automatically incorporated
into his structure. For example, an entire corps force could
be immediately assembled from already defined unit struc
tures. As he makes modifications from a previous force,
appropriate audit trail entries will be made automatically.
When he is satisfied with the structure of his forces, and
when the package has insured the force's internal consist
ency and correctness to meet CEM requirements/con
straints, the weapons associated with the force are re
trieved from the data base and the entire units portion is
produced for simulation activity.

For computer-based implementation, the interface sys
tem is being written in FORTRAN V and accesses the data
base through CAA subroutines. System design is being
conducted with a top-down, structured approach. The com
puter program code is being written for maximum syntacti
cal correctness for either Field Data of ASCII FORTRAN.
Ease of maintenance is an explicit design goal. Currently,
the package has approximately 3000 lines of operational
code in 74 subroutines (structured modules). The interface
now uses approximately 28K words of main (core) memory
and is expected to require about 30K when complete
without overlays. About 8000 words ofthis total are taken up
by the various tables which are constructed to define the
force and drive the card image production. The project was
begun in early September with three OR analysts working
full time. Expected completion of the units portion is in
December. Since this part of the interface represents about
80 percent of the volume of data required for CEM execu
tion and contains the data elements most susceptible to
change for successive simulation excursions or production
runs, its completion constitutes a major achievement in the
CAA QA program.

Statistical Procedures for Data Base Analysis. A com
posite, integrated data base offers a fertile area for work in
data verification using statistical techniques to support

Data Base Concepts and Structures for Combat Models 60 I

analysis of model input data values. As an initial step in this
type of effort at CAA, a set of computer programs was
written to select parametrically specified combinations of
variables related to selected types of weapons. Subse
quently, the selected data is placed in a form for input to
automated statistical routines currently in use at the
agency. A particularly powerful set of data analysis capabil
ities is embodied in a combination of computer graphics
routines and mathematical/statistical utilities. Figure 6
shows illustrative results of the use of a two-dimensional
graphical display generated automatically with the CAA
Multi-optioned Interactive Data Analysis System (MIDAS)
in conjunction with regression analysis routines. The weap
ons max-range-vs-caliber plot and regression parameters
provide a visible analytic base for examination of data
values individually and as a set based upon common
characteristics. Figure 7 depicts sample results using 3-D
graphical plots and numerical taxonomy-clustering routines
for weapons analysis based upon max-range, caliber and
rate-of-fire relationships.

Other current or planned data analysis capabilities in
clude use of regression equations to predict update values
prior to receipt and the use of confidence intervals to assist
in detection of questionable values for scrutiny and valida
tion.

QUALiTY ASSuRRNCf er Wf~peN FI.~

QuA~;TY RSSURRNCf
C [)NSClI. i JRTfLJ

If 1 [l

cL

c;
Z
IT
:1'

X
CL
L

2~

'3

1 ~'

40 80

CRLIBER
R

1034.06
S(X)

38.9696

120 160 200

CBRRELATION CBEF
.5122

Figure 6-Sample two dimensional graphical display

240

MID~S 3-D

BY CAA· MRM
UNCLRSSlf lEO

/
/

! I

II ANTI-TANK MISSILE'S

I
I

TANK &
ANTI-TANK
WEAPONS

/

/

10

/

I I I

-~--l __ L __ --
. I /

/

80 /
AI nT I M[

ARTILLERY I
BATTERY

AT(-BF FIRf

44 DATA peINTS

eo PRIRS C3NNECTED
UNCLASSIf lED

Figure 7-Sample three demensional graphical display

CONCLUSION

The use of a command-wide QA Model Data Base Manage
ment System offers many advantages and opportunities in
providing improved user information for major Army stud
ies and analyses. Data validity, analytic quality and opera
tional efficiencies are objectives whose achievement can be
facilitated by such a system. Figure 8 highlights a range of
opportunities potentially provided by an operational data
base of the nature described in this paper. By blending the
principles, methodologies and procedures of OR/SA, com-

I

l' EDITS ~

I ,----------,I .. ~,

B
I

I

I SELECTED
i DATA FOR ~

I
ANALYSIS

'--------- ~

CREW SIZE SENSORS

LOGISTICS FACTORS

FIREPOWER DATA

FIRE RATES

RANGES

CORRECTIONS
AND AUDIT TRAilS

Figure 8-Data base opportunities

! . I
~ L /1

1f2'h
. I

{1!}

602 National Computer Conference, 1977

puter science, emerging data base technology, mathematics/
statistics and ADP management, the data base component
of the organizational QA program will contribute a neces
sary foundation element integral to the CAA model-sup
ported study environment.

REFERENCES

I. Bayse, William A. and J. F. Henry, "Quality Assurance," Proceedings:
AORS XIV, Vol I, US Army Materiel Development and Readiness
Command, Alexandria, VA, 1975.

2. Canning, R. G., "The Cautious Path to a Data Base," EDP Analyzer,
Vol II, No'6, June 1973.

3. Canning, R. G., "A Structure for EDP Projects," EDP Analyzer, Vol
11, No 5; May 197.,.

4. Chamberlain, R. G., "Conventions for Interactive Computer Pro
grams," Interfaces, Vol VI, No I, The Institute of Management Sci
ences, November 1975.

5. Centec Consultants, Inc., "CAA Data Base System Requirements
Intermediate and Long-range," Centec Consultants, Inc., Reston, VA,
June 1976.

6. Davidoff, A. E .. Concept of Operations for a CAA Data Base, CAA-SP-
76-1, US Army Concepts Analysis Agency (CAA), Bethesda, MD.
January 1976.

7. Fry, J. P. and E. H. Sibley, "Evolution of Data-Base Management
Systems," ACM Computing Surveys, Vol 8, No I, March 1976.

8. General Research Corporation, CARMONETTE (Model Documenta
tion), CAA-D-74-ll, US Army Concepts Analysis Agency (CAA),
Bethesda, MD, November 1974.

9. General Research Corporation, CONAF Evaluation Model IV (Model
Documentation), GRC, McLean, VA, December 1974.

10. Martin, James, Computer Data-Base Organization, Prentice-Hall, Inc.
Englewood Cliffs, NJ, 1975.

11. McGowan, C. L. and J. R. Kelly, Top-Down Structured Programming
Techniques, Petrocelli/Charter, New York, NY, 1975.

12. Nolan, R. L., "Computer Data Bases: the Future is Now," Harvard
Business Review, September-October 1973.

13. Nussbaum, D. A., Multivariate Analysis System, CAA-D-76-4, US
Army Concepts Analysis Agency (CAA), Bethesda. MD, June 1976.

14. Palmer, Ian, Data Base Technology: A Practical Reference, CACI,
London, England, 1975.

15. Report ofCODASYL Data Base Task Group, April 1971 , Association for
Computing Machinery, New York, NY, 1971.

16. Sperry UNIVAC, Data Management System (DMS-J 100), Schema
Definition (Data Administrator Reference) (UP-7907 Rev 2), Sperry
Rand Corp, 1974.

17. Sperry UNIVAC, Data Management System (DMS-lJOO), American
National Standard COBOL (Fieldata) Data Manipulation Language
(Programmer Reference) (UP-7908 Rev I), Sperry Rand Corp, 1974.

18. US Army Concepts Analysis Agency. Tabulation of Models of Interest
to CAA. CAA. Bethesda. MD, July 1976.

Routing and control in a
centrally directed network

by JOSEPH RINDE
Tymshare Inc.
Cupertino, California

ABSTRACT

TYMNET I is a centrally directed network with over 200
nodes interconnected in a topology that allows alternate
paths between nodes in the network. Routing within the
network is done by a central supervisor program, with full
knowledge of network topology and network load. Within
network nodes routing is table driven.

The supervisor communicates with nodes through a com
mand tree that is built at network takeover time. The
supervisor has no a priori knowledge of the network
topology when it starts network takeover, and the topology
may change while the supervisor is in control. The control
tree is dynamically modified by the supervisor to accommo
date the new topology.

INTRODUCTION

In 1969 Tymshare Inc. started the development of TYM
NET 1* to supply the communications needs of its growing
time-sharing market. The design objectives were to replace
hardware multiplexing gear with a more reliable and more
~.·~RUIlYIl~'~~~'~~"'~

requirements, since it was developed to meet the demands
of a commercial environment, the network also had to be
inexpensive to implement and operate.

A centrally directed network of Varian 620 mini-com
puters was developed. When the network became fully
operational in 1971 it consisted of 30 nodes and a central
supervisor (with three backup supervisors) that ran on an
SDS 940 computer system. The network has since under
gone a prolonged evolution and has grown to 200 nodes (see
Figure 1).

ROUTING

TYMNET I has been described as a virtual circuit
switched network~ which includes ARPANET type packets
as a subset of its data grouping capabilities. 2 A virtual

* TYMNET is a registered trademark of TYMSHARE Inc.

circuit is bidirectional and ties up some memory in the
nodes that comprise the circuit, but line bandwidth is
utilized only when user data is flowing through the net
work.

Routing within the nodes is done implicitly through
routing tables called permuter tables. Figure 2 shows a
virtual circuit in TYMNET I with all its associated permu
ter table entries and buffer assignments. Each permuter
table entry points to one buffer of a buffer pair. One buffer
of the pair is for incoming characters, one for outgoing
characters.

Each physical record (analogous to a packet) traveling
between nodes is a collection of logical records, each of
which is associated with a virtual circuit. This allows the
physical record overhead to be distributed over the data of
multiple users. As seen in Figure 3, each logical record has
a header specifying its logical record number (used to index
the permuter table) and a count of the data bytes contained
in the logical record. To describe the routing of data in the
logical records we define

link

[P(ij)]
O([P(i,j)])

a connection between two adjacent
nodes
m.~,itritrinT7jl·mc: ptl'!(IUk, LltileTul
link i
the contents of P(ij) (a buffer number)
the other buffer number of the buffer
pair

A physical record arriving on link A containing a logical
record X would cause the characters in logical record X to
be placed in the buffer [P(A,X)]. Note that the physical
record processor need have no knowledge of the final
destination of the data in a logical record. Even knowledge
about the link on which these characters will leave is not
explicitly known. P(A,X) fully defines the path the data is
to follow, because (I) the buffer [P(A,X)] is a port buffer,
causing the characters in it to be processed by a port driver
(this could be a host port or a terminal port), or (2) there
exists a P(B,Y) for some B different from A (though X and
Y may be equal) such that [P(B ,Y)] =O([P(A,X)]). When the
physical record-making process runs for link B it scans
P(B,i), i=O, ... , n. Each P(B,i) points to a buffer; the

604 National Computer Conference, 1977

Figure I-TYMNET topology

other buffer of the pair (i.e. O([P(B,i)])) is checked for a
non-empty condition. This condition will be satisfied by
P(B,Y) causing logical record Y to be created with the data
in the buffer [P(A,X)].

It is possible for data for a given virtual circuit to arrive
at a node in two separate physical records, but leave that
node in one physical record. This can happen since both
arriving physical records will have a logical record X, and
the data in both logical records will be placed in buffer
[P(A,X)]. It is also possible that data arriving in a single
physical record will leave in two physical records. This is
why we speak of a flow of characters in TYMNET I, rather
than packet switching.

A physical record is a collection of logical records plus a
physical record header (Figure 4). A cyclic record number
ing scheme is used to facilitate acknowledgment of physical
records correctly received and to detect and retransmit
records which arrived incorrectly. Sixteen bits of vertical
checksum and sixteen bits of diagonal checksum are used
to check that records crossing a link are correct.

ESTABLISHING A CONNECTION

A user connects his terminal to a host on the network by
dialing a local node. After typing a character to identify his

terminal characteristics, the user enters his user name, host
number and password. This information is sent, by the local
node, to the network supervisor. The supervisor verifies
the user's name in the Master User Directory (MUD) and
then checks for a correct password. (Passwords are stored
in the MUD only in ciphered form. To check a password
given at login, it is enciphered and compared to the cipher
in the MUD.) If the user did not specify a host number, his
standard host number is taken from the MUD.

The supervisor now knows the node which the user
called (origination) and the node to which he wishes a
connection (destination). The supervisor then computes the
minimum cost path for the virtual circuit. 1 Each link in the
network has a cost associated with it. This cost is a
function of the link bandwidth and the presence of overload
conditions (Table I).

T ABLE I-Link Costs in TYMNET I

cost cost
cost overloaded overloaded

Line speed nonnal one way both ways

9600 bps 10 26 42
7200 bps II 27 43
4800 bps 12 28 44
2400 bps 16 32 48

Thus the minimum cost path, as computed by the supervi
sor, is an optimization of network resources, rather than a
dollar cosio Once a path has been plotted, the supervisor
allocates buffer pairs and permuter table positions in each
node on the path to create the virtual circuit. Messages are
sent to all nodes along the path to make the appropriate
permuter table entries. This implicitly causes buffer assign
ments in the nodes. Nodes send an acknowledgment to the
supervisor after making a permuter table entry. Once all the
acknowledgments are in, the supervisor sends the user
name, the user's status (from the MUD), the originating
node number and port number, and the terminal character
istics to the destination node, plus a message to tell the
attached host that there is a new login.

From
Terminal
Port

Node 1000
Permuter Table
for Link 0

Routing and Control in Centrally Directed Network 605

The host may now read the user name to verify that this
user name is valid on this host. No further checking is
required! All the security checking has been done on a host,
with access restricted to network personnel, where not
even the passwords are vulnerable to theft. This allows a
host with minimal login security to be connected to the
network, with confidence that only authorized people may
log in through the network. Additional login security may,
of course, be imposed by the host computer system.

NETWORK CONTROL

The network supervisor is a program that runs under a
special time sharing system on an Interdata 7/32. The

Node 112
Pennuter Table
for Link 0

COnTllunication Buffer ...---....
4

5

Buffer
Pair

For Node 112

[P(0,2)] = 200
0([P(0,2)] = 0(200) = 201
[P(1,5)] = 201
0([P(1,5)]) = 0(201) = 200

For Node 5

[P(0,5)] = 8
0([P(0,5)]) = 0(8) = 9

For Node 1000

[P(0,2)] = 5
0([P(0,2)] = 0(5) = 4

Line

Figure 2-A virtual circuit in TYMNET I

Pair

Permuter Table for Link 1

Node 5

Conmunication
Line

Permuter Table for Link 0

From Host Port

Buffer
Pair

606 National Computer Conference, 1977

TYMNET I Logical Record

A 8 bit Logical record number
B 8 bit byte count
C As many data bytes as specified

in B

Figure 3-TYMNET I logical record

supervisor, like any piece of software, and the 7/32, like
any piece of hardware, are subject to failure. Although
failures (hardware and software) are infrequent (on the
order of one every three weeks) the absence of a supervisor
to build virtual circuits cannot be tolerated for very long.
To deal with this problem, four potential supervisors exist
in the network, only one of which is active at anyone time.
The active supervisor keeps the other supervisors dormant
by sending "sleeping pills" to them at regular intervals. If
the active supervisor fails, the operators at the network
control center can immediately awaken one of the dormant
supervisors. Even without human intervention, the dormant
supervisors will notice the absence of the active supervisor
when they cease to receive "sleeping pills." The various
supervisors have staggered sleep times, at the end of which
they will awaken if no sleeping pills have arrived. Thus, in
case of a supervisor failure one of the dormant supervisors
will awaken and take control of the network. It is possible
for multiple supervisors to be trying to take over the
network simultaneously. This situation is resolved grace
fully by the less dominant supervisor going to sleep when it
discovers the presence of a more dominant supervisor.

NETWORK TAKEOVER

In order to control nodes and carry out the supervisor's
function of building virtual circuits, the supervisor must
know the capacity of all nodes, their link capacities, the
network topology and the value of every permuter table
entry in the network.

A supervisor starting network takeover has no a priori
knowledge of the network topology. The supervisor first
sends a takeover command to its own node, and learns of
that node's capacity, the capacity of its links, every permut-

er table entry in that node and the neighbors of that node
on each link. The latter is the basis on which the supervisor
discovers the topology of the network. The supervisor now
sends takeover commands to each neighbor of its own
node. As each of these nodes comes under complete
control of the supervisor, each of its neighbors is checked
to discover previously unknown nodes, and these are in
turn taken over.

In this way the supervisor learns the topology of the
network, all its capacities and (from the permuter tables)
which resources are in use. The network takeover duration
is approximately three minutes. The time determining fac
tors are the number of nodes, the bandwidth of links in the
vicinity of the supervisor, the number of permuter table
entries and the connectivity of the network vis-a-vis the
supervisor's own node. From a control standpoint the
supervisor views the network as a tree. The control tree
comprises a subset of the links in the network. The balance
and depth of this tree is the measure of connectivity of the
network in relation to the supervisor's own node.

If a previously non-operational link becomes operational
it may reveal one or more nodes that were previously
inaccessible. The supervisor would then extend the control
tree by taking over these newly discovered nodes. On the
other hand, if a link that is part of the control tree goes out,
the supervisor loses control of the nodes in that subtree.
The control tree is then rebuilt to regain control of all the
lost nodes that are still accessible through the network
topology.

In a large network like TYMNET I, good connectivity is
important to maintain fast response time and minimize
bandwidth overhead. A deep supervisory control tree will
cause undesirable delay in delivery of supervisory com
mands. Even independent of the centralized control proper-

TYMNET I Internodal Physical Record

I A I B Ie 10 IE? ill
A 5 bit Sync pattern

B 5 bit size count
C 3 bit Record number
0 3 bit Acknowledgement
E Logical records
F 2 16 bit checksums

Figure 4---TYMNET I internodal physical record

ties of TYMNET I, a loosely connected network increases
user response time by increasing the network transit delay.
This added network delay time has been observed in the
ARP ANET4 and is due to a deficiency of links in the
network as a whole and to the limit on the number of links
each node may have. The physical topology of TYMNET I
is based on a topology generating program which employs
simulations using accounting data to determine virtual cir
cuit lengths and telephone costs. The average TYMNET I
virtual circuit is 3.1 links long.

The original TYMNET I nodes allowed only three links
per node. Presently TYMNET I nodes allow 16 links per
node. The cost of more links is increased CPU and memory
requirements for the node. However, even 16 links per
node will soon be inadequate for the growth of TYMNET.
One solution to this problem is the use of node clusters. A
node cluster is a group of two or more nodes in close
proximity, interconnected by an inexpensive high speed
distributed memory transfer device. We call this device a
"memory shuffler," and it is capable of data transfers at
memory bandwidth rates. We plan a fully interconnected
eight node cluster at TYMNET's Cupertino center, with 72
links to the rest of the network. This approach creates a
logically very large node (including two supervisor ma
chines) that does not change the fundamental logical struc
ture of the network. (A connection through the memory
shuffler is viewed by the node and the supervisor as a high
bandwidth link.) With clusters at all three major TYMNET
centers in the United States, the network can be kept well
connected (average virtual circuit length of less than two
links plus a memory shuffler link, and network takeover
time of one to two minutes) for the foreseeable future. A
prototype of the memory shuffler is already deployed in the
network.

Eventually, network growth will reach a point where
further schemes to improve connectivity will yield small
returns. At that time a partitioned topology (similar to the
telephone area code) will become necessary. Little work
has been done on this since no existing computer network
has reached a size requiring a partitioned topology. Using
I~MbIEI·~.~.a.llzed C4.)AWl .. ,.ppw.,,·h.~. ~.~
have its own supervisor. There could be a master supervi
sor to act as the focal point of all interarea communication.
Alternatively, each area supervisor could communicate
with its neighboring area supervisors, and interarea routing
could be done by an adaptive routing scheme (this is not
unreasaonable if the number of areas remains small).

REFLECTIONS

The underlying principles of TYMNET have passed the
test of time. The orientation of the network to terminal
users, and specifically to the support of the full duplex
terminal, has given TYMNET a great deal of flexibility.
Full duplex is more than simultaneous bidirectional trans
mission. It implies character by character interaction and

Routing and Control in Centrally Directed Network 607

full echo control. These features are an integral part of the
TYMNET design (e.g., logical records of one or more
characters).:3 The addition of host to host communication
required only a subset of the facilities available (e.g., echo
control is not needed). Other high speed communications
requirements have also been accommodated with low over
head.2

Since TYMNET I interfaces to a wide variety of terminal
types, a host connected to TYMNET I can similarly be
accessed by a wide variety of terminals, even though the
host may only be able to communicate directly with one
type of terminal. In this sense TYMNET I is a more
effective means (independent of cost) of con~ting termi
nals to hosts than direct dial telephone service.' TYMNET
I's ability to translate between character sets, so useful in
the case of accommodating a variety of terminals, can be
turned off to permit shipment of pure binary data through
th(; network.

The success of TYMNET's centralized approach can be
measured, in part, by the routing overhead (worst case 1.25
percent of a 9600bps link2) and the accessibility, by terminal
users, of all of TYMSHARE's hosts (27 SDS940s, IO
PDPlOs and 4 IBM370s) solely through the network. This
relieves the hosts of password checking responsibilities,
and reduces capital investment by having only one commu
nications interface for terminals. Another feature of central
ized control is a network clock, kept by the supervisor. The
clock is a radio receiver for station WWVB, a time signal
broadcast by the National Bureau of Standards. Each host
is informed of the current time when it comes up, keeping
all hosts synchronized (a distinct advantage for accounting).
The central supervisor is not only a good source of informa
tion, but provides a natural collection point for network
diagnostics and network accounting data.

The evolution of TYMNET I from a 30 node private
network to a 200 node value added carrier is an example of
successful adaptation of new technology to expand a gen
eral design beyond its original goals. However, the design of
TYMNET I reflects the technology available in 1969.
Today's lower CPU and memory costs remove the justifica
~ . .Qi-,s.om~.~.~.Q@~~~.,.

As the network grew, the technology of mim-computers
advanced, and prices came down, more powerful CPU s
Were brought into the network and new node types were
developed with more capacity, in both CPU and memory.
The additional capacity was used to provide more links per
node and more ports per node. More terminal types became
supported (e.g. 120cps terminals and batch terminals of the
2780 and 3780 type).

In 1975 the supervisor running on the SDS 940 reached
its capacity and was replaced by a supervisor running on an
Interdata 7/32, reducing network takeover time from 15
minutes to 2.5 minutes. Network takeover time is currently
limited by bandwidth and connectivity of the network.

The original TYMNET I nodes had 8K of memory, a
limiting factor on the capabilities of the nodes. This alone
required the bulk of decision making to be vested in the
network supervisor (e.g., allocation of buffer and permuter

608 National Computer Conference, 1977

table entries in the nodes). A direct consequence of this
decision was the supervisor's need to have a copy of every
permuter table entry in the network. With network growth,
this has proven expensive in both supervisor memory
requirements and the length of network takeover. All the
evolution and growth of the last five years has not changed
that basic division of decision making between the supervi
sor and the nodes. This division is no longer in tune with
the available technology, but changing it requires such a
fundamental change in the implementation of both the
supervisor and the nodes as to necessitate an ongoing
redesign of both. The external view of the network need not
change with this redesign, however. As a result the deploy
ment of TYMNET II will occur in 1977 without disruption
of service to users of the network.

ACKNOWLEDGMENTS

The author owes a great debt to LaRoy Tymes, the
designer of TYMNET.

REFERENCES

I. Rajaraman, A., "Routing in TYMNET," submitted for publication.
2. Rinde, J., "TYMNET I-An alternative to packet switching technology,"

Third International Conference on Computer Communications, August,
1976.

3. Tymes, L., "TYMNET-A Terminal Oriented Communications Net
work," AFIPS Conference Proceedings, Vol. 38, spring 1971.

4. Walden, D. C., "Experiences in Building, Operating, and Using the
ARPA Network," Second USAlJapan Computer Conference August,
i975.

TYMNET as a multiplexed
packet network

by JOHN KOPF
Tymshare, Inc.
Cupertino, California

ABSTRACT

TYMNET is a commercially successful computer network
that has been in continuous operation since November,
1971. It contains over 200 nodes. Circuit routing is estab
lished by a central process, the supervisor.

TYMNET has never been fully documented in the litera
ture. While similar to other packet networks, the mecha
nisms used by TYMNET differ significantly from those
used in other documented networks, such as ARPANET.
Packets are used, but only as the carriers for virtual
channels between neighboring nodes, and are not them
selves "switched." The mechanisms used lead to good line
utilization, especially for individual, small-volume transmis
sions. Flow-control mechanisms permit information sources
and sinks to operate at different intrinsic speeds.

INTRODUCTION

TYMNET* is a communications network which was origi
nally designed by Tymshare to handle it's own communica
tion needs, and is now operated by Tymnet, Inc. (a wholly
owned subsidiary) as a common carrier service. TYMNET
has been in service since 1971, during which time it has
e;qJ .. mdedfromtherr!'rti~t ~noderneh'trorl:l..2 to theCtrrrent
200 nodes. 3 On the basis of both experience with TYMNET
and new technological developments, TYMNET is cur
rently undergoing a transition to anew, even more flexible
network-TYMNET-II. TYMNET-I has never been ade
quately documented in the literature.

TYMNET has been described as a virtual circuit switch
ing network, without setting forth the techniques used. In
order to discuss these techniques, it is first necessary to
give a general overview of TYMNET.

THE PARTS OF TYMNET

TYMNET consists of a large number of NODES inter
connected by LINES. Only one line can connect two
nodes. Each node has a description of the lines and

* TYMNET is a registered trademark of TYMSHARE Inc.

609

neighbor nodes it has, as well as a local (partial) description
of the circuits passing through or terminating at that node.
The information in all nodes is the PRIMARY description
of the network. TYMNET also has a SUPERVISOR,
whose function is described below.

A node consists of a mini-computer, some simple inter
face circuitry, and the node-code. Nodes are classified by
function. The function defines the interface, both in terms
of circuitry, and also in terms of the code (in TYMNET, the
interface circuitry is deliberately kept primitive, and the
functional interface is built into the code).

The node-code can be functionally partitioned into sev
eral distinct modules:

a. Buffer management;
b. Supervisor communications;
c. Line interface;
d. One or more process interfaces.

One type of node is the TYMSA T, which contains the
interface used for low-speed dial-up (asynchronous). It may
also include an interface for high-speed access (bisync). A
second type is the BASE, which contains the interfaces to
TYMSHARE's XDS-940, PDP-lO, and IBM-370 com
put~r~. ~ thi.r:d type i~ t.l).e TY.:MCOM~ whic,h is a ba~.e in
function but interfaces to a broader variety of HOST
computers.

The supervisor is a program which maintains control over
the network and manages the network resources. The
supervisor originally ran in a XDS-940, connected to the
network through one of the bases, but has recently been re
coded to run in an INTERDAT A 7/32, as one of the nodes
in the network. There are several nodes in the network
which are capable of running the supervisor, but only one
supervisor controls the network at any given time.

When a supervisor becomes active, it has no knowledge
of the topology of the network, or of any of the circuits
active within the network. Its first activity is therefore to
take over the network. This consists of taking over its
node, determining the neighbors of that node, then taking
over each of the neighbors, and iterating until there are no
nodes left which have not been taken over. During this
period, the supervisor also determines and records the

610 National Computer Conference, 1977

resources used by each circuit active in the network at
takeover time. The supervisor retains this information as a
SECONDARY description of the network circuit topology,
and will update this description on the basis of subsequent
information volunteered by the nodes, and generated by the
supervisor. If a part of the network is subsequently lost,
such as by the loss of a line on the takeover path, the
supervisor will retake all nodes which are still accessible
through alternate paths in the network. The act of taking
over a node generates a path from that node to the
supervisor, so the node can communicate with the supervi
sor.

DAT A WITHIN TYMNET

The basic unit of data is the CHARACTER or BYTE of 8
bits. A circuit within TYMNET is a construct which
transfers a stream of bytes over a fixed path (and in both
directions) while maintaining the order of the bytes. The
CONTENT of the data bytes is transparent to the network,
and is the responsibility of the interface at each end of the
circuit. Because the sequence is maintained, the actual data
need not really be 8-bit quantities, but may instead be
anything from I bit to 1,000,000 or more bits-the only
constraint is that the total transfer (including padding if
necessary) be a multiple of 8 bits.

To contain the characters while in a node, BUFFERS are
needed. In TYMNET, Buffers are assigned unique num
bers, to distinguish them from each other. "BUFFER" in
this context is actually a misnomer, since a buffer does not
contain any data, but instead is a descriptor of where the
data actually is, and how much data is there. Data bytes are
actually stored in a separate area, which is allocated as the
need arises, and which is freed when no longer in use. The
"buffer" describes where the first byte is, how many bytes
are there, and where the last byte is. In addition, a buffer
discriptor also contains a pointer-unique to that circuit
which indicates which process is to take data from that
buffer. By this mechanism, source and destination proc
esses are uncoupled, and leads to complete flexibility as to
circuit routing and termination. A byte is added to the
buffer by appending to the last byte, and updating the
buffer descriptor. A byte is removed by removing the
FIRST (original) byte, and updating the descriptor.

The actual IMPLEMENTATION is as follows: Space is
allocated for the buffer descriptors, buffer data area, and a
linear bit array at the time the node-code is created.
Primitive subroutines are provided to place and remove a
byte from a specified buffer (descriptor). Each buffer de
scriptor includes a unique index into the linear bit array,
and the routines are coded to manipulate the bit specified,
turning the bit off if no data bytes are in the buffer, and on
if there are one or more data bytes present.

The bit array is partitioned into areas, each of which
corresponds to a given process. Each process can look at
the set of bits assigned to it, to determine if there is
anything to do, and if so, can pick one of the bits that is on,
and translate the bit back into a buffer number. The bit

order need not be in one-to-one correspondance with the
buffer number order. When a buffer becomes empty, the bit
goes off, and the process will ignore the buffer, until some
other process places more data into it.

LINE PROTOCOL

TYMNET uses a line protocol which is essentially a
variation on that used by other packet networks, but which
has less overhead while providing flexibility. The normal
TYMNET data packet (or physical record) has two bytes of
hearier, from three to sixty bytes of contents, and four
bytes of checksum at the end of the packet. With packets of
variable length, line bandwidth is not wasted in transmitting
padding or fill characters.

Each line is assigned a fixed number of channels. On a
given line, a circuit is assigned to one channel, and has
exclusive use of that channel for the duration of the circuit.
At each end of the line, a pair of buffers have been assigned
to that circuit, also fixed for the duration of that circuit.
These channel and buffer assignments are made by the
supervisor at the time the circuit is initially built, and each
node along the circuit is informed of its portion. As a
result, the line overhead is lowered, since complete routing
information need not be transmitted along with each
packet.

Each circuit is terminated at both ends by a connection to
an interface. The interfaces include an ordered set of
buffers, normally referred to as PORTS. The intermediate
nodes along a circuit each have a set of buffers, assigned to
PASSTHROUGH usage. Passthroughs are in addition to,
and distinct from, ports. The port interface has responsibil
ity for the data protocol (e.g., code conversion, echoing of
characters to terminals, hand-shaking across the interface,
etc.).

The physical packet is subdivided into one or more
subpackets (logical records). Each logical record contains
two characters of header, which specify the channel num
ber, and the number of characters of data present. This
permits the mUltiplexing of a number of short messages
(containing as little as one character each) into a single
packet, with consequent savings in overhead, since the
checksum at the end of the packet covers all of the logical
records within the packet. Individual logical records do not
need the overhead of individual checksums.

If single characters are traveling through a circuit, their
overhead is high (2 bytes overheadl3 bytes of logical
record). However, an interesting situation occurs dynami
cally. If, because of reduced bandwidth (due to a heavy
load or line errors), bytes are delayed at some point in the
circuit, the probability of a subsequent byte catching up
increases. As soon as this happens, the bytes will start
traveling as a pair (2 bytes overhead/4 bytes of logical
record).

A round-robin algorithm is used to build logical records.
That is, once a logical record is made for a given channel,
that channel will not be serviced again until all other
channels with data present have in tum been serviced.

When a logical record is made, the record will have
available a certain number of bytes of data to fill out the
packet. If there are less bytes than this present, they will all
be placed in the packet. If there are more, as many as
possible will be placed in the packet. This means that each
circuit will have equal frequency of attention, independent
of the actual data transfer rate. The user typing one
character every 10 seconds gets as good service as the
second user who is transferring 500 characters/second.

Experience has shown that the terminal user tends to get
back 10 characters for each one he types. The overhead on
the individual characters he types are high, but the charac
ters appear infrequently. The characters he gets back, since
generated by a computer at a high rate, tend to come back
in large logical records, thereby enhancing the efficiency.

When the originator of a data stream is not limited by
mechanical processes (as in terminals), and instead can
introduce bytes into the network as fast as they can flow
through the network (as is normally true of the HOST
computers connected to the bases), then the tendency is to
make a full packet containing the data for only that circuit.
In this case, the overhead for the packet is [6 bytes (packet
overhead)+2 bytes (logical record overhead)]![8 bytes (total
overhead) + 58 bytes of data], or 8/66 (= 12.1 percent). By
comparison, the WORST case is the transmission of a
packet with only 1 byte of data (=90 percent), but this
occurs only in the case where the line is so lightly loaded
that there is only the one character to transmit, so we can
afford the overhead. In a heavily loaded worst case, where
we have a single byte to transmit for each possible channel,
each channel will require three bytes of space within the
packet, and we can thus mUltiplex 20 separate circuits in
one packet. The overhead is now 46/66 (=69.7 percent),
and if each logical record averages two bytes of data, we
advance to 36/66 (=54.5 percent).

Actual measurements on lines carrying a normal mix of
large and small data records indicate that the average
overhead for a line is 1/6; that is, for each six bytes
transmitted, five bytes are user data.

The "life" of a packet consists of being built, transmitted
,QY~~L ~~A~ll.l:: Q,n.~Jjll(!J.f:l!!~tl~\Yh~~ Y1l:I!~.~,tt:9, ~~in& ,!?rn dg~t1
\ the contained data being .. scattered" to the appropnate
buffers). Because there are no variable delays, such as
would be encountered in a multiple-link transfer, the packet
can be acknowledged as soon as it is received, while the
succeeding packet is in transit. This permits the use of a
very small span of discrete packet identifiers. In TYMNET,
the numbers range from 0 to 7, which may be specified in a
3-bit field. An acknowledgment is thus also a 3-bit field,
and is piggybacked on the packet header of packets going
the other way. The transmitter is constrained to never
advance more than four identifiers beyond the last packet
acknowledged. If the condition does occur, the oldest
packet not yet acknowledged will be re-transmitted, until
acknowledgment does occur. The acknowledgment speci
fies the most recent, sequential packet successfully re
ceived, and thus may acknowledge from 0 to 4 packets.
Because there are never more than four packets in circula
tion, the amount of buffering required for packet storage in

TYMNET t:.ll
VI I

TYMNET is greatly reduced over conventional packet
networks.

CIRCUIT CONSTRUCTION

Circuits are built at the request of a user. A circuit may
only be built to a base, but may originate at either a
TYMSAT or BASE port. The process will be described for
a circuit originating at a TYMSA T, since this will permit
the demonstration of some of the interface functions. A
circuit origination from a base is conceptually the same, but
varies in implementation.

Consider a user who dials up a TYMSAT node. The
TYMSAT answers the call, but knows nothing of the
characteristics of the caller. A message is transmitted to the
terminal, requesting that the terminal be identified. The
message assumes that the terminal is a 300 baud ASCII
terminal. The user now types a single character which is
used both to determine the terminal speed, and to identify
both the parameters and processes to use for this terminal.
(E.g., an ASCII terminal will have a different process taaa.fl
an IBM 2741, because the character codes are different, as ./
well as the interaction mechanisms.) As soon as the termi
nal is identified, the message "please log in" goes out to
the terminal, and the port is placed into a log-in mode. The
user types the account name, an optional destination (host),
and a password. This stream of characters is transmitted to
the supervisor, along with information as to the node and
port originating the information. The supervisor examines
and validates this information, and, if any errors are found,
the user is informed and placed back in log-in mode (errors
may be bad account name, bad password, or destination
inaccessible). If no errors are found, the supervisor exam
ines the network topology for the best path from the
originating node to the destination node, taking into ac
count a variety of parameters. (Note that the destination
specified is a host, not a node. This independence permits
the free movement of hosts from one base to another if the
situation demands. A host which has hardware failures can
be l:eadir}" muvt:lI'Lu '~huiJr;Y(ldtJY;'2d(;,' Cy'Cfi if on ~
different base.) When the best path is found, resources are
allocated all along that path, and appropriate messages are
sent by the supervisor to each node along the path as to the
linkages required for that node. The resources allocated by
the supervisor consist of the channel on each line along the
path, a pair of buffer descriptors for each intermediate node
(passthroughs), and the port buffers at the destination. In
addition to building the circuit, the supervisor also places
information into the input buffer at the destination, con
cerning the account name, origination node and port, and
terminal type, for the host. Once this is completed, the
supervisor has no further interaction with the circuit-other
than avoiding the re-use of the resources-until the session
finally terminates, and the supervisor is informed that the
circuit (and thus the resources used by the circuit) is
no longer in use. When a user logs out, or is disconnected
from the destination for any reason, the interface at the

612 National Computer Conference, 1977

TYMSAT reverts to the log-in mode, and he can then hang
up, or log back in to the same or a different destination.

NETWORK INTERCOMMUNICATION

In any large, distributed system, a mechanism must be
provided for intercommunication. In TYMNET, this inter
communication takes two distinct forms. Each line always
has two channels preallocated for network usage.

One of these is used only for communication between a
node and its neighbor. The information transferred in this
case concerns such parameters as the additional traffic the
node can accept on each channel on that line. The data path
for these circuits is only one line long, and may only
indirectly be passed further.

The second form is used for supervisor communications.
As the supervisor takes over a node, the direction toward
the supervisor is recorded, and the effect is that takeover
builds a tree-shaped path to each node. All communication
between a node and the supervisor is over this path, and as
the network changes, this path is dynamically re-estab
lished.

The supervisor and nodes communicate by sending mes
sages back and forth over the supervisor control path.
Messages going to the supervisor are distinguished by one
bit from those coming from the supervisor, and all mes
sages include a field which specifies the destination (or
origination) node. Messages from the supervisor consist of
several different types, and perform functions such as
building circuits, reading (and changing) locations in the
node memory, placing characters into a buffer, and other
house-keeping functions.

Messages originating at the nodes include streams of log
in information, responses to supervisor commands, and
information concerning changes in the network (such as
circuit termination, line errors, and host state changes,
etc.). On the basis of this information, the supervisor
modifies its description of the network, and the usage of the
network resources. For example, if a line goes out, the
supervisor may have lost control of part of the network, has
probably lost some circuits (thus freeing resources distrib
uted through the network), and has lost some choice as to
alternate circuit routing. In addition, the loss of that line
may have made some possible destinations inaccessible,
thereby restricting the range of choice on logging in.

When the supervisor loses part of the takeover tree, it
discards the secondary descriptors for the nodes lost, and
then searches the neighbors of the remaining descriptors for
nodes it does not have. These nodes are re-taken through
the alternate, remaining nodes, and new descriptors are
built. These reflect the circuits existing through those nodes
at the time they are re-taken, but the existing circuits are
not affected by the temporary loss of supervisor control.
The only effect is the inability to build new circuits during
this time.

The same process is used when a new node comes up on
the network. When a node comes up, one or more lines
connecting it with the rest of the network start carrying

data, and the supervisor is informed. The supervisor will
not use a line for two minutes after it comes into service,
since the line may be bad, but after the two minutes are up,
the line is declared usable, and if the node is not yet known
to the supervisor, it is taken over. This capability permits
the network to operate in the face of extreme failure rates,
such as a large storm with massive line-outage and power
failures.

FLOW CONTROL

A network circuit is a pipeline. If no buffering is in
volved, the input rate is equal to the output rate, and the
pipeline is rigid. Once buffering is introduced, the input rate
no longer need be the same as the output rate, and the
pipeline becomes "soft", able to accept input at a greater
rate than output. However, there is an upper limit to this
process, equal to the buffering capacity.

TYMNET permits the instantaneous input rate to differ
from the output rate, but controls the average rate by a
BACK-PRESSURE mechanism. Periodically, each node
examines all the buffers associated with an input process,
and if a buffer exceeds some threshold, the process is
informed to stop inputting until further notice. For a host
interface process, this consists of a message to stop output
for that port. For line processes, it takes the form of a bit
string sent over the line periodically, with a one-to-one
correspondence between bits and channels, telling the
neighboring node which of the channels can transmit more
data. For a terminal interface process to a device such as a
cassette player, this may take the form of transmission of
XOFF and XON characters to the terminal.

Because of back-pressure, the host need not concern
itself with details of terminal operation, such as the need for
padding characters to account for carriage return delays,
which are terminal dependent. The host simply starts filling
the pipeline, and, if the output rate is lowered because of
added padding, or because the terminal is very slow,
eventually the back-pressure backs up to the host, and will
henceforth throttle host output to the level of terminal
output. The same mechanism is applied if a cassette termi
nal is inputting to a host which is so heavily loaded that it
cannot accept data at the rate the cassette can generate it.
This is even more important as the data-origination capacity
goes up, as for a high-speed terminal or another host.

CONCLUSION

TYMNET has been in continuous operation since Novem
ber, 1971, and through continuous evolutionary develop
ment has grown to a 200 node network. During this period,
it has successfully handled all of the problems encountered,
and shown an excellent level of reliability. Its commercial
success and demonstrated abilities have led to its succes
sor, TYMNET-II, being based upon the same general
principles.

REFERENCES

1. Tymes, L., "TYMNET-A Tenninal Oriented Communications Net
work," AFIPS Conference Proceedings, Vol. 38, Spring 1971.

2. Rinde, J., TYMNET-I-"An Alternative To Packet Switching Technol-

TYMNET 613

ogy," Third International Conference On Computer Communications,
August 1976.

3. Rinde, J., "Routing And Control In A Centrally Directed Network,"
AFIPS Conference Proceedings, Vol. 46, 1977 National Computer Con
ference.

Packet switched network
in Japan

by TOSHIHARU TAKATSUKI, JIRO IIMURA, MASATO CHIBA and MASAYUKI ABE
Nippon Telegraph and Telephone Public Corporation
Tokyo, Japan

ABSTRACT

Research and development of public data networks have
been conducted by various countries to cope with recent
diverse data communication demands. Nippon Telegraph
and Telephone Public Corporation (NTT) has also been
advancing developmental projects on a packet switched
network and a circuit switched network. Commercial tests
on each will be begun in 1979.

Public data networks require the use of standard device
independent interfaces between networks and user devices.
Especially, standard interfaces used in packet switched
networks need to be specified even concerning an informa
tion transfer phase. As the fruits of energetic discussions
made by CCITT, ISO etc., CCITT Recommendation X.25
for packet-mode terminals has been completed recently. On
the other hand, the interface for non-packet-mode terminals
will be discussed in CCITT SG VII during this study period
1977-1980.

This paper describes NTT's packet switched network,
laying emphasis on details of communication protocols for
packet-mode and non-packet-mode terminals.

INTRODUCTION

NTT has been carrying out developmental research on a
new switched data network since 1971. As the first stage of
development, an experimental data switching system,
DDX-l, was designed and installed at the Musashino Elec
trical Communication Laboratory in June 1973. The DDX-l
was a hybrid switching system, which could serve a sub
scriber with either circuit switching or packet switching,
according to the call type. Based on experience gained by
the DDX-l, an improved experimental data switching sys
tem, DDX-2, was developed as a prototype for commercial
use. In the DDX-2, circuit switching and packet switching
functions are separately embodied, considering feasibility
of system configuration advancement. Field trial of the
DDX-2 circuit switching system was begun on a twenty
four-hour full operation basis in March t 976. With regard to
a packet switching function, basic technology required for
computer communications has been preliminarily tested in

615

the laboratory. The DDX-2 packet switching system will be
put into full operation by late 1977, Commercial switching
systems for a circuit switched network and a packet
switched network are now being designed, in parallel with
the developmental research. Each system will be put into
commercial service in 1979.

The circuit switched network and the packet switched
network have their own optimum application fields, respec
tively. Judging from the communication cost viewpoint, the
circuit switched network is appropriate to rather long
message transmission, while the packet switched network is
appropriate to rather short-message transmission. The re
sult of NTT's market research concerning future demand
growth shows that each network will be used by more than
several thousand customers even at the initial service stage.
Therefore, it was decided to develop the circuit switched
network and the packet switched network independently
for the present, in view of network extension flexibility.

There are two types of basic packet switched service:
virtual calls and datagrams. In datagram service, datagrams
may not be delivered to a destination address in the same
order in which they were input to the network. Also,
datagrams sent from different subscriber terminals or com
puters may be simultaneously delivered to the same desti
nation address. resulting in data from originating subscrib-

, 0 ,,' ~ _" =. h "'. -.._ ">i-.lf"--.. -~"'~''''~- ±.,.~_ .. _ "~'~',"'""-'_'. <.,..,....~~.=_ d_ '10~~~'",-"'" .'" ,

er, oemg ranglco VI< nn eacn UUH::I. LOII~t:4Ut:1i1l). U:lt::1 ~ dl t::

required to individually take steps to manage these phe
nomena. Moreover, datagrams have another problem to be
taken into account by the network, wherein no flow control
and delivery confirmation technique relating to datagram
service has been established as yet. On the other hand,
virtual call service enables the network to provide common
flow control procedures to avoid the above-mentioned
phenomena. Therefore, NTT has adopted virtual calls as
basic packet switched service. Although one of datagram
service benefits is that subscribers can omit call establish
ment and clearing procedures, NTT expects that the same
benefit would be given to subscribers by offering permanent
virtual circuit service as well as virtual call service. How
ever, there may be possibility of providing datagram service
in the future. although further study is required.

For the purpose of international standardization concern
ing virtual calls and permanent virtual circuits, the specifi-

616 National Computer Conference, 1977

cation of the packet-mode interface was submitted as a
draft recommendation to CCITT SG VII during the last
study period. This was finally declared as CCITT Recom
mendation X.25. NTT's packet switched network incorpo
rates the Recommendation at almost all points. In addition,
NTT has specified communication protocols for the non
packet-mode interface, by which effective data communica
tions between packet-mode terminals and non-packet-mode
terminals would be actualized.

GENERAL DESCRIPTION

NTT's packet switched network outline is presented
hereafter.

Service specifications

All data communications within the network are provided
by means of full duplex virtual circuits. A virtual circuit
may be permanent or switched. A permanent virtual circuit
allows data transmission between two pieces of equipment,
which are assigned at the time of sUbscription to the
service, at any time without using call establishment and
clearing procedures. On the other hand, a switched virtual
circuit, called a virtual call, allows data transmission after a
temporary logical connection between calling and called
parties has been established using an access.protocol.

Two types of terminals are accommodated to the net
work: packet-mode terminals and non-packet-mode termi
nals. A packet-mode terminal can send or receive data in
the form of packets. Consequently, it can simultaneously
communicate with a number of terminals through a single
subscriber line by establishing many virtual circuits. This
system is called packet interleaved communication. A non
packet-mode terminal cannot manage packets by itself.
Messages transmitted from a non-packet-mode terminal are
assembled into packets by the network, while packets
addressed to a non-packet-mode terminal are disassembled
into messages by it. A non-packet-mode terminal cannot
perform packet interleaved communication. Figure 1 iIIus-

Packet Switched Network

NPT

Packet interleaved

Note PT : Packet-mode terminal

NPT : Non-packet-mode terminal

Figure I-A communication example in the packet switched network

trates a communication example within the network using
virtual circuits.

Data signaling rates of the terminals accommodated to
the network are 2.4 kb/s, 4.8 kb/s, 9.6 kb/s and 48 kb/s for
synchronous packet-mode terminals, 2.4 kb/s, 4.8 kb/s and
9.6 kb/s for synchronous non-packet-mode terminals and
200 b/s, 300 bls and 1.2 kb/s for start-stop non-packet-mode
terminals.

Optional user facilities on a virtual call are direct call,
closed user group with or without outgoing access, calling
line and called line identification, abbreviated address
calling and lump-sum center payment.

Physical characteristics of the interface between data
terminal equipment (DTE) and data circuit-terminating
equipment (DCE) are based on those of CCTTT Recommen
dations X.20 and X.20bis for start-stop terminals and X.2l
and X.2lbis for synchronous terminals. Other characteris
tics of the DTE/DCE interface are described in the follow
ing sections, including procedures for physical link estab
lishment, call control and data transfer.

Transmission control procedures, which can be used for
access to the network, are the High Level Data Link
Control (HDLC) procedure, the conversational basic mode
control procedure, the full-duplex basic mode control pro
cedure and the delimiter procedure. Although a start-stop
non-packet-mode terminal can select one out of the above
mentioned procedures except the HDLC procedure, a syn
chronous packet-mode or non-packet-mode terminal should
use the HDLC procedure. In the case of the delimiter
procedure, the end of a message should be indicated by
special characters called delimiters, which are specified by
the network, and there are no other restrictions. In princi
pIe, mutual communications between all terminals within
the network may be possible by means of speed, code and
procedure conversion. However, code or procedure con
version will cause communication cost increase, because a
considerable quantity of software is needed at each Packet
Assembler Disassembler (PAD) in order to offer this facility
to all combination of data terminals. Therefore, it is provi
sionally desirable to set some limit to the possible combina
tion of transmission control procedures. Table I shows the
allowed combination of the transmission control procedures
in the network.

Charging scheme

The tariff in the network is composed of monthly charge
and packet charge. The monthly charge changes, depending
on DTE data signaling rates. The following description is
concerned only with the packet charge.

In general, there are two basic charging techniques which
might be used within public packet switched networks to
charge for packet traffic. One is uni-directional charging, in
which only one party is charged for the entire call or
transaction. The other is bi-directional charging, in which
the charge for the call is split between both parties,
according to which party sent or received the packet.

TABLE I-Possible DTE transmission control procedures combination

~ Calling Party PT NPT

Called Procedure HDLC (1) (2) (3) (4)
Party

PT HDLC 0 0 0 0 0

(1) HDLC 0 0 - - -

(2)
Basic Mode,

0 ~ Conversational - - -

I NPT

I (3) Basic Mode, 0 6 Full Duplex - - -

(4) Delimiter 0 - - - f1

Note 0 Possible

~ Possible with conditions

Technically, either of these packet charging techniques
could be utilized successfully in the case of virtual calls.
However, NTT's packet switched network has adopted
uni-directional charging, in view of future possibility of
interworking between the packet switched network and
existing telephone or telex networks.

On a normal virtual call, all packets are charged to the
calling party. In addition, if the called party has contracted
lump-sum center payment, which is one of the optional user
facilities in virtual call service, all packets during the course
of a virtual call are charged to the called party. Namely,
okl"",,. "UFR"~"·~~·,~-+e¥eI7se ~bar~iQIil.4ln <.an
agreed contractual basis.

Each message is charged for according to the number of
packets required for its transmission. The packet charge
will slightly depend on the distance between calling and
called parties, although it is independent of the call duration
and other factors, such as DTE data signaling rates.

In the case of permanent virtual circuit service, all
packets are charged to one of the two parties, according to
a determination made at the time of sUbscription to the
service. In other words, the packet charge for the perma
nent virtual circuit is linked to the volume of packets
transmitted and is the same as that of the virtual call.

System configuration

A packet-mode terminal is directly accommodated to a
Packet Switching Exchange (PSE) and a non-packet-mode

Packet Switched Network in Japan 6 i 7

terminal is accommodated to a Packet MUltiplexer (PMX)
which operates as a PAD.

Access to the network is possible through analog or
digital leased circuits as well as four-wire subscriber lines.
Access to the network via the telephone network or the
telex network is not available for the present. Subscriber
accommodation patterns are illustrated in Figure 2.

The PSE stores packets sent from/to packet-mode termi
nals, PMXs or other PSEs in its processor memories via the
High-speed Signal Control Equipment (HSE) and then
forwards them, as shown in Figure 2. The PSE processor is
the same as that of DIO, which was developed for stored
program control electronic telephone switching systems and
has achieved satisfactory operation results at more than one
hundred telephone exchanges in Japan. The PMX assem
bles characters or bit streams sent from non-packet-mode
terminals into packets on an octet basis and disassembles
packets sent from the PSE into original form. All transmis
sion lines between PSEs or between PSE and PMX are
duplicated 48 kb/s channels. Each PSE and PMX function
unit is also duplicated to realize high system reliability.

Traffic control

In the packet switched network, a feedback signal regu
lating input packet flow is needed to keep step with output
packet flow, because the number of network buffers is
finite. Traffic control adopted in the network is classified
into window control and packet buffer allocation. The
window control is used for setting some limit to the number
of packets travelling on a logical link. In addition, receiving
packet buffers in the PSE are allocated individually to each
PMX or packet-mode terminal. The number of receiving
packet buffers for a packet-mode terminal is determined at
the time of sUbscription to the service. In case of buffer
shortage, input of packets from remote terminals is Sup
pressed for a period, independently of window control.

(Remote or within a rSE)

Note PSE Packet Switching Exchange

PMX Packet Mu1tiplexer

PSE

HSE High-speed Signal Control Equipment

CP DIG Processor

STF Supervisory Test Frame

Figure 2-Packet switching system configuration

6] 8 National Computer Conference, 1977

All packets during the course of a call are numbered at
the source PSE. The packet sequence number is checked at
the destination PSE and the packets are sent to the destina
tion PMX or packet-mode terminal, being rearranged into
the correct sequence order. If there is a missing packet in
the sequence, the destination PSE waits for the packet to
be transmitted for one second. After the packet concerned
arrives at the destination PSE, it is sent to the PMX or the
packet-mode terminal with the remaining packets. If it is
not transmitted within the pre-ordained time limits, the
destination PSE discards the subsequent packets to the
packet concerned. In this case, all undelivered packets
should be retransmitted by means of retransmission proce
dures of the destination PMX or packet-mode terminal.

Service quality

Sixteen bit length Frame Check Sequence (FCS), based
on the HDLC procedure, is annexed to each packet in the
network. Bit errors are detected with high accuracy at the
receiving side. Therefore, bit errors are caused only by
packets where FCS cannot detect error occurrences. If the
lines with an order of 10-6_10-7 bit error rate are used, the
bit error rate through the network is expected to be on the
order of 10-11_10-12 .

Each packet is transferred by store and forward tech
nique. Therefore, the packet transfer time becomes longer
in comparison with circuit switching. Packet transfer time
consists of electrical transmission delay, handling time in
the switching equipment, waiting time for transmission and
serial-parallel conversion time. The target value of this
transfer time through the network is]50 msec on an
average, which is much shorter than the allowed time in
conversational communications.

NETWORK ACCESS PROTOCOL SCHEME

Subscriber interfaces, which is required to access NTT's
packet switched network, include three types of protocol
shown in Figure 3, the Network-Host protocol that speci-

NHP Network-Host protocol

PHP PAD-Host protocol

NTP : Network-Terminal protocol

Figure 3-Network access protocol scheme

fies the packet-mode interface, the PAD-Host protocol that
defines the interface between the Packet assem
bly/disassembly function (PAD) and the packet-mode termi
nal, and the Network-Terminal prctocol which is required
to enable non-packet-mode data terminals to be accommo
dated to the network.

Network-host protocol

In order to make it easy to implement the end-to-end
protocol from the viewpoint of hardware and/or software,
the end-to-end protocol should be divided into three inde
pendent layered protocol levels, besides the physical inter
face level. as shown in Figure 4. Network-Host protocol
defined by the network specifies two of them, that is, the
Frame level protocol and the Packet level protocol. Frame
level protocol has error detection and correction functions
for transmission errors on the subscriber line between the
DTE and the network. That is, the Frame level protocol
ensures an error free link for the Packet level delivery of
packets. The Frame level protocol is compatible with the
HDLC procedure standardized by ISO. The Packet level is
the highest protocol, by which virtual call control, data
transmission, flow control, etc., are handled. The virtual call
is set up with the Call Request packet, shown in Figure 5.
In the Call Request packet, the logical channel number,
chosen by the DTE, is indicated as well as the network
address of the called DTE. The permanent virtual circuit is
discriminated from the virtual call with a certain logical
channel number specified by the network and the DTE. The
facility field is needed only when the user wishes to request
optional user facilities, such as the closed user group and
the indication of window size for the flow control. When
the DTEs wish to use the closed user group facility, each
DTE should register the opposite DTE address mutually to
the network by the Registration packet, shown in Figure 6,
with an abbreviated number indicated in the facility field.

r - - - - - --1
I

User I
Process -+, - - -

(To Other User Process)
I
I
I

Packet
Level
Protocol

:F=======-===:

Frame
Level

I
~-

I

I

I .. -
Protocol I

I
I

L _____ J

Host

--~

(Multi-channel)

---------~

(Single data link)

Network

Figure 4--Network-host protocol architecture

COc tet)

0 0 1 0 I Logical
- --- - ---

1

Channel Identifier 1

0 0 0 0 1 0 1 1 1

Calling DTE

I
Calling DTE

I Address Length Address Length
1

DTE Address Field 4

Facility Field n

User Data ~128

Figure 5-Call request packet

When the DTE finishes registering the opposite DTE ad
dress and abbreviated number properly, the DTE receives a
Confirmation packet from the network. Through this mu
tual registration method, the DTE may request a call with
the Call Request packet having the abbreviated registration
number of the called DTE in the facility field, as shown in
Figure 7. If the DTE, which has already accomplished the
registration., ~lants to cancel it, the DTE c~n do \\lith a
Ea~~~'il~tia'n "p;~k~t, and 'also rriay get i~n~e" ('0 nTirmitiil)n
packet from the network. User data may be added, follow
ing the facility field, up to a maximum of 128 octets.

Data packet, shown in Figure 8, should be used for data
transmission after the virtual circuit has been set up. In the
data packet, the packet send/receive sequence number has
to be indicated similarly to the control byte of HDLC
information frames. The modulo 128 is adopted as the
sequence number, because the Data packet delivery is
confirmed from end to end by the Receive Ready packet
with the receive sequence number. Sequence numbers are
indicated on the third octet of the packet header for the
packet send sequence number P(s) and on the fourth octet
for the packet receive sequence number P(r). User data
length in the data field may be variable up to a maximum of
256 octets. For the present. only one maximum data field
length, 256 octets, is adopted and More Data Indication
may be used on a user basis.

0 0

0 1

0 0

0 0

1 0

Packet Switched Network in japan

1 o I Logical
- - - - - -

Channel Identifier

0 0 0 0 1

Called DTE

L"1()
Ul7

--

1

0 0 I Address Length

DTE Address Field

I Facility Length

0 0 0 0 0 1
I

Nl I N2
------ - - -- ;- - - -------

N3 I N4
I

Nl, N2, N3, N4: Abbreviated registra
tion number

Figure 6-Registration packet

o o 1 o Logical

Channel Identifier

0 0 0 0 1 0 1 1

0 0 0 0 I 0 0 0 0

0 0 J Facility Length

1 0 0 0 0 0 1 1
I

Nl I N2
I

!

,.... -- - --- --I - -- - ---- --
N3 I N4

I

Nl, N2, N3, N4 : Abbreviated Number

Figure 7-Call request packet with the abbreviated registration number

620 National Computer Conference, 1977

a a 1 a I Logical
- - - -- - - ---

Channel Identifier

p(s) a

P{r) M

User Data

(~256 octets)

M More Data Indication

Figure 8-Data packet

In order to prevent the receiving DTE buffer overflow,
flow control is executed with the window size Ws, based on
the packet sequence number, which is specified in the Call
Request packet facility field. The calling DTE, which has
received the Receive Ready packet with a sequence number
Pr, may send Data packets with a sequence number up to
Pr+Ws-1. The Receive Ready packet should be transmit
ted from one end to another, not link by link. End-to-end
Receive Ready packet transmission means that the sending
DTE can detect a lost packet, if any, certainly, when the
Receive Ready/Receive Not Ready packet has been re
ceived from another end. When the call cannot be estab
lished or the call is cleared, the network delivers the Clear
Indication packet which contains call progress signals,
specified in X.25, indicating the reason for the clearing.

PAD-host protocol

As the communication between a packet-mode terminal
and a non-packet-made terminal is executed through the
PAD function provided by the network, the P AD-Host
protocol should be specified with functions such as flow
controls, lost packets recovery, conversion of data terminal
control procedures, etc. A window size, which is indicated
in Call Request packet being sent from the packet-mode
terminal to the PAD, should be specified according to the
data signalling rate of the called non-packet-mode data
terminal. N on-packet-mode terminals accommodated to the
network can be classified into either standard class or

TABLE II-Virtual Transmission Control Character

v. T. C. Abbreviations Bit patterns
8 1

Enquiry ENQ o 1 o 1 o 0 0 0

Acknowledgement ACK o 0 o 0 0 1 0 0

Negative acknowledgement NAK o 0 o 0 1 0 o 0

End of transmission EOT o 0 0 1 0 o 0 0

End of connection EOC o 0 1 0 o 0 1 0

Quit QIT 001 0 0 0 0 0

Suspend SPD o 0] 0 0 1 0 0

Wait before transmission WBT 001 0 1 0 0 0

Request response RQR 001 o 1 1 0 0

Acknowledgement and quit AQT o 0 0 0 1 1 o 0

delimiter class. The terminal recognized as the standard
. class must be equipped with network standard transmission
control procedure functions. This standardization gives an
advantage for Hosts which provides the possibility to
handle various standard transmission control procedures as
one network virtual terminal. The PAD assembles data into
packets with a virtual terminal control character which
indicates transmission control command for communication
between PAD and Host. Examples of the virtual terminal
control characters are shown in Table II, and the virtual
terminal control character is indicated in Call Request
packet or Data packet for the virtual terminal control
character transmission. Data transmission through PAD is
shown in Figure 9.

Network-terminal protocol

Non-packet-mode data terminals accommodated to the
network can be classified into either standard class or

PM){ PT
~PT

~-----ll @ 81 ~ ---[ft]

Figure 9-Illustration of data transmission through PAD

*,~ .. *: Function characters

Figure 100Packet assembling with delimiter

delimiter class, as described before. The standard class
includes synchronous terminals with the HDLC procedure
and start-stop terminals with Basic mode control proce
dures (conversation/full duplex). The data terminal HDLC
procedure is also compatible with ISO standard. In order to
set up and clear a virtuai circuit, the terminal with the
HDLC procedure has to have switching connection control,
including dialing procedure. Signaling information, includ
ing selecting signals, is delivered to the network on VI
command/response in the HDLC procedure, without adopt
ing X21 signaling sequence. On the Basic mode control
procedures of data terminals in standard class, selecting
control is executed by X.20 or X.20bis with the Network
Control Unit.

For the delimiter class which includes only start-stop
terminals, the network defines a few sets of delimiters
syntactically, which trigger packet assembling, and is not
concerned with the algorithms of the transmission control
procedures itself. In order to ensure network transparency
for end-to-end functions such as error control, information
for end-to-end functions can be put into packet format by
assembling the packet within a certain time after a delimiter
is received, as shown in Figure 10. Delimiter sets are shown
in Table III.

CONCLUSIONS

'fft~ 1'ft{'e'"-hA"t de'HJrih6d service specifications. charging
scheme, system configuration and communication protocols
in NTT's packet switched network. Public packet switched
networks require the adoption of internationally agreed
upon standard device-independent interfaces between net
works and user terminals. Therefore, it is urgently needed
to standardize the non-packet-mode interface, which has
not been specified by CCITT Recommendation as yet. NTT
considers that the non-packet-mode interface presented in
this paper is an approach to accommodating various data

Packet Switched Network in japan-""
0'"'1

TABLE III-Delimiter Sets

Set Delimiter 8 Code 1

ETX * 0 0 0 0 0 1 1

ETB * 0 0 1 0 1 1 1

EOT * 0 0 0 0 1 0 0

1 ENQ * 0 0 0 0 1 0 1

ACK * 0 0 0 0 1 1 0

NAK * 0 0 1 0 1 0 1

DLE * 0 0 1 0 0 0 0

ETX * 0 0 0 0 0 1 1
2

NL * 0 0 0 1 0 1 0

* : 0/1

terminals, including existing ones, to the packet switched
network effectively.

NTT's commercial packet switched network is now at
the system design stage. Its hardware and software' manu
facture will be begun soon and its service will be cut over in
1979.

ACKNOWLEDGMENTS

The authors wish to heartily thank the many people who
have participated in NTT's packet switched network proj
ect, especially Mr. J. Ono, Deputy Director of Engineering
Bureau, and Mr. Y. Mirna, Director of Switching Systems
Development Division, Musashino Electrical Communica
tion Laboratory, for their valuable suggestions.

REFERENCES

J. Chiba, M. et aI., "'A Commercial Test of Digital Data Network and Its
Future Survey;' Proc. of !t;.lI:rnational $.vitthiIl8 SymposiUll1 , October
1976.

2. Mirna, Y. et aI., "'The DDX-2 Digital Data Switching System," Proc. of
International Switching Symposium, October 1976.

3. Nakamura, R. et aI., "Some Design Aspects of a Public Packet Switched
Network," Proc. of International Conference on Computer Communica
tion, August 1976.

4. Kato, M. and H. Ikeda, "An Experimental Digital Data Switching
System-DDX-I-," Proc. of International Switching Symposium, Sep
tember 1974.

5. Iimura, J. and T. Takatsuki, "Digital Data Network Field Trial," Japan
Telecommunications Review, Vol. 18, No.4, pp. 230-237, October 1976.

Modular programming conventions
in assembly languages*

by SHY-MING JU
University of North Carolina at Charlotte
Charlotte, North Carolina

ABSTRACT

The methodology of modular programming has received
increased attention in which the most basic yet important
part is the intermodule communication. Circumstances may
dictate the use of assembly language in software develop
ment. However, linkage conventions at this level are gener
ally lacking or unworkable. This paper proposes a calling
sequence convention and a calling sequence handler for
intermodule communication. This scheme is simple to use
and enhances good programming practices, such as simplic
ity, flexibility, comprehensibility and integrity.

INTRODUCTION

The methodology of modular programming has received
increased attention in recent years. 1-

4 It permits parallel
development of modules and affords product flexibility and
comprehensibility. Criteria for modularization have been
recommended to design each module around a suitable
abstraction5 or to have each module hide only one design
decision. 3 If the system configuration and software tools are
adequate, modular programming is usually undertaken in
high-level languages. However, when memory storage is a
linli1.Wg. J:~ •.. OJ: AQ.. sultable..,.,.le.¥ci., lan~IIQ~ .1.
available, or run-time support software is insufficient, or
execution efficiency is of paramount importance, then as
sembly language programming will be the last resort. Pro
gramming in assembly language especially prevails among
minicomputer users because most of the existing minicom
puters suffer from one or more of the above mentioned
deficiencies. 6

Indeed most programming languages directly or indirectly
make use of assemblers, linkage editors, and possibly
macro processors, therefore modularly designed software is
nothing more than a set of independently assembled sub
routines and data blocks when it is viewed as a runnable
representation. Consequently the standards and conven
tions on intermodule communication at this level are the
most basic yet important part of modular programming. The

* This work was supported in part by a Faculty Summer Research Grant
sponsored by the Foundation of the University of North Carolina at
Charlotte.

623

author has observed various manufacturers' software and
found that such standards and conventions are generally
lacking, poor or unworkable. This lack of standards and
conventions in the software has resulted in incompatibility
within the same installation, as well as between different
installations.

In the following sections we will propose conventions
and supporting mechanisms for intermodule communication
which are simple to use and enhance good programming
practice.

LINKAGE CONVENTIONS

A well-documented and well-known linkage convention is
the one established for IB M SystemJ3607 which requires the
called module to save the values contained in the general
registers as soon as it gets control, and then restore those
values prior to returning control. It also requires the calling
module to provide a "save area" for that purpose, and to
pass the address of the save area to the called module
through Register 13. It further requires the calling module
to use registers 15, 14, and I in the calling sequence, in
which Register 15 will contain the entry point, Register 14
the return address, and Register I the parameter or the
address of a list of parameters.

To an assemblylanguageprograITImer, this kind of con
venti-a'n IS ce-rI~iini); -not "enJO)I~b'I'e:' es'j)eClaliy ;1 a macro
facility is not available. As far as problem-solving is con
cerned, this linkage mechanism is not part of the algorithm;
therefore it tends to be overlooked by the programmer and
thus causes errors when intermodule communication takes
place.

The save area reserved in each module automatically
eliminates the potential for recursion or reentrancy, thus
contradicting a goal of modular programming.

In our proposal, the responsibility for saving and restor
ing the contents of registers, and that of providing a save
area, are delegated to a "calling sequence handler" which
is invoked by a calling sequence through a software "trap"
such as a supervisor call. To illustrate the complete process
of intermodule communication, we will choose the Inter
datalM70 minicomputerB as our base of representatic:',
partly because it is similar to yet much simpler than an IBM
System/360, partly because our idea has been thoroughly
tested on it.

624 National Computer Conference, 1977

The InterdatalM70 minicomputer is a halfword-oriented
byte-addressable machine. It has sixteen general registers
but does not support base-register addressing scheme. It
accommodates up to sixteen supervisor call services; the
SVC instruction has a format similar to that of a RX-type
instruction in IBM SystemJ360.

ENTRY CALLER,STACK
2 * CALLING SEQUENCE HANDLER
3 *

The format of the proposed calling sequence in a calling
module is:

SVC 0, (entry point)

DC (argO, (arg2), ... , (argN)

4- * REGISTER 15 IS RESERVED FOR STACK POINTER
5 :Ie REGISTER 0 AND 1 WILL NOT BE RES'I'ORED
(-, * ~ CALLER XHR 1, 1 ,
8 CII 1, X'94'
9 BE EXIT

10 CALL CHI 15, STACK+ 160
1 1 BNL STKOVJt'
12 STH 0,O(15) SAVE REGISTERS
13 Lll O,X'94'
14 LHI 2,X'EO' DON'T CHANGE RO UNTIL EXIT
15 LII 1. X' 98'
16 SIS 1,2
17 STH 1 .2(15) STORE ADR OF CALLING SEQUENCE
18 CALLI AIS 1,2
19 LII 3,0(1) GET NEXT PARAMETER
20 CLHI 3,32
21 BflL CALL2 JUMP IF NOT PARAMETER
!!2 NHI S.X'F'
23 SLLS 3. 1 REl'lEMBER HALF¥.ORD HAS 2 BYrES
24· STH 3.LH+2 TO MAKE UP A LII I NSTRUCT I ON
!!5 Lll 3.1I480F
26 OIlR 3,2
27 RTH 3,LH
~8 LH DS 4 LOAD ARGL~NTS IN DESCENDING SEQUENCE
!!9 SITI 2,X'10' START FROM lU4
30 B CALLI
31 CALL2 AnI 15,32 ADVANCE STACK POINTER
32 BR 0
3'l EXIT SlII 15,32 DECREASE STACK PO INTER
:t.~ CHI 15.STACK
35 BL STKUNF
06 Ln 1,2(15) TO CI1ECK I F ANY CALL
37 LHI 2.X'E0' BY REFEHENCE PARAl'lETERS
3B CALL6 AIS 1,2
39 LD 3, O(1)

40 CLHI 3.32
41 BNL CALLa JUMP IF NOT A PARAMETER
42 CLHI 3, 16
43 BNL CALlA JUMP IF CALL BY REFERENCE
44- CALL:) SUI 2.X'HP
45 B CALL6
46 CALL4 NUl 3.X'F' TO MAKE UP A STH INSTRUCTION
47 SLLS 3, 1
40 STH 3,STH+2
49 LH 3,H+1j6F
50 OBR 3,2
:il STH 3.STH
52 8TH DS 4
;'3 B cA1.UJ
54 CALL3 LM 2.4(un DO",'T MESS R0
5:1 BR 1
56 STKOVF DC X'8000'
:17 STKUNF DC X'Boeo'
:iEl 11480 .. ' LB 0, 15
59 H400F STH e.15
60 STACK DS 320
61 END

Figure I-Listing of calling sequence handler

Moduiar Programming Conventions in Assembly Languages

where (entry point) is usually an external symbol declared
in the called module, and (argl), (arg2), ... , (argN) are
register numbers representing any of the sixteen registers.

The format of return sequence in a called module is
simply:

SVC 0,0

For each calling sequence the calling module should set
to each register in the "argument list" either an operand
(i.e., call by value) or an address of a list of operands (i.e.,
call by address), as dictated by the called module. The
registers in the argument list will be called "argument
registers." The calling module can further "flag" some of

ENTRY FIND
* THE CALLING SEQUENCE IS:

* SVC O,FIND

the argument registers with a '+ 16' to indicate that the
contents of the flagged ones may be updated after the call is
completed. Note that when a flagged argument register
contains an operand, it is essentially a "call by value and
result." 9

Before getting into more detail, let us consider a module
which searches for the first occurrence of a specified
character through a character string in a 80-bytes buffer
area pointed to by a pointer. If such a character is found, its
relative position is reported, otherwise the relative position
is set to 80.

The assembly language code of this module is listed
below:

* DC PTR, T ARGET,INDEX + 16

*
PTR EQU 15
TARGET EQU 14
INDEX EQU 13
WRK EQU 2

*
FIND XHR INDEX,INDEX
G0 LB WRK,O(PTR)

CHR WRK,TARGET
BE RETURN
AHI PTR,l
AHI INDEX,1
CHI INDEX,80
BNE G0

RETURN SVC 0,0
END

A calling module may be outlined as:

LENGTH
CHAR
PTR

BUFFER

EXTRN

EQU
EQU
EQU

LHI
LHI

SVC
DC

DS
END

FIND

5
8
10

CHAR,C'$'
PTR, BUFFER

O,FIND
PTR,CHAR,LENGTH + 16

80

SET INDEX T0 °
L0AD A CHARACTER FR0M STRING
C0MPARE IT WITH THE TARGET CHAR
IF MATCHED, D0NE.
INCREMENT PTR BY 1
INCREMENT INDEX BY 1
TEST IF BUFFER EXHAUSTED
IF N0T, GET NEXT CHARACTER

It should be noted that even though the module" FIN D"
has updated both PTR and INDEX, only the updated value
of IN DE X will be carried back to the calling module
because it was flagged in the calling sequence. Also noted is
thatth~ c;~Jl~dmodlJleacc~e§~e~<lc:tll~1 p<lremt:te,r~ thro~gh
registers starting from Register 15 and in descending order,
without knowing which registers were used by the calling
module as argument registers.

To discuss the implications of the proposed calling se
quence, we need to describe the functions of the calling
sequence handler first.

THE CALLING SEQUENCE HANDLER

The calling sequence handler maintains a "save stack"
for each "job." By job we mean a sequence of logically
related processes, each process represents a running mod
ule. The stack area is inaccessible to programmers.

When the handler is invoked by a calling sequence, it
first stores the contents of all registers and the return
address into its stack, and adjusts the stack pointer. It then
copies the contents of the argument registers into Register
15, 14, ... , in descending order so that the correspond-

626 National Computer Conference, 1977

ence between the actual argument registers and the formal
argument registers is established. After this is done, it
transfers control to the called module.

When the handler is invoked by a return sequence, it first
copies the current contents of the corresponding registers
into the flagged argument registers, and restores the re
maining registers. It then retrieves the return address from
the stack, adjusts the stack pointer, and transfers control to
the instruction following the specific calling sequence.

A listing of the assembly language calling sequence
handler is shown in Figure I. In that implementation
Register 15 was reserved for the stack pointer in order to
eliminate the operations of loading and storing the stack
pointer. Also, Register ° and I were reserved as scratch
registers so that intermediate results may be held there.
Therefore, we will pretend that there were only fifteen
general registers available to the programmer and Register °
and I should only be used as scratch registers.

IMPLICATIONS OF THE PROPOSED SCHEME

In the proposed scheme, there is only one save stack for
all modules of a job. Since it is unlikely to have all modules
activated at the same time, the total memory storage

ENTRY FACT0R
* THE CALLING SEQUENCE IS:
* SVC 0,FACT0R

allocated to the stack can be less than the total of all the
save areas that would have been allocated to each of the
modules.

The maximum number of argument registers allowed in a
calling sequence is the number of registers available to the
programmer in a specific implementation; for example,
thirteen in our case. This limitation will not, however,
impose a serious inconvenience when a large number of
argument registers are required, because the parameters
can be placed in a block of memory storage with only the
block address passed through an argument register.

As assembly language programmers all know, efficiency
in program execution and conservation of storage space can
be attained by avoiding unnecessary memory accesses and
by using RR-type instructions wisely. The convenient facili
ties of call-by-value and call-by-value-and-result for the
calling sequence were designed to encourage this kind of
good programming practice. Call-by-address was provided
mainly for parameters which are structured data, such as an
array.

It is interesting to note that if a module is pure and if its
calling sequence involves only call-by-value and/or call-by
value-and-result, it will naturally be recursive and reen
trant, as can be seen in the following example which
computes the N-factorial:

* DC RESULT+16,N

*
RESULT EQU 14
N EQU 13
M EQU 2

*
FACT0R LHR N,N

BZ LBL IF N =0 THEN RESULT IS 1
CHI N,I
BE LBL IF N= 1 RESULT IS ALS0 I
LHI M,-I(N) SET M T0 N-I
SVC 0,FACT0R
DC RESULT+16,M C0MPUTE F ACT0RIAL 0F N-I
LHR I ,RESULT
MHR O,N
LHR RESULT,I
SVC 0,0

LBL LHI RESULT,I
SVC 0,0
END

It is recommended that any communication between a
module and its global environment should be through
argument registers, and the conventional way of accessing
common area through "external declarations" should be
used with great discretion or better yet, should be prohib
ited. This practice would achieve two advantages; on the
one hand, the fact that arguments are explicitly shown in
the calling sequence and only flagged arguments can be

SET RESULT T0 RESUL T*N
RETURN
SET RESUL T T0 1

updated by a called module greatly improves the readability
of the module logic; on the other hand, the fact that a
module does not know and does not need to know its global
environment except through the argument registers en
hances module integrity. This practice is especially impor
tant in large software development efforts undertaken by a
team of programmers.

The calling sequence handler can help in system integra-

Modular Programming Conventions in Assembly Languages 627

tion testing by inserting code that prints a message when
ever control enters or exits from a module. Should a fatal
error occur during execution, the module at fault can be
determined and the execution history retained in the save
stack can be dumped out for diagnosis. The calling se
quence handler can even help in resource management; for
example, allocation and deallocation of work area to a
module. Since the handler monitors module entrance and
exit, it can also participate in dynamic linking when appro
priately modified.

CONCLUSIONS

The proposed calling sequence conventions and the calling
sequence handler have been used successfully in a large
software project which employed modular programming in
a chief programmer team approach.tO,l! All modules were
developed and tested independently, and during the system

CFDVR

integration testing no major difficulties were encountered.
The hierarchy of modules in its Chinese output subsystem
is shown in Figure 2. By standardizing the calling sequence,
some of these modules were able to be used without any
modification in developing other software such as a text
editor and a special-purpose language processor.

The proposed scheme should work equally well on ma
chines with fewer general registers such as a PDP-II. In
that case some storage locations can be set aside to
simulate registers. A close look at the assembly language
listing of the calling sequence handler should reveal that
most of the instructions perform the functions which would
be required in any linkage conventions. The only extra
overhead is due to rearranging argument registers into
descending ordered registers prior to entry and updating the
flagged registers upon exit. However, this overhead is
outweighed by gains in programming simplicity and en
hancement. Ideally, the calling sequence handler should be
hardwired or implemented in the form of a microprogram to
further reduce overhead.

I~
FMFDVP
STEPVP
PRN'rVp
PLOTV?

BLKSE'I'

SET XTRACT NLARGE

/\ /\ /\
/\

tgi!i~ ~,oVJ> DKDVR i~l'VF

1t.LAP

I

lVlASKX
.aSKY

ROTATE
LOCATE

SEll' j('l'RACT

/
/\ /. \\"

I \

ROTATE IY~ COlViPOS

LOTA'~\

lYlAP

DKDVR

R.r;DUCX MMCCPY
REDUCY
SHIFTX
SHIFTY

/~
MMCOPY ROTAT.r;
-- LOCATE

BORTA - IvLASKX
MASKY

I
Ro'rA':rJ£
LOrATJ£

R~DUCX ivjt!COPY
k~DUGY
~.j'U

~HIF'l'Y

/~
ivuYJCOPY Rcrl'A'll~

LOT ATE

Notel Double lines indicate that the two
modules call each other

Figure 2-Hierarchy of modules in the Chinese output subsystem

628 National Computer Conference, 1977

ACKNOWLEDGMENT

The author is indebted to the E DP Center of the Directorate
General of Budget, Accounting and Statistics of the Execu
tive Yuan, Republic of China, for giving him [he opportu
nity to test the idea presented herein during the develop
ment of the software project MODEST.

REFERENCES

I. Freeman, P., Software System Principles: A Survey, Science Research
Associates, Inc., Chicago, 1975.

2. Gauthier, R. and S. Pont, Designing Systems Programs, Prentice-Hall,
Englewood Cliffs, N.J., 1970.

3. Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems
into Modules," Comm. ACM, Vol. 15, No. 12, December 1972, pp.
1053-1058.

4. Balzer, R. M., "PORTS-A Method for Dynamic Interprogram Commu
nication and Job Control," Proc. AFIPS 1971 SJCC, Vol. 38, pp. 485-
489.

5. Zilles, S., "Modularization Around a Suitable Abstraction," Proc.
AFIPS 1975 NCC, Vol. 44, p. 279.

6. Waks, D. J. and A. B. Kronenburg, "The Future of Minicomputer
Programming," Proc. AFIPS 1972 SJCC, Vol. 40, pp. 103-109.

7. Donovan, J., Systems Programming, McGraw-Hili, New York, 1972,
pp. 465-470.

8. Interdata Model 70 User's Manual, Interdata Inc. 1971.
9. Gries, D., Compiler Construction for Digital Computer, John Wiley and

Sons, Inc., New York, 1971.
10. Ju, S. M., "Design and Implementation of an Intelligent Chinese Data

Entry and Report Generating System," Proc. ICS 1975, Vol. I, pp. 166-
174.

II. Ju, S. M., et aI., "MODEST-A Modularly Designed Sino-Terminal
System," Technical Reports CDPL-V3, Chinese Data Processing Lab.,
EDPCenter. DGBAS. The Executive Yuan, Taiwan, RepllhlicofChina;
May 1976.

The design and implementation of a simple
programming language for microcomputers*

by 1. C. CLEAVELAND and C. D. SATTEN
University of California
Los Angeles, California

ABSTRACT

GAMMA is a simple, interactive, expression-oriented pro
gramming language which grew out of a microcomputer
development environment at UCLA. The language, its
design and its implementation are described. GAMMA has
three types of values: numbers, strings, and an undefined
value, which is used for denoting errors. Numbers are
variable precision decimal floating point and strings are of
variable length. The only limitations on the number of digits
of precision or string length is the amount of memory
available. Memory management is automated leaving ease
of use and response time as a user's only concerns. The
major design goals of GAMMA were simplicity of the
language and an easy implementation on a microcomputer.

INTRODUCTION

The rapid development of microprocessors in the past
couple of years has outpaced programming language de
signs for the microcomputer. The large powerful program
ming languages of large machines are not appropriate for
small machines due to the inherent complexity of the
language. This complexity effectively prevents the con
~etffm cl !'tmtd"a:lune ::c'!'l':piters or fnterpi"cttts. Cross
compilers for these languages are feasible, but require the
use of a large machine.

The most successful stand-alone high-level language for
microcomputers has been the family of languages derived
from BASIC. Although not specifically designed for micro
computers, BASIC is an example of a simple language
which is easy to implement on a microcomputer and which
can be easily learned. However there are many disadvan
tages of BASIC. Structured programs are difficult to write
and variable names are more restricted than in assembly
languages. It is difficult to combine programs because all
variables have the same scope and line numbers will usually
conflict. Lack of parameters make this even more difficult.
Many varieties of BASIC flourish and only slowly is a
standard being adopted.1,2,5,14

BASIC is by no means the only activity in this area. PL/M6

* Supported in part by ERDA Contract EY -76-S-03-0034. PA214

629

and its descendents PLuS,12 MPL,10 PL/Z16 and others8

have been designed to be compiled rather than interpreted.
PL/M has a PL/F like syntax and the effort in compiling is
spent on optimization. Other languages proposed or imple
mented for microcomputers include FORTH,l1 a rather low
level macro-like processor, MICHELLE,3 an ALGOL like
language, LITTLE,13 a systems implementation language
and TOY LISP,4 a mini-version of LISP.

Continuing this research in language design we have
selected the two goals "easy to learn" and "easy to
implement" as the most important. These are similar to the
goals for BASIC, FORTH and TOY LISP but are different
from the goals of PL/M, MICHELLE and LITTLE which
considers "efficiency" and "code generation" to be of
highest priority. The resulting language which was designed
and implemented has been called GAMMA. Sections of this
paper describe how GAMMA evolved from a simple calcu
lator design; presents the language with examples; and
describes the implementation development.

DESIGN DEVELOPMENT

The initial ideas concerning GAMMA came from discus
sions on implementing some kind of simple calculator on a
miGf~lter·~ Wi"'~'t"Y~ffl ~nd· ~·.·ft ~~
decided that a programmable variable-precision decimal
floating point calculator would be a handy tool, which
would not be too difficult to implement on a microcom
puter. The first big decision was what kind of input the
calculator should receive. The two major possibilities were
infix notation (e.g., "2+3") or postfix notation (also known
as reverse polish notation, e.g., "2 3 +"). Infix notation
has the advantage of everyday familiarity while postfix
notation has the advantage of a simple implementation. If
the postfix notation were chosen, no parser would be
necessary since the interpreter could execute one key at a
time. The infix notation would require a more sophisticated
implementation since an arbitrarily long sequence of char
acters (keys) must be read before execution can take place.
In addition, a simple parser is necessary to determine the
form of the input sequence. After much thought and discus
sion it was decided to attempt the more complicated
implementation in favor of ease of use. .., ;' J/' t""'t,..

." " (t Il' .. '

630 National Computer Conference, 1977

One of the original goals of this calculator was the ability
to retain and execute stored programs. This implies the
ability to store variable-length sequences of characters.
Variable-length sequences also occur in the input routine
and in numbers which have variable lengths due to the
variable-precision. It was observed that if the implementa
tion was going to manipulate strings, then the user may as
well also be given the capability to manipulate strings. This
decision transformed the calculator system into a language,
which we have called GAMMA.

Numbers and strings became the data types of GAMMA.
The inclusion of strings was quite natural and caused little
added overhead. Both numbers and strings are variable
length data items and can be treated alike in terms of
storage. It was also quite natura! to store functions (or
programs) as strings, and thus GAMMA functions merely
became a subset of GAMMA string values. Only one other
value was added to the language; the UNDEFINED value.
This value is used to denote the result of performing an
operation which has an undefined result, such as adding
two strings or executing a string which is not a function.

The next major decision was how to handle variables. It
seemed obvious that global variables should be represented
by traditional identifiers stored in some symbol table.
However managing parameters in the same way would add
complexity to the implementation. Therefore it was decided
to pass arguments by value and to represent parameters by
a non-standard notation, which is described in a later
section.

All that GAMMA lacked now was some flow-of-control
constructs. Simple conditional, loop and exit constructs
were added. Jumps and labels were not added because of
their complexity. A secondary, but equally important rea
son was to encourage go-to-Iess programming. The addition
of these flow-of-control constructs posed a new problem;
since there is no Boolean type, how should Boolean values
be represented? To conform to the simplicity of the lan
guage, comparison operators return the numbers zero and
one. Zero represents the false Boolean value and every
thing else represents the true Boolean value. This also has
the advantage that the operators "+" and "*,, can be used
for the Boolean operators "OR" and "AND."

THE LANGUAGE

GAMMA is a simple interactive language designed to be
used on microcomputers. It has only a few constructs and
is easy to learn. Despite the simplicity, algorithms are easy
to express in GAMMA. The language GAMMA is centered
around the concept that every expression results in some
GAMMA value when it is evaluated (executed).

The only data types in GAMMA are numbers, strings,
and UNDEFINED. GAMMA numbers can be of any size
or precision and thus include both integers and reals. The
user can change the number of decimal digits of precision at
any time either interactively or under program control. A
GAMMA string is a sequence of zero or more characters.
The only restriction on the length of strings or the precision
of numbers is the available memory. Finally, the UNDE-

FINED value is used to indicate some error in the evalua
tion of an expression.

All expressions are GAMMA strings, but not all strings
are expressions. A grammar for the language GAMMA
(given in Appendix A) tells which strings are expressions.
When an expression is evaluated, the result is some
GAMMA value.

Table I gives an incomplete and ambiguous, but highly
readable summary of the syntax and semantics of the
language GAMMA. Table II gives a list of GAMMA
operators with their precedence and meaning. Table III
gives a list of the pre-defined (built-in) GAMMA functions.

Each item in Table I will be briefly explained. A number
(1) denotation is a sequence of decimal digits with an
optional sign and optional decimal point. A string (2)
denotation is a sequence of characters delimited by either
quotes or by left and right square brackets. Quotes cannot
appear within strings delimited by quotes and square brack
ets must be balanced in strings delimited by square brack
ets. The delimiters are not part of the string but only serve
in recognizing the string.

An identifier (3) is a sequence of alphanumeric characters
beginning with an alphabetic character. An identifier repre
sents a global variable whose value is the value most
recently assigned to that variable by the assignment opera
tor, ": =." A parameter (4) is a sharp sign, "#", followed
by one or two digits. A parameter represents the value of
an argument passed to a function. In GAMMA the term
"function" is synonymous with the term "expression."
"# 1" refers to the first argument; "#2" refers to the
second argument, etc. If a parameter does not have a
corresponding argument, then it is initialized to UNDE
FINED. Parameters can be assigned new values, but of
course this has no effect on the corresponding argument
since all arguments are passed by value. This allows the use
of parameters as local variables.

The Boolean value "false" is represented by the number
zero and the Boolean value "true" is represented by all
other GAMMA values. The four flow-of-control expres
sions (5-8) are self-explanatory and all return a value. Note
that if the WHILE part of a while loop is false the very first
time then the value of the loop expression is UNDE
FINED. Similarly if the IF part is false in an IF expression
which has no ELSE part then the value is UNDEFINED.
Another flow of control construct (posing as a function) is
"EXIT(e)" (see 12) which exits from the current function
being executed with the value V(e).

Operators (9) are described in Table II. Any GAMMA
expression may be enclosed in parentheses (10) to explicitly
constrain the order of evaluation,.as in "(5-2)*3".

Finally any string which results from the evaluation of a
GAMMA expression may be evaluated by placing a pair of
parentheses after it (11). If the string is not a valid GAMMA
expression then the value is undefined. Note that these
parentheses have a different meaning than the parentheses
of item 10. Arguments can be passed to the function by
placing a list of expressions separated by commas within
the parentheses. If no arguments are passed then the
parentheses have nothing inside.

Simple Programming Language for Microcomputers 631

TABLE I-A GAMMA expression can be anyone of the following 12 constructs where "e" means any GAMMA expression and "V(e)" means the value of the
evaluated expression "e"

e "syntax"

I. a number

V(e) "semantics"

The numerical value of the number

Remarks

A number is a sequence of digits with an optional sign and
decimal point.

2. a string The string value. Delimiters are not part of the string value. A string is a sequence of characters delimited by 'and', or [and].

3. an identifier a) The value last assigned to the identifier An identifier is a sequence of alphanumeric characters which
b) UNDEFINED if the identifier has never been assigned a represents a global variable.

value.

4. a parameter same as identifier. (Also see II)

5. IF e1 a) Undefined if V(e1)=0
THEN e2

FI

6. IF e1
THEN e2

ELSE ea
FI

7. WHILE e1 a) UNDEFINED ifV(e1)=0
DOe2

OD

8. DO e2

UNTIL e1
OD

9. e1 operator e2

10. (e) V(e)

II. eO(e1, ... ,en) a) UNDEFINED if V(eo) is not a GAMMA expression
b) V(V(eo» with

#1: =V(e1); ... ; #n: =V(en)

12. EXIT (e) V(e)

Some examples of GAMMA programs will now be given.
The first example displays the factorial of a number read
from a keyboard and displayed on a TV screen. Note that
comments are delimited by dollar signs.

Example 1:

X: =READ() ();
Y:=l;
WHILE X>l
Da Y: =Y*X;

X: =X-l
aD;

$ read a number $
$ set y to 1 $

TV(Y) $ display the answer $

In the first line of example I, evaluation of the built-in
GAMMA function, i.e., "READ()" means read a string
from the keyboard and "READ() ()" means to evaluate
the string read from the keyboard. This means that any
expression which evaluates to a number would be accepta
ble input for this program. Example 2 below illustrates how
this program itself can be kept as a value of a variable "F"
which can subsequently be evaluated (called).

A parameter is a # symbol followed by one or two digits which
represents a local variable.

Conditional expression.
All flow of control keywords are reserved and cannot be used as
identifiers.

Conditional expression.
Note that only one of the two expressions e2 and ea is evaluated.

Loop expression.

Loop expression.
e1 and e2 are repeatedly evaluated.

See Table 2 for a list of operators.

Used for re-ordering evaluation of expressions.

Function calls and execution of strings.
O::Sn<IOO

Exits from the current function and returns the value V(e)

Example 2:

F: =[X: =READ() ();
Y:=l;
\VI:HLE X?l
DO Y: =Y*X;

X:=X-l
aD;
TV (Y)]

Example 3 shows how this function stored as a string in
the variable F can be evaluated (executed).

Example 3:

F()

As a matter of good design, one might desire to separate
the function F into two functions F and P, where F
computes the factorial of a number and P controls the input
and output. Example 4 creates these two functions. So that
these examples do not become monotonous, the factorial is
computed recursively rather than with a loop.

632 National Computer Conference, 1977

TABLE II-List of GAMMA Operators

operator
symbol precedence semantics

** 9
8
8

+ 7
7
5

1= 5
< 5
<= 5
> 5
>= 5

& 4
A
~

3

2

Example 4:

exponentiation
multiplication
division
addition
subtraction

(numbers only)
(numbers only)
(numbers only)
(numbers only)
(numbers only)

comparison operators
1 is returned if the comparison is true.
o is returned if the comparison is false.
Undefined is less than all Gamma values.
All GAMMA numbers are less than all GAMMA
strings
(and) 0 is returned if an operand is 0; otherwise I
(Oi) 0 is ietumed if both operands arc 0; otherwVise I
Assignment. The first operand must be either an
identifier or a parameter, which is assigned the value
of the second operand. The value of the assignment
expression is the value of the second operand.
Sequencing. This operator is used for sequencing
GAMMA expressions, as in:

A:=2;
B:=3;
A+B

The value of this expression is the value of the last
operand, which is "A+B", which has a value of 5.

F: =[IF # 1 <=2
THEN #1
ELSE #1*F(#I-1)
FI]

P: =[TVCENTER A NUMBER');
X: =READ() ();
Y: =F(X);
TV(Y)]

The next example is the function which controls the
whole GAMMA system and is called the control program.

Example 5:

CONTROL: =[WHILE TRUE
DO #1: =READ();

TV(#I())
OD]

The control program is an infinite loop which reads a
string from the keyboard. This string is evaluated and the
resulting value is displayed on the TV screen. The next
example is a scenario taken under this control program. U
is the user's input and C is the response displayed on the
TV screen.

Example 6:

U: 2+3
C: 5
U: [2 + 3] $ a string of 3 characters $
C: 2+3
U: [2+3]() $ now execute it $
C: 5
U: P $ what is the value of P? $
C: TVCENTER A NUMBER');
C: X:=READ() ();
C: Y: =F(X);
C: TV(Y)
U: P() $ now execute P $
C: ENTER A NUMBER
U: 5
C: 120 $ this is printed by the function P $
C: 120 $ this is printed by the function CONTROL $
U: [# 1 + #2] $ a string of 5 characters $
C: #1 +#2
U: [#1 +#2](2,3) $ execute with 2 arguments $
C: 5
U: A: =[#1 +#2] $ assign a value to A $
C: #1+#2
U: A(2, 3) $ execute the function stored in A $
C: 5

IMPLEMENTATION DEVELOPMENT

The first implementation of GAMMA was written in
ALGOL 68. 15 This implementation was not for a microcom
puter, but instead modeled the intended implementation on
a microcomputer by representing the memory as an array of
characters. The implementation can be easily divided into
four parts:

(I) the interpreter
(2) the parser
(3) memory management
(4) the system functions

The interpreter executes code generated by the parser.
The parser uses a recursive descent parsing strategy to
generate simple interpretive code consisting of 11 op codes.
As the interpreter and parser are straightforward programs
with no unique features they are not further detailed here.

The most interesting part of the implementation is the
memory management. The memory is divided into four
stacks (see Figure 1). The traditional expression stack is
divided into two stacks for ease of implementation. A third
stack is used for the symbol table and the last stack is used
for all GAMMA values and is called VAL. The symbol
table and expression stack use only pointers into VAL,
called valpointers.

The symbol table and VAL are not really stacks since
items are only added to the top and not taken away. New
identifiers are added to the symbol table (and initialized to

TABLE III-A List of Builtin GAMMA Functions

Function
Name

READ
EDIT
TV
TV2
PRINTER
TAPEOUT
TAPEIN
REWINDOUT
REWINDIN
CAT
SUB
INDEX
VERIFY
REFLECT
LEN
STR
CHAR
ASCII
DIGITS

CHOP
ABS
ODD
GUESS
PEEK
PEEK2
EXIT
RESTART

TRACE

CONTROL
INTERRUPT

TYPE
PROTECT
UNPROTECT
PARSE

COMPACT

FIRSTVAR
NEXTVAR
PARM

VARVAL

Semantics

Read a string from the keyboard.
Edit a string using the builtin editor.
Display all arguments on the CRT.
Display a character in selected location on CRT.
Print all arguments on hard-copy printer.
Write a GAMMA value onto cassette tape.
Read a GAMMA value from cassette tape.
Rewind the output cassette tape.
Rewind the input cassette tape.
Concatenate all arguments into one string value.
Returns a substring of the first argument. (PUt SUBSTR)
Finds the first occurrence of #2 in #1. (PUI INDEX)
Finds the first character in #1 not in #2. (PUI VERIFY)
Returns the left-right mirror image of a string.
Returns the length of a string.
Converts a number to a string.
Converts a number to an ASCII character.
Converts a character to its ASCII code number.
Sets the maximum number of decimal digits to be used in
arithmetic operations.
Returns the integer portion of a number.
Returns the absolute value of a number.
Returns TRUE if an odd number; otherwise FALSE.
Returns a number close to 1/#1.
Returns the contents of memory location # I.
Returns PEEK(# 1) + 256*PEEK(# 1+ 1).
Exits the currently executing function with the value of # 1
Restarts the GAMMA system. Useful if you don't want to
continue execution of an interrupted program.
Sets dynamic flow tracing. Any combination of the
following five options can be specified.

Trace function calls; Trace function exits;
Trace assignment to identifiers;
Trace assignment to parameters;
Single step execution.

Reads input from user; executes it; and displays results.
Called by interrupt key. Interrupts currently executing
function, reads input from user, executes it, and displays
results. Allows return to previous function.
Finds if a GAMMA value is a number or a string.
Prevents assignment to a variable.
Removes protection attribute from a variable.
Attempts to parse a string. Returns TRUE if successful,
otherwise returns FALSE.
Requests compaction. and also compaction of the symbol

Returns the name of the first symbol in the symbol table.
Returns the name ofthe next symbol in the symbol table.
Returns the value of a parameter any number of levels
back.
Returns the value of the identifier returned by NEXTV AR.

UNDEFINED) and new GAMMA values are added to
V AL. To change the value of a variable only its valpointer
needs to be changed and not the value that the valpointer is
pointing to. Values in VAL are never changed so that the
value of a valpointer is never changed. All new GAMMA
values are created at the top of VAL, which is called the
"workspace." VAL and the symbol table are thus always
growing. When not enough workspace is left for the crea
tion of a new GAMMA value, compaction takes place.

Simple Programming Language for Microcomputers 633

Compaction goes through VAL and deletes all those values
not referenced by either the symbol table or the expression
stack. All the remaining values are moved down so that all
the recovered space becomes part of the workspace. Like
wise the symbol table can also be compacted by deleting all
those identifiers whose value is UNDEFINED.

In the ALGOL 68 implementation, the memory manage
ment was developed using the concept of a cluster. 9 Al
though the cluster and the ALGOL 68 implementation in
general was just an exercise, it proved to be extremely
beneficial in the next implementation.

The second implementation was done on a microcom
puter based on the Intel 8080 microprocessor. Only a few
minor revisions were made to the implementation design for
reasons of efficiency. The first implementation, in ALGOL
68, gave a basis on which to write the specifications for the
second implementation. Thus the documentation for the
second implementation was written before, instead of after
the programming. This experimental approach proved to be
quite interesting. Having the documentation and the first
implementation as guides made the second implementation
very simple. In a mere two weeks, most of the first
implementation was recoded into 8080 assembly language
and a working version of GAMMA was implemented on the
microcomputer.

The most time-consuming part of the second implementa
tion, which took about four man-months, was the set of
system functions, which consisted of all the code for
operators and built-in GAMMA functions written in assem
bly code. The first implementation only implemented some
of the system functions and thus most of this code was of
original design in the second implementation. Each individ
ual function had its own problems, but was usually an easy
programming task. However the net sum of all the func
tions turned out to be a large job.

In implementing a basic function, two approaches could
be taken. It could be written with some difficulty in
assembly language which is efficient and called a system
function. Or it could be easily written in GAMMA, if it
could be composed from the system functions. Some func-

f

1--.

VAL

Symbol
Table

1 Exoression
Stack

~----l

"'I E?) IP Stack

iL-' --l

-COilsists.of all GA:·[i·1,\ VCllu·:=s
(strings a·~ld numbers)

-- Consists of sywbol "no V,\L
pointer pairs.

- Consists of VAL pointers used as
temporary values and
pararaeters.

-- 2!1vi!"o:::lC2nt and Instruction
o8inters are saved at each
fun-:::tioncall.

Figure I-Memory management overview

634 National Computer Conference, 1977

tions such as 110 had to be written in assembly language.
Others, like INDEX could be expressed in GAMMA using
system functions such as SUB. The functions given in
Table III are the functions we chose to be system functions.

In addition to the system functions, interrupt, measure
ment (time and space), tracing and edit features were added
to enhance the utility of the system. The first program
packages written in GAMMA include:

(1) Mathematical functions including trig, log and integra
tion functions.

(2) Pretty Print functions which format GAMMA expres
sions.

(3) a programmed instruction course in GAMMA, complete
\vith exercises and ans\vers.

By the time the systems functions were complete, the
only significant design change made was that the exponent
field of a number was increased from one byte to two bytes.

Some statistics concerning the two implementations may
be of some interest. The first GAMMA implementation
consists of about 5000 lines of ALGOL 68 code. However
this is misleading since a large percentage of the lines are
either comments or are very short. The second implementa
tion consists of about 5500 lines of 8080 code and occupies
about 10k of storage with the following breakdown:

(I) interpreter 550 bytes
(2) parser 1600 bytes
(3) memory management 1050 bytes
(4) utility routines 1750 bytes
(5) system functions 3200 bytes

WHY ANOTHER LANGUAGE?

Microprocessors challenge the field of language design.
Large languages do not satisfy the requirements of a
microcomputer environment. A small language with few
constructs and easy implementation, yet with enough
power to easily express algorithms is the ideal. Does
BASIC, which is rapidly becoming the standard language of
microcomputers, satisfy these requirements? Certainly in
part BASIC does, but few will argue that it is an ideal
language. We do not wish to describe the shortcomings of
BASIC, nor the merits of GAMMA. Obviously we feel that
GAMMA is better, otherwise we would not have under
taken the immense work of designing and implementing a
new language. As GAMMA embodies the principles we
value highly in a language it would be difficult to objec
tively judge the two languages. We simply like to view
GAMMA as a step forward and keeping this in mind we
wish to point out the problems of GAMMA, so that the
next undertaking towards a better language can benefit not
only from our achievements but also the shortcomings of
GAMMA.

GAMMA is by no means ideal. The variable precision
arithmetic is more a toy than a tool. There are few

applications that would require more than 20 digits of
precision, let alone 200 or 2000. If the cost of variable
precision arithmetic was small in terms of compute time it
may be justified. It is by no means clear that expressiono
riented languages are better than statement-oriented lan
guages. Expression-oriented languages are simpler and
more general, but are initially harder to understand if one is
more used to statement-oriented languages. The major
programming tools which GAMMA lacks include arrays
and call by reference. Call by reference and arrays can be
simulated in GAMMA, but are expensive. Certainly an
ideal language would need these or the equivalent.

ACKNOWLEDGMENTS

The first implementation in ALGOL 68 was an important
development step in GAMMA. Dan Berry, Paul Eggert, Bill
Fisher, Mike Urban, and Bruce Walker were all personally
involved and were responsible for its success. The second
implementation was supported and encouraged by Gerald
Estrin who explored many new ideas with us.

BIBLIOGRAPHY

I. Altair BASIC Reference Manual, MITS, 1975.
2. ANS Committee, Draft Proposed American National Standard Program

ming Language Minimal BASIC, Prepared by Technical Committee
X3J2-BASIC, January 1976.

3. Burgess, H. W., R. S. Fenchel, G. D. Nunes and K. H. Page,
"MICHELLE: A Microcomputer Higher Level Language," in Four
Languages: Experiments in Computer Language Design R. C. Uzgalis
(Editor), U.C.L.A. Computer Science Department, Technical Report
UCLA-ENG-7544, July 1975.

4. Chaitin, G. J., "A Toy Version of the LISP Language," IBM Thomas J.
Watson Research Center RC5924(#25634) March 1976.

5. DEC, "BASICrrRll Language Reference Manual," Digital Equipment
Corporation, October 1974.

6. Intel Corp. 8008 and 8080 PLiM Programming Manual, 1975.
7. IBM PLiI (F) Language Reference Manual Order No. GC28-8201-4,

IBM United Kingdom Laboratories Ltd., Publications Department,
Hursley Park, Winchester, Hampshire, England.

8. Leach, G. C., "Microprocessor Language Design," Proceedings DISE
Workshop on Microprocessors and Education, pp. 22-27. August 16-18,
1976, Colorado State University, Fort Collins, Colorado.

9. Liskov, B. and S. Zilles, "Programming with Abstract Data Types,"
Proceedings of ACM SIGPLAN Conference on Very High Level Lan
guages, SIGPLAN Notices, Vol. 9, 4 pp. 50-59, April 1974.

10. Motorola, "MPL Language Reference Manual," Motorola Microsys
terns, i976.

II. Rather, E. D. and C. H. Moore, "FORTH High-Level Programming
Technique on Microprocessors," Electro 76, Boston, May 1976.

12. Signetics, "PLuS Reference Manual," Signetics Corp. March 1976.
13. Stuart, Thomas, "A Minicomputer Systems Language," AESOP XIV

SCIE Session, April 1976.
14. Tymshare, "SUPER BASIC," Tymshare Inc., May 1971.
15. VanWijngaarden et aI., "Revised Report on the Algorithmic Language

ALGOL 68," Acta Informatica, Vol. 5, 1975.
16. Zilog, "PLlZ," Zilog Corporation.

APPENDIX A

Backus Normal Form (BNF) description of GAMMA.
(exp) : : = (number)

I (string)
I (identifier)
I (parameter)
I IF (exp) THEN (exp) FI
I IF (exp) THEN (exp) ELSE (exp) FI
I WHILE (exp) DO (exp) OD
IDO (exp) UNTIL (exp) OD
I (exp) (operator) (exp)
I«exp»
I (exp) « exp list option»

(number) :: = (optional sign) (unsigned number)
(optional sign) :: = +! - ! (empty)
(unsigned number) :: = (digits)

(digits) .
(digits) . (digits)
. (digits)

(digits) :: = (digit) I (digits) (digit)
(digit) :: = 0 11 1213 141516171819
(string) :: = (quoted string)

I (bracket string)

Simple Programming Language for Microcomputers 635

(quoted string) :: = '(quoted items)'
(quoted items) :: = (empty)

I (quoted items) (any character ex
cept quote)

(bracket string) :: = [(bracket items)]
(bracket items) : : = (empty)

I (bracket items) (any character ex
cept brackets)
I (bracket items) (bracket string)

(identifier) :: = (letter)
I (identifier) (letter)
I (identifier) (digit)

(letter) ::= AIBICIDI .. ·IXIYIZ
{identifiers do not include the reserved flow-of-con

trol keywords}
(parameter) :: = # (digit)

I # (digit) (digit)
(operator) :: = ** i * ill + 1- i = 1/= I

(1)1<=1>=1:=1;
(exp list option) :: = (empty)

I (exp list)
(exp list) :: = (exp)

I (exp list), (exp)
(empty) :: =

em *-A modular, multi-microprocessort

by R. J. SWAN, S. H. FULLER and D. P. SIEWIOREK
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

This -paper d~scribes the architecture of a new large multi
processor computer system being built at Carnegie-Mellon
University. The system allows close cooperation between
large numbers of inexpensive processors. All processors
share access to a single virtual memory address space.
There are no arbitrary limits on the number of processors,
amount of memory or communication bandwidth in the
system. Considerable support is provided for low level
operating system primitives and inter-process communica
tion.

INTRODUCTION

Cm* is an experimental computer system designed to
investigate the problems and potentials of modular, multi
microprocessors. The initial impetus for the Cm* project
was provided by the continuing advances in semiconductor
technology as exemplified by processors-on-a-chip and
large memory arrays. In the near future processors of
moderate capability, such as a PDP-II, and several thou
sand words of memory will be placed on a single integrated
circuit chip. If large computer systems are to be built from
such chips, what should be the structure of such a "com
puter module?"

imtIal versions of the Cm* architecture I grew in part as
an extension to the modular design of systems from register
transfer modules, or RTMs.2 In addition there was substan
tial interest in the development of large multiprocessor
systems such as Pluribus3 and C.mmp.4 Cm* is intended to
be a testbed for exploring a number of research questions
concerning multiprocessor systems, for example: potential
for deadlocks, structure of inter-processor control mecha
nisms, modularity, reliability, and techniques for decom
posing algorithms into parallel cooperating processes.

The structure of Cm* is very briefly described. There is a
description of the address structure and discussion of the
support given for the operating system. The use of the

t This work was supported in part by the Advanced Research Projects
Agency under contract F44620-73-C-0074, which is monitored hy the Air
Force Office of Scientific Research, and in part by the National Science
Foundation Grant GJ 32758X. The LSI-II's and related equipment were
supplied by Digital Equipment Corporation.

637

addressing structure for inter-process communication and
control operations is discussed. A companion paper5 di,s
cusses the various mechanisms used to implement the
complex address mapping and routing structure of Cm*.
Some results from the performance modelling of Cm * are
also presented. A second companion paperS describes the
structure of the basic operating system and support soft
ware.

THE STRUCTURE OF Cm*

There is a surprising diversity of ways to approach the
interconnection of processors into a computing system,7

The processors could be interconnected with several serial
I/O links to form a computer network; they could be
interconnected in a tight synchronous fashion to build an
array processor; or the processors could be organized to
share primary memory. This last approach, a multiproces
sor organization, was chosen for Cm* because it offers a
closer degree of coupling, or communication; between the
processors than would a multicomputer or network configu
ration. Multiprocessors also have a more general range of
applicability than other multiple processor systems.

During the development of the Cm * structure a wide
variety of multiprocessor switch structures were consid
ered.s Tllebasic structW'~se1ecte41 isFepr~sem:ed- in Fi@iY-fe
1. The essential feature which distinguishes it from other
multiprocessor structures is that shared memory is not
separated from the processing elements, but rather a unit of
memory and a processor are closely coupled in each
module and a network of buses gives a processor access to
nonlocal memory. This structure allows modular expansion
of the number of processors and memory modules without
a rapid increase in the interconnection costs. Memory can
be shared even though there is no direct physical connec
tion between the requesting processor and the required
memory. For example, consider a request by processor, PI,
to the memory, M4, in Figure 1. The address mapping
element, KI, directs the reference from PI onto the inter
module bus. The address is recognized by K2, which
directs it onto a second inter-module bus. The reference is
finally accepted by K4, which accesses the request memory
location and passes back an acknowledgment or data to
the requesting processor. The need for high inter-module

638 National Computer Conference, 1977

,------->---------~-----1
~ y
I

Figure I-Canonical computer module structure

communication rates will be minimized if a large fraction of
each processor's references to primary memory 'hit' the
section of memory local to the processor. (Preliminary
experiments in the fall of 1976 indicate that hit ratios of
better than 90 percent can be expected provided that the
code executed is normally held local to the processor.)

Deadlock with references to nonlocal memory

Almost all computer systems implement accesses from
processor to primary memory with Circuit Switching, that
is, a complete path is established from a processor to the
memory being referenced. Circuit switching is not feasible
for a structure like Cm* where local memory is also
accessible as shared memory. Figure 1 shows the path used
for PI to access M4 via K2. Consider a concurrent attempt
by P4 to access Ml via K2. With a circuit switch implemen
tation, a situation could arise where PI held its local
memory bus and the bus connecting K2, while P4 also
holds its own memory bus plus the bus connecting K4 to
K2. Neither memory reference could complete without one
processor first releasing the buses it holds. There are
numerous situations where deadlock over bus allocation
can occur. Resolving this deadlock requires, at the very
least, a timeout and retry mechanism.

The alternative to circuit switching is Packet Switching.
In a packet switched implementation, the address from the
processor is latched at each level in the bus structure.
Buses are not allocated for the full duration of a memory
reference, but just for the time taken to pass a "packet,"
containing an address and/or data, from one node on the
bus to another. Therefore packet switching allows signifi-

cantly better bus utilization and significantly reduced bus
contention in Cm*-like structures. The use of packet
switching eliminates the possibility of deadlock over bus
allocation but introduces the possibility of deadlock over
buffer allocation.1,9 Buffers, or intermediate registers, are
resources which can be provided very cheaply, relative to
providing additional inter-Cm buses, with present technol
ogy.

The actual structure of Cm *

Design studies indicated that very little performance loss
would result from combining several individual Computer
Modules into a cluster and providing a shared address
mapping and routing processor, Kmap, which allowed
communication with other clusters. Because the cost of the
Kmap is distributed across many processors it can be
endowed with considerable flexibility and power at rela
tively little incremental cost. Because of its commanding
position in the cluster, the Kmap can ensure mutual exclu
sion on access to shared data structures with very little
overhead.

The full structure of Cm* is shown in Figure 2. Individual
Computer Modules, or Cm's, consist of a DEC LSI-II
processor, an Slocal and standard LSI-II bus memory and
devices. The processor is program compatible with PDP
lIs; thus a large-body of software is immediately available.
The prime function of the Slocal, or local switch, is to
direct references from the processor selectively either to
local memory or to the Map Bus, and to accept references
from the Map Bus to the local memory.

Up to 14 Computer Modules and one Kmap form a
cluster. The Kmap, or mapping processor, consists of three
major components. The Kbus arbitrates and controls the
Map bus. The Pmap is a horizontally microcoded 150 ns
cycle time processor. The basic configuration has 1 K x 80
bits of writable control store and 5K x 16 bits of bipolar
RAM for holding mapping tables, etc. The third level of the
Cm* structure is provided by the intercluster buses which
allow communication between clusters. The Linc provides
the interface to two intercluster buses.

Interciuster Bus

P-S-M P-S-M P-S-M

.------------ ----------------

P-S-M P-S-M P-S-M
: __ .?::'i!. ~f_a_ ':~': ~~e ______ _

A Cluster of Computer Modules

Figure 2-A simple 3 cluster Cm* system

There are no arbitrary limits to the size of a Cm* system.
Memories, processors and Kmaps can be incrementally
added to suit needs. Any processor can access any memory
location in the system. The routing of a processor's refer
ence to a target memory is transparent to the program, thus
the system can be reconfigured dynamically in response to
hardware failures.

ARCHITECTURE OF THE Cm* ADDRESS
TRANSLATION MECHANISMS

Many of the more conventional aspects of the architec
ture of the Cm* system are consequences of using LSI-II's
for the central processing elements. The organization and
encoding of the instructions, interrupt and trap sequencing,
and the 64K byte processor address space of a Cm* system
are all a result of the PDP-II architecture as implemented
on the LSI-ll. By selection of the LSI-II, however, we do
not want to imply that the PDP-II architecture is ideally
suited to mUltiprocessor systems. The ideal solution would
have been for us to have designed our own processors.
However, practical considerations of time, money, and
existing support software led us in early 1975 to recognize
that by choosing the LSI-II we could concentrate on those
aspects of the Cm* architecture unique to mUltiprocessor
systems. This section, and the following section on coIitrol
structures, will discuss the Cm* architecture as we ex
tended it beyond the standard PDP-II architecture.

The addressing structure is one of the most important
aspects of any computer architecture, it is even more
significant when cooperation between mUltiple processors
is to be achieved by sharing an address space. DenninglO

lists four objectives for a memory mapping scheme:

(a) Program modularity: the ability to independently
change and recompile program modules.

(b) Variable size data structures.
(c) Protection
(d) Data and program sharing: allowing independent pro

grams to access the same physical memory addresses
with different program names.

For Cm*, where we are using processors with only a 64K
byte address space, we must add the following requirement:

(e) Expansion of a processor's address space.

Cm* has a 228 byte segmented virtual address space.
Segments are of variable size up to a maximum of 4K
bytes. There is a capability-based protection scheme en
forced by the Kmap. The addressing structure provides
considerable support for operating system primitives such
as context switching and interprocess message transmis
sion.

The path from processor to memory

The Slocal (see Figures 2 and 3) provides the first level of
memory mapping. A reference to local memory is simply

Cm*-A :rvlodulai, ~1ulti-~1icroprocessor 639

Read Only Map Physical Page

External Processor
Status Word

User /Kernel
Space

Processor generated
Address

Offset

Relocation
Table

Physical Address
on LSI-11 Bus

Figure 3-Addressing mechanism for local memory references

relocated, on 4K byte page boundaries, by the relocation
table in the Slocal. As discussed above, it is assumed that
most memory references will be made by processors to
their local memory. Relocation of local memory references
can be implemented with no performance overhead because
the synchronous processor has sufficiently wide timing
margins at the points where address relocation is per
formed. For segments which are not in a processor's local
memory the relocation table has a status bit which causes
the address to be latched, the processor forced off the LSI-
11 bus, and a Service Request to be signalled to the Kmap.
All transactions on the Map bus are controlled by the Map
bus controller, or Kbus, which is a component of the
Kmap. The address generated by the processor is trans
ferred via the Map bus to the Pmap, the microprogrammed
prvcts3Jr·.:\'tthrn~thefCmap'.ff the~~'~ ~y

within the cluster then the Pmap generates a physical
address and sends it to the appropriate Slocal. If it -is a
write operation, data is passed directly from the source
Slocal to the destination Slocal; the data does not have to
be routed through the Kmap. The selected destination
Slocal performs the requested memory reference and the
processor in the destination Computer Module is not in
volved. When the reference is complete the Kbus transfers
the data read from the destination Slocal directly back to
the requesting processor via the Map bus and its Slocal.

If the processor references a segment in another cluster
then the Pmap will transmit a request to the desired cluster
via the Linc and the Intercluster buses. (See Figure 2.) If
the destination cluster is not directly connected to the
source cluster, that is, if it does not share a common
intercluster bus, then the message will be automatically
routed via intermediate clusters. When the message reaches

640 National Computer Conference, 1977

the destination cluster, the memory reference is performed
similar to a request from a processor within the cluster. An
acknowledgment, or Return, message (containing data in
the case of a read) is always sent back to the source cluster
and subsequently to the requesting processor.

The addressing environment of a process

The virtual address space of Cm* is subdivided into up to
216 Segments. Each segment is defined by a Segment
Descriptor. The standard type of segment is similar to
segments in other computer systems; it is simply a vector of
memory locations. The segment descriptor specifies the
physical base address of the segment and the length of the
segment. Segments are variable in size from 2 bytes to 4 K
bytes. However, other segment types may be more than
simple linear vectors of memory; references to segments
may invoke special operations. Segments may have the
properties of stacks, queues or other data structures. Some
segments may not have any memory associated with them,
and a reference to the segment would invoke a control
operation. For each segment type, up to eight distinct
operations can be defined. For normal segments the opera
tions are Read and Write. Conceptually, segments are
never addressed directly; they are always referenced indi
rectly via a Capability. A capability is a two-word item
containing the name of a segment and a Rights field. Each
bit in the rights field indicates whether the corresponding
operation is permitted on the segment.

To provide efficient support for context swapping, mes
sage-sending, etc., it is necessary for the Kmap microcode
to understand some of the structure of an executable
software module (variously called a process, activity, ad
dress space, etc.). Each executable software module is
represented by an Environment, Figure 4. An environment
is a three-level structure composed of segments. The first
level in the structure is a Primary Capability List, CL[O].
The first entry in CL[O] is a Capability for a State Vector,
which holds the process state while it is not executing on a
processor. Entries CL[O](l) to CL[0](7) in the Primary
Capability list may contain Capabilities for Secondary Ca
pability Lists referred to as CL[I] through CL[7] respec
tively. The remaining entries in the Primary Capability List
and all the entries in the Secondary Capability Lists contain
Capabilities for segments which can be made directly
addressable by the process when it executes. These may be
code, data or any other type of segment. The provision of
up to eight Capability Lists facilitates the sharing of seg
ments and sets of segments by cooperating processes. A
software module can only access those segments for which
it has capabilities and perform only those operations per
mitted by the capabilities.

Virtual address generation

The processors in Cm*, LSI-I Is, can directly generate
only a 16 bit address. This 64 K byte address space is

(user Environment
Register

Capability List Structure Segments

Primary Cap. List
-to.

-..... State Vector

~ Capability List [0]
I
I
I
I ..

Code, Data or
I other Segment I I

I I
I I
I

r ,
~ J

Code, Data or I
I other Segment
I

Capability list [7]

I Code, Data or I
I other Segment

...
Code, Data or
other Segment

Figure 4-The environment of a user software module

divided into 16 pages of 4 K bytes each. Each page
provides a window into the system-wide 228 byte virtual
address space, (see Figure 5) and can be independently
bound to a different segment in the virtual address space.
The top page in the processor's address space, page 15, is
reserved for direct program interaction with the Kmap.
This mechanism is analogous to the 1/0 page convention in
standard PDP-lis. In page 15 there are 15 pseudo registers,
called Window Registers. These define the binding between
page frames in the processor's immediate address space
and segments in the virtual address space. This binding is
done indirectly via capabilities. Each window register holds
an index for a capability in the currently executing software
module's capability list structure. A Capability List index
consists of a three bit field to select one of the up to eight
Capability Lists, plus an offset within the C-List.

To overlay the processor's address space, i.e. to change
the mapping from page frame to segment in the virtual
address space, a program simply writes a new capability
index into the appropriate window register. This overlay
operation is completely protected; the program can only
reference segments for which it has a Capability. The act of
writing the Capability index into the window register acti
vates the Kmap. The Kmap retrieves the selected Capabil
ity from main memory and places it in its "Capability
cache." The Kmap adjusts its internal tables so that subse-

64 K Byte Processor
Address Space

Page [15] 1------1.

Page [0]

28 .
2 Byte Virtual
Address Space

Figure 5-Windows from the processor's immediate address apce to the
virtual address space

quent references to the page frame will map to the segment
specified by the Capability. If the segment is local to the
processor then the Kmap may also change the relocation
register in the Slocal so that references to the segment can
be performed at full speed without the intervention of the
Kmap. The Slocal, for cost and performance reasons, does
not have the hardware necessary for bounds checking on
variable sized segments. Thus only fixed size 4 K byte
segments can be accessed without Kmap assistance.

The Cm* mechanism for address space overlaying should
be contrasted with mechanisms in other computer systems.
When executing a large program on a processor with a
small immediate address space, the time taken to overlay
the address space can have a crucial effect on performance.
Measurements made of the execution of the operating
system HYDRA on the C.mmp multiprocessor showed that
relocation registers were being changed approximately
eve~y 12 in~tru~tions, (This d()es not, however, imply that
user" programs" perto'rm overlay· operations this frequently.J
Within the operating system this overlay operation is a
single PDP-II MOVE instruction because no protection is
involved. However for user programs running under HY
DRA, an overlay operation requires invocation of the
operating system with several hundred instructions of soft
ware overhead. Subsequent optimization, and partial mi
crocoding, have greatly reduced this overhead.

Figure 6 shows the conceptual translation from a 16 bit
processor-generated address to a virtual address. The four
high order address bits from the processor select one of 15
Window registers. The Window register holds an index for
a Capability in the executing software modules Capability
List structure. The 16 bit segment name from the selected
Capability is concatenated with the 12 low order bits from
the processor to form a 28 bit virtual address. Figure 6 also
shows the read/write indicator from the processor being
concatenated with two bits in the address expansion regis-

Cm*-A Modular, Multi-Microprocessor 641

Window Register Capability

OP Cap. Index

1 6 Bit, Processor
Generated Address

Segment Name

16

12

28 Bit, System Wide
Virtual Address

Figure 6--Conceptual virtual address generation and rights checking

ters to form a three bit opcode. The correspondind bit in
the Capability rights field is selected and tested. If the
operation is not permitted then an error trap is forced.

Virtual to physical address mapping

The mapping from virtual to physical address depends on
the location of the segment in the network and, of course,
on the type of the segment. We begin with the. case of a
simple read/write segment residing within the same cluster
as the processor referencing the segment. This mapping is
shown in Figure 7. The segment name is used to access the
corresponding segment descriptor. The descriptor provides

Segment Descriptor

Type Limit Base Address CMII

~III
oP C"~ .. , ~

Simple
Read/WI'lte

Segment Name

Offset

28 Bit, Virtual Address

~ .. -~ 22 Bit, Pn~cal
Address within Cluster

Figure 7-Virtual to physical address mapping for a variable sized segment

642 National Computer Conference, 1977

a limit value which is checked against the 12 bit offset in the
virtual address. If the reference is out of the bounds of the
segment then an error trap occurs. The offset is added to
the physical base address from the descriptor. The resulting
18 bit value is a physical address within the 256 K byte
address space of the computer module also specified in the
descriptor.

If the virtual address references a segment outside the
source cluster then the segment name is used to access an
Indirect Descriptor Reference rather than the descriptor
itself. The indirect reference simply indicates in which
cluster the segment resides. The Kmap then passes the
virtual address to that cluster via the inter-cluster buses. An
alternative approach would be to have duplicate copies of
the segment descriptors in every cluster. Thus the virtual
to-physical mapping could be done at the source cluster,
with possibly some savings in overhead. However, any
attempt to change the virtual-to-physical binding of a seg
ment (e.g., moving it to a different memory module or onto
backing store) would require an effectively simultaneous
change to all copies of the segment descriptor. In a large
network this operation would be slow and cumbersome, if
not impossible. A further advantage to ensuring that only a
single descriptor exists for each segment is that a Lock Bit
can be provided in the descriptor. The lock bit can be used
to ensure mutual exclusion for special segment operations.

The kernel address space

Each processor can execute in either of two address
spaces. One is the User Address Space which was de
scribed above. The second is the Kernel Address Space,
which is similar to a user address space with the addition of
some mechanisms reserved for the operating system. The
currently executing address space is selected by a bit in the
Processor Status Word of the LSI-II. A Kernel Environ
ment is similar to a User Environment; however segments
at the third level of the Capability List structure (Figure 4)
can be User Primary Capability Lists. That is, a Kernel
Capability list structure can have user environments as
substructures.

There are several additional pseudo registers provided in
page 15 of the kernel address space. One of these, the User
Environment register, holds an index for a Capability in the
kernel environment which points to a user environment.
This register specifies the current user environment for this
processor. If the kernel writes a new index into the register
the addressing state of the old user process is saved by the
Kmap in the state vector part of the old user environment.
The addressing state of the new user is then loaded from
the specified new user environment. The addressing state is
the value of the window and other system registers in page
15 of the executing program. Ideally, this operation, which
performs a context swap by saving one addressing state and
loading another, would also save the internal processor
registers. Unfortunately there is no way for the Kmap to
access the internal registers of an LSI-II. Thus internal
registers must be saved and restored under program con
trol.

THE USE OF THE ADDRESSING STRUCTURE FOR
CONTROL OPERATIONS

The philosophy in Cm* is to implement all special control
operations, such as interprocessor interrupts, by references
to the physical address space. This not only avoids a
proliferation of special control signals, but also allows the
power of the system's address mapping and protection
mechanisms to be applied to control operations.

The Slocal provides a three priority level interrupt
scheme. An interrupt is invoked by writing into the appro
priate physical addres s on the LSI-II bus of the target
processor. Thus an interrupt can be requested by a process
anywhere in the network, provided the process has a
Capability for a segment which maps to the correct physical
address. Another example is the abort operation. If the
appropriate bit is written, a NXM (Non Existent Memory)
trap by the local processor is forced. This mechanism will
be used when an error occurs during a remote reference by
the processor.

The following examples show how references to special
typed segments, or special operations on standard seg
ments, are used to invoke microcoded operations in the
Kmap.

Primitive lock operations

For processors in the PDP-II family, most write opera
tions are part of a read-modify-write sequence. In standard
PDP-lis (including LSI-II's) this sequence is implemented
as an indivisible, single bus operation. This improves per
formance by reducing bus overhead and allowing optimiza
tion of references to memory with destructive read opera
tions (e.g., core and dynamic MOS memory). In C.mmp the
indivisibility of these operations is maintained through the
switch to shared memory. This allows the implementation
of Locks and Semaphores because a memory location can
be both tested and set without fear of an intervening access
by some other processor. Indivisible read-modify-write
operations to nonlocal memory will not be implemented in
Cm * because of increased bus and memory contention and
hardware complexity. We will provide an equivalent func
tion by making use of the Kmap's ability to lock a segment
descriptor while it makes a series of references to the
segment. To implement a basic lock mechanism two special
segment operations are defined:

Inspect the word addressed. If greater than zero, then
decrement. Return the original value.

Increment the word addressed. Return the original value.

An inter-process message system

Message systems can provide particularly clean mecha
nisms for communication between processesY,12 In the
past, a drawback to message systems has been the substan
tial operating system overhead in transferring a message

from one process to another in a fully protected way. The
architecture of Cm* provides an opportunity to build a fully
protected message system which can be used with very low
overhead.

A message port, or mail box, will be a special segment
type. Messages will either be entire segments, passed by
transferring capabilities, or will be single data words en
coded as data capabilities. Two representative operations
on Mailbox segments are:

Send(Message, ReplyMBox, MailBox)
This transfers capabilities for a message and a reply mail
box from the caller's Capability List to the Mailbox. If
the Mailbox is full then the caller is suspended.

Receive(MailBox)
If the mailbox contains a message then a Capability for
the message and a Reply Mailbox will be transferred into
the caller's Capability List. Otherwise the caller is sus
pended.

Provided that the above operations are successful, they are
performed completely in Kmap microcode, and messages
may be passed with probably less than 100 microseconds
delay. If the operation cannot be completed because the
Mailbox is full or empty, then the operating system is
invoked to suspend the requesting process. The Kmap can
also request the operating system to wake up a suspended
process when the operation is complete.

DEVELOPMENT AIDS

The development of hardware and software for a new
computer system is a major undertaking. We have at
tempted to ease this burden by using a variety of aids. All
the major hardware components were drafted using an
interactive drawing package (a version of the Standard
Drawing Package). To facilitate the development of soft
ware, prior to the availability of hardware, a functional
simulation of Cm* was programmed, which executes on
C.mmp. Development of the Kmap hardware and micro
~0J~ha~ bc..:;r. grc~rt'yt-eneft!erl o~" t~ ~ ··flf· ~. ~~"
mechanism in the Kmap. This connection to the Kmap
allows a program executing on an LSI-II almost complete
access to the internal state of the Kmap.

In order to expedite hardware debugging and software
development, a host program development system was
constructed. The host is connected to each Cm in the
system by a Serial Line Unit (SLU) to allow down line
memory loading and dumping from the associated Cm. In
addition, the SL U makes console control functions for each
LSI-II available to the host computer. 16 The Host in turn is
connected to a PDP-1O timesharing system.

CONCLUDING REMARKS AND PROJECT STATUS

Cm* is projected to be constructed in three stages. The first
stage is a ten-processor, three Kmap system. The subse-

Cm*-A Modular; Multi-Microprocessor 643

quent stages will include 30-processors and later 1000pro
cessors. Detailed hardware design began in late July, 1975.
As of late summer, 1976, a three-processor, one-Kmap
system was operational. It is expected that the first stage
Cm* configuration will be operational in the second quarter
of 1977. The initial operating system is described in Refer
ence 6 and is being developed both on the Cm * simulator
which runs on C.mmp and on the real hardware with the
support of the Host Development system.

The essential features of the Cm* architecture have been
presented. Both the coupling of a processor directly with
each unit of shared memory and the three level bus
structure which makes all memory accessible by every
processor are primary features of the Cm* structure. Much
of the sophistication in the architecture is associated with
the address translation mechanisms. A description has been
given of how the sman processor address space of the PDP-
11 is mapped into the larger global virtual address space of
the Cm* system and how the global virtual address space is
mapped onto the distributed physical address space of the
Cm* system. A number of important aspects of the Cm*
project are outside the scope of this paper and interested
readers are referred to other papers for a more complete
discussion. 5,6,8,9,13-15 Reliability and performance models
have been developed concurrently with the hardware de
sign of the system and have been used to guide several
important decisions concerning the structure of the Cm*
implementation.

ACKNOWLEDGMENTS

During the years its its initial development, many individu
als have contributed to this project. Gordon Bell, Bob
Chen, Doug Clark and Don Thomas contributed ideas to
earlier versions of this architecture. Anita Jones and Victor
Lessor have contributed to the present architecture. Miles
Barel, Paulo Corrulupi, Levy 'Raskin and Paul Rubinfeld
have all contributed to bringing the hardware to an early
fruition. Kwok-Woon Lai and John Ousterhout are largely
responsible for the successful development of the Kmap.
Audl,l, .. Bechtolsheimde~~cd the, .LjQSL,IJg,yd Rit:~m~n,
Rich Olsen, Steve Teicher and Mike Titelbaum at Digital
Equipment Corporation have provided information, ideas,
and support critical to the success of the project.

REFERENCES

I. Fuller, S. H., D. P. Siewiorek, and R. J. Swan, "Computer Modules: An
Architecture for Large Digital Modules," Proceedings of the First
Annual Symposium on Computer Architecture, University of Florida,
Gainesville. Also in ACM SIGARCH, Computer Architecture News,
Vol. 2, No.4, December 1973, pp. 231-236.

2. Bell, C. G., J. L. Eggert, J. Grason, and P. Williams, "The Description
and the Use of Register Transfer Modules (RTMs)," IEEE Transactions
on Computers, Vol. C-2L No, 5, May 1972, pp. 495-500.

3. Heart, F. E., S. M. Ornstein, W. R. Crowther, and W. B. Barker, "A
New Minicomputer/Multiprocessor for the ARPA Network." AFlPS
Conference Proceedings, Vol. 42, NCC 1973, pp. 529-537.

644 National Computer Conference, 1977

4. Wulf, W. A. and C. G. Bell, "C.mmp-A Multi-Mini-Processor,"
AFIPS Conference Proceedings, Vol. 41, part II, FJCC 1972, pp. 765-
777.

5. Swan, R. J., A Bechtolsheim, K. Lai and J. Ousterhout, "The Imple
mentation of the Cm* Multi-Microprocessor," AFIPS Conference Pro
ceedings, Vol. 46, 1977 National Computer Conference.

6. Jones, A. K., R. J. Chansler, I. Durham, P. Feiler and K. Schwans,
"Software Management of Cm*, a Distributed Multiprocessor," AFIPS
Conference Proceedings, Vol. 46, 1977 National Computer Conference.

7. Anderson, G. A. and E. D. Jensen, "Computer Interconnection Struc
tures: Taxonomy, Characteristics and Examples," Computing Surveys,
7,4, December 1975, pp. 197-213.

8. Swan, R. J., S. H. Fuller and D. P. Siewiorek, "The Structure and
Architecture of Cm*: A Modular, Multi-Microprocessor," Computer
Science Research Review 1975-76, Carnegie-Mellon University, Depart
ment of Computer Science, Pittsburgh, Pa., December 1976, pp. 25-47.

9. Swan, R. J., L. Raskin, and A. Bechtolsheim, "Deadlock Issues in the
Design of the Line," Internal Memo, March 1976.

10, Denning, P. J., HVirtua! ?'.{emori," Coniputing Surveys, v1'oi. 2, No.3,
September 1970, pp. 153-190.

11. Brinch-Hansen, Per, Operating System Principles, Chapter 8, "A Case
Study: RC-4000," Prentice Hall, 1973.

12. Jefferson, David, "The Hydra Message System," to be published.
13. Ingle, Ashok and D. P. Siewiorek, "Reliability Modeling of Multiproces

sor Structures," Proceedings IEEE CompCon '76, September 1976.
14. Ingle, Ashok and D. P. Siewiorek, "Reliability Models for Multiproces

sor Systems with and without Periodic Maintenance," Computer Sci
ence Technical Report, Carnegie-Mellon University, September 1976.

15. Siewiorek, D. P., W. C. Brantley Jr., and G. W. Lieve, "Modeling
Multiprocessor Implementations of Passive Sonar Signal Processing,"
Final Report, Carnegie-Mellon University. Pittsburgh, Pa. 15213, Octo
ber 1976.

16. Van Zoren, H., "Cm* Host User's Manual," Department of Computer
Science, Carnegie-Mellon University, December 1975.

17. Bell, C. G., R. C. Chen, S. H. Fuller, J. Grason, S. Rege, and D. P.
Siewiorek, "The Architecture and Applications of Computer Modules:
A Set of Components for Digital Design," IEEE Computer Society
International Conference, CompCon 73, March pp. 177-180.

is. Beil, C. G. and A. Newell, Computer Structures: Readings and Exam
ples, McGraw-Hili, New York, New York, 1971.

The implementation of the em *
multi-microprocessort

by RICHARD J. SWAN, ANDY BECHTOLSHEIM, KWOK-WOON LAI and JOHN K. OUSTERHOUT
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

The implementation of a hierarchical, packet switched
mUltiprocessor is presented. The lowest level of the struc
ture, a Computer Module, is a processor-memory pair.
Computer Modules are grouped to form a cluster; commu
nication within the cluster is via a parallel bus controlled by
a centralized address mapping processor. Clusters commu
nicate via intercluster busses. A memory reference by a
program may be routed, transparently, to any memory in
the system. This paper discusses the hardware used to
implement the communication mechanism. The use of spe
cial diagnostic hardware and performance models is also
discussed.

INTRODUCTION

The companion paperl has introduced Cm* as a large,
extensible mUltiprocessor architecture. It has an unusually
powerful and complex addressing structure which allows
close, protected cooperation between large numbers of
inexpensive processors. This paper describes the combina
tion of hardware and firmware which implements the ad
dress space sharing and interprocessor communication
mechanisms.
C~*i~ aniultlprocessor system as we define iI (rather

than a network of independent computers) because the
processors share a common address space. All processors
have immediate access to all memory. The structure of
Cm* is shown in Figure 1. The primary unit is the Com
puter Module or Cm. This consists of a processor, memory
and peripherals interfaced to a local memory bus and a
"local switch." The local switch, or Slocai, * intercon-

t This work was supported in part by the Advanced Research Projects
Agency under contract number F44620-73-C-0074, which is monitored by the
Air Force Office of Scientific Research, and in part by the National Science
Foundation Grant GJ 32758X. The LSI-II's and related equipment were
supplied by Digital Equipment Corporation.
:j: The names used for hardware components of Cm* are derived from PMS
notation.2 The leading, capitalized letter indicates the primary function of the
unit, e.g., Computer, Processor, Kontroller, Link, Switch. The subsequent
letters, optionally separated with a period. give some attribute of the unit.
For example. Siocal is a local switch. Pmap is a mapping processor. The
name Cm* derives from (Computer. modular) * where * is the Kleene star.

645

nects the processor, its local memory bus and the Map Bus.
The Map Bus provides communication between up to
fourteen Computer Modules within a cluster, and is cen
trally controlled by the Kmap, a high performance micro
programmed processor. Each Kmap interfaces to two Inter
cluster busses, by means of which it communicates with the
other clusters in the system.

There is a system-wide 28 bit virtual address space. This
address space is divided into segments with a maximum
size of 4096 bytes. Programs refer to segments indirectly
via Capabilities, which are two-word items containing the
global name of a segment and specifying access rights to the
segment. The processors have a 16 bit address space which
is divided into 16 pages. A mechanism is provided which
allows a program to associate any Capability it possesses
(and hence any segment to which it is allowed access) with
any page in its immediate address space. A full description
of the address mapping scheme is given in Reference 1.

To demonstrate the viability of a structure it is necessary
to build a pilot system with currently available components.
To be a successful demonstration, the pilot system has to
be a useful, economical computing resource in its own
right. Therefore, in the Cm* network described here, many
design tradeoffs were made on the basis of current technol
ogy and the resources available. The highly experimental
r:ntnre cf the p!' -.:jet t enro~ ~~~ ··fMl ~f"aMty

and ease of debugging in the hardware components, rather
than just minimization of costs. There are many aspects of
the detailed design which would have to be re-evaluated if
the structure were to be implemented in a different technol
ogy or built as a commercial product. In particular the
distribution of functions between the processors and the
Kmap would be carefully reconsidered. The modular nature
of Cm* makes it particularly suitable for implementation in
LSI.

The second section of this paper illustrates the mecha
nism for memory references. The various hardware compo
nents of Cm* are described in the following six sections.
The third section describes the processor-memory pairs and
their interface to the Map Bus. In the fourth section
opportunities for parallelism in the address mapping mecha
nism are considered. Three autonomous functional units of
the Kmap are presented in later sections, and describes the

646 National Computer Conference, 1977

Intercluster Bus

Map Bus

P-S-M P-S-M P-S-M

-------------- ---- --------------1

Map Bus

P-S-M P-S-M P-S-M

A Cluster of COfI1Xder Modules ----- -- ----------------- -- ---

Figure I-A simple 3 cluster Cm* SYSTEM

suppOil given to hardware diagnosis and microcode devel
opment in the Kmap. For an effective implementation it
was necessary to find a reasonable performance balance
between system components. Some of the performance
modelling which guided our judgment is presented -in the
last section.

THE MECHANISM FOR LOCAL AND NONLOCAL
REFERENCES

Addresses generated by processors in a Cm* system may
refer to memory anywhere within the system. Mapping of
an address and routing to the appropriate memory are
performed in a way that is totally transparent to the
processor generating the address. If an address is to refer to
the memory local to that processor, the memory reference
is performed in a completely standard way except that the
Slocal relocates the high-order four bits of the address. (See
Figure 2.)

Read Only Map Physical Page

External Processor
Status Word

User/Kernel
Space

4

Processor generated
Address

Offset

Relocation
Table

12

Physical Address
on LSI-11 Bus

Figure 2-Addressing mechanism for local memory references

When the page being referenced is not local (i.e., the
"Map" bit for the referenced page is set in the Slocal) a
service request is made to the Kmap by the Slocal. Upon
receiving the service request the Kmap executes a Map Bus
cycle to read in the processor-generated address from the
Slocal, as well as the number of the Cm making the request,
and two status bits indicating which address space was
executing on the processor and whether the reference was a
read or a write (see Figure 3). If the segment being
referenced is local to the cluster, the Kmap will use
information cached in its high-speed buffers to bypass most
of the processor-to-virtual-to-physical address mapping.
Thus it can quickly translate from the page number refer
enced by the processor to a physical address consisting of
the number of the Cm containing the physical location and
an eighteen-bit local address. A second Map Bus transac
tion is executed to pass this address, and a bit indicating
whether a read or a write is to be performed, to the
destination Slocal. If the operation is a write, the data may
be passed directly from the Cm making the reference to the
Cm containing the word to be written. The destination
Slocal performs the read or write via a Direct Memory
Access. When this is completed it issues a return request to
the Kmap to acknowledge completion. A third Map Bus
cycle is performed to transfer the data back to the proces
sor that made the reference (in· the case of a read) and to
acknowledge completion of the reference so that the re
questing processor may resume activity.

A second alternative when the Kmap receives an address
to map is that the physical location being referenced is not
local to the cluster. In this case the information cached in
the Kmap for the page being referenced will not indicate a
physical location directly; instead it will give a sixteen-bit
segment name, the number of the cluster containing the
physical memory allocated to the segment, and two bits
used to extend the read/write bit to a three-bit op code.

Intercluster

Busses

Kmap Read/Write

-- 1 I

(16)~
~ 1 Data

CM CM

Source Cm Destination Cm

Figure 3-The mechanism for cluster-local references

This information is combined with the twelve low-order bits
of the original processor address to form the full virtual
address of the object being referenced. (See Figure 4.) The
virtual address, along with the processor data (if a write is
being performed) is sent via an Intercluster Bus to the
Kmap of the cluster containing the segment (if there is no
Intercluster Bus directly connecting the two Kmaps the
message will be steered from Kmap to Kmap until it
reaches the destination cluster). The destination Kmap will
then map the virtual address to a physical one within its
cluster. Map Bus transactions will be executed to pass the
physical address (and data if needed) to an Slocal which in
tum performs the operation and returns acknowledgment
(and, perhaps, data) back to the destination Kmap. A return
message is used to pass back acknowledgment and data to
the Kmap of the originating cluster. Finally, this Kmap will
relay the data and acknowledgment back to the initiating
em to complete the reference.

Several points are worth noting with respect to the above
schemes. Except at the local memory bus level, where
conventional circuit switching is used, all communication is
performed by packet switching. That is, buses are allo
cated only for the period required to transfer data. The data
is latched at each interface, rather than establishing a
continuous circuit from the source to the destination. This
approach gives greater bus utilization and avoids deadlock
over bus allocation. All transactions are completely inter
locked with positive acknowledgment being required to
signal completion of an operation (it is possible to allow a
processor executing a nonlocal write to proceed as soon as
the data for the write has been received by the Kmap or
destination Slocal, without waiting for completion of the
operation; however in this case the Kmap will expect to
receive acknowledgment in place of the processor so that
appropriate actions may be taken if none is received). The
complete processor-to-virtual-to-physical address mapping
is performed only in the case of intercluster references. As
the locality of a reference increases the amount of this
mapping that may be bypassed (and hence the speed of the
reference) increases, with local caches of certain mapping
,infm:ma1iulllJsedJo dIectth~b:il}~S~s,hl1 iml'or:t.ant c.Q.arac-

Op ~t Offset 1(3 1 16 12

Intercluster Busses

Read/Write

Source Cluster Destination Cluster

Figure 4--The mechanism for intercIuster references

Implementation of Cm* Multi-Microprocessor 647

teristic of the addressing structure is that there is exactly
one Kmap that may perform the virtual-to-physical map
ping for a given segment. The requirement that all refer
ences to a segment occur with the cognizance of a single
Kmap greatly simplifies the moving of segments and the
implementation of operations requiring mutual exclusion.

THE COMPUTER MODULE

The first level of the Cm* network hierarchy is the
Computer Module, or Cm. The Cm's provide both the
memory and processing power for the multiprocessor sys
tem.

The decision to use a standard, commercially available
processor (the DEC LSI-II) has had a considerable impact
on the design. Use of a standard instruction set has made a
large pool of software and software development aids
directly available. The not inconsiderable effort to design
and implement a new processor has been avoided.

At the software level, the prime disadvantage of the LSI-
11 instruction set is that only 16 bit addresses can be
directly manipulated. The companion architecture paper
discusses in detail the mechanism used to expand a proces
sor's address space from 16 bits to 28 bits.

The components of a computer module

A Computer Module, Figure 5, can act as a stand alone
computer system. The standard commercially available
components include the DEC LSI-II processor and dy
namic MOS memory. Any LSI-ll peripheral may be used
on the bus, including serial and parallel interfaces, floppy
and fixed head disks, etc. The standard 16 bit memory has
been extended with byte parity. Memory refresh is nor
mally performed by microcode in the LSI-II; however, the
fact that a processor may be suspended indefinitely while
awaiting the completion of a complex external reference
has made it necessary to augment each Cm with a special
bus device to perform refresh.

Map Bus

11 r 510eol

Pc ul LSI-l1 Bus

LSI-l1

Mp Parity
TTY DISK 4-124k Refresh

Figure 5-Details of a computer module

648 National Computer Conference, 1977

The most important component which has been added to
each Cm is the Siocal. This provides the interface between
the processor, the Map Bus and the LSI-II Bus. The prime
function of the Siocal is to selectively pass references from
the processor to either the LSI-II Bus or the Map Bus and
to accept references from the Map Bus to the LSI-II Bus.
The Siocal also provides simple address relocation for
references made by its processor to local memory. Figure 2
shows how this relocation is performed; the "Map Bit" in
the local relocation table is set for pages which are not in
the local memory of the processor.

In addition to the Local Relocation Table the Siocal
provides a number of other control registers. All these
registers are addressable as memory locations on the LSI-
11 bus; however only the Kmap and highly privileged
system code will have direct access to them. -One ~f the key
registers is the eXternal Processor Status Word
(XPSW(l5:8». The LSI-II implements only the low order
byte of the standard PDP-II Processor Status Word
(PSW(7:0». Logic in the Siocal (with assistance of standard
signals from the LSI-II) allows the XPSW to be saved and
restored during interrupt, trap and other operations in
unison with the internal PSW. The XPSW allows selective
enabling of various Slocal functions and controls a simple
three level interrupt scheme. On power-up the XPSW is
cleared, which disables all special operations by the Siocal
including the relocation of local memory references. In this
mode the processor acts as a bare, unmodified LSI-II. The
Local Relocation Table can be initialized either by console
operations, execution of local bootstrap code or remotely
by any processor in the network. After initialization, ena
bling Reloc Mode (XPSW (11» will allow local relocation
and give access to the rest of the network.

Incorrect use of PDP-II instructions such as HALT,
RESET, Move-To-Processor-Status-word, Return from In
terrupt, etc., can cause loss of a processor, garbling of an
110 operation or enable circumvention of the system's pro
tection scheme. The Privileged Instruction Mode bit
(XPSW (13» enables logic in the Slocal which detects the
fetching of any "dangerous" instruction. An immediate
error trap is forced if an unprivileged program attempts to
execute a privileged instruction.

Several registers in the Slocal are concerned with provid
ing diagnosis and recovery information after a software or
hardware error is detected. Almost all errors are reported
to the processor by forcing a NXM (Non eXistent Memory)
trap. This includes errors detected by the Kmap during
remote references. The Kmap signals the error by writing
to the "Force NXM" bit in an addressable register in the
Siocal. The Local Error Register indicates the nature of the
error and whether the erroneous reference was mapped.
The "Last Fetch Address" register is updated to hold the
address of the first word of an instruction every time the
LSI-II fetches a new instruction. If an error is detected,
this register is frozen until the Local Error Register is
explicitly cleared. Also frozen in the Local Error Register is
a count of the number of memory references performed .in
the execution of the instruction. In conjunction, these two
registers provide sufficient information to restore the state

of the LSI-II for retry of the instruction during which the
error was detected.

The Slocal also provides two interrupt request registers.
Interrupt enable bits in the external processor status word
allow masking of the interrupt requests. Provided reference
is permitted by the memory protection scheme, any proces
sor in the network can interrupt any other processor simply
by writing to the correct address.

Data paths for nonlocal references

An idealized form of the basic data paths and latches
within a Cm* cluster is shown in Figure 6. Depending on
the address generated, a reference from the processor is
passed either to the local memory bus or to the Map Bus. A
local memory reference is performed in a conventional
way. For a nonlocal reference, the address (and possibly
data) is latched and serviced request is issued to the Kmap.
The broken line in Figure 6 shows the path of a read to the
memory of another Cm in the cluster. The address from the
source processor is read by the Kmap which translates it
into a physical address within the memory of a Computer
Module. This physical address is placed onto the Map Bus
by the Kmap and latched at the target Cm. A conventional
Direct Memory Access (DMA) cycle is performed by the
destination Slocal, the data read is latched and the Kmap is
again requested, this time with a return request. To com
plete the operation, the Kmap responds by transferring the
data over the Map Bus from the target Cm to the requesting
Cm (this simply requires the latch at the target Cm to be
enabled onto the Map Bus and the latch at the requesting
Cm to be strobed). At this point the source processor,
which was suspended, is given the data as if a normal
memory reference had been performed.

This simplified description of a Computer Module has
been presented to emphasize the simplicity of the basic
mechanisms required for an intra-cluster reference in Cm*.
In the actual implementation using the LSI-II processor the
data paths are rather different than the idealized structure
shown in Figure 6. The differences are due primarily to the
need to minimize the changes to the LSI-II. Although still
simplified, Figure 7 is a more accurate representation of the

I~I
CEJ CEJ

Figure 6-An idealized and simplified representation of the data paths in a
cluster

Map Bus

Read Only
Map

Relocation of Hig1
Order Address Bits

LSI-ll Bus

Figure 7-Simplified LSI-ll-Slocal data paths

data paths and latches used to interface the LSI-ll and the
LSJ-ll bus to the Map Bus.

The processor board is modified so that the Local Relo
cation Table in the Slocal can be inserted in the data path of
the four high order address bits. The timing margins in the
processor's address path are wide enough to allow insertion
of this delay without loss of performance. The LSI-II Bus
is the only data path from the processor for both local and
nonlocal references. If the processor were permitted to
hold the LSI-II bus while waiting for completion of a
nonlocal reference then references from other processors in
the network to memory on the LSI-ll bus would be
blocked. This could very easily lead to deadlock situations.
To give greater concurrency and to eliminate the deadlock
potential, the Slocal is able (using simple microcoded state
sequence logic) to force the processor off the LSJ-ll bus
while it is waiting for completion of nonlocal references.
While the processor is forced off the local bus the Slocal
takes over DMA bus arbitration for the suspended proces
sor.

CONCURRENCY WITHIN THE MAPPING
MECHANISM

Early in the design of Cm* the speeds of the various
components in the system began to appear as follows: the
time for a "typical" Map Bus transaction was about 0.5
microseconds; the time required in the computational unit
of the Kmap for an address mapping was 1-2 microseconds;
the time to transfer a message on an Intercluster Bus was 2-
4 microseconds; and the time for an Slocal to execute a
read or write requested by the Kmap was 3-4 microsec
onds. In referring to the mechanisms for nonlocal map
pings it can be seen that no single component is responsible
for a very large fraction of the time required for a nonlocal
reference. Thus if each cluster had a mapping concurrency
of one (only one nonlocal reference could be processed at a
time per cluster) both the utilization of the mapping compo
nents and the throughput of the mechanism would be low
(the effect of concurrency on system performance is dis
cussed quantitatively in a later section). In addition the

Implementation of Cm* Muiti-Microprocessor

possibility of deadlock in intercluster references is intro
duced.

The solution adopted for Cm * was to separate the four
functions whose timings are given above and to allow a
concurrency of eight in the mapping mechanism of each
cluster. The packet-switched nature of Cm* yields cleanly
to this approach, and requires only that queues be imple
mented to store messages at the interface between the
components. Figure 8 depicts this structure, in which the
Kmap has been logically sub-divided into three separate
units: the Kbus, which is master of the Map Bus and
controls all transactions on it; the Pmap, or mapping
processor, which does all the address translation and main
tains the cache used to speed up mapping; and the Linc, or
intercluster link, which presides over the transmission of
messages between clusters.

One other notion must be introduced before proceeding
to a detailed discussion of the components of the Kmap,
namely that of a context. Operations requiring mutual

Intercluster Bus 1

11
Intercluster Bus 0

Service Queue

Line
Return Queue

Kbus Pmap

Map Bus

Figure 8-The components of the Kmap

650 National Computer Conference, 1977

exclusion (for example, changing the virtual-to-physical
mapping of the system) will be implemented in Cm* as
memory references to "special" segments which will then
cause the Kmap to perform the desired operations in a
protected way. In general these operations will require
several references by the Kmap to main memory. If the
Pmap is to be used for other mappings while these main
memory references are being made by the Kbus and
Slocals, there must be some means of saving and restoring
its state so that processing can be resumed when the
memory reference has been completed. The solution
adopted is to provide registers in the Kmap to save and
restore state for up to eight overlapping operations. A
mapped operation in some stage of processing by the Kmap
is referred to as a context. Each context has allocated to its
exclusive use eight general-purpose registers and four sub
routine linkage registers (one of which is used to save the
microprogram address while awaiting the completion of
Map Bus transactions).

The Kbus maintains the status of the eight Pmap contexts
and allocates them to new service requests. The context
number and other status are then placed in the Run Queue
to signal the Pmap that the context is runnable. The
mapping processor activates the context by removing its
number from the Run Queue and starting execution of
microcode at an address determined by the status bits.
When the new context is activated the processor address is
mapped, and a request for a main-memory reference is
placed in the Out Queue (during this time the Kbus has
been free to read in service requests or perform functions
requested by the Pmap). A context swap is executed in the
Pmap to deactivate the current context pending the comple
tion of the memory reference and to activate the next one in
the Run Queue. The Kbus transfers address and data to the
destination Slocal, then processes other requests while the
memory reference is being performed. When the memory
reference is completed the Kbus either reads the acknowl
edgment and/or data back into the Kmap and places the
context back in the Run Queue for reactivation, or it sends
the acknowledgment back to the processor that originally
made the service request (thereby completing the mapping
operation) and marks the associated context as "free" for
reallocation to a new service request. The fact that a
context remains allocated to each nonlocal reference until
that reference is completed (regardless of whether or not
more Pmap processing is expected to be needed) means
that if an error is detected the context can be reactivated
and will have enough state information to handle the error
in an intelligent fashion.

Communication between the Linc and Pmap is similar to
that between the Kbus and Pmap; the Pmap queues a
request for an intercluster message to be sent (separate
queues are provided for each Intercluster Bus) and sus
pends the requesting context. When a return message is
received for the context the Linc causes the Kbus to
reactivate the context in the Run Queue. When an incoming
intercluster message is received by one of the Linc's
Intercluster Bus Ports, it is queued and a request is issued

to the Kbus to allocate a free context to the request and
activate it in the Run Queue.

THE KBUS AND THE MAP BUS

Because of the great variety of tasks it must perform and
the necessity that it be able to respond to errors in an
intelligent way, the Kbus was designed as a micropro
grammed processor controlled by 256 40-bit words of read
only memory. It has a microcycle time of 100 nanoseconds
which is synchronized with the 150 nanosecond clock of the
Pmap and Linc at 50 nanosecond intervals. Figure 9 shows
the major elements of the bus controller.

The Map Bus contains 38 signals, of which 20 are
bidirectional lines used to transmit addresses arid data
between the Slocals and Kbus of the cluster. The Kbus is
master of all transactions on the bus; as such it specifies a
source and destination for each cycle as well as status bits
indicating the use of the data (address, data, etc.). The bus
is synchronous, with the Kbus generating all of the strobes
used to transmit data. Each Slocal is provided with private
service and return request lines to the Kbus. The arbiter
section of the Kbus scans these in a pseudo round robin
priority scheme.

The Kbus maintains the queues and registers used for
communication with the Pmap. The Run Queue contains
eight eight-bit slots (and thus is guaranteed never to over
flow), each containing a three-bit context name and five
additional bits of activation status. The Out Queue contains
four 39-bit entries. The Pmap loads this queue to request
Kbus operations and must check its state before loading to
insure that it never overflows. Each Out Queue slot con
tains an op code used to select one of thirty-two Kbus
operations, and additional address, data, and context infor
mation relevant to the operation. Two registers are loaded
by the Kbus on behalf of each Pmap context. They are
readable only by the Pmap and writable only by the Kbus.
The Bus Data Register contains the last data word read in
from the Map Bus for the context and the Bus Condition
Register gives control and status information for the trans
action.

The Kbus is responsible for the allocation and dealloca
tion of contexts, and maintains the status of each context

Service and Return Queue from line

RIB! Queue
~--------------------------------------:

Out Queue 1 Pmap 1
, ___ :---~-Tn nun __ nn ___ u ____ nnn:

Figure 9-The components of the Kbus

for this purpose. It also keeps two additional bits of status
for each context which are used to insure that, when a
context suspends itself to await the execution of a main
memory reference or the sending of an intercluster mes
sage, an acknowledgment of the completion of the
operation is received within a reasonable time (two milli
seconds). If a suspended context times out it is forcibly
reactivated with status bits indicating the error.

The Kbus also maintains nine bits of status for each
Slocal in the cluster indicating whether the Slocal is busy
with a Kmap-requested memory reference and, if so, what
to do with the information returned at the end of the
transaction. This status is set whenever a local memory
reference is initiated and is used to insure that two contexts
do not simultaneously try to request a memory access
through the same Slocal.

THE PMAP, THE ADDRESS MAPPING PROCESSOR

The mapping processor of the Kmap, or Pmap, is a
sixteen-bit horizontally microprogrammed processor. It oc
cupies a central position within the Kmap, coordinating the
activities of the other components. It is pipe lined and has a
cycle time of 150 nanoseconds. Microinstructions are 80
bits wide; a lK*80 bipolar RAM is used as a writable
microstore. The Pmap also uses a high-speed 5K*16 RAM
to store the active Capabilities and segment descriptors. In
addition to performing the basic address translation for the
nonlocal references of a cluster, the Pmap must support
certain operating system primitives, statistics gathering,
and other experimental functions without excessive per
formance degradation.

Data paths

A register transfer level diagram of the Pmap is given in
Figure 10. The main data paths consist of three internal
high speed tri-state busses. Two of these, the A and B
busses, take data from various sources and feed them to the
Wputs,QLtheA.t:itlun~1.i~,"LQii~ UJ1!tJ:J:1~ tl1i~d ~~~"?" !h~F
Bus, takes the ALU output and distributes it to various
parts of the Kmap. The Kbus and Linc are also connected
to these busses. Pipeline latches are used to overlap fetch
of operands with current data operations.

The Shift and Mask Unit provides the ability to perform
field-extraction on one of the ALU operands. This capabil
ity is important since the Pmap frequently deals with
packed information in segment descriptors, intercluster
messages, etc. The input to the Shift and Mask Unit is
rotated by an arbitrary amount and then masked by one of
32 16-bit standard masks stored in a PROM.

For efficient address mapping, it is crucial that the Kmap
have fast access to the information it needs to perform the
virtual-to-physical address translation. This information
consists largely of the active Capabilities and segment
descriptors, of which up to 448 may exist in the cluster at a
time (sixteen in each of two address spaces for each of

Implementation of Cm* Muiti-Microprocessor

from Kbus =~~===~======~====~;:===== and Line

B Bus
from Kbus ============;::=====~=

IJaml l,sLI

to Kbus

and line

1
F Bus

Figure 10-Data paths in the Pmap

i:"C 1
UJl

fourteen processors). Although content addressable mem
ory was not used because of the large capacity needed, the
careful positioning of tables within the data memory, com
bined with a hash-coded list structure used for storing
descriptors, has produced a cache-like structure.

The data memory, or Mdata, is divided into 1024 (ex
pandable to 4096) records, each record containing five 16-
bit words. The record organization was chosen because the
segment descriptors, with cacheing information, fit com
fortably within this 80-bit space. Each word has associated
with it two parity bits, one for each byte. The memory is
word addressable, with the record address coming from the
Data Address Register (DADR) and three-bit word indices
from fields in the current microinstruction. Thus once the
record address of a descriptor or capability has been
computed, the individual subwords may be accessed with
out expending further cycles to generate data memory
addresses.

Data to be written in the Mdata may be taken either from
the. ,ABllS Qr F BJ.ls, .B~9?Jl§e,H.i§.frequ.~n"tl,X~~,~,~s§<lry to
set and clear status bits in segment descriptors (for example
the "dirty" and "use" bits used for demand paging, and
the lock bit used for mutual exclusion) bit set and clear
logic is provided for data input from the A Bus. It provides
for the setting or clearing of either or both of the two high
order bits of the input word. To further increase parallel
ism, it is possible to simultaneously read and write different
words of the same record. It is therefore possible, say, to
set the "use bit" in one word of a segment descriptor and
at the same time extract the segment limit from another
word of the same descriptor.

Microprogram sequencing logic

One characteristic of the Cm* address mapping algo
rithms is the large number of conditions to be tested. The

652 National Computer Conference, 1977

service of a typical request will require testing of request
status, operation type, and segment type and checking of
the following conditions: protection violation, descriptor
locked, segment localizable, etc. To perform address map
ping within a reasonable number of cycles requires the
Pmap to have a flexible multi-way branch capability.

A block diagram of the microprogram sequencing logic is
given in Figure 11. A Base Address is selected from either
the Next Address field in the current microinstruction or
the output of the Subroutine Linkage Registers. Two bits in
the microinstruction select the mode of branching (two
way, four-way, sixteen-way) and two three-bit fields con
trol six 8-to-1 condition code mUltiplexers. Multi-way
branching was implemented in the conventional way by
OR'ing the selected condition codes with the Base Address.
The address thus generated is stored in MADR, the Micro
program Address Register, to fetch the next microinstruc
tion. There is a conditional override mechanism that can
prohibit a potential 16-way branch. When the override
condition is true, a branch is taken to a seventeenth
location regardless of the value of the 16-way branch
condition code.

Context considerations

There are a total of 64 general purpose and 32 subroutine
linkage registers, allowing each context exclusive use of

B Bus

A
D
R

DIN

Writable Mlcrostore
1024 :I 80

Subroutine
Linkage
Registers
8*4*16

Dour

Next
Address

Up to 4K
BO-blt Words

to Rest of Kmap

CC Select

Condition
Codes

Figure II-Microinstruction address generation logic

eight general purpose registers and four subroutine linkage
registers. The Current Context Number, stored in the
Context Register, selects the current register bank. Nor
mally this register is loaded from the Run Queue when a
context swap is executed. For diagnostic purposes the
Pmap may directly load the Context Register, hence if
required a microprogram may access the registers of any
context. Each context may nest subroutine calls up to four
levels deep. By convention, the zeroth linkage register is
also used to store the reactivation address of a suspended
context. The status bits in the Run Queue indicate whether
a context is to be activated at its reactivation address (to
continue an ongoing operation) or to be explicitly started at
one of the first sixteen locations in the microstore (to begin
a new operation, or handle certain error conditions).

THE LINC AND INTERCLUSTER BUS STRUCTURE

The Linc provides intercluster communication by con
necting the Pmap to two Intercluster busses. Communica
tion is in the form of short messages passed between
Kmaps. Messages are stored in a Message RAM which is
shared between the Pmap and the two Intercluster Bus
Ports. Pointers to messages pass through an automatic
system of queues. Messages are usually sent directly from
source to destination cluster, but they can also be for
warded by intermediate clusters (thUS allowing arbitrary
network topologies to be constructed). Message routing is
controlled by Pmap microcode. The goal in the Linc design
was to provide fast, deadlock-free intercluster communica
tion with a minimum of Pmap overhead.

Intercluster bus protocol

The Intercluster busses contain 26 lines: 16 data, 2 parity,
and 8 control. They operate in an asynchronous, inter
locked fashion at a transfer rate of 450 nanoseconds per
word. Mastership is passed cyclicly between requesting
ports, effectively implementing a round robin priority
scheme. The current bus master arbitrates future master
ship in parallel with its current data transfers.

Intercluster messages consist of one to eight 16 bit
words. The most common formats are shown in Figure 12.
The header word contains a six bit identifier for source and
destination cluster, the source context number and the
complex bit. A return message has a unique source field of

Forward Message
15 12 6 o

e ex Source \ Destination

- OP Offset

Segment Name

Data Word (Write)

Return Message
15 12 6 o

CI CX \111111 IDestlnatlon

Data Word (Read)

C Complex Bit
CX Context
OP Op Code

Figure 12-Standard message formats

all ones. The source context number is sent with the
message to allow a direct reactivation of the suspended
source context. The complex bit provides an escape mecha
nism to other message formats, e.g., for error messages or
block transfers.

Components of the line (Figure 13)

Buffer spac~ for messages is provided in the central
lK*18 Message RAM, divided into 128 buffers of eight
words each. This is sufficient to avoid any possibility of
deadlock over buffer allocation except in very large sys
tems.3 The Pmap has. priority for access to the Message
RAM, although it is also directly accessible by the Ports.
Several contexts may use the Linc in an overlapped fashion
without interference since each context has private facilities
for addressing message buffers. A context has two ways to
address message buffers. It may use its context number to
access a reserved buffer which is used for the creation of
forward messages and to receive return messages. There is
also a Pmap Address Register for each context to deal with
incoming forward messages. Words within a buffer are
selected by a Pmap microcode field. Each Port section has
an address register and a word count register for accessing
the Message RAM.

Five queues are maintained by the Linc. Two Send
Queues, one for each Port, are used by the Pmap to request
transmission of messages. To request that a message be
sent on an Intercluster Bus, the Pmap places the address of
the message buffer in the appropriate Send Queue. The
Free Queue keeps the addresses of all the message buffers
not currently in use. The Service Queue is used by the Linc
to notify the Kbus and Linc of the addresses of incoming
forward messages, and the Return Queue to request that
the Kbus reactivate contexts when replies to their forward

Intercluster Bus 0

~~~~e.I_ •• ~e~'~~~l~~+ {~-------------------------------

Message 

RAM 

Map Bus 

! I 

Figure 13-Components of the Line 

Impiementation of Cm* Muiii-Microprocessor 

messages are received. All of the queues are implemented 
as partitions of a single lK*11 bipolar RAM. 

The Linc uses the same 150 nanosecond clock as the 
Pmap. For diagnostic purposes the Pmap has access to 
almost all of the internal state of the Linc and may execute 
all the internal microcycles executable by the Ports. 

An intercluster message transaction 

A complete message transfer is shown in Figure 14. The 
Pmap at the source cluster creates the forward message in a 
reserved context buffer. Then its pointer is put into the 
appropriate Send Queue. The Linc pops the pointer off the 
Send Queue into the Port Address Register, acquires mas
tership of the corresponding bus and transfers the message, 
one word at a time, from its Message RAM onto the 
Intercluster Bus and into the Message RAM of the destina
tion Linc. 

At the destination side the receiving Port has already 
obtained a buffer from the Free Queue. If the message is 
received completely without error, then its pointer is placed 
into the Service Queue (if not, the message is ignored; a 
timeout will occur at the source). The Service Queue 
requests the Kbus to allocate a free Pmap context to 
service the message. It includes status bits to start up 
specific microcode. The context will transfer the pointer 
from the Service Queue into the Pmap Address Register 
and process the message, making appropriate main-memory 
references. It then creates a return message in the same 
buffer, setting the source field to ones to indicate this. On a 
Read, the data word will be appended. The buffer pointer 
of the completed return message is queued again in the 
Send Queue. When the message has been sent, the pointer 
is released into the Free Queue. At the original source the 
return message is placed in the reserved buffer for the 
requesting context. Its context number plus status is passed 
to the Return Queue and the context is reactivated to send 
data or an acknowledgment back to the requesting proces
sor. 

A common strategy used to aid in hardware and/or 
microcode development is to construct a software simulator 

Source Cluster Destination Cluster 

Figure 14-An intercluster message transaction 



654 National Computer Conference, 1977 

for the hardware. This allows initial debugging to be per
formed before the actual hardware is available and can 
provide a more comfortable environment in which to work. 
However, simulators are expensive both in terms of devel
opment effort and computer time; furthermore they cannot 
give an exact reflection of the hardware. Thus this ap
proach leaves the final bugs to be found using the real 
hardware, and is of no aid in diagnosing component 
failures (rather than design errors). The alternative ap
proach adopted for Cm* was to incorporate special hard
ware, called Hooks, directly into the Kmap for use in 
hardware and microcode development. The interfacing of 
the Hooks to a standard LSI-II allows extensive software 
support for hardware development and diagnostics while at 
the same time providing a convenient environment for the 
debugging of microcode on the real hardware. 

The Hooks give to an LSI-II, referred to as the Hooks 
Processor, the ability to intimately examine and change the 
internal state of the Kmap. They provide the capability for 
the Hooks Processor to load microcode into the writable 
control store of the Pmap, read the values on the A and B 
busses of the Pmap, and to independently start, stop, and 
single-cycle the Pmap-Linc and Kbus clocks. An interrupt 
is generated for the Hooks Processor whenever the Pmap 
clock stops (either due to a microprogram-invoked halt or a 
memory parity error on the control or data stores). Further
more, several of the internal registers of the Pmap have 
"twin registers" associated with them which may only be 
loaded by the Hooks Processor. These alternate registers 
may be enabled via the Hooks to override microprogram
controlled values. The presence of the Hooks added ap
proximately ten percent to the cost of the Pmap while 
enormously reducing system development time. 

PERFORMANCE: MEASUREMENTS AND 
PREDICTIONS 

Before discussing the models used to estimate the 
performance of a Cm* cluster, several simple measure
ments (made on a cluster containing two processors) will be 
presented. The average time between memory references 
(including both code and data) made by a single LSI-II 
executing entirely out of local memory varies between 2.5 
and 4.0 microseconds, depending on the mix of instructions 
being executed. For a "typical" code sequence, based on 
measurements of compiled BLISS-II programs, the inter
reference time was 3.0 microseconds. Measurements made 
on the same "typical" code sequence, except with all 
references mapped via the Kmap to the other processor in 
the cluster, yielded an average time between references of 
7.7 microseconds. With the latter measurement there was 
no contention for use of the Map Bus, Kmap, or destination 
Slocai. Although no actual measurements were available at 
the time of this writing, it is expected that the time for 
intercluster references will be between 15 and 20 microsec
onds. 

A simple queueing model was developed to estimate the 
performance of a c1uster.4 The model assumed an exponen-

tial distribution of nonlocal requests, exponential service 
time in the Pmap, and exponential distribution of the total 
non-Pmap overhead incurred during a nonlocal reference. It 
is assumed that the Pmap is the primary cause of contention 
hence the waiting time for other facilities is ignored. Figure 
15 plots the results of this analysis. The relative rate of 
memory referencing in a cluster is plotted as a function of 
the number of active processors and their hit ratio to local 
memory. 

Because of the inability of the queueing analysis to model 
contention for all cluster facilities it was feared that the 
results would prove to be an optimistic estimate of cluster 
performance. Therefore a series of simulations was per
formed in order to model more closely the true operation of 
a cluster. 5 The simulation and queueing results were in 
close agreement and so the simulation study will not be 
discussed further. 

Figure 15 indicates that system performance is extremely 
dependent on the local hit ratio. It has been hypothesized 
that the local hit ratio would lie in the range between 85 and 
95 percent, in which case the effect of the nonlocal refer
ences would be "reasonably" small. Unfortunately, this 
implies that code must be entirely local to the processor 
executing it. Two memory-intensive programs, a quicksort 

5.0 

4.0 

3.0 

2.0 

1.0 

o 

6 
1 a Memory References/Sec 

A 16 Cm's/Cluster 

o 12 Cmls/Cluster 

o 8 Cm's/Cluster 

() 4 Cmls/Cluster 

1.0 .9 .8 .7 
Hit Ratio to Local Memory 

Local Reference Time = 3.0 uSec 
External Service Time = 1.5 uSec 
plus 6.5 uSec Constant Overhead 

Figure IS-Absolute cluster performance 

.6 



and a memory diagnostic, have been run on the initial Cm* 
system (one cluster, two modules). Measurements of the 
performance degradation when code and local variables are 
kept local but the area being sorted or diagnosed is moved 
to the other processor in the cluster indicate that local hit 
ratios of 90 percent or higher are being obtained in both 
cases. Expensive operating system functions such as block 
transfers are expected to lower this figure, but it is also 
expected that most user programs will make less intensive 
use of shared databases than the above examples. 

The queueing model was used to predict the degradation 
of cluster performance if either the Pmap were made slower 
(and thus cheaper) or if the concurrency of the mapping 
mechanism were eliminated. The results for a cluster con
taining twelve processors are shown in Figure 16. A slower 
Pmap was modelled by increasing its service time from 1.5 
to 3.0 microseconds. The last model represents a cluster 

6 
1 0 Memory References/Sec 

6.0 
c 1.5 uSee pmap } (6.5 uSee additional 

o 3.0 uSee Pmap 'concurrent' overhead) 

4.0 - () 8.0 uSec Kmap (no additional overhead, 

no concurrency) 

3.0 

2.0 

1.0 

o 
1.0 .9 .8 .7 .6 

Hit Ratio to Locai Memory 
Figure 16-Cluster performance with slower Pmap or without concurrency 

between Pmap and Map Bus 

Impiementation of Cm* Multi-MiciOprocessor 655 

implementation where each external reference is carried to 
completion before servicing subsequent requests. This 
would be the situation if only one Pmap Context were 
provided, i.e., eliminating the concurrency between the 
Map Bus and the Pmap. Both the slow and non-concurrent 
clusters show enormous performance losses, especially at 
the low end of the 85 to 95 percent hit ratio range. The 
inability of slower or non-concurrent Kmaps to support 
large numbers of modules implies a need for more Kmaps 
per Cm* system. It also suggests that more intercluster 
communication will be required since each module will 
have fewer immediate neighbors. 

CONCLUSION 

Detaiied hardware design of Cm* begain in late July, 
1975. The initial goal of a 10 processor, three cluster system 
is expected to be realized in the first quarter of 1977. 
Considering the Kmap alone, the time from the beginning of 
design to a working prototype (excluding the Linc) was less 
than nine months. It is felt that this relatively short devel
opment time is due to extensive use of automated design 
aids, microprogramming at almost every level and the 
inclusion of additional hardware to aid in debugging. The 
Hooks facility in the Kmap has been particularly success
ful. However it will not be possible to declare the overall 
system a success until it is regularly and reliably supporting 
a community of satisfied users. 

REFERENCES 

I. Swan, R. J., S. H. Fuller, and D. P. Siewiorek, "Cm*: a Modular, Multi
Microprocessor", AFIPS Conference Proceedings, Vol. 46, 1977 Na
tional Computer Conference. 

2. Bell, C. G. and A; Newell, Computer Structures: Readings and Exam
ples, McGraw-Hili, New York, New York, 1971. 

3. Swan, R. J., L. Raskin and A. Bechtolsheim, "Deadlock Issues in the 
Design of the Linc," Internal Memo, Computer Science Dept., Carnegie
Mellon University, March 1976. 

4. Swan, R. J., S. H. Fuller, and D. P. Siewiorek, "The Structure and 
Architecture of Cm*: A Modular, Multi-Microprocessor," The Computer 
.~ ik~r1meIHu.ii.e.J.em:c4 Rt:.~i.&.w.19J,j:12lf1 ... C~rli.\lgl"':M$<U~.I1 lJr:\i: 
versity, December 1976. 

5. Brown, K. Q., "Simulation ofa Cm* Cluster," Internal Memo, Computer 
Science Dept .. Carnegie-Mellon University. May 1976. 





Software management of em *-
A distributed multiprocessort 

by ANITA K. JONES, ROBERT J. CHANSLER, JR., IVOR DURHAM, 
PETER FEILER and KARSTEN SCHW ANS 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ABSTRACT 

This paper describes the software system being developed 
for Cm*, a distributed mUlti-microprocessor. This software 
provides for flexible, yet controlled, sharing of code and 
data via a capability addressed virtual memory, creation 
and management of groups of processes known as task 
forces, and efficient interprocess communication. Both the 
software and hardware are currently under construction at 
Carnegie-Mellon University. 

INTRODUCTION 

Semiconductor technology advances are leading toward the 
inexpensive production of computer modules (i.e., a pro
cessor plus memory of a moderate size) on a single chip. 
MUltiple computer modules interconnected to form a multi
processor or a network offer a large number of processing 
cycles far more inexpensively than an equally fast unipro
cessor. Yet, such a computer module system is useful only 
if a suitable fraction of the processing cycles can actually be 
used for applications. 

The software designed to manage a computer module 
,""¥~~ GGAtri~ ~staatiaUv to.~.the s¥stem a 
cost effective environment in which to program applica
tions. This paper discusses the software designed to man
age a computer module system called Cm* which is cur
rently under construction at Carnegie-Mellon University. 
We pay particular attention to the philosophy of software 
construction that influenced many of the design decisions. 

For the purposes of this paper, we will only review some 
attributes of the architecture that are salient to the design of 
operating system software. Companion papers1

,2 describe 
and discuss the Cm* architecture in detail. 

Cm* is a multiprocessor composed of computer modules, 
each consisting of a DEC LSI-ll, a standard LSI-ll bus, 
memory and devices. We describe Cm* as a mUltiprocessor 
because the system's primary memory forms a single vir-

t This work was supported by the Defense Advance Research Projects 
Agency under contract F44620-73-C-0074 which is monitored by the Air 
Force Office of Scientific Research, 

657 

tual address space; any processor can directly access 
memory anywhere in the system. To implement such a 
virtual memory, we introduced into each computer module 
a local switch, the Slocal* which routes locally generated 
references selectively to local memory or to the Map Bus 
(when the reference is to memory in another computer 
module). The Slocal likewise accepts references from dis
tant sources to its local memory .. 

Connected to a single Map Bus may be up to fourteen 
computer modules that share a single address mapping and 
routing processor, called the Kmap. The computer mod
ules, Kmap, and Map Bus together comprise a cluster. A 
Cm* configuration can be grown to arbitrary size by 
interconnecting clusters via Inter-cluster Busses (see Figure 
1). (A cluster need not have a direct bus connection to 
every other cluster in a configuration.) Collectively, the' 
Kmaps mediate each non-local reference made by a com
puter module, thus sustaining the appearance of a single 
virtual address space. 

Because processors are numerous, applications of any 
size will tend not to be designed in the form of a single 
program executed by a sequential process. Instead we 
expect users to create task forces, i.e., groups of processes 
cooperating to achieve a goal. Because the number of 
,!»"~~ i.n a task fo.r.ce IIHW· van~ wltb..the .allailable 
resources and task parameters, and because processes tend 
to be small (due to the relatively slow processors or 
limitations on the amount of local memory), a user will 
often be unconcerned with individual processes, communi
cating only with the task force itself. 

The Cm* architecture offers to a user the option of 
employing tightly or loosely coupled processes. Loosely 
coupled processes communicate rarely, usually in conven
tional ways via a message transmission mechanism. Tightly 
coupled processes communicate often, sometimes using the 
efficient unconstrained paths provided by shared memory. 
Cm* permits both types of communication since it provides 
a message transmission facility as well as direct addressing 
of shared memory. Effectively, a user is free to view Cm* 
as either a multiprocessor or a computer network. 

t In several cases names of Cm* components are derived from the PMS 
notation described in Reference 3. 



658 National Computer Conference, 1977 

P-S-M P-S-M P-S-M 

A Cluster of Computer MociJIes 

Figure I-A three cluster Cm* configuration 

SOFTW ARE DESIGN METHODOLOGY 

Cm* is a vehicle for experimentation, particularly in the 
area of parallel decomposition of algorithms and their 
efficient implementation on a computer module processing 
resource. We expect it to be rare that an experimenter 
(whom we will refer to as a user hereafter) is confident that 
all his code is debugged, since he will routinely alter 
parameters and even the code for his task forces in substan
tial ways. We also expect users to incrementally construct 
experiments. In addition we expect users to reconfigure 
modules (of software) combining them to form a new 
experiment. 

Such a view of the user has led us to believe that it is as 
important for the kernel (or lowest level) software to 
support the user's software construction activities as it is to 
provide the primitive runtime facilities required for multiple 
users to share the computer resources in a disciplined 
cooperative fashion. Consequently, the software design 
reflects this concern. We view users as constructing their 
experiments by incrementally building modules. * Each 
module implements some abstraction useful to other mod
ules that will come to depend upon it. A module then is a 
"unit of abstraction." It is implemented as 

• code and data private to the module, 
• a set of externally known functions that can be invoked 

by other modules making use of the abstractions, and 
• a set of references to externally defined modules 

defining functions used in implementing the abstrac
tion. 

The kernel software supports the notion of a module by 
providing user facilities to create modules and to invoke 
functions of a module in a protected way. An invoked 
function is executed in an environment that gives it access 
to code and data that are part of the module, together with 

* This paper always uses the words "computer module" to refer to the 
hardware structure, and will in the sequel use the (commonly accepted) 
single word "module" to refer to a programming abstraction. Context should 
also serve to eliminate any ambiguity. 

any actual parameters specified by the invoker. Thus the 
software enforces the boundaries of a module by providing 
a well defined transition between execution in one module 
and execution in another. Hopefully this will help contain 
the influence of errors and expedite debugging. 

This notion of module is based on earlier work. In 
particular it is built on the ideas of modular decomposition 
discussed in Reference 4 and abstract data types5 as used in 
language design. 

Module boundaries are used for protection purposes at 
runtime. Each function is executed with access only to 
those objects which it requires. In designing the kernel 
software, we have found that some of its modules imple
ment rather complex abstractions. Yet not all uses of a 
module reauire the entire abstraction; some uses rely only 
on part of the abstraction while others rely on a simplified 
abstraction. For design purposes a module may be parti
tioned into a strictly ordered set of levels as described in 
Reference 6. The purpose of dividing a module's design into 
levels is to permit either incremental introduction of the 
different parts of one abstraction or increasingly more 
complex (and powerful) versions of the entire abstraction. 
The introduction of complexity is postponed until it is truly 
required. Multiple levels of one module share data struc
tures and even code. 

The first level within a multi-level module may define 
only a subset of the functions of the complete abstraction, 
but that subset of functions is a useful self-contained, but 
limited version of the abstraction. Subsequent levels are 
introduced into the hierarchy as needed. Additional levels 
of a module may introduce entirely new data structures or 
extend existing ones. No protection boundaries exist be
tween levels so that higher level code may manipulate data 
structures introduced in lower levels. Consequently, though 
module boundaries are translated into runtime protection 
boundaries, the boundaries between "levels of design" are 
not detectable in the runtime implementation structures. 
We will illustrate this difference between modules and 
levels later when we discuss the Cm* message transmission 
module. 

Levels within a module are strictly ordered. We can 
define a level A to be "higher" than level B in another 
module in case A invokes a function defined in B. The set 
of all levels (of all modules) is partially ordered by depend
ency. In the design of operating system software, there is 
not necessarily a cleanly identifiable division of a hierarchy 
of levels into supervisory and user software. The operating 
system facilities required by one user differ from those 
required by another, particularly in an experimental setting. 
The partially ordered system structure is in a form such that 
it is readily possible to replace "upper" portions of the 
dependency hierarchy since level boundries are clear and 
the dependency relations between levels are known. 

CM* SOFTWARE SYSTEM DESIGN 

Before describing the kernel software design, we will 
define two notions that play an important part in that 



design: objects and capability addressing of objects. The 
basic unit which can be named, shared and individually 
protected, and for which memory is allocated for represen
tation purposes is the object. Each object has a unique 
name and a definitive description used by the software 
system. Every object has a type that determines the struc
ture of its representation and the operations or accesses 
which can be performed on it. Current design specifies 
three types of objects: data segments, which are linear 
arrays of words that may be read and written; capability 
lists, which are structures containing capabilities (to be 
discussed below); and mailboxes, which are structures 
containing messages. 

Objects are named (addressed) using capabilities. 7,8 A 
capability may only be created and manipulated in con
trolled ways (by kernel provided capability functions). 
Since users cannot create or forge capabilities, possession 
of a capability is evidence that the user can reference the 
object whose unique name appears within the capability. A 
capability not only identifies a unique object, it records a 
set of rights indicating which of the defined operation 
(accesses) are permitted to be performed on the object. 
Controlled use of objects is enforced because an object can 
be accessed only if a program presents a capability naming 
that object which contains a right for the desired access. 
Since possession of a capability endows the possessor with 
the ability to perform accesses, capabilities also record 
those rights which a possessor may exercise with respect to 
the capabilities themselves. (For example, copying a partic
ular capability may not be permitted.) 

Based on the above discussion, we next describe the 
Cm* kernel software. The purpose of the initial levels of 
software is to provide facilities required for shared usage of 
resources in an "enforceably cooperative" way. In addition 
we wish to assist users in programming and executing their 
experiments by providing convenient structures and func
tions for creating and executing modules. The operating 
system software itself is composed of a partially ordered set 
of levels. In several instances two modules are divided into 
a pair oflevels. For convenient reference, levels are labeled 
.w.iili,aJ.agin .the,fo.t:w.aJ.,~:1llQdul.e~le~cl.,~~Modu.les"are~yen 
alphabetic names; levels are numbered in increasing order 
as they appear in the system construction hierarchy. The 
kernel, levels to be discussed in this paper are: 

CAP-I: 

CAP-2: 

ME-I: 

Capability referencing 
Performs mapping from a capability via a 
segment descriptor to physical representa
tion of segment (including access control 
checking) 

Capability addressing and memory allocation 
Defines an object address space and inter
pretation of an address; performs memory 
allocation ensuring that the segments used 
to represent objects are pairwise exclusive 

Environments and Modules 
Implements the creation and deletion of 
modules and execution environments 

MSG-I: 

DSP: 

MPX: 

ME-2: 

MSG-2: 

Software Management of Cm* 659 

Conditional message transmission 
Defines the structures message and mail
box; permits sending and receiving of 
messages when process suspension is not 
required 

Dispatching 
Defines hardware implemented data struc
tures used to 'load' an environment onto 
the processor and commence execution 

MUltiplexing 
Selects the next environment to execute 
on a processor 

Environment relations 
Records the ancestry by which environ
ments are related; provides for nested and 
parallel execution of environments 

Unconditional message transmission 
Provides for sending, receiving, and reply
ing to messages even if environments in
volved are forced to wait for an indetermi
nate time to complete message trans
mission 

TI: Trap and interrupt handling 
Provides routing of control when either 
interrupts or traps occur 

A diagram indicating the dependency relations among 
these levels appears as Figure 2. An arrow from level A to 
level B indicates that a function in level B is invoked in 
level A. In addition, it is possible that level A invokes 
functions in any of the levels 'below' B in the dependency 
graph. ,. 

Capability addressing 

Module CAP provides capability addressing. Level CAP
I, which is implemented in Kmap microcode, interprets 
capability references to objects, i.e., it maps a capability to 
the physical representation of the object named by the 
~a.m'!l?mt.y'·,J~~~~Y~~Jh~~gllte.,_Q( ~I1QfJj~~t.m.a,'y £h,~nge..~I1~ 
its physical representation may move, the system maintains 
a single definitive description of each object called a 
descriptor or segment descriptor. It records the type of the 
object, the physical description of its representation (in
cluding cluster, module, starting address, and size), state 
information (e.g., whether the representation is in core, 
dirty, or locked for Kmap usage), and the (reference) count 
of the number of outstanding capabilities for the object. 

Every existing object has a unique name-the memory 
address of its descriptor. To perform a mapping from a 
capability to an object, the identity ofthe object's descriptor 
is determined from the capability. It, in tum, is referenced 
to determine the physical representation of the object. A 
capability reference fails if the right required to perform the 
operation desired by the addressing environment originating 
the reference is not in the capability. 

Level CAP-2 extends level CAP-I to provide for the 
generation of capability references (we refer to this as 



660 National Computer Conference, 1977 

Figure 2-Levels and modules of Cm* software 

capability addressing), and for capability manipulation. Ca
pabilities used for addressing purposes are stored in capa
bility array objects called capability lists. Given a capability 
list CL and an index X, one can determine the X-th 
capability in capability list CL. This may be a capability for 
an object of arbitrary type, including a capability list object. 
By repeated application of capability indexing, objects to 
any depth can be addressed. Because capability list index
ing is performed in microcode as well as in software, the 
architecture restricts indexing to depth 2 in any single 
operation. This means that in a single addressing operation 
the path to a target object may "indirect through" at most 
two capability lists before arriving at the (third) target 
object. Whenever a processor is executing (i.e., generating 
capability addresses) one capability list is distinguished as 
the primary capability list. The first index of a capability 
address is an offset into this primary capability list. 

CAP-2 also defines (microcoded) functions for creating, 
copying, moving, and deleting capabilities as well as for 
manipulating the rights encoded within a capability. 

A Cm* processor (an LSI-ll) has a word size of only 16 
bits. To permit 16 bit addresses to be mapped to the 
arbitrarily sized Cm* memory, the notion of a window was 
introduced. It consists of 15 window registers, each of 
which can be thought of as holding a capability. (Actually, 
in the current design, each window register holds an index 
to a capability which can be indexed via the current 
primary capability list.) CAP-2 provides two (microcode 
implemented) functions Segload and Unload to associate 
and de-associate, a window register and a capability. To 
read or write a data segment, a capability for the segment 
must be segloads into a window register. 

A 16 bit machine address is interpreted to select a 
window register (and thus a capability) and possibly to 
specify an offset into a segment of memory. For enhanced 
performance of capability referencing, the descriptors for 
the objects named in the capabilities associated with the 
window registers are cached in the Kmap. This mechanism 
provides virtual addressing and allows for conventional 
relocation of physical memory. It is sufficiently general to 
support the definition of Kmap microcoded operations on 
capability lists and mailboxes. 

The last facility introduced in CAP-2 is that of memory 
allocation. Physical memory is allocated to hold segments 
so that no two segments overlap. 

Modules and environments 

Level ME-l provides for the creation and deletion of 
modules (as discussed earlier) and for executing invoked 
functions. A module is implemented by a module capability 
list containing 

• capabilities for the code and data segments required to 
perform the functions defined in this module, 

• a data segment containing a vector of Junction descrip
tors which specify the code to be executed when a 
particular function is invoked (e.g., the index into the 
module capability list for the segment containing code 
for this function), the number of parameters expected 
and the size of stack required to perform the function, 

• a list of other "known" modules containing functions 
that can be invoked by this module. 

ME-I also defines an environment, the structure created 
as a result of a function invocation. An environment is 
defined by several objects; one is the primary capability list 
which is private to a function invocation and acts as the 
root capability list for all addressing of objects during 
execution of the function. 

The primary capability list contains capabilities for 

• the execution stack (private to the environment) 
• the module capability list which defines the module 

containing the invoked function, 



• a state vector (private to the environment) which 
contains the processor and addressing state when the 
environment is not executing on a processor. (The 
state vector includes processor registers, processor 
status word, scheduling data, trap and error masks for 
communicating with the Kmap, and indices of the 
capabilities Segloaded into the window registers during 
the environments execution.) 

• parameter objects specified by the invoker. 

The module capability list contains capabilities for those 
objects shared by all who invoke a function in the module. 
The primary capability list contains capabilities which are 
local to a particular invocation of a function. 

Level ME-I provides functions for the creation, initiali
zation and deletion of modules and environments. These, in 
turn, are used by level ME-2 in providing functions relating 
the execution of different environments. Functions Call and 
Return allow nested execution, i.e., the Calling environ
ment is suspended for the duration of the execution of the 
newly created (Called) environment which terminates when 
the Called environment Returns. The function Fork permits 
an environment to request that a function be invoked to 
execute in parallel with its invoker until the function Join is 
performed. 

ME-2 initializes a newly created environment to record 
priority information for scheduling purposes and to record 
the existence of a newly created environment in the lineage 
(family tree) of its creator. It is this lineage which is used by 
still higher levels to keep track of a task force, the set of 
environments which are cooperating to achieve some goal. 

Message transmission 

The members of a task force need to be able to synchro
nize their actions and to communicate with one another. To 
this end module MSG defines an abstraction of a mailbox 
which can contain messages. A mailbox is capable of 
containing some fixed finite number of messages main
tein~cl tn FJfQ e or,cl~r: 'fO l?~rmit u.~t::r,~to ~(J!11fI1tIni~~t~ 
arbitrary objects to one another, rather than data only, 
messages are pairs of capabilities. (To transmit 16 bits of 
information, a user can create a data capability to contain 
this user specified information.) 

Levels MSG-l and MSG-2 differ in that MSG-l provides 
only the functions CondSend and CondReceive to transmit 
messages when these functions can be completed without 
suspension of the invoker. CondSend succeeds in deposit
ing a message into a mailbox only if the mailbox has room 
for it. CondReceive is a function which returns the oldest 
message in case the mailbox is not empty. Hence Cond
Receive can be used for polling. A received message is 
placed in the receiving environment's message-pouch, a 
de~ignated pair of positions in the environment's primary 
capability list. CondSend and CondReceive will return an 
error code if the mailbox overflows (is full) or underflows 
(is empty). respectively. 

The second level, MSG-2, extends the set of message 

Software Management of Cm* 661 

transmission functions to provide a synchronization as well 
as a communication mechanism. MSG-2 relies on the 
hierarchy above the MPX level where the notion of blocked 
environments was introduced. MSG-2 provides the uncon
ditional message functions: Send, Receive, and Reply. Send 
performs the same tasks as CondSend: except when the 
target mailbox is full, Send will cause the sending environ
ment to be blocked awaiting an opportunity to deliver its 
message. Likewise, the Receive function causes the envi
ronment attempting to Receive a message from an empty 
mailbox to become blocked. Sending a message to an 
empty mailbox on which an environment is waiting will 
cause that environment to Receive the message and become 
unblocked. Similarly, if Receive causes a full mailbox to no 
longer be full, it will awaken the oldest environment await
ing to deposit a message. 

MSG-2 also defines a Reply function for mailboxes. This 
function differs from Send in that after executing the Reply 
function on a mailbox as permitted by a capability for that 
mailbox, the right to Reply to that mailbox is removed from 
the capability. 

The two levels of the message transmission module 
provide an excellent example of a decomposition of a single 
module. MSG-I defines both message and mailbox data 
structures, but provides functions which are of limited 
applicability; in some situations the functions fail returning 
an error code. Conditional functions are used to transmit 
messages in a well-defined fashion, but do not perform 
synchronization. 

MSG-2 extends the definition of the mailbox data struc
ture so that waiting environments can be recorded when 
necessary. It also provides new functions extending the 
usefulness of mailboxes, but not "covering up" or subsum
ing the conditional functions which are useful when polling 
is desired. The mUltiplexing module relies on the condi
tional message functions of MSG-I and implements block
ing and unblocking on which the second level of MSG 
depends. 

Dispa:fchinll and multil!l~xif':~ 

Dispatching (DSP) and MUltiplexing (MPX) are both 
levels and entire modules. DSP defines the hardware imple
mented state vector and its associated Envload function 
which loads an environment onto a computer module and 
begins execution. Envload is implemented in a combination 
of Kmap microcode and software. Software portions of 
Envload locate the process register values and the proces
sor status word values in the state vector and load them 
into the physical processor registers. The software then 
stores the index of its capability for the environment in a 
special location which alerts the Kmap that an Envload is in 
progress. The Kmap portion of this function loads appropri
ate values found in the state vector into the window 
registers and various Slocal registers. 

Functions in DSP are used exclusively by the mUltiplex
ing module (MPX) which is responsible for selecting the 
next environment to be Envloaded. Module MPX defines a 



662 National Computer Conference, 1977 

set of Runqueues, each of which is a mailbox. If an 
environment is eligible for execution, i.e., it is not blocked 
nor already executing on some processor, then there is a 
message containing a capability for it in one of the run
queues. 

Associated with each processor is an ordered list of at 
least some of the runqueues. The ordering selects the 
priority with which that processor services the mailboxes. 
The same Runqueue may appear in various positions in the 
ordered list of runqueues of different processors. The 
Multiplex function, invoked by the superior levels ME-2 
and TI, cycles down the list of runqueues (private to the 
processor executing Multiplex) performing CondReceives 
on the runqueues. If the CondReceive is successful, then 
the result is a capability for the next environment to be 
Envloaded on the executing processor. 

Trap and interrupt handling 

Software traps and interrupts signal exceptional condi
tions caused by program action and external asynchronous 
events, respectively. With only a few exceptions (e.g., 
responding to a clock interrupt or to a high speed device 
interrupt), hardware traps and interrupts are translated into 
software traps and interrupts, so that modules can indicate 
what action is to be taken when they occur. 

Defining a new trap (interrupt) means defining a new trap 
(interrupt) vector entry indicating what function in what 
module is to be invoked if the trap (interrupt) occurs. When 
a trap occurs, it was caused by the executing environment, 
so a Call is performed to suspend the current environment 
and cause the function named in the appropriate trap vector 
entry to be executed. 

Interrupts are asynchronous, and are not necessarily 
related to the current processor execution. TI offers two 
options. As a result of an interrupt a Fork can be performed 
to the function named in the associated interrupt vector. 
This will cause the interrupt to be serviced in parallel with 
execution of other environments. Alternatively, an inter
rupt vector or trap vector entry may direct that as a result 
of an interrupt, status information be sent as a message to a 
specified mailbox. Presumably some environment capable 
of handling the interrupt will Receive or CondReceive to get 
the message. Interrupts would then be processed sequen
tially by order of occurrence. 

Two observations are appropriate here. One is that using 
the trap and interrupt mechanism, any level above TI can 
define vector entries so that code from higher levels can 
respond to exceptional conditions encountered when code 
from lower levels is executing. This effects "outward calls" 
so that lower levels can rely on higher levels when excep
tional conditions arise. The second observation is that the 
trap and interrupt module is quite small, relying heavily on 
ME for Fork and Call, and on MSG for mailboxes. 

The kernel system 

The Cm* architecture provides alternative ways to imple
ment functions. A function may be implemented in Kmap 

microcode, or it may be implemented in software to be 
executed by one or more of the computer modules. A 
computer module may execute a function in either of two 
address spaces (user or kernel space). The decision where 
to place a particular function of a particular level of a 
particular module is determined by considerations such as 
maximizing performance, providing for proper synchroniza
tion, and ease of implementation, as well as maintaining 
protection boundaries between modules. Because of this 
independence between the design and the physical realiza
tion, alternative implementations of a function are possible. 
This facility is expected to be valuable in a system designed 
for experimental use because it allows for function substitu
tion and redesign. 

Thp Icprnpl o;:{"\ftUl~rp o;:vo;:tpm rlpo;:rrihprl hprp io;: imnlp-
~ •• - •• _ ••• _. ~~~ ••• ~. - ~J ~.- ••• --~- •• ~-- •• _. - .~ ····r·-

mented in two parts: Kmap microcode and a set of pro
grams which run in the kernel space of the computer 
module processors. It is intended that in the initial system 
all of the capability functions and message functions will be 
performed by Kmap microcode. The remaining functions 
will be implemented in software to be executed from the 
kernel space of the computer modules. 

The kernel and user spaces have symmetric data struc
tures because both are executing environments. Both the 
user and the kernel system have a primary capability list 
which acts as a "root" for capability addressing purposes. 
Both primary capability lists include a capability for a state 
vector and for a module capability list. It is the primary 
capability list and the state vector of the kernel space that 
maintain information particular to a processor. Shared data 
and code in the kernel are referenced via capabilities in the 
kernel's module capability list. 

STATUS OF SOFTWARE DEVELOPMENT 

As of December 1976, the microcode available provided 
only for simple relocation of physical addresses with no 
capability referencing. Development of microcode to sup
port capability operations and the message facility will 
follow shortly. 

Kernel space programs have been coded in BLISS-II, 9 a 
system implementation language. This set of programs is 
being tested using a simulator for the Cm* machine10 which 
executes on C.mmp, another mUltiprocessor system devel
oped at Carnegie-Mellon UniversityY The simulator 
models mUltiple computer modules as mUltiple processes, 
and is able to run at about half the speed of a Cm* 
processor by exploiting the writable control store features 
of the C.mmp multiprocessor. Since the kernel code is 
successfuliy executing on the simuhitor, it is expected that 
the software kernel will be available for use shortly after 
the completion of the Kmap microcoding. 

Future software development 

The kernel system modules as described constitute a very 
primitive system. A number of additional software levels 



and new modules are in various stages of design. It is 
expected that most of the levels in these modules will be 
implemented as programs in the user space. Modules under 
development include: 

Secondary Store Management-Current design proposes 
adding some disk memory local to some clusters, with large 
file storage accessible via a high speed link to either the 
C.mmp or the DEC KL-IO. 

Linkediting-The creation and management of modules 
as Cm* modules will be performed by a linkeditor intended 
to simplify the construction and management of function 
tables, segments of code, and invocation sequences. 

Command Interpreter-This module will provide on-line, 
interactive access to the Cm* machine. This will allow a 
programmer to dynamically manage a task force. Currently 
interactive terminal communication is provided by a PDP
i i connected to each computer module by a serial line 
unitY 

ALGOL 68 Runtime System-The first programming 
system to be available on the Cm* machine is expected to 
be ALGOL 68. (Until such a system is available, code will 
be cross-compiled on another machine). This version of 
ALGOL 68 will be designed to exploit the multiprocessing 
facilities of the Cm* machine. 

Resource Policy Modules-A task force requires many 
runtime decisions concerning scheduling and resource allo
cation. It is the task of a policy module to provide for these 
decisions based up on the dynamic state of the task force 
and the Cm* machine as a whole. 

SUMMARY 

This paper represents a status report on the design of the 
firmware and software for management of. a distributed 
multiprocessor called Cm* and the software construction 
philosophy which influenced its design. We have described 
the lowest levels of the kernel; some of the microcode and 

ACKNO\\t L!:.DUM1:.N 1 ~ 

The Cm* software design was strongly influenced by the 
ideas which emerged from the family of operating system 
project (reported in Reference 6) and the virtual memory 
project which predated the family of operating system effort 
(reported in Reference 4). 

In addition we would like to thank three individuals, 
Richard Swan, Victor Lesser, and Lee Cooprider for their 
comments and suggestions. 

Software Management of Cm* 663 

all of the software implementing what we have described 
now exists. 

Besides continuing with the design and implementation of 
further levels of software, we intend to experiment with the 
placement and execution of kernel code within different 
Cm* configurations. Parameters of these experiments will 
include varying the physical location of the kernel code, the 
number of copies of that code as well as which computer 
modules can execute different portions of the code. 

For example, one experiment is to limit the number of 
processors that can execute ME-2 code to (say) two proces
sors in a cluster. If user programs executing on processors 
other than the designated two request ME-2 functions, their 
requests will be recorded so that the designated two proces
sors can process these requests at some later time. The 
motivation for such an arrangement is that a processor is 
much more efficient if it executes code from its local 
memory. 

In addition to such operating system experiments, we 
plan a number of experiments employing Cm* in the 
solution of different types of applications problems. 

REFERENCES 

1. Swan, R. J., S. H. Fuller, and D. P. Siewiorek, "Cm*: a Modular, 
Multi-Microprocessor," AFIPS Conference Proceedings, Vol. 46, 1977 
National Computer Conference. 

2. Swan, R. 1., A. Bechtolsheim, K. Lai, and J. Ousterhout, "The 
Implementation of the Cm* Multi-Microprocessor," AFIPS Conference 
Proceedings, Vol. 4.6, 1977 National Computer Conference. 

3. Bell, C. Gordon and Allen Newell, Computer Structures: Readings and 
Examples, McGraw-Hill, 1971. 

4. Parnas, D. L. and W. R. Price, "The Design of the Virtual Memory 
Aspects of a Virtual Machine," Proceedings ACM SIGARCH-SIGOPS 
Workshop on Virtual Computer Systems, 1973. 

5. Liskov, B. and Steven Zilles, "Programming with Abstract Data types," 
SIGPLAN Notices, Vol. 9, No.4, April 1974. 

6. Habermann, A. N., Lawrence Flon, and Lee Cooprider, "Modulariza
tion and Hierarchy in a Family of Operating Systems," Communications 
of the ACM, Vol. 19, No.4, April 1976. 

7. Dennis, J. B. and E. C. Van Horn, "Programming Semantics for Multi
programmed Computations," Communications of the ACM, Vol. II, 
No.3, March 1968. 

8. Laml'~on, B. lY" ':D.Xn?':I!lic Pr()tcc!i?!1 ~t~~ur~s," Proc: A.FIPS 1969 
nee 35. AFIPS Press. Montvale. N.J .. i%'J. 

9. Wulf, W., et aI., "Bliss: A Language for Systems Programming," 
Communications of the ACM, Vol. 14, No. 12, December 1971. 

10. Chansler, R. J., "Cm* Simulator Users' Manual," Department of 
Computer Science, Carnegie-Mellon University, 1976. 

11. Wulf, W., et aI., "HYDRA: the Kernel of a Multiprocessor Operating 
System," Communications of the ACM, Vol. 17, No.6, June 1974. 

12. Van Zoeren, H., "Cm* Host User's Manual," Department of Computer 
Science, Carnegie-Mellon University, December 1975. 

13. Parnas, D. L .. "On the Criteria to be used in Decomposing Systems into 
Modules," Communications of the ACM, Vol. 15, No. 12, December 
1972. 





Using assertions to 
improve language translators 

by ARTHUR PYSTER 
University of CaLifornia 
Santa Barbara, California 

ABSTRACT 

New enhancement techniques for language translators 
based on work in program verification are developed. 
Assertions are normally added to a program in order to 
verify the program is correct. Once verified, the assertions 
are usually ignored. This paper shows that verified asser
tions often contain information which can improve certain 
object code characteristics when the program is translated: 
execution time, storage requirements, and program style. 
The latter quality is especially important if the object code 
is itself in a "high-level" language. The techniques devel
oped fall into three categories: early binding, using comple
mentary constructs, and noting restricted cases. 

INTRODUCTION 

Enhancing translator output is an area of enormous practi
cal concern. Optimizing object code is perhaps the most 
obvious enhancement a translator can make. Nearly all 
translators available try to be somewhat clever in reducing 
the run time and storage requirements of the code they 
generate. Even with increasing processor speeds and 
c,he,~~~ning m~!l10ry CO~!~i t!lll~ ~nd :PeC:~,2PJ!,Il}i~~!i,qn ~Ul 
continue to play an Important role in etIicient computer 
utilization. Making full use of the more abstract features the 
target language offers is another form of translator enhance
ment. This is particularly true when the target language is 
itself high-level, therefore having many complex features to 
apply. For example, in translating into FORTRAN it would 
improve the style of the object code if DO-loops were 
generated rather than more primitive "IF,INCREMENT, 
GOTO" loops. Of course, the ability to translate between 
high-level languages increases portability when moving 
from one computer system to another where the languages 
or language dialects available differ. This paper develops 
new enhancement techniques based on work in program 
verification. 

The increasing concern over program verification has 
created new opportunities for translator enhancement, es
pecially from the specification and verification of program 
assertions. 1- 3 Assertions typically state properties of pro-

665 

grams such as the range of variables or the relationship 
between the values of two or more variables. Once verified, 
these assertions may be treated as an integral part of the 
program body and hence information drawn from them may 
be used to enhance translator output. Of course, it is 
absolutely imperative to the correctness of the enhance
ment that the assertions made are, in fact, true. Otherwise 
the enhanced code could exhibit different input/output 
behavior than the source program! With automated verifi
cation systems, there is little likelihood of error except in 
specifying the input assertions. But an error here quite 
possibly indicates the programmer misunderstands the 
problem specifications and hence the program would likely 
fail independent of the optimization. 

The paper itself has six sections. The second section 
discusses assertions in general. The third, fourth and fifth 
sections detail three enhancement strategies assertions 
make possible: (1) early binding, (2) complementary con
structs, and (3) restrictive cases. Finally, the last section 
summarizes the paper's contents and indicates future lines 
of work. 

ASSERTIONS 

me yrotkm of ;:,mg! am 2~se;ticns is c-redited hrgety 1:0' 

Floyd4 in a classic paper on proving programs correct 
(although he called them "verification conditions"). Asser
tions are conditions on the commands of a program such 
that each time a command with an assertion is reached, the 
condition should be true at that point. This is shown in 
Figure 1. The particular formats used to state assertions in 
this paper are self-explanatory and do not require detailed 
introduction. 

Verified assertions can add a new level of abstraction to a 
program: Assertions (a) and (b) might be 

(a) x IS A stack; 
(b) y IS A tree; 

found in a PL/I list processing program. Since stack and 
tree are not primitive PLiI data-types, the PL/I code itself 
would not contain this information directly about lists x and 
y. x and y would be described in a far more primitive 



666 National Computer Conference, 1977 

( START) 

+ + 
·---m(;J "n~J J+ is thE: set of 

positive integers 

+ + 
- - - m ~ J '" n E J 1\ !:lod (n , m) = 0 

+ 
nf; J /\ r,.od(n,m)=O 

( 
'f - - - - - - - - -- m'<.J+i\ n<J+i\ mOd(n,m)10 t\dllS=O 

HALT) 

Figure I-Flowchart (with assertions) of program which computes whether 
integer n is divisible by integer m 

manner within the code. A translator might use such 
"cheaply" obtained information in the assertions to opti
mize storage allocation or structure processing. Examples of 
this are given in the fifth section of this paper. The cost of 
determining that x and yare stacks as part of an optimiza
tion step would probably be prohibitive. Moreover, without 
the "machine-understandable" statement in the text that x 

and yare special types of lists, the compiler would not even 
know which type of list structure x and y might be! 

In a sense, assertion statements are language extensions. 
Currently there are no standards established for their syn
tax in the way ANSI has established standards for COBOL 
and FORTRAN. Within the next few years, a movement 
for standardization will probably emerge. At the point when 
assertion formats stabilize, translator writers will have a 
firm basis for treating assertion statements as an integral 
part of the host language and will then be able to consider 
assertion properties in their enhancement strategies. 

EARLY BINDING 

Binding in programming languages is establishing the 
mappings between names and data objects, and their de
scriptions. For example, the PLiI declaration 

DECLARE X FIXED DECIMAL (3,1) AUTOMATIC; 

binds the name X to a data object which holds three-digit 
decimal numbers whose values range from -99.9 to 99.9, 
inclusive. Furthermore, the memory location for storing the 
value of X is by virtue of the term" AUTOMATIC" in the 
declaration allocated when the block containing thi,S decla
ration is entered. 

Different languages have radically different policies on 
binding time, the time in the history of program execution 
when bindings are established. In general, FORTRAN 
binds as early as possible, while APL binds as late as 

possible. The common rule of thumb is that early binding is 
cheaper to implement but less flexible than later binding. If 
a translator tries to convert code in a language with a late 
binding time policy to code in a language with early binding 
time policy, serious difficulties can arise. For example, 
ALGOL permits a program to determine array dimensions 
dynamically upon block entry. FORTRAN binds array 
dimensions at compile time. Therefore, an ALGOL pro
gram which relies on dynamic dimensioning cannot be 
converted in a straightforward manner to FORTRAN. 
However, if the translator knew the maximum value the 
ALGOL program will, in fact, use to set array bounds, it 
could allocate a static array in the FORTRAN program with 
this maximum value for its bounds. Of course storage 
\vou!d sometimes be \vasted by the FORTRl\.1'-J program, 
but avoiding such waste is one of the main reasons ALGOL 
uses dynamic memory management. Unfortunately, there is 
no vehicle in ALGOL for specifying the range of a variable. 
Hence, no translator can, in general, perform this straight
forward translation by relying on the ALGOL text alone. 
However, it is quite common for an assertion about the 
range of a variable to appear in a program: 

ASSERT I:5N :5100; 

INTEGER ARRAY B(N); 

This assertion, which is not part of the ALGOL language, 
makes it possible to intelligently bind the array size earlier 
in the FORTRAN program than in the ALGOL original. 
Without the assertion, there is no clear strategy for han
dling the binding time difference problem. 

The problem with different binding times crops up again 
in translating from a typeless to a typed language, such as 
APL to PL/I. An APL variable can freely hold a character 
string at one instant and an integer or real number the next. 
PL/I requires a programmer to declare the data-type of each 
variable at compilation time and to maintain that data-type 
for the entire program run. Therefore, knowing nothing 
about the range of values an APL variable will assume, a 
translator cannot easily substitute appearances of APL 
variables with PL/I counterparts. However, through the use 
of assertions about the source program, it is conceivable 
that the range of many APL variables could be determined. 
In many cases these variables may have values of only one 
data-type assigned to them. For such variables the transla
tion would proceed quickly. Having the proper assertions 
present in this case would then greatly simplify the object 
code. 

Assertions can also be used to. optimize compiled code 
with respect to binding time. Consider again an ALGOL 
array with dynamically computed storage bounds: 

INTEGER ARRAY B(e); 

where 'e' is a positive integer-valued expression. Every 
time the containing block is entered, compiled ALGOL 
code would probably recompute the value of e. There are 
many circumstances under which the value of e would be 



constant over a long period once it had been computed at 
run time. In these cases, it would be more efficient to save 
the value of e and re-use it, rather than repeatedly recom
pute it. An assertion to the effect that e remains constant 
over a specified time period would make this possible. An 
alternative way to avoid recomputing e would be to keep 
track of whether or not the values of the component 
variables of e change between block entries. This is an 
expensive bookkeeping operation. Furthermore, it will not 
handle situations in which the values of expression compo
nents change, but the overall expression value does not, 
such as in 

INTEGER B(I-J); 

where the difference between I and j could be constant 
even if the values of I and J individually change. 

COMPLEMENT ARY CONSTRUCTS 

This section is largely founded on the premise that it is 
better to use "high-level" constructs in the object code 
whenever possible. This practice not only enhances pro
gram readability, which could be important if the object 
code is itself in a high-level language, it can also lead to 
improved time and space bounds for the high-level transla
tor output when it is iteself compiled into machine code. 
The second advantage arises from the fact that special 
optimization techniques can often be developed to deal with 
complex but well-structured constructs. For example, 
FORTRAN DO-loops are often set up using a machine
language looping statement such as "Branch and Count" 
on IBM 360 hardware. It is more difficult to detect that this 
same fast construct is applicable if the more primitive 
"IF,increment,GOTO" form of loop is used instead. 

Sometimes there are features in both source and target 
languages which seem analogous in purpose and often form. 
One such pair is the ALGOL FOR-loop and the familiar 
FORTRAN DO-loop. In translating from ALGOL to FOR
I.RAN.,.huwelleL.jlj;ulOLalwa)LS. possihleuLSUobsu.lule. 
DO-loop for each FOR-loop occurrence in the source 
program. There are several important differences between 
DO- and FOR-loops even though they both have basically 
the same function. FORTRAN DO-loop parameters are 
restricted to be all integer variables or constants which 
have positive values. ALGOL FOR-loop parameters can be 
any arithmetic expressions. Furthermore, DO-loops are 
executed once even if the loop predicate is initially false. 
FOR-loops are skipped completely unless the loop predi
cate is initially true. 

As a consequence of the differences between DO-loops 
and FOR-loops, it is not possible in general to substitute a 
DO-loop for a FOR-loop in the object code. Substitution is 
possible only when the translator knows that the FOR-loop 
parameters all have positive integer values, and that the 
loop predicate is always initially true. Without these guar
antees, the object code must be gerry-rigged to accommo
date the behavioral differences. This latter act slows the 

Using Assertions to Improve Language Translators 667 

program, increases program size and hinders readability. 
With proper assertions inserted into the ALGOL source 
program, for those cases where the FOR-loop does behave 
in a manner equivalent to a DO-loop, the translator can 
generate the simple object code. In some cases it should be 
possible to translate the assertions automatically as well. 
Figure 2 illustrates the differences between translation with 
assertions and translation without. 

A second example of complementary constructs is a 
built-in square-root function in the source and target lan
guages. Suppose the source language has a complex num
ber primitive data-type and the target language does not. It 
would be wrong to translate square-root function to square
root function unless the function argument is never nega
tive. Computing the range of the argument may be prohibi
tively expensive or even impossible to compute using the 
source text alone. However, the proper assertions could 
make this determination feasible, if not trivial. The unap
pealing alternative is for the translator to construct its own 
square-root function whose range includes complex num
bers. Since complex numbers are not a primitive data-type 
of the target language, they would have to be simulated 
using a 1 x 2 matrix or some similar vehicle. Such efforts 
would horribly muddy the object code without reason if, in 
fact, the function argument were never negative. 

The two examples just cited are instances of a general 
phenomenon which is pictured in Figure 3. The parameter 
or argument space of a language construct is the domain of 
its input parameters or arguments. Figure 3a shows the 
union U of the parameter spaces of constructs A and B. 
The intersection of their parameter spaces, AnB, is the 
area with diagonal hatches. The circle AOB within AnB 
encompasses all common data points for which A and B 
behave identically. The larger AOB is with respect to AnB, 
the greater likelihood that the straightforward translation is 
possible. Assertions are helpful in determining if a particu
lar data point is in AOB or (AnB)-(AOB). 

Figure 3b shows a situation related to, but distinct from 
that of Figure 3a. It is possible for constructs A and B to 

INTEGER I,J,K,L; 

FOR I=J STEP K UNTIL L DO 
BEGIN 

END; 

(a) 

INTEGER I,J,K,L; 

ASSERT I:sJ:sL K>O; 
FOR I=J STEP K UNTIL L DO 

BEGIN 

END; 
(e) 

INTEGER I,J,K,L 

I=J 
5 IF I .GT. L GOTO 10 

I=I+K 
GOT05 

10 CONTINUE 
(b) 

INTEGER I,J,K,L 

DO 10 I=J,L,K 

10 CONTINUE 

(d) 

Figure 2-Program (a) without assertions translates to program (b). Program 
(e) with assertions translates to program (d) 



668 National Computer Conference, 1977 

OF B 

u 

Ca) 

------~f~-------

n~ /~" 
'(//1/ 0 (lj /1/) 

PARAMETER SPACE OF B 

(b) 

Figure 3-Relationships between parameter spaces of language constructs 

behave identically fora significant number of distinct data 
points. For example, construct B may behave the same for 
integer input 3 as construct A does for real input 3.0, but B 
may be undefined on real input. In that case, a conversionf 
to the correct data-type in the object code would make it 
possible to emit the complementary construct B as the 
generated code. Assertions can identify whether such con
version i~ always possible; e.g., that construct A never has 
argument 3.5. Of course, the limiting factor here is the ease 
with which the conversion can be accomplished. Convert
ing real to integer is fairly trivial, but converting sequential 
arrays to linked arrays can be costly. 

RESTRICTED CASES 

Often an operation or data item is restricted in some way 
which is difficult if not impossible to detect from the 
program text itself. A translator could often employ knowl
edge of such a restriction to advantage. Assertions can 
provide that information at low cost. For example, a 
program could assert that array X is diagonal or sparse. 
Storage could be conserved by allocating only half of the 
indicated space for the diagonal array and by using linked 
allocation rather than sequential for the sparse array. Hav
ing restricted cases of operations and data is common. 
Several other places where optimization is possible are: 

(I) In ALGOL, SNOBOL or any language which treats 
all subroutines as potentially recursive, assert a sub
routine is not recursive and forgo expensive run-time 
set-up. 

(2) A high-level list processing language could have a 
"search for node X" operator. If it is asserted that 
the graph is acyclic and/or connected, the search is 
simplified. 

(3) For the FORTRAN computed GOTO, skip the test in 
the compiled code for the index variable not being 
between 1 and the number of alternative branches if it 
is asserted it always will be. 

(4) In a list-processing language skip the test for stack 
underflow if it is asserted the stack is never empty. 

(5) If the asserted range of a data item is small, then 
storage allocation could be less than would otherwise 
be efficiently possible. This is especially important in 
translating between dialects of a language which are 
implemented on machines with different word sizes; 
e.g., going from CDC-6600 FORTRAN with 60-bit 
words to IBM 360 FORTRAN with 32-bit words. 

(6) If it is asserted that string B is always a substring of 
string C, then when searching for tht: position in C 
where B begins, a recovery for a failing pattern-match 
can be eliminated. 

CONCLUSIONS 

This paper has demonstrated that assertions can be profita
bly applied outside their original context of program verifi
cation. In particular, several strategies for enhancing the 
object code generated by language translators, including but 
not restricted to compilers, have been developed. 

Assertions can be viewed as language extensions. As 
such, they allow the translator to compensate for deficien
cies of the host language whose programs are being trans
lated. Thus, possible enhancement in style, speed and 
storage requirements of the object code are simply a 
beneficial side-effect of efforts in verifying program correct
ness. Consequently, the programmer never need concern 
himself with which assertions would be most profitable. 
There are many enhancement strategies made possible 
through effective use of assertions. Only a handful have 
been mentioned here. 

There is a strong similarity between assertion usage here 
and the notion of a language preprocessor. The key differ
ence is that a preprocessor is written to avoid modifying a 
compiler, while this work urges compiler changes for the 
sake of efficiency and style. Typical preprocessor exten
sions add new commands to a language. Assertions add 
new descriptors. There is usually no vehicle for expressing 
these descriptions in the host language; e.g., variable range 
in FORTRAN. Hence normal preprocessing techniques are 
not applicable. 

Some of the inflexibilities of standard languages can be 
circumvented by the language augmentations assertions 
offer. It should be interesting to see how such features 
which enter a language through the back-door are applied. 

REFERENCES 

I. Katz, S. and Z. Manna, "Towards Automatic Debugging of Programs," 
Intern. Conf. on Reliable Software, Los Angeles, 21-23, April 1975. 

2. King, J. C., "A Program Verifier," Ph.D. Thesis, Carnegie-Mellon 
University, Pittsburgh, 1969. 

3. Deutsch, L. R., "An Interactive Program Verifier," Ph. D. Thesis, 
University of California, Berkeley, 1973. 

4. Floyd, R. W., "Assigning Meaning to Programs," Proc. of a Symp. in 
Appl. Math., Vol. 19. J. T. Schwartz (Ed.), A.M.S., 1967, pp. 19-32. 



A parser analyzer of empirical design 
for question-answering* 

by ABRAHAM s. BEN DAVID 
Xerox Corporation 
Rochester, New York 

ABSTRACT 

Over the last three years, work of an empirical nature has 
been carried out on the design of a natural-language ques
tion-answering system. In the present paper, the parser
analyzer of version 3.0 of the QUANSY (QUestion ANswer 
SYstem) system is discussed. The parser-analyzer is com
posed of a set of algorithms, each of which is assigned a 
particular set of tasks. The parser-analyzer operates in a 
mUltihypothesis structure. The whole system is pro
grammed in FORTRAN and the sample run times are for a 
run on a CDC 6400. 

INTRODUCTION 

Research into natural language systems of all types has 
been going on for years. 1

-
3 Even with all this effort, little 

headway has been made into the design and implementation 
of an efficient natural-language, question-answering system. 
The systems that have been implemented3- 6 consume 
large amounts of computer time and memory and are of 
limited application. In most cases, previous attempts have 
utilized various linguistic theories in the design of their 
parsers. The question that should be posed is, "Is a theory 
ot language explaming to humans how language works 
appropriate for machine analysis of language?" 

The present research represents an empirical study into 
the question, "Can a model of language analysis specifi
cally for machine analysis be developed?" The model 
developed for version 3.0 of QUANSY (QUestion ANswer
ing SYstem) has been entirely of empirical design. Any 
idea, vis-a-vis language analysis, was actually tested by at 
least partial implementation, incorporated into the model if 
successful, modified-if possible-until successful, or dis
carded. Due to this empirical approach, work has pro
gressed slowly, though "wrong paths" have usually been 
avoided. The results of the present version are detailed 
enough to demonstrate the potential of the model, though 
substantial additional work is necessary. After giving a 
sample QUANSY dialog, the paper will deal with the actual 

* This work has been supported in part by NSF Grants NSF-GN-40900 and 
NSF Grant No. SIS75-09282. 

669 

nature of the parser-analyzer of the system, and then with 
some conduding remarks concerning the import of this 
work. 

SAMPLE SYSTEM OPERATION 

The following sample operation is extracted from a larger 
interaction. 7 All of the QUANSY requests and responses 
are indented and all capitalized. User replies are nonin
dented. Two performance measurements will be supplied, 
PT-parse times in CP seconds (these are times for the 
process of the parser-analyzer, as reported on in this 
paper)+TO total time in CP seconds (including physical 
input of material, dictionary search, memory modification 
and-for questions-formulation of responses and actual 
generation). 

QUANSY HERE 
EITHER ANSWER MY QUESTIONS 
SEQUENTIALLY, OR IMMEDIATELY SUPPLY A 
MODE VALUE (IF YOU KNOW THE VALUES). 
DO YOU WANT TO ASK A QUESTION. 

Yes 
00 YOP wANT TO StTP'!>L Y .". TEXT. 

Yes 
I AM READY FOR YOUR TEXT, 
END LAST SENTENCE WITH XX. ---
(I.E. SPACE BETWEEN PERIOD AND HYPHENS) 

A mosaic is a picture that is made of colored stones. The 
first mosaics were probably made from slabs of alabaster 
which is a stone that is soft enough to cut. Parts of pictures 
were carved on the slabs and painted. These tiles or slabs 
were then put together to form a large picture. These large 
pictures were used to decorate the palaces and temple walls 
of kings in the Near East. The artists used the pictures to 
tell stories 

I AM ANALYZING YOUR LAST 5 SENTENCES. 
I'LL BE RIGHT BACK FOR MORE. 

about the kings and what they did. ---) 



670 National Computer Conference, 1977 

(PT-Sentence 1-.014 
2-0.34 
3-.013 
4-.021 
5-.028 
6---.025 

Average TO .146) 
I AM READY FOR YOUR QUESTION 
END IT WITH A PERIOD 

Were mosaics used to decorate temples. 
I HAVE CONDUCTED THE BASIC SEARCH 
WITHOUT SUCCESS. 
DO YOU WANT ME TO CONTINUE THE SEARCH 
(YES OR NO). 

LARGE PICTURES WERE USED TO DECORATE 
THE KINGS TEMPLE WALLS.** 
(PT-question-.014, TO-.184) 
DO YOU WANT TO ASK ANOTHER QUESTION. 

Did the mosaics tell stories about kings? 
-I AM ANALYZING YOUR RESPONSE FOR 
CONTENT.-
I HAVE CONDUCTED. etc. 

Yes 
THE PICTURES TELLEDt STORIES ON THE 
KINGS. 
(PT-.OI7, TO-.15I) 
DO YOU WANT TO ASK ANOTHER QUESTION 

Were the earliest mosaics carved from alabaster. 
-I AM ANALYZING YOUR RESPONSE FOR 
CONTENT.-
I HAVE CONDUCTED. etc. 

Yes 
PICTURE PARTS WERE CARVED ON ALABASTER 
SLABS. 
(PT-.Ol3, TO-.222) 
DO YOU WANT TO ASK ANOTHER QUESTION. 

Yes 
I AM READY FOR YOUR QUESTION. 
END IT WITH A PERIOD. 

I want to know about mosaics. 
A MOSAIC IS A PICTURE 
THE ONE:j: MOSAICS WAS MADE PROBABLY 
FROM ALABASTER SLABS. 

(PT-.OO7, TO-.146) 
DO YOU WANT TO ASK ANOTHER QUESTION. 

What were the earliest mosaics made from? 
-I AM ANALYZING YOUR RESPONSE FOR 
CONTENT.-
THE ONE MOSAICS WAS MADE PROBABLY FROM 
ALABASTER SLABS. 

** "The kings temple walls" is the internal representation of "temple walls 
of kings." 
t "telled" is generated because "tell" is one of the words the system 
doesn't know at the beginning of operation. The word is picked up as a verb 
in the infinitive "to tell" and it is assumed to be a regular verb, therefore 
"telled." 
:j: The system can deal with "first" as input but the present version cannot 
generate "first"-the verb is also misgenerated because of "one"-more 
di~cussion in Ben David.; 

(PT-.Ol1, TO-.147) 
DO YOU WANT TO ASK ANOTHER QUESTION. 

Is a mosaic made of pieces of rock. 
I HAVE CONDUCTED-etc. 

Yes 
I REGRET, I CANNOT HELP YOU WITH THIS 
QUESTION. 

(PT-.021, TO-.310) 
DO YOU WANT TO ASK ANOTHER QUESTION. 

I want to add information. 
-I AM ANALYZING YOUR RESPONSE FOR 
CONTENT.-
WHAT IS YOUR ADDITIONAL INFORMATION 

(END IT WITH XX. ---) 
Stones are rocks. ---

I AM READY FOR YOUR QUESTION 
END IT WITH A PERIOD. 

Is a mosaic made of pieces of rock. 
A PICTURE IS MADE ON COLORED STONES. 

(PT-.015, TO-.159) 
DO YOU WANT TO ASK ANOTHER QUESTION. 

I want to continue. 
-I AM ANALYZING YOUR RESPONSE FOR 
CONTENT.-
I AM READY FOR YOUR QUESTION. 
END IT WITH A PERIOD. 

I would like to stop. 
IT HAS BEEN A PLEASURE WORKING WITH YOU. 

DISCUSSION OF SAMPLE SYSTEM OPERATION 

The emphasis of this paper will be a discussion of the 
operation of the parser-analyzer (full details of other opera
tions are available in Ben David7

). In declarative mode, the 
natural language input is analyzed and formalized to the 
memory structure of this system. In the interrogatory 
mode, the natural language request is analyzed by the same 
procedures, formalized to the memory structure as a satisfy 
formulation rather than a modify formulation. Depending 
on the success of the satisfy formulation, either: (a) an 
answer is produced from the memory structure, or (b) a 
query of whether the system should continue search (some
thing has been satisfied but more searching is necessary), or 
(c) a negative response is issued. A positive response to (b) 
results in generation of several variant satisfy formulations 
and a reiteration of the search. 

PARSER-ANAL YZER 

The description of the parser-analyzer to be presented in 
this paper is intended to be complete enough to facilitate an 
in-depth comprehension of the system's operation and of 
how it differs from previous efforts. Due to space (and 
time) limitations (and in some cases unavailability of de
tailed documentation of the inner workers of other systems' 
operation) specific points of contrast to other systems 
cannot be given here (for overviews of other systems, see 
References I, 2, 3 and 7). 



The process about to be detailed has its "roots" in the 
first version of QUANSY itself and before that in the front
end of the LEADER retrieval system, see Hillman. 8 How
ever, the present process differs substantially from that of 
the previous versions. The explanation of the parser-ana
lyzer will be presented as if the parser-analyzer were 
dealing with a particular sentence anywhere in text. It is not 
possible to simply start the description of the process; 
rather, there is an existing environment that must be 
described. At the very beginning of the analysis of a 
particular sentence (or throughput unit as described in Ben 
David7) there exists a temporary knowledge structure. This 
structure contains whatever information has been just pre
viously analyzed and is grouped as a cohesive memory unit. 
This structure is already linked (see Reference 7), but has 
not yet been entered in the regular memory of the system. 
This is because it is expected that additional information 
may be added in the next few input sentences which wiii 
directly affect this structure. The decision-process about 
whether or not the present sentence relates to this knowl
edge structure is described in Reference 7. 

MANGRAM (Manage Grammatical Analysis) 

This routine has no linguistic rules; it is strictly the 
controller of the grammatical analysis. The analysis is a 
succession of applications of linguistically oriented routines 
which are called by MANGRAM in the sequence 
HYPSTRC, SUBDETR, VRBDETR, OBJDETR. At the 
end of the sequence, MANGRAM checks the status of the 
analysis. If analysis is complete, it terminates operation; 
otherwise it performs the sequence again until analysis is 
complete. However, analysis is not continued indefinitely 
in this manner. If the number of sequences necessary to 
analyze a particular sentence becomes too great, MAN
GRAM will terminate the analysis and issue an error 
diagnostic . 

One potential (and very important) topic of future re
search is the design of an efficient default mechanism in a 
"lool'ing" ~ituation~ Becau~e of the cCJmple;xity of na,~ural 
language, many things can go wrong in an analysis proce
dure which result in endless "looping" in an unsuccessful 
effort to find the best solution. A default procedure could 
be designed to settle for any solution that appeared at all 
reasonable and not hope for some ultimate or best solution. 
It should be noted that there is a need for many default 
procedures in a natural language analysis and this one is 
just the main one. 

HYPSTRC (Hypothesize Structure) 

The idea for the present overall approach to the first part 
of the analysis is derived from some of the ideas discussed 
by Ulric Neisser, in his book Cognitive Psychology. Neis
ser9 says "We deal with the sentences we hear by reformu
lating them for ourselves; we grasp their structure with the 
same apparatus that structures our own utterances." Neis-

Empirical Design for Question-Answering 671 

ser is here dealing with verbal communication; however, 
the same process applies to written language, though in a 
slightly different way. We can say that we understand 
language by making more and more sophisticated hy
potheses about what a piece of language is, continually 
comparing our hypotheses to the real thing, and, if we find 
no contradiction, we continue. When our hypothesis 
matches the reality of the input text, then we have analyzed 
the input. This procedure is distinctly different from the 
grammatical procedure used in QUANSY 2.0 (see Refer
ences 10 and 11 for more details on version 2.0). In that 
version, there was no way to analyze complex input (except 
for some embedded sentences). The previous procedure 
was sufficient for its limited application, but for the present 
extension of QUANSY's capabilities into complex and 
compound sentences and for formulation of cohesive mem
ory units, the change in approach (described above) was 
necessary. 

In considering the operation to be described, reference 
should be made to Figures I and 2. Figure I shows the 
overall parser-analyzer and Figure 2 expands the operation 
of HYPSTRC (the second level of hypothesis) and its 
interaction with SCAN (the first level of hypothesis), 
SCANMOD CONJFST and AUXFST. 

In the first call to HYPSTRC, the routine SCAN is 
called. It makes the first hypothesis. HYPSTRC takes this 
first hypothesis and goes through section by section, mak-

CONJFST 
AUXFST 

CASE PRO 
( FOR PRONOUN 

PHRASES) 

- - - - - - - SENTENCE BY SENTENCE 

HYPSTRC 

(HYPOTHESIS LEVEL 2) 

SCAN 
SCANMOO 

(HYPOTHESIS LEVEL 1) 

- - - - - - --CLAUSE BY CLAUSE 
HYPOTHESIS LEVEL 3 

VRBOETR 

OBJDETR 

Figure l-Parser-analyzer 

PHRCLOS 
(FOR NON-PRONOUN 

PHRASES) 



672 National Computer Conference, 1977 

Figure 2-Expansion of hypothesis level 2 of Parser analyzer (each of the 
named boxes shall be referred to as a section) 

ing a more detailed second hypothesis and passing the more 
detailed second hypothesis back to the system for verifica
tion. HYPSTRC makes a more detailed specification of the 
subject than of the predicate (this so as to make the 
determination of the beginning of the predicate as certain as 
possible). The verb phrase is grouped approximately (more 
or less certainly depending on the amount of ambiguity) and 
the rest of the present clause is lumped together into the 
"object"-subject to later processing. 

(1) First time operations 

The first time through for a particular through-put unit, 
usually a sentence, various initializations are performed
the subject, object, verb, conjunction, etc., pointers are all 
zeroed out. The routine SCAN is called to do the initial 
hypothesis. The initial clause boundaries, according to 
SCAN's hypothesis, are picked up and the first-time opera
tions are complete (more detail on SCAN's operation is 
contained in the next few pages). If in the initial boundaries 
the first word is detected as a conjunction, then the routine 
CONJFST is called (details following). 

(2) Other times operations 

On successive times through HYPSTRC for the same 
throughput unit, there are similar initializations to the first 
time through, though necessary information must be saved. 

Consider the sentences: 

The boy is eating the cake that the girl baked. (1) 

The boy that baked the cake is eating. (2) 

On the second time through for sentence 0), the object of 
the first clause "the cake" should be saved, while for 
sentence (2) the subject of the first clause "the boy" should 
be saved. After the decision about what to save is made 
(based on "start" and "embed" pointers set in the previous 
run-through), all pointers are initialized accordingly and the 
next clause boundaries are picked up from SCAN's hypoth
esis. (One very important initialization is the setting of the 
embed pointer to negative.) 

(3) Find subject 

To determine the subject of the clause, HYPSTRC pro
ceeds word by word through the clause (as specified by the 
boundaries) looking for a verb, preposition, or determiner 
and ignoring other categories. In the process, it specifies 
the potential subject and distinguishes potential phrases in 
the subject. The subject is defined as all those phrases 
before the verb (including noun phrases, prepositional 
phrases, infinitive phrases, etc.). All words ignored are 
added to the present phrase under consideration. 

(i) Verb 

If a verb is found, is it auxiliary verb (form of to be, to 
have, to do, modal)? If this is auxiliary, assume that it 
signifies end of subject and beginning of verb phrase, 
exit this section. If not, note its location and continue. 
However, if there has been a previous verb noted 
thusly, retain the last if both are the same tense, retain 
the first if it is past tense, and retain the second (i.e., 
the one presently under consideration) if it is in present 
tense. 

(ii) Preposition 

If this is the first word in clause, continue (no opera
tion). If not first word, it is "of'? If so, add it to 
present phrase (i.e., ignore it). For any other preposi
tion, begin new phrase (but stay in subject-this sec
tion). 

(iii) Determiner 

If this is first word in clause, continue (i.e., ignore it). 
If the immediately preceding word is a preposition or 
determiner (i.e., "from the" or "the few"), ignore it. 
(The decision of what to do with this phrase was made 
in consideration of the last word.) If none of these 
circumstances apply. suspect that this determiner 



might be the beginning of the object. If a potential verb 
has been detected (non-auxiliary noted in section on 
verbs, above), accept it as the beginning of verb phrase 
and exit this section. 

It is altogether possible that the present boundary of the 
clause will be reached before this section is exitted (i.e., 
either from the verb or determiner operations of the section 
"Find Subject"). The first question is whether there has 
been a potential verb (as noted in section on verbs). If there 
has been, take that verb as the beginning of the verb phrase 
and go on to the next section. If there hasn't been a 
potential verb, is this the end of a through-put unit? If this 
is not the end of the through-put unit, what is the nature of 
the boundary (usually the boundary will be a conjunction 
but not always)? If the boundary is a conjunction of 
subcategory 3 or less, * and the following word (after the 
conjunction) is not a determiner, ignore this boundary, set 
clause as up to next boundary, and continue processing 
from the beginning of this section (examples like "The boys 
and the girls" or "The red and black ball"). If the following 
word is a determiner, the boundary signals a new phrase: 
set pointers appropriately, pick up next boundary and 
continue processing from the beginning of this section. 

If the boundary is a conjunction of subcategory 4 or 
greater, it signals the end of present phrase and embedded 
situation. Tum on embedded pointer (pointing to this loca
tion). Pick up next boundary and continue processing from 
the beginning of this section (as in example (2) above). 

Not discussed in the description of this section is the 
handling of locational phrases and gerund phrases. ** If the 
boundary reached is one of these (they are detected and 
grouped by SCAN-details following), it is entered as the 
type of phrase indicated, almost transparently with regards 
to the above section. 

In the aforementioned example (1), the processing in this 
section would have reached "is", determined it as the 
beginning of the verb phrase and "the boy" as subject and 
processing goes on to the next section. For example (2), 
"that" is reached as the boundary, no potential verb has 
ue.en ~detect.ed aud~siw;;.e the Sllbcate~lJJ.ql v.aWeof: '.that'· is 
"4" the embeddation pointer is turned on. The next bound
ary is picked up, to the end of the sentence, and processing 
begins again. "Is" is detected as the beginning of the verb 
phrase and processing goes on to the next section. 

(4) Find verb phrase 

This section assumes the first word in the verb phrase 
has been found. It groups all adverbs and verbs into the 
verb phrase until it reaches a verb participle or a word not 
categorized as either a verb or adverb (the verb participle is 
grouped into the verb phrase, non-adverbs or non-verbs are 
not). If the first verb detected was an auxiliary and that 
verb was the first in the sentence, the routine AUXFST is 

¥ .. Subcategory 3 or less" conjunctions are 'and', 'or', 'nor', comma, 'both', 
etc., "subcategory 4 or more are 'when', 'that', etc." See Ben David.' 
** Gerund phrase handling is only of a partial nature at present. 

Empirical Design for Question-Answering 673 

called. After checking if the AUXFST was successful, 
operation is returned to section three, "find subject." 

(5) Define object boundaries 

The object is defined as everything from the end of the 
verb phrase to the present boundary. It is very possible that 
there is nothing between the end of the verb phrase and the 
boundary for this clause. If the boundary is the end of the 
throughput unit, then the next operation is the sufficiency 
check, otherwise the next step is section 6. 

(6) Determine what to do 

There are two distinct boundaries that can occur, con
junction of subcategory value 3 or less or conjunction of 
subcategory value 4 or greater. 6 

(i) Conjunction of subcategory value 3 or less. 

Now there are two alternatives; either there has been a 
potential object or there hasn't been. If there has been 
an object, the portion between the present boundary 
and the next boundary is scanned for a verb. If one is 
found, and it is the first word in the portion, a check is 
made to see if it is the same type as the last entry in the 
verb phrase (isolated by section 4 above). If it is, it is 
considered another verb phrase. For instance, in: 

Parts of pictures were carved on the slabs and painted. 
(3) 

"Parts of pictures" is the subject, "were carved" is the 
verb phrase, "on the slabs" is the object (in the sense 
of object as defined in section 5-Define object bounda
ries), and "painted" would be detected by the above 
operation as an additional verb phrase. 
If the verb is not the same type as the last entry in the 
verb phrase, this section tries to modify the category of 
thi~:' \o'~b: 'tonoun~ awL~.i~,," .thj.g wor4. If the 
verb is not the first in this portion of text, then is it an 
auxiliary? If so, this is the start for the next run
through. Add all words from one before auxiliary to 
object and terminate. If present clause is not embedded, 
this is a plain conjunctive situation; do not modify 
anything and terminate. If this verb is anon-auxiliary, 
has there been a previous potential verb? If so, process 
this second one like auxiliary (default situation). If there 
hasn't been another potential verb, note this as one 
(both in the above circumstance and the following one, 
the situation is not clear and in effect, a fuzzy hypothe
sis is made and OBJDETR will have to deal with the 
problem). 
At the termination of the scan, first check if any 
potential verbs have occurred; if so default out per
forming auxiliary operation specified above. If there has 
been no potential verb, check the next boundary. If it is 
conjunction ofyalue 3 or less, add this whole portion to 



674 National Computer Conference, 1977 

object, change boundaries of clause to include this 
portion and restart this section. If the conjunction is of 
value 4 or greater, this is an ambiguous path (the one 
between the present portion and the clause). For in
stance in the sentence: 

The boy is eating the cake and the pie that had been 
bought was being eaten by the child. (4) 

When reaching section 6, "the boy is eating the cake" 
has been processed. The portion "the pie" is being 
considered. Since "that" is the next conjunction, it is 
not at all clear whether "the pie" goes with the first 
clause or the second. Therefore, "and" is noted as an 
ambiguous path and nothing else is done~no modifica-
tion to the clause. HYPSTRC is terminated. 
If there hasn't been an object and the word following 
conjunction is not a verb or adverb, set this point as 
start for next pass through and terminate. If the word 
following conjunction is a verb or adverb, assume 
conjunctive verb. Reset clause boundaries to include 
this portion and continue processing from section 4, 
"find verb phrase." 

(ii) Conjunction of subcategory value 4 or more 

First turn embed pointer on. Is the conjunction "than"? 
If so, set "than" pointer and move modifier relating to 
"than" into verb phrase (i.e., bigger than, smaller than, 
more than, etc.). Set start pointer and terminate. 

(7) Check Sufficiency 

The first part of the check involves the value of the 
embed pointer. If it is less than or equal to zero, there is no 
problem and operation is terminated (if the embeddation 
pointer is zero, then this is a simple sentence; if it is 
negative, then there has been enough information). If the 
einbeddation pointer is set, then the object grouping must 
be scanned for a potential verb. If a verb is found, is it an 
auxiliary? If so, modify object boundaries to the verb 
before auxiliary and return. If it is not an auxiliary, note it 
and continue scan. If at the end of the scan there has been a 
potential verb, make modifications, allow OBJDETR to 
complete determination. If no potential verb has been 
found, check for ambiguous paths. Has there been one? If 
not, issue error diagnostic and terminate; if there has been 
one-remove it and restart operation from first operation 
(call SCANMOD for removing boundary). For example, in 
(2) above, the verb phrase would be found as "baked" and 
the object as "the cake is eating." When this section was 
called, the embed pointer would be set and the end of the 
through-put unit reached. In scanning the object, "is" is 
found, the object is modified to "the cake" (and the start 
pointer is modified for next time through routine). In the 
sentence: 

The boy is eating the cake and the pie that had been 
bought. (5) 

the first time through, "The boy is eating the cake" would 
have been set as the first clause. The second time through, 
"the pie" would be set as subject, "had been bought" as 
the verb phrase, and then the sufficiency check would 
determine a lack of sufficiency. Backtracking to the previ
ously noted ambiguity, "and", this path would be ruled out 
and processing restarted. In modified operation, "the boy is 
eating the cake and the pie" would be defined as the first 
clause, "The cake and the pie had been bought" as the 
second clause. (One important note-the problem of multi
ple ambiguous paths of this nature is not dealt with in this 
version except by successively backtracking). 

SCAN 

SCAN goes through a sentence word by word looking for 
a few central words which are" 

(1) pronouns 
(2) prepositions, 
(3) conjunctions. 

As the first part of the hypothesis analysis procedure, this 
routing has particular importance and is the most experi
mental. Its operation and justification for such will be 
described in some detail. 

(1) Pronouns 

The system distinguishes two main modes, question 
mode-when the user is querying the system, and declara
tive mode-when the system is analyzing declarative text. 
Pronouns are very important, particularly when the pro
noun is first or second person and the system is in question 
mode. Very often the pronoun will be part of what can be 
referred to as the "Question-frame" or "Question-sign"
for example "What do you have about -", "I want to 
know (why)", etc. These occurrences are easily recognized 
and not passed on to the system except as question marks. 
When a question like this appears in declarative mode
i.e., as part of a text-for example "Joe asked 'What do 
you have on ice cream'.", then the "Question-frame" 
operation is not performed. 

If a pronoun is detected, is this question mode or 
declarative mode? In declarative mode, ignore it. In ques
tion mode, set up the "question-frame" boundaries. Check 
the next three words. Is there a preposition? If so, set 
boundary to the preposition. If the second word following is 
also a preposition, set boundary to that preposition. If there 
isn't a preposition in the first three words following the 
pronoun, don't move this boundary at all. Set back bound
ary from previous conjunction, if there was one, or from 
the beginning of the sentence. Mark these boundaries as 
portion to be dropped. 

(2) Prepositions 

There are certain phrases which have well defined forms 
and which play important roles in a sentence (actually, as 



will be seen shortly, what is being discussed here is not so 
much a phrase as a particular type of grouping of words 
which can include several prepositional phrases plus non
prepositional phrases. However, the unifying aspect is that 
this grouping of words relates a particular bit of informa
tion, of varying detail and exactness, with respect to 
location of two or more objects with regard to each other). 
In dealing with such phrases in this version, work has 
focused on the locational phrase. This type of phrase is 
among the most common of such phrases and appears in 
many forms; detection and isolation of these phrases has 
been through the prepositions commonly used with them. 
Some of the forms of these phrases are: 

south 
south of Boston 
to the south of Boston 
miles south of Boston 
miles to the south of Boston 
one hundred miles south of Boston 
one hundred miles to the south of Boston 
one hundred and fifty one miles south of the city of 

Boston 

The same basic form appears in phrases like: 

right of the house, 
to the right of the house, 
etc. 

In addition to its common appearance, it allows for some 
interesting inference experimentation and was therefore 
chosen for this version's work. 

In order to detect the locational phrase, SCAN looks for 
the prepositions "of', "on", "to", and "from". It is 
certainly possible to generate a locational phrase without 
one of these prepositions (an example was given above
"south (of Boston)"), however, usually one or more of 
these prepositions will appear in the locational (in the case 
where none of these prepositions appear, the locational will 
bei'£I}o,~~d:-thi~ is .ev~n. thqugh . ~h~! 1?()te.nti~lly if!1p()~~mt 
information may be lost, for example' 'One hundred miles 
south is Philadelphia"). If the preposition, "of' is detected 
first, then we assume that this is the only preposition, 
otherwise we would have detected one of the others first. 
(Of course, there are locationals which have additional 
prepositions in their last part-"south of the City of Bos
ton", "south of the highest point in the Rockies," etc.-the 
first "of' is of prime interest. If the grouping under 
consideration is considered a locational, then the problem 
of determining how far it extends is a separate problem 
from determining if it is a locational). If one of the other 
prepositions is detected first, then the routine looks for 
"of," which might not occur. In either case, a direction 
noun is critical; if one is found, then the question is to 
determine what the specific boundaries of the locational 
phrase are. Sometimes this decision is easy because the 
locational will be marked with commas; other times it is a 
process of preceding backwards and forwards from the 

Empiricai Design for Question-Answering 

detected prepositions looking for numeric and measure 
words in one direction and location specifics in the other. 
(Location specifics include names of places, location 
words-city, town, etc.) Once the boundaries of the Ioca
tional are determined, it is treated as a unit. More than one 
locational can appear at one time-for instance in a com
pound locational. (For example "New York is one hundred 
miles north of Philadelphia and ninety miles east of Bethle
hem.) 

(3) Conjunction 

This was the first consideration of SCAN. Originally, 
SCAN dealt only with conjunctions, and in a very simple 
manner. It soon became evident that additional processing 
routines were necessary in SCAN. First of aii, several 
words which act like conjunctions but which are usually 
adverbs (i.e., "now"), especially when these words occur 
next to other conjunctions, can be modified immediately to 
save valuable processing time. (Actually, "now" is usually 
a modifier; however, it is sometimes used alone and the 
system must be ready. For instance-"Now (that) they 
have gone, the plans have arrived. "-Usually "that" 
would appear with now"; however, "that" will be left out 
sometimes, with "now" assuming a conjunction role.) 
Second, SCAN attempts some preliminary work with com
paratives, focusing on the occurrence of the conjunction 
"than" in examples like-"bigger than," "smaller than," 
etc. There has been much work on conjunctions detailed in 
the literature (particularly in comparatives), however, be
cause of the general emphasis of the present work on a 
question-answering system, most of the previous work was 
not judged suitable to the present effort. 

SCANMODt simply takes direction from HYPSTRC 
with regard to turning off a specific boundary which was set 
in the first call to SCAN from HYPSTRC. It also sets an 
index value so that when SCAN is called by HYPSTRC 
(because processing is reinitiated after a call to SCANMOD 
and SCAN will be called in first run processing by 
HYPSTRC) nothing will be done by SCAN. 

CONJFST-AUXFST 

This routine has the responsibility of undoing permuta
tions due to the interrogatory transformation. This transfor
mation is detected either by the question pronoun as the 
first word ("what", "which", etc.) or by a lead auxiliary 
verb ("is", "did", "have", etc.) These cases are combined 
because they require similar actions. (First the details of the 
operations of CONJFST will be discussed and then the 
combined operation of CONJDST and AUXFST.) 

(1) Conjunction first word 

The various question pronouns are also used as conjunc
tions. For example, "What is the boy eating?" and . 'The 

t The routine HYPSTRC calls in order to modify a clausal hypothesis. 



676 National Computer Conference, 1977 

boy is eating what he can." While their usages are differ
ent, their senses are similar. In the system's operation, all 
of the question pronouns are categorized first as conjunc
tions (of subcategory 4 or greater) and secondly as question 
pronouns. When a conjunction is detected as the first word 
of a sentence (by HYPSTRC), this routine is called and it 
attempts to modify the category from conjunction to ques
tion pronoun. If it cannot modify the conjunction (because 
this conjunction is not a question pronoun), it does nothing 
except note the conjunction. 

If the conjunction has been converted to a question
pronoun, CONJFST then tries to determine the nature of 
the question. There are those questions where the only task 
is noting what the question-pronoun is-"What boy is 
coming?" For others, more work is necessary-"What is 
the mileage from Chicago to San Francisco." This is a very 
specific "what question-"What is the mileage" is the 
same as "How far is it," "How many miles is it," "How 
many miles is," etc. As much as possible about a particular 
question must be determined as early as possible in order to 
speed analysis and increase the accuracy of the response. 
The boundaries of the particular "question frame" are 
determined and subtracted from the input (ignored by the 
rest of the system). 

Even if the first word (or group of words) is determined 
to be a question-frame, it is not certain that a permutation is 
also present. For example, "What boys are coming tomor
row?" and "What is eating the cheese?" The test for a 
permutation involves checking for a split verb phrase. This 
necessitates some auxiliary verb plus a participle. If the 
auxiliary does not follow immediately after the question 
frame, suspect a double permutation, for instance "How 
much gas does tank five contain?" "Tank five" and 
"does" must be interchanged and then, "How much gas" 
must be moved to the end of the question. When a double 
permutation seems likely. the second permutation section is 
called. 

(2) Auxiliary first word 

When an auxiliary occurs as the first word of the sen
tence, the first part of this routine, CONJFST, is skipped. 
However, just as in the last part of CONJFST, certain 
predictions are made vis-a-vis what permutations are ex
pected. In this circumstance, a single permutation is ex
pected. 

(3) Permutation operation-one permutation (entry for 
A UXFST and for auxiliary after question frame from 
CONJFST). 

In the permutation check, AUXFST scans for verbs, 
determiners, and prepositions. 

(i) verb found 

Is this verb an auxiliary or a verb participle? If so, does 
it follow the first auxiliary immediately? If so, no 

permutation-issue error diagnostic and return. If this 
verb does not follow first auxiliary immediately, set 
move unit from word after first auxiliary to word 
before present word. The entry point (i.e., where this 
move unit belongs) is before first auxiliary. For exam
ple, in "Are the boys eating cereal," "the boys" will 
be move unit and it would be moved before "Are" 
resulting in "The boys are eating cereal." 

(ii) determiners 

Is this first after auxiliary-if so skip it. If the word 
preceding this determiner was a preposition or another 
determiner-skip it (i.e., the decision about whether to 
continue the scan or not was made with the previous 
word). Otherwise, set move unit from word after first 
auxiliary to word before this one. The entry point is 
location before first auxiliary. For example, in "Are 
the boys the ones?", "The boys" is the move unit, the 
rearrangement results in "the boys are the ones." 

(iii) prepositions 

Is this first word after auxiliary-if so skip it. Has there 
been a preposition already? If not, note this one and 
continue. If there has been one, is this one "of'? If so 
skip it, otherwise note it in place of the previous 
preposition. 
Ifthe end of the scan is reached without a "move unit" 
established, check if there has been a preposition. If 
so, set move unit from word after first auxiliary to 
word before "noted preposition" and entry point in 
front of first auxiliary. For example "Are the boys 
from New York?" becomes "The boys are from New 
York." Note that "Are the boys from New York 
coming" would become "The boys from New York are 
coming." 

(4) Permutation operation-two permutations (this section 
has only been developed to handle one type of situation
more work will follow). 

When this section is called, it has no information of a first 
auxiliary. It first scans for the first auxiliary, notes it and 
then scans for a second auxiliary or participle (which can 
also be an auxiliary). If the auxiliary and the second verb 
are next to each other, no rearrangement is performed. The 
first move unit is from the word after the first auxiliary to 
word before second verb-entry point before first auxiliary, 
second move unit is from first word after question frame to 
word before first auxiliary-entry point after second verb. 
For example-"How much gas does tank five contain?" 

SUBDETR-OBJDETR 

These routines have certain basic similarities, but while 
the break-up of the constituent phrases in the subject has 



been taken care of by HYPSTRC to assist in accurate 
determination of the beginning of the verb phrase, none of 
the constituent phrases of the object have been isolated (it 
is important to remember that in referring to the subject and 
object, the reference is to all the various phrases before and 
after the verb phrase, as discussed earlier). There are 
various reasons for this differentiation; most notable is that 
until the verb phrase is fully determined- it is not clear 
where the object begins. 

Both of these routines are concerned with filling the array 
PHRV ALS. The following locations exist in this array: 

1. Preposition 
2. Determiner 
3. Number-first location 
4. Number-last location 

5. Modifiers-first location 
6. Modifiers-last location 
7. Noun-main noun of phrase 
8. Conjunction 
9. Infinitive 

10. Adverbs 

either cardinal or 
ordinal values + 

fractions 

When these routines have completed operation of a particu
lar phrase, this array (sometimes in mUltiples) is passed to 
PHRCLOS (discussed later). However, if pronouns are 
detected, the routines CASEPRI or CASEPR2 are caned (1 
for subject, 2 for object) and PHRCLOS is not called. 

The operation is pretty straightforward setting up the 
array. The exceptions are as follows 

( 1) Preposition 

Prepositions are handled basically the same, except for 
the following difference in these routines. 

(i) SUBDETR 

SUBDETR expects that ever¥ preposition will be. the 
first one in its phrase, eXl.:ept for "of". When "of' is 
detected, a rearrangement is performed to make the 
words following "of' modifiers of the previous phrase. 
For example, the phrase "the slabs of alabaster" is 
converted into "the alabaster slabs." This conversion is 
carefully noted in case there is some need for the 
original form, for example "the slabs of alabaster, 
which is a stone, were transported." For the primary 
clause, the system wants "the alabaster slabs", for the 
relative clause, it wants "alabaster". It is important to 
note that there is a potential problem of ambiguity in 
these circumstances-while above it is clear that "ala
baster" is the subject of "is a stone," for the sentence 
"The slabs of trees which are a building material were 
transported," is "slabs of trees" or "trees" the subject 
of "are a building material"? To disambiguate this the 
system needs semantic information. Presently, "trees" 
would be determined as the subject. 

Empirical Design for Question-Answering 677 

(ii) OBJDETR 

OBJDETR treats "of' basically the same as SUB
DETR; however, any other preposition encountered is 
considered the basis for a phrase break unless it is the 
first word in the object. If it is "from", check for "to" 
after "from" (i.e., "from Chicago to New York"). In 
case of a phrase break, the routine PHRCLOS is called. 

(2) Conjunctions 

Conjunctions have the same impact in OBJDETR and in 
SUBDETR, except that Gust as with prepositions) in SUB
DETR there is less expectation that the conjunction might 
signify a new phrase, as the calculations on that point 
would have been done in HYPSTRC. In both routines the 
location of the conjunction is noted in PHRVALS (8) and 
the phrase indicator is incremented-new information oc
curring will be entered in another level of PHRV ALS, not 
interfering with the previous information entered therein. 

PHRCLOS 

PHRCLOS looks at the structure of each phrase (as sent 
by SUBDETR and OBJDETR) in the array PHRVALS and 
completely categorizes the phrase. If there is a determiner, 
it picks up the determiner code and stores it for the phrase. 
It determines whether a phrase with a conjunction is two 
phrases or one phrase with a compound modifier. If there 
are two phrases, does the same determiner and modifica
tion apply to both phrases? Is there a number present? If so 
evaluate it. Is there a preposition? If so, what kind of 
prepositional phrase is this (CASEV AL)? Based on the 
information it gathers, it decides whether the phrase is 
singular or plural. 

CASEVAL 

T"~ t'fl4Hifte .'" caned to cak;u4t.te the nature of a preposi
tional phrase. In roder to deal with the great amount of 
information present in nouns, this routine employs decision 
tables. Using the information contained in the preposition 
and the noun, this routine determines what a particular 
phrase specifies about a sentence.:j: 

CASEPRI-CASEPR2 

This routine (the different names just represent different 
entry points) calculates the antecedents of pronouns using 
positional, number, and type (human, non-human) cues. 

The routine has two knowledge structures to consider. 
One is the one presently being built for this sentence (a 
through-put unit). This knowledge structure is not linked 

* For example, in the prepositional phrase "in the house", since "in" is 
subcategorized as 5 and "house" as 21. this prepositional phrase is classified 
as a "where" phrase, 



678 National Computer Conference, 1977 

and will only be completed when the whole sentence has 
been processed; however, it is available for checking by 
this routine. For instance in the sentence, "The artists used 
the pictures to tell stories about the kings and what they 
did", from the beginning of the sentence to "and" would 
be processed as the first clause and "what they did" as the 
second. :rhis is an ambiguous situation and the routine 
would settle for "the artists" as the referent of "they" 
(based on positional cue). The other knowledge structure 
that this routine has access to is the one this sentence fits 
into, provided there is one. It is entirely possible that 
neither of these structures is available (i.e., at the beginning 
of a particular text). If neither of the knowledge structures 
contains any information, the routine will issue diagnostics 
unless the referent of the pronoun could be following (i.e., 
"It is the boy who is responsible.") 

VRBDETR 

VRBDETR isolates the verb phrase, determines the tense 
and transformations, and takes care of adverbial modifica
tions of verb whether negative or positive. This routine 
makes extensive use of decision tables to facilitate fast 
operation. It is distinctly possible that the determination of 
the verb phrase made by HYPSTRC will be inaccurate
usually overlong. VRBDETR will modify the object bound
aries by moving any information it doesn't need into the 
object. This happens particularly when new words are 
introduced or a word is used without a determiner preced
ing it (i.e., as a predicate adjective, as in "The boy is sick" 
where "sick" is treated as a noun with associated subcate
gories-see previous discussion). 

CONCLUSION 

The parser-analyzer for QUANSY 3.0, as presented in this 
paper is of straightforward syntactic and semantic nature 

(though predominantly syntactic). As it stands right now, it 
is able to handle levels of English up to a fourth-grade level 
at relatively high speeds. Most important, the parser
analyzer, as presented here in depth, can be seen to be 
distinctly different from other approaches to natural-lan
guage analysis. With the introduction of additional semantic 
capabilities, the system should be able to achieve substan
tially higher levels of performance. 

REFERENCES 

I. Cuadra, A. C. and A. W. Luke, "Annual Reviews of Information 
Science and Technology," Vols. 4.6. 8-ASIS, 1973, Britannic, 1971, 
1969. 

2. Wilks, U., "Grammar, Meaning and the Machine Analysis of Lan
guage," Routledge and Kegan, London, 1972. 

3. Winograd, T., "Understanding Natural Language," Academic Press, 
1972. 

4. Brown, J. S. and P. R. Buston, "Multiple Representations of Knowledge 
for Tutorial Reasoning," In: Representation and Understanding, Eds.: 
Bobrow, S. and Collins, A., Academic Press, 1975. 

5. Lehnert, W., "What makes Sam run?", in Theoretical Issues in Na
tional Language Processing, Eds.: Schank, R. C., and Nash-Webber, B. 
C. ACL, 1975. 

6. Coles, L. S., "Techniques for Information Retrieval Using an Inferential 
Question-Answering System with National Language Input," Stanford 
Research Institute, Menlo Park, California, 1972. 

7. Ben David, A. S., "A Question-Answering System (QUANSY) for 
Information Retrieval," PhD dissertation, Lehigh University, Bethle
hem, Pennsylvania, 1976. 

8. Hillman, D. J., "The Leader Retrieval System," AFIPS Conference 
Proceedings, Vol. 34, 1969. 

9. Neisser, U., "Cognitive Psychology," Appleton-Century Crofts, New 
York, 1967. 

10. Hillman, D. J., "A Study of Information Regeneration for Knowledge 
Transfer," Final Report to Division of Science Information, NSF, April 
1975. 

II. Ben David, A. S., "QUANSY, A Natural-Language Question-Answer
ing System," Master's Thesis, Lehigh University, 1975. 



Automatic generation of computer programs* 

by NOAH S. PRYWES 
University of Pennsylvania 
Philadelphia, Pennsylvania 

ABSTRACT 

This is an introduction and summary of research on Auto
matic Program Generation conducted at the Moore School, 
University of Pennsylvania. This research culminated in 
development of a Module Description Language (MODEL) 
designed for use by management, business, or accounting 
specialists who are not required to have computer training. 
MODEL statements describe input, output, and various 
formulae associated with. system specification. No process
ing or sequencing information is required from the user. A 
MODEL Processor analyzes the specifications and inter
acts with the user in resolving inconsistencies, ambiguities 
and incompleteness. A program for performing the required 
functions is then generated based on the "complete" speci
fication. 

INTRODUCTION 

General description of a system for generating computer 
programs 

A major aspiration of computer programming language 
designers has been to make programming so easy that large 
~~~"~_~~ ~~' f'm"'e~t~ ~eT!' e~pu~ed tC' 
computer training are able to program. For instance, in
1960 the CODASYL committee designed a programming
language named COBOL-COmmon Business Oriented Lan
guage. Despite this and many other attempts to reduce the
complexity of the programming process, it has continued to
require considerable skill and specialization. Currently
there are a large number of Application Programmers who
handle such tasks. The standard procedure is for a "user,"
whether manager, accountant or business specialist, to
communicate requirements to an Application Programmer
who, in turn, composes a program to fit these requirements.
The research described in this paper is a continuation of
efforts to make feasible the preparation of programs by
users (interacting with an automatic program generator)
without recourse to middle-men Application Programmers.

* Research supported by the Infonnation Systems Program, Office of Naval
Research under contract NOOOl4-67-A-021&-OO14, Project NR-049-J53.

679

In view of the historical elusiveness of this goal, it is
approached with considerable trepidation.

Figure 1 illustrates the overall concept of interactions
between the automatic computer program generator and the
user. (The components in the diagram are referred to by the
indicated numbers). The user (1) is viewed as an individual
who is proficient in the immediate field in which the
programs are to be applied. Namely, he is viewed as being
in a management or a technical capacity, such as in
accounting, production control, etc. He must not only have
had professional training in this specialized area of activity,
but also have had a good mathematical background. The
user is not required, however to have had any specialized
computer training, but he must understand that when a
function is properly specified it can then be executed by a
computer.

The user composes statements (3) (via a terminal and a
Text-Editor (2» in a language named MODEL (MOdule
DEscription' Language). Each statement is considered
an integral unit and contains a "chunk" of information.
A statement may describe an item of data (data description)
or an algebraic or logical relation among items of data
(assertion). References may be made to statements previ
ously entered in a data base (4) by the user, by others who
have specified requirements for similar applications, or by
others with whom the user wants to share data. The
MQD.EL,PI",Q~esSQr '. (5) .aual~z.es .. thetaLality .of it.demeD&~.
transmitted to it and, as appropriate, solicits from the user
additions or changes to these statements. It provides a user
with listings, cross-references, and requests for additions or
changes necessary to resolve incompleteness, ambiguities
or inconsistencies (6). Finally, the analysis by the processor
leads to certain logical implications which are also commu
nicated to the user to enable him to clarify and self-check
his specifications of the requirements. When all outstanding
problems have been resolved in this dialogue, the processor
produces a program in a computer language. An Optimizing
Compiler (7) produces the object code (for the application
program) which is loaded into a digital computer (8) for
execution.

The system description in this report is based on an
operational MODEL II system l which incorporates correc
tions and improvements consisting of new language, se
quencing and iteration analysis, over a previously described
language and processor. 2 Work is under way to reprogram

680 National Computer Confe~ence, 1977

COMPOSES MOOEL
(3)

(5)
STATEMENTS OF

(2) 1) DATA DESCRIPTION (4)

us

1
ER(1L.. TEXT MODEL 2) ASSERTION ~ STATEMENTS ~

EDITOR
3) REFERENCE TO DATA BASE

STATEMENTS IN DATA
BASE

I •
IN FORMATION GATHERING LOOP

SOLICITS STATEMENTS(6) MODEL
BY PROVIDING: PROCESSOR

I) MODEL STATEMENTS
LISTINGS

2) CROSS REFERENCE
REPORTS ----3) REQUESTS TO RESOlYE :

A) INCOMPLETENESS
B) AMBIGUITIES
C) INCONSISTENCIES
D) fMPLICATIONS

PROGRAM
I N HIGH LEVEL

LANGUAGE ••
OPTIMIZING (7)
COMPILER

• -1/0 - - 01 GITAL COMPUTER

DATA FILES EXECUTION (8)

Figure I-Illustration of the concept of automatic program generation

the processor to reflect additional improvements. 3
,4 The

system is programmed in PL/l and produces object pro
grams in PL/I.

In the interest of brevity, the paper describes the use of
the MODEL language in the second section of this paper,
and the analysis leading to solicitation of additional user
information in the third section. The automatic program
(and flowchart) generation phases of the MODEL system

are omitted and described in the referenced reports. A
survey of related research can be found in References 4 and
5.

Distinctive characteristics of MODEL

The MODEL language described in this paper incorpo
rates several new characteristics not existing in previous

programming languages and which were adopted because of
their distinct advantages over past practices. These charac
teristics are explained below in the context of the system
illustrated in Figure 1 where a user communicates with a
processor that generates programs.

The new labor saving characteristics that have been
incorporated in this approach are as follows:

1. Non-proceduralness-means that the user need not
(and cannot) specify any order of evaluation or memory
assignments. The "control logic" parts of the ultimately
produced program, which are based on such procedural
information, are to be deduced by the MODEL Processor.
This feature is considered important, not only because it
saves programming labor but also because it reduces the
necessary computer training of the user. For instance, the
user does not need to have such basic concepts as flow
charting or memory.

2. Independence of statements-means that the user can
concentrate on composing a single statement at a time. It is
neither required nor possible to indicate any relationships
among the statements (except implicitly, such as when
specifying relationships among variables). A single state
ment is required for describing each data name, or each
formula. Modification or addition of statements can be
carried out independently, one statement at a time, in the
same manner.

3. Randomness-takes into account that information
may originate from a group of users. Also each user's
concept of computer requirements is usually not well or
ganized, and a variety of information comes to his mind at
different times. The user can describe this information in
statements, one at a time, in the order that the information
occurs to him. While a certain organization in this approach
may be helpful, it is not required.

4. Incrementality-means that once users have provided
a certain portion of the totality of the statements, the
processor should be able to solicit additions or changes
incrementally until a complete specification of the computer
requirement is obtained. In this manner, it should be
possible to avoid the problems of ambiguities or incom
pleteness. thatlead.w m.a,ior mis.undersJ.audjug,s.b~Jw~eIl Jhc
users and Application Programmers, and which require
costly corrections and reprogramming.

5. Self Documentation-is attained as the documentation
is generated during the dialogue between a user and the
Processor. The additional documentation of the corre
sponding flowchart can be generated by the Processor
automatically when generating the program. These latter
types of documentation would normally not be of interest to
a user, but rather to a Systems Programmer. The documen
tation of the user's computer requirement and of the
associated program to be produced by MODEL is com
prised of the collection of the corresponding statements
together with the cross references and summary tables and
comments produced by the Processor.

6. Maintenance-involves corrections of the programs
based on malfunctions discovered during operation, or on
modifications of the specifications to meet new needs. In
current practice the modifications must also be performed

Automatic Generation of Computer Programs 68 i

by a middle-man Application Programmer. It is envisaged,
instead, that the user would make the changes in the
MODEL statements to reflect either the corrections or the
modifications, whereupon the Processor would generate a
new program automatically.

7. Sharing-of data or computations can be attained by
storing the corresponding MODEL statements in the Pro
cessor's data base. A user desirous of sharing the know
how of others who have previously stated requirements in
similar application areas needs only to reference these
statements in order to incorporate them in the specification
of his program. Data bases could be physically shared,
while computations would be repeated in each user's pro
gram. To make changes in the organization of shared data
bases, the data description statements must be modified or
added, and previously generated programs based on these
statements must be automatically regenerated. In this way
changes to shared data bases or programs can be carried
out without requiring the users to modify their programs
individually.

8. Tolerance-The Processor is tolerant of the user's
ambiguities and omissions. To fully specify a requirement
would necessitate composing many statements which may
appear to a user to be self evident and superfluous. The
Processor in synthesizing the MODEL statements into a
program must recognize the resulting ambiguities and omis
sions and generate the necessary additional MODEL state
ments automatically, thus relieving the user of much tire
some detail.

THE LANGUAGE

Example

An example is used in the following pages to illustrate
how a user describes a requirement which he wishes to
automate.

The example envisages the environment of a department
~tor€! .~i!h m~I1Y d~p~~m~nt~, a l~r~e nu""!b~r..of char~~
account customers, and an extenslve and diverse stock
inventory. Point-of-Sale terminals connected to a network
of computers are distributed through the several locations
of the department store. The user of the MODEL system is
envisaged to be a department store analyst who desires to
specify the accounting requirements for purchases by cash
and charge account customers.

Figure 2 gives an overview of the accounting require
ment. The corresponding program module is named DEP
SALE, and is shown at the center of the figure.

The data for DEPSALE comes from three sources. The
sales transactions (SALETRAN), come from a Point-of-Sale
terminal (POSTERM) sequentially, one at a time, and
contain the information provided by the purchasers. The
customer data (CUSTMASn contains records of customers
which can be referenced by providing customer numbers.
Finally, there is inventory (INVEN) data, where informa
tion on stock items can be referenced by providing a stock

682 National Computer Conference, 1977

POSTERM
SEQUENTIAL

SALESLIP
(SEQUENCED BY

SALES,. 1
SALEJOUR

DISK, ISAM,

KEYED BY
STOCK ,.

SEQUENCED BY SALES ,.

01 SK , SEQUENTIAL

DISK,ISAM

Figure 2-IIlustration of a department store sale accounting (depsale
requirement)

number. The data that comes in to DEPSALE is referred to
as SOURCE data.

The TARGET data consists of the records in CUST
MAST and INVEN which are affected by the sales transac
tion and must be updated. Other TARGET data are the
entries made in a sales journal (SALEJOUR) which are
ordered sequentially by sales numbers (SALES #). Finally,
a sales slip (SALESLIP) is produced on the terminal in
cases where the sales transaction has been consummated or,
alternatively, an exception notice (EXCEPT) is produced
when the transaction does not take place.

An outline for preparing requirement descriptions

Figure 3 shows, in outline form, the information that
needs to be provided in describing a requirement to be
automated. As indicated, the user does not need to follow
this outline, but can provide the information in any order.
With the aid of a Text Editor, the user can enter statements
and organize them into sections, subsections, etc. At the
highest level the description is divided into three sections:
the header, the data description, and the computation
description.

The header contains identification information: module
name(l), source(2) and target(3) data names, and references
to sections or subsections of computation description state
ments, (called assertions) that are in a library in the data
base(4). The latter may represent standards of data formats
and organizations or any previously entered statements.
The user is able to specify more complex operations that
would be applied to the statement-data-base, to produce
new statements to be incorporated in the specifications of a
desired program module.

Data description is independent of the computation de
scription, so that the data may be shared by several
programs. Data and computation descriptions may be in a
library, and called for automatically, to facilitate sharing of
data and computations. Data description breaks down into

the descriptions of the individual files, inputs, or reports(5}
(each forms a subsection). The description of each data
source or target is divided into the description of the
storage medium, the data, and a set of assertions. The data
description assertions are used dynamically to evaluate data
dependent structures, such as length of fields, number of
repetitions of optional data structures, and to describe
intra-record (intra-file or inter-file) references (to be de
scribed further).

The computation description consist also of several sub
sections. First is the description of internal variables, that
are not included in the source and target data descrip
tions(7). Next are assertions that specify subsets of source
and target data that will be processed (8 and 9). Finally
there are the descriptions of accounting and business dcci-
sion practices(1 O}.

All descriptions are in the form of statements. There
must be one statement for each data name, for each
medium used to communicate data and for each assertion.

Data description statements

Data statements

A data network concept is employed. Its application to
the DEPSALE program is illustrated in Figure 4. First, a
user has to name each data structure (to be further ex
plained) and compose a statement for each name used.
Each of the source or target files, inputs or reports is
organized internally in a hierarchical structure resembling a

MODEL

STRUCTURE (2) saJRCE DATA NAMES

(:3) TARGET DATA NAMES

HEADER l(I) MODULE NAME

(4) REFERENCE TO DATA BASE ASSERTION

DATA-----r-(5) FILE
DESCRIPTION DESCRIPTION

FILE AI DATA
DESCRIPTION

MEDIA
DESCRIPTION
ASSERTIONS

[

LENGTH

EXIST

POINTER

FILEN1DATA

MEDIA

ASSERTION

[

LENGTH

EXIST

POINTER
(6) INTERFILE POINTERS

COMPUl1ITIONi(7) INTERIM PARAMETER DESCRIPTION

DESCRIPTION

(8) SOURCE SET ASSERTIONS

(9) TARGET SET ASSERTIONS

RULES

BUSINESS DECISIONS
RULES

ETC.

Figure 3-0utline of information provided in describing a requirement

Automatic Generation of Computer Programs 683

SOURCE FILES OR REPORTS POINTERS TARGET FILES OR REPORTS
SALETRAN

SALEREC
SALEJOUR

-----------------------I~·SALEREC

TERM=#= SALE =#=

CUST =#= ~ CUST :/1=
ACTCODE KEY JOUR ITEM

=SALE :/1=
CLERK =#: KEY END ITEM
DEPT :#= =CUST:/I= TAX

TRITEM

~
QUANTIT
STOCK #---J'f""----__

ENDITEM

ENDTRANS KEY

TOTCHARGE

SALESLIP

SALESLIPREC

CUSTMAST
= STOCK=#=

"-------+ SALE =11= (SEQ)

DATE

CUSTREC 04------'

CUST :/1= (KEY)

NAME

ADDRESS

BALANCE

CREDLIM

INVEN

INVENREC ~4~--------_

STOCK =#= (KEY)

KEY

CUST=#:

NAME

ADDRESS
ENDHDR

ITEM ~STOCK:#
TAX ITEMDESC
END TAX QUANTfTY
TOTCHARGE SALEPRICE

EXTENSI<*
ENDS ENDITEM

EXCEPT

EXCEPREO

'-----+- SA L E =#=

ITEM DESC

SALPRICE

QOH

TAXCODE
REPLACE

= REPLACE

CUST =11=

BALANCE

CREDLIM

MESSAGE

Figure 4-Data network illustration for depsaJe

tree. Each node of the tree must be given a name. The user
must compose a statement corresponding to each data
name, in which he provides associated information on the
branch connection, data length, number of repetitions and

other parameters of source and target media. Network
(non-tree) structures are described by use" of POINTER
type assertions which coordinate instances of repeating
data.

684 National Computer Conference, 1977

For example, consider the sales transaction (SALE
TRAN) source data at the top left of Figure 4. The
STORAGE name is a POINT-of-SALE Terminal-POS
TERM, (not shown in Figure 4). The SALETRAN file (an
incoming message, referred to here as a FILE) is describa
ble as a tree structure. The name of the FILE is at the
apex, emanating from it is the RECORD (SALEREC) node.
The branches emanating from the RECORD node lead to
GROUP or FIELD nodes. GROUP nodes are not terminal
nodes, and the branches emanating from GROUP nodes
can again lead to GROUP or FIELD nodes. The terminal
nodes are always referred to as FIELDs.

Figure 5 shows the data description statements of SALE
TRAN. The words, RECORD, STORAGE, GROUP or

parentheses. The STORAGE parameters depend on the
devices specified. For POSTERM they are the format, unit
number and block size. The parameters of FILE, RECORD
or GROUP are the data names of the descendent nodes.
Another parameter of FILE is the name of the referencing
or sequencing field, if any. Parameters of FIELD are data
length and number of repetitions (if more than 1). These
parameters can be constants or variables. If they are
variables, LENGTH and EXIST type assertions must be
provided separately to specify how they can be computed.

Data description assertions

A number of assertion types are needed to describe the
data further. They concern length and number of repetitions
of data and inter or intra file pointers. Figure 6 illustrates
these assertions.

The number of transaction items (ITEM) in a sale trans
action is a variable (EXIST type) named EXIST.ITEM.

Assertions specifying the computation of these variables
are shown at the top of Figure 6. For instance, number of
repetitions can be determined from the position of delimiter
characters. The delimiter for end of transaction is the field

SALETRAN IS FILE(RECORD IS SAIEREC, STORAGE IS POSTERJ.D

POSTERI'I IS TERJ.UNAL(VARIABLE, ~IA.X_RECORD SIZE = 150, UNIT = 2741)

SALEREC IS RECORD(TERM#, CUSTIr, ACTCODE, CLERK#, DEP#, TRITBI(l:lO

ENTRAN"s))

TER\I# IS FIELD (OtAR(5))

CUST# IS FIELD (GlAR(7))

ACTCODE IS FIELD (GIAR(l))

CLERK# IS FIELD (OlAR(2))

[lEP# IS FIELD (OlAR(S))

TRIT[o'l IS GROUP (OUAl\JTIT, STOCK", ENDIT!-)l)

QUA'JTIT IS FIELD (Q!AR(3))

SroCK# IS FIELD (OlAR(6))

E'JDITHI IS FIELD (OlAR(l))

E:~IJTR4:";S IS FIELD (QiJ\R(n)

Figure 5-Data description statements for SALETRAN

EXIST. TRITFM = (INIEX(SALEREC, R)-Zl) I 10 ;

POINTER. CUSfREC = SALETRAN. CUST# ;

POINTER. INVENREC (FOR_EAGI_TRITEM, 1) = SALETRAN.SfOCK# (FOR_EAffi_ TRITEM);

Figure 6--Illustration of assertions associated with data description

ENDTRANS. It is assumed to be a Ready symbol, R. The
first assertion in Figure 6 specifies the calculation of the
number of repetitions of the group TRITEN. It uses the
function INDEX which evaluates a string of characters to
determine the position of the R symbol in relation to the
beginning of the strings of the SALEREC record.

Figure 6 also shows the assertions which specify that
fields CUST# and STOCK# in SALEREC can be used as
pointers to the customer master and inventory files as
illustrated in Figure 4. Note that POINTER.lNVENREC
has two subscripts, the first is FO~ACILITEM, and
the second is 'I'. As will be seen, the pointer value may be
derived also from the REPLACE field of INVENREC.

The other source and target data indicated in Figures 2
and 4 can be described in similar manner. In the interest of
brevity the discussion of this data is omitted.

In reproducing a listing of the submitted statements, the
Processor names all data description statements and asser
tions and identifies source and target variables, unless
already specified by the user. The names assigned to
statements are a derivation of the names of the data
elements described or a derivation of the names of the
dependent (target) variable in assertions.

Computation description statements

Composition of assertions

Following the outline in Figure 3, the computation de
scription consists first of the description of interim varia
bles in a manner similar to data description, except that
these variables are stated to be INTERIM.

In addition to describing interim variables, the descrip
tion of computation consists primarily of statements with
logical orland arithmetic constructs which are also referred
to as assertions. Using arithmetic and logical operators, as
well as functions, the user composes such statements to
specify relationships among variables.

In composing an assertion it is necessary to separate the
dependent and independent variables. One common con
vention is to place the single dependent variable on the left
of the equal sign (=). Note that the = sign means algebraic
equality and not assignment.

In composing assertions, the user specifies relationships
using mathematical, non-procedural notations. Many rela
tionships, not directly expressible using arithmetic and
logical operators, must then be expressed using functions
that map the SOURCE data into the TARGET data. These

functions are a substitute for established mathematical
notation. (an example is the 2: symbol, meaning "summa
tion" which is illustrated further below). Other functions
evaluate character strings (such as the INDEX function
described above). The use of functions in assertions re
quires stating the name of the function followed with the
specification of the parameters, enclosed in parentheses.

The functions return a value (which may be a single
variable, or components of a vector or an array).

SUBSET assertions

Examples of SUBSET assertions are shown in Figure 7.
For example, the first assertion specifies that only transac
tions from terminals SALE2 through SALE5 and from
clerks C5 through C7 are to be processed. As shown, it is
applied to the SALETRAN source data.

The second assertion in Figure 7 applies to target data
EXCEPT. It specifies that entries in this target file be
limited to cases where the balance (BALANCE) would
exceed the credit limit (CREDLIM).

Illustration of computational assertions

As indicated in Figure 3, assertions can be used to
specify relations exemplified by accounting rules or busi
ness decisions. Figure 8 gives four examples of such
assertions (the total number in DEPSALE is 20) and
illustrates several features of assertions:

The first assertion in Figure 8 specifies the evaluation of
the EXTENSION field which is the dollar value of pur
chased stock items of one type. The SUbscript notation
(FOLEAClLITEM) after a variable means that it can
have several components and by implication, that the
process will be repeated a variable number of times corre
sponding to the number of repetitions of ITEM.

The second assertion in Figure 8 illustrates the use of the
SUM function to specify the evaluation of the total charge
made on a purchase sales slip (TOTCHARGE). The SUM
ftmet1~ ha~ ~. ~e!" cltbe ~te to tte ·~ttmmed
(EXTENSION). (Another assertion not shown in Figure 8
must specify the calculation of TAX).

The third and fourth assertions in Figure 8 illustrate
business decision rules. For instance, if an item in the sale
transaction is out of stock, namely the Quantity On Hand
(QOH) field is smaller than the quantity specified in the
sales transaction (QUANTIT) then it is desired that a
suitable substitute item, if any, should be sold. The stock
number of a suitable substitute item is stored in the

IF TER~l • > SALE2 A"'D TER\!" < SALES A'I;D

CLERK " > CS A\'D CLERK " < C7 mEN SUBSET. SALETAA'J = SELECTED

ELSE SUBSET. SALETRA.\ = ~ SELECTED;

IF CREDLlM > BALA'IlCE TIlEN SUBSET. EXCEPT = SELECTED

ELSE SUBSET. EXCEPT = NOT SELECTED;

Figure 7-Subset assertions

Automatic Generation of Computer Programs 685

EXTENSION (RJR EAQ{ ITEM) = SALEPRICE* QUANTIT (RJR EAQ{ ITEM);

TOI'QiARGE = ST..M (EXTENSICN CRJR_EArn_ITEM)) + TAX;

IF QUANTIT <: <PI THEN moreE. SUBSET = SELECTED

ELSE moICE.SUBSfIT = NOT-SELECTED;

IF moICE. SUBSfIT 1HEN POINTER. INVENREC CRJR_ EArn _ TRITEM, 2) = REPLACE

ELSE POINI'ER.INVENREC'CRJR_EAGI_TRITEM, 2) = NULL ~

Figure 8-Examples of computational assertions for the DEPSALE example

inventory record (INVENREC) in the field named RE
PLACE (see Figure 4).

To represent decisions, the user can use a variable with
the name of the decision prefaced by the word CHOICE.
All such variables can have only two values, SELECTED
and NOT-SELECTED. They will be described automati
cally by the Processor (see a later section). The third
assertion in Figure 8 shows the expression that specifies
when the substitution is to take place.

The last assertion in Figure 8 specifies the implementa
tion of the decision, namely the stock number in the
REPLACE field is treated in the same way as if it were the
stock number in the sales transaction. This requires a new
value for the POINTER.INVENREC field (see Figure 8).
This operation is expressed by use of subscript.

The above assertions are representative of some of the
relationships that can be expressed by assertions. The
library of functions is open-ended and additions can be
made easily to accommodate special needs. However, it is
important to restrict the number of functions and to have
their operations similar to common mathematical notation
in order to assure ease in user familiarization with them.

Reporting formatting assertions

The description of messages or reports in MODEL is
similar to that of information stored in computer storage
media. The user always views the information as a string of
information divisible logically into records, groups, and
fields. However, in t~e sQec:ific;ation of me~~=l.ges.or ~~ports
he has also to consider the continuity and availability of
physical space. Additionally, the internal order of data
substructures can be specified by the sequence of submis
sion of the corresponding data statements to the Processor.

In describing the format of a report, the user must
consider tab, carriage return or new page symbols as if they
were data fields. In source data, these formatting symbols
would already have the desired values. In target data, the
obtaining of the values of these data must be specified by
assertions. These values are frequently data dependent.
Figure 9 illustrates this by showing two assertions that

ENDITEM (FOR_EACH _ITEM) = STRING (CR, 1);

END-TAX = STRING (CR, 12 -EITEM) ;
Figure 9-Example of report formatting assertions

686 National Computer Conference, 1977

compute the number of carriage returns used in the sales lip
(SALESLIPREC, see Figure 4) after printing ITEM groups.
Normally, one carriage return symbol after each item line
suffices, except after the TAX line when it is desired to
advance to the 12th line of the saleslip, where the total
charge (TOTCHARG) is printed. The function STRING
generates a string, consisting of substrings (CR) specified in
the first parameter, which are repeated a number of times
specified in the second parameter (12-EXIST-ITEM).

This task of describing a report appears laborious. How
ever, it can become easier by use of picture data types and
certain operations (definable in MODEL) which will specify
automatically report standards, such as for instance includ
ing "end of record," "end of group" and "end of field"
fields following the respective data description statements.

GRAPH REPRESENTATION AND COMPLETENESS
OF A MODEL SPECIFICATION

Organization of precedence information

Each statement in MODEL is an integral unit identified
by a name. The existence of a precedence relationship

POSTERM (SEQUENTIAL)

between two statements indicates that a statement must be
evaluated prior to initiating the evaluation of its successor
statement. The entire collection of statements is envisaged
as a directed graph where the statements are represented by
correspondingly labeled nodes and where directed arcs or
pointers connect the nodes, each representing a precedence
relationship between the statements at the pointer origin
and termination nodes. Figure 10 illustrates this view,
showing the statements (represented as .) which form
nodes of a graph for the above example. Each pointer is
labeled, with the corresponding precedence type. Thus,
each pointer has a direction and a type. The nodes in Figure
10 are shown to have a number of pointers exits and
entries. The exits correspond to precedence pointers ema
nating from a node and pointing to descendent or target
data or assertion nodes; the entries correspond to pointers
originating at parent or source data or assertion nodes and
terminating at a node.

The pointer finding process examines statements pair
wise, using rules for determining the precedence type which
will become the type of the precedence pointer. The types
of the found pointers are entered in a precedence matrix,
illustrated in Figure 11. Assume that a specification consists

TREE HIERARCHY POINTERS
(SOURCE)

----- DATA DETERMINACY
P01NTERS

r TREE HIERARCHY POINTERS

/0 ! (TARGET)

DISK (SEQUENTIAL)

Figure IO-Partial graph for depsale, showing data(.) of Figure 5 and assertions () of Figures 7 and 9.

Automatic Generation of Computer Programs 687

SUCCESSOR
STATEMENTS - DATA DESCRIPTION ~ STATEMENTS

PREDECESSOR .. ASSERTIONS ..
~ STATEMENTS ..

STAT El'lENT S
:z:: gj < E-I 8 COMPUTATION SOURCE TARGET INTERIM H CJ en E-I

DATA DATA DATA Q ~ H z ASSERTIONS I2:l >< H

NAMES NAMES NAMES :E .-l f:t1 0
.P1

~~

SOURCE
DATA TYPE 1
NAMES

TARGET I
DATA TYPE 2 \0 TYPE J
NAMES I2:l

~
DATA E-I

DESCRIPTION
INTERIM STATEMENTS
DATA LENGTH-'l"lPE 8 LENGTH-TYPE 8
NAMES EXIST-TYPE 9 EXIST-TYPE 9

POINTER-TYPE l(

MEDIA TYPE 7
4~ LENGTH

TYPE 4
EXIST

POINTER
.JL

ASSERTION COMPUTATION TYPE 4
STATEMBNTS ASSERTIONS

• Figure II-Precedence matrix table, indicating use and existence of types of precedences

of n statements, then there are n(n-l) pairs of statements
that need to be considered for finding pointers.

The different precedence types indicate corresponding
methods of interpreting the respective statements in the
subsequent phase of code generation, not discussed in this
report. The pointer type recognition rules are summarized
below. These precedence types are extensible. Precedence
types can be added provided that they can be stated in
terms of pointer selection rules applied to statements, pair
wise. The definition of pointer selection rules involves
analysis of data and function names in predecessor and
successor statements. Once the rules have been applied to
pairs of statements and existence of pointers has been
determined, these pointers are labeled with the appropriate

precedence type. The labels of the respective pointers are
then entered in the precedence matrix table, shown in
Figure 11, at the intersection of a predecessor statement
row and the successor column. Thus, once this process has
been completed, a row will contain the types of all the exit
pointers of a statement and a column will contain all the
entry pointers types.

There are basically two main types of pointers:
(1) Data Tree Hierarchy: between data description state

ments (data names) within a FILE, organized in a
tree structure. For source data the node closest to the
apex is the predecessor and the node at the end of th""!

branch is the successor, (precedence type 1) and vice
versa for target data (precedence type 2).

688 National Computer Conference, 1977

(2) Data Determinancy: between assertions and data
descriptions statements. When the data name is the
source of an assertion, a data node is the predecessor
and an assertion node is the successor (type 3). When
a data name is the target of an assertion, an assertion
node is the predecessor, and a data node is the
successor (type 4).

Additionally, there are several miscellaneous precedence
types requiring special interpretations in the code genera
tion, as follows:

Media (storage) statements can have entries from source
file statements (type 6) or entries from target files (type 7).
LENGTH and EXIST type variables can have pointers to
source (type 8) or target data (type 9) respectively. The
POINTER type variables have pointers only to source data
(type 10).

Figure II shows the Precedence Matrix with the rows
and columns ordered by respective types of statements.
The possible precedence types are indicated at the appro
priate intersections. The ordering of statements in Figure II
is not in fact required, but is purely for illustration and
suggests useful reports to the user (as described below).

Analysis of precedence information

As indicated in Figure I, a most important aspect of the
concept of the MODEL system is the MODEL Processor's
solicitation of new or modified statements. A number of
reports are produced fur review by the user. First, the
Processor produces a listing of MODEL statements and a
report which cross references each data name with the
corresponding data and assertion statements. In addition,
the Processor requests the user to resolve problems that it
encounters. These requests have been divided into four
classes: Incompletenesses, Ambiguities, Inconsistencies,
and other Implications. Analysis of the information in the
precedence matrix (Figure II) can provide most of this
information, as discussed below.

Incompleteness and Inconsistency problems are similar
to "errors" and resolution of such problems is prerequisite
for completion of the processing. They normally terminate
processing. Ambiguity and Implications problems are simi
lar to "warnings," and the Processor continues to complete
the subsequent generation of code in the object language.
The user may wish to examine these comments of the
Processor, and, if necessary, make appropriate modifica
tions, and resubmit them to the Processor. Otherwise these
comments should be incorporated in the documentation of
the program module.

The messages reporting results of the analysis which are
sent to the user must be phrased in a manner that will make
it easy for him to make modifications. The messages should
therefore preferably address only one statement which
needs to be added or modified. The exception to this rule
would be where problems arise from Inconsistencies or
Implications which are based on more than one statement.

Incompleteness is defined as an instance where the graph

is incomplete, where entire statements are missing or where
statements are duplicated. Such cases can be recognized by
searching the precedence matrix of Figure 11 to verify the
following conditions:

(a) Each row and column must have at least one pointer
(in a column) and one exit pointer (in a row), with the
following exceptions: Source and Target file statements
have only an exit pointer or an entry pointer, respectively,
while field statements may have no exit pointer (where the
field is not used in deriving the target data). Absence of
expected pointers, as above, indicates that a statement
must be added by the user.

(b) The number of pointers in rows and columns must
~J ... o hp rhprkpcl ."OJ1rrp cI~t~ ~ncl t~ropt cI~t~ '"t~tptnpnt'"
----~ -- _ __ _-_. --_ .. _- -_ - _a. t=)_ .. -- _ _a.,
can have only one pointer in the corresponding column and
row, respectively. Also, Assertion statements can have
only one pointer in the corresponding row. The existence of
more pointers indicates either an Ambiguity which must be
resolved by the user adding qualifying names to the names
of similarily named data, or a logical Inconsistency due to
duplicate statements.

(c) Each source data file statement which has an index
sequential (lSAM) organization, must also have a
POINTER type statement as a predecessor.

(d) Pointers in each row and column, should not origi
nate or terminate, respectively, in statements having the
same data or assertion name, otherwise an Ambiguity or an
Inconsistency is indicated.

(e) The number of pointers in an assertion column must
equal the number of source variables of the assertion.

(f) All pointers must conform with the allowable types
indicated in Figure II.

Before reporting the Incompletenesses, an attempt is
made to resolve these problems automatically. If such
resolution is possible, the suggested additions or modifica
tions of statements are reported. If this process is not
successful, appropriate messages with an indication of the
missing or inconsistent statements are sent to the user. This
supplementing of MODEL statements by the Processor is
essential to relieve the user of providing much tiresome
detail which may appear evident to the user. Rules for
making such judgments may be added or modified based
on experience with the Processor. Examples of such auto
matic additions and modifications to MODEL statements
include:

(a) Modifying an assertion statement by preceding the
names of an ambiguous data used in assertions with the
names of their respective files (or other higher level data
names). This would resolve the ambiguity where the same
data name is used in a number of data statements.

(b) Naming of statements and identifying the SO URCE
(independent) and TARGET (dependent) variables of asser
tions (where the user omitted this information).

(c) Providing assertions that will indicate equality of
similarily named source and target data in the absence of

other assertions expressing relationships between such
data.

Inconsistencies are conflicts which require the user to
conduct a logical analysis of more than one of the submitted
statements. Some Inconsistencies are simple to determine.
Examples were shown in the discussion of incomplete
nesses above, where a statement node has more than one
exit or entry pointer, but only one is permissible. An
Inconsistency message must then be produced which in
cludes the offending statements. A more complex type of
Inconsistency arises from the existence of "cycles" which
are closed paths in the directed graph, each with a number
of nodes and interconnecting pointers. The process for
finding cycles is discussed in the references. Cycles in the
directed graph denote faulty circular logic. They do not
indicate iterations in the resulting program. Iterations in the
program originate from a number of other features of the
language such as the use of subscripts (FOLEAClLX)
following the name of a variable in an assertion and from
the use of repeating data. It is required of the user to
"open" the loops found by the processor through a modifi
cation of some of the statements corresponding to the
nodes of the loops before the Processor can continue with
the code generation.

Implications are classes of logical conclusions based on
submitted statements that are considered to be potentially
of interest to the user. The Processor, while capable of
determining such conclusions, cannot further evaluate the
implication, either because of limitation of the analysis
methods that are employed, or because of lack of informa
tion of the area where the program is to be employed.
Therefore the cooperation of the user is requested to check
and verify the reported conclusions. Implication can be
effectively reported in a form similar to "decision tables"
which have been widely used in the past. Two such tables
can be extracted from the matrix of Figure 11, consisting
only of the data name rows and assertion columns where
pointers of Type 3 exist and assertion rows and data
columns where Type 4 pointers exist. Such tables are
~side.l:abl¥ sw.aller than the matrix of Figure II and

Automatic Generation of Computer Programs 689

therefore they can include the entire row and column
statements.

CONCLUSION

The restrictions on space have limited the scope of this
article to the extent that only a small illustrative example
was presented with the objective of familiarizing the reader
with the general use and operation of the system. The
reader is referred to Reference 4 for a more comprehensive
survey of the field of automatic generation of programs.
References 1, 2, 3 and 4 provide detailed description of
syntax and semantics of MODEL, and on the methods of
generating programs automatically.

ACKNOWLEDGMENT

This paper is based on MODEL II. The implementation of
this system was the responsibility of: S. Shastry and Y.
Chang-Syntax analysis, N. A. Rin-precedence matrix
and code generation, A. Pnueli-sequence and iteration
analysis.

REFERENCES

1. "MODEL II-Automatic Program Generation, Description and User
Manual," February 15, 1977 and "Automatic Generation of Computer
Programs For Converting Transmitter Data To IRS Tape Standards
Phase I Report," December 15, 1976. Reports submitted to the Internal
Revenue Service, Washington, D.C. 20024, Contract TIR-17-62.

2. Rin, N. Adam, "Automatic Generation of Business Data Processing
Program's From A Non-Procedural Language," A dissertation in Com
puter and Information Sciences, University of Pennsylvania, Philadel
phia, Pennsylvania 19174.

3. Prywes, N., "Automatic Generation of Computer Programs," Moore
School Report #76-02, University of Pennsylvania, Philadelphia, Pennsyl
vania, 19174, September 1975.

4. Prywes, N., "Automatic Generation of Computer Programs," in Ad
vances in Computers, Rubinoff and Yovits ed. Academic Press, in print.

5. Prywes, N., "Automatic Generation of Software Systems," Data Base,
Summer 1974, pp. 7-17

Sorting with associative secondary
storage devices*

by c. s. LIN
University of Utah
Salt Lake City, Utah

ABSTRACT

A method for sorting large files stored on disks which
possess an associative search capability is described. This
method, called the bucket sort algorithm, uses a sort
domain histogram to exploit the associative search capabil
ity. We discuss how to establish the sort domain histogram
and analyze the performance of the bucket sort algorithm.
Compared to the standard merge sort algorithm, this algo
rithm requires at most the processing time necessary for the
initial run generation and the first pass of the merge
operation. It also uses no disk storage space to store
temporary results. The histogram creation process is analo
gous to Edelberg and Schissler's gyro sort algorithm which
uses special hardware to rearrange data stored in electronic
memory loops. The histogram creation process is more
efficient than the gyro sort algorithm when each memory
loop stores a large number of records and the distribution of
sort domain values is not highly irregular.

INTRODUCTION

A recent trend in data base machine research is to design
large scale associative memories using head-per-track

ries. The design and application of such associative memo
ries have been discussed by Parker,9 Parhami,8 Healy,3
Su,t.11 Ozkarahan,7 Shuster, to Lin,5.6 and Edelberg. 2 These
associative memories have efficient search capabilities to
support retrieval operations. We will study whether these
associative memories can support another important data
base processing operation-namely, sorting.

We suggested the idea of using an associative search
capability to facilitate sorting operations in Reference 5.
This idea leads to the so-called bucket sort algorithm which
uses a sort domain histogram to exploit the associative
search capability. In that paper, we assumed that the
histogram was given. Now we will discuss how to dynami
cally create a sort domain histogram and then analyze the
performance of the overall bucket sort algorithm. We will

* This research was partially supported by the National Science Foundation
under grant MCS75-09903.

691

compare the performance of this algorithm with the stand
ard merge sort algorithm.

The bucket sort algorithm is a software approach to using
associative memories as sorting devices. Edelberg and
Schissler proposed a hardware intelligent memory which
has both an associative search and a sorting capability. To
perform the sort operation, the intelligent memory has a
"Precession Control" circuit in addition to the circuit for
performing the associative search operation. They devel
oped a "Gyro Sort Algorithm" which uses the precession
control circuit to sort large files stored on the intelligent
memory. We will compare the efficiency of the bucket sort
to the gyro sort.

THE BUCKET SORT ALGORITHM

The bucket sort algorithm is designed for sorting large
files stored on disks which have an associative search
capability. An associative head-per-track disk contains a
separate processor module connected to each read/write
head. As the disk rotates, these modules compare data
passing under the heads with the search key and then
transfer selected data to the output channel. If the set of
£elected. records is. small~ .all selected I:econi" ~. cbe
transferred from disks to main memory in one disk revolu
tion time. Otherwise, we can mark the selected records and
take as many revolutions as needed to output marked
records. The bucket sort algorithm exploits this associative
search capability to faciliate sort operations.

Let us define the term domain, sort domain, interval and
bucket. By a domain we mean a field in (or an attribute 00
a record. Assume we want to sort the records of a file F
according to their values in some domain J. We call J the
sort domain with respect to this sort operation. An interval
on domain K of some file is the set of K-values which fall
between some given upper and lower bounds. When sorting
a file F, a bucket is the set of records from F whose sort
domain values are larger than the lower bound and smaller
than or equal to the upper bound of a given interval. In
general, buckets are not sorted internally.

Suppose we partition a file F into n buckets and the
interval bounds when listed in ascending order are do,

692 National Computer Conference, 1977

d1 , ••• , dn • Assume the CPU can sort each bucket in one
revolution time. We can sort the file F in the following way.
On the first revolution, we move records with sort domain
values less than d1 into the main memory and simultane
ously mark all other records. On the i-th revolution we
output marked records with sort domain value less than
d i +1 and clear the marked records. As each bucket arrives
we can sort it in main memory. Meanwhile, we can retrieve
the next bucket into main memory. Thus, the file F is
sorted bucket by bucket in an ascending order along the
intervals of the sort domain. We continue in this way until
the n-th revolution, when we simply output all marked
records and clear their marks. The last bucket is sorted
during the (n + l)-th revolution. If there is no output conten
tion in any bucket retrieval, the file F can be sorted in n+ 1
revolutions.

Naturally, a problem with this bucket sort algorithm is
determining the value of the interval bounds. Our solution
is to maintain a domain histogram for every potential sort
domain. The histogram contains the interval bounds and the
size of each bucket. For static permanent files, the histo
gram can be collected and saved as a part of data statistics.
For some attributes such as sex, color, etc., the number of
possible sort domain values is usually much less than the
number of records in the file. If we know the possible
values for these sort domains, we might just as well sort the
file by retrieval using the possible values as the key
ordering. We don't need a histogram in such cases. How
ever, in general, the domain histogram must be generated
dynamically. We propose the following process to create a
domain histogram.

HISTOGRAM CREATION PROCESS

For small files, we scan the file sequentially and read sort
domain values of all records into main memory. Then we
form a sorted list of sort domain values. From this list, we
can easily determine the interval bounds. For large files,
this method is not useful because it requires too much main
memory. We can use the following method to determine the
interval bounds for large files.

Suppose we want to partition a file into N buckets of B
bytes. * If the sort domain values are uniformly distributed
over the range (V min' V max), we can simply set the interval
bounds at:

d i = V min + (V max - V min) *ilN

However, the sort domain values usually are not uniformly
distributed. The above interval bounds may partition a file
into N buckets of different sizes. Some buckets may be
either too small or too big. To reduce such non-uniformity,
we can partition each of the above N intervals into P
intervals with the interval bounds set at:

d j = V min +(V max - V min) ~/(P*N)

If P is large enough (say, P= 10), each of these P*N

* We will discuss how to determine the bucket size in the next section.

intervals should contain a bucket no more than B bytes
(The average size is B/P bytes). Assume KNT(j) is the size
of each bucket. We can combine several adjacent intervals
into one if the sum of their KNT(j) are less than B bytes.
U sing this method we can determine interval bounds which
form a nearly uniform partition of the file.

In most cases, the buckets generated by this process
should be equal to or smaller than B bytes. Thus, with B
bytes of working space in main memory, each bucket can
be sorted internally. In case some buckets of the P*N
intervals are larger than the available main memory, these
buckets can be sorted by a standard merge sort algorithm.
An alternative way to handle these oversized buckets is to
partition them again using the same method described
above. If we use a large value for P, oversized buckets
should not be generated frequently. In the following discus
sion, we assume that all buckets are smaller than B bytes.
Under this assumption, the average bucket size in the worst
case is 0.5B bytes. This happens when the sum of every
two buckets is slightly greater than B bytes. Thus our
interval determination process may partition a file of N *B
bytes into 2N buckets. However, there is only a very small
probability of this worst case occurring.

PERFORMANCE OF THE BUCKET SORT
ALGORITHM

In the bucket sort algorithm, the time required to sort a
file is the sum of: (I) histogram creation time, and (2)
bucket retrieval and sorting time. When setting up the
histogram with P*N intervals, it requires little internal
processing because we just update one of the KNT(j)' s as
each record is scanned. In most cases, this operation
should not be CPU bound. Therefore, if it requires R
seconds to sequentially read the file at maximal data
transmission rate, then the histogram with P*N intervals
can be generated in R seconds. We can ignore the process
ing time required for interval bound determination process
because it is usually much smaller than R seconds. Thus,
the histogram creation time is approximately R seconds.

The processing time required for the bucket retrieval and
sorting operations is dependent on the CPU's speed, bucket
size and the algorithm used for sorting each bucket. As we
want eventually to compare the bucket sort algorithm with
the standard merge sort algorithm, we will use the replace
ment selection algorithm4 to sort each bucket. The replace
ment selection algorithm is used in the merge sort algorithm
to generate initial runs. It uses two input buffers, one
output buffer and some working storage in main memory.
We will assume the reader is familiar with the details of the
replacement selection algorithm.

Suppose the working storage can store W records and the
bucket size is smaller than W records. To begin the bucket
sort operation, we retrieve the file bucket by bucket to fill
up the working storage. Then we build, also in the working
storage, a selection tree for the records in the working
storage. Through the selection tree, we can select the

record whose sort domain value is the smallest (or largest)
among the records stored in the working storage in
0(lOg2 W) comparisons. While the remaining records are
retrieved bucket by bucket, we perform sorting by repeat
ing the following replacement selection process until the file
is sorted. The process is to select, from the working
storage, the record whose sort domain value is the smallest
(or largest) and replace it with a record from the input
buffer. With the bucket retrieval operation, the sort domain
value of the selected record is always less (or greater) than
the sort domain value of the replacement records. This
allows us to sort the file, record by record, in ascending (or
descending) order.

Suppose the file has FZ records and it takes S seconds to
select and replace a record in working storage. In a CPU
bound situation, the bucket retrieval and sorting operations
take approximately FZ*S seconds. * To store the sorted file
back to disk, it takes an additional R seconds if the read
and write operation cannot be overlapped. Notice that the
value S is proportional to log2W, To reduce the value S, we
can choose a small value for W. The optimal value of W,
Wopt , is the largest bucket size that allows the replacement
selection (bucket sort) operation and the bucket retrieval
operation to be totally overlapped. If the bucket is smaller
than Wopt , the replacement selection operation becomes 110
bound. Since our histogram creation process cannot uni
formly partition a fIle into buckets of Wopt records, we
should set Wand the largest bucket size slightly larger than
WoPt records so that the average bucket size is about Wopt

records.
If the speed of the CPU is very high, the replacement

selection operation could be 110 bound even when all
available main memory is used as working storage. In such
a case, the minimal processing time required for bucket
retrieval and sorting operations is R seconds. As described
before, it may take another R seconds to save the sorted
file. This minimal bucket processing time can be achieved
only if the bucket retrieval operations can transmit selected
records from disk to main memory at full speed. Suppose
the bandwidth of the disk is t bytes/revolution. The bucket
size must be exactly t bytes or multiples of t bytes in order
to "achIeve such an Optlm~m. However, our hIstogram
creation process usually cannot uniformly partition a file
into buckets of t bytes or multiples of t bytes. Suppose the
average bucket size is 2.4 t bytes. It requires three revolu
tions to retrieve each bucket. The average transmission rate
is 0.8 t bytes/revolution in this case. The bucket retrieval
operation will take (l/0.8)*R seconds. In general, it takes
LF*R seconds to perform the bucket retrieval and sorting
operations where LF is a "loss factor."

The range of LF is between 1 and 2. This range is based
on the assumption that the size of the working storage is
larger than t bytes. Such an assumption is valid in most
systems. The worst case (LF=2) happens when the bucket
size is slightly larger than t bytes. Because it takes two
revolutions to read a bucket, the average transmission rate
is only 0.5 t bytes/revolution. We use only half of the

* Assume the time required to establish the selection tree is negligible.

Sorting with Associative Secondary Storage Devices 693

bandwidth in the worst case. Large bucket size will make
LF close to 1.

Thus, the total processing time required for the bucket
sort algorithm is:

1 :5LF:52 (110 bound)
(CPU bound)

COMPARISON OF THE BUCKET SORT AND THE
MERGE SORT

(1)

To show the effectiveness of the bucket sort algorithm,
we now compare its performance with the merge sort
algorithm which is the standard method for sorting large
files stored on disks. For the purpose of comparison, we
assume that the file to be sorted by the merge sort algo
rithm is stored on head-per-track disks. Because the pro
cessing time listed in the equation (1) is based on the
assumption that read and write operations on disks cannot
be overlapped, we will impose the same limitation in the
merge sort algorithm.

In the merge sort algorithm, the sort operation is per
formed in two steps: (1) generate initial runs, (2) merge the
initial runs. The initial runs are sorted subfiles generated by
the replacement selection algorithm. In the replacement
selection operation of the merge sort, we read the file
sequentially. Given a working space which can store W
records, the replacement selection algorithm can produce
FZ/2W initial runs* for a randomly ordered file of FZ
records. Using an m-way merge, it takes [logm FZ/2W] passes
to merge these initial runs.

The initial run generation process is the counterpart of
the bucket sort operation since they use the same algo
rithm. Thus, in a CPU bound situation, the initial run
generation process takes about FZ*S+ R seconds to per
form. Notice that, in the merge sort, we usually want to
keep the size of working storage, W, as large as possible to
reduce the number of merge operations. This is different
fr!Jm. the bucket sort ~lgorithm in which we prefer .~§mall
W value to reduce the internal processing. As a result, the
replacement selection operation in the merge sort may use a
larger working storage and it takes more internal processing
to select and replace a record in the selection tree. In other
words, the S value in the merge sort is usually larger than
the S value in the bucket sort. For simplicity of discussion,
we assume the S values of the two algorithms are the same.

When the replacement selection operation is 110 bound,
the initial run generation process can be completed in 2R
seconds rather than LF*R + R seconds. This is because we
read the file sequentially in the initial run generation
process. We can transmit data from disk to main memory at
full speed, i.e. LF= 1, in this case.

The merge operation usually should not be CPU bound
because it involves little internal processing compared to
the replacement selection algorithm. To merge FZ/2W initial

* Equation (3) of section 5.4.6 in Reference 4.

694 National Computer Conference, 1977

runs, it takes about 2R*[logm FZ/2\V] seconds. Thus, the
total processing time required for merge the sort algorithm
is:

{
FZ*S +R (CPU bound) +2R*[l FZ/2W]

2R (I/O bound) ogm (2)

To compare the performance of the bucket sort and the
merge sort, we subtract (1) from (2). The result is:

CPU bound: R*(2*[logm FZ/2W]-l) (3)

I/O bound: R*(2*[logm FZ/2W]- LF) (4)

Because there is at least one pass of merge operation, the
',Talue of [logm FZ/2W] is greater than or equal to 1. Since
the value of LF is smaller than 2, both (3) and (4) are
aiways greater than O. This shows that the bucket surt
algorithm is more efficient than the merge sort algorithm.
The worst case occurs when LF= 2 and [logm FZ/2W] = 1,
because the value of [logm FZ/2W] indicates how many
passes of merge operations are required in the merge sort.
The above comparison shows that, in the worst case, the
bucket sort algorithm requires the processing time neces
sary for initial runs and the first pass of merge operations of
the merge sort algorithm. For small files, the bucket sort
algorithm is slightly faster than the merge sort algorithm.
As (3) and (4) show that the difference in the performance
of these two sort algorithms is proportional to [logm
FZl2*W], the bucket sort algorithm is even more favorable
for sorting large files.

There are other advantages of using the bucket sort
algorithm to sort files stored on associative disks:

(1) No temporary space required on the disk-The
bucket sort algorithm requires only some working storage
space in main memory. While in the merge sort, we need a
temporary storage space on disks to store the initial runs
and the temporary results of merge operations. The size of
this temporary space is equal to the size of the file to be
sorted.

(2) Shorter response time-In the bucket sort, we can
provide the first portion of the sorted file is available
immediately after the first bucket is sorted. While in the
merge sort, we must wait until the last pass in the merge
operation to get such a result.

(3) Less cost to interrupt a sort operation-Sorting is
always a time consuming operation. In a multiprogramming
system, sometimes it is necessary to interrupt a sort opera
tion to favor a short job. When using a merge sort, we must
save all temporary results, whose size is as large as the file
itself, unless the interrupt occurs during the last pass of the
merge operation. Frequently, this temporary disk space
must be released to perform other jobs. That means we
have to start all over again later. In the bucket sort, the
sorted buckets can be consumed by other processes imme
diately after they are generated. In this case the only
temporary result we have to save is the histogram. Because
the size of the histogram is much smaller than the file, it
will be cheaper to save.

COMPARISON OF THE BUCKET SORT AND THE
GYRO SORT

Electronic cyclic memories such as charge-coupled de
vices and magnetic bubble memories can be used to imple
ment large scale associative memories. We can consider
these memories as "electronic head-per-track disks." Such
electronic disks have an important characteristic not avail
able in mechanical disks: that is the data circulation rate in
each memory loop (equivalent to a track) can be varied or
even dropped to zero under program control. Such a
characteristic could be used to design a sorting capability.

Edelberg and Schissler2 designed an intelligent memory
which has both an associative search and a sorting capabil
ity. The processor module of each memory loop has a
"precession control" circuit to control data circulation
within that loop. For each loop, there is a sub-loop which
holds a record from that loop. Associated with every two
sub-loops of adjacent loops, there is a processor module
which can exchange the records in the two sub-loops
according to their sort domain values. Thus, each processor
module can sort a pair of records stored in two adjacent
sub-loops. With n processor modules performing sort oper
ations in parallel, we can sort n records stored in n adjacent
sub-loops in (n+ 1)/2 sub-loop rotation times.

To sort a large file stored on intelligent memory, Edel
berg and Schissler designed a gyro sort algorithm which
uses the precession control circuit and the sorting capability
in the sub-loops to rearrange the records. They consider
each file stored on the intelligent memory as an array.
Suppose a file is stored in L adjacent loops (rows) and each
loop contains K records. The gyro sort algorithm sorts this
LxK array by performing the following process K times:

(1) Sort columns-Move each column into the sub-loops
and sort it with the sorting capability described above.

(2) Precess all rows-Rotate the elements in the i-th row
by (i-1)mod K positions (l :5i:5K).

This algorithm rearranges the elements in the array in
such a way that the array is sorted across the rows but not
within each row. We can consider each memory loop now
contains a bucket. To sort elements in each row, i.e., each
memory loop, we must rely on other means, such as sorting
each row in the main memory.

Since the gyro sort algorithm is used for forming a bucket
in each memory loop, it is analogous to our histogram
creation process in the bucket sort algorithm. However, the
histogram creation process does not physically form buck
ets in the memory. With the associative search capability,
the sort domain histogram is sufficient for making bucket
retrieval operations. For a file of LxK records, it takes
approximately K*Ll2 memory loop circulation times
(equivalent to disk revolution times) to perform a gyro sort.
Suppose we pack 100 records (K = 100) in each memory
loop, it will take 50L loop circulation times to perform a
gyro sort. On the other hand, our histogram creation

process requires only L loop circulation times (assuming it
is not a CPU bound operation) regardless of how many
records are contained into each loop.

As far as the operation of sorting each row and the
operation of bucket retrieval and bucket sort are con
cerned, there is little difference in performance since both
operations must be performed by the CPU. Thus, when
each memory loop contains a large number of records, the
bucket algorithm is more efficient even though the gyro sort
uses more hardware.

The main advantage of the gyro sort algorithm is that its
performance is independent of the distribution of sort
domain values. When sort domain values are concentrated
within certain ranges, the histogram creation process may
have to scan the fIle several times to determine the proper
interval bounds. Such cases usually occur when the number
of possible sort domain values is small. For example, it
occurs for sort domains such as color and sex. As we
mentioned earlier, the file may as well be sorted by retrieval
using the possible values as the key ordering in these cases.

When the number of records per loop is small, the gyro
sort algorithm could be more efficient. For example, if
K=4, it takes only 2L loop circulation times to perform a
gyro sort. Since each loop contains only 4 records, it takes
very little internal processing to sort each row of the array.
In the bucket sort, we should not set the bucket size as
small as 4 records even if the optimal bucket size is 4
records. This is because it would require too much main
memory space to store the corresponding histogram. It is
necessary to trade the processing efficiency for main mem
ory space requirement in this case. A large bucket size will
increase the time for internal processing and may make the
bucket sort less efficient in such a case. However, the cost
per-bit of memories with a small number of records per
loop is high. To reduce the cost; usually it is necessary to
pack a large number of records into each loop in large scale
associative memories. Thus, we can conclude that the gyro
sort is useful for small scale, high speed associative memo
ries. The bucket sort algorithm is suitable for large scale,
lower speed associative memories.

SUMMARY

We have described an algorithm for sorting files stored on
memories which have an associative search capability. This

Sorting with Associative Secondary Storage Devices 695

algorithm, called the bucket sort algorithm, consists of two
operations: (1) establish a histogram in main memory, and
(2) use the histogram to perform bucket retrieval and
sorting operations. Compared to the standard merge sort
algorithm, the bucket sort algorithm requires at most the
processing- time necessary for initial runs and the first pass
of the merge operation, the bucket sort algorithm is also
more efficient than the gyro sort algorithm if each memory
loop stores a large number of records and the distribution of
sort domain values is not highly irregular.

ACKNOWLEDGMENT

I am grateful to Professor John M. Smith for his interest,
suggestions and guidance in conducting this research.

REFERENCES

I. Copeland, G. P., G. J. Lipovski, and S. Y. W. Su, 'The Architecture of
CASSM: A Cellular System for Non-Numeric Processing," Proc. of the
First Annual Symposium on Computer Architecture, December 1973,
pp. 121-128.

2. Edelberg, M. and L. R. Schissler, "Intelligent Memory," AFIPS Con
ference Proc., Vol. 45, 1976, pp. 393-400.

3. Healy, L. D., K. L. Doty; and G. J. Lipovski, "The Architecture of a
Context Addressed Segment Sequential Storage," AFIPS Conference
Proc. Part I, Vol. 41, 1972, pp. 691-701.

4. Knuth, D., "The Art of Computer Programming- Sorting and Search
ing," Vol. 3, Addison Wesley, 1973

5. Lin, C. S., D. C. P. Smith, and J. M. Smith, "The Design of a Rotating
Associative Array Memory for Relational Data Base Applications,"
ACM Transactions on Database Systems, March, 1976.

6. Lin, C. S., "The Design of a Rotating Associative Relational Store,"
M.S. Thesis, University of Utah, June 1976.

7. Ozkarahan, E. A., S. A. Schuster, and K. C. P. Smith, "RAP-An
Associative Processor for Data Base Management," AFIPS Conference
Proc., Vol. 44, 1975, pp. 379-387.

8. Parhami, B., "A Highly Parallel Computer System for Information
Retrieval." AFIPS Conference Proc .. Vol. 41, Part I. 1972. pp. 229-241.

9. Parker, J. L., "A Logic per Track Retrieval System," Proc. IFIP
Congress, 1971, TA4-I46-TA4-150.

,~ ~"S"'~'--fi-,+·~q'l!"!d-f(-f'- ~:- ·yit!da! Mtmu y'

System for a Relational Associative Processor,"' AFiPS Conference
Proc., Vol. 45, 1976, pp. 855-862.

II. Su, S. Y. W. and G. J. Lipovski, "CASSM: A Cellular System for Very
Large Data Bases," Proc. of Very Large Data Base Conference,
September 1975, pp. 456-472.

A specialized architecture for
textual information retrieval*

by L. A. HOLLAAR
University of Illinois at Urbana-Champaign
Urbana, Illinois

and

W. H. STELLHORN
U. S. Army Construction Engineering Research Laboratory
Champaign, Illinois

ABSTRACT

Retrieval of information from the complete text of large
document collections cannot be performed efficiently or
rapidly by current general purpose digital computers or by
most special purpose rotating memory associative proces
sors frequently proposed for efficient processing of rela
tional databases. Characteristics which distinguish text re
trieval from retrieval of formatted files are discussed, and a
computer configuration employing for special purpose pro
cessors is described.

INTRODUCTION

A major use of digital computers is to manage, correlate,
and retrieve large collections of data, either in the form of
formatted files or text with minimal formatting. Most data
base information retrieval systems are concerned with the
former, which was formalized in a paper on relational
~'~I'e~~'"br€~:l""t~~~~, 'erl"dement"r
the database can be regarded as an ordered n-tuple, with
one or more of the fields forming a unique key field.

For example, assume that the database is used for an
inventory control system. The fields in each element are the
inventory number (which, because it is unique for all
elements, is the primary key), a description of the item, the
supplier, the date purchased, and the amount paid. Queries
on the database can be for all items of a certain descriptio~
(single key exact match), all items purchased between two
dates (single key range), all items purchased between two
dates from a certain supplier (multiple key match), or a
number of other forms.

In general, the operations performed on a relational
database consist of matching, either exactly or within a
specified range, one of the key fields; marking elements

* This work was supported in part by the National Science Foundation
under Grant US NSF-MCS73-07980 A03.

697

based on the success or failure of a match operation and
selecting from among these marked elements using Boolean
operators; arithmetic functions performed on fields within
the elements; and the addition and deletion of elements
from the database.

The nature of the database allows elements to be stored
in any, order without affecting the result of a query (al
though in a particular implementation they may be sorted
on one of the key fields to improve the retrieval speed). The
data may be encoded to minimize the storage requirements
or improve the efficiency of the matching by allowing the
use of either ranges or bit masks. Large databases of this
type would generally contain 10 to 100 million characters.

TEXTUAL DATABASES

The second form of data organization is that used by
textual information retrieval systems. The files consist of
collectioAII .of dQCu 1De~., witll,~. ~,.to.,dellmit ,aad,

access the individual documents within the file. While
formatted databases are concerned with fields and key
values of known position and format, textual databases
primarily operate on contexts (sentences, paragraphs, doc
uments, etc.) and retrieval keys consisting of arbitrarily
chosen words or portions of words. The contents of textual
databases are order dependent and allow little encoding of
the data. Very little formatting is necessary, although for
efficiency special flags may replace normal typography to
indicate the start or end of a context (such as replacing a
number of leading blanks on a line with a mark to indicate
the start of a paragraph or replacing a period with an end of
sentence mark so that decimal points are not misinter
preted).

The normal operations on a textual database consist of
forming progressively smaIler subsets of the database until
the number of documents is small enough to be examined
by the user. This is done by the specification of search

698 National Computer Conference, 1977

patterns consisting of co-occurrences, alternatives, and
exclusions. Searches for co-occurrences locate two or more
terms within a specified context ("FIND 'BEOWULF'
AND 'GRENDEL' IN SENTENCE"). The co-occurrences
can be either unordered, as in the example given above, or
ordered. The specification of an ordered co-occurrence can
either require that the terms be contiguous or be separated
by not more than a specified number of words. Searches for
alternatives locate contents which contain at least one of a
group of selected terms. The alternative terms can be
specified explicitly, generated from a thesaurus based on a
key term, or produced automatically by either suffixing or
prefixing. In the latter case, the user specifies that any
words either starting or ending with a specified string are to
J.,.~ .. ~~rI ~~ .. J.,.~ ~~ .. ~J.,. D~~I .. ~~~~ ~~~_~J.,.~~ 1~~~ .. ~ ~~~ .. ~~ .. ~
l.}v U;'VU III Ulv lIla~vIl. LAvIU;'lVIl ;'val vIlv;' IVva~v vVIl~vA~;'

which contains one term but not another.
Many textual databases contain a large number of docu

ments and grow fairly rapidly. One suggested database
consists of 200 million characters, with documents being
deleted as new documents are added to keep the files from
exceeding this amount.:! A file containing the statutes of all
states would take approximately 1 billion characters, while
one containing all court decisions (which are of more
interest to practicing lawyers) would take around 25 billion
characters. This corresponds to 250 disk spindles, using
3330-type technology.

As storage technology improves, the storage of these
large databases becomes feasible. Furthermore, as more
typesetting is done using computers, the effort necessary to
produce the database is substantially reduced-in many
cases the same tape used as input to the photocomposition
program can be reformatted to form the database. How
ever, while the production and storage of large textual
databases is possible, the rapid retrieval of data from these
databases using conventional digital computers is not prac
tical. For example, if it takes 1 microsecond to examine
each character (which is quite fast), it would take about 7
hours to completely scan 25 billion characters! Of course
most searches have no relevance to a given query, so that
much of the time is spent on unnecessary scanning.

INVERTED FILES

The common approach to searching such collections
rapidly is to use inverted files, i.e., to generate an index
consisting of each important word or phrase and a list of all
the documents in the database in which the word is found. 3

Figure 1 illustrates one possible scheme for implementing
an inverted file structure. Although it is convenient to view
this structure as having two parts, the inversion and the
document files. increased efficiency can be obtained if the
inversion file is divided into two separate files, index and
postings. The index file contains each unique term along
with a pointer to the postings and a count of the number of
entries in the po stings list. The po stings file contains the
actual lists of documents in which the term is contained.
The use of two levels simplifies the searching of the index
required by prefix and suffix operations. and provides

WDEX FILE

POSTI~jr,s FILE

DOCUMENTS . . .
Figure I-Inverted file structure

information to optimize the order of merging the lists for
searches which involve mUltiple terms.

The inverted file structure allows the user to combine
(using operators such as AND, OR, and AND NOT) lists of
entries until a small subset of the database is formed, which
can then be searched. However, this approach increases
the amount of storage required to hold the database by 7 to
120 percent, depending on the level of the inversion. 4 If the
file is inverted to the document level, very little overhead is
required and the time necessary to merge lists will be small,
but a large number of documents will require full text
searching if the query asks for the co-occurrence of two
terms in the same sentence or paragraph. If inversion is to
the word level, no full text searching will be required, but
the inverted file will probably be larger than the original
data file and the time required to merge the lists will be
high.

When the programs necessary for full text searching or
list merging are examined, it becomes apparent that these
tasks do not lend themselves nicely to conventional digital
computers, which were originally designed for numeric
operations. Less than 10 percent of the time within the
inner loops are spent fetching or storing the actual data
the rest of the time is spent fetching instructions, control
ling program flow, or aligning data so that it can be
operated upon. It is clear that if extremely large textual
databases are to be utilized, some form of specialized
computer architecture must replace the general purpose
computer.

A number of papers5
-

10 have suggested using a rotating
memory with logic on each head for the parallel execution
of non-numeric functions. The memory can be either a disk
or drum (generally with a head per track) or some form of
shift register or delay line (bubble memory, CCD, etc.),
which circulates the data in a serial fashion. As the data

passes by the head of the rotating memory, logic associated
with each head examines the data to check it against a
specified key. If a proper match is found, a method is used
to mark the data so that it can be referenced by later
operations. Properly configured and programmed, the oper
ation of one of these logic per track processors is identical
to that of an associative memory. 11

However, the operations performed by these rotating
memory associative processors are tailored for formatted
databases, such as relational databases. They do not per
form efficiently, if at all, on the context searches required
by a textual database information retrieval system. In
addition, most are not capable of operating on data which
spans more than one track, starting on one and continuing
on one or more additional tracks. This is a particular
problem on ordered co-occurence searches where the suc
cess of the pattern match cannot be determined by a single
processor.

A SPECIALIZED ARCHITECTURE

The system to be described is based on performance
evaluations and simulations done as part of the EUREKA
project at the University of Illinois ,12 discussions with
operators of large scale text retrieval systems, and projec
tions of system loading as the size of data and index files
are expanded. Many portions of it have been simulated and
some have been constructed as prototypes. Figure 2 illus
trates the general configuration of the system, with the flow
of information indicated by the arrows. The user interfaces
directly with a front end processor, which reformats his
requests and passes them to a resource scheduling proces
sor. The resource scheduling processor determines the
proper hardware subsystems necessary to service the re
quest, and sequences their operation. This configuration
would be used on an extremely large system, with smaller
systems having some of the separate processor subsystems
consolidated. For example. the front end processor and the
resource scheduling processor may actually be tasks imple-
fil:~!1!~~ 011 t~~. ~.(lm~ ~t:n~~~J purpq~~, c~)fnputer.

Figure 2-System configuration

Textual Information Retrieval 699

FRONT END PROCESSOR

This is a general purpose digital computer, possibly a
minicomputer, which is the primary interface between the
user at his terminal and the rest of the system. It is
responsible for the control of the terminals and their
associated lines and modems, as well as other devices such
as high speed line printers. Commands given by the user
are parsed by this processor, and diagnotics are given to the
user if any errors are detected. System output is formatted
based on the user's requests. In addition, a number of
utility tasks such as accounting, interactive HELP facilities,
etc., are handled by this processor.

RESOURCE SCHEDULING PROCESSOR

This subsystem, again probably implemented on a mini
computer, controls the other hardware subsystems the way
an operating system would control a variety of software
tasks. Its primary job is to queue requests entered from the
front end processor or produced as a result of the operation
of one of the hardware subsystems, and to dispatch them in
a manner which maximizes the system thruput. It tries to
reduce both the positioning and rotational latency of the
various disk systems by reordering the requests in the
queue. The user specified requests are reordered to reduce
the length of the intermediate results (and therefore the disk
transfers) during postings list merges according to an opti:
mizing strategy. 13 Finally, it monitors the operation of the
various hardware subsystems, providing diagnostic control
and error recovery if a problem occurs.

INDEX FILE PROCESSOR

The first level of the inverted file search is handled by
this subsystem. It finds the terms on the disk, and forwards
a list of pointers to the postings file disk controller to be
retrieved. The usage counts are returned to the resource
s.cheduli~.pI~eSSQr . so. th~, meIie . QlleraUou.""an, he.oJlti
mized. Ordinarily, this operation could be handled by the
resource scheduling processor, since it involves only a
simple disk lookup on a sorted file. However, the use of
prefixes and suffixes complicates the matter. In this case,
all entries which either end or start (or both) with a given
substring need to be retrieved from the disk. This is not
difficult for suffixing (except that the user may unintention
ally request a large number of entries), since the file is
sorted and all entries which match the beginning substring
are located in one group. However, the processing of
prefixes is not as simple. In this case, only the ending of a
word is known, while the file is organized by word begin
nings. The conventional solution is to search the file
sequentially for all terms which match the specified sub
string.

If system performance necessitates faster operation than
would be possible with conventional searching by a mini
computer, an associative processor similar to those dis-

700 National Computer Conference, 1977

cussed above can be utilized. Unlike the document file and
its operations, the index file is ideally suited for an associa
tive processor, since it consists of a series of 3-tuples.
However, most of the logic per head units proposed would
have to be redesigned to handle a problem which occurs in
pattern matching. Consider searching for the substring
ISSIPPI in MISSISSIPPI. In normal operations, the charac
ter matching circuits would skip the initial M, match the
following ISSI, and then expect to match a P. Instead, the
match unit encounters an S, and determines that the match
operation failed. If it then tries to restart the matching,
without backtracking to the second I of the word (most
systems are incapable of this backtrack operation), it will
not find the desired substring in the word, which is clearly
an eirOi. \~/hile this may seem a contrived situation, expen=
ence dictates that such situations do occur.

Therefore, the search processor must be capable of
backtracking or must provide some alternative mechanism
to handle this situation. Backtracking can be achieved by
the use of a special buffer equal in length to the largest
substring allowed in the implementation, and logic to recog
nize the possibility that backtracking may yield a produc
tive result.

POSTINGS FILE DISK CONTROLLER

This can be simply a standard disk memory system
controlled by the resource scheduling processor based on
the results from the index file processor. Data, in the form
of document po stings lists are transferred from the disk to
the buffer memory used by the list merging processor.
However, because of the high bandwidth capabilities of the
list merging processor, it may be necessary to increase the
data transfer capacity substantially. Prototypes have been
constructed for a modification to a 2314- or 3330-type
moving arm disk to allow the reading of a number of the
tracks (generally 8 or 16) in parallel. The remaining tracks
can be used for format and control purposes. This requires
the construction of special deskew and format control logic
to compensate for magnetic data migration or misalignment
of the heads, especially if the disk was written on a drive
other than the one used for reading.

LIST MERGING PROCESSOR

Conventional digital computers cannot efficiently merge
two or more sorted files-typically fewer than 10 percent of
the memory cycles in the inner loop of the merge operation
are devoted to fetching input list items or storing the results
of the merge. 14 The remaining cycles are used for the
fetching of instructions, alignment of data, and control of
program execution. While this is no problem if the lists are
not long or if time is not critical, on a large scale inverted
file information retrieval system, it can become a substan
tial bottleneck. It is not unusual to find that up to two-thirds
of the time on a large CPU is devoted to reading and
merging postings lists.

Because the operations necessary to merge two or more
lists are both simple and well defined, this is an ideal area
for special purpose hardware to replace general purpose
computers. In its simplest form, the required processor
consists of a comparator, a data selector, logic to access a
memory, and a special sequencer to control these compo
nents. Data is fetched from memory and placed in one of
two holding registers, corresponding to the two input lists.
The values are compared and the lower of the two is
transferred to an output register. If the desired operation
was to form the union of the two lists ("OR"), the output
register's contents are transferred to memory; if the inter
section ("AND") was specified, the transfer occurs if the

. two input values are equal. In either case, the register
",1-.;,,1-. 1-.01 ... ~1-.0 1"""0,, U., 1110 (A .. hAth • .f th",,, \IT"'r", "'rill'" n ."
"1.11""11 1.1""IU LIt'"" IVY"'"".I. YUILl.,,", \'-'1 VV\..J.J. .1..1. \".I..I.""J ."""'.1."" ""'1'-4I1.A.., &U

loaded with the next list entry from memory.
If fields other than the document number are present,

such as a count to indicate how often a term occurs in the
document or context flags indicating a term's location,
additional logic can be added to produce the desired results
in parallel with the normal J1,lerge processing.

The starting memory addresses and lengths for the input
lists and the operation desired are furnished by the resource
scheduling processor. After the appropriate registers have
been loaded, the merge processor is started, and operates
autonomously until it is finished or an error occurs. When
this happens, the resource scheduling processor is inter
rupted and a new operation is started.

Since the list merging processor does not have the
overhead of fetching and sequencing instructions, and can
be constructed to eliminate the data alignment problem,
speed increases of 10 to 20 over a general purpose proces
sor are possible. However, if a substantial increase beyond
this is necessary, some form of parallelism must be intro
duced. This can be done either by handling many list
entries at the same time or by merging more than two lists
during an operation.

Figure 3 shows the hardware ~onfiguration for a merge

CONTROL

MERGE
NETWORK

COORDIN
ATION

NETWORK

Figure 3-Merging many list entries in parallel

DATA
MEMORY

processor capable of combining more than one element
from a list at a time. 15 It is based on a Batcher-type even
odd merge network16 and a term coordination network
capable of removing unwanted results. The merge network
is capable of combining two sorted n-item lists into a single
2n-item sorted list. Processing is bit serial, with the most
significant bit first, and operates in a pipelined fashion. The
coordination network removes duplicate entries for OR
operations and duplicate and single entries for an AND.

Lists of more than n items can be accommodated by
modifying the connections so that only the first half of the
merge network results are sent to the coordination network,
while the second half are returned to the merge network.
Since only one input to the merge network remains, the
blocks from the two input lists must be interspersed.
Selection is based on the value of the first item within a
block, with the list having the lower value selected for input
to the merge network on the next cycle. At the beginning of
processing, the feedback path is initialized to a zero condi
tion, while at the end a final block of data consisting of
"infinite" values is sent to the merge network.

If a number of simple merge processors are connected
together to form a network, then more than two lists can be
combined at the same time. 17 Since each simple merge
processor, or element, has two inputs, the network takes
the form of a binary tree (Figure 4). A special memory
controller distributes input data from memory to the net
work, where it flows through in a pipelined fashion. Unlike
the previously discussed unit, where a postprocessor was
necessary to remove unwanted items, this network removes
them as they are being processed. The network operation is
synchronized to the buffer memory, with an item either
stored or fetched on each major network cycle.

1
'" ...
'" ~

c:
N

z

j

Programming of the network consists of supplying the

a:
o

NUMBER OF ELEMENTS •

,-- .. -.---- LOG~" S'!"AGES - . ------, . -"--'---1

I- '----,--,.
~

!!!
a:
l
(/)

o

INPUT LIST ENTRIES FROM MEMORY

Figure 4-Merging many lists in parallel

RESULTANT LIST
ENTRIES TO
MEMORY

Textual Information Retrieval 701

memory addresses for the input and output lists, and the
operation to be performed by each element. If the desired
expression does not need the entire network, a PASS
operation can be programmed to logically remove an ele
ment from the network. Loading can be done either directly
from the resource scheduling processor to the individual
elements (using an addressable configuration register for
each element) or by sending command information through
the network with a special flag. The latter is more practical
for LSI implementations, as it reduces the number of pins
required for each element.

Because all intermediate results are contained in the
network and processed immediately by the next stage, the
memory cycles previously used to store and later refetch
intermediate results are unnecessary. This can result in a
substantial increase in the effective bandwidth of the buffer
memory. For example, if the OR of 256 lists (not uncom
mon due to prefixing, suffixing, and thesauruses) is desired,
up to 88 percent of the memory cycles previously required
are unnecessary. If operations are limited by the transfer of
data between the buffer memory and slower disk files
because of space limitations, this savings can produce
substantial speed increases.

FULL TEXT SCANNER

The full text scanner is a logic per head rotating memory
processor, similar to the rotating memory associative pro
cessors and the index file processor previously discussed. 18

As was shown earlier, a standard rotating memory associa
tive processor is unable to efficiently perform the necessary
operations on data whose only formatting is context delim
iters replacing standard typography.

The scanner is sequentially positioned at each document
specified by the final result of the inverted file merge. For
each search, the comparison sUQstrings or terms are speci
fied, and the desired context delimiters loaded into start
and stop registers. An analysis circuit is configured based
on the specified operators and ordering to determine if a
S63r~h- has SU€~ R !lRrtle.~ .. come~ A wmfJthe.f-~
independent units process multiple tracks in parallel, with
scanning of data beginning independently in each processor
whenever a start of context flag is encountered. Whenever
an end of context flag is sensed, the results of the compari
sons are passed to the analysis unit to determine if the
specified pattern has been matched. If so, it is added to a
list of matching contexts for later reference by the user.

If the pattern is too large to be contained entirely within
the logic unit, it can be divided into a number of smaller
patterns and the results of these pattern matches merged
similarly to po stings lists. A more difficult problem exists if
the context spans more than one track. In this case, which
can be easily recognized by the lack of a context start or
end flag, data must be transmitted between the logic units
for two or more tracks to determine if the pattern has been
matched. Since the track logic which is scanning the end of
the context will complete its operation before the one
scanning the start, when the end of context flag is sensed,

702 National Computer Conference, 1977

the pertinent data is passed forward to the unit scanning the
start. When the unit scanning the start reaches the end of
the track, it can combine the information from its scan with
the data passed to it to determine if the pattern was
matched.

When all the scanning has been completed, the resultant
list is returned to the user through the resource scheduling
and front end processors. Since he will wish to display
some of the documents identified, commands can be sent
by the resource scheduling processor to the full text scan
ner to transfer a specified context to the front end proces
sor for display on the user's terminal.

SUMMARY

This paper has described the characteristics of a textual
database and its information retrieval system, and indicated
that it has fundamental differences from a relational data
base. It was noted that the storage technology exists, or
will shortly, to accommodate extremely large collections of
documents, some on the order of 25 billion characters.
However, current general purpose digital computers are
unable to efficiently and rapidly process quantities of text
of this magnitude. Special purpose processors, generally
rotating memory associative processors, suggested for effi
cient processing of relational databases also are unable to
efficiently handle textual data.

The architecture for an efficient inverted file information
system was presented, with specialized processors handling
the simple but repetitious tasks of merging lists of docu
ment pointers or scanning text for patterns.

REFERENCES

I. Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks," Comm. ACM, June 1970.

2. Roberts, D. C., "A Specialized Computer Architecture for High-Speed
Text Searching," presented at the Second Workshop on Computer
Architecture for Non-Numeric Processing, January 1976.

3. Roberts, D. c., "Survey of File Organizations," in Advances in Com
puters 12, M. Rubinoff, ed., Academic Press, 1972.

4. Rinewalt, J. R., "Evaluation of Selected Features of the EUREKA Full
Text Information Retrieval System," Report 823, Department of Com
puter Science, University of Illinois, September 1976.

5. Slotnick, D. L., "Logic per Track Devices," in Advances in Computers
10, Franz AIt, ed., Academic Press, 1970.

6. Parker, J. L., "A Logic per Track Retrieval System," Proc. IFIP
Congress, 1971.

7. Parhami, B., "A Highly Parallel Computer System for Information
Retrieval," Proc. AFIPS FlCC, 1972.

8. Healy, L. D., K. L. Doty and G. J. Lipovski, "The Architecture of a
Content Addressed Segment Sequential Storage," Proc. AFIPS FlCC,
1972.

9. Ozkarahan, E. A., S. A. Schuster and K. C. Smith, "RAP-An
Associative Processor for Data Base Management," Proc. AFIPS NCC,
1975.

10. Lin, C. S., D. C. P. Smith and J. M. Smith, "The Design of a Rotating
Associative Memory for Relational Database Applications," ACM
Trans. on Database Systems, March 1976.

11. Davis, E. W., "STARAN Parallel Processor System Software," Proc.
AFIPS NCC, 1974.

12. Hollaar, L. A., et aI., "The Design of System Architectures for
Information Retrieval," Proc. ACM National Conf., 1976.

13. Liu, J. W. S., "Algorithms for Parsing Search Queries in Inverted File
Document Retrieval System," Report 742, Department of Computer
Science, University of Illinois, April 1975.

14. Hollaar, L. A., "A List Merging Processor for Information Retrieval
Systems," presented at the First Workshop on Computer Architecture
for Non-Numeric Processing, October 1974.

15. Stellhorn, W. H., "A Specialized Computer for Information Retrieval,"
Report 637, Department of Computer Science, University of Illinois,
October 1974.

16. Batcher, K. E., "Sorting Networks at their Applications," Proc. AFIPS
SlCC, 1968.

17. Hollaar. L. A., "A List Merging Processor for Inverted File Information
Retrieval Systems," Report 762, Department of Computer Science,
University of Illinois, October 1975.

18. Stellhorn, W. H., "A Processor for Direct Scanning of Text," presented
at the First Workshop on Computer Architecture for Non-Numeric
Processing, October 1974.

Fault-tolerant modularized
arithmetic logic units

by T. R. N. RAO
Southern Methodist University
Dallas, Texas

and

H. J. REINHEIMER
IBM Corporation
Gaithersburg, Maryland

ABSTRACT

Use of both parities and residue checks, called a "combina
tion code", can provide a cost-effective error detection and
correction and modularized design of arithmetic and logic
units (ALU). As codes they compare favorably with the
byte-error correcting codes of Neumann and Rao in their
information rate, and indeed are better suited for a modu
larized (or byte-sliced) design of ALU.

INTRODUCTION

Error correcting codes and techniques are becoming in
creasingly important in the design of digital systems for
improving reliability and maintainability and providing
fault-tolerance. Even in very early machines, such as, IBM
7030,1 coding techniques have been employed. The error
~~~RfI~~OO hwaQ~.Q.i.v~.~ tw~~ses, ~v. 

parity-based codes and residue codes.:2 A very commonly 
used parity code in digital systems is the single-error 
correcting and double-error detecting (SEC-DED) Ham
ming code. 3,4 Parity codes are proven to be very efficient 
and cost-effective for memory and data transfer operations. 
The residue codes, on the other hand, appear very attrac
tive for checking arithmetic operations, such as, ADD, 
Complement, cycle, etc.5- 10 

In some computer systems, such as IBM stretch (7030), 
both parity and residue techniques have been employed to 
check for errors in different logic blocks of the system. 1 

These techniques, however, have not been used together to 
complement each other to provide improved error detection 
or correction capability. It is the specific purpose of the 
paper to combine the two coding techniques into one called 
"combination code" which can be applied to provide 
efficient error correction for all operations of an arithmetic 
logic unit (ALU). 

703 

Residue codes 

A class of residue codes which finds a low-cost5- S 

application to arithmetic operations is the [N, IN Ib] code. 
In this code, the information N is an integer and IN Ib is the 
residue check on N modulo, b (b is called the check base) 
IN Ib is the non-negative remainder obtained by dividing N 
by b. Another class of residue codes called "AN codes" 
has been extensively studied4

,l1,13 for correction of errors in 
arithmetic operations. In this class, the information N is 
represented as the product AN for a suitable constant A (A 
here is called the generator and sometimes the check base 
of the code). 

In an AN code if A=(2C-l)(2k-l) and gcd(c, k)=l, the 
code is shown to be capable of correcting any type of error 
in one byte of the operand. 15 Here the byte length is c bits 
and the operand word length is n=kc bits (or k bytes). This 
code can be implemented as a biresidue code7 with two 
checkers (check bases 2C-l and 2k-l) for arithmetic oper
ands of length kc bits. 
.~~~ ~~ 't"'~-.1it~ ~ .. ftp.,~-~. MI'fll:iJi~·~ 

well suited for implementation, they differ considerably 
from the byte processor modules of the ALU. The informa
tion rate (IR) of these codes is given by 

IR=kc/(kc+k+c). 

For a 36-bit and 56-bit arithmetic logic units, the informa
tion rates are 36/(36+9+4)=.735 and 56/(56+7+8)=.789 
respectively. The somewhat lower information rates of 
these codes compared with some other byte-error correct
ing codes (of Reference 15) can certainly be justified by the 
low-cost implementation they provide. However, for some 
n, such as n=32 or 64, we cannot find k and c which are 
relatively prime and kc=N. 

As a contrast to the above codes, we consider "combina
tion codes" i.e., codes with both parity and residue checks 
which alleviates the difficulty (i.e., k and c need not be 
relatively prime) and are also advantageous for practical 
implementation as will be shown later. 



704 National Computer Conference, 1977 

Combination codes 

The concept of combination codes has a basis on the 
earlier results of England16 Langdon and Tang17 and oth
ers5

-
10 on the use of parities and residue checks for error 

correction. Their results can be put together to obtain an 
effective error correction for byte-organized processors. A 
combination code (or mixed code) is a block code (see 
Figure 1) of length n, where the information is followed by 
a residue check and a group of parity bits as shown. For 
information X, the corresponding code word is [X, P, IX Ib] 
where b is the check base preferably of the form 2c-l and P 
is a group of parities calculated over bytes of X. 

England16 presented an example of a combination code as 
follows (see Figure 1). The irtformation X is at most 7 bytes 
each byte of 3 bits. Three parity check bits P, and a residue 
check IX 17 of three bits are computed over X as follows: 
Let X=(X21' x20 , ... , Xl) be divided into bytes B7, 
B6, ... , Bo. Then the parity check portion P=P3P2P1 are 
computed from various bytes of X as below: 

(1) 

The residue check, I X 17, is obtained by adding all the 
information bytes B1 , B2, ... , B7 using modulo 7 adders. 
(See, for instance, Reference 13 pages 70-71.) 

England did not provide a formal proof of the error 
correction capability of the code but he illustrated by 
examples the single error detection and correction capabil
ity of the code as follows. Assume the erroneous word is X' 
and the erroneous bit is X17'. Also assume that the correct 
value of x17=O, erroneous value X17 '=1). Then by comput
ing the parity check equations over the erroneous word, we 
get the parity syndrome Sp (or check number) of 110 
pointing to an error in B6 of X'. To obtain the actual error 
position we compute the residue syndrome 

Sr= IX' -XI7= /IX' 17-IXI7/7. 

x p 

21 bits 3 bits 3 bits 

Figure I-The combination codeword 

Clearly, the above will yield the error magnitude of 
1217 -

117=2. This determines the error position as the second 
bit in the byte pointed by the parity syndrome. On the other 
hand, if X17= 1, x17' =0 (1 ~O type error) the residue check 
yields 

IX'-XI7= 1-216 17=5= 1-217· 

This once again points to the second bit but to 1~0 type 
error. 

It is to be noted that there is a unique parity syndrome 
for each one of the seven bytes and a unique residue 
syndrome for each bit and type error in the byte. Encoding 
and decoding is very much like a single error correcting 
Hamming code except that all three bits of a byte are 
combined into one. Also to be noted is that when the error 
is in the information part, both parity check and residue 
check detect this error and together they enable error 
correction. On the other hand, if error is in P or in IX 17 only 
one of the two syndromes is non-zero. Therefore, we derive 
the following error location strategy (2) and the error 
correction strategy of (3). 

Sp=O, Sr=O No error 

Sp=O, Sr:#O error in IX 17 

Sp:#O, Sr=O error in P 

Sp:#O, Sr:#O error in X 

Sp=i :#0, Sr=j :#O=?B j is in error (i = 1, 2, ... , 7) 

j = 1 first bit, ~ 1 type error 

j=6 first bit, 1~0 type error 

j=2 second bit, ~1 type error 

j=5 second bit, 1~0 type error 

j=4 third bit, ~l type error 

j=3 third bit, 1~0 type error 

(2) 

(3) 

From the above, any single bit error (1~O or ~ l) in X can 
be detected and corrected. Whenever only one of Sp and Sr 
is non-zero, the parity or residue check can be recomputed 
from X and therefore it is established that any multiple 
errors in P or IX 17 can be detected and corrected. 

COMBINATION CODE FOR ARITHMETIC LOGIC 
UNITS 

The Combination Codes of the preceding section could 
be applied for arithmetic logic units (ALU's) but the 
implementation logic would be extremely complex and the 
cost of implementation prohibitive. Therefore we resort to 
one important modification which would make the code 
attractive from implementation point of view. One impor
tant modification is to replace the parity byte P, by the 
parity bits, one parity bit for each of the k information 
bytes of X. It is fairly simple to note that this modification 
does not alter the error detection/correction properties of 



the code. However, by this modification, there will be more 
parity bits (k bits instead of log k) and lower information 
rate for the code, but the implementation would be rather 
straightforward. We could also integrate the parity and 
associated logic with the information byte and the byte 
processor logic. The modified combination code is illus
trated in Figure 2. 

k bytes (each byte includes a parity) 1 byte --------.. ------~------.... ---------~ 
Information Residue 

Figure 2-Modified combination codeword 

We refer to this "modified combination code" as simply 
combination code hereafter. We illustrate below a sche
matic for its implementation. For an operand X of n bits 
(n=kc) we have a corresponding combination codeword [X, 
Px , IXlb] where Px is k parity bits (one parity bit for each 
byte of X) and IX Ib is the residue of X modulo b. (b=2c-1). 

First let us consider a simple model of an AL U as given 
in Figure 3: 

B 
R ~(A,B) 

Figure 3-A simple model of an ALU 

A to;; Rfl tmeffl8. O~mM H Mt ~t.{~'!{~aH ~~~. ~md 

</> is the op code, all specified at time t. We denote the 
output R as the result of the operation </> on A and B and is 
made available at a unit time later. For this model, there
fore, we have 

R(t+ 1)= <P(A(t) , B(t» (4) 

To apply combination code to the above model we resort to 
a slightly modified ALU (see Figure 4) along with a 
"residue unit" and a "decoder unit." The operands A and 
B of Figure 3 appear as codewords [A, P A, IA Ib] and [B, 
PB , I Bib] in Figure 4. The operation </> in Figure 3 is 
replaced in Figure 4 as combined operation (</>, ~). For 
each operation </> on A and B, parity logic is designed in 
ALU so that (R, PR ) are generated as outputs. PR consists 
of k parity bits called "predicted parity" bits. Also for each 
</>, a corresponding parallel operation ~ is designed for the 
residue unit to operate on the residues I A Ib and I B lb. The 

Arithmetic Logic Units 705 

corresponding result is denoted by 

(5) 

ALli 

,....-____ --, Correc ted 

Decoder Unit 

Residue Unit 

Result 

Error 
Signals 

Figure 4-A combinational code schematic for ALU operations 

By this approach we generate a combined output [R, PR , 

IRlb], a codeword, if there are no errors. However, due to 
logic faults there could be errors in this combined result. 
The decoder unit then generates the syndromes (Sp, Sr) and 
utilizes them to locate and correct those errors. When the 
errors detected by the decoder unit are not correctable 
appropriate error signals are generated and maintenance! 
repair is requested. 

The above discussion is a general schematic of the 
combination code application to ALU's. A number of 
details are omitted in order to illustrate the concept. In the 
next sections, we present more details on the parity logic 
used in ALU modules (the byte processors) and the residue 
and decoder units. 

CHECKING ARITHMETIC AND LOGICAL 
OPERATIONS 

Before we describe the details of implementation of 
combination codes for ALU operations, we need to derive 
the parity logic and residue logic equations. Therefore we 
present in the next section, the parity logic equations for 
checking ALU operations. For illustration and simplicity, 
we assume 4-bit ALU modules. In a later section, residue 
logic equations are derived and tabulated. 

Parity checking schemes for arithmetic and logical 
operations 

Sellers et al. 12 described a number of schematics of 
parity checking for arithmetic and logical operations. Based 
on their work, Langdon and Tang16 made an important 
contribution by evaluating the effectiveness and cost of 
parity-checked, group carry look-ahead adders. Langdon 
and Tang compared parity checking scheme with residue 
(modulo 3) check scheme. They took into account a number 
of practical considerations such as group carry look-ahead, 
group length, the fault-coverage and logic circuit complexi
ties (gate counts) etc. Their conclusions point out that 
parity checking of adders is very effective from both cost 
and fault-coverage points of view. Reinheimer,9 in a patent 
disclosures describe detailed logic diagrams and design for 
parity and residue checking combination to provide error 



706 National Computer Conference, 1977 

detection and correction of ALU operations, and his work 
forms a basis for this paper. Garcia and Rao14 discussed 
using mUltiple parities (or a Hamming distance 3 code3 to 
detect and correct single errors in logical operations AND, 
OR, and EXOR). 

Here we approach the problem of parity-checking of a 
simple 4-bit ALU operation. We treat this subject by 
modeling the AL U as a generalized sequential machine and 
deriving the check equations. 

The result of an AL U operation cf> on the operands A and 
B yields a result R=cf> (A, B) which appears not only on an 
output but replaces the contents of Register A and serves as 
one of the two operands for the next operation that follows. 

For example, if cf> is ADD operation then R= IA+B 1m 
where m is 24 for 2's complement addition (and m=24-1 for 
I's complement case). Similarly cf> is defined for all opera
tions of the AL U . 

Checking the ALU with parity 

Full-Sum Check 

The full sum check equation is given by: 

e1 = P sEl1P A El1P BEl1P c::10 (6) 

Here P A and PB are the parity check digits of the input 
operands while Pc denotes the parity of the carries within 
the adder. Equation (6) will be referred to as the full-sum 
parity check equation. The adder here, is a 4-bit Group 
Look-ahead Adder that is implemented from the following 
equations given for the first stage module: 

where: 

C-1=C jn 

Co=Go+ToCjn 

Cl=Gl+TlGO+TlToCjn 

C3=carry into next group 

=G3+T3T2TIToCjn 

Sj=a jEl1b jEl1C j- 1 

(7) 

A and B represent the two operands and S stands for the 
resultant sum; a j and b j are the ith stage inputs, Sj the ith 
stage sum digit and Cj- 1 is the carry from the previous 
stage. 

Operand B 
Operand A 

CloCK (6) 

Op Code ¢ Register A 

Figure 5-Model for a self-checked ALU module 

Result 
R = ¢(A,B) 

Error 
Signals 

H j is the half-sum function for the ith stage 
G j is the generate function for the ith stage 
T j is the transmit function for the ith stage 

It can be shown that 

where 

PG=GOEl1G 1El1G 2 , 

PTc=GoHIR2+GIH2 

PCin=CjnCTo+TlT2) 

Hj=ajEl1b j 
Gj=ajb j 
Tj=aj+bj 

(8) 

(9) 

Implementing Pc with equation (8) does not require that the 
carry circuitry he duplicated, Also, the Pc can be formed 
before the sum is formed, thus supporting the check to be 
made without degradation of adder performance. 

Half-Sum Check 

The half-sum check equation is given by: 

e2=P AEl1PBEl1HoEl1HlEl1H2El1H3::10 (10) 

This is implemented to check that there is no error in P A, 
PB, G j or T j since each H j is formed as Gj+Tj. 

Carry From One Stage to the Next-Check 

To check that the Group-Carry from one stage to the next 
is not in error it is necessary to duplicate the logic to 
generate the carry out and compare it with the Carry being 
sent. Thus, the equation for the check for the Group Look
ahead Carry out from the first group is: 

(11) 

The error signal, Es' for the AL U module is generated by 
(12) as follows: 

(12) 

One of the C3 is generated independently from the rest. The 
operation of this Adder as an ALU is as follows: 

For all ops, the ALU operates as an adder and the above 
adder checks are done for each op. This assures that the 
hardware is checked for every op against single-failures. 

The selected op, ADD, AND, CYL will determine the 
result which is gated to the outputs. For example: For 
ADD, S is put onto the outbus; if AND, the G is outputted; 
a CYL is done by making both inputs to the adder the same 
and generating a Hot carry-in if there is a carry from the 
high order position. 

Residue checking of ALU operations 

The residue code, namely, [N, IN Ib] code is considered 
here. For illustration, we select N to be of 16 bits and the 



:~ 
Processor 

A 
. R : <:\ (A,B) 

Error Signal 

::~ 
Checker 

Ab 
r : <Pbi (Ab,B b ) 

Figure 6-Generalized model for separate processor and checker 

ALU uses' 1 's complement addition. The check base, b= 15 
is empl<?yed. We illustrate a simple model of the ALU and 
its residue checker as in Figure 6. 

Thus, if N represents the integer vaiue of the accumuia
tor contents at any instant, the check iN ib is stored in a 
residue register, such that the contents of the accumulator, 
together with the contents of the residue register form a 
codeword at the end of an operation cycle. 

Let N I denote the operand stored in the accumulator at 
the beginning of an operation cycle. Let N 2 denote the 
integer value of the input on the parallel data lines from 
memory. An operation denoted by cf>i can be defined as a 
function of either N I, N 2 or both N I and N 2' Thus, cf>i can 
be a unary or a binary function. The result of an operation 
is denoted by R, and is given by 

(13) 

The result R replaces the contents of the accumulator by 
the end of the operation cycle, and is also generated as 
output. 

Let NIb denote the residue of N I modulo the check base 
b. We assume that NIb is maintained in the residue register. 
Let N2b denote the residue of N2 modulo b. Our aim is to 
find an operator cf>b' such that cf>b (NIb, N2b)=r, and r is the 
residue of R modulo b, thus preserving the relation of 
congruence modulo b between the contents of the accumu
lator and of the residue register. In symbolic language. we 
~i';n 10 pl:eserve Tne rehiii6njw(S·!. N~r~~~d)b\'NI~."~;~)'Tr 
we can find such a cf>b for every cf>, error checking is simply 
reduced to checking the relation of congruence between the 
accumulator contents and the check register contents pe
riodically. Any violation of this congruence can be set up as 
an error signal. 

In the following discussion we consider the accumulator 
to be of length n= 16. In order to have simplified checking 
logic, I's complement arithmetic will be used (which is 
equivalent to considering all operations modulo 211_1), and 
b will be of the form 2c-I, where c divides n. 

Error Coverage: The mod b residue check detects all 
failures for which the difference between the correct an
swer and the incorrect answer is not a multiple of b. If b is 
odd, all single errors of the form ±2i are detected. This is 
because for all j, I ±2i ib:;t:O. All bursts of length less than c 
(where 2c-I =b) and most bursts of length c or greater are 
detected. 

Ariihmeiic Logic Uniis 707 

Checking arithmetic operations 

The checking of arithmetic operations has been dis
cussed. 13 For each operation that is carried out in the 
processor, there is a parallel operation that goes on in the 
residue unit, such that at the end of the operation cycle, the 
checker contains the residue of the accumulator contents 
modulo b (if there has been no error in the computation). 

The first part of Table I is a listing of the formulas for the 
results of various processor arithmetic and arithmetic type 
operations, and their corresponding checker operations. 
These are easily derived (See Reference 13). 

Checking logical operations 

In the checking of logical operations, we immediately run 
into a problem. The residue code is closed under operations 
such as ADD, SUB, CYCLE, etc., but is not closed under 
logical operations such as AND, OR, and exclusive-OR. 
However, some simple techniques can be employed to 
enable the residue unit to generate the predicted residue for 
all logical operations with a little additional hardware. One 
such technique is due to Monteiro and Rao. s The residue 
equations for logical operations appear at the bottom of 
Table I. 

MODULARIZED FAULT-TOLERANT ALU 

In previous sections, we covered separately the parity 
checking and residue checking schemes for arithmetic and 
logical operations. Here we present a modularized fault
tolerant ALU organization which uses a combination of 
parity and residue checks. First, by fault-tolerance we 

TABLE I-Characterization of Arithmetic and Logical Operations of a 
Processor 

Operation 
~ .. 

<PI(ADD) 
<P2(SUB) 
<p:tSM) 
<P4(COMP) 
<Ps(SHL) 
<pJSHR) 
<p~CYR) 

<pg(CYL) 
<P9(CLA) 
<P1O(CLZ) 
<Pl1(SET) 

<P12(AND) 
<PliOR) 

<P1iEXOR) 

Result R=<pj(N I , N2 ) Operation 
m;;;;.2~'-i ct.... 

Q=<Pt,I(Nlb , N2b ) 
~;;2"".",l 

A. ARITHMETIC OPERATIONS 

IN I+N2Im <Pel INlb+N2blb 
IN I-N2Im <Pe2 INlb-N2blb 
IN2-Nl lm <Pea IN2b-Nlblb 
I-Nllm <Pe4 I-Nlblm 
12NI-An _ l(t) 1m <Pes 12N lb-An - l(t)lb 
Il/2(NI- Ao(t» 1m <Pe6 Il/2(Nlb-AJt»lb 
Il/2N11m <PC7 Il/2Nlb lb 
12N1lm <Pes 12Nlb lb 
N2 <PC9 N2b 
0 <PelO 0 

0 <Pel1 0 

B. LOGICAL OPERA TORS 

16~A(t)· B(t» 1m <P12b 16~A(t)· B(t» Ib 
I~A(t)VB(t»lm <P13b INlb+N2b-I~A(t)· 

B(t»lblb 
Ib,(A(t)EBB(t» 1m <P14b iN lb+ N2b- 2 ib,(A(t)· 

B(t» Ib Ib 



708 National Computer Conference, 1977 

mean specifically here that the proposed ALU is not only 
capable of detecting all errors due to single logic faults * , 
but also correcting those errors, that is, the ALU is self
correcting for all single faults. 

This organization is a further development, and an exten
sion of the one discussed by Reinheimer. 9 We start with an 
AL U module which is self-checking for all single faults. It 
is parity-checked for all its operations and all errors due to 
single faults are detected. When errors are detected, they 
are indicated by two output, error signals, namely, the 
carry-out error signal and the sum error signal. As stated 
earlier, at most one of the error signal s will be aI, since the 
ALU and parity-checked logic are so designed that for any 
single logic fault only carry-out (i.e., group carry-out) is in 
error or the sum is in error but never both. 

We consider the fault-tolerant ALU as a whole is of n
bits where n = kc and therefore we organize it as k AL U 
modules and each module is of c bits. For illustrations we 
use n= 16 and we use four 4-bit ALU modules (k=4, c=4). 
The residue check base, b, used for the combination code is 
given by 

Therefore in our illustrations below we use the residue 
check base b= 15. 

The organization of a 16-bit ALU is illustrated in Figure 
7. All ALU modules shown are exactly identical to the 
model shown in Figure 6. The inputs to each module are 4-
bit data, OP code and timing control. The outputs corre
spondingly are a 4-bit sum a carry-out to the next module 
(with an end-around carry from module 3 to module 0; that 
is cts=c-t) and error signals, namely, carry-out error, and 
sum error (see Figure 7). 

The outputs from the ALU modules and the residue 
checker are applied to the combination code decoder unit 
called here Error Decoder. The Error Decoder has two 
units, namely, the Fault Location Unit and Error Corrector 
Unit whose functions are discussed below. 

Residue unit (RU) 

The residue checker logic functions have been described 
for all arithmetic and logical operation earlier. Here we 
outline briefly the inputs, outputs and the logic blocks of 
the residue checker. The data register (16 lines) the op code 
and timing control are the inputs. These inputs are used to 
generate and maintain the residue modulo 15 ofthe results of 
the 16-bit AL U. This part of the logic are called residue 
predictor block in Reference 8. The RC also receives the 
16-bit result (the sum S from ALU) which is used to 
generate the residue of S modulo 15 independently. This 
block is called residue calculator. Finally, error magnitude 
calculator block generates the difference between the actual 

* A "logic fault" or hereafter "fault" is a node assuming a different truth 
value from its correct value. Generally, a logic fault is classified as stuck-at
I, stuck-at-O, or inverted. A single fault could produce multiple errors in a 
circuit but it still is called "single fault". 

(calculated) residue and the predicted residue. This differ
ence is the error magnitude. Whenever the error magnitude 
so calculated is non-zero, then a residue error signal 
(RES= 1) is generated. 

Fault locator unit 

The fault locator unit receives the error signals from the 
four modules and the residue checker. In all there will be 9 
bits, 2 each from the ALU modules and 1 from the Residue 
Checker. Fault location unit then generates signals to the 
Error Corrector unit whenever an error is correctable. It 
also generates two other signals, namely, no faults signal 
and detected but uncorrectable errors signal as the case 
may be. 

The fault location is based on the following cases. 

(1) If RES=O, all Es=O 
(2) If RES=O, any Es= 1 

(3) If RES= 1, more than 
one Es= 1 

(4) If RES= 1, all Es=O 
(5) If RES= 1, exactly 

one Es= 1 

Error corrector unit 

~ no error 
~ Fault in parity logic 

uncorrectable error 
~ U ncorrectable multiple 

faults 
~ Residue checker is faulty 
~ Single fault correctable 

error 

The error correction unit can be implemented in any 
number of ways. The correctable errors are assumed only 
when exactly one Es equals 1 (and the rest equal 0) and the 
RES= 1. A sum error of a faulty ALU module is corrected 
by subtracting the error magnitude from the sum output of 
that module. Other byte outputs will not be affected. On the 
other hand if a carry-out error is to be corrected, an 
appropriate number of bytes starting with the next stage 
may have to be corrected. The error magnitude in the latter 
case will be ± 1. The details of the error corrector imple
mentation are not considered here. 

Additional considerations 

The correction algorithm depends on the fact that there 
are carry faults possible that yield one kind of Result Error 
and Sum faults that yield another kind of Result Error. It is 
believed that details of the particular correction algorithm 
can be studied and generalizations made which will help a 
designer know how to design other devices where errors 
due to single faults are correctable and errors due to 
mUltiple faults are detectable through use of the parity/ 
residue combination code. 

The organization of the 16-bit ALU, here, makes use of 
the self-checking modularized 4-bit ALU module. These 
modules support other types of fault-tolerant organizations 
and it is not the purpose in this report to limit the 
application of these modules. For instance; one could use 



Operand Bus 

From Error Decoder 

Carry Error 
Magnitude 

Arithmetic Logic Units 709 

rnPDBus 

Operand Register 
Parity 

Register 
From 
Error 
Decoder 

Accumulator 
Bus IS 

Error Signal Bus 

OP Code 
(CP) and 
Timing(s) 

~ 
(cp,O) 

Error Decoder 

Correctable Error 

No Uncor- Error Error 
Output Bus Error rectable Byte Magnitude 

Inhibit 

To To 
Residue Operand 

Generator Register 

Figure 7-Fault-tolerant modularized 16-bit ALU organization 

five of these self-checked 4-bit ALlis for a 16-bit micropro
cessor with one of these modules as a spare. 

To assess the value of an ALU with error correction due 
to single faults and detection of errors due to multiple 
faults, such as the one herein, the reliability improvement 
due to the fault-tolerance needs to be evaluated. 

A thorough analysis is necessary to determine the cost of 
the fault-tolerance. A suggested cost breakdown is as 
follows: (1) a cost of the full feature; (2) cost of the parity 
checking; (3) cost of the residue checking; and (4) cost of 
the ERROR DECODER. 

CONCLUSIONS 

The combined use of parities and residues as a combination 
code can be used to provide an ALU organization capable 

of correcting all errors due to smgle faults and detection of 
most errors due to multiple faults. 

The code can also be applied to different length ALU's 
and regardless of the byte size and the number of bytes. 
This is a definite advantage over arithmetic coding tech
niques such as biresidue codes where the size n = kc must 
satisfy (k, c)= 1. 

As pointed out by Langdon and Tang3 an AL U that 
makes use of a parity-checked adder is relatively inexpen
sive. Further the checking of the logical operations, namely 
AND, OR, EXOR of the ALU is an automatic by-product of 
this adder checking scheme. For instance, half-sum check 
performed for ADD operation is an automatic check of 
EXOR operation. Checking of other ALU operations, such 
as, SHIFT, ROTATE can be provided relatively easily by 
both parity and residue operations. 

We have broadly outlined in this report the checking 
hardware required of the ALU to make it self-checking and 



710 National Computer Conference, 1977 

self-correcting. The details of implementation are presently 
under investigation. Based on a preliminary investigation, it 
appears that the combination code approach to ALU fault
tolerance is effective from both cost and coverage point of 
VIews. 

ACKNOWLEDGMENTS 

The authors acknowledge with gratitude many helpful sug
gestions from Drs. Se June Hong and W. F. Mikhail and 
Mr. C. H. Wolff, all of IBM, Poughkeepsie, New York. 
Part of the research of T. R. N. Rao was supported by 
National Science Foundation grant number ENG76-11237. 

REFERENCES 

I. Bloch, Erich, "The Engineering Design of the Stretch Computer," Proc. 
EJCC. 1959. pp. 48-59. 

2. Gamer. H. L.. "Generalized Parity Checking," IRE Trans. on Elec. 
Computers, Vol. EC 7, No.3, Sept. 1958, pp. 207-213. 

3. Hamming, R. W .. "Error Detecting and Correcting Codes," Bell System 
Tech. Journal. Vol. 29, 1950, pp. 147-160. 

4. Peterson, W. W. and E. J. Weldon, Jr., Error Correcting Codes, M.LT. 
Press, Cambridge, Mass. 1970. 

5. Avizienis, A., "Concurrent Diagnosis of Arithmetic Processors," Digest 
IEEE 1st Annua! Computer Conf .. Sept. 1967, pp. 34-37. See also 

references to earlier work contained therein, notably to 1964-66 JPL 
reports. 

6. Avizienis, A., "Digital Fault Diagnosis by Low Cost Arithmetical 
Coding Techniques," Proc., Vol. I, Lafayette Ind., Purdue Univ. Eng. 
Exp. Sta., April 28-30, 1969, pp. 81-91. 

7. Rao, T. R. N., "Biresidue Error Correcting Codes for Computer 
Arithmetic," IEEE Trans. Compo C-19, May 1970, pp. 398-402. 

8. Monteiro, P. and T. R. N. Rao, "A Residue Checker for Arithmetic and 
Logic Operations," Digest of 1972 International Symposium on Fault
Tolerant Computing, Newton, Mass., June 1972. 

9. Reinheimer, H. J., "Error Detecting and Correcting System and 
Method," IBM Corporation, Gaithersburg, MD. US Patent 3,699,323, 
October 17, 1972. 

10. Payne, A. and H. J. Reinheimer, IBM Corporation, Gaithersburg, MD., 
U. S. Patent #3,659,089, April 25, 1972. 

II. Massey, J. L. and O. N. Garcia, 
12. Sellers, F. F., Jr., M. Y. Hsiao and L. W. Bearnson, Error Detecting 

Logic for Digitul Computer8, McGraw-Hill, NY 1968. 
13. Rao, T. R. N., Error Coding for Arithmetic Processors, Academic Press, 

New York, 1974. 
14. Garcia, O. N. and T. R. N. Rao, "On the Methods of Checking Logical 

Operations," Proc. Second Annual Conference on Information Sciences 
and Systems, March 1968, pp. 89-95. 

15. Neumann, P. G. and T. R. N. Rao, "Byte Error Correction in Arithme
tic Processors," IEEE Trans. on Comp., March 1975. 

16. England, W. A., "Improving Reliability by the Application of Selected 
Redundant Techniques," Proceedings of Workshop on Reliability Tech
niques, UCLA, Los Angeles, April 1966. 

17. Langdon, G. G. and C. K. Tang, "Concurrent Error Detection for 
Group Look-Ahead Binary Adders:' IBM J. Res. Dev., Sept. 1970. 



The design of self-checking 
mUlti-output combinational circuits* 

by D. C. KO 
Burroughs Corporation 
Mission Viejo, California 

and 

M.A. BREUER 
University of Southern CaLifornia 
Los Angeles, California 

ABSTRACT 

In this paper we present a technique, called Extended
Parity Checking, for the design of error-detecting circuits 
for combinational logic networks. Its concept is derived 
from the conventional parity checking technique, which is 
applicable only for odd number of errors, yet it can detect 
errors of any degree. A structural model, called the fanout
graph, is introduced which contains a minimum number of 
nodes sufficient to determine the fundamental causes of 
multiple errors in a circuit. Output functions are then 
expressed in a special form, called the Fanout-Observed 
Output Function (FOOF), which facilitate the analysis of 
errors. Based on this information and certain circuit param
eters, a set of design methods are presented for producing 
self-checking circuits. Among them, one deals with the 
addition of external leads by augmenting some of the fanout 
nodes in the original circuit, while others involve duplicat
ing or checking independently parts of the logic. 

INTRODUCTION 

The implementation of a self checking system requires 
appropriate error detecting circuitry. This circuit should 
generate an error signal whenever an output error occurs. 
This signal can be used to stop computation, signal manual 
repair work, or initiate a reconfiguration process. 

Shown in Figure 1 is a general model of a self-checking 
system. It consists of two circuits, namely C and D. C is 
the operating circuit being checked, having input X and 
output F, both vector-valued. D is a single-output circuit, 
called the error detecting circuit (or logic), whose output, 
denoted by E, is the required error signal (subject to timing 
control). Y is a set of internal signals of C which, depending 

* This work was supported in part by the National Science Foundation 
under Grant GK-23886 and in part by the Office of Naval Research under 
Grant NOOOI4-67-A-0269-0019 (NR 048-299), 

71l 

on circuit constraints, mayor may not be available to D. 
Under our present investigation both C and D are assumed 
to be acyclic combinational circuits. 

The simplest form for a self-checking system is complete 
duplication in which D properly contains C. In this case, a 
redundancy ratio of more than 2: 1 is expected. Depending 
on the particular function which C implements, and its 
structure, some other techniques exist which may some
times yield a smaller redundancy ratio. 7 

This paper deals with the design of checking circuits. Our 
goal is to try to achieve a redundancy ratio of less than or 
equal to 2: 1. The technique we are going to investigate is 
called Extended-Parity Checking (EPC). Its concept is 
derived from the conventional parity checking scheme. It is 
well-known that parity checking will fail in case of an even 
number of errors occurring on the circuit outputs. The 
EPC on the other hand, will not have this deficiency. 

FAULT ANALYSIS AND ERROR DETECTABILITY 

Let f: {O, I}n~{o, I} be a single-output Boolean switching 
function over the set of variables X={x} , x2, ... , xn}. A 
multi-output Boolean switching function is denoted by 
F: {O, I}n~{o, I}m and consists of m single-output functions, 
i.e., F=(f} , f2, ... , fm) where fj=fj(x}, ... , xn) for i=l, 
2, ... , m. Let C be a combinational circuit which realizes 
F. The set of input lines {x}' x2, ... , xn} are called 
primary inputs (PI) and the set of outputs {f} , f2' ... , fn} 
are called primary outputs (PO). We denote an input vector 
to C by Xi =(X1 , X2, ... , xn) and the corresponding output 
vector by Fj=(f1 , f2' ... , fm)' 

Let Xi represent the binary input vector whose decimal 
value is i, e.g. X3 =(OO"'OIl) and set X={Xi ji=O, 
1, ... , 2n-l}. By F(Xk ) we mean the value of F for input 
X=Xk • 

We assume circuits are made up of single-output gate 
elements such as AND, NAND, OR, NOR, etc. Below are 
some basic definitions concerning circuit topology. 



712 National Computer Conference, 1977 

x 
MULTI-OUTPUT 

COMBINA TIONAL 

CIRCUIT 

I I 
I IY 

F 

~--------------~~E 
Error Signal 

Figure I-General model of a self-checking system 

i. Every PI, PO and gate is a node, caiied a signal node 
(SN). (We do not differentiate between a gate and its 
output.) 

2. A node is an internal node (IN) if it is neither a PI nor 
a PO nor a node directly connected to a PO. 

3. Thefanout value Ta of a node a is equal to the number 
of nodes to which it fans out. 

4. A node a is called afanout node (FN), if Ta~2. 
5. A signal path is a sequence of nodes of the form 

ala2 . .. an, where n~2 and aj-l is an input to aj. A 
path is simple if 7'aj= 1 for i=2, 3, ... , n-1. 

6. A reconvergent node (RN) is a node having some pair 
of inputs which are the terminal nodes of paths having 
a common source node (a FN). 

7. A limited fanout-free (LFF) circuit is a circuit in 
which the only FN's are PI's. 

In order to simplify the presentation of our results we 
assume that all circuits being dealt with contain no redun
dancy. The general case which includes redundancy is dealt 
with in Reference 8. 

In our work we will assume a single permanent stuck-at 
fault model. 

Let C be an irredundant combinational circuit realizing 
the switching function F, and let ~={cSl' cS2, ... , cSp} be a 
set of faults associated with C. Then we denote the circuit 
C containing fault cSj by Cj, where CO(=C) represents the 
fault-free circuit. Ci realizes the function pi(X) =(f1 j(X) , 
f2

j(X), ... ,fnj(X». If pi(Xk)*FO(Xk), then fault cSj is de
tectable by input Xk. 

Let H=~XX be the set of all fault-input pairs. Then the 
error indicators ~jfj(Xk) and ~jF(Xk) are defined as follows. 
For each hjk=(cSj, Xk)EH we have 

~ifj(Xk)=fjj(Xk)E9fjO(Xk)' 

fori=l, 2, ... ,m, and 

~jF(Xk)=pi(Xk)E9po(Xk) 

=(~jfl(Xk)' ~jf2(Xk)' ... , ~jfm(Xk». 

If ~jF(Xk)=(O, 0, ... , 0)=0 then cSj is not detected by Xk, 
otherwise it is. The norm I ~jF(Xk) I is said to be the 
Hamming weight of the vector ~jF(Xk)' and equals the 
number of l's in the vector. 

Suppose that ILliF(Xk)l=q, q=l, 2, 3, or n(4~n~m). 

Then we say there is a single-error, double-error, triple
error, or n-bit error on the circuit output respectively. We 
call "q" the degree of the output error. 

Suppose we append to C an associated error detecting 
circuit D having the following property. If an error in the 
output of C occurs, the output of D, called the error signal 
and denoted by E, will be set to 1; otherwise its value will 
be O. Hence E= 1 indicates the detection of an output error 
in C, and the fault which caused this error is thus detected. 

We will be concerned with the design of D. 
Let X(cSj) be the set of inputs which detect cSj in C, 

i.e. ~jF(Xj)*O for each XjEX(cSj). Since C is irredundant 
X(cSj)*cp. 

Let X' be a subset of X(cSj) such that for each XjEX', if cSj 
is present then €= 1. 

(a) If X'=X(cSj) then cSj is said to be totally checked. 
(b) If X'=cp, then cSj is said to be unchecked, and 
(c) If cpCX' CX(cSj) then cSj is said to be conditionally 

checked. 

If all cSj are totally checked then C is said to be totally 
checked, and if some faults in C are totally checked while 
others are conditionally checked then C is said to be 
conditionally checked. If some faults are unchecked, then C 
is said to be partially checked. 

The combined circuit (C, D) forms a self-checking system 
which in tum is subject to faults. Our error detecting 
criteria is defined as follows. For each hjkEH' =~' x X, 
where ~' is the set of faults associated with the new circuit 
(C, D), we require 

E- {I if q *0, or D has a fault 
- 0 otherwise. (2.1) 

We assume that the fault E s-a-O fault and any fault 
equivalent to it in D is not included in ~'. The problem of 
detecting output faults in a checker is discussed in Refer
ence 3. 

The general form of our forced parity checking system is 
shown in Figure 2. Here we augment C with the logic c 
having outputs al , a2, ... , ax. c is designed such that any 
single fault in C or c causes an odd number of outputs from 
(C, c) to be in error. P is a circuit which implements the 
parity function defined by the expression 

The outputs of P and P' are then compared by T' to see if 
an error has occurred. 

ALGEBRAIC STUDY OF CIRCUIT OUTPUT ERRORS 

In a multi-output combinational circuit there is the possi
bility of several output lines being jointly dependent on one 
signal. If a fault causes an error on that signal then multiple 
errors may occur on the outputs. 

Assume under condition hjk=(cSj , Xk) that fp and fq are in 
error, and that cSj occurs at signal a, i.e. cSj corresponds to a 



Design of Self-Checking Muiti-Output Combinational Circuits 713 

r------------__ fl no other node {3, {3=1=a, such that {3Ea (note that a PI can 
: f2 never be a PN). a is called a prime fanout node (PFN) if it 

is also a fanout node. • • 

j • 
---------1 ~ fm In the circuit of Figure 3, nodes U2, £la, and U4 are the 

x 
n 

.. 
• • • 

----II 

- I - r . 
I 

• I 

• , 
c • pi , 

I 
~ 1 

0. 1 i 
EB 

-
• c • • &} I - f:l 

~ 

L-
~ E9 

E -.. 
T' I ----=--- I 

Figure 2-A forced-parity checking system 

s-a-I or a s-a-O. Then (p, q) is said to be the output error 
location of a double-error, and a is the location of the fault. 
If for condition hjk output lines fl1 ' f12 , • • • , flq are in error, 
then (11' 12, . . . , lq) is said to be the output error location 
and it consists of the following set of double-error loca
tions: {(la, Ib)la<b; la, IbE{ll, 12 , ••• ,lq}}. The number of 
output lines in error, their indices, and the output error 
pattern, are a few parameters one needs to know before an 
error detecting circuit can be implemented. 

In a parity checking system, multiple errors of odd 
degree (q odd) can always be detected. It is those of even 
degree which will fail to be detected. We will first consider 
the case for q=2, since it is the simplest. We will then show 
how to extend the results to q=4, 6, ... , etc. 

An error is said to be located when the output lines in 
error are identified. One way of locating all possible double
e.tIOISm .. a .. cir.c.uit kiD enumerate all.pairs.oLuutputs.This. 
can be done for each fault which may exist in the circuit. 
Depending on the circuit structure, not all output pairs and 
faults need to be considered. Note, for example, that under 
the single fault assumption no multiple errors can exist in a 
fanout-free circuit. 

Structural modeling and graph theoretic results 

Consider two nodes in C, say a and {3. If every path from 
node {3 to every PO includes a (a can itself be a PO), then a 
is said to be essential to {3, and this is denoted by aE{3. In 
this case, if a fault in {3 causes an error in the signal at a 
when Xi is applied, then one can always assume there is a 
fault labeled "a s-a-a" occurring at this time. Thus, it is 
sufficient to deal with double errors due to faults occurring 
at a and we can ignore double errors due to faults at {3. 

A node a is called a prime node (PN) in C if there exists 

only three PFN's. The four primary outputs are PN's only. 

Theorem I: The set of all PFN's form a minimum set of 
nodes where faults associated with these nodes are suffi
cient to cause all multiple-output errors in a circuit. D 

If all PFN's in a circuit can be identified, then the 
location of all possible double-errors can be made more 
easily and efficiently. In addition, the design of error 
detecting circuits, as we will see in the next section, 
depends heavily on this information. One method of identi
fying all the PFN's of a circuit is through a structural 
modeling process of KO.8 In this process, the final circuit 
model is represented by a directed graph G showing all the 
PFN's of the circuit. We call this graph G the fanout-graph 
for the circuit C and it has the following properties: 

I. Every node in G is a prime node in C and G contains 
the complete set of prime nodes of C. 

2. There are as many disjoint subgraphs in G as there are 
disjoint sub-circuits in C (assume PI's can be shared). 

3. All nodes in G are singular if C is fanout-free or 
limited fanout-free. 

From these properties and Theorem 1 we immediately 
conclude that no mUltiple-output errors can occur in C if C 
is fanout-free or limited fanout-free. The fanout graph 
shown in Figure 4 is obtained by applying the structural 
modeling process to the circuit of Figure 4. 

Analyzing circuit output errors using the boolean difference 

The Boolean difference of a switching function f=f(xl' 
x2 , ••• , xn ) with respect to Xi is defined as 

and can be written as 

Figure 3-Example Circuit 



714 National Computer Conference, 1977 

Figure 4-Fanout graph obtained by applying structural modeling process to 
the circuit of Figure 3 

The Boolean difference of f with respect to an internal 
signal a rather than a primary input can be derived as 
follows. Write the output function f in the form f=g(a, X) 
where a=a(X). Thus a becomes an explicit variable of f. 
Then 

df = dg(a, X) = (0 X)ffi (1 X) 
da da g, wg, . 

In general, let f=g(a1' X) and aj=!3j(ai+1, X) for i= 1, 
2, ... ,n-1. Then 

df df da 1 dan-1 
dan = da1 . da2 ... dan . (3.1) 

Equation (3.1) is called the Boolean difference chain or the 
partial Boolean difference. Two important properties about 
the Boolean difference are that df/da=df/da and df/da= 
df/da. Note that: (a) if df/da=O, then an error in a will not 
cause an error in f; (b) if df/da= 1, then an error in a will 
always cause an error in f; and (c) if df/da=h(X) then an 
error in a will cause an error in f if and only if h(X)= 1. 
Thus df/da actually defines an error junction whose value 
will be used in determining whether or not an error can be 

sensitized to the output. Let wju=dfdda be the error 
function of the output fj with respect to a. We define a 
pairwise error junction wiju=Wju·Wju as the logical product 
of two error functions. Three cases exist. 

Case 1. If Wjt=O then an error in a will cause either a 
single-error or no error on the output pair fj and 
~. 

Case 2. If wij u= I then an error in a will always cause a 
double-error on the output pair fj and ~ . 

Case 3. If wiju=h(X) then an error in a will cause a 
double-error on the output pair fj and ~ if and 
only if h(X) = 1. 

Example 1: Consider the circuit of Figure 3. Its fanout 
graph is shown in Figure 4. From Theorem 1, only the three 
PFN's namely a2, a3, and a4 need be considered for 
possible causes of mUltiple errors. Since f4 is a singular 
node, it can be ignored. For the remaining three terminating 
nodes we express their output functions in terms of the 
PFN's, i.e., 

f3=a4=a3· 

Since m=I=3, there exist a total of G) x3=9 pairwise 

error functions. Among them, 4 are trivial. For instance, f1 
is not a function of a4, hence w~; and w~; must be O. The 5 
non-trivial ones are 

Thus when a2= Xl + x2= 1, mUltiple errors can occur when
ever there is an error in a3 or a4. The error in a3 or a4 can 
either be a fault in the node itself, or it can be caused by 
some other fault in a preceding node. In this example, 
since w~~=w~~=w~L an error in a3 can cause all three 
output pairs simultaneously to be in error leaving a net 
result of a triple-error. Note that an error in a2 can never 
cause any double-error because W~2=0 for all 1 ~i, j ~4. 

A simple analysis reveals that a double-error 0 1 ~ 10 will 
occur on the outputs f1 and f2 whenever there is an error in 
a3 and the input condition is one which causes a2=0. A 
different type of double-error, namely OO~ II can be found 
in the circuit for the output pair f1 and f3 • We call "OI~IO" 
and "OO~ 11" error patterns. Theorem 2 in the next section 
will be devoted to determining such error patterns. 

In general, for q>2 a q-bit error can be considered as a 

group of k double-errors where k= (i) . Once all pairwise 

double-errors are located, mUltiple errors of higher degree 
can also be located. In order to do this, we introduce the 
notation of an error-graph. It is a non-directed graph such 
as the one shown in Figure 5(a). In this graph, every node is 
a terminating node of a fanout-graph. A link is entered into 
the graph if the pairwise error function of two outputs is not 



Design of Self-Checking Multi-Output Combinational Circuits 715 

fl 

f2 

wet = a 
f3 

1 
f2 

wet = b 
2 

w ri = b 
3 

fl 

£2 

£2 

f3 

w ri = a 
1 

£4 
w ri = b 

2 

wet = 
3 

b 

w ri = 4 
ab 

Note: • •• and ~)4)( 

indicate multiple errors under 
different sets of input conditions 

Figure 5-Fanout-graphs and error-graphs of two circuits 

zero. Thus a link actually indicates the possibility of a 
double-error on its two end-nodes. We use different marks 
on the links to represent double-errors under different sets 
of input conditions. A closed triangle of identically marked 
links represents a possible triple-error. 

For the graph of Figure 5(a) we have three pairwise 
double-errors. They are indicated by the three links repre
senting w12 =ab, w13 =ab, and w23=b. By rewriting W 23 as 
the sum of two product terms ab and ab and using two 
distinct links, the resultant graph, shown in Figure 5(b), 
indicates a triple-error plus one double-error. This ob
viously will enable us to predict circuit output errors more 

precisely. Shown in Figure 5(c) is a second graph which 
shows five pairwise double-errors. By applying the same 
technique, only two triple-errors can be found in the final 
graph. With the addition of an extra output f4 (as compared 
with the first circuit), this circuit becomes free of any 
multiple error of even degree. Therefore, this circuit can be 
parity checked without any further work. 

Fanout-observed output junctions 

Given a circuit C. let a be a prime fanout node in C. If for 
some output f there exists at least one path between a and 



716 National Computer Conference, 1977 

f, then the output function of f derived after making a cut at 
node a (or treating a as a PI) can be expressed as follows: 

f(a, X)=A(X)a+B(X)a+C(X). (3.2) 

We call Equation (3.2) the Fanout-Observed Output Func
tion (FOOF) of f with respect to a. The Boolean switching 
functions A(X) , B(X), and C(X) are called the Boolean 
coefficients of f(a, X). If A(X)=B(X), then f is independent 
of a. For f to be dependent on a, at least one of the two 
coefficients A(X) and B(X) must not be zero. A shorthand 
form of the above equation is 

f=Aa+Ba+C. 

By denoting a 1=a and aO=a, two special forms of the 
FOOF can be written as foHows: 

1. f=aau+b 

2. f=aauEBb 

(3.3) 

(3.4) 

where uE{O, 1}; a and b are arbitrary switching functions 
independent of a. 

We call Equation (3.3) the +-form and Equation (3.4) the 
E9-form of the FOOF. In the +-form, f is unate in a. In the 
E9-form, both a and a can appear in a minimal normal form 
expression for f unless the Boolean coefficient b has a 
constant value. 

Lemma J: If no linear gate or reconvergent fanout exists 
between a and f, then f can be expressed by a FOOF of the 
+-form only. 0 

df(a, X) 
Consider a FOOF f(a, X) where da =1= o. There must 

. df(a, X) I exist at least one mput XkEX such that d = 1 . 
a X=Xk 

When this condition is satisfied, a will be sensitized to the 
output. The value of f under this condition will be f(a, Xk). 
Let 

be a non-empty set of all inputs under which a can be 
sensitized to the output. Set 

Zr={f(a, Xk) IXkEYr}. 

Then Zr is the non-empty set of all possible switching 
functions realized by f when sensitized by a. Note that Zr is 
undefined if Y r=0, or equivalently df/da=O. 

Lemma 2: Zf~{a, a}. 0 

For the next theorem we need the following definitions. 
Let f and g be two FOOF's with respect to a, 

df ~ 
where da·da =1=0. We define 

Yrg= {XkEX I ddf dd~1 = I} =YrnYg 
a a X=Xk 

and 

Lemma 3: Zrg~{O, a, a}. 0 

Theorem 2: Let f(a, X) and g(a, X) be the two FOOF's of a 
pair of outputs f and g. Then an error in a will cause a 
01~1O error pattern if and only if Zrg={O}. It will cause a 
OO~II error pattern if and only ifZfg~{a, a}. 0 

Now we will define the "variance" of a FOOF. The 
uniqueness of a double-error pattern can be determined by 
the variance of two FOOF's. 

A FOOF f(a, X) is said to be a-invariant if Zr={a} or {a}. 
A FOOF f(a, X) is said to be a-variant if Zf={a, a}. 

A pair of outputs is said to have a unique double-error 
pattern if all possible double-errors associated with the 
outputs are of either 01 ~ 10 pattern or OO~ 11 pattern but 
not both. 

Lemma 4: Any FOOF of the +-form is a-invariant. 0 

Theorem 3: A pair of outputs have a unique double-error 
pattern if both FOOF's are a-invariant (assume error in a 
only). 0 

Corollary J: In a non-reconvergent fanout circuit, if no 
linear gates are in the circuit, then all double-errors have a 
unique error pattern. 0 

In the remainder of this section we will discuss some 
equivalent forms of FOOF's. An a-augmented function will 
then be introduced and an augmented parity function will 
be investigated. These results will aid us in the design of 
error detecting circuitry. Their application can be found in 
the next section. 

df 
Lemma 5: If f=aau+b, then f= da aU+b. 0 

Lemma 6: For #e{ +, EB}, if f=aau#b then 
df 

f= da aUEBb. 0 
Theorem 4: Any FOOF of the form f=aau#b can be ex
pressed in one of the following two forms: 

We now define an a-augmented function as a Boolean 
switching function of the form Q(a, X)=w(X)aU where w(X) 
is an arbitrary switching function (for our application, w(X) 
is an error function). Note that Q(a, X) is also a FOOF of a 
special form. This function can be implemented to augment 
a prime fanout node a of a circuit such that a q-bit output 
error (q even) can be transformed into a (q+ I)-bit error. 

Consider the case when there exist two outputs f and g in 
a circuit C, where f=aau#b and g=cau#d are the two 

Th .. f·· df dg associated FOOF's. e paIrWISe error unction IS da·da . 

df ~ (df~) Suppose -. $0, then let Q= -d·d aU be an a-aug-
da da a a 

mented function. Under any input XkEYfg , an error in a 

will cause a double-error on the two outputs f and g. 



Design of Seif-Checking Muiti-Output Combinationai Circuits 717 

Since ~d I = 1, the output Q will also be in error. The 
a X=~ 

net result is a triple-error on the outputs f, g, and Q. The 
parity function for these three outputs is P=fEBgEBQ and is 
cal1ed the augmented parity function. 

Lemma 7: P= (~: + ~!) a U E9bEBd. 0 

It is seen that both P and Q contain the terms ~: and ~!. 

In the implementation of P and Q, if ~: and ~ can be 

built once and shared by both P and Q, then a saving in the 
hardware can be achieved. Provision must be made that a 

fault in the node ~: or ~! must not cause any double-error 

on the outputs P and Q. Otherwise, it cannot be detected. 

Let (3= :! and 1'= ~! be the two nodes of interest. We 

require wPQi3=wPQ y=o where w's are the pairwise error 
functions for P and Q. 

Theorem 5: wPQi3 = WPQ Y=O. 0 

EXTENDED-PARITY CHECKING 

In this section we will show how to apply the preceding 
theory to the design of checking circuits. 

Forced-parity methods 

Two methods will now be presented in which additional 
hardware is introduced. By using these methods one can be 
assured that the output error of a circuit will always be of 
odd degree. In this case, a parity checker alone is sufficient 
to detect all output errors. This approach is invalid if 
certain PFN's of a circuit are inaccessible. However, it can 
serve as a design guide in the initial layout of self-checking 
circuitry. 

Given a circuit C, let a be a PFN of C. The fanout value 
Tcr. can be interpreted in two ways. One is the actual number 
of fanouts of a in C. The other one is the outdegree of a as 
it appears in the fanout-graph for C. Unless otherwise 
indicated we will use the latter definition. 

Now consider a circuit C whose fanout-graph G is shown 
in Figure 6(a). The only PFN is a and Tcr.=2. It has two 
associated outputs fj and ~ . Assume an error in a can cause 
a double-error on the two outputs. In order to eliminate this 
double-error, we can remove either one of the two branches 
afj or a~ from G. The resultant graph G' with a~ removed 
is shown in Figure 6(b). In G', a is no longer a prime node 
(since fjEa) and hence can be deleted. The final graph G" is 
shown in Figure 6(c). Since G" is a singular graph, no 
multiple errors can occur on the outputs. 

The removing of the branch a~ from G corresponds to a 

(a) G 

(b) G' 

• • • 

• • • 
o~ 

(e) Gil 

Figure 6-Fanout-graphs for a circuit before and after fanout degeneration 

degeneration in the number of fanouts of a in C. This can 
be accomplished by constructing a new signal a' to replace 
one or moret of the fanout signals of a. Here a' is logically 
identical to, yet structurally independent of a. In other 
words, if C(a) and C(a') are two sub-circuits whose outputs 
are a and a' respectively, we have a=a' with or without 
some commonly shared components. A check for new 
mUltiple errors must be made, unless C(a') is a duplicate of 
C(a) and is fed only by PI's. The new circuit, labeled t, 
can be parity checked. Note that for G" to be singular does 
not necessarily imply t is fanout-free. This method is 
essentially a resynthesis procedure since no new output 
leads are formed. 

'Tile methoa can be greatly enhanced if, instead of 
completely removing a PFN a from G, a is allowed to stay 
in G so long as an error in a cannot cause any multiple 
error of even degree in C. Consider a circuit whose fanout
graph G is shown in Figure 7(a). The error characteristics of 
this circuit are represented by a Venn diagram shown in 
Figure 7(b). In this diagram each element Yj, Yj or Yk is a 
set of input n-tuples defined by Equation (3.5). There are 
two possible double-errors in the circuit as are indicated by 
their intersection Yjk and Yjk . By removing the set Y k from 
this diagram, all double-errors can be eliminated. The 
removal of Y k corresponds to the deletion of a directed 
branch afk from G. So we conclude that only one signal 
a' needs to be generated. This signal a' W:ill be used to 
implement fk. The result is a reduction in Ta from 3 to 2, 
and the resulting circuit will be free of any multiple errors. 

t f; can be a reconvergent node. 



718 National Computer Conference, 1977 

Shown in Figure 7(c) is the change in the error-graph for 
this circuit. Since there is a close resemblance between the 
Venn diagram representation and the error-graph, we will 
use the latter as a working model in our future applications. 

For the circuit just presented, the decision on removing 
afk is obvious. For more complicated problems a general 
procedure is required in order to select pairs (afi ) to be 
removed from G. One such heuristic procedure is given in 
Ko [8], and for brevity, will not be presented here. 

Once a node has gone through the degeneration process 

~----------~fi 

/ 
a ~'"--__ ~:: 
w .. == 0 

1J (a) 

the fanout-graph is simplified accordingly, and the process 
is repeated for another PFN. Since each iteration of this 
process removes a PFN from G, this procedure will termi
nate when the final graph reaches a singular graph. 

Fanout augmentation 

Contrary to the previous method, the Fanout Augmenta
tion method does not require any duplication of the fanout 

ex I 0-- - ----.a ~ 
The Fanout-Graphs 

f 
k 

NOTE: 

f. 
1 

(b) 

The Venn Diagrams 

f. 
J ~o 

( c) 

The Error-Graphs 

and • • • indicate double-errors 

under different sets of input conditions 

Figure 7-Graphic results showing net changes in a fanout degeneration process 



Design of Self-Checking Multi-Output Combinational Circui!s '710 
117 

signals. Instead, a line is tapped off on a fanout node which 
after some gating logic is sent to a parity checker. The new 
output signal, say a will perform the function of 
transforming any mUltiple error of even degree into odd 
degree as long as it is caused by an error in a. 

Consider the fanout-graph of Figure 6(a). Instead of 
removing the branch afj from G, we want to add a new 
branch aa to G such that the double-error on fi and ~ can 
be transformed into a triple-error on fil fj and a. The 
transformation can be achieved by implementing an a

augmented function a(a, X)=wjj(X)·au where Wij (the error 
function) will be our gating function. Since daJda=wij, an 
error in a will also cause a to be in error whenever Wij = 1 
under some input in Y ii . 

We wi]] now show how this method wi1l affect the fanout
graph and error-graph of a circuit. Consider the circuit 
whose fanout-graph is shown in Figure 7(a). In this circuit, 
there exist two possible double-errors on the output pairs 
(fi , fk) and (fj , fk). By implementing a new signal 
a=(Wjk+Wjk)·au, each double-error can be transformed into 
a triple error. The resultant graphs showing the~e changes 
can be found in Figure 8. 

Theorem 6: Given a fanout-graph G. If Ba={afll , 

afl2 , • • • , aflM} where fll , 1 ~i ~M, is a terminating node in 
G, then 

D (4.1) 

Theorem 7: Let a be a PFN in G and Ba ={aa1 , 
aa2, ... ,aaM} be the set of all M directed branches 
whose starting-node is a, and end-nodes are ai, 1 ::;i::;M. 
Associated with each node ai is a set Ni consisting of all 
terminating nodes having a path from ai. We will allow the 
case where Nj={aj} and call aiaj a legitimate path. If 
NinNj=0 for all i*j, and if every PFN in G is to be 
processed by the augmentation technique, then 

W •. :; 0 
IJ 

Q = (w
ik 

+ W
jk

)OI U 

a= [(.~ Wi)·(~ WI)J·au (4.2) 
1-1 i=1 

f. 
1 

£. 
J 

fk 

.. 
01 f. 

J 

Figure ~ The resultant graphs for Figure 7 after a fanout augmentation 
process 

Note that if every node aj, 1 ::;i::;M is a terminating node, 
then Wi=Wi. In this case, Equation (4.1) and Equation (4.2) 
are the same. 

Line sensing techniques 

Under circumstances when circuit constraints or other 
factors prohibit the use of forced-parity techniques, the 
Line Sensing techniques should be investigated since they 
may provide a good result. In this section we wi]] discuss 
two methods which do not require accessing to the PFN's. 

Conditional line sensing 

In the fanout degeneration method, if a branch afj is 
removed from G, we need to build a new signal a' to 
replace the line(s) being cut in C. In this method we will 
build the same a' (or its complement), not for replacement 
but for comparison. Consider the example of Figure 6 
where Ba={afil atj}. Suppose fj is a-invariant and we 
decide to sense fj . Under input conditions such that Wj = 1 
we wi]] have Zj={a} or {a}. Since Zj contains only a single 
element, we can associate with fj a switching function aU 
and call it the function realized by fj under Wj = 1. Let a' =aU 

and it can be used to compare with the "line" fj under the 
"condition" of Wj = 1. Shown in Figure 9(a) is such a 
scheme, and we call it the Conditional Line Sensing 
method. In this method, an Exclusive-OR gate is used to 
compare fj with aU(X). Its output is then gated by the 
switching function Wj(X). The final output is an error signal 
Ej which will be set to 1 whenever an error in a causes an 
error on fj independent of whether or not tj is in error. Let 
Ep be the output of a parity checker checking on all the 
outputs. Then E=Ep+Ej will be our overall error signal for 
the circuit. Note that an error of fj caused by some other 
source mayor may not set Ej= 1. That is why ( should also 
be included in the parity checking. 

r------------.., 
I I 
lEE I 
I P I L ___________ ....l 

(a) 

f i -----..... 

Figure 9-Conditional line sensing 



720 National Computer Conference, 1977 

Mathematically, we have 

Ej=wj(fjEBaU) 

A special situation is wj=I in which case 

Its implementation is shown in Figure 9(b). 
It should be pointed out that the gating function Wj can 

actually be replaced by the pairwise error function wij. 
When this is done, Ej will be set to 1 whenever a double
error occurs on the outputs fj and fj. Thus what is unde
tected by the parity checker (Ep=O) will now be detected by 

. the line sensing mechanism (Ej = 1) and the result is E= 1. For 
the graph of Figure 7 a gating function of Wjk+Wjk will also 
be appropriate if fk is a-invariant. In any event, one should 
select that implementation which is of least cost. 

Now let us consider the case when an output function ~ 
is a-variant. Since Zjk{a, a}, aU alone will no longer be 
sufficient to serve as a reference signal. In order to solve 
this problem, we express fj in the general form 
fj=Aa+Ba+C. The error function Wj is readily found to be 
(AEBB)C=ABC+ABC=W1+W2, where W1=ABC, and 
W 2 = ABC. It is seen that when WI = 1, fj will be equal to a, 
and when W2= 1, fj will be equal to a. So clearly we can 
write the following equation: 

Ej= W1(fjEBa)+ W2(~EBa). 

Again, all the previous arguments will still hold for each 
term in Ej. 

For any circuit, if more than one Ej is generated, then E 
should be set as follows: 

(4.3) 

Unconditional line sensing 

In this method the input condition plays no important 
role in the design. First of all, the double-error patterns of a 
pair of outputs (fj , fj) have to be determined. If it has a 
unique double-error pattern then before duplicating a line 
fj , we first perform a functional mapping on fj and fj as 
follows: 

1. If (fi , fj ) has a unique OO~ 11 pattern, then let gj be a 
function defined by anyone of the following expres
sions: 

(~ ~ (d) t 
(b) fi+fj (e) t·~ 
(c) fj·fj (0 t +~ 

2. If (fj, fj) has a unique OI~ 10 pattern, then define gj to 
be anyone of the following: 

(a) fj 
(b) fj+~ 
(c) fj ·fj 

(d) fj 

(e) t·fj 
(0 fj +fj 

The criterion in selecting one of the expressions in each 

f. 
1 

f. 
J 

Xl 

Xz 

X 
n 

• • • 

G' 
i 

Gi 
gi 

E. 
1 

Figure 10-Uncondition~1 line sensing 

E 

group as gj is based on the cost of implementing such a 
function. Once gj is selected, we can implement a compari
son scheme such as the one shown in Figure 10. Let OJ be a 
circuit which realizes gj and is implemented using only the 
signal PI's as inputs. We construct another circuit OJ I 

which realizes the same function gj but its inputs are now 
taken directly from fi and fj. Call its output gj I. We can 
perform the following comparison 

Ej=gj(X)EBg/(fi , fj) 

using only one Exclusive-OR gate. We call this method the 
Unconditional Line Sensing method since the function of Wi 
is no longer involved. 

In this method, unless gj is chosen to he fi or fi' all the 
outputs are still required to be sent to a parity checker. On 
the other hand, if gj equals fj or fj , then fi can be excluded 
from the parity checking. In this case, a partial duplication 
is implied. For the case when a pair of outputs do not have 
a unique double-error pattern, we require gj to be either fj 
or fj . As was mentioned before, if more than one Ej is 
generated, then Equation (4.3) will have to be used. 

As a final note we would like to point out that this 
method can be extended to include the case of setting gj =aj 
if a PFN ai is accessible. We call this method the Fanout 
Duplication method. 

In conclusion, these methods have been used to design 
checking circuits for a number of functional devices as well 
as random logic. Examples and conclusions dealing with 
the suitability of specific techniques of different types of 
logic circuits, such as iterative arrays can he found in 
Reference 8. 

REFERENCES 

I. Bouricius, W. G., W. C. Carter, K. A. Duke, 1. P. Roth, and P. R. 
Schneider, "Interactive Design of Self-Testing Circuitry," Proc. Purdue 
Centennial Year Symp. on Inform. Processing, April 1969, pp. 73-80. 

2. Carter, W. C. and P. R. Schneider, "Design of Dynamically Checked 
Computers," Proc. IPIP, Vol. 2, August 1968, pp. 878-883. 



Design of Self-Checking Multi-Output Combinational Circuits 721 

3. Carter, W. C., D. C. Jessep, and A. B. Wadia, "Error-Free Decoding 
for Failure-Tolerant Memories," Proc. IEEE International Computer 
Group Conference, June 1970, pp. 229-239. 

4. Friedman, A. D. and P. R. Menon, Fault Detection in Digital Circuits, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1971. 

5. Gerrand, F. and H. S. Rasmussen, "Self-Correction in Large Scale 
Digital Computers," Proc. National Symposium on Reliability and 
Quality Control, Philadelphia, Pennsylvania, January 1961, pp. 351-360. 

6. Harary, F., R. Z. Norman, and D. Cartwright, Structural Models-An 
Introduction to the Theory of Directed Graphs, J. Wiley, New York, 
1965. 

7. Kautz, W. H., "Automatic Fault Detection in Combinational Switching 
Networks," Proc. 2nd Annual Symposium on Switching Circuit Theory 
and Logical Design, 1961, pp. 195-214. 

8. Ko, D. c., "Self-Checking of Multi-Output Combinational Circuits 
Using Forced-Parity Techniques," University of Southern California 
Electronic Sciences Laboratory Report No. 451, June 1973. 

9. Russell, J. D. and C. R. Kime, "Structural Factors in the Fault 
Diagnosis of Combinational Networks," IEEE Trans. on Computers, 
Vol. C-20, November 1971, pp. 1276-1285. 

10. Sellers, F. F., M. Y. Hsiao, L. W. Bearnson, "Analyzing Errors with the 
Boolean Difference," IEEE Trans. on Computers, Vol. C-17, July 1968, 
pp. 676-683. 

11. Sellers, F. F., M. Y. Hsiao, and L. W. Bearnson, Error Detecting Logic 
for Digital Computers, McGraw-HilI, New York, 1968. 

12. Wilcox, R. H. and W. C. Mann, eds., Redundancy Techniques for 
Computing Systems, Spartan Books, Washington, D.C., pp. 205-228, 
1962. 





Remote terminal emulation in the 
procurement of teleprocessing systems 

by SHIRLEY WARD WATKINS and MARSHALL D. ABRAMS 
National Bureau of Standards 
Washington, D.C. 

ABSTRACT 

This paper addresses some of the problems which exist 
when benchmarking interactive computing. The telepro
cessing workload may be emulated by a program running 
internal to the System Under Test (SUT), known as an 
internal driver or internal stimulator. The limitations of 
internal drivers are discussed, especially with respect to 
procurement testing. The use of live operators and tape 
loops are also discussed, but these are also limited tech
niques. The most attractive alternative is to employ an
other, external, computer system to emulate the telepro
cessing workload; this approach is called remote terminal 
emulation. The emulation constraints are delineated; terms 
applicable to the process are defined, including: Remote 
Terminal Emulator (RTE), scenario, script, and scene. Ten 
RTE's, representative of current capabilities, are briefly 
described. 

INTRODUCTION 

Benchmarking is the process of executing a mix of repre
sentative programs on a computer system in order to 
:ali~~te the perf~rmance of that system. l The technique is 
!!!tolt!,'e!,)' !rl'Pecr'UIg crnd yt~d~ '!'1TIm'ericrrt';c<;1rt~ ·¥\~hictr arc 
useful for comparing alternative computer systems. In 
conducting benchmark tests, it is desirable that the work
load be as controlled and repeatable as possible. While this 
problem has been solved for batch workloads, several 
problems remain for interactive computing. This paper 
focuses on a class of devices, called Remote Terminal 
Emulators (RTE's) which are most attractive for imposing 
the interactive workload. 

Test conditions 

It is important to note that the present state-of-the-art 
makes it necessary to do comparative rather than absolute 
evaluation. The performance of a multi-programmed com
puter system is the result obtained from a complex interac
tion of such variables as the workload, configuration, and 
operating system.2 

723 

Complete control of the environment is required for 
stress testing, tuning, and complete systems comparison. 
Complete systems comparison coupled with definition of 
performance criteria in functional machine-independent 
terms is especially important for the procurement of com
puter systems where the comparison of heterogenous sys
tems is required. 3,4 Testing with partial control of the 
environment is easier, potentially less disruptive to normal 
operations, and less costly than with complete control. 
Among the applications for partial control are functional 
demonstrations, quality control, and comparison of com
puter services. 

Test methodologies 

Selection of test methodology must incorporate consider
ation of the measurement conditions and the functional 
performance measures. 5 Cost, complexity, and accuracy 
must weigh in the selection. Associated with every test 
methodology must be a monitoring technique to acquire 
data and a procedure for analyzing the acquired data. Both 
data acquisition and analysis must be capable of withstand
ing scrutiny concerning accuracy and precision. 

The teleprocessing workload may be emulated by a 
PJOgranl rJJ.~internat 1QJ.he.~·stew..l~.JJ.de.t"Tesl 'S:u:o~ 
either in the central processing unit, the communications 
front-end, or, when the architecture supports it, some other 
processor configured as part of the system. These programs 
are known collectively as internal drivers or internal stimu
lators. The monitoring function is included in the internal 
driver since there may be no external communication. 
These internal drivers range in sophistication from ones 
which simply read a simulated terminal communication 
from a storage device such as tape or disk and present it to 
the operating system or applications program, to ones 
which incorporate the use of a dedicated communications 
processor which is externally cabled to the communications 
device which would normally be configured. 

One objection to the use of internal drivers in procure
ment testing is concerned with the consumption of re
sources in the SUT. This may not be a problem in testing 
services, where the emulated user is one among many, but 
it does pose serious problems when the total workload is to 



724 National Computer Conference, 1977 

be emulated. There is no acceptable way to compensate for 
this resource consumption. Another objection in procure
ment has to do with the difficulty of verifying the operation 
of the internal driver. Many internal drivers can bypass 
various amounts of hardware and software, depending on 
how the system software is generated. It is therefore 
extremely difficult to establish exactly what is being tested. 

Live operators at terminals may be employed to impose a 
controlled workload under certain limited situations. Due to 
the logistics involving the operators and terminals, condi
tions are difficult to control. In addition using live operators 
almost eliminates repeatability of testing. 

When only a few terminal interactions need to be con
trolled, the use of tape loops is feasible. The operator input 
is stored on a tape and the terminal is operated with the 
tape serving as the source of input. Barring malfunction, 
the tape input is controllable and repeatable. However, the 
logistics of employing real terminals is a drawback. 

When a large number of terminals and tests are required, 
the preceding two methods are unequal to the task. When 
the drawbacks of internal drivers prohibit their use, the 
alternative is to employ another, external, computer system 
to emulate the teleprocessing workload. 

REMOTE TERMINAL EMULATION AND RELATED 
TERMINOLOGY 

Remote terminal emulation is an approach to the per
formance evaluation of teleprocessing systems in which a 
driver external to and independent of the SUT connects to 
the SUT through its communications device interfaces, 
either locally or through a communications network, and 
interacts with the SUT as if the driver were a set of 
terminal devices and operators. The normal communication 
protocols are used. In fact, the SUT should be unable to 
distinguish between communicating with the driver, and 
with real users and terminal devices. Integral to this tech
nique is a monitor which captures data descriptive of the 
driver/SUT interaction. Through analysis of this data, per
formance determinations are made. 

Remote terminal emulator 

An RTE is a specific implementation of a teleprocessing 
workload driver employed in remote terminal emulation. 
RTE's are implemented on various sizes of machines-from 
minicomputers to large scale computers. A monitor to 
record selected events is a required component of the 
remote terminal emulation process. All known RTE's in
corporate this monitor component. Figure 1 demonstrates 
the components of the remote terminal emulation process. 

Scenario 

A scenario describes the user workload in a machine 
independent form. Functional activities to be emulated, 

RTE 

SUT 

Figure I-Remote terminal emulation 

DATA 
REDUCTION 

REPORTS 

such as the exercise of various subsystems (compilers, 
editors, application packages, etc.), are specified in the 
scenario. All actions, pauses, and decisions to be made by 
the emulated users are designated. Ideally scenarios are 
written independent of any SUT or RTE. Figure 2 provides 
a sample scenario. 

Script 

A scenario is translated into a script dependent on both 
the SUT and RTE. The script contains the characters which 
constitute the user/system interaction, and the time se
quence information describing the relationship among the 
characters. The script contains many elements in addition 
to a source language program and a set of data. For 
example, an interactive script might specify logging onto a 
system, creating a program to be stored in the file system, 
compiling, linking and loading, and executing. In execution, 
input and output might be conducted between the program 
and the terminal as well as between the program and 

Enter program" A." 
Submit program for compilation. 
Correct errors in lines 10 and 15. 
Submit program for compilation. 
Correct all remaining errors. 
Enter data "B" into file system. 
Execute program" A" using data "B." 

Figure 2-Sample scenario 



Remote Terminal Emulation in the Procurement of Teleprocessing Systems 725 

various files. A script may contain a mixture of commands 
at the executive command level, subcommands and other 
interactions with various subsystems, programs, and data. 
Embedded in the sequence of this task execution are 
typically commands to the RTE which indicate the elapsed 
time to wait after receiving a system message before issuing 
the next input from an emulated device. Figure 3 is an 
overview of the scenario-to-script process and Figure 4 
shows the hypothetical translation of a scenario statement 
into the text which would be included in the scripts for 
three different SUT's. 

Scene 

When an RTE is applied to a SUT, the totality of 
characteristics associated with that application is called a 
scene. In order to determine the performance of the SUT, it 
is necessary to record predefined aspects of the RTE/SUT 
interaction. This procedure is called scene monitoring. The 
scene characteristics to be logged are determined by the 
features of SUT performance to be evaluated. An example 
of the type of information logged is SUT response time. 

Integrity confirmation 

Applying an RTE to a system for the purpose of perform
ance evaluation raises three questions: 

1. What is the performance of the SUT? 
2. Can the RTE execute the necessary functions? 
3. Is the RTE performing properly during its application 

to the SUT? 

RTE 
1 

SUT 
1 

RTE 
2 

SUT 
2 

000 

Figure 3-Scenario-to-script process 

SUT 

Scenario: Enter program "'A." 
Script 1: @ ED, I AYE 

(type text of program ""A") 
@EOF 

Script 2: MAKE A YE.FOR 
I (type text of program ""A") 
(ESC)EX(ESC)(ESC) 

Script 3: TECO 
I (type text of program ""A") 
(ESC) 
(ESC) 
A YE.FOR (CR)(CR) 

Figure 4-Scenario-to-script translation 

Integrity confirmation encompasses these three concerns. 
To insure the integrity of an application of an RTE or 

equivalent device, the performance of that device should be 
tested. This testing can be performed prior to and/or during 
its application to the SUT. Examples of the type of concern 
addressed in this process are: is the device executing the 
tasks specified in the scenario, is the device emulating the 
correct number and kinds of devices specified at the correct 
transmission speeds, and is the device recording the scene 
accurately for later analysis? 

CURRENT RTE'S 

RTE's have been implemented on varying sizes of sys
tems for varying purposes. The majority of these devices 
were originally developed for in-house testing by vendors of 
computer systems and services. For the most part, vendors 
recognized the need for a tool to be used for such activities 
as the stress testing, software. debugging, and tuning of 
teleprocessing systems. As the RTE's matured and their 
utility became recognized, in some companies they became 
marketing tools, and, in some cases, marketed software 
produ~t~ .. Jt j~ jpt~resting, to nQt~ th~l Whil~ .vendQr-.Q~v,el
oped RTE's were designed independently, they are func
tionally very similar. 

The scope of the description of RTE's has been restricted 
to computer system testing for this paper. The purpose of 
the descriptions which will be provided is strictly to illus
trate the level of capability and capacity which is currently 
available in RTE's. 

This paper references ten RTE's which were developed 
for testing computer systems.6 Of these ten, only one, the 
Air Force/MITRE RTE was designed to test any computer 
system; the others were designed by vendors for their 
product line. Many of these RTE's may be applicable to 
other systems by virtue of the generality of their design. 
Figure 5 summarizes the RTE's and the hardware on which 
each is implemented. 

The three minicomputer-based RTE's are the Air Force/ 
MITRE RTE, Digital Equipment Corporation's Script Ma
chine, and Hewlett Packard's Timesharing Event Perform-



726 National Computer Conference, 1977 

RTE 

Air Force/MITRE DVM 

Control Data Corp. BARTER 

Digital Equipment Corp. 
Script Machine 

Hewlett Packard TEPE 

Honeywell CUESTA 

Honeywell DATUS 

IBM DBIDC Driver 

IBM TPNS 

Univac CNE 

Univac CS1100 

Hardware 

Data General Nova 800 

Peripheral Processing 
Unit of a CDC system 

PDP 11120 

HP 2100 

H 6000 or 
Level 66 Series 60 

Datanet 30 

IBM 370/145 * 

IBM 370/145 * 

Univac 1100 series 

Univac 1100 series 

* Minimal hardware on which the RTE may be configured. 

Figure 5-Implementation hardware 

ance Evaluator (TEPE). The Air Force/MITRE Design 
Verification Model (DVM) has been used for testing several 
different computers and operating systems: Burroughs 
6700, Control Data Corporation 6600, IBM 370/155, Honey
well 6180 and 635 (under GCOS and Multics), and Univac 
1108. DEC's Script Machine was originally designed to test 
the PDP 11170, but there are no design constraints that 
would limit it to the testing of that system. HP's TEPE has 
been used strictly for the test of HP systems, but again it 
appears that it could be used to drive other computer 
systems. 

Control Data Corporation's Benchmarking Approach to 
the RTE Requirement (BARTER) is an RTE which was 
originally designed as an internal driver, but was modified 
to run externally. BARTER runs in a Peripheral Processing 
U nit of a Cyber series computer. 

Two RTE's are listed in Table 4 for Honeywell; the 
Communications User Emulated System for Traffic Analy
sis (CUEST A) is basically an extention of DATUS to 
provide expanded capabilities. CUESTA has been used in 
the testing of Honeywell systems under GCOS and Multics. 

IBM has two RTE's: Data Base/Data Communications 
Driver (DB/DC Driver) and Teleprocessing Network Simu
lator (TPNS). DB/DC Driver was especially designed for 
data base application programs and supports 2741's and 
teletype-compatible devices. TPNS was designed to pro
vide controlled generation of message traffic into a telecom
munications subsystem or application and supports a large 
variety of IBM devices which communicate in a polled 
environment. Both of these RTE's are actively marketed by 
IBM. 

Univac is another vendor which developed two RTE's. 
The Communications Network Emulator (CNE) is available 
strictly for use internal to the Univac benchmarking facility. 
Communications Simulator (CS 1100) is available to all 
Univac 1100 series installations at no charge. 

All three of the minicomputer-based RTE's support asyn-

chronous communications protocol, and the Air Force/ 
MITRE DVM supports synchronous communications pro
tocol. The Air Force/MITRE DVM supports 64 asynchro
nous devices and 64 synchronous devices; the Script 
Machine and TEPE both support 32 asynchronous devices. 

Of the seven RTE's which are implemented on computers 
other than minicomputers, all support asynchronous com
munications; all except DATUS support a synchronous 
communications protocol. As far as the RTE software is 
concerned, the number of devices which can be emulated is 
generally in the hundreds. However, there is an interesting 
problem associated with the emulation of a large number of 
asynchronous lines (where "large" is defined as between 50 
and 100). The difficulty appears to be more fiscal than 
t.,.r-h ... ;r-o:>1 Ulh;l", th.,.r.,. ;" ... '" rl;.fhr-llltu ; ... r-", ... hnllM ... n 0:> 
"'"",,",,.1..1.1..1..1.,,","1.. ,., • .1.1..1."'" L.I..1,,",.1. ""' J.~ .1..1.'-' "-I.J....I...LI. ........... .lLJ .1..1.1 ,""vl..I..I...I.,E,u.I..I..I..I.6 " 

system for installation at the customer's site, there is a 
problem with the test system at the vendor's benchmarking 
facility. There is a cost, on the order of $750 to $2,000, in 
configuring each line between the RTE and SUT. Non
mUltiplexed asynchronous terminals each require one line, 
thereby significantly impacting the cost of setting up an 
emulation. 

RTE's emulate not only terminal devices but also the 
human operators of those devices. Therefore, the interac
tion between humans and teleprocessing systems must be 
modelled. Basically, there are two human characteristics 
which can be emulated. One is think time or the amount of 
a time a user delays or thinks between receiving a message 
from the SUT and entering the next user message. All 
RTE's provide script commands to emulate think time. 
Some RTE's allow think time to be changed for each user 
input, others don't allow changes within the script but allow 
a different global think time for each emulated device, and 
others allow the calculation of think time based on a 
probability distribution. 

Another teleprocessing user feature is typing rate. Cer
tainly typing rate varies from user to user dependent upon 
individual typing ability and upon user familiarity with the 
keyboard being employed. The RTE's which are imple
mented on large-scale computers do not have explicit script 
commands to regulate emulated user typing rate. Rather 
emulated user characters are transmitted to the SUT at the 
full speed of the transmission line. The only exception to 
this implementation is BARTER which has a typing rate 
command. 

As mentioned earlier, application of a device in a pro
curement environment requires special attention to the area 
of integrity confirmation. All current RTE's employ at least 
one procedure which can be used to validate the perform
ance of that device during the test. Every RTE has the 
capability of logging the characters exchanged between 
emulated devices and S UT. This log can be perused follow
ing a test to determine if the scripts were indeed executed 
properly. 

SUMMARY 

The trend in computer usage has been from on-site batch 
processing systems to systems which encompass on-site 



Remote Terminal Emulation in the Procurement of Teleprocessing Systems 727 

batch, remote batch, and interactive teleprocessing. Batch 
programs when timed by observers using stopwatches con
stituted adequate benchmarking methodology for on-site 
batch systems. Benchmarking of teleprocessing computer 
systems requires different techniques to evaluate the sys
tem quality of service. Remote terminal emulation is an 
approach to such evaluation. 

Remote terminal emulation represents a technically valid 
approach to such testing and is currently available in the 
majority of vendor benchmarking facilities. This paper has 
discussed ten RTE's for testing teleprocessing computer 
systems. The intent of the discussions was to indicate the 
type of capability and capacity which these current imple
mentations employ. 

REFERENCES 
1. Guidelines for Benchmarking ADP Systems in the Competitive Procure

ment Environment, Federal Information Processing Standards Publication 
42, December 1975. 

2. Bell, T. E., "Computer Performance Variability," Proceedings National 
Computer Conference, 1974, pp. 761-766. 

3. Bell, T. E., Computer Performance Management Through Control Lim
its, TRW-SS-76-01, TRW Defense and Space Systems Group, January 
1976. 

4. Crothers, C. G., Workload Determination and Representation for On
Line Computer Systems, ESD-TR-74-54, The MITRE Corporation, Bed
ford, MA (NTIS AD-779 818), January 1974. 

5. Abrams, M. D., S. Treu, and R. P. Blanc, Measurement of Computer 
Communication Networks, National Bureau of Standards Technical Note 
908, July 1976. 

6. Watkins, S. W. and M. D. Abrams, Survey of Remote Terminal Emula
tors, National Bureau of Standards Technical Note, in preparation. 





Application of remote terminal emulation 
in the procurement process 

by E. J. McFAUL 
u. S. Geological Survey 
Reston, Virginia 

ABSTRACT 

The procurement of communications-oriented computer 
systems in the Federal Government has recently embraced 
a technological concept which will significantly affect the 
trend of such activities for many years to come. This 
concept, generally referred to as Remote Terminal Emula
tion, provides the potential customer with a means of 
testing and evaluating a proposed system under loading 
conditions that closely approximate the intended live envi
ronment but without the logistical problems that have 
plagued such attempts in the past. This capability takes on 
added significance when viewed in the context of the 
federal procurement process which usually involves the 
execution of a benchmark by all participating vendors at 
some point in the procurement cycle. 1 In order to be 
equitable among all vendors, as well as provide meaningful 
results for subsequent evaluation, the benchmark must not 
only be representative of the anticipated workload but must 
also exhibit one very important characteristic-repeatabil
ity. Until recently, this latter requirement reduced most 
benchmarks to essentially batch-oriented exercises, with 
but a smattering of interactive processing that did little 
more than establish the functional capability. With the use 
of Remote Terminal Emulation, the situation has changed. 

proposed systems with benchmarks that provide significant 
workload levels (benchmarks with over one hundred emu
lated terminals are not uncommon) such that meaningful 
evaluation data can be obtained. This paper documents the 
experience of the U. S. Geological Survey in using Remote 
Terminal Emulation during a recent procurement of a 
nationwide communications-oriented computer system. 

INTRODUCTION 

The recent energy-related problems of the United States 
have had a far-reaching impact on the scope of computer
based activities within the U. S. Geological Survey. In 
order to meet the myriad demands of both Government and 
industry concerning the management of our nation's energy 
resources, the USGS has had to dramatically expand its 

729 

computer resources, particularly in the area of interactive 
and remote processing. The planning for this expansion 
culminated in May of 1975 in a set of user requirements that 
would ultimately serve as the basis for a solicitation docu
ment (RFP) in an industry-wide competitive procurement. 

BENCHMARK OBJECTIVES 

The Computer Center Division within the USGS was 
responsible for translating the stated user requirements into 
a complete RFP, as well as for designing a benchmark that 
would best evaluate a vendor's ability to meet those re
quirements. In order to accomplish the latter objective, the 
benchmark not only had to be truly representative of the 
projected user workload, but also had to provide an equita
ble test across all of the participating vendors. Also, the 
benchmark had to rigorously test all components of any 
proposed system, with all subsystems functioning as they 
would in a non-test environment. 

EXISTING METHODOLOGIES 

With the above objectives in mind, an investigation was 
begun into existing methodologies for the benchmarking of 
le1eprul:es~ii1g ~y~tem~. The trhJiUon",l metndJ\)f cmp1c;y
ing a batch-oriented workload with a small number of live 
terminals was rejected because of the difficulty in equating 
the batch activity to a desired teleprocessing workload. 2 

Large number of live terminals were unacceptable from a 
repeatability standpoint, not to mention the logistical night
mare that such an approach would entail. Simulation was 
not considered a feasible alternative due to Federal regula
tions restricting the use of this technique. 3 There was, 
however, one more approach to the problem that appeared 
to merit further investigation. Referred to as terminal 
emulation, this concept involved generating the required 
teleprocessing workload via software. However, unlike 
simulation which attempted to model the teleprocessing 
system (and was thus only as valid as the assumptions upon 
which the model was based), terminal emulation captured 
the actual teleprocessing dialog in software, with the 
additional capabilities of being able to control such parame-



730 National Computer Conference, 1977 

ters as think time, line speeds, and typing delays. At the 
time, two types of terminal emulators were being developed 
by industry-internal and external. The internal emulators 
(or measurement drivers) were typically run on the actual 
system under test (SUT) but, in doing so, perturbed the 
object of measurement. 4 This factor, together with reserva
tions concerning the completeness of such a test (usually 
the complete communications subsystem was not exer
cised) resulted in the USGS insisting that any methodology 
employed must generate the required teleprocessing work
load completely external to the SUT. The external or 
remote terminal emulators (RTEs) met this requirement in 
that they all employed separate computers to house the 
emulation software and entered the SUT via the normal 
communications interface. In addition to external genera
tion, the USGS required that no portion of the SUT could 
be used in the workload generation, and that transmission 
of the workload to the SUT must use the vendor's standard 
hardware and software interfaces. All of these requirements 
were intended to insure that the installed system would 
need no hardware or software modifications in order to 
support a live teleprocessing workload equivalent to that 
emulated during the benchmark. 

INDUSTRY RESPONSE 

Upon release of the RFP to industry in August of 1975, it 
became clear that four major mainframe manufacturers 
could meet the benchmark requirements as stated, with two 
others needing only additional development time to fully 
comply. Unfortunately, the USGS procurement timetable 
could not afford the requested delays, resulting in three 
vendors (one of the four qualified vendors eventually chose 
not to bid) going to benchmark. 

USGS RTE WORKLOAD 

The teleprocessing workload to be emulated by the 
vendors was comprised of both asynchronous and syn
chronous activity. The asynchronous portion was to reflect 
a population of between 48 and 96 low speed (300 baud) 
terminals, depending on the particular point in the system's 
life being tested. Each terminal was to be actively engaged 
in one of four preassigned functional scenarios for the 
duration of the timed benchmark. The scenarios consisted 
of continuously-repeated sessions, with a session being 
initiated when the emulated terminal logged into the SUT 
and terminated when the emulated terminal logged out. 
Each session was individually identified with an increment
ing two-digit field as part of the emulated dialog to aid in 
tracking the activity of the emulated terminals in subse
quent data analyses. The four functional scenarios con
sisted of the following: (1) interactive FORTRAN compila
tion and execution; (2) file manipulation involving media 
transfer; (3) intra- and inter-file text editing; and (4) data 
base query generation and execution. Each of the four 
scenarios had a specified think time to be incorporated into 

the dialog as a fixed delay between the last character of 
the response transmitted from the SUT and the first charac
ter of the next stimulus transmitted from the RTE. 

The synchronous portion of the workload consisted of 12 
to 28 emulated remote-job-entry terminals operating at line 
speeds of between 1200 and 9600 baud. The scenarios of the 
RJE terminals were required to function in continuous job
submission mode, with specified delay times incorporated 
between individual job submissions. Depending on the 
point in the system's life being tested, from four to seven 
functionally distinct batch programs were required to be 
transmitted to the SUT and accumulated into input job 
queues. Once sufficient numbers of these batch jobs were 
queued, one of each of the different batch jobs was set into 
execution. This set of multiprogramming batch johs formed 
a continuously-replenished batch background running con
current with the aforementioned asynchronous and syn
chronous activity. A graphical representation of the com
bined SUT workload over the system's life is presented in 
Figure 1. 

RTE COMPARISONS 

The three vendors who participated in the final bench
mark employed functionally similar RTEs. The general 
benchmark configuration is indicated in Figure 2. All ven
dors chose to implement the synchronous emulation by 
using separate physical communications cables between the 
RTE and SUT for each emulated RJE terminal. However, 
for the asynchronous workload, the vendors all elected to 

48 lm'IlNALS 

~ 12 ~.l~ __ - - - - -
---

10 20 

SYSTEM LIFE CJ.mrns) 

Eiu..A n:n AsYl«:lflOl'OJS T ERMI NALS 

Eiu..An:n SYNCIfla'«JJS TERMINALS 

---

IhTl~I~ &TCH Jess -

28 lm'IlNALS 

--- ---

50 

Figure I-USGS benchmark workload mix 



1 
Gl 0+-+ 
1 
~ 
\::L 

.. 

.. 

LJ LIVE 
TERMINAL 

4 

EMULATED SYNCHRONOUS LINES 

1 
r---, DISPLAY 
L-..JDEVICE 

I-- REMOTE TERMINAL EMULATOR -----~ .. r-- SYSTEM UNDER TEST ---1 
Figure 2-General benchmark configuration 

emulate multi-dropped terminals in order to reduce cabling 
requirements. In the area of verification of the emulated 
terminal activity, several observations are in order. There 
existed sufficient capability common to all three vendors to 
provide a reasonable degree of assurance that the bench
marks were being performed properly. All vendors could 
display the status of any selected emulated line using the 
console on the SUT. All vendors could capture and time
tag all emulated terminal traffic and store it on a magnetic 
tape for post processing. And all vendors could display the 
dialog on any selected emulated asynchronous line on an 
output device. The vendors differed, however, in the de
gree to which each of these capabilities had been refined. 
For example, while one vendor could dynamically change 
the selected asynchronous line to be displayed by simply 
entering a command on the RTE console, other vendors 
had to either physically move a pair of connectors on a 
back panel or actually make minor modifications to the 
RTE software. Although all vendors could display the 
status of any selected emulated line (i.e., active, inactive, 
etc.), only one vendor could display the actual position of 
RTE execution within any given terminal session. While 
~llrnt: "enOtJrs \-\ere aoie· H; auwmatTcaliyiime-tag any 
displayed asynchronous terminal sessions, other vendors 
required manual annotation on corresponding output list
ings. 

BENCHMARK CONSTRAINTS 

The salient features of the USGS benchmark can be 
described as follows: 

(1) The vendor was allowed up to two augmentations 
(hardware and/or software changes) over the 60-
month system's life; 

(2) The vendor had to benchmark the month-60 workload 
plus all augmentation points; 

(3) A live interactive terminal with a priority identical to 
that of the emulated asynchronous terminals was 
used to measure various command response times. 

Remote Terminal Emulation in Procurement Process 731 

The resulting averages could not exceed stated maxi
mums; 

(4) The transmission times associated with the emuiated 
synchronous activity could not exceed stated maxi
mums; 

(5) The elapsed times of batch jobs could not exceed 
stated maximums; 

(6) All workload types must have been concurrently 
executing when any timing measurements were made; 
and 

(7) For acceptance-test purposes, a "batch-only" ver
sion of the workload would be run and timed. 

BENCHMARK PROCEDURES 

The procedural implementation of Remote Terminal Em
ulation within the context of the overall USGS benchmark 
can be seen through the following event descriptions. At 
the commencement of the live benchmark run, the system 
configuration was verified by the USGS benchmark team. 
Following this, the emulated asynchronous terminals were 
allowed to begin logging into the SUT. At approximately 30 
minutes into the benchmark, the emulated synchronous 
terminals were released to begin transmitting batch jobs 
into the SUT input queues. After approximately 50 min
utes, when all of the emulated terminals had established 
communications and reached steady state, a record was 
made of the current SUT job queues. Following this, the 
required mix of mUltiprogramming jobs was set into execu
tion. Once all portions of the benchmark workload were 
being processed, the first set of live-terminal timings were 
taken. At approximate lO-minute intervals, the remaining 
sets of timings were taken until six complete sets were 
recorded. As soon as the timings were completed and at 
least one copy of every type of batch job had finished 
execution, the benchmark was terminated. Ending job 
queues were recorded for subsequent quantitative analysis 
of the processed workload. 

OBSERVATIONS 

At the conclusion of the benchmark associated with the 
USGS procurement, the following observations were made: 

(1) All vendors were eventually given over six months to 
prepare the benchmark; nevertheless, every vendor 
attempted major hardware and/or software modifica
tions during the week of the live benchmark test· 

(2) All vendors ultimately made some modificatio~s to 
their RTEs to conform to the USGS requirements or 
to correct uncovered faults; 

(3) All vendors suffered significant SUT hardware fail
ures during the live benchmark tests; 

(4) Most vendors were plagued by RTE hardware errors 
or unexpected communication problems associated 
with the RTE-SUT interface; and 

(5) All vendors found that traditional "on-the-fly" tuning 



732 National Computer Conference, 1977 

and reconfiguring produced somewhat unpredictable 
results. 

CONCLUSIONS 

In retrospect, the USGS feels that the efforts required to 
incorporate the technique of Remote Terminal Emulation 
into a major computer-system procurement were well justi
fied in terms of the resulting level of confidence in the 
capabilities of the acquired system. It was not an inexpen
sive undertaking for either the Government or the partici
pating vendors. Major competitive procurements never are. 
Howe\'er, \vhen one considers the overall cost-effective-
ness of having obtained the lowest-priced system that has 
actually been tested against its ultimate projected workload, 
the real merits of Remote Terminal Emulation begin to 

become evident. And as this tool is refined and standard
ized through continued Government-industry cooperation, 
it wi11 surely become an inseparable part of all future 
communications-oriented computer procurements. 

REFERENCES 

l. Federal Property Management Regulations, Subpart 101-32.404-1, "Re
strictions on the Use of Simulation to Describe Data Processing Require
ments," revised by The Federal Register, page 43548, October 1, 1976. 

2. Hyman, B., "Stability and Workload Defmition for Time Sharing Sys
terns," Federal Information Processing Standards Coordinating and Advi
sory Committee, Task Group 13, July 30, 1975. 

3. Federal Procurement Regulations, Subpart 1-4.1107-5, "Restrictions on 
the Use of Simulation in the ADPE Procurement Process," revised by 
The Federal Register, page 43538, October 1, 1976. 

4. FIPS PUB, 1977, Guidelines for the Measurement of Interactive Com
puter Service Throughput, Turnaround Time and Response Time, Federal 
Information Processing Standards Publication, to be published in 1977. 



Remote terminal emulator development 
and application criteria 

by C. T. ARTHUR 
Honeywell Information Systems 
Phoenix, Arizona 

ABSTRACT 

This paper is a general discussion of remote terminal 
emulation; its history, processes, implementation tech
niques, and application criteria. The remote terminal emu
lator is a measurement tool, and as such, requires a 
functional understanding of its operation for proper applica
tion. Too often the emulator has been applied as an external 
loading device without the user comprehending that it is 
also a network simulator operating under the constraints of 
the comIllunication disciplines and limitations. 

This paper does not attempt to establish guidelines or 
rules respective to the emulator's usage, but rather, dis
cusses areas which should be investigated and analyzed 
prior to the experiment definition. 

INTRODUCTION 

The intent of this paper is to reflect on how we, as 
developers of a remote terminal emulator (RTE) system, 
view its evolution, implementation, purpose and usage. 
Like any technology that has been developed from many 
indepewien1sour.c.es"" t.h.e.te. ate . w.any .ar.eas ,o.f... agreement 
and disagreement in methodology and use. 

The development of these systems is discussed in general 
terms, realizing that the hardware will impose implementa
tion concept variations between developers. When specific 
functions and capabilities are mentioned, the system cited 
as an example will be, for most part, Honeywell's current 
Communication User Emulation System for Traffic Analysis 
(CUESTA), although no formal presentation of CUESTA is 
intended or provided. 

The remote terminal emulator is regarded by its devel
opers as a measurement tool, and as such, a functional 
understanding of its operations, capabilities, and limitations 
is necessary for its proper application. Thus the intent of 
this document is to not only discuss the RTE application 
criteria, but also present the basic concepts of the emula
tion process, the communication network, and the func
tions of the script. In addition, the various data reductions 
techniques and the-current RTE usage are mentioned. 

733 

BACKGROUND 

Although not new, remote terminal emulation is also not 
old. Programs were being developed under different no
menclature in the late 1960's which, by current definitions, 
were true remote terminal emulators. Previously, many 
specialized programs were written by system developers in 
order to validate their communication software. 

The early versions developed by Honeywell, were called 
User Simulators, User Exercisers and External Load Gen
erators. However, these nomenclatures only added confu
sion to an already confusing area, because at that time, 
internal user simulators, exercisers and load-generators 
were also being developed and used. In the use of one 
Honeywell system, DATUS (DAta Terminal User Simula
tor), an attempt was made to change its name because of 
the suspicions raised by the word "simulator." 

By 1969 Honeywell had three separate projects develop
ing terminal emulators. Two were oriented toward perform
ance testing and the third was oriented toward functional 
testing. All were implemented in small communication 
Front eNd Processors (FNP), which were memory limited, 
and confined to the teletype disciplines. In 1970, the two 
performance emulators were merged into one and called 
DATUS~ 

Also in 1970, a fourth system was developed specifically 
for exercising the Honeywell H635 system with Remote Job 
Entry (RJE). Later to be known as the Remote Computer 
Simulator, this too, was implemented in a small FNP. 
Consequently, it was limited to "broadcasting" the input 
job streams over a number of lines simultaneously. This 
was one of the first attempts to emulate a complex high 
speed (9600 baud), synchronous device. 

By late 1971, another project was begun which was to 
utilize the entire GCOS/H66 system to emulate users. It 
was during this project that the GCOS* operating system's 
self-protecting features were found to be too restrictive for 
a true emulation process. In 1972, the project was altered to 
develop special RTE front end software which would be 
compatible with the GCOS operating system software and 

* Geos is the acronym for General Comprehensive Operating Supervisor 
for Honeywell's H66 systems. GeOS is a trademark of Honeywell. 



734 National Computer Conference, 1977 

also allow typical GCOS application programs to control 
the communication line interface, and thus define their own 
disciplines. The project was later named CUESTA. 

Because of the limitations experienced with the standard 
GCOS communication interface, the initial CUESTA effort 
was to develop only the FNP communication software. At 
this point in time, little effort was made to define the 
structure of the H66 program. As it turned out, this was 
beneficial to the developers as it allowed them to gain the 
experience needed to construct a sound executive for data 
handling which, in concept, couid be moved to the H66 as a 
mini-executive, operating under GCOS software, and be 
open-ended with respect to the emulation capabilities. 
Thus, CUESTA became an emulation executive system 
••. L=_L _11_ ••. _ .. L_ Tl'T'T":' •• ___ .. _ ..l_C: __ L= __ •• __ .. ___ = __ 1 
W IU\..U dllVW ~ llU;; ~ 1 C U~t;1 LV Ut;llllt; UI~ VW II Lt;llllllldl 

disciplines and dialog through application of the "script" 
and FNP parameters. 

THE EMULATION PROCESS 

As mentioned above, the remote terminal emulator is in 
itself a tool and not an application. It provides a means for 
the RTE user to simulate an operator at a terminal and then 
emulate that terminal at the communication link interface, 
so that to the System Under Test (SUT), the interface 
appears to be the actual terminal. 

Even so, depending upon the methods and hardware in 
which the remote terminal emulator is implemented, the 
emulation process may not be exact. It must be remem
bered that the communication interface being utilized is a 
computer/computer and not a terminal/computer. While the 
emulating software attempts to be exact, it is governed by 
the processor's resources available for program execution 
instead of hardware control as in the terminal. This can lead 
to small timing differences which would not be discernible 
with low-volume, small-network configurations, but they 
may become magnified to noticeable levels when operating 
with high-volume, large-networks. Whether these timing 
variations are of any consequence depends upon the appli
cation of the RTE experiment and its objectives. 

Early in the development of remote terminal emulators, 
the primary design objective was to automate the mechan
ics being used in the engineering testing and checkout 
procedures and to enlarge these procedures to provide 
heavier workloads to the SUT. The communication net
work size was minimal by today's standards. RTE support 
capabilities were "after thoughts" and the script equivalent 
was an integral part of the software coding. The communi
cation processor was utilized as a stand-alone system, 
because that was where the communication hardware re
sided. 

As the technology evolved, more optimistic and demand
ing objectives were defined. No longer was "keeping up 
with the SUT" acceptable, but now it must be over
powered. Emulation of large networks with many differing 
terminal types, being used in many differing applications, 
was desired. As the complexity grew, it became apparent 
that script generation must be automated and independent 

of the network configuration and the number of users being 
emulated. 

Through the evolution process, many kinds of RTE 
implementation techniques were studied and evaluated. It 
became readily apparent that they could be categorized into 
four basic groups depending on their line capacity, terminal 
driving and executive control capabilities. 

1. Single line, Single driver, Single control-Probably the 
first version of a RTE, this was the quick test program 
that was capable of appearing like a single terminal. 
The script equivalent was encoded and imbedded 
directly into the program and its flow. 

2. MUltiple lines, Single driver, Single control-This pro-
__ ....... __ + ..... ...-.- ___ ..... 1 .... +.- ..... ___ ..... + ..... ___ =_ .... 1 4- .... ...-.... .. ...... .:1.:_= __ ...... 
e,1 dill Ly l't; t;IlIUldLt;~ VUt; Lt;llllilldi LY l't;, UUIlL-UIe, d 

single script (or equivalent) and a single control proc
ess. Instead of communicating on just one line, the 
data is "broadcast" to a number of lines in parallel. 
The received data may be verified in any number of 
ways, but the program anticipates that all the lines will 
receive the same data. The Remote Computer Simula
tor mentioned above, used this technique. 

3. Multiple lines, MUltiple driver, Multiple control-This 
technique was quite popular in the late 1960's. It is 
essentially the collection of a number of Single-line, 
Single-driver, Single-control program segments, bun
dled under one mini-control routine. Although this 
method was not utilized to a great extent to emulate 
different terminal types, it was used to provide scripts 
for different concurrent applications. 

4. MUltiple lines, Multiple driver, Single control-In this 
type of programming, there is a single executive 
capability which provides control for all the overhead 
functions and common emulation processes. The 
script or script segments are oriented toward the 
application processes in the SUT and they are capable 
of emulating any number of users. The script may 
utilize common data and is still capable of accessing a 
user/terminal selectable data base. CUESTA falls into 
this category. 

The terminal/user emulation process is composed of two 
functions; operator simulation and terminal emulation. The 
division between these two is not always obvious as it is 
dependent upon the hardware in which the remote terminal 
emulator is resident and its method of implementation. The 
terminal emulation process can be further subdivided into 
control logic simulation and line handling. For teletypes, 
the control simulation is almost non-existent as it is inher
ently done in the line interface hardware. The balance is 
then relegated to the operator. However, for the more 
complex terminals such as remote computers and syn
chronous CRT's, the data formatting logic and protocol 
control can become quite involved. In the case of the 
remote computer (RIC) not only must the hardware func
tionality be simulated, but also the functions of the RIC 
software. 

Line handling is the second aspect of terminal emulation. 
In CUESTA. we have defined four modes of line handling, 



applicable to both synchronous and asynchronous lines. We 
have found the terms "full duplex" and "half duplex" to be 
incomplete, and have defined line modes as follows: 

1. two wire, alternate, 
2. four wire, alternate, 
3. two wire, simultaneous, 
4. four wire, simultaneous. 

The alternate mode provides a gate in the line handler 
which forces the line to be cycled through the send/receive 
sequences. While this may appear self-limiting for the 
general case, it does relieve some simulation control proc
esses of many timing considerations. The simultaneous 
mode keeps the receive mode active at all times and allows 
simultaneous transmitting. The wire mode selects the ap
propriate data-set or modem controller. 

Operator simulation is normally observed to be the 
controlling of the data entry process and scanning of the 
received data (interplay between the operator and termi
nal). This is only one facet. Much more subtle is the 
interplay between the operator and the SUT and its applica
tion program. Depending upon the SUT's application pro
gram and its communication facilities, the SUT's software 
may be designed to take advantage of the "slow" human 
response. Unless the RTE is properly governed for that 
application, timing and synchronization problems may de
velop between the two. It can be successfully argued that 
this condition arises only if the emulation is not realistic. 
However, it has been our experience that many non
realistic experiments are undertaken in order to "see what 
the SUT can do." 

Another condition which must be considered, is the 
proper detection of the end of transmission from the SUT. 
Although the ASCII character set provides the capability 
for end of text, end of block, and end of transmission, etc., 
not all of the SUT's application software will consistently 
use them. Instead, other techniques, including operator 
intuition, have been devised to signal the operator that the 
SUT is finished with its transmission and is now available 
fQLO~ratQ[ iDD.ut1.i~~ Tbus.<llie .. d.e.te,c..ti.Qu.Q[kel' w.Qnls ox 
phrases in the latter portions of the text (commonly called 
prompts) becomes exceedingly important if the proper syn
chronization is to be maintained between the SUT and 
RTE. 

THE SCRIPT 

In remote terminal emulation, Script is the notation given 
to that portion of the software that defines the simulation of 
the operator. It may be a segregated, coherent, logical 
entity, or it may be integrated into the overall implementa
tion in such a fashion as to be indistinguishable. The most 
obvious objective of the script is to specify the data 
exchanged between the RTE and the SUT. In order to 
accomplish the operator simulation, the script must provide 
or invoke a sequential series of operations that will result in 
some coherent, logical function. 

Remote Terminal Emulator Development 735 

Generation of the script can be accomplished by various 
means. In emulators where it is an identifiable entity, it is 
typically a separate program module or subroutine. The 
ease in which this module can be coded is dependent upon 
the implementation. In some RTEs, the script is coded in 
machine language; in others, in a high level language such 
as FORTRAN; while the balance are written in a special 
language specific for the emulator. CUESTA has utilized 
the latter in that we developed a specialized compiler which 
generates the appropriate assembly language source code. 
Thus, the result is compatible with the assembly process, 
but will still allow the user to develop his script without 
concern to the mechanical details of formatting and ex
changing the data. 

Other terms have been given to the script which either 
enlarge its meaning or define more specifically the associ
ated detail components. To date, no attempts have been 
made to rigidly define these terms and as a consequence, 
many ambiguities have resulted. In CUESTA, the terms in 
Table I have been defined, but they are inherently associ
ated with the implementation. 

With CUESTA, the operator dialog is normally defined 
by script statements generated by the CUESTA User. 
These statements, which are "compiled" by a special 
Conversion Map Generator, are not limited to data transfer 
operations, but also include the capability for decision 
making, data base handling, transition control definitions, 
on-line statistical summaries, and special terminal opera
tions. In addition, the experimenter is given the capability 
to define his own statement(s) and the associated proces
sor. 

It is in the Conversation Map (via the script statements) 
that the experimenter defines the operator characteristics. 
These include such items as think-time, data-entry-rate, and 
transaction rate capability. The characteristics may be 
defined for specific user groups, the individual user or for 
individual operation type script statements. 

The Conversation Map is also used to specify task 
transitions. A task is normally defined to be those opera
tions required to simulate a given logical function or appli
cati9.ll. (fj.l~. J211i.lPi:o,g .. ~qitl .. ,,~QU1...P..U~l~l~:J:_ Ih~lG;ln~~li.QJ! 
control is that process which specifies which task is to be 
executed upon the completion of the previous task in order 

TABLE I-Script Terminology 

Task Step Processor-A software routine that performs certain predefined 
functions. 

Task Step-That association of operands to a Task Step Processor which 
normally is defined by a Script Statement. 

Task-Any combinations of Task Steps that result in some logical function 
(i.e.; a user session). 

Script-A collection of one or more independent Tasks. 
Scenario-A collection of Tasks which are dependent upon one another to 

emulate a high order function (i.e.; remote computer). 
Script Statement-The statement generated by the script writer to specify 

the emulation operations, operator characteristics, transition probabilities, 
on-line summary operations, etc .. 

Conversation Map-Sometimes referred to as the Map or Script, this is the 
program module generated by the Conversation Map Generator. The 
generator utilizes the script statements and a library as its source of input. 



736 National Computer Conference, 1977 

to maintain a coherent continuation of the emulation proc
ess. 

CUESTA currently has three modes of transition control; 

1. Random Control 
2. Profile Control 
3. Initiation Control 

Random Control is a process which randomly selects the 
next task to be executed from a table of probabilistic 
occurrences. The probabilities are specified by script state
ments, which in tum, are used to generate an Xn selection 
matrix. The x/y axes of this matrix can then be utilized to 
establish the desired from/to transition relationships. 

The Profile and Initiation Control modes are based on the 
assumption that transition from any task specified within a 
given group, can be coherently accomplished to another 
task in that same group. It should be noted that if a given 
task is compatible for more than one group, it need not be 
recoded for each group. 

Profile Control selects the next task via a dynamic 
mathematical process based upon the number of users 
currently executing specific tasks and the desired probabil
ity of that number. Initiation Control is similar to Profile 
Control, except that the calculations are based upon the 
current number of tasks that have been executed with 
respect to the desired probability. Thus, the selection 
process forces the emulated user into execution of a task 
which currently possesses the smallest ratio of executions 
with respect to its desired percentage. The latter two 
methods were implemented upon information gained from a 
paper by B. Hyman. ** 

When the script segment is written, it is normally divided 
into tasks. The segment is written for a single type of user 
executing a specific application with the SUT. At this point, 
the CUESTA user does not have to concern himself with 
the number of users that will be emulated by this script 
segment (the user count will be specified later with the 
network). If differing and completely independent applica
tions are desired for other users, additional segments are 
appended to the existing script and kept segregated by the 
transition probabilities. This segregation is originated by 
defining which user will start with what task or application. 

As mentioned above, should the standard script state
ments prove to be insufficient for the experimenter, he may 
define his own. In addition, should he desire additional 
control over the execution of the simulation process, the 
Conversation Map has the capability to allow him to design 
his own CUESTA Control Commands. 

A problem which has been superficially addressed, is 
"How does one specify an emulation exercise in terms that 
are applicable to all the various RTE systems, that can 
define the network, user sessions and operator characteris
tics?" Currently, the English language is being used with 
sprinklings of examples which are normally based on a 
particular vendor's system. This in tum, leads to occasional 

** Hyman, B., Stability and Workload Definitions for Time Sharing Sys
tems, Bell Laboratories, 1975. 

unnecessary script translations, interpretations, and misun
derstandings. Other methods have been suggested, but 
none have been exploited to determine the relative merits 
and limitations. Table II depicts a simple CUESTA script 
"description" for an emulated user who will build, list, 
change, and compile a FORTRAN file. This is not only an 
incomplete CUESTA script, as many details are omitted, 
but it may not be definitive enough for another RTE 
system. 

THE COMMUNICATION NETWORK 

The communication network, as it is used in remote 
terminal emulation, is composed of two elements; the live 
network and the simulated network. Referring to Figure 1, 
the live network consists of the actual data lines that 
connect the RTE to the SUT, while the simulated network 
resides totally in the RTE and is the balance required for 
the emulation exercise. Exactly how these two compo~ents 
are specified, depends upon the RTE's implementation and 
capabilities. In any case, the configuration parameters in 
the SUT and RTE are inter-related. The SUT specifies 
what the network should be, while the RTE specifies what 
the network actually is. 

Since CUESTA utilizes a front end processor, it is via 
the FNP parameters that the live network configuration and 
characteristics are defined. These parameters include such 

RTE SUT 

RNP 

--------v~---------)~ 

SIMULATED NETWORK REAL NETWORK 

Figure l-RTE communication network segments 



Remoie Terminai Emuiaior Deveiopmeni 737 

TABLE II-Sample Script Description 

TASK NAME 

LOGON 

BUILD 
LIST 
COMPILE 
CHANGE 

TASK DESCRIPTION 

set user characteristics 
transmit and receive identification sequence 
select the FORTRAN subsystem 
build a FORTRAN source file 
list the file 
compile the file 
change source statements in the file 

TASK SELECTION PROBABILITIES 

Start task = LOGON 
Next task selection: 

from LOGON goto BUILDIIOO% 
from BUILD goto LIST/50%, COMPILE125%, CHANGEI25% 
from LIST goto COMPILE/50%, CHANGEl30%, LISTIIO%, BUILD/IO% 
from COMPILE goto CHANGE/4O%, LIST/20%, BUILD/30%, COMPILElIO% 
from CHANGE goto LIST17O%, COMPILEIlO%, BUILD!2O% 

items as line assignment, line type, speed, etc. The H66 
program parameters specify the simulated network. This is 
accomplished by defining table structures that will allow the 
various emulation modules to interact with each other (and 
the script) so as to simulate multi-drop lines, remote 
concentration, message routing, etc .. 

only component monitored and the communication envi
ronment is only a means to provide the load. However, it 
must be remembered, that the SUT's communication facili
ties are designed to be an integral part of the total system 
and its capabilities and limitations with respect to the 
network must be carefully considered. This is not meant to 
say that the network specified should be the one that will be 

TEST CONFIGURATIONS 

The system under test is normally envisioned to be the 
central computer system, and the remote terminal emulator 
to be a collection of terminals. Thus, the most common test 
configuration is where the RTE is connected directly to the 
central computer. However, as shown in Figure 2, other 
RTE configurations are readily possible, such as the case of 
remote concentrator or Remote Network Processor (RNP) 
loading and the driving of mUltiple independent SUTs. An 
interesting observation in the case of RNP loading, is that 
the system(s) under test can be defined based on one's 
point of view. Is the RNP a SUT or just a communication 
facility? 

7,L\)~g, ~~ ~~9\Vn !l! .J!g,~r~l~ ~ ~y~t~!ll~~!ng ~riv.~n by. a 
RTE IS not precluded from being loaded by real terminals. 
In fact, this may be a most desirable configuration as it 
provides the experimenter with an on-line "feeling" of the 
effect of the RTE's workload upon the SUT. 

APPLICATION 

The definition of the application or experiment, in gen
eral, is n~t a trivial task. In most cases, research and 
measurements should be done with a current system, and 
extrapolated if necessary, in order to determine how the 
communication network will be utilized and what kind of 
terminals/operator characteristics will be incorporated. In 
all cases, the experiment's objective will be to measure the 
system under test with respect to some loading capacity 
and/or capability. Many benchmarks have been conjured on 
the premise that the SUT's central processor is to be the 

RTE 

SUT#l 

RTE 

SUT#2 

Figure 2-RTE test configuration 



738 National Computer Conference, 1977 

utilized in the real-world, but it must be consistent with the 
real-world operations. 

During the processes of RTE development we have 
observed two modes of measuring or testing that utilize 
RTEs; functional testing and performance testing. These 
modes can be visualized as being at opposite ends of a 
spectrum, with all degrees of mode combinations in be
tween. The actual degree that will be found in anyone 
application depends upon the capabilities of the remote 
terminal emulator itself. This is not as obvious today as it 
was earlier in the RTE development phases, because the 
current versions are being implemented in more powerful 
systems and the hardware limitations imposed previously 
are no longer applicable. Consequently, applications that 
incorporate both modes of testing are becoming common. 

Functional testing is that mode which has as its primary 
objective, the requirement to perform detailed validation on 
all data and terminal control functions. This requires the 
RTE to maintain a relatively large data base for comparing 
the data received from the SUT and sufficient RTE system 
resources must also be available in order to maintain a 
constant monitor of all error conditions. Since this mode is 
used primarily to test the functional capabilities of the SUT, 
high volume throughput and critical response time measure
ments are not required. Network sizing is normally kept to 
a minimum with only a sufficient number of terminals being 
emulated as to effectively utilize the SUT and RTE. 

On the other hand, performance testing is not as con
cerned with the detailed validation, but concentrates on the 
methods to effectively provide a system workload. Data 
validation is normally limited to testing for' 'prompts" from 
the SUT and providing the operator input. Response tim
ings and throughput are measured as the system loading 
and network configurations are altered. 

Insofar as the remote terminal emulator is concerned, the 
primary difference between these two modes is its capabil
ity to access large data bases and its means of controlling 
the data links. If the data can be stored in quick access 
devices and the central system has an efficient means to 
compare the SUT's data against that data base, then for 
most part, the RTE is capable of performing both types of 
testing with one script. However, if the RTE is limited by 
data storage or manipulatable communication facilities, 
then it should be used with only one mode in mind. 

DATA CAPTURE AND SUMMARIZATION 

An aspect often deemphasized during the experiment 
definition phase is the availability of proper data reduction 
capabilities. If data reduction is to be facilitated, this 
implies that the RTE has the capability to capture data in 
such a form as to make the reduction process feasible. 

Visibility has always been a problem when emulating a 
large number of users. One cannot dynamically display all 
the data being interchanged between all users at one time. 
Even the detection of "user hung" (because of an unex
pected response from the SUT) is not always a trivia! task 
and this problem is grossly compounded when the user 

count becomes large. For this reason, CUESTA has been 
designed to provide two modes of data capture. 

Like most RTEs, it is capable of logging all incoming and 
outgoing data, with the associated control functions and 
time stamps, on magnetic tape. In addition, the capability is 
provided to the experimenter to log any information he may 
deem advisable via the Conversation Map. 

After the experiment has been terminated, the log tape(s) 
can then be summarized by an off-line data summarization 
program. A number of programs have been developed for 
CUEST A that will summarize response and think times for 
the individual emulated user or user groups, display com
plete conversations, task executions, etc. In addition, the 
experimenter is not precluded from developing his own 
special program. 

The second mode of data capture is by a dynamic 
statistical summarization, which is also provided via the 
script. We have observed that the bulk of measurement 
taken during an RTE experiment can be expressed in terms 
of some time increment. Thus, script statements were 
developed to capture selected times (send, receive, time of 
day), and buffer them until they can be summarized against 
a later time. The results can then be accumulated into 
"summation buffers" which are identifiable by name. The 
CUESTA executive will, upon request, print the contents 
of these summation buffers. The information normally 
listed is number of occurrences, average, minimum, maxi
mum, and standard deviation for each buffer. We have 
found that utilizing this capability is very beneficial in 
monitoring the total experiment in that, with properly 
placed capture and summing statements, the percentage of 
script task execution can be observed along with the 
stabilization process via standard deviations. In addition, 
the timings to be monitored are readily available. 

RTE USAGE 

Currently, the primary usage of remote terminal emulator 
has been within our own Engineering Group and the 
Benchmark Support Group. The remote terminal emulators 
were originally developed as an engineering tool, but a large 
amount of the usage has been in the arena of benchmarks. 
Actually, the initial exposure of CUESTA was done during 
benchmark preparations. As stated earlier, the RTE was 
developed for either functional testing or performance test
ing. As the capability has evolved, we have seen the 
functional testing aspect enlarged to incorporate perform
ance testing, rather than the reverse. This is probably 
because with the current system, the primary changes are 
in the reconfiguring of the network rather than redesigning 
the script. 

Today, Engineering's primary use of RTEs is for new 
product testing and regression testing. As the SUT's capa
bilities are expanded and enhanced, the effects of those 
changes with respect to throughput and response timings 
are of concern. Also, the system software must be sub
jected to all conditions, in order to determine that the 



original functionality has not been unknowingly altered. 
Thus, both types of test modes are being used. 

A supplementary engineering procedure which is gaining 
in popularity, is augmenting the RTE experiment with the 
capabilities of an external hardware monitor. By properly 
configuring the hardware monitor to the SUT, the monitor 
can be more effectively utilized to measure the SUT's 
program execution and resource activity under the precise 
controlled loading that the RTE is capable of delivering. 

The test mode used by the Benchmark Support Group is 
exclusively performance testing. In this environment, very 
specific, highly specialized scripts are required. The net
work sizing and configuration are constantly varying from 
benchmark to benchmark, and in some cases, within the 
same benchmark. Large network configurations are becom
ing the rule rather than the exception. 

In some instances, when a large network is to be in
stalled, a "pseudo-simulation" is done for the network in 
order to reduce the data base in both the SUT and RTE. 
This technique, which has become quite common, is nor
mally accomplished by having a single or small group of 
terminals simulate the workload for a larger group of 
terminals when using the multi-drop line protocol. Whether 
or not this technique is viable, depends upon the objectives 
of the benchmark and the analysis that has been done with 
respect to the line's protocol. 

SPECIAL CONSIDERATIONS 

As each vendor develops his own emulator, he will 
undoubtedly tailor it to meet some special requirements 
specific to his own hardware. For example, the Honeywell 
DN6600 has the capability to remotely operate its Time 
Division Multiplexer (TDM), which is capable of handling 
52 users operating at 110 baud. In order to alleviate the 
logistical problems of locating and connecting these TDMs, 
CUEST A was designed to emulate the TDM so that the 52 
users could in tum, be emulated on a single full duplex 
communication link. As a consequence, this feature is only 
applicable when the SUT is another l~oneywell H66/ 

Remote Terminai Emuiator Deveiopmem 739 

DN6600. Other areas of consideration would be the meth
ods used to interconnect the SUT to the RTE (i.e.; the use 
of modems and datasets versus direct connect cabling). 

Capabilities for debugging of the script and its application 
must be provided. Again, depending upon the hardware's 
features, some manual intervention must be supplied to the 
experimenter. To date, CUESTA has incorporated over 
sixty-five system control commands for system and user 
status, script intervention and recovery/restart, user trac
ing, user reconfiguration, and general system controls in 
order to maintain this capability. 

CONCLUSIONS 

Previously, the bulk of all communications was done via 
the teletype disciplines and the limited use of computer to 
computer communications was almost exclusively relegated 
to the specialized tasks of remote job entry and bulk data 
transfers. Now with the advent of the microprocessor, 
intelligent terminals, and sophisticated line protocols, this 
environment is quickly accelerating into a highly complex 
world. These changes are not only placing greater demands 
for the development of new system capabilities, but they 
are also being reflected into the remote terminal emulator 
development. In order to "keep up," the current RTE 
systems are being continuously modified and new systems 
are being developed. Remote terminal emulator develop
ment has historically lagged behind the system software and 
hardware development, but hopefully, that time can be 
reduced now that emulation concepts have been established 
and accepted. 

The one thing that will not change will be the responsibil
ity of the RTE user to objectively define his experiments in 
terms of operator characteristics, terminal characteristics, 
and network configurations. With the multitude of new 
communication devices being offered, this function will not 
be diminished, but will become of more concern (and more 
complex) than ever before, both to the user and the vendor 
alike. 





A survey of structured programming practice 

by I. ST. J. HUGO 
Infotech International 
Berkshire, England 

ABSTRACT 

This paper refers to the results of our survey of over 300 
companies worldwide to determine the extent and type of 
their involvement in structured programming. 

INTRODUCTION 

Reason for survey 

In November 1974 and March 1975, Infotech staged a 
total of two conferences and one tutorial on structured 
programming. Many of the speakers were well-known, e.g., 
E. W. Dijkstra, C. A. R. Hoare, D. Parnas, F. T. Baker, 
and M. Jackson, but nevertheless the total attendance of 
some 800 people from 19 different countries exceeded 
expectations. Because of this high degree of interest in the 
subject, a program of training courses was launched in mid-
1975. 

At the beginning of 1976, it was decided to survey the use 
of structured programming techniques with the following 
goals in mind. 

1. To assess how well the program of training courses 
fitted the current needs and plans of software develop
ment gr.()up~. 

2. To extend Infotech's own information on the subject. 
3. To develop a useful, saleable product. 

A note on Infotech 

A note on the Infotech organization may help to put some 
of the remarks in this paper in context. Infotech is engaged 
in the education and training, primarily of experienced 
personnel, in data processing and computer-related sub
jects. The company is independent of any software house, 
hardware manufacturing or consultancy interest. It differs 
from many other organizations engaged in similar activities 
in that, while it has its own in-house expertise in data 
processing, this expertise is used only in the specification 
and monitoring of conferences and courses; all lecturers 
and the material they present are selected from appropriate 
organizations outside Infotech. 

741 

A note on terminology 

The term "structured programming" has acquired many 
meanings that often lead to confusion. Unless otherwise 
stated, the term is used in this paper in its most general, but 
not abstract, sense. That is, it denotes a range of design, 
coding, documentation and management techniques that 
use structure in some way to impose greater clarity and 
control on the software development process. These tech
niques have become popularly known collectively as struc
tured programming and many are often wrongly attributed 
to Professor E. W. Dijkstra. Where appropriate, specific 
techniques are mentioned by name. 

The published survey 

This paper is concerned with the analysis of the com
pleted questionnaires returned by computer users, on the 
follow-up to these questionnaires (see Survey Method be
low) and on the case studies obtained for the published 
Survey and Report. The complete published work is based 
additionally on an analysis of 690 documents, papers and 
reports in the existing literature. The full Survey and 
Report consists of the following five volumes: 

Survey 

Volume I: International Overview 
Volume 2: Survey and Analysis of User Experience 
Volume 3: Methodologies and Techniques 

Report 

Volume 1: Guide to Techniques and Implementation 
Volume 2: User Experience in Structured Programming 

SURVEY METHOD 

The survey project was publicied in advertisements and 
mailing shots, computer users being invited to provide brief 
data on the extent of their organization's involvement in 
structured programming and to request a detailed question
naire. The motivation for participation in the survey was 
that each organization completing and returning a detailed 



742 National Computer Conference, 1977 

questionnaire would receive a copy of the analysis of the 
questionnaire returns. A total of 1080 organizations pro
vided brief data and requested detailed questionnaires. The 
request form and detailed questionnaire are shown in Ap
pendix I. 

The total of 1080 detailed questionnaires requested was 
reduced to 309 usefully completed and returned, which 
form the basis of the questionnaire survey, by the following 
occurrences: 

I. Some of the questionnaires requested were not re
turned and no explanation was given. 

2. Many of the organizations who requested question
naires were in fact planning to use structured pro
gramming techniques rather than actually using them 
and so were unable to complete the questionnaire. 

3. Miscellaneous reasons that rendered returns irrelevant 
to the purposes of the survey; e.g., inconsistencies in 
the data, jokers, etc. 

On the basis of the adequately completed questionnaires, 
54 organizations were selected and contacted by telephone 
for clarification and expansion of the reported data. A 
further 22 organizations were visited by Infotech staff in 
person, again to achieve greater understanding of the use 
being made of structured programming and of the results 
obtained. Finally, 13 specific case studies were commis
sioned and rights to a further existing 19 case studies 
acquired. 

SURVEY RESULTS 

Profile of responders 

The questions in section A of the questionnaire (see 
Appendix I) were designed to provide a profile of the 
responders. Figure 1 gives the breakdown of responding 
organizations by size of software department. 

The geographical spread of responders was very wide, 
although few responses were obtained from most countries. 
Approximately one third of the responding organizations 
were in the USA, a quarter in the UK and a further quarter 
from 15 countries in continental Europe. The remaining 
responses were from Australia, Brazil, Canada, Japan, the 
Middle East and South Africa. 

Twenty-seven percent of the organizations placed them
selves in the software house category. However, slightly 
over half of these were software departments within user 
companies that had been established as a service division 
independent of other functional divisions within their orga
nization. Allowing for this, 87 percent of responders were 
from organizations whose primary business was not data 
processing. 

This figure is surprising in that organizations whose 
primary business is not data processing account for only 
about half of the usual participants in Infotech activities. 
True, responses to advertisement could have produced a 
slight bias outside Infotech's normal profile of participants 

~ lD 

,0 

Number of Systems and Progra"",ing Staff (including Managers) 

Figure I-Numbers of Staff 

but hardly a bias of that size. However, it is apparent, in 
the UK at least, that the primary interest in the use of 
structured programming lies with the computer users out
side the DP industry. The large majority of software sup
pliers show more interest in selling aids, courses, etc., than 
in using the techniques themselves. 

Given this, the percentages of effort devoted to scientific/ 
technical, commercial and system software are very much 
what might be expected (see Figure 2). So too were the 
languages used; over 50 percent of responders used 
COBOL. Approximately 25 percent used Assembler or 
PL/ I and rather less, about one sixth, used FORTRAN. 

Interestingly, about one sixth also reported using some 
other language, which is rather higher than expected, given 

,t(1'-(ME~IAt.. 

I 
I 

: \ I 
I 

\ 
I . I • I . 

\ 
I 

I 
I 

I 
I 

I. 

\ 
I , : i 

~ 
I 

Q 

, . 
I I" I 

\ '.. , \ 
I ... , 
I •• \....... - I J , ....., ... , J C!) S<:'lf:I4rffC 1f.ct/NiCftt, 

\ ----..... .rJ. \..... j,. 
\ '~ -¥ •• ~ ••••••• ..' SYSrEM 'OFTWtlti ... ,/ "~'" d" .... ~ .. 

• , , , 
~ 0 

0 0 

~ -t ~ ~ 
0 

r 0-
N , I , I I 

~ C; i= = N 1"\ ~ ~ F 

Figure 2-Types of computer application and percentage of systems/ 
programming staff currently working on each type 



the commercial orientation of the responders. True, AL
GOL, BASIC and RPG accounted for a number of these 
but comments on the unsuitability of the major current 
languages for structured programming were frequently 
made and there was significant evidence of a search being 
made for more suitable languages. No estimate of the 
amount of use of each language was asked for; had it been, 
it is likely that these other languages would have paled into 
insignificance. However, it would appear that the use of 
structured programming techniques is creating a greater 
awareness among commercial programmers of how a lan
guage shapes.and constrains one's approach to problems. 

Regarding the mix of maintenance and new development 
work, two thirds of responders reported maintenance work 
involving between 20 and 60 percent of their effort and new 
development work between 40 and 80 percent. The median 
was 71-80 percent new work, 20-29 percent maintenance, 
with the curve heavily skewed towards new work. These 
figures bode well for the adoption of new techniques and 
suggest a limited demand for structuring cosmetics for 
existing software. 

The processors in use at the installations surveyed are of 
no particular relevance. The purpose of the question was 
simply to check on the sample obtained. As expected, IBM 
machines predominate and a wide spectrum of other sup
pliers' equipment was also represented in the sample. 

INTRODUCTION TO STRUCTURED PROGRAMMING 

Section B of the questionnaire sought to establish the 
means by which structured programming came to the 
attention of users and how implementation of the tech
niques was started. As might be expected, nearly all 
responders reported first learning of structured program
ming through the general technical press or at conferences. 
Most then sent one or two people on courses before using 
one or more of the techniques on a project. 

Within the survey sample, there was not a single organi-
, zi;il iog that.bad.a.dupl.eJi.a..~LQf ,te.~bnigJ,l.~.~ J~·.§ .. ,~~el1c,f£lId.~.JQ 
be used by existing staff and to form part of the training 
program for new staff. A few, but only a few, organizations 
were planning toward this goal and had made measurable 
progress. Given the general familiarity with structured 
programming, the practice of it is perhaps surprisingly 
spasmodic. The general impression gained is of apostles 
spreading the gospel where they can but generally with little 
co-ordinated support from software managers. Many rea
sons can be advanced for this but they will not be discussed 
here. 

Regarding specific techniques used first, the largest group 
of responders used structured design and structured coding 
in combination. The next largest group described them
selves as using structured coding and top-down develop
ment in combination. Smaller groups had used structured 
design or structured coding alone. Overall. across an com
binations of techniques, structured design, structured cod
ing and top-down implementation were most frequently 

Survey of Structured Programming Practice 743 

cited as techniques used in the first step and HIPO and 
structured analysis were the least frequently cited. 

EFFECTS OF STRUCTURED PROGRAMMING 

Sections C and D sought to establish the noted effects of 
using structured programming techniques and the length of 
experience on which the observations were based. The 
large majority of responders had two years or less experi
ence of structured programming, most of those having 
between one and two years experience. Three organizations 
claimed 13 or 14 years experience. 

The principal effects reported from the use of the individ
ual techniques listed in section D of the questionnaire are 
given below. 

STRUCTURED ANALYSIS 

The most noted effects of the use of structured analysis 
were a decrease in the number of errors made and a 
decrease in the number of man-hours spent debugging. The 
next most significant gains reported were, in order of 
decreasing importance, greater control of project progress, 
greater motivation/job satisfaction of DP staff and greater 
user satisfaction. It was perhaps also relevant that very 
nearly equal numbers of responders reported (a) a slight 
increase (b) no change and (c) a slight decrease in both the 
elapsed time of projects and the total number of man-hours 
of effort expended. 

STRUCTURED DESIGN 

The results for structured design were almost exactly the 
same as for structured analysis, except that an increase in 
technical coordination replaced increased user satisfaction 
as a major gain. 

It will be seen from the questionnaire that responders 
W~'d~~tQ. ~., Lbe.. l~,d structured,. anal.~sis . .Q'( 

design. It was obvious from the responses that there was 
great difficulty in differentiating between analysis and de
sign and that, when unable to differentiate adequately 
between the two, most responders opted to describe the 
overall process as design. This being the case, it may be 
that the noted effects of structured analysis and structured 
design should be considered together rather than independ
ently. 

STRUCTURED CODING 

The results for structured coding were remarkably con
sistent. It was claimed that benefits were noted right across 
the board and there were virtually no dissenters from this 
glowing picture. The greatest gains were observed in the 
reduction of debugging man-hours and of computer time for 
testing. Only slightly lower gains were claimed in relation to 



744 National Computer Conference, 1977 

project elapsed time, project man-months, errors made and 
maintenance man-hours. 

TOP-DOWN IMPLEMENTATION AND TESTING 

One benefit stood out above all others for top-down 
implementation and testing and that was the reduction 
noted in the number of man-hours spent on debugging. 
Significant claims of benefits were also made in relation to 
the number of errors made and the productivity of DP staff. 
Once again there was no significant contention in the 
results noted. 

TEAM OPERATiONS 

The noted effects of team operations were somewhat 
difficult to interpret. For instance, gains were consistently 
reported in the productivity of DP staff whilst, at the same 
time, there was no consistency in the observed effects on 
project man-months and project elapsed time. There was, 
however, unanimity in reporting greater motivation/job sat
isfaction of DP staff, so it is possible that the productivity 
gains were more imagined than tangible. 

In general, the noted effects of team operations were 
much less certain than was the case with most of the other 
techniques. The apparent misgivings regarding team opera
tions showed up strongly in the follow-up to the question
naire, particularly in relation to the chief programmer team 
structure. 

PROJECT LIBRARY OPERATIONS 

Project library operations was one of the least used of the 
techniques listed and the benefits noted were generally 
rather muted. However, there was little inconsistency in 
the results, the greatest gains being claimed, as might be 
expected, in the areas of technical co-ordination, control of 
project progress and the number of errors made. 

STRUCTURED WALKTHROUGHS 

The most consistently noted effect of structured walk
throughs was, the expected reduction in the number of errors 
made and of the man-hours spent de-bugging. Rather sur
prisingly, however, the next most consistently reported 
gain was an increase in the motivation/job satisfaction of 
DP staff. The fourth most consistent gain was in the area of 
technical coordination. 

Follow-up to the survey, and section G of the survey 
itself, revealed a considerable amount of disagreement in 
user's experience of structured walkthroughs. Particularly 
noticeable was a tendency for opinion to polarize either 
very strongly in favor of structured walkthroughs or very 
strongly against them. 

Contention reveals itself in this section of the survey in 
that, despite the consistently reported gains in relation to 

errors made and debugging man-hours, there was no agree
ment on the effect of structured walkthroughs on project 
elapsed time and project man-months. As many responders 
reported these times increased as reported then decreased. 

HIPO 

The sample of responders with experience of HIPO 
was relatively small (44 in total). The most consistently 
reported benefit was a reduction in the number of errors 
made, followed by gains in user satisfaction and technical 
co-ordination. Once again, there was considerable disagree
ment over the effect on project elapsed time and project 
man-hours. 

PROJECT MANAGEMENT SYSTEM 

This title was devised to allow experience on any of the 
several formalized project management systems around to 
be recorded. Two results were noteworthy. Despite the fact 
that gains were consistently reported under the control and 
management headings, there was no consistency in the 
noted effects on project elapsed time and project man
months. Also, very few responders claimed any benefits 
other than under the control and management headings. 

FACTS AND FIGURES 

Section E of the questionnaire was an attempt to gather 
some hard data. Such data is notoriously difficult to find 
and, even when available, often cannot easily be inter
preted because of the complex of factors affecting it. For 
this last reason, no attempt was made to try to obtain data 
with a view to producing direct, quantified comparisons 
between the results obtained in different organizations. 

Figures quoted for the productivity of programmers writ
ing COBOL programs illustrate this point very well. A 
number of responders quoted the productivity achieved, 
using various combinations of structured programming 
techniques, in terms of COBOL statements per man-day 
over the duration of a project from design through to 
acceptance testing. The figures quoted are as follows: 26, 
28, 30, 36, 40, 48, 56, 60, 65, 75, 100 and 150! Perhaps the 
only significance of these figures is that each represented, 
for a different organization, a considerable jump in produc
tivity. Only five responders gave the productivity achieved 
prior to using structured programming and all five quoted 
figures in the range of 10-12 COBOL statements per man
day. 

Most responders had no data to offer. A number had 
collected data but had introduced structured programming 
on projects involving a new type of work and often new 
hardware as well; the effects due to the new software 
production methods were therefore uncertain. 

Fifty-six responders provided facts and figures of one 
sort or another. The aspects of the software development 



process for which figures were most frequently given were 
elapsed time, design time, testing time, maintenance effort, 
productivity (lines of code per day) and documentation. 
Before these are discussed, it should perhaps be pointed 
out that the significance of improvements depends to some 
extent on the state of affairs before the introduction of the 
new methods. In many cases, the introduction of structured 
programming would appear to be the first time that what 
could properly be termed a method was used at all. 

PROJECT ELAPSED TIME 

Few responders reported gains in elapsed time. Those 
that did had achieved gains of between 10 and 20 percent. 
The most striking result was the number of reports of 
project time estimates being consistently met. One is so 
used to hearing of projects being behind schedule that one 
does not stop to think of the general state of depression in 
which most software project managers live. A single quote 
sums up the normal situation: "The certain knowledge of 
failure is the only thing that keeps you sane." The relief 
with which it was reported that time estimates were con
sistently being met was most noticeable and appeared to 
provide project managers with a general confidence in their 
work that they had never had before. 

DESIGN TIME 

Design time was consistently reported to have been 
increased by the introduction of structured programming. 
Increases in design time reported were between 50 and 200 
percent with most responders reporting an increase of 1 00 
percent or more. There was evidence of a more thorough 
approach to design, which may have accounted for some of 
the higher figures reported: "We felt free to examine two or 
three alternatives instead of grasping at the first working 
solution. ' , 

DEBUGGING, TESTING AND MAINTENANCE 

Large gains in debugging man-hours, computer time for 
testing and the time and number of people devoted to 
maintenance were generally reported. Overall, the reduc
tions were in the range of 50 to 80 percent and comments 
such as "at no time was it necessary to alter any processing 
sequence," were common. The example below is fairly 
typical. 

Techniques used: 

Structured design and coding, top-down implementation 
and testing, team operations, project library, walkthroughs, 
HIPO 

Survey of Structured Programming Practice 745 

Type of work: 

Commercial programming in PL/l 

Pre-
Results 4/75 

Average lines of code per man-day 13 
% staff on maintenance 60 
Total m/c usage on testing 
Errors per program not identified until 
acceptance testing or final systems testing 

DOCUMENTATION 

4/76 

36 
40 

-15% 

-65% 

Time for documentation was generally reported to be 
increased, often with the corollary that it hadn't been done 
either properly or at all before. "Our gain in code/test 
throughput has somewhat been used up by doing tasks 
which were not done before, such as user documentation." 
Where percentage increases were quoted, 50 percent was a 
typical figure. 

MAJOR BENEFITS AND PROBLEMS 

Section F of the questionnaire sought an overall assess
ment of the major benefits and problems experienced in 
relation to structured programming. Broadly, the major 
benefits most consistently reported were the quality and 
maintainability of the product, the productivity and job 
satisfaction of the DP staff and the greater visibility and 
control in the software development process. The most 
consistently reported problems were in gaining acceptance 
and backing for structured programming, both by higher 
management and by senior programmers, the time and cost 
involved in retraining staff, the difficulty in producing 
programming standards, especially in relation to current 
languages, and in enforcing them and the cost of documen
tation. SQI)l~ iQ.te,r~J~~it}1LPoint§em,erged. 

The most evident benefit can be' descrIbed as greater 
visibility and control; this was shown in many ways. 
Several responders said that their program specifications 
were much clearer than before and that staff now had the 
confidence to reject specifications that were inadequate. 
Many also said that modifications to large programs were 
no longer dreaded and that programs could be passed 
between staff easily. Many claimed great improvements in 
documentation, although many also reported the time and 
cost involved in producing the documentation as a problem, 
which suggests that documentation is still often regarded as 
an adjunct to rather than an integral part of software. 
Overall, the comments displayed a new confidence that 
understanding and control of the software development 
process had been achieved. This had an important side
effect. Increased user satisfaction was widely reported and 
several responders said that user departments were now 
coming forward and asking for more jobs to be pro-



746 National Computer Conference, 1977 

grammed, rather than seeking to avoid involvement with 
DP. 

An interesting contrast were the claims made for greater 
motivation and job satisfaction and the many comments 
that gaining acceptance of structured programming was a 
problem. Gaining acceptance was, in fact, the major prob
lem reported. Lack of acceptance and support by senior 
management appears to be an unresolved problem and is 
one that could seriously impede the progress of structured 
programming. Lack of acceptance by senior programming 
staff appears in many cases to have been a temporary 
problem, a number of different methods being used to win 
these staff over. A few responders issued a caution against 
over-optimism, pointing out that the benefits reported had 
been hard won and involved a great deal of discipline and 
monitoring. 

A number of responders reported confusion caused by 
the number of different versions of structured programming 
and had difficulty in assessing whether the differences 
between them were real or imaginary; this resulted in 
difficulty in deciding in detail which course to follow. 

An interesting difficulty is that programmer team struc
tures apparently are rendered impossible by some of the 
rigidly enforced personnel hierarchies that are encountered 
in some public bodies. There was apparently no way round 
this problem. 

After lack of acceptance, the major problem reported was 
the cost of retraining DP staff. Several responders pointed 
out that having just a few staff trained in structured 
programming could give you the worst of both worlds but 
that the cost of retraining everybody in a short space of time 
was unacceptable; moreover, the time involved made such 
a course impractical. Some large organizations have got 
round this problem by introducing structured programming 
to relatively self-contained subsets of the DP staff one at 
a time. Another problem reported in this area was the lack 
of training courses in structured programming for junior 
trainees. 

RECOMMENDED IMPLEMENTATION SEQUENCE 

There was no agreement on the sequence in which the 
various structured programming techniques should be intro
duced except that most responders recommended that 
structured coding and/or structured analysis and design 
should be introduced first. This, as it happens, was what 
most of the responders had done so this result is perhaps to 
be expected. 

HINDSIGHT 

Section G of the questionnaire sought to gain the benefit 
of hindsight. Most responders had approached structured 
programming in a rather ad hoc manner and were very 
conscious of the fact. Therefore, overall, the principal 
recommendation was to adopt a planned approach and to 
stick to it. This general recommendation broke down into 

the following list of most consistently mentioned points: 

1. Get advice from an outside consultant or an experi
enced user 

2. Appoint an internal consultant 
3. Do not introduce structured programming in conjunc

tion with other major changes 
4. Select a pilot project that is not too difficult 
5. Use a team on the pilot project and then use that team 

to organize and control the training of others 
6. Use your most competent personnel for the pilot proj-

ect 
7. Monitor the pilot project closely and collect data on it 
8. Get management commitment 
9. StrJctured programming must be sold to staff 

10. Don't oversell 
11. Anticipate acceptance problems 
12. Apply more time and money to training 
13. Reduce training elapsed time 
14. Have follow-up courses 
15. Apply more effort on standards 
16. Don't enforce standards by fiat. 

One or two conflicts emerged. There were differences of 
opinion on the amount of selling of structured programming 
that should be done within the organization and also on the 
degree to which adherence to the new techniques should be 
enforced. There was strong disagreement on the number of 
techniques that should be introduced initially, responders 
polarizing into the all-at-once camp or the little-at-a-time 
camp. There was also strong disagreement on the useful
ness or otherwise of programmer teams and walkthroughs. 

Some of the recommendations were of the more-in-hope
than-anger variety. Getting management commitment, for 
instance, was recommended by very many responders but 
had been achieved by very few. Similarly, many of the 
responders who recommended more training and more 
concentrated periods of it recognized the impracticality of 
their recommendations in many situations. • 

SUMMARY AND CONCLUSIONS 

The results of the questionnaire survey are subject to a 
number of qualifications that should be made explicit. In 
the first place, no major failures were encountered in the 
survey sample. This is hardly surprising, in that organiza
tions asked to volunteer information are rather more apt to 
do so about their successes. Clearly, it is likely that a 
number of failed attempts to implement structured pro
gramming do exist and, if the experience gained could be 
made public, it might be even more revealing than the 
experience of success. 

Secondly, the organizations using structured program
ming are probably among the most experienced in produc
ing software and hence more likely to succeed. Also, the 
very attempt to introduce new techniques suggests a com
mitment to improving their methods of software production 
(despite the lack of management backing). 



Thirdly, it can only be guessed how much of the im
provement reported is due to the techniques themselves 
and how much to the training and extra effort put into their 
introduction. Despite the generally reported need for more 
training and greater planning, some extra effort must have 
been involved in introducing structured programming. 

Fourthly, many of the figures quoted were taken from 
pilot projects, which often show a higher degree of success 
than subsequent general implementation. 

Fifthly, the "specific" techniques listed might more aptly 
be described as somewhat broad categories of techniques. 
It is clear that a certain amount of confusion exists about 
the nature of differences between different versions of the 
true gospel. No attempt was made to be precise in the 
definition of terms because it was felt that any such attempt 
would be bound to fail or else to reduce the surveyed 
population, probably to 1. However, the purpose of this 
survey was not to provide insights that might further the 
theoretical basis of programming but to seek the opinions of 
those practising programming under normal commercial 
constraints. 

Survey of Structured Programming Practice 747 

In spite of these qualifications, it is contended that the 
survey was a useful exercise and did produce helpful 
information. It is certain that many organizations are mak
ing significant gains, on a continuing basis, both in the 
quality of their software and in the cost of producing it, 
through the use of structured programming techniques. 
Above all, there emerges the clear impression that, at least 
for the large majority of software projects, the software 
development process has become visible and controllable. 
That is a significant step for the management of software 
production in the commercial field. 

ACKNOWLEDGMENT 

The survey described in this paper is the work of several 
people within Infotech, notably C. Watkins and D. Bates. 
The raw data was obtained with the kind co-operation of 
organizations throughout the world that are too numerous 
to mention individually but to whom thanks are due. 



748 National Computer Conference, 1977 

Structured Programming 
Survey 
Free Copy of Results Analysis 

Infotcch is currently compiling a comprehensive practical Survey of experience in·the use of structured programming 
and the related dp techniques. 

The published Survey will contain an authoritative guide to the new techniques, checklists of do's and don'ts for 
impicmentation, case studies of impiementation experience~ survey of analysis, design and programming aids, a full 
literature survey and a detailed analysis of user experience in all the new techniques. 

If you have been using any of these new techniques and would like to participate in the sW'Vey please 
complete and return the form below. 

By fdlin& in • simple questionnaire on your experience you qualify for a free copy of the results 
analysm. 

~~~~~~~~~~~~~~~~~~~-

Structured Programming Survey
Free Results Analysis Request
I would like to receive a free copy of the Results Analysis from the Infotech Structured Programming Survey

(I am willing tu complete a questionnaire)

N.me ..•.• " .. _

Poaition ... _ .. __

Orp_tion _ .. _

Full Postal Address .. .

..

Telephone No " .. .

My organisation has experience in

o Structured/Top Down Implementation and Testing o Team Operations

Structured Walkthroughs o Structured Program Design

o Project/Program Ubrary
o HIPO

o Structured Cuding/Programming o Automated Analysis/Design Aids

(Language) (Type ..)

Return this now to: Clive Wilkins, New Structured DP Techniques Division, Infotech International Limited,
Nicholson House, Maidenhead, Berkshire, England.

APPENDIX I-Brief questionnaire

INFOTECH
INTERNATIONAL
LIMITED

Read through all the questions before starti ng

Please write or type your answers clearly

A Your organisation and equipment

Refno

1464

Your answers in this section will help to produce the most meaningful analysis of sections C & D

Is your organisation a software house or similar
supplier of software and programming services?

Total number of systems and
programming staff
(including managers)

Type of computer applications
(% of systems/programming staff cu!"!'"en!!y working on each type)

Nature of work
(% 01 systems/programming staff cu.renlly working on each type)

Processor(s) in use: (manufacturer & type number)

(core size)

(operating system)

Major programming language used for develop
ment

Yes No

DD

Commercial

Scientific!
technical

System
software

Total 100%

New system
development

Maintenance

Total 100%

%

%

%

%

%

Survey of Structured Programming Practice 749

International Survey of
Structured Programming Practice
All answers to this questionnaire will be treated as completely confidential and will only be used by
persons engaged on the survey. They will not be disclosed to others for any purpose whatever.

Please return this questionnaire by 24 APR i9r

B How you started using the new techniques
In this section, we are looking particularly for the sort of experience (good and bad) that will help us to
provIde guidelines on how to start using the new techniques.

How did you decide which technique(s) to use first?
Include: sources of information used, techniques considered, reasons for selection and rejection,
reports written, level of management involved; time taken on decision

How did you start using the new techniques?
Include: pilot prOlect. Iomlted trial or full scale ImplementatIon '. prolect selected, training, planning
and controls used

APPENDIX I-Detailed questionnaire

750 National Computer Conference, 1977

C length of
experience

This sectfon is desIgned to show the
sequence In which you are usmg, Of

going to use, the techmques and the
extent of you, experience

(see instructions below table)

D Noted effects of using the new techniques :'
This is the most difficult but most fruitful section lo(you to complete. We would lIke to know. technrque by techmql!e. ~he effecr~ you have noted resultmg
from thei, use. Our analysis of th,s information will show whether your use of partIcular techmques has produced sImIlar benef,ts and penaltIes to others.

Use this scale to show in the table below the effects of each technique you are using (see instructions below table)

Much morel
much greater 5 Morel 4

greater ~.
Sameas
before

~ 3 Less ~ 2 Much
less

- 1 Not
noted

-0

AREAS ~ ProductIOn & \ AFFECTED "r-~De_v_el...,op_m_en_t,.-----.. .--~_-,. ..-_~_D_P s ta_ff~_~ Users Control & management

~~~;enc~lg:.~. !Itf~i!o::'!,.' 1~~;;'~~,?--:~;;'\~~'9~~~I~~'? ~?~~~~I"'~I'.' <0\+ ~~>~\~~~~:~~<~, .. ~~~~~~~~??0/0~~~~~?~0/00: 
C',.. ",.. ~ 19"'.> ., ,,~ C'l0l: :.-- ~ 1. ~C" ('>0 a .... 0 :0 

I @~ '?o) ", 01., ("1o,? "? ~o)6 ...... °6 ~o '0.... :;..'$('1 \ J'''C'' ~'" 

I i THE TfCHNIQUES '0"""0;. ""'0 o~/""'~ -:h,,~ 'O"/,,~ ~?\ ~1-\\ .... ~"';\ ",'\? <>;:?~~~'<>~~~o .. ~~~o"~~,, I 
month/ monthl I month I I ~ '." "/1 '? \'" ... ~~ \ o? ~", '" .. 

year year year i ~ 19 ... 9 \ ~o., \\ .s:s. \\ Other effects noted 
~~--4-~~~~~~~--~i 

1 Structured analYSIS (type ): I II I I _~ __ -,I--+-------fI 

12 Structured deSign (type ) i : ,~ : ---:- I 
~---+----~----~----------~~~----------~--~'--~~~ ~ ~ ~-+--~~----------~I 

I 3 Structured coding I i 
~----~----t-----t-------------~----------------~--~I--~:--~~ ~~ , ~ ~-~'--------+-----------~: 
~ __ +-__ ~ __ ~4_T_o_P_d_O_w_n_im_p_le_m_e_n_ta_t_io_n_&_t_e_st_in_g~_-+_~I_-+ __ ~I_~ ~~ i 

5 Team operations i I I 
-

! ! 

I 

-c---

6 Project library operations I 
-~ 

I 
-

-
f----+----l---- 2-Structured walkthroughs ~I ' -~ -r--! c---

8 HIPO I 'i 

i 
i I 

I : i 
: 

, 

9 Project management system ± 1 ' : ~ 
TECHNIQUES USED IN COMBINATION (circle used : , I " ~ 

techniques)' , I 

r----4----~-----r--1---2---3---4----5---6----7--~8~~9~~--~!--~il--+-~ ~ i I ~ ~--!i--~:-----4------------~ 

1 2 3 4 5 6 7 8 9 IT! I I I f-- I : 

i) Complete all dates for each 
technique 

ii) Give planned or estimated 
dates for techniques Imple
mentation not yet com
pleted or staned 

'ii) If not planned write NP 

i) Complete only rows relating to techniques used \ 
ii) Where techniques have been used in combination and the noted effects cannot be attributed to indiVidual techniques. com-' 

plete the TECHNIQUES USED IN COMBINATION rows. . 
iii) E'lter a number from 0- 5 (see scale above) in each column to indicate effect of using technique. 

Example 
For a particular technique, ego 2 Sttuctured design. a 5 entered in the first column indicates that one noted! 
effect of using structured design is that total project elapsed time is much greater_ Similarly a 3 entered In the 
second column indicates that the total man months needed to complete a project uSing structured deSign IS: 
the same as before. ' 

APPENDIX I-Detailed questionnaire (continued) 



E Facts and figures 
In section D. we ~sJced you to note the effects of using the new techniques. We afe asking you here to 
plot/ide us with any facts and figures you have that wiJ/ help us fa quantify the expeflence summary we 
fNoductJ. 

What facts and figures do you have on your experience with the new 
techniques? 

If you wish to enclose a separate report please tick box below, 

o Please see report enclosed. 

Survey of Structured Programming Practice 751 

F Results of your experience ... 
T~is section is provlaed to help you corripare the pfoblems you have mel and the benefits you have gained-\ 
With those of othel orgamsatlons. 

What are the major problems you have encountered so far and how have 
they been overcome? 
e.g. lack of tralnmg. management commitment and staff acceptance; over-optimism; time. cost and 
control of change. i 

I 
I 

.... h 

I 
I 

i 
What would you say were the most important benefits to your organisaJ 
tion of using the new techniques? I 

See 'effects' headings to columns in section 0 for possible benefit areas. 

As a result of your experience so far, in what order would you recom
mend that the new techniques be implemented? 
Use the technique numbers 1-9 as in sections C, D above to ,nd,cate recommended Implementation 
sequence. You may group technrques at any stage. 

[]ODDD o 
APPENDIX I-Detailed questionnaire (continued) 



752 National Computer Conference, 1977 

G Implementation guidance 
Your answers in this section will be summarised in lists that we ale compiling ollecommended do's and 
don'ts fOl implem,enting and using the new techniques. 

If you were able to start again knowing what you know now, what, if 
anything, would you do differently? 

What would you say were the most important do's and don't in imple
menting and using the new techniques? 
Look back through your answers to previous questions to compile your list. 

Over-all summary 
Howwould you sum up your experience to date with the new 
techniques? 

What do you see as the most important developments to your 
organisation's computer activites in the next 5 years? 
Include: system development methodologIes and techniques, management & control 
methodologies, computer personnel productivity, user involvement & satisfaction, 
hardware developments. 

Thank you for your help - please return this questionnaire NOW. 

APPENDIX I-Detailed questionnaire (continued) 



An interactive system for aiding 
management decision making 

by ROBERT C. GAMMILL and HERBERT J. SHUKIAR 
The Rand Corporation 
Santa Monica, California 

ABSTRACT 

An interactive application program running on the PDP11 
UNIX time-sharing system is described. This program 
allows files describing sets of objects to be searched, and 
each object evaluated against a selection expression. Objects 
satisfying the expression are kept in primary storage as sets 
(linked lists), and the user can delete or move objects from 
one set to another under control of other interactively 
composed selection criteria. The system thereby "assists" 
the user's decision making process. Examples of objects 
might include people, machines, rooms, organizations, 
cities and tasks. The program itself is not revolutionary in 
concept, although it does take some ideas from artificial 
intelligence. However, its rapid and evolutionary develop
ment on a minicomputer shows how highly accessible and 
affordable computers with good software production tools 
can bring the computer, as a decision making aid, to 
organizations not previously able to make effective use of 
computation. Furthermore, the utilization of advanced soft
ware tools has permitted a flexible English-like man
machine interface to be developed, allowing use by com
puter-naive managers. 

INTRODUCTION 

The Information Sciences Department at Rand has been 
studying the use of personal computers in a number of 
environments, including clinical research, publication, com
munication via memos and messages, clerical and secretar
ial services, and management decision making. The system 
to be described falls into the latter area. Our work on 
personal computers has not attempted to use micro-com
puter hardware, since the present state of that technology 
does not represent what will be available in the future, and 
because we choose to study the software problems involved 
in smallness and in providing man-machine interfaces for 
computer-naive users. We assume that affordable hardware 
will ultimately reach sufficient power to support the mini
computer software upon which we do our research. These 
assumptions can certainly be questioned, but it is our 
purpose here only to state them as the basis of operation. 

753 

The hardware configuration being used is a PDP11170 
interfaced to the ARPAnet and running the Bell Labs 
UNIX operating system. Special software added at The 
Rand Corporation includes the network host interfaces and 
a special two dimensional text editor, upon which all 
software for the system being described and this paper were 
generated. 

The goal of this paper is to describe the development of a 
management decision aiding software system which has 
been designed and developed in an evolutionary fashion. 
This system is not revolutionary in concept, unless one 
considers smallness and flexibility to be revolutionary char
acteristics in a management oriented system. What is of 
interest in this system is the ease and speed with which it 
was constructed, the clarity and ease of modification and 
English-like nature of its interaction with the user. All of 
these things resulted from the availability of superb soft
ware development tools available in the UNIX operating 
system at Rand. The goal of this paper will therefore be to 
describe how these tools supported and guided the develop
ment of this system and affected the structure of the 
software in a very positive way. In the following section we 
itemize the most important tools. 

THE TOOLS 

The UNIX operating system! was an important tool used 
in this effort. The file and directory system was especially 
important in allowing us to structure and store our informa
tion as text streams with readable syntax, and collected in 
logical units. Documentation, plans, source code, command 
files, data files and memos were kept in a tree structure of 
file directories, that were shared among the two people 
working on the project. Latest source versions were always 
easy to identify, and independent and shared activities 
within the design and development were helped consider
ably by the ease of structuring and the files of documenta
tion and notes. 

The two dimensional Rand text editor2 running under 
UNIX, was another important tool. Used on the Ann Arbor 
CRT terminal, which allows 40 lines of 80 characters to be 
displayed, this editor allows most subprograms to be 



754 National Computer Conference, 1977 

viewed in their entirety. This allows both declarations and 
code to be in view simultaneously, making visual scanning 
for problems much easier. The editor also allows parts of 
files to be displayed in different windows on the screen at 
the same time. This is especially important when keeping a 
global data structure declaration in view while examining 
some routine that manipulates an instance of it. Another 
use of the window capability is in scanning code for a bug, 
while keeping the input data and output trace (showing the 
bug) on the screen at the same time. Such capabilities can 
make interactive debugging (without hardcopy) a much less 
tedious process than it would otherwise be. 

The C programming language,3 a Bell Labs product, was 
also an important tool. This language resembles BCPL,4 
~nc1 it .. r.omni)pr h~ .. hppn r~rpfnJ1v ron"trnrtprl "0 th!:lt thp ----- --~ - ----r---'"' ...... _ ...... --_ ...... -_ .. _ .... _ .... J _ ........................ -_ ... _- u_ ..... .a._ ............ -
penalties for using it are relatively small. The UNIX 
operating system is almost completely coded in C, so a 
subsystem implementor feels considerable confidence that 
little is being lost, and much is to be gained by using this 
language. 

Yacc, "Yet Another Compiler-Compiler," and yet an
other Bell Labs product whose bottom up parsing methods 
are superbly described in Reference 5, was the most 
important tool of all. It created a helpful structure for this 
command interpreting system by separating the syntactic 
portions of the code from the semantics. The top level of 
our management decision aiding system is a parser whose 
flow of control is defined by a LALR(l) grammar for the 
commands. The parser is fed input tokens by a lexical 
analyzer written in C. When a sentence which is defined to 
be a command is recognized by the parser, semantics 
routines associated with the grammar rule are called. In a 
compiler these routines would be code generators, but for 
an interpreter these routines carry out the actual work 
specified by the command. 

An important result of the use of Yacc was the ability to 
implement, in a direct manner, a syntax for a fairly large 
subset of English allowing the man-machine interface to be 
very user oriented. This provides good readability, although 
ease of typing suffers as in COBOL. We believe the 
interface makes contemporary list processing and other 
computer science techniques available to computer-naive 
managers in a problem oriented manner and does not 
necessitate understanding of the computer science in
volved. Our belief has been supported by successful use of 
the system by computer-naive individuals. 

The use of Yacc has also permitted the syntax of the 
interface to be defined without the complexity of the 
syntactic description becoming so great as to interfere with 
its easy extension and modification. Such ease is of great 
importance here, because the whole design and develop
ment effort was planned as a phased, evolutionary ap
proach. This was done so that design flaws, subsequently 
discovered requirements and user feedback from early 
phases could be used as corrective input for later phases. A 
less diplomatic way of saying this is to note that when one 
discovers he has completely botched some part (or perhaps 
all) of a system design, the best situation that can be hoped 
for is that little emotional and monetary investment will 

have been put into the bad design, so that to discard and 
start again is a viable solution. Some of us who work with 
software have the feeling that this is the primary difference 
between "little" software and "BIG" software, and why 
the latter has had so many spectacular failures. 

In the remainder of the material we will describe the 
system. Some material is also included showing how the 
software development tools aided us. We hope that soft
ware practitioners will see some interesting ideas on how 
to build a decision aiding system on a minicomputer, and 
that computer scientists will note the ways in which soft
ware production tools can be of aid in speeding and easing 
the development of useful application systems. It is pre
cisely this boundary, with all its tensions, flim flam and lack 
nf (",{'\Tntnl1n.jf""''::ltlnn th-:lt lIlA .ft:llAl ;C' ....... .f nront ;~"""r'\.rl",,,,,,,,,,,.a +,... 
.....,... _"' ......................... .& .. ""' ..... "'.1."' .. .& ILoA.U.""... ory,,", .£.""',.,.,.1 J.Q VJ. 6J. ...... UL J.IJ.JpV.l L(.I.l1""'",-" LV 

the future of computing. With the growth of personal 
computers, an even stronger spotlight will be thrown upon 
this arena. We would be remiss if we did not note here that 
Kernighan and Plauger in their recent book, "Software 
Tools,"6 have done a careful job of examining some ap
proaches to this area. 

SYNTAX ANALYSIS 

The management decision aid uses a lexical analyzer 
written in C, a LR(1) parser generated by Yacc, and a 
symbol table management package written in C, as its 
primary functional elements for implementing the command 
interpreter. The lexical analyzer identifies key words such 
as load, display, perform or file, and noise words such as 
"a", "an" and "the" among the identifiers and quoted 
character strings which are the content of commands in this 
system. The syntax analyzer recognizes sequences of to
kens which make up phrases and commands, a command 
being an English language sentence terminated by a period. 
An example of a command is: "Load the cities whose 
region is Northwest and for which there is an industry 
whose type is electronics and whose numbeL-oLfacilities 
is greater than to from the data file." The symbol table 
management package allows important names like "cities," 
"region," and "industry" to be converted to code num
bers. No information about the attributes or meaning of any 
word is kept in the symbol table, since that information is 
embedded in the data structures, to be described next. 

DATA STRUCTURES 

The primary data structure is the set. A set is a linked list 
of objects, each object representing a data entity, e.g., a 
person, a city, an organization, a machine, etc. Each object 
has a number of attributes that convey the information 
content of the object. Both the types of objects and their 
attributes are defined by the user at execution time via a 
template or data definition mechanism, that identifies to the 
system the names of sets of objects and their attributes. 
Stated differently, an object is a contiguous block of 
primary storage, and the template indicates where in the 



Interactive Systems for Aiding Management Decision Making 755 

contiguous block the value of each attribute can be found. 
Objects are organized in sets, with each set owning a set 
header that serves as the starting point of a linked list 
spanning all the objects in that set. The set header contains, 
in addition to the pointer to the first object in the set, a 
pointer to the set's template (see Figure 1). With certain 
exceptions, all sets are linked together in a universe list, the 
exceptions being sets of objects that are owned by objects 
themselves, e.g., the set of departments in an organization, 
or the set of beds in a hospital room. The template is a pair 
of arrays, the first containing symbol table indices of names 
of attributes and the second containing attribute type codes 
for the values in the objects. In Figure 1, each of the person 
objects has two attributes, name and age. The type of the 
name attribute is text, indicating that the value found in the 
object will be a pointer to a text string, and the type of the 
age attribute is integer. Examples of useful noun phrases 
that can be formed about this structure are: "the age of the 
person whose name is John", which yields the integer 38, 
and "the name of the person whose age is greater than 40," 
which yields the text string "Jack." 

At present six attribute types have been used. These are: 

(a) Symbol table index-allows frequently used symbols 
to be compactly represented. 

(b) Text-the value is a pointer (machine address) to a 
stored text string. 

(c) Integer-normal machine signed integer. 
(d) Date-a tightly packed representation of year, month 

and day, which can be algebraically compared with 
another date. 

universe 
--+ 

I 
i 

set header 

set I ink 

set name 

template 

obi list 

.. "person" .. 

obiect 

--+ link 

:! 

~Q --. 

(e) Domain-a symbol table index with the added feature 
that a special set called "domain" will have an object 
with this attribute name, where an upper and lower 
index limit is specified. These limits, along with the 
numeric ordering of the indices between, specify a 
totally ordered set of symbols. This mechanism can 
be used to order a set of organizational titles so that 
greater than and less than comparisons may be car
ried out. 

(!) Set-a pointer (machine address) to the set header of 
a set owned by this object. An example use of this 
attribute type is to give each of a set of companies, a 
set called departments, which contain objects having 
attributes that tell who heads the department and the 
date he was given the job, where it is located and 
what type of work is done. 

The latter two types are of the most interest. The domain 
type is useful in a number of ways. The specification of a 
collection of legal symbols that may occur as the value of 
the attribute restricts the data that may be input to that 
position in the data structure. Thus, typing errors in sym
bols for an attribute with type domain can be easily caught. 
The ability to carry out algebraic comparison between 
symbols of a totally ordered domain also provides a power
ful tool. Furthermore, we have extended the domain type to 
allow arbitrary binary relations to be specified between the 
symbols in a domain. This mechanism makes it possible to 
describe, for example, complex relations between organiza
tional units, or job categories. Such areas provide some of 

set header 

.. ••• ~ .... 

template 

1 I attribute 1 1 name • 
name 21 age I 

! 

I 

attribute 1 text 
type 2 integer 

obiect obiect 

- link .. 0 .. ... 

~Q -. ~Q • II John II II • Jim II II Jack II 
Figure \-The set person, containing 3 objects, and its template that shows 

two attributes, name and age, with type text and integer 



756 National Computer Conference, 1977 

the most difficult problems for management oriented com
puter systems. 

The set type is important because it provides a method 
for extending the power of an existing set data structure. 
This proved very helpful when it was decided to allow 
specification of arbitrary binary relations on a domain. As 
shown in Figure 2, the "domain" set contains objects 
which specify the upper and lower limits of symbol indices 
which are in the domain. By adding a "relation" attribute 
whose type is set, it is possible to store a set of ordered 
pairs of symbols which make up a binary relation on that 
domain. 

Besides the data structures already described, there is 
also the format. Formats are objects in a set named format, 
which descrihe how output is to be generated, using a 
particular template and object. This allows numerous differ
ent kinds of reports to be generated concerning a set of 
objects. Formats can be used to produce tabular output 

set header 

universe ~ set link 

set name ~ IIdomain ll 

obiect 

obi list -+ I ink 

forms with headings, or to produce running text in a more 
prose like style. Furthermore, all formats are user speci
fied, allowing users to develop output displays tailored to 
their individual tastes and application areas. 

FILES 

The management decision aiding system is not a database 
management system in any normal sense. Files are read in a 
sequential fashion, to collect declarations of templates, 
formats and domains, to load data into a set, or to interpret 
a standard sequence of commands. However, all manipUla
tions of sets, and the other data structures described, are 
carried out in primary storage. This. coupled with the fact 
that implementation is on a minicomputer, severely limits 
the amount of data that may be manipulated at one time. 
This design limitation was chosen at the outset. It results in 

set header 

.. ••• D .. 

obiect 

.. .. ••• D 
name --+ lIorgan izat ion II 

lolim 2 

hilim 5 set header set header 

reltn --. set I ink .. ••• D .. 
set name :. IIsubpart II 

obiect obi ect 

obi list r+ link -+ link 

left 2 left 4 

rght 4 rght 5 

represents IIsubpart II = { < publ icatns, 
< admin _svcs, 
< comp _ctr, 

admin svcs > t 

admin-> I } 

admin > 

-+ 

on the domain "organization" with symbols "publ icatns" = 2, 

IIcomp ctr" = 3 "admin svcs II = 4 and "admin II = 5. - , - ' 
Figure 2-A relation "subpart" on the domain "organization" 

object 

0 

left 3 

rght 5 



Interactive Systems for Aiding Management Decision Making 757 

quick response to most commands (except those that parse 
long input data files), and serves to keep things simple and 
flexible. As a practical matter, sets containing 1000 objects, 
each having 8 attributes, can be loaded. This is sufficient 
for all tasks that we intend to undertake, but certainly limits 
the range of applications for which this system is applica
ble. 

COMMANDS 

The flexibility provided by Yacc and the lexical analyzer 
has made a wide variety of commands possible. As a result, 
it is easiest to describe the commands by giving a few 
examples, for a complete description requires some form of 
grammatical notation, and more space than can be devoted 
here. We will use the simple convention that (name) is a 
non-terminal symbol. An example of a command is: 

Perform the (filnam) file. (1) 

This command allows subsequent commands to be taken 
from the specified file. This command may occur in a file of 
commands. After completion of interpretation of the file, 
control returns to the next command after the perform 
command. 

Load the (setnam) from the (filnam) file. (2) 

The contents of the file is parsed and loaded into the set 
whose name has been given. Since files used by managers 
often contain information which must be protected (e.g., 
salary information), one can say: 

Load the (setnam) from the encrypted (filnam) (3) 
file. 

Here the user will be asked to type in a password for the 
specified file, so only those having the password for a 
particular file can examine its contents. The most important 
use of the load command is in selective loading from a file. 
In this mode a requirements expression is included in the 
command (or a file name is given where one can be found), 
t:'fldr;pedfies\.vnrcrl'vbJectsn~brl1tne dat'a' file s'l'h)tltd be 
loaded and which discarded. 

For example: 

Load the doctors whose title is surgeon and whose (4) 
age is less than 40 from the (filnam) file. 

This command will load only those surgeons that are less 
than 40 years old. In actual fact, each object in the data file 
will be parsed and entered into the specified set, but after 
each object is loaded it is tested against the requirements 
expression. If the object does not satisfy the expression, it 
is discarded. This makes it possible to load a subset of a 
data file into primary memory, even though the file is too 
large to fit there in its entirety. Finally, we should mention 
that any set being loaded will normally have been previ
ously declared to have a template describing its members. 
If the set is being mentioned for the first time in the load 
command, a template name must be given. 

Load the (setnam) using the template (templnam) (5) 
for (reqtLJilnam) from the (data......Jilnam) file. 

More will be said about requirements expressions in the 
next section. For now we will begin to use the symbol 
(requirements) to indicate that an expression, or a refer
ence to a file name, or nothing is to be written there. There 
is another group of commands that allows objects to be re
moved from sets or moved from one set to another under 
the control of a requirements expression. These are: 

Remove the (setnam) (requirements). (6) 
Keep the (setnam) (requirements). (7) 
Move the (old-set) to (new-set) (requirements). (8) 

Another useful command is sort. The sort command 
allows a set to be sorted on some particular attribute in its 
template. If the attribute is of type text, the objects are 
sorted into alphabetical order. Any other type of attribute is 
sorted into numerically decreasing order (symbol table 
indices are sorted numerically). These conventions are 
inverted when the word "reversed" is added to the com
mand. Examples are: 

Sort the cities by name. 
Sort the secretaries by hirt!-date reversed. 

(9) 
(10) 

The display command is used for generating output. 
Some simple forms of the display command allow special 
information about the state of the system to be displayed. 
For example: 

Display the size. (11) 
Display the sets. (12) 
Display the formats. (13) 
Display the templates. (14) 
Display the format called (formaLname). (15) 
Display th~ template called (templatt!-name). (16) 

Command (11) tells how much of primary memory (high 
water mark) has been used. Command (12) gives the name, 
template name and number of members for each set con
tained in the system universe. Only two sets in the universe 
do not have templates. the format and template sets. This 
ptevei1.tsthese ~'~ts from l5eiog dis play\; d' iti The sarrfe "y"ay 
that other sets are, necessitating commands (13) through 
(16). All other sets can be displayed using the full form of 
the display command. For example: 

Display the companies whose incofP.-date is less ( 17) 
than today minus 2 years and for which there is a 
department whose type is dat~proc, using format 
list. 

Command (17) shows a fully expanded form of the 
display command. Each template has a slot for retaining the 
last format used, so once a format has been specified, it 
need not be mentioned again until a change is desired. 
Thus, if the full set is to be displayed, the command can be 
simply: 

Display the companies. (18) 

Other commands allow the display or editing of text files 



758 National Computer Conference, 1977 

from within the system, and the declal'ation of formats or 
templates. 

REQUIREMENTS EXPRESSIONS 

A number of examples of requirements expressions have 
already been given. The basic form of these expressions is a 
sequence of algebraic comparisons or special relation oper
ations (such as "substring" for text or "is" for symbols) 
tied together by the logical connectives "and," "or" and 
"not." Great care has been taken to allow the logical 
connectives (especially "not") to occur in their natural 
English prose positions e.g., "a is not b" instead of "not a 
is b." Normally a requirements expression begins with one 
of the phrases, "whose," "for whom," or "for which," 
and those phrases may be freely used within the expression 
to improve readability. Examples are: 

whose type is physics (19) 
whose name contains "John" (20) 
whose date is less than today minus 18 months (21) 
whose category is greater than hourly (22) 
whose organization is related by subpart to admin (23) 

Expression (19) is useful between symbol table items, 
while (20) checks a text item for the specified sUbstring. 
Expressign (21) is useful for comparing dates, while (22) 
allows comparison of symbols in a totally ordered domain. 
Expression (23) shows how an arbitrary relation (see Figure 
2) declared on a domain may be used to specify a require
ment. In each case shown above, the expression relates the 
value of an attribute to a constant, or a simple expression 
made up of constrants. These seem to occur most fre
quently, but the us~r is not limited to them. Almost 
complete generality is allowed. The biggest danger at pres
ent is that type checking is not imposed, so the user may 
attempt to carry out comparisons which are meaningless, 
e.g., comparing an integer to a text string, and receive 
inexplicable results. We plan to remedy this omission in the 
near future, although that will eliminate many serendipitous 
discoveries of new ways to test for certain conditions in the 
data. 

Finally, the most important relational test has been kept 
for last. The "there is" operator allows testing of a set 
owned by the object being evaluated, to see if that set 
contains an object satisfying the requirements expression 
following the "there is." For example: 

for which there is an overhaul whose type is major (24) 
and date is greater than today minus 15 months, 
and dattL-oLmanufacture is less than today mi-
nus 4 years. 

Expression (24) tests for a major engine overhaul in the past 
15 months, and then returns from the overhaul set (at the 
comma) to test the owning object for age greater than four 
years. 

USER ORIENTATION 

Great care has been taken to keep the command language 
as user and problem oriented as possible. Users of the 
management decision aid can state commands in terminol
ogy related to the application area. We don't claim that 
someone who is totally computer-naive can utilize the 
system as effectively as as a more computer-sophisticated 
user. However, by allowing an intelligent but computer
naive user to speak in a "comfortable" language, we 
believe that a natural transition will occur, with the user 
becoming aware of the primary computer techniques in
volved. We hope this transition process will take place in a 
natural fashion, supporting and reinforcing the user's intui
tion. 

In addition, the system does not make decisions itself, 
but provides the user with information which enables him 
to make decisions. The user is given the ability to organize, 
investigate and keep track of many more alternatives. 
Viable alternatives can be separated from nonviable ones 
by applying selection criteria that move from the general to 
the specific constraints of the decision's environment. The 
system allows the user to make more precise the intuitive 
nature of the decision making process. We believe all of 
this increases the computer awareness of the user. 

THE DESIGN AND DEVELOPMENT PROCESS 

As can be seen from the preceding material, the manage
ment decision aiding system, although small and limited by 
design, has considerable power and flexibility within those 
limits. The interesting question is how a system of such 
power could have been created in seven months, with four 
man months of programming effort, and in only forty pages 
of source code? Some of our answers are: 

(a) It is important to use a responsive and accessible 
interactive computer system, that provides good tools 
for software development and testing. 

(b) Hire the most competent and experienced program
mer possible. Quality appears to overcome price in 
the long run, especially when the software being 
developed is not very well understood. 

(c) Make sure that more than one person is involved in 
the design process. Someone should have user sensi
tivity and someone should have computer science 
background. All major issues should be construc
tively argued. If an argument begins to go in circles 
and it's not critical, let the subject rest in the subcon
scious for a while and wait for the light to dawn. If it 
is critical, implement something simple, try it out and 
use that as the basis for further argument. 

(d) Keep it simple. If it's bad, it was cheap. If it's good, 
it may be possible to make it elegant. 

(e) Remember how fallible we all are! Some of the initial 
design will be garbage. Maybe all! Willingness to 
learn from our mistakes and the mistakes (and suc-



Interactive Systems for Aiding Management Decision Making 759 

cesses) of others is essential. Stated another way, 
"steal" as many good ideas as possible from prede
cessors. In our case, one previous system7 was 
similar in its handling of syntax and symbols and 
another (DOSS) had similar computer-naive manager 
users. These gave us an important initial boost in the 
right direction. 

We plan to remain committed to an evolutionary ap
proach to design and development. This system is begin
ning to harden, and we are confident that there are many 
faults in it that we have not yet recognized. We plan to 
carry out a design review in the near future, in order to get 
input from a group of uninvolved peers. We also will 
continue to pursue a high degree of user involvement to 
guide changes and extensions to system capabilities. Hope
fully these methods will give us many new ideas about what 
should be redesigned or discarded. In this manner we hope 
to keep this system alive and improving, despite escalating 

user needs, increasing ego involvement by the designers, 
and increasing size of the project staff. 

REFERENCES 

l. Ritchie, D. M. and K. L. Thompson, "The UNIX Time-sharing System," 
CACM, Vol. 17, No.7, July 1974, pp. 365-375. 

2. Kelly, J., "New Editor Guide," R-2000 (draft), The Rand Corporation, 
Santa Monica, Calif. 

3. Ritchie, D. M., "c Reference Manual," unpublished memorandum, Bell 
Telephone Laboratories, 1973. 

4. Richards, M., "BCPL: A Tool for compiler writing and system program
ming," AFIPS Conference Proceedings, 1969 SJCC, Vol. 34, pp. 557-566. 

5. Aho, A. V. and S. C. Johnson, "LR Parsing," Computing Surveys, Vol. 
6, No.2, June 1974, pp. 99-124. 

6. Kernighan, B. W. and P. J. Plauger, Software Tools, Addison-Wesley, 
1976. 

7. Anderson, R. H. and J. J. Gillogly, "The Rand Intelligent Terminal Agent 
(RITA) as a Network Access Aid," AFiPS Conference Proceedings, Vol. 
45, 1976 AFIPS Press, pp. 501-509. 





An overview of independent, 
third-party computer maintenance 

by HOWARD D. PONTY 
Raytheon Service Company 
Providence, Rhode Island 

ABSTRACT 

Describing the major reasons for its growth and providing a 
brief history, this paper gives a synoptic view of a new 
computer sub-industry: independent, third-party computer 
maintenance and field support services. It details the major 
modes of delivery of maintenance and field support services 
now available to users and compares them to one another. 
The organization and the technical services provided by 
independent, third-party contracting firms are described. 
Particular attention is paid to the special needs of mixed
vendor computer system users. 

BACKGROUND 

In the early days of the computer industry, user needs for 
system maintenance and field service support was not a 
matter of particular emphasis. The few large manufacturers 
each took pride in the service reliability of their products, 
and it was this aspect, and not the need for maintenance 
and field service, which was stressed. In addition, virtually 
all early systems were supplied by a single vendor. The 
vendor-manufacturer provided maintenance and field sup
l}QxLW-vic.es, thr.Quglt.Ws.Qwn _s~n:is;~< QJ.gal}iz.atiQI),> whi~h, 
in most cases, was adequately distributed geographically. 
The end-user, then, had a convenient single source to meet 
his maintenance and field support needs. 

This basic situation began to change with the advent of 
plug-compatible equipment and the resulting proliferation of 
mixed-vendor systems. User requirements became more 
complex. And no longer could the end-user rely upon a 
single source to meet these requirements for all elements in 
his system. At first, his only course of action was to 
contract with the service organizations of each manufac
turer whose equipment he used. 

Compounding the situation was the entering into the field 
of numerous small manufacturers. While offering excellent 
products, many could not establish and maintain the exten
sive service networks needed to serve users dispersed 
nationwide or even worldwide. In order for these smatter 
manufacturers to market their products over larger geo
graphic areas·, they, too, needed a way of providing mainte-

761 

nance and field support services to their customers. If these 
manufacturers found it economically unfeasible to establish 
their own service networks, they had to find an alternative, 
as well. 

These developments led to the formation of several 
"third party" organizations, independent of equipment 
manufacturers, whose business was providing maintenance 
and field support services for computer and computer 
peripheral equipment. At first, these organizations limited 
themselves to maintaining only the more commonly used 
equipment. Within a relatively short time, however, the 
need to provide services for mixed-vendor systems involv
ing many smaller manufacturers' products became evident. 
Not only do these "third-party" organizations offer users a 
single source of maintenance, they also offer small manu
facturers a nationwide network which can, under contract 
with these manufacturers, provide services to their cus
tomers. 

GOVERNMENT USERS 

The U. S. Government has been one of the major factors 
contributing to the rapid growth of "third-party" mainte
nance as a sub-industry within the computer field. A multi
m!ttm!!·~·~!"!!ct mr thi!d'"'~!1y!!!aintemt!!ceuci the 
U . S. Marine Corps systems in 1971 was one of the earliest 
and largest of its type. 

Later, a government agency audit of this pioneer "third
party" maintenance contract found significant benefits from 
this kind of arrangement. In addition, a formal Office of 
Management and Budget policy encouraging the contracting 
of these and other services to the private sector. 

Today, the U.S. Government remains one of the largest 
users of independent, "third-party" maintenance and field 
support services. 

ALTERNATIVES FOR MEETING MAINTENANCE 
AND FIELD SUPPORT SERVICE NEEDS 

In order to minimize system downtime· and to obtain 
maximum service life, most data processing managers to
day are alert to the need for maintenance and field service 



762 National Computer Conference, 1977 

support. This need can be met in four different ways: 

l. By the user's own "in-house" service organization 
2. Under separate contracts with manufacturer's service 

organizations 
3. Under contract with a single "third-party" source 
4. Through a combination of two or all of these 

User "In-house" service organizations 

In theory, it is possible for a large user organization to 
establish its own "in-house" service organization to main
tain and repair its computer and computer peripheral equip
ment, In actual practice; however; this rarely is done, 
largely for economic reasons. In order to justify a full-time 
service force, an organization must have extensive equip
ment to be maintained and serviced. And, this equipment 
must be located either entirely or largely in a close geo
graphic area. For when equipment is scattered over wide 
areas, the advantages of an in-house service organization 
are negated by time and distance. . 

One user with ample computer equipment to justify an 
"in-house service organization and enough equipment 
"clustered" in tight geographic areas to establish several 
regional "in-house" service offices, is the U.S. Govern
ment, which, as I have mentioned, has found other alterna
tives preferable. 

In general, then, except for routine, day-to-day mainte
nance which all user organizations perform to some degree, 
"in-house" user maintenance has been found not to be a 
viable means of meeting most users' requirements. 

Manufacturer service organizations 

Before discussing manufacturer service organizations as 
an alternative source for maintenance and field support, it 
is important to understand what is meant by the term 
"manufacturer," and more specifically, "OEM" VI vligiiia: 
equipment manufacturer, as used in this paper. 

In most cases, both "manufacturer" and "OEM" refer 
to a company which manufactures and sells computer and/ 
or computer peripheral equipment. Sometimes, however, 
the term "manufacturer" can also apply to companies 
which might more properly be called "sales agents." These 
firms sell computer systems, with only some of the compo
nents, or even none at all, actually manufactured by that 
firm. Some of these firms have their own service organiza
tions; others do not. These latter must arrange for mainte
nance and field support services for the systems they sell, 
either through a series of contracts with the actual equip
ment manufacturers or through a contract with a "third
party" maintenance firm which in this situation would in 
reality be a "fourth party." 

For purposes of this discussion, we shall define "manu
facturer service organizations" as those organizations es
tablished and operated by actual equipment manufacturers 

for the sole purpose of providing needed maintenance and 
field support for the products sold by that manufacturer. 

Manufacturer service organizations offer essentially all 
maintenance and field support services a user would need 
for any and all equipment produced by that manufacturer. 
This includes routine maintenance at the user's site, both 
on-site and manufacturer repair capability, replacement 
parts capability, national technical support, and, installation 
system design and system modification capability. 

The larger manufacturer service organizations have 
built up many years of experience; many of their customers 
have dealt with the same service engineers over long 
periods of time and most have geographically well-distrib
uted field service offices. 

'T'l.._~_ ~ __ •• : _____ ~_:_~ .. : __ ~ ~ __ ~_ .... _ :_ ~ _ •• _~~:rI~l 
1 111;;1)1;; 1)1;;1 V I\,1;; VI e.alI1LaUVI11) all;; 1)1;; l up III a p:r I allllual 

form: the base consisting of a large number of geographi
cally distributed field service offices, each staffed by one or 
more service engineers. If a supply of the most commonly 
needed replacements parts is not provided at the user site, 
it frequently is provided at this level. Above this base is a 
smaller number of regional offices, each primarily staffed 
by administrative personnel and a small number of techni
cal experts, available on demand to local users. At the top 
level is the home office of the manufacturer service 
organization. Usually it is here that in-house repair services 
are available along with national technical support, major 
replacement parts supply, and systems design and modifi
cation services. 

Users commonly expect the highest degree of technical 
expertise from manufacturer service organizations along 
with excellent response time and reasonable cost. A manu
facturer service organization is not commonly expected to 
provide mixed-vendor equipment capability and, in general, 
it does not. 

Independent, third-party maintenance organizations 

"Third-party" maintenance contractors differ from man
ufacturer service organizations in two significant ways. 
n!. __ .L ... L ____ ~ __ !_...l ____ ..l __ .... ..... c _ ..... _ ..... ,c ............... , .. _ .... _ ..... =_ .. L .................. _ ............ 
l·lI1)l, lUI;; Y all;; 1IIUI;;P'-'llU\.lll VI. 111<lllUI.<l",t.UI "'1'" III t.ll'" ",,,,u,,,,,, 
that they are not adjuncts to an operation whose primary 
purpose is product manufacture and/or sales. Second, most 
offer mixed-vendor equipment capability. 

In terms of a table of organization, most "third-party" 
maintenance contracting firms are set up in a manner 
similar to the manufacturer organization: a nationwide 
network of local field service offices staffed by customer 
engineers, supported by regional office and national head
quarters technical and support personnel. A parts supply 
and distribution system exists that meets customer needs at 
all levels of the organization, along with a shop repair 
system. 

The independent maintenance contractor performs a vari
ety of services for his user-customers under contract. These 
services may include preventive maintenance, or planned 
maintenance services performed at specific time intervals 
based on engineering failure estimates (changing filters, for 
example); predictability maintenance, consisting of services 

j 
i 



beyond the normal preventive maintenance, provided for 
equipment that has shown an increasing rate of non
catastrophic failure suggestive of a worsening performance 
trend; and remedial maintenance or services required to 
restore failed equipment to operation. 

Other services, broadly defined as field support services, 
include equipment installation, spare parts support, techni
cal documentation, training for user personnel, and mainte
nance management services. 

The independent contractor is expected to offer the same 
high quality service, prompt response time, national techni
cal assistance, and reasonable cost that are expected of 
manufacturer service organizations. But in order to develop 
customers for his services, the independent contractor must 
offer customers some advantage over the alternatives. In 
some cases the deciding factor is cost. In others it may be 
more frequent or perhaps better quality service under 
certain circumstances; in still others, it may be a matter of 
response time. 

Most often cited, however, is single-source capability for 
mixed-vendor systems, the .one advantage manufacturer 
service organizations cannot offer. It is the independent 
contractor's mixed-vendor capability, too, which permits 
tailoring of services to each user's specific equipment and 
requirements. 

HOW DOES THE INDEPENDENT CONTRACTOR 
PROVIDE SERVICES? 

Most services are provided at the user's site by a 
customer engineer dispatched from a nearby field service 
office. Normally a customer engineer is assigned to each 
customer on a permanent basis. The customer engineer is 
trained and qualified to perform scheduled maintenance and 
also render the more routine types of field service support. 

Whenever possible, arrangements are made for user-site 
storage of the most commonly needed replacement parts. 
The "independent" contractor also arranges to have other 
parts available at the user site when necessary, within an 
agIeed period .oL time d.et.el:w.ined. lar.gcl~ b~ the user's. 
system needs. A period of 6 to 24 hours is typical. 

Because the user's primary requirement is a properly 
operating system, many independent maintenance contrac
tors offer temporary or permanent replacement parts in 
exchange for malfunctioning parts which are then brought 
to the contractor's service center for repair, overhaul, or 
sent back to the equipment manufacturer. 

The local customer engineer is empowered to call in 
additional support whenever required from the various 
levels of his own organization or in rare circumstances from 
the manufacturer of the affected equipment. 

Independent contractors, as do manufacturer service 
organizations, offer these services in a variety of combina
tions tailored to each user's needs. There are, however, 
two basic types of arrangements: the first provides for 
preventive predictability, and remedial maintenance ser
vices for a prime period of time, usually a normal work day; 
the second provides for preventive, predictability, and 

Independent, Third-Party Computer Maintenance 763 

remedial maintenance on a 24-hour-per-day, seven-days
per-week basis. Most users for whom any downtime poses 
a critical problem prefer the latter basis, which is, of 
course, somewhat more costly. 

INDEPENDENT CONTRACTOR OR 
MANUFACTURER SERVICE: WHICH IS MORE 
EFFECTIVE? 

it is impossible to give a definitive answer to this 
question that would apply in all cases. It must be answered 
on an individual basis by each system manager based on the 
nature of his system and its specific maintenance and field 
support needs, his previous experience with any of the 
alternative sources, and, most important, his determination 
of which alternative could best fulfill his anticipated re
quirements. 

In all fairness, it should be pointed out that a majority of 
both government and private-sector computer systems have 
been and continue to be maintained under contract with 
manufacturer service organizations. Most (but not all) sin
gle-vendor systems are maintained under this type of ar
rangement. And many mixed-vendor systems are still main
tained in this way. 

No doubt this is due in part to the fact that independent 
contractor maintenance is still in its infancy, relatively 
speaking, and that manufacturers often include mainte
nance services at attractive rates as part of their lease or 
rental plans. There are but a few independent contractors 
offering full mixed-vendor system capability on a nation
wide or worldwide basis. But the independent contracting 
sub-industry is growing rapidly. Some projections estimate 
the market for maintenance and field support services to 
exceed $1.3 billion annually by 1980. The same projection 
estimates that nearly 25 percent of this market may belong 
to independent contractors by that time. 

In deciding how to best meet his maintenance and field 
support requirements, the system manager must first deter
mine what those requirements are. Does he, for instance, 
fe.q.uite. ' 'aroWld-1he-dock ': s.uppart-capabilit¥2 Whatis.1.he 
maximum response time he can allow? What frequency of 
programmed maintenance does he desire? And so on. 

After eliminating from consideration those alternatives 
which cannot meet his requirements, the determination 
should be based on other factors including estimations of 
quality of service, convenience, and cost. 

Again, assessments of quality of service and cost will be 
highly specific to the system or user and, in part, based on 
a series of trade-offs between the two. The one generaliza
tion that can and does apply in all cases involving mixed
vendor systems is that independent contractor maintenance 
is more convenient. Independent contractor maintenance, 
implies a single contract to administer, a single programmed 
maintenance schedule, a single source to deal with for 
virtually all maintenance and field support needs, as op
posed to mUltiple sources, and mUltiple schedules. 

While this is not always the deciding factor, it is a very 
important one for many system managers with large and 



764 National Computer Conference, 1977 

complex systems. It is becoming increasingly common to 
find a system involving products of six or eight different 
manufacturers and located at dozens of sites throughout the 
country. It can readily be seen that providing adequate 
maintenance and field support service for this kind of 
system under several contracts with different manufacturer 
service organizations could prove to be extremely time
consuming and costly from both administrative and logisti
cal points of view. 

A COMBINATION: THE FOURTH ALTERNATIVE 

There are circumstances under which a system manager 
might obtain maintenance and field support services from 
both independent contractors and manufacturer service 
organizations. This situation arises when a user prefers to 
use a single-source independent contractor, but cannot find 
one capable of meeting all his needs. Typically, some 
equipment is located in an area not served by an independ
ent contractor or the contractor is unable or unwilling to 
service certain items of equipment in the system. Because 
of the costs involved in personnel training, parts acquisi
tion, and documentation, no independent maintenance con
tractor offers full capability for maintenance and field 
service support for even a majority of computer or com
puter peripheral equipment in use. More and more, how
ever, the major independent firms are providing support for 
all of the more common equipment. 

In situations of this kind, the user must out of necessity 
develop an arrangement involving both his preferred inde
pendent contractor and the appropriate manufacturer ser
vice organization or organizations. 

CONCLUSION 

Independent contractor maintenance and field support of 
computer and computer peripheral equipment has proven 
itself a viable and practical alternative for meeting the 
needs of data processing system users, particularly mixed
vendor system users. Today, roughly 12 percent of all such 
work is being performed by independent contractors on the 
simplest of single-vendor systems to the largest and most 
complex multi-vendor systems. Both government agency 
and commercial users have evaluated the alternatives and 
selected independent contractors for some or all of their 
maintenance and field support needs. In each year since 
1971, independent contractors have increased their share of 
the U.S. market for these services, and this trend is 
projected to continue into the 1980's. 

Independent contractor maintenance is encouraged as a 
matter of policy for certain government systems. It has 
proven effective and economical for public and private 
systems, large and small. It is now possible to say that 
there is now a mature alternative method of obtaining 
computer system maintenance and field service support 
services available to most computer users. 



A perspective of standard form contracts in 
the data processing industry 

by STEPHEN N. HOLLMAN 
Attorney at Law 
San Francisco, California 

ABSTRACT 

The data processing industry has been weaned on the 
standard form contracts of one dominant vendor and many 
derivative and close variants of clauses from those written 
agreements are now found in the standard form contracts of 
many vendors. As such, standard form contract clauses 
deriving largely from a single source may well control the 
rights and liabilities of wholesale numbers of buyers within 
this industry. In so doing, these contractual provisions act 
not as terms bargained for and assented to, but as a type of 
unchecked commercial legislation within the industry. 

The trend is for such standard form contracts to acquire 
the attributes of adhesion (preprinted forms presented on a 
"take it or leave it" basis) producing an attitude of compla
cency in contracting among the management of buyer 
companies. 

Although courts are loath to rewrite contracts among 
business participants, there has been an increasing trend of 
judicial disapproval of unconscionable contracts. In non
class litigation, such judgments affect only one standard 
form contract while the objectionable clause may have far. 
bI.oader .impact thereby leading !.l.ne. lleI¥respedable law 
journal to espouse legislative intervention to correct this 
marked imbalance. 

Management of vendee data processing companies 
should be encouraged and motivated to negotiate the terms 
of standard form contracts of adhesion to have those 
documents reflect the particular transaction affecting the 
business in their charge. Correspondingly, management of 
vendor data processing companies should be alert to the 
capacity of clauses in its standard form contracts to be 
oppressive or wreak surprise and of the circumstances 
under which these documents are presented to buyers 
either of which could bring about an untoward judicial 
result. 

With these thoughts in mind, there is a further discussion 
of the often misunderstood or overlooked limitation of 
liability clause, "hell or high water" clause, most favored 
nations clause, integration clause, and arbitration clause, 
many of which are found in most standard form contracts. 

765 

INTRODUCTION 

Dismal as the future may sometimes seem, it is not unrea
sonable to expect an increase in the volume of claims and 
disputes between contracting parties in the data processing 
industry as a by-product of continued growth and expan
sion within the industry. With this hypothesis in mind, one 
would do well to look at the nature of the contracts upon 
which such claims and disputes will undoubtedly be 
founded. 

In executing agreements for data processing equipment 
or services, the management of a company which is a buyer 
should (but all too often does not) take cognizance of 
fundamental matters found in the contract which may likely 
affect its company's liability. A frequently heard reason for 
the lack of attention or inaction by such management is an 
anticipation of the vendor presenting its standard form of 
contract on an "accept this or nothing" basis and the 
concomitant judgment that an expenditure of effort to effect 
changes in a contract which is in general use by the vendor 
with its other customers may be futile. 

Focusing upon such management attitude, this discussion 
will seek to plac,e. inpersP.eC.tiye the .Qse of stan.d,~rd form 
contracts in the data processing industry, highlight several 
obscure clauses, and conclude with certain recommenda
tions to the management of both buyers and vendors 
regarding the use of such agreements. 

THE STANDARD FORM CONTRACT 

At one time, a contract in its most basic form was the 
product of a "bargain," i.e., it was the written expression 
of parties who had negotiated an agreement to exchange 
promises. With certain exceptions wrought by the law 
which are not here relevant, the "bargain" was the sine 
qua non of an enforceable contract for breach of which 
legal remedies would likely follow. However, a contract 
embracing the concept of the "bargain" no longer charac
terizes the preponderance of such documents which are 
today executed in the ordinary course of business. 1 Rather, 



766 National Computer Conference, 1977 

there is the prolific use of the standard form of contract. 2 
This type of written agreement has definite economic 
justification in that, among other things, it permits the 
vendor to select and control its assumed contractual risks, 
to exclude risks which are difficult to calculate, and to 
provide for situations arising from unforeseen contingencies 
such as strikes, floods, fires, labor disputes, and the Iike.3 

Just as mass production and mass distribution have 
become indigenous to the data processing industry, so too 
has mass contracting using standard forms of written agree
ments. In the infancy of this trend, the data processing 
industry was weaned on the standard form contracts of one 
dominant vendor4 and many derivative and close variants of 
clauses from those early written agreements are now found 
in the standaid fOim contiacts of many vendois.;; ACCOid
ingly, standard contract clauses deriving largely from a 
single source6 may well control the rights and liabilities of 
wholesale numbers of buyers of goods and services in the 
data processing industry. In so doing, these contractual 
provisions act not as terms bargained for and assented to, 
but as a type of unchecked commercial legislation within 
the industry. 7 

In executing a standard form contract for data processing 
equipment or services which has been presented on a "take 
it or leave it basis," that which is signed may in the eyes of 
the law be known as a contract of adhesion.8 A contract of 
adhesion, simply stated, is one which is presented by a 
party in a position of superior bargaining power, usually 
pre-printed in great numbers, and offered on an "accept 
this or nothing" basis.9 Standing alone, a standard form of 
contract drafted by a vendor to limit its risks and exposure 
is not, in and of itself, one of adhesion. However, when 
presented on a "take it or leave it" basis and pre-printed 
usually in smaller point type than the normal office type
writer to discourage attempts at typewritten changes, it 
acquires the attributes of adhesion. 

With contracting in the data processing industry charac
terized by the extensive use of identical or similar clauses 
usually presented in written agreements under circumstan
ces of adhesion, it appears not indelicate to observe that 
such written agreements may control more behavior than 
do the ordinances of many municipalities. 1o 

Historically, courts have been loath to re-write con
tracts or portions thereof between business participants. ll 

The theory is that businessmen as such are viewed by the 
courts as situated on equal footing I2 with each other unless 
the contrary is proved,I3 and this remains true despite the 
fact that the less well-informed or advised businessman did 
not read nor understand the contract. 14 The modem trend, 
however, is to provide a judicial remedyI5 if the court finds 
the contract or certain terms contained within it to be 
unconscionable. I6 

In private, non-c1ass I7 litigation, the judicial nullification 
or reformation of a standard contractual term which may be 
pervasive throughout the industry benefits only the party to 
that suit and not all others similarly situated who are 
subject to such a contractual term. This seeming inade
quacy of judicial relief has spawned an articulate sugges
tion18 for legislative intervention to mandate minimum 

standard contractual provisions in all cases. If this were to 
come to pass, concerns of equity would override concerns 
of a freely functioning market and foster what many may 
find to be an unwelcome solution. 

Data processing management is the freely functioning 
market force which, by tempering its attitudes of futility 
toward effecting changes in and consequent complacency 
for standard form contracts of adhesion, can correct an 
imbalance in contracting within the industry. Charged by 
emerging trends in the law both with protecting the inter
ests of the business committed to its care and with refrain
ing from depriving that business of the advantage that its 
skill or ability might properly bring to it,19 management may 
find personal liability ascribed to it by an enterprising 
attorney in litigation which could arise from standard form 
contracts of adhesion executed in the comfort of compla
cency and not in the best interests of the business. 

Management of a company which is a buyer should be 
encouraged and motivated to negotiate the terms of stand
ard form contracts of adhesion although there will be 
transactions where this is not possible. 20 Recognizing that a 
vendor wants new or continuing business as much as the 
buyer may need the vendor's goods or services, the man
agement of a buyer company assertively seeking to change 
standard terms in the vendor's standard form contract may 
well be surprised at the receptiveness of the vendor to 
engage in negotiations if not yield altogether to the buyer's 
demands. 

Correspondingly, management of a company which is a 
vendor should be alert to potentially oppressive clauses in 
its standard form contracts and the manner and circumstan
ces under which these documents are presented to its 
customers, mindful of the increasing trend of courts to find 
standard contract terms unconscionable21 and the financial 
trappings of litigation. One simple approach when the 
vendor's risk appears to significantly enlarge by a modifica
tion of terms in its standard form contract would be for the 
vendor and buyer to agree that the buyer will pay a modest 
price increase just as one might pay a higher insurance 
premium for increased risk to the insurer and increased 
coverage to the insured. 22 

This discussion cannot possibly encapsulate all of the 
considerations of contracting within the data processing 
industry. However, if management or its counsel wish to 
consider a path of implementing the foregoing thoughts and 
desire reference materials on data processing contracts, 
there are several good sources. 23 

The balance of this discussion will deal with several 
clauses usually found in standard form contracts the signifi
cance and consequence of which are oftentimes not under
stood or grossly understated. 

LIMITATION OF LIABILITY CLAUSE 

A vendor typically limits its liability to financial compen
sation for damages suffered directly by its customer exclu
sive of the claims of third parties, and then only for the 
amount paid by the customer under its agreement with the 



Standard Form Contracts in Data Processing Industry 767 

vendor. 24 In addition, in the case of a services contract, the 
vendor may seek to insure itself against the prospect of 
monetary liability altogether by offering to duplicate the 
services which were not rendered or which were rendered 
in a faulty manner. 25 It does not seem at all unreasonable to 
limit the vendor's liability only to damages sustained di
rectly by its customer, exclusive of the claims of third 
parties, but the further limitation of the customer's recov
ery to an amount not to exceed the fees paid under the 
contract may well be insufficient to compensate the cus
tomer for its losses and, indeed, may bear no reasonable 
relationship whatsoever to the customer's losses. 26 

Consider a union payroll which is produced twenty-four 
hours late by a vendor of data processing services. In many 
construction industry union contracts, a penalty of time and 
a half for each hour the payroll is late is imposed upon the 
employer (in this case the customer). Accordingly, the 
customer's actual damages in this example may far exceed 
by mUltiples the amount it has paid under the contract. 27 

The failure to fully understand and appreciate the conse
quences of standard form limitation of liability clauses can 
be seen in the following excerpts from a recent address by 
Richard L. Bernacchi28 to the Computer Law Association. 29 

"Commercial risk allocation through . . . limitations of 
liability . . . presuppose an ability on the part of both 
parties to the transaction to articulate [their respective 
expectations] and understand the risks inherent in that 
transaction .... In the simple commercial transaction the 
distinction between the desired ends and the risks that are 
inherent in the transaction is relatively easy. . . . [How
ever ,] risk allocation in the data processing environment 
shares a problem which is endemic to all legal documents. 
What appears simple and easy to apply in the abstract, 
becomes muddied and difficult to apply in the concrete 
situation. . . . Many data processing transactions lack the 
. . . ability of both sides to foresee the risks inherent in the 
transaction. . . ." 

". . . to the extent that the subject matter of a particular 
data processing contract involves risks that the vendee will 
normally not be able to foresee and evaluate, and to the 
~tent "ttrnt the ~ ·fm!; ro t!!'t!euhtte-~. mk'il, 'here 
can be no bargained for allocation of risks, notwithstanding 
the fact that both parties are presumed to understand the 
meaning and implication of the contractual language used to 
effect that allocation .... " 

"While it can be assumed that the vendor understands or 
should understand the risk of distortion, no such assump
tion is justified with respect to the vendee. The proper 
index of vendee understanding should be the contract and 
the amount of specific and detailed allocation contained 
therein. " 30 

It may not be a reasonable prospect to seek an enlarge
ment of the vendor's limitation of liability.3! However, it 
may be possible to reach agreement with a vendor to accept 
liability for consequential damages32 despite the traditional 
boilerplate in which the vendor will seek to disclaim liabil
ity for consequential damages. 33 Particular inroads here 
may be made if the vendor's liability for consequential 
damages is conditioned upon a breach by the vendor or 

negligence by the vendor or its employees. In this regard, a 
bargaining point might be to further limit vendor's liability 
for consequential damages to compensate the customer by 
making it whole. Under these conditions, the vendor may 
be able to obtain insurance to cover its expanded liability. 

"HELL OR HIGH WATER" CLAUSE 

This provision is frequently found in lease agreements 
and essentially provides that the customer must pay under 
any and all circumstances. No matter what happens to the 
equipment, the customer-lessee still has to pay. 34 

One now finds such clauses slowly creeping into other 
types of contracts in the data processing industry where, in 
essence, it is provided that the customer pay first and 
complain later. To the. extent that the customer is dealing 
directly with the vendor, as distinguished from a third party 
lessee, the clause might well be unconscionable. 35 

Here the customer should seek the contractual right to 
offset mandatory payments with claims it has against the 
vendor or, alternatively, to make disputed mandatory pay
ments to an independant third party escrow pending deter
mination of the claims of the customer against the vendor. 

MOST FAVORED NATIONS CLAUSE 

Many vendors in the computer industry contractually 
agree to make available decreases in price to all customers 
in much the same fashion as they pass on price increases to 
all customers.36 This is called a most favored nations 
clause. 

What some may view as a gift horse others may see as a 
two-edged sword. Where a most favored nations provision 
is a clause in a standard form contract, a price decrease to 
one customer must be offered to all of the vendor's 
customers in whose standard form contracts such a clause 
appears. Accordingly, there is a negative incentive for the 
vendor to offer a price advantage to one customer if it 
correspondingly becomes obligated to pass that advantage 
'on to' ulher urib'(,;u-~ton)ef~~ ,-,,-

. The customer would be advised to seek to have its 
agreement for price concessions set apart from the standard 
form clauses and, whether within the content of the agree
ment or by side letter, effectively amend the agreement so 
that the performance thereunder of the vendor with price 
concessions is different from the performance and price 
normally offered by the vendor to its other customers. By 
so doing, the negative incentive of the vendor to bargain 
with a particular customer on price is mooted. 

INTEGRATION CLAUSE 

As surely as the sun will rise tomorrow, the standard 
form contracts used in the data processing industry will 
contain a clause to the effect that the written agreement 
constitutes the complete and exclusive statement of the 



768 National Computer Conference, 1977 

agreement between the parties superseding all prior and 
contemporaneous proposals, understandings, representa
tions, conditions, warranties, and all other communica
tions, oral or written, between the parties. There is much to 
commend such a clause both on behalf of the vendor and 
the customer provided that, and only provided that, the 
written agreement is, in fact, the complete and exclusive 
statement of the understanding between the parties. If, 
instead, the written agreement is the standard form contract 
used by the vendor and the undertakings of the parties are 
founded upon a relationship emanating from other under
standings, the documents expressing those other under
standings, whether responses to requests for proposals, 
communications between the parties, or otherwise, should 
be mandatorily incorporated by reference as exhibits with 
the standard form contract. Further, there should be a 
reference within the standard form contract stating which 
documents should control in the event of conflict between 
the written agreement and the appended exhibits. 

ARBITRATION CLAUSE 

Under modern systems of jurisprudence, the remedy for 
a contractual dispute is that of litigation in the absence of 
contrary provisions in the contract. As many are aware, 
this can be a lengthy, tortuous, and extremely expensive 
process. Moreover, in the data processing industry one has 
to consider that a judicial tribunal, whether a judge or a 
jury, may be incapable of understanding some of the 
technical niceties, complexities, and innuendoes inherent in 
a relationship founded on the furnishing of data processing 
equipment and services. 

The remedy of arbitration has been utilized effectively to 
resolve business controversies for many years. "The past 
fifty years has seen arbitration growth spurred by legisla
tion, a friendly judiciary, an over burdened court system, 
cost-conscious business executives, and perhaps, the reali
zation that viable alternatives to litigation are possible in 
many commercial transactions." 31 

Arbitration, as a remedy, seems to have two predominant 
virtues. The first is that in a long-term business relationship 
subsidiary differences between the parties can be resolved 
in a speedy, expeditious, and not terribly hostile manner 
without affecting that long-term business relationship. Sec
ond, it can bring to bear technically competent fact-finders 
to resolve a dispute between the parties going to the heart 
of the contract which may involve matters of such esoteric 
dimension that a lay judicial tribunal could not possibly be 
expected to make intelligent findings of fact. 

Both vendors and customers should be alert to the 
advantages of the use of arbitration and mindful also of the 
principal objection to arbitration in that it may tend to be 
too "arbitrary". This ill-founded notion seems to derive 
from experiences inaccurately related as to how an arbitra
tor may have misjudged the facts and therefore improperly 
decided a matter before him. Carefully drawn arbitration 
agreements, however, can provide for equitable methods of 

review by the arbitrator or arbitrators of their own deci
sions. 

Care, however, should be taken in the drafting of arbitra
tion agreements to have them conform to local law. For 
example, in California there can be no use of pretrial 
discovery except in a case involving injury to, or death of, a 
person caused by the wrongful act or neglect of another, 
unless specific provision is made therefor within the arbi
tration provision. 38 In Texas, a provision for arbitration is 
not binding unless the agreement has been executed by 
counsel for the signing parties. 39 

CONCLUSION 

M~n~H1pmpnt of vpnopp o~t~ nro(,po;;o;;ino ('omn~nipo;; who ~rp -------0-------- -- . -_ .... --- ---- r- ..... _- ................... 0 -_ ........ .1"-.......... _ .............. - _ .. -

presented with standard form contracts from data process
ing vendors should be attentive to the terms contained in 
such documents specifically as they do or do not relate to 
the proposed transaction at hand rather than complacently 
executing such forms with comfort, albeit ill-founded, in the 
notion that such documents apparently are satisfactory for 
all of the vendor's other customers. 

Similarly, management of vendor data processing compa
nies who use standard form contracts should be alert to the 
potential for oppressiveness in such documents and the 
manner in which they are presented, and not take comfort 
in the fact that similar contracts have been in general use 
throughout the industry with impunity. 

Whether it be a judge, a jury, an administrative body, or 
an arbitrator who is charged with reviewing the written 
document which has beet'! executed, the parties must real
ize that "their" transacti'On is set forth within the four 
corners of that document and any shortcomings in this 
regard are the fault of the parties and not that of the 
contract. 

REFERENCES 

I. Bolgar, "The Contract of Adhesion: A Comparison of Theory," 20Am. 
J. Compo L. 53,55, 1972. 
". . . the old forms of contract, based on individual bargaining and 
consent became altogether inadequate and, above all, time consuming, 
since mass marketing is predicated on mass contracting under which 
contractual provisions become uniform and standardized." 

2. Kessler, "Contracts of Adhesion-Some Thoughts About Freedom of 
Contract," 43 Colum. L. Rev. 629,631, 1943. 
"Once the usefulness of these [standardized] contracts was discovered 
and perfected in the transportation, insurance, and banking business, 
their use spread into all other fields of large scale enterprise .... " 

3.Id. 
4. 2 Computer Law Service App. §3-2b (Bigelow, ed. 1975). 
5. /d. at App. §3-2a. 
6. Id. at App. §3-2b. 
7. Stedransky, "Unconscionability and Standardized Contracts," 5 N.Y.V. 

Rev. L. & Soc. Change 65, 1975. 
8. The term as such was first used by Patterson, "The Delivery of a Life 

Insurance Policy," 33 Harv. L. Rev. 198, 222 (1919) and judicially first 
given recognition in Henningsen v. Bloomfield Motors, Inc., 32 N.J. 358, 
161 A.2d 69, 1960. 

9. Saxe, "Contracts of Adhesion Under California Law," 1 V. San 
Francisco L. Rev. 306, 1967. 

10. Stedransky, supra. 
II. The doctrine of caveat emptor will apply where there exists some parity 



Standard Form Contracts in Data Processing Industry 769 

or equality between the bargaining parties. Jefferson Credit Corp. v. 
Mareno, 302 N.Y.S.2d 390, 1960. 

i2. Id. 
13. Id. at p. 394. 

Due to the "lack of equality between the bargaining parties" plus 
clauses taking advantage of the lack of equality, the contract was 
unenforceable and unconscionable. 

14. A. L. Corbin, Corbin on Contracts §107 (1952). 
15. United States v. Bethlehem Steel Corp. 315 U.S. 289 (1942); see also 

Clements Auto Co. v. Service Bureau Corp., 444 F.2d 169 (8th Cir., 
1971),2 CLSR 102, modifying 298 F.Supp. 115 (D. Minn. 1969), 2 CLSR 
143; and International Business Machines Corp. v. Catamore Enter
prises Inc., 5 CLSR 1025, 5 CLSR 1060, remanded for new trial 
Computer Law and Tax Report, November, 1976, p. 7-8. 

16. W. D. Hawkland, Sales and Bulk Sales, p. 23, 1958. 
"The basic test of unconscionability is whether, in light of the general 
commercial background and the commercial needs of the particular trade 
or case, the clauses involved are so one-sided ... under the circumstan
ces existing at the time of the making of the contract." 
Boucher, "Unconscionability: Uniform Commercial Code Section 2-
302", 36 Albany L. Rev. 114, 141. 
"The person claiming the unconscionability should be arguing that the 
purpose of the clause was to oppress or unfairly surprise .... A clause 
which would be perfectly conscionable and legal in other circumstances, 
will be held to be unconscionable if its only purpose ... is to oppress." 

17. Class litigation is the adjudication of the claims of multiple parties in one 
judicial proceeding rather than multiple plaintiffs going forward in 
separate suits. Amalgamated Workers Union of Virgin Islands v. Hess 
Oil Virgin Islands Corp., 478 F.2d 540 (CA. Virgin Islands 1973). 

18. Kornhauser, "Unconscionability in Standard Forms," 64 Calif. L. Rev. 
1151. 1976. 

19. W. E. Knepper, Liability of Corporate Officers and Directors, p. 1, 
1969. 

20. Kessler, supra, at p. 632. 
"The weaker party in need of goods or services is frequently not in a 
position to shop around for better terms, either because the author of the 
standard contract has a monopoly (natural or artificial) or because all 
competitors use the same clauses. His contractual intention is but a 
subjection more or less voluntary to terms dictated by the stronger 
party; terms whose consequences are often understood only in a vague 
way, if at all." 
See also Blair v. Pitchess, 5 Ca1.3d 258, 275-6. 

21. Hawkland, supra. 
22. Saxe, supra., at p. 320. 
23. Bernacchi, R. L. and G. H. Larsen, Data Processing Contracts and the 

Law, 1974. 
Bigelow, R. P. and S. H. Nycum, Your Computer and the Law, 1975. 
Brandon, D. H. and S. Segelstein, Data Processing Contracts, 1976. 

24. 2 Computer Law Service App. §3-2a, supra. 
~,j, U. 
26. Sweet, "Liquidakd Damage:. in California," 60 Culif. L. Rn. 84, 93, 

1972. 
Actual damages must still be proved, "but the designated sum [in a 
clause limiting liability] operates as a ceiling on the performing party's 
accountability.' , 
"In standardized contracts ... which are made by parties of unequal 
bargaining strength, the California courts have long been disinclined to 
effectuate clauses of limitation of liability which are unclear, unex
pected, inconspicuous, or unconscionable." 
Steven v. The Fidelity and Casualty Co., 58 Cal.2d 862,879, 1962. 

27. Clements Auto Co. v. Service Bureau Corp., supra; cf. Farris Engineer
ing Corp. v. Service Bureau Corp., I CLSR 902, affd. I CLSR 905. 

28. See Footnote 23. 
29. Address by Richard L. Bernacchi titled "Proper Allocation of Risk in 

Data Processing Contracts" to the Computer Law Association, March 3, 
1976. 

30.Id. 
In Bernacchi's address, he offers the following examples: 
.. If the contract contained or incorporated by reference a detailed set of 
functional specifications, including response times, display formats and 
the like, then the inference is strong that either the vendee was aware of 
the risk of distortion and made certain that he actively participated in the 

technical articulation of his needs, or the vendor was concerned about 
the risk of distortion and attempted openly to articulate the system 
design in a manner calculated to allow the vendee the opportunity to 
recognize any distortion which may have occurred. If, on the other 
hand, the contract merely provides for a 'system' which contains certain 
hardware referred to by model number and certain software consisting of 
applications referred to by title, then the inference is strong that the risk 
of distortion was inarticulate at the time the parties entered into the 
agreement .... " 
"A similar situation exists with respect to . system' implementation, 
which usually consists of the delivery phase, the conversion of the data 
base and the existing applications, and the development of new applica
tions. With new applications or with old ones that must be converted to 
new equipment, the implementation may tum out to be in the order of 
years rather than the months that the parties expected, or at least that 
the vendee expected. The particular difficulties in implementation may 
effectively change the vendee's expectation of the purchase of a 
computer 'system' into a contract for the development of that ·system'. 
If the contract either provides a specific time frame within which 
implementation is to occur, or specifically indicates that the amount of 
time required for implementation is unknown, then the inference of 
articulate risk and bargained-for allocation is strong. If the contract 
simply provides that the vendor will install the system; or that he will 
provide a certain amount of man-hours to that end, then the inference is 
strong with the risk of a lengthy implementation due to technological 
difficulty was inarticulate at the time the parties entered in the agree
ment. ... " 
"Similar problems exist in the area of system performance, which 
generally boils down to system acceptance tests, including both simu
lated and live tests. Even when you have a detailed set of functional 
specifications, it is the general nature of data processing 'systems' to 
exhibit inadequacies in live operations that do not appear in simulated 
testing. If the contract provides that the vendee's obligations are 
contingent upon successful system performance under acceptance test 
criteria which include live testing, then the inference of articulate risk 
and bargained-for allocation is again strong. If the contract simply 
provides for payment upon installation and certification that the system 
is • operational' , then the inference is strong that the risk of system 
inadequacy due to circumstances peculiar to the vendee's environment 
was inarticulate at the time the parties entered into the contract. . . ." 

31. "There does not appear any way that the company can fairly price its 
services unless it does limit its liability in some way, because the efforts 
that it otherwise takes in order to protect against those anticipations of 
what the risks might be, will price the product right out of the market." 
Aetna Casualty & Surety Co. v. Eastman Kodak Co. to UCC Reporting 
Service 53, 56 (Dist. ofColumb., 1972) 

32. Hawkland, supra, at p. 139. 
"Consequential damages are those which could not have reasonably 
been prevented by the customer and are for those injuries that the 
veudor bad reason to foresee as a probab.le l"e.sullill,~ ,bl:e.acl1 when the 
contract was made. If the injury is one that follows the breach in the 
usual course of events, there is sufficient reason for the ... [vendor] to 
foresee it; otherwise it must be shown specifically that the ... [vendor] 
had reason to know the facts and to foresee the injury." 

33. Hawkland, supra., at p. 162. 
The Uniform Commercial Code "recognizes the general validity of 
agreements limiting consequential damages ... but it states that such 
agreements are to be tested in terms of unconscionability ... ", i.e., the 
limitation of consequential damages may be ineffective if such limitation 
is found to be unconscionable. 

34. In Leasco Data Processing Equipment Corp. v. StarJine Overseas 
Corp., 74 Misc.2d 898, 346 N.Y.S.2d 288 (New York, 1973), the court 
upheld such a clause against the contention that it was unconscionable. 

35. Id. 
36. 2 Computer Law Service App. §3-2b, supra. 
37. Aksen, .. Legal Considerations in Using Arbitration Clauses to Resolve 

Future Problems Which May Arise During Long-Term Business Agree
ments," The Business Lawyer, January, 1973, p. 595. 

38. The California Arbitration Law (California Code of Civil Procedure, 
§§ 1280 through 1295, specifically §§ 1283.05, 1283.\); Texas General 
Arbitration Act (Vernon's Ann. Civ. St .. Art. 224 through 238-6, 
specifically Art. 224). 





Small computers and small investors 

by GEORGE KIM JOHNSON 
Baton Rouge, Louisiana 

ABSTRACT 

The availability of low-cost hardware and the activity of 
turnkey developers has significantly expanded the number 
of potential computer users. Limited capital has been a 
major inhibiting factor in the growth of this marketplace. 
This paper proposes a method whereby small investors can 
use leveraged leasing to inject the capital necessary for 
expansion in this area. Investors may, after weighing poten
tial risks and costs, obtain income as well as significant tax 
advantages. Developers can grow without requiring addi
tional capital. Small end users can lease rather than pur
chase. Computer professionals can invest money, as well as 
time and effort, in their profession. Included is an analysis 
of a typical procedure for creating such an arrangement. 
Financing, tax analysis, contracting, and negotiations are 
specifically addressed. 

The computing industry today is in a position similar to 
that of the automobile industry shortly after the turn of the 
century. We are witnessing a transition from an industry 
with its emphasis on technological marvels to a business 
based upon mundane, even household, uses of computing 
equipment. At the same time, we are observing the com
mencement of a transformation in the type of people 
involved in computing and the data processing industry. ·We 

(lt~.,§~~!!1E !lt~ d~c.l!ne .. <?f .th~ ... "~~~l?~t.~r, p~i~~!h~~" ~n~ 
the rise of a new entrepreneurial class. That IS: the people 
who work with computers are beginning to invest their 
money, as well as their time and knowledge, in their 
profession. 

Technological change is, or course, an important factor in 
this shift. For example, in the past few years we have seen 
the minicomputer market boom, the microprocessor mar
ket develop, and the leading edge of the personal computing 
phenomenon appear. So-called "mini" computers now 
have up to one megabyte of memory, and support data base 
management systems, high-level languages, and a wide 
variety of applications software. At the same time, the cost 
factors involved are dropping rapidly. 

We could expect this change to be even more explosive 
were it not for certain limiting factors. Two of these are of 
immediate relevance. First, many of the developers of small 
systems (as well as potential users of these systems) have 
definite credit limits. Difficulty in obtaining capital, coupled 

771 

with the traditional unavailability of leasing arrangements 
for small developers and users, inhibits growth to a consid
erable degree. 

The second factor of importance is that the manufactur
ers of most of the smaller systems which would be suitable 
for financially limited users are incapable of providing 
"hand holding." Programming and maintenance support 
usually come from "local" system developers and turnkey 
system suppliers who are also limited financially. 

This paper will present one approach which may be 
useful in surmounting these problems. It attempts to bring 
together the small investor, the OEM or turnkey system 
developer, the manufacturer of minicomputer systems, and 
potential users who, either through limited credit or con
cern over lack of expertise and technological obsolescence, 
do not or cannot purchase their data processing equipment. 
Essentially, this approach involves the use of leveraged 
leasing by an investor, who purchases a small computer and 
then leases it to a minicomputer turnkey system developer, 
who in turn will lease to an end user. Many variations of 
this arrangement are possible, but for discussion purposes, 
let us consider the ramifications of the set of agreements 
just described. 

It should be noted at the outset that this opportunity may 
prove particularly attractive to small investors having a 
computer background, as they are in a unique position to 
spot opp.()rtu!lities f?r development. That is, the~ are likely 
to -be ';ware ·ot s~ftwar'e~hardwaie pacKage'devell1pmenE 
which are not effectively marketed due to a lack of financ
ing. Furthermore, they are often able to understand and 
evaluate both the technological and marketing aspects of 
such a situation. Finally, it should be stressed that the 
benefits of this approach can apply to people who have a 
relatively small amount to invest and who are on fixed 
incomes. Tax shelters, for instance, are available to inves
tors at any level, not just to the "wealthy." 

Before looking at the specific procedures to be followed 
in setting up an arrangement of this type, let us quickly 
review some of the benefits, risks, and costs which are 
likely to be encountered. 

There are two major benefits for an investor in a situation 
such as the one under consideration. First, and most 
obviously, there is an opportunity for income. Such income 
can provide a very useful supplement to a basic salary, 
since once the arrangements have been made, the expendi-



772 National COIl)puter Conference, 1977 

ture of time by the investor is minimal. Second, a wide 
variety of tax shelter benefits may exist, depending upon 
the particular financial situation of the individual investor. 
It should be reiterated that these shelters are available to 
any investor, no matter what his level of financial involve
ment. Finally, although it was pointed out earlier that such 
an opportunity would be particularly appealing to an inves
tor with a computer background, such knowledge is not 
essential. There is no requirement for particular expertise, 
nor for a large overhead. Of course, this is an advantage for 
the developer as well, since it considerably broadens his 
potential range of investment sources. 

For the developer, it provides an opportunity to obtain 
the financing necessary to fully develop and effectively 
market his system. This is often quite difficult for the small 
software developer acting alone. Even for those already 
established as business entities, this method can provide an 
opportunity for expansion, after capital credit limits have 
been reached. 

There are also benefits for the users. First, such an 
arrangement permits a user with a limited availability of 
capital to lease instead of purchase. It also provides flexi
bility, and enables the first-time user to get into data 
processing without having to acquire an in-house staff. It 
will also benefit all users in the long run, by encouraging 
the development of a greater number and wider variety of 
user-oriented software/hardware packages. 

Finally, there will be benefits to the computer industry as 
a whole. It may be expected that increased investments at 
this level would encourage a considerable growth in the 
total number of users, particularly at the small end of the 
spectrum. It should furthermore encourage broader diversi
fication within the manufacturing and software industries. 
Last, there should be an increase in the development of 
new application areas, since the availability of financing 
will encourage such development by individuals who were 
previously discouraged by the difficulty of financing the 
start-up of a small business. 

As in any investment situation, there are risks and costs 
which must be recognized and evaluated. The costs are 
fairly obvious: some capital must be provided; in the case 
of leveraged leasing (that is, leasing by an investor who 
puts up a part of the capital outlay-say 20 percent to 30 
percent of the total cost-and finances the remainder) there 
will be interest charges; there will be fees for the profes
sional services of accountants, financial advisors and attor
neys; and finally, there will of course be taxes to pay. 

The major risks may be listed rather simply. They are: 
default by one of the parties; changes in tax regulations 
after the investment has been in place for some time; a 
failure on the part of one or more of the suppliers; problems 
of coordination between the parties involved; a failure to 
address all potential problems during the negotiating phase; 
to some extent, technological obsolescence (though this is 
less troublesome where the investor has a computer back
ground); and unanticipated steep rises in costs (for exam
ple, for insurance or maintenance). 

Let us now consider the basic procedures which would 
be followed in arranging an investment package of this 

type. It should be pointed out at the outset that as such an 
arrangement is developed, all of the factors should be 
individually explored, evaluated, and agreed upon in nego
tiations, prior to executing any contractual commitments 
relative to any single part. Furthermore, of necessity, the 
procedures outlined here are only general in nature. Each 
particular situation, depending upon the status of the indi
viduals and parties involved, will require considerable' 'tail
oring." It will be necessary in almost every case to obtain 
financial, tax, accounting, and legal advice prior to making 
any commitments. 

The following analysis will be based upon a hypothetical 
situation structured as follows: 

Two system specialists have jointly developed an in
dustry application package to operate upon a particular 
computer configuration. They have entered into an OEM 
agreement with the manufacturer of that hardware. They 
are prepared to undertake the marketing and maintenance 
of this package if they can obtain financing through a 
lease-back arrangement. The parties involved therefore 
will be the minicomputer manufacturer, the software 
developers, the investor, and the end-user. 

The first step will be to consider financing arrangements. 
Naturally, it will be necessary for the investor to put up at 
least a portion of the purchase price in cash. Generally 
speaking, the minimum percentage will be ten percent, with 
more common figures ranging from 20 percent to 30 per
cent. Thus, for a typical minicomputer system in the 
$50,000 to $100,000 range, the investment amount required 
might be between $5,000 and $30,000. 

In shopping around for a financing organization, the most 
important considerations on the part of the investor will 
probably be the interest rate and the schedule of payments. 
For tax reasons the length of the financing term may also be 
important. In some cases, it may be possible for the 
investor to take advantage of an OEM discount which 
would be available to the developer. For example, a devel
oper might be able to purchase from the manufacturer at a 
discount and resell to the investor at that discount price. 
The financing organization may then take into account the 
market value (or list price) of the system in determining the 
percentage of the total investment which they will finance. 
Thus, an investor with ten thousand dollars might be able to 
obtain a $100,000 system if he received a 20 percent 
discount and put up his $10,000 in cash, thereby needing to 
finance only $70,000 of a "$100,000 purchase." 

Of course, the business form of the investor (sole owner
ship, partnership, corporation) may affect the financing. 
Almost certainly the financing organization will require 
some sort of security interest, such as a mortgage on the 
property. They may also require the investor to assume 
personal liability for the loan. 

Once the availability of financing has been determined, 
and the various options identified, it is necessary to under
take a tax analysis. As was mentioned earlier, such an 
analysis will vary with the financial status and requirements 
of the investor. There are in any case a number of general 



considerations which should receive attention in such anal
ysis. (Keep in mind that this is an area in which expert 
advice is almost essential, since the complexity and rapid 
change of tax regulations makes effective analysis by lay 
people extremely difficult.) 

There are several sources of potential tax advantage in an 
arrangement such as the one under consideration. First, 
where a portion of the purchase price has been financed, it 
may be possible to deduct the interest paid on the amount 
financed. Such a deduction is generally available, although 
there are certain significant conditions under which it may 
be limited. 

Second, the Tax Reform Act of 1976 extended the 
availability of the investment tax credit. This credit, which 
is also subject to certain limitations as to amounts and 
availabilities, is a one-time credit of up to 10 percent of the 
total purchase price of the hardware. This credit is particu
larly advantageous if the investor has an income peak 
which he wishes to offset in the year in which he acquires 
the equipment. 

Third, the equipment purchased (and in some cases a 
certain amount of associated software) may be depreciated. 
There are basically two types of depreciation applicable to 
personal property such as a minicomputer. The first is 
regular, or "straight-line" depreciation; the second is accel
erated depreciation, which may take any of several forms. 
This is an area of considerable complexity, since acceler
ated depreciation is often treated as a tax preference item, 
and since determination of useful life can be a significant 
factor. 

Finally, deductions are allowed for any legitimate busi
ness expenses and taxes (such as property and sales taxes) 
which may arise in the various transactions. 

There are, on the other hand, some possible tax liabilities 
which must be evaluated. First, such an investment will in 
most cases generate income which will be subject to tax. 
Second, the equipment (and possibly the software in some 
jurisdictions) may be subject to property taxes or sales 
taxes. Of course, as was indicated, these taxes may be a 
source of deductions, but they must nonetheless be paid. 
~tl; ~tMt ifItpr~y, I;lrYwlUfilQ ~·u-aai~tiQD, ,,ma~L .~. in 
the recapture, at a future date, of taxes avoided through 
accelerated depreciation. Finally, if the arrangement is not 
set up properly, the Internal Revenue Service may find that 
the transaction is in fact a sale rather than a lease, and 
certain leasing advantages or tax advantages (e.g., the 
investment tax credit) may be diminished or lost. 

The next step is the contracting phase. It is particularly 
important to remember that the purpose of a contract is not 
merely to serve as a tool for the resolution of disputes, 
should they arise. Rather, its most important purpose is to 
serve as a medium for the formalization of all the aspects of 
the working agreements between the parties. In a situation 
such as the one presently being considered, there will be 
multiple contracts. There will be contracts for: the original 
sale of the equipment; the sale of the hardware by the 
developer to the investor; the lease from the investor back 
to the developer; the lease from the developer to the end 
user; financing arrangements; insurance coverage; and 

Small Computers and Small Investors 773 

maintenance. Each agreement will have some unique re
quirements. There are, however, some general principles 
which may be applied in all of them. 

One of the most important considerations in structuring 
the agreement of sale is insuring that advantage is taken of 
all possible tax benefits. Specifically, responsibility for 
sales taxes, and pass-through of investment tax credits (if 
appropriate) should be delineated. Contracts of sale should 
also spell out very clearly the responsibilities of the parties, 
and any liabilities which may attach. For example, the time 
at which title transfers should be specified. Responsibilities 
for m~Jntenance, delivery costs, and documentation should 
be enumerated. Warranties should be clearly specified, as 
should effects of liens, and provisions for failure to deliver. 
It is often desirable to include guarantees of performance 
and certifications of originality. Of course, detailed hard
ware specifications and configurations should be attached 
to, and made part of, the formal agreement. 

As the owner of the equipment, the investor must enter 
into certain peripheral agreements himself, and must insure 
that other parties also fulfill their responsibilities in such 
matters. This is particularly true in the case of insurance 
and maintenance agreements. 

Of course, the investor himself will be responsible for 
any financing contracts which he may enter into. These 
agreements will probably provide a security interest in the 
equipment on the part of the financing organization, and 
therefore may have to be referenced in other contracts. 

The next. agreement which should be considered is the 
lease to the developer. It should be pointed out that it is 
quite possible for a developer with adequate capital to form 
his own organization to purchase the computer, and then to 
lease that computer to a separate business entity of which 
he is a part, which would handle marketing and mainte
nance. A common arrangement in this regard is for a group 
of developers to form a partnership, which purchases 
equipment for lease to a corporation, the stock of which is 
held entirely by the same individuals who comprise the 
partnership. 

Other contract provisions should define responsibility for 
,the .ins.tallatiQJl.o.f tlle,~y§t~m,. ,9-JJ.d J9[ tl}el!l;:;tin..t~n?I?:c.:~ ()f 
the software and the hardware. Provision should be made 
for upgrading hardware and software components, for in
surance coverage, and for payment of other costs such as 
shipment. The lease contract, like those relating to the 
original sale, should address any applicable warranties, 
including guarantees of performance, guarantees of origi
nality, and provisions for the lessee to be an attorney-in
fact of the lessor in relationship to the vendor, in order to 
obtain advantage of any vendor warranties. 

It is also desirable for the lessor to insure that he receives 
treatment at least equal to that accorded any other cus
tomer of the developer. It is quite possible that the develop
ing organization may also develop or market other software 
packages, and deal with other investors. It is, therefore, 
important for each investor to insure that a more profitable 
arrangement does not displace him in leases to end users. 

It is also essential to consider what happens upon the 
termination of the agreement. There are three types of 



774 National Computer Conference, 1977 

termination which must be dealt with. The first of these is a 
temporary termination. This occurs in the case where an 
end user (for any reason) terminates his agreement. The 
responsibilities of the developer as lessee and the investor 
as lessor must be clearly specified, particularly with regard 
to who will bear the burden of carrying the cost of the 
equipment until it can be replaced in another end user 
organization. Second, provisions must be made for the 
orderly, planned termination of the contract at the end of its 
specified term. This will be influenced considerably by tax 
considerations. For example, the lessee may wish to have 
the option to purchase the equipment at the end of the 
lease. 

Finally, attention must be directed to the eventuality of 
an unexpected business termination by any of the parties. 
This is particularly important in the case of the developer, 
since the termination of the developer as a business entity 
could severely affect the investor's ability to continue 
supporting installed end users. This is especially true in the 
case where the investor is not knowledgeable in the com
puter field, or where the investor does not have the time to 
market and maintain the equipment. At the very least, 
provision should be made for escrow of the source code 
and the documentation of the application programs. 

In the case where mUltiple business entities are involved 
(that is, where the developing organization is a subsidiary 
of a larger organization), it may be desirable to include 
provisions for cross guarantees. 

In addition, there are a number of other standard con
tractual provisions which should be considered. Among 
these are limitations on assignments, methods of payment, 
and availability of financials of all the parties. These 
provisions can be fully explained and evaluated in each 
situation by legal counsel. 

While the investor may .not have a direct relationship 
with the third party or end user, he nonetheless should be 
aware of the contractual arrangements between the lessee 
and the end user, especially with regard to costs and 

liabilities in the event of termination. This agreement 
should clearly specify the rights, relationships, and respon
sibilities of the parties in such a way that the investor is 
reasonably protected. 

The final area for consideration is that of negotiations. 
This is the phase in which all of the factors are put together 
into a workable arrangement. Prior to entering into negotia
tions, it is particularly important for each party to specify 
formally its own requirements and objectives. This is the 
part of the process in which the use of specialists such as 
CPA's or attorneys is particularly important. It should be 
reiterated that the entire package should be formalized 
before commitments are made with respect to any portion 
of it. 

Just as in good system design, it is important that 
negotiations be both comprehensive and formal. Each fac
tor should be carefully considered, and a specific agreement 
reached as to the terms relating to that factor. These should 
then be documented fully. 

At first glance, such a project may seem somewhat 
complex. It is in fact a unique opportunity which is quite 
feasible if approached with care and understanding. The 
members of the data processing community are presented 
with an opportunity both for the development of new 
systems and markets, and for personal investments in a 
familiar business environment. By being watchful for devel
opment opportunities; by being aware of one's own re
sources, situation, and objectives; and by following the 
basic procedures outlined herein relative to financing, taxa
tion, contracting and negotiation, small investors, system 
developers, and end users can obtain significant financial 
and business advantages. 

The utilization of this approach can considerably increase 
the availability of computer systems to a wide variety of 
business organizations. It offers significant opportunities 
for entrepreneurs, developers, and investors. Finally, it 
provides a unique means whereby computer professionals 
can invest in their own profession. 



Nondedicated interprocessor communications discipline 

by DAVID J. BASTYR 
Recognition Equipment Incorporated 
Irving, Texas 

ABSTRACT 

When designing an interprocessor communications disci
pline, the problem of controlling data transaction on the 
interprocessor communications links has been traditionally 
solved by designating one processor as the central control
ler (the Master). All other processors are designated Slave 
processors which cannot utilize the. interprocessor links 
unless requested by the master processor. 

An alternative approach is to allow the interprocessor link 
to determine the Master/Slave relationship based on which 
processor has requested and received control of the link. 
An interprocessor link is in the neutral state (neither 
processor is Master or Salve) until a request for control is 
received from one of the processors. This processor is 
notified via hardware interrupt that it is the Master proces
sor. Conversely, the other processor is notified that it is the 
Slave processor and is also informed of the nature of the 
pending transaction. When the interprocessor transaction 
has been completed, the Master processor releases control 
of the interprocessor link. The Slave processor is then 
notified that the interprocessor link is neutral again. Either 
processor can now request control of the interprocessor 
link. 

INTRODUCTION 

This paper describes an interprocessor communications 
discipline in which all processors in the interprocessor 
network have an equal opportunity to gain control of the 
interprocessor communications links. The interprocessor 
links in this system are Direct Memory Access (DMA) 
channels which are capable of transmitting buffered or 
unbuffered data. Traditionally, the problem of controlling 
data transmissions on an interprocessor channel has been 
solved by making one of the processors responsible for 
initiating all interprocessor transactions. This processor is 
referred to as the Master processor. All other processors in 
the interprocessor network are Slave processors that can
not utilize the interprocessor communications links unless 
requested to do so by the Master processor. 

The nondedicated interprocessor communications disci
pline permits the master/slave relationships for each inter-

775 

processor channel to be determined at the time a specific 
interprocessor transaction is being initiated. 

This technique requires a hardware unit in the interpro
cessor link which responds to requests for control of the 
interprocessor communications link and from which the 
current status of the link can be determined. A set of 
software modules comprising the Interprocessor Supervisor 
provides the interface between the interprocessor unit and 
the application programs. 

INTERPROCESSOR UNIT (IPU) 

The Interprocessor Unit (IPU) resides between the pro
cessors DMA channels as illustrated in Figure 1. Each 
interprocessor link requires an IPU. The IPU responds to 
the commands listed in Table I by activating channel 
interrupts and setting the appropriate IPU status conditions 
listed in Table II. The IPU command format is illustrated in 
Figure 2. Two state controllers determine the current status 
of the IPU. The Master/Slave Controller (Figure 3) deter
mines which processor has control of the interprocessor 
link. The Transfer Controiler (Figure 4) sets the operational 
sequence required for an interprocessor data transfer. 

INTERPROCESSOR CHANNEL CONTROL 

A processor must gain control of the interprocessor 
channel before it can initiate an interprocessor transaction. 
If the channel is free, the IPU status will indicate that 
"Neither Processor has Control." The IPU Master-Slave 
Controller (Figure 3) is in state X. If the request for control 
has been successful, the IPU status will indicate that "This 
Processor is Master." Conversely, the IPU status on the 
other side of the interprocessor channel will indicate that 
"This Processor is Slave." The IPU Master-Slave Control
ler returns to state X when the Master processor executes 
the IPU command to Release Control. 

PROCESSOR 
DMA 

IPU 
DMA 

PROCESSOR 

Figure l-Interprocessor unit (IPU) 



776 National Computer Conference, 1977 

TABLE I-Interprocessor Unit Commands 

Processor Requests Control 
Processor Releases Control 
Initiate Single Word Transfer 
Initiate Block Output Transfer 
Initiate Block Input Transfer 
Send End-of-Transmission 

INTERPROCESSOR TRANSACTIONS 

This interprocessor communications discipline consists of 
three different types of transactions: 

• Single Word Transfer 
• Block Input Transfer 
• Block Output Transfer 

The IPU must be in state A when an interprocessor 
transaction is initiated and must be returned to state A 
when the transaction is completed (see Figure 4). 

SINGLE WORD TRANSFER 

The Single Word Transfer can be used to transmit a 
coded message which can be entirely contained in a single 
word. In Figure 4 the transaction in the IPU transfer 
controller is A-B-C-A. 

After obtaining control of the interprocessor channel, the 
processor executes an IPU command to Initiate Single 
Word Transfer. When the IPU acknowledges the command, 
the IPU then activates an interrupt at the Slave processor. 
While processing the interrupt, the Slave processor must 
execute an instruction to input the data word and then 
execute the IPU command. This command then sends an 
End-of-Transmission status to the Master processor thus 
completing the Single Word Transfer. The IPU activates an 
interrupt at the Master processor and becomes ready for 
the next transaction. At this time the Master processor may 
initiate another transaction or release conlrol of the inter
processor channel. 

BLOCK INPUT TRANSFER 

In Figure 4, the transaction in the IPU transfer controller 
is A-B-C-D-A. The Block Input Transfer can be used to 

TABLE II-Interprocessor Unit Status 

Vertical Parity Error 
This Processor is Master 
This Processor is Slave 
Neither Processor has Control 
End of Transmission 
Block Transfer 
Block Transfer from This Processor 

IPU COMMAND CODE TRANSACTION CODE 

Figure 2-IPU command format 

transfer a data block from the Slave processor to the 
Master processor. The Master processor executes the IPU 
command to Initiate Block Input Transfer. The IPU re
sponds to the command by activating a Slave interrupt. The 
Slave processor responds to the block input request by 
preparing the data for transmission and then executing an 
instruction to initiate a block output transfer. When the 
block transfer has terminated, the Slave processor executes 
the IPU command to Send End-of-Transmission to the 
Master processor, which completes this transaction. Again, 
the Master processor has the option to initiate another 
interprocessor transaction or to release control of the 
interprocessor channel. 

BLOCK OUTPUT TRANSFER 

In Figure 4, the transaction in the IPU Transfer Control
ler is A-B-C-E-C-A. The Block Output Transfer can be 
used to transfer a data block from the Master processor to 
the Slave processor. The Master processor executes the 
IPU command to Initiate Block Output Transfer. The IPU 
responds to the command by activating the Slave interrupt. 
The Slave processor responds to the block output request 
by readying an input buffer and then executing an instruc
tion to initiate a block input transfer. When the block 
transfer has terminated, the Master processor executes-1he 
IPU command to Send End-of-Transmission to the Slave 
processor. The IPU activates the Slave interrupt which the 
Slave processor acknowledges with the IPU command to 
Send End-of-Transmission to the Master processor com
pleting this transaction. 

INTERPROCESSOR SUPERVISOR 

The Interprocessor Supervisor provides the software 
services necessary to maintain an orderly flow of interpro
cessor transactions. The Interprocessor Supervisor also has 
the capability to manage several interprocessor links ~imul-

PROCESSOR 
A RELEASES 
CONTROL 

PROCESSOR A 
HAS CONTROL 

PROCESSOR 
B RELEASES 
CONTROL 

Figure 3-Masterlslave controller 

PROCESSOR B 
HAS CONTROL 



Nondedicated Interprocessor Communications Discipiine 777 

SLAVE INDICATES 
END OF TRANSMISSION 

MASTER 
INDICAHS END 
OF TRANSMISSION 

Figure 4--Data transfer controller 

SLAVE INDICATES 
END OF 
TRANSMISSION 

taneously and to provide for both foreground and back
ground interprocessor communications. Interprocessor 
transactions may be initiated by foreground events from 
their interrupt processors or from background tasks. A 

foreground to foreground transaction is accomplished 
through specific application-oriented extensions of the IPU 
inierrupt processing. 

The Interprocessor Supervisor provides general input
output services for queuing caller requests, executing IPU 
commands, processing IPU interrupts, and processing 
transactions errors. 

CONCLUSIONS 

The nondedicated interprocessor communications discipline 
was developed for a mUltiprocessor application involving 
the distributed processing of high-speed asynchronous real 
time events. A single event might involve the execution of 
routines in several processors and therefore necessitate 
several interprocessor transactions. Whereas this method of 
interprocessor communications can be used in multiproces
sor networks executing batch-type applications, the more 
conventional dedicated Master-Slave interprocessor com
munications is ordinarily sufficient. 





An approach to address identification 
from degraded address data 

by VIRESH SETH 
Recognition Equipment Incorporated 
Irving, Texas 

ABSTRACT 

Today's Optical Character Recognition (OCR) technology 
does not read characters with 100 percent accuracy. Thus, 
the data string read by OCR may have one or more of the 
following deficiencies. 

• Unrecognizable characters 
• Incorrectly read characters 
• Added characters 
• Missing characters 
• Subclass characters 

This degradation then poses special problems in perform
ing contextual analysis on address data strings comprising 
the identification of relevant address elements and the 
comparison of these address elements with entries in an 
address directory. Having some knowledge of the nature of 
the data, context analysis first attempts to correct one or 
more of the above mentioned deficiencies. Next a search 
for known keywords such as street designators (Avenue, 
etc.) is performed on the data. Finding keywords helps 
identification of the position of the other address elements 
and the determination of the type of address element. A 
search of the relevant files in the address directory then 
'; ielJ~ a JeIinlie aJJre~~"'ideii[ificaTlorl:' Ff()\\:t:~ei< due tv trit; 
degraded nature of the data, keywords either escape detec
tion or are erroneously found which creates confusion in 
contextual analysis. 

The comparison of the address data with entries in the 
directory is performed in the hardware primarily because of 
real time considerations. The algorithm used is based on a 
"weighting" technique which compensates for the deficien
cies in the data. Generally, the algorithm is successful in 
reducing the comparison of ten or less potential candidates 
from the directory. Then, contextual analysis in the soft
ware attempts to isolate the unique candidate yielding the 
correct sort information for this mail piece. 

INTRODUCTION 

Optical Character Recognition (OCR) technology creates a 
set of unique problems that must be dealt with. One of 

779 

these problems evoives from the fact that the characters 
established by today's character determination algorithms 
are not totally reliable. The reliability of the data depends 
not only upon the sophistication of the character reading 
algorithms but also upon the quality of the printed charac
ters. This problem is further aggravated if the character 
reader is attempting to process several or all of the various 
type fonts that are used by today's typewriters, line printers, 
etc. However, the problem of OCR processing with unrelia
ble character data varies in severity with each application. 

In a mail sorting application, the OCR challenge is 
probably the greatest. The envelopes on which the ad
dresses are printed have a great variety of print quality 
characteristics, paper color, and font type. Therefore, the 
address recognition algorithms which process the address 
and determine a destination for the respective mail piece 
must be cognizant of the fact that character data may range 
from totally correct to grossly inaccurate. 

SYSTEM OVERVIEW 

An overview of the OCR system used to sort French mail 
pieces is illustrated in Figure 1. Mail pieces are fed into the 

.1l1~~h!!n,!~?1 tr~~~1~2!!, ~y." ,!~~ ,Mail ~F~~r.~! ,r~t~~!:I.J?.}5l 
twelve letters a second. As the envelopes pass the OptICS 
Modules an image of the address is digitized and temporar
ily stored in the Mass Storage device. Each line of the 
address data is then presented to the Character Reader 
which converts the digitized image into characters and 
outputs the resulting address string to the computer. The 
address recognition algorithms in the computer then com
pare the address against an Address Directory stored in the 
Address Recognition Unit (ARU). The resulting destination 
code of the respective mail piece is then sent to the 
Mechanical Transport. The transport then routes the mail 
piece into one of the sort pockets based upon this destina
tion code. The address recognition algorithms are logically 
divided into the string comparator and context analysis. 
The string comparator verifies the address string by com
paring it with the various entries maintained in the address 
directory. Since this process is very time consuming, this 
function is implemented in the Address Recognition hard-



780 National Computer Conference, 1977 

MAIL 
FEEDER r----' 

I OPTICS I 
I MODULES I 

MASS 
STORAGE 

Figure I-Optical character recognition mail sorting system 

ware. The context analysis portion of the algorithm isolates 
logical components of the address. As this function is 
format dependent, it is best suited for implementation in the 
software. This division of processing has the further advan
tage that while contextual analysis is being performed on 
one mail piece in the address recognition software, the 
ARU can be performing comparisons on another. This 
parallel action results in faster processing speeds. 

THE PROBLEMS AT HAND 

The degradation in the address character data that is 
input into the computer may be classified into five cate
gories. For example, consider the following address string 
in its correct form. 

75015 PARIS 

In this address string, 75015 is the ZIP code and PARIS is 
the city name. 

(a) The Character Reader may be unable to recognize 
certain characters and the string may be received as: 

75015 PAR?? 

where the question marks indicate the unrecognized 
characters. This type of degradation results in confu
sion in the city name being recognized as either 
PARIS or PARLY 

(b) The second possible degradation in the address string 
is incorrectly read characters. The same string may 
appear as: 

75015 PAPLS 

where the characters RI have been incorrectly read 
as PL 

(c) The third possible degradation is reading a character 

when no such character exists in the address. This 
string may be received as 

75015 PARIIS 
(d) The fourth category is missing characters which may 

make the same string read as: 

75015 PARS 
(e) The fifth type of degradation is a subclass. This 

situation occurs when the Character Reader is unable 
to uniquely identify the character but isolates it down 
to two to five characters. In the following address 
string: 

P( ALI.)"RT~ 
~ \.A. ... • .1 ........... ...., 

D00 is the subclass determined by the Character 
Reader for the character 0 and A4 for the character 
A. 

It is not difficult to imagine what the address string will 
look like if all five possible types of degradation appear in 
the same address string. Therefore, the problem then be
comes, to determine the correct city name from a character 
string that may be either totally correct or may have any 
combination of the five previously mentioned degradations. 

COMPARISON ALGORITHMS 

The comparison algorithms are implemented in the ARU 
comparator unit. The address directory containing the 
names of all the cities, streets, building names, and other 
relevant sort information is maintained in the AR U mass 
storage unit. The comparator reads entries from the direc
tory (one at a time) and compares them with the address 
string received from the address recognition software. This 
comparison is performed with every entry in the specific 
directory record or file. At the end of each comparison 
operation the best directory matches are returned to the 
address recognition software. 

The first step in determining the correct directory match 
is to minimize the number of comparisons to be performed. 
To accomplish this task, the directory is arranged into 
several files, each file being further subdivided into records. 
A sample organization of the directory follows: 

a. ZIP code file 
b. City file 
c. Street file 
d. Building name file 
e. Keyword file 

The ZIP code and the city files are further subdivided into 
records based upon the first two digits of the ZIP code, 
while division in the street file is based upon the geographi
cal zone within the city. The decision on the file to be 
searched (or more specifically a record within a file) is 



made by the context analysis algorithms in the address 
recognition software. 

The comparison of an entry from the directory (from 
hereon called the memory string) and the string read by the 
Character Reader (from hereon called the read string) is 
performed by means of the weighting algorithms described 
in the following procedure. 

1. The memory string must not be longer than the read 
string. No comparison is performed with the current 
memory string if this criterion is not satisfied. 

2. The comparison is performed on a character-by-char
acter basis, starting with the rightmost character and 
proceeding to the left. 

3. A score of six is given for each character that 
matches. 

4. No score is added or subtracted when the character in 
the read string is "unknown." 

5. A score of three is given for each subclass character 
matched. 

6. On a mismatched character a left angle comparison is 
performed, i.e., the mismatched character of the 
memory string and the next character of the read 
string are compared. If they are found to compare, 
then the remaining parts of the two strings are posi
tionally realigned so the two characters matched by an 
angle comparison are in the same relative position. 

7. If a left angle comparison fails, then a right angle 
comparison is performed in a similar manner. 

8. Two points are added for each angle comparison 
successfully performed and no more than two angle 
comparisons are allowed for each memory string. 

9. Next the Normalized Match Score is calculated by the 
following formula: 

where: 

NMS= (AMS*I00) +(2*CC) 
(6*CC) 

AMS = Actual Match Score (Score calculated by the 
comparator) 

CC~CTiatacretC-mlfi"! T!\'Umber of charnrteTs in the 
memory string) 

This is the final score_ that is assigned to the current 
memory string. 

The comparator algorithm will be best understood by 
means of an example. Consider the following: 

D ALL A S T E X A S - Memory String 

P ? L L A X S T E X (S5) - Read String 

The parens indicate the Sand 5 form a subclass, while the 
question mark indicates an unknown character. Notice that 
all the five types of degradation are present in this string. 

• The D in Dallas has been incorrectly read as P 

Address Identification from Degraded Address Data 78 i 

• The A in Dallas has not been recognized by the 
Character Reader 

• An X has been erroneously inserted 
• The A in Texas has not been read 
• A subclass 'S5' has been read for S 

The comparator first matches the 'S5' subclass with S 
and gives a weight of three. Next, the X from the read 
string is matched with the A in the memory string. Since 
these two characters do not match, a left angle match is 
performed which yields a match. Therefore, a weight of two 
is added for the angle comparison. The remainder of the 
string will now be aligned as follows: 

DALLAS TEX. 

P? LLAXS TEX. 

. Memory String 

. Read String 

A weight of six will now be added for each of the 
matched characters E, T, blank, and S. The X and A will 
not compare and a left angle comparison will be performed, 
i.e., the X will be compared with the L. Failing this 
comparison, a right angle comparison will be performed, 
i.e., an X with an S. Failing this, a weight of six will be 
subtracted from the total weight and the next character 
comparison performed. Since the A will not match the L, a 
left angle comparison will be performed and since this will 
not match a right angle comparison will be performed. As 
this will be successful a weight of two will be added for the 
angle comparison. Now the remainder of the string will be 
aligned as follows: 

DALLA. 

P ? L LA. 

. Memory String 

. Read String 

A weight of six will be added for both L's, no weight will 
be given for the unknown character while the mismatched 
characters D and P will cause a weight of six to be 
subtracted from the total. 

This comparison technique will yield an accumulated 
watJ:h.scure 0.(3.1.. The, le.n~lhofth~ ro.~ijlQry §!Ii.ngj~ p; 
therefore, the Normalized Match Score will be: 

NMS= (31*100) +(2*12)=67 
6*12 

Note that the left angle comparison technique adjusts for 
the characters that were not read by the Character Reader 
while the right angle comparison takes care of characters 
erroneously present in the read string. An unrecognized 
character does not add or subtract from the accumulated 
weight while an incorrectly read character contributes a 
negative weight. In searching a file, it is not necessary that 
the memory string which yields the highest Normalized 
Match Score is the correct address since the degradation 
may sufficiently modify the read string so that it matches 
better with another memory string. Unless a match yields a 
perfect score, or a match yields a score much higher than 
the second highest score, several memory strings are se-



782 National Computer Conference, 1977 

lected as the possible matches. Then it is the function of 
context analysis to isolate the correct address from these 
several possible addresses. 

CONTEXT ANALYSIS 

Contextual analysis is address format dependent. The 
procedure for addressing mail in the United States is 
different from the French or German addressing proce
dures, i.e. the physical location of the ZIP code, the city or 
street name and the specific keywords which aid in address 
identification are different for each country. For example a 
typical United States address would be: 

DALLA.S TEXAS 75006 

while a typical French address would be: 

75006 PARIS 

The major differences are that in a French address there is 
no state specified and the ZIP code appears on the left. 
However, in spite of all the different formats the basic 
technique of contextual analysis is the same. This paper 
describes the contextual analysis used to process French 
Mail. 

GENERAL CONTEXTUAL ANALYSIS PROCEDURE 

The general contextual analysis procedure for an address 
without any degradation in the address will be described 
first. Then the specific problem cases will be addressed and 
techniques used to cope with them. Consider the following 
address: 

78 A VENUE WASHINGTON 

75006 PARIS 

The street number is 78, WASHINGTON is the street 
name, 75006 is the ZIP code, PARIS is the city name and 
A VENUE is the street keyword. 

As was mentioned earlier, one of the files in the directory 
is a keyword file. This file contains common words found 
on French addresses that provide some information about 
the address elements. When every word of the above 
address is matched against the keyword file, AVENUE will 
be identified as the street keyword. 

This will then help identify WASHINGTON as the street 
name and 78 as the street number. On the bottom line no 
keywords will be found except the five character numeric 
word which will be identified as the ZIP code. Since the 
city name is the only other address element that appears on 
the bottom line, the remainder of the string other than the 
ZIP code will be identified as the city name. 

Having identified all the address elements the next step is 
to compare them with the memory strings in their respec
tive files in the directory and obtain a destination code for 
the mail piece.Sincethisaddressisnotdegraded.asingle 

unique match will be found for the city and also for the 
street. On the city file search the ZIP code on the read 
string can be verified by comparing it against the ZIP codes 
for PARIS that are obtained from the directory. Similar 
verification can be performed for the street number. 

CONTEXTUAL ANALYSIS OF DEGRADED ADDRESS 
DATA 

The context analysis procedure is fairly straightforward 
as long as the data is not degraded. Let us first examine the 
bottom line and determine the various degradations that 
create the problem situations. The degradation in the city 
name is handled by the comparator algorithm described 
earlier. However, context analysis must process the degra
dations in the ZIP code which may be in one of the 
following forms: 

a. Unrecognized characters · 7500? 
b. Added characters . . . · 750016 
c. Dropped characters . . · 7506 
d. Incorrectly read characters · 75005 

Now the task of verifying the ZIP code for PARIS from the 
read string with those obtained from the directory is not 
straightforward. In the first case the technique employed is 
to treat the unrecognized character as an universal charac
ter, i.e., it is allowed to match any character. In the second 
case the technique is to remove one character at a time and 
to use the resulting five characters in the comparison. Thus, 
for the incorrect ZIP code 750016 the five ZIP codes used in 
the verification will be 75001, 75006, 75016, 70016, and 
50016. It is likely that more than one of these five possible 
ZIP codes will match the ZIP codes in the directory for 
PARIS in which case an "unresolvable confusion" results. 
In such cases the mail piece cannot be sorted. The same 
technique can be used for the case of a dropped character. 
An unrecognizable character is added in each of the five 
possible positions and the resulting five ZIP codes are used 
in the verification. 

The incorrect ZIP code on the read string occurs not only 
due to a reading error, but also due to an incorrect ZIP 
code being printed on the envelope. The problem is then to 
decide whether there are characters in the ZIP code that are 
in error or whether the wrong memory string was matched 
by the string comparator in the ARU. Thus, in comparing 
the ZIP code it becomes necessary to determine the number 
of characters that match and the number that do not match. 
U sing the Normalized Match Score that was obtained from 
the city match a heurestic technique must be used to decide 
whether this is the correct match. The method is to 
establish minimum Normalized Match Score thresholds 
which are required for each combination of the number of 
mismatched and matched characters in order to accept the 
match. The higher the number of mismatched characters 
and the lower the matched character count, the higher will 
be the Normalized Match Score that must be required to 
accept the match. This graduated scale of Normalized 



Match Score thresholds must be determined by trial and 
error in the particular situation. 

An important note here is, when these thresholds are 
kept high, the percent of the incorrectly sorted mail pieces 
will be low but the percent of the correctly sorted mail 
pieces will also be low. On the other hand when the 
thresholds are kept low, then the sort rate will rise but so 
will the rate of missorted mail. Therefore, the tuning of 
these thresholds will depend on what is more important to 
the system: to keep the sort rate high or to keep the missort 
rate low. 

The entry in the city file that is matched by the ARU 
comparator may have associated with it several ZIP codes. 
In this case the ZIP code comparison procedures described 
must be performed individually with each ZIP code. If more 
than one ZIP code satisfies the criteria, then an "unresolv
able confusion" occurs, in which case the mail piece cannot 
be sorted. Further, several possible matches may be re
turned from the city file search, each of which may have 
one or more ZIP codes associated with it. In this case each 
ZIP code of each match must be similarly processed. 

Considering the second address line, it was mentioned 
that the required address elements (street, building name, 
etc.) are identified by searching for keywords. For exam
ple: AVE (abbreviation for Avenue) in the following ad
dress line identifies WASHINGTON as the street name 

78 A VE WASHINGTON 

Therefore, it becomes important to recognize the keyword 
and herein lies the problem. The first of this set of problems 
occur when the keyword AVE is sufficiently degraded as 
not to yield a match when searched against the keyword 
file. The result of this is that no address element is 
identified on the address line. This forces the searching of 
all the files in the directory for an entry similar to the 
second address line. Depending upon the degradation in the 
street name, matches may be found in both the building 
name and the street file or only in the street file. When 
matches are found in both files, the only alternative left to 
identify the correct match is to look for a street number on 
the address line. In this case, since the street number 7~ 
will be found, and knowing that no number appears on a 
building name address element, the match from the street 
file will be chosen. 

The second problem that must be dealt with is the 
multiple matches on keywords. Consider the following 
address line: 

78 ?(UV)E WASHINGTON 

The avenue keyword has been degraded so a match of 

Address Identification from Degraded Address Data 783 

equal score will be obtained when the ?(UV)E is matched 
against the two street keywords in the directory AVE and 
RUE. Often the two keywords matched will be in conflict; 
therefore, identifying the same string as two different 
address elements. The problem then is the same as if no 
keyword were found. However, when both keyword 
matches identify the string to be the same type of address 
element, then the problem is solved unless two street 
entries exist in the directory of the same name, one with a 
RUE and the other with AVE. Again to resolve this 
confusion the street number must be used. If one of the 
streets has 78 as a legitimate street number, while the other 
does not, then the problem is solved. However, if both 
have 78 as legitimate street numbers, then once again an 
, 'unresol vab Ie confusion" occurs. 

The third type of problem occurs when the space between 
the words is either not read or is read as an unknown 
character. Consider the degraded string: 

78? A YEW ASHINGTON 

in which the space between the 78 and the AVE has been 
read as an unrecongizable character and the space between 
the AVE and WASHINGTON not read at all. A keyword 
search on this string will not yield AVE nor will the 78 be 
recognized as the street number. The solution to this type 
of problem is to search all the files with the address line. 
For each match that is found the number of characters 
matched are stripped and the remainder of the string is sent 
for a keyword match. Thus, in the example W ASHING
TON will match when searched with the street file. Now 
the string 78? A VE can be sent for a keyword search. On 
identifying AVE as a street keyword, 78 can now be 
established as a street number. 

CONCLUSION 

The techniques employed for address recognition when the 
address data is degraded are mostly heuristic in nature. It is 
not necessary for every address presented to the address 
recognition algorithms to be uniquely and correctly identi
fied. The success rate depends upon both the simplicity of 
the possible address formats and inversely upon the amount 
of degradation in the data. However, it is possible to tune 
the algorithms to yield a high percentage of sorted mail 
pieces, but when this is done the percentage of incorrectly 
sorted mail pieces will also rise. Conversely, reducing the 
number of incorrectly sorted mail pieces will also reduce 
the sort rate. Thus, an acceptable trade off must be 
achieved between the two. 





Signature and facial image compression 
by boundary encoding 

by DAVID P. HIMMEL 
Recognition Equipment Incorporated 
Irving, Texas 

ABSTRACT 

Storage, retrieval, and transmission of signature and facial 
images is important to the problem of personal identifica
tion for monetary transactions or security. Compression of 
such images is necessary for efficient and economical 
storage and retrieval, and for fast transmission of the 
information. This paper explains a method, based on 
boundary encoding, of compressing signature or facial 
images by extracting only necessary edge information. The 
techniques were developed and prototype equipment was 
built in the research laboratories of Recognition Equipment 
Inc. Specific examples of signatures and facial images used 
in experiments are described. 

Signatures are scanned from cards by a solid state self
scanned array photosensor and the images are processed by 
a two-stage compression algorithm. The digitized signature 
image is first thinned to a one-cell stroke width "skeleton", 
then the skeleton is transformed into a vector chain code 
for storage. The stored reference signature is then available 
for later retrieval, transmission, and display for visual 
comparison with a "suspect" signature. The average 
compression ratio for signatures is observed to be about 
25: 1. Retrieval and display response time is shown to be on 
the order of one second. 
".~ va'fIatlono{ihls technique was used to accompiish 
facial image compression. Digitized gray-shade images are 
first divided into as many binary images as there are bits in 
the digital gray level. That is, a four-bit gray level image is 
separated into four binary images, representing the least 
significant bits, the next least significant, and the next, up 
to the most significant bits. Then the edge details in each of 
these images is extracted with the same boundary encoding 
technique used for signatures. Compression ratios ranging 
from 4: 1 to 7: 1 have been observed. 

SIGNATURE IMAGE COMPRESSION 

Overview of a signature storage and retrieval system 

One of the most important and effective ways of validat
ing personal identity for monetary transactions or secure 

785 

entry is through verification of signatures. Signature verifi
cation is the act of comparing a known, valid signature 
example with one written by the person conducting a 
transaction or desiring entry. When a large number of 
potential customers are involved, maintaining a file of 
example signatures and retrieving the signatures is a very 
real problem. This is especially true in the banking and 
retail credit industries where hundreds of thousands of 
people may hold credit cards or possess accounts at one 
bank. This report presents a technique which makes feasi
ble centralized storage of large banks of signatures, from 
which signatures can be transmitted to remote sites quickly 
and economically. For example, it is feasible to envision a 
system whereby a signature could be requested from across 
town, retrieved from a disk file, transmitted via telephone 
lines, and displayed on a CRT within a period of one 
second. 

Figure 1 illustrates such a Signature Storage and Re
trieval System. This system is comprised of three main 
subsystems: the Composer Subsystem, the Storage Subsys
tem, and the Display Subsystem. The Composer Subsystem 
consists of an optical scanner and a digital compression 
unit; the purpose of this subsystem is to lift an example 
signature from paper and compress it into compact digital 
form for Storage. Signatures would appear on paper within 
Cl vite-inctl-cob)~ rOlJt~lnc·h cteClr (~trcti \vhtch, ff sc-nnne'd ct 
approximately .008" resolution, can be represented by a 
digital matrix of 128x512 cells. The compression unit 
processes the 65,000 bits containing the original signature 
and encodes all essential information into an average of 
about 2500 bits. The 2500 bits are then stored on a disk 
mass-storage device for later retrieval. The Storage Subsys
tem consists of the disk and a retrieval computer that 
accepts requests for signatures, determines where the 
proper signature is stored, addresses the disk to retrieve the 
data, and transmits the compressed signature to the correct 
remote display terminal. The Display Subsystem is a num
ber of identical remote terminals each of which has a CRT, 
keyboard, and signature regenerator unit. The Display 
Subsystems can be connected with the retrieval computer 
through dial-up telephone lines or possibly a faster hard
wired communication channel. A signature request can be 
made simply by entering an account or credit card number 



786 National Computer Conference, 1977 

OPTICAL 
SCANNER 

1500 BITS 

COMPOSER 
SUBSYSTEM ----------

RETRIEVAL 
COMPUTER 

STORAGE 
SUBSYSTEM 

SIGNATURE 
REQUEST 

DISPLAY 
SUBSYSTEM 

Figure I-Signature storage and retrieval system 

on the numeric-only keyboard. Upon receiving the com
pressed signature data, the regenerator unit reassembles the 
signature to its original form in a 65,000 bit refresh memory 
which drives the CRT display. 

Signature compression 

Signature compression is accomplished in two stages; 
thinning, and vector encoding. The signature image is 
thinned by tracing the boundary and peeling off layers of 
black cells until the lines are one cell thick. The encoding 
phase of compression consists of boundary tracing the 
image one more time and encoding the sequence of bound
ary points into a string of vectors which represent the 
signature, and which can be compactly stored in a digital 
form. 

Figure 2 is an image of a portion of a signature after 
optical scanning and digitizing; the whole image is stored in 
a 128x512 bit binary matrix in which the thinning and 
encoding operations are accomplished. A raster scan func-

Figure 2 

tion is used to find an initial boundary point on the 
signature, from which boundary tracing will commence. 
The image boundary is traced by stepping from one black! 
white boundary point to the next adjacent one. This is 
illustrated in Figure 2 by the sequence of vectors extending 
from starting point one at the left of the image. A simple set 
of algorithmic rules govern the progress of boundary trac
ing, and certain tests determine when to stop and also how 
to find separated image pieces as well as the inside areas of 
the signature. Image thinning occurs simultaneously with 
boundary tracing; as we progress around the boundary, the 
outer layer of cells is stripped away until all strokes are 
only one cell thick. Done correctly, this procedure pro
duces the center "skeleton" of the signature image. During 
the thinning process, it is important to remove only the 
desired cells so that lines aren't shortened, breaks are not 
introduced, and undue distortions do not occur. This is 
achieved by applying another simple set of algorithmic rules 
to each cell encountered in the boundary sequence which 
govern whether or not the cell is to be removed. The 
thinning process is illustrated in Figure 2 by the" *" cells, 
which denotes those cells that are removed from the image 
by the thinning rules. Solid black cells denote the single-cell 
skeleton that results from boundary tracing and thinning. 

The final step in signature compression is that of encod
ing the skeleton image. This is accomplished by boundary 
tracing the image once again to generate a string of vectors 
defining the links between adjacent cells. There are eight 
neighbors to each cell of the skeleton, so a three-bit digit 
gives the location of the next adjacent cell. The entire 
signature skeleton can be encoded in the form of a number 
of X, Y starting point locations, followed by a sequence of 
three-bit vector numbers. 

As explained earlier, the encoded signature information 
can be stored on a digital mass medium for later retrieval. 
Upon retrieval, the signature can be reconstructed by 
"redrawing" the skeleton from the starting point and vector 
information and then performing certain smoothing opera
tions to remove unwanted irregularities or quantization 
effects. 

Examples and results 

Figure 3 shows four examples of signatures that were 
processed; the original signature appears on the left and the 
compressed signature, after reconstruction, appears on the 
right. Obviously, because of the nature of this compression 
technique, the reconstruction is not 100 percent; however, 
as can be seen, the quality of the reconstructed image is 
quite good. The table in Figure 4 is a list of 10 signatures 
that were compressed, showing the compression ratios and 
the number of bits required to store each signature. In each 
case, the original image required 65 thousand bits to display 
the signature as a 128x512 bit binary image. 

The amount of compressed storage required is a variable 
quantity depending on the size and complexity of the 
signature. For a data set of 50 signatures, the minimum 
storage was found to be 1571 bits from" Larry Canny," and 



. 
.- ! ," ~ 

---=-~ 

. 
_ "-~~i;~_i,,~ 

. 
~ 

Figure 3-0riginal and compressed signatures 

the maximum was 4407 bits for "Virginia A. Bradford." 
The average compression ratio for this data was 25: 1 
corresponding to an average storage requirement of 2666 
bits. 

FACIAL IMAGE COMPRESSION 

The facial compression method 

The technique for compressing facial images is a varia
tion of the scheme described earlier. It consists of the 
following basic steps: (1) decompose the gray-level image 
into four binary images, each consisting of one bit of the 
four-bit gray representation, (2) perform a raster scan of 
each of the four binary images to locate the image bounda
ries, and upon such location, 0) trace the boundary of each 
separafe iinage area In order to' (4) generaLe a vectl>r 
sequence that defines the boundary. These steps are almost 
identical to the methods used for signature compression, 

Figure 4-Signature compression examples 

I Glenda Smith 
2 Don Cave 
3 Vicki McLaughlin 
4 Tom L. Hall 
5 Charles R. Carmichael 
6 Jean Helms 
7 Jean Peak 
8 Dorothy Hall 
9 Clifton S. Hayley 

10 Douglas L. Bromfield 

Storage 
requirement 

(bits) 

3064 
2154 
3105 
2320 
3666 
2513 
2007 
2596 
3241 
2578 

Compression 
ratio 

21: I 
30: I 
21: I 
28: I 
18: I 
26: I 
31: I 
25: I 
20: I 
24: I 

Signaiure and Facial Image Compression 787 

~fJI ... 
Figure 5-Separation of gray-level image into four binary images 

the major difference being that thinning is not done; in
stead, the first step is the decomposition operation. 

The original image, after scanning and digitizing, consists 
of a matrix of four-bit numbers, one for each picture 
element, which defines one of sixteen gray levels for that 
element. The first step in data compression is simply to 
form four binary images from the original gray-level image 
by separating the four bits of each picture element. Figure 5 
illustrates this operation; the binary images are labeled from 
the most significant bit of the gray level (MSB) to the least 
significant bit (LSB). As can be seen in Figure 5, finer 
detail is contained in the lesser significant bits. Boundaries 
that are quite small are ignored; that is, they are just not 
encoded. This is equivalent to deleting very small black and 
white areas from the image which are hardly noticeable, but 
which would contribute significantly to the number of bits 
required to store the image. 

The encoded image consists of x and y coordinates for 
each boundary starting point, and a series of vectors that 
describe the boundary. In addition, one bit must be used to 
designate whether the boundary encloses a "white" or 
"black" area, since either can occur. This data comprises a 
fairly compact storage scheme for the image, and when the 
image is desired, the data can be retrieved and the image 
reconstructed in a 4-bit digital matrix. The image can be 
reconstructed from the above information by first retracing 
the boundary paths and setting the boundary cells for each 
binary image in the appropriate matrix bit plane. Then the 
white and black areas within the boundaries can be filled in 
with one pass to a raster scan. In this way, the correct gray 
level fOl each ph.:luri::delilenl uf tb~ irui:1ge i~ I e.:.vnshucted. 

Results and conclusions 

Figure 6 shows an example of a facial image after 
digitizing and after compression and reconstruction. The 

Figure 6--0riginal and compressed images 



788 National Computer Conference, 1977 

Figure 7-Facial image compression examples 

Compo Compres-
# Bits ratio # Bits sion ratio 

boundary boundary run run 
Image # encode encode length length 

I 15,264 4.30 
2 9,122 7.18 
3 14,836 4.41 24,900 2.62 
4 12,008 5.46 19,1l7 3.43 
5 16,030 4.10 26,570 2.46 
6 15,238 4.30 22,013 2.97 

Total 82,498 92,600 
Avg. 13,750 4.78 23,150 2.84 

image was digitized in 16 shades of gray from a two inch 
photograph; the scanner resolution was .016" which yields 
an image size of 128x 128 pixels. Picture quality at this 
resolution is only fair, but it is adequate to accomplish 
facial recognition. Figure 7 shows the compression ratios 
and the number of compressed bits for six facial images and 
a comparison with run length coding for four of them. The 
average compression ratio for the boundary coding tech
nique is 4.78 compared with 2.84 for the more standard run 
length coding. 

Evaluation of images produced at three different resolu-

tions (.008", .016", .032'') afforded an opportunity to see the 
relation between image resolution and compression ratios. 
The number of bits required to store the three different size 
images after compression with the boundary coding tech
nique was approximately 8000, 15,000, and 40,000 respec
tively for the 64, 128, and 256 cell images. These numbers 
suggest a linear relationship between the number of bits 
required to represent the compressed image and the number 
of cells on a side. This postulate is logical because the 
boundary coding technique codes only the boundary vec
tors, and the boundary circumference (number of vectors) 
increases linearly with the picture size. 

A second observation was that the background scene of 
the photographs contributed to the compressed data so that 
the compression ratio could be further improved by insur
ing that facial photographs are taken against a plain mon
ochrome background. 

Although the boundary coding yields a better compres
sion ratio for facial images than run-length coding, it would 
amount to a more expensive hardware implementation. The 
boundary coding processor requires a large random access 
buffer memory equal in size to the number of cells in the 
image. 

In conclusion, it has been shown that it is feasible to 
compress a 16 gray-level facial image of size 128x 128 
points into approximately 16,000 bits (compression ratio 
greater than 4: 1) with good quality reconstruction. 



An interactive text-editing system in 
support of Russian translation by machine 

by DAVID A. LUTHER 
USAFIRADC 
Rome, New York 

and 

CRISTINE MONTGOMERY and RONALD M. CASE 
Operating Systems, Inc. 
Woodland Hills, California 

ABSTRACT 

An interactive, text-editing system was designed and built 
to support the pre- and post-processing of machine trans
lated scientific and technical Russian literature. 

Sixteen independent CRT/keyboard terminals are sup
ported on five small processors with a distributed data base 
and distributed processing. 

A "free-form" text editor has been provided for the 
creation or modification of textual ftles. Unusually powerful 
functions for technical editors have been implemented such 
as "restore text" and "alternate word list." Software 
character generation is used to display any of a mix of 256 
symbols from four logical alphabets. 

INTRODUCTION 

The USAF Foreign Technology Division (FfD) and Rome 
Air Development Center (RADC) have collaborated for 
~-tT'!!'!1'!"-m-~ d~o;, d~mE"".<~'~8fttm +)f·G0mf}uQH; 

or machine translation systems. They have been specifi
cally applied to the conversion of foreign scientific and 
technical literature into English. The quality of the current 
translation system is under constant improvement and has 
reached a satisfactory level. However, an analysis of the 
current operational environment accented the need for total 
system improvement, with focus on automating the sup
porting functions of input and output, which contribute 
most heavily to total machine translation costs. 

In this paper we describe an interactive, text-editing 
system designed and built to support the keyboarding of 
cyrillic text, and the editing and composition of machine 
translated English. Sixteen display/keyboard terminals have 
access to sophisticated text manipulation functions and can 
display any of a repertoire of 256 symbols. A high level of 
interaction is maintained by a unique system of five small 
distributed processors. 

789 

FUNCTION AL DESCRIPTION 

The machine-translation process divides into three func
tional areas: input or keyboarding of foreign material, 
translation by computer software, and editing and recompo
sition. The results of a technical analysis served to docu
ment the feasibility of a machine-aided editing system 
oriented to the use of CRT display devices used to interact 
directly with the machine-translated output. 1 A later study 
reported on user reaction to an experimental text-editing 
terminal installed within the FfD operational environment. 2 

In conjunction with the ultimate users, requirements were 
identified and specifications developed. 

The resulting edit system was designed to provide the 
means for 16 independent users at different editing stations 
to create, view and edit different documents at CRT/ 
keyboard terminals. Transfer to and from the translation 
system computer, an IBM 360/65, is via magnetic tape. The 
software required to support all editing and text manipula
tion is organized on two levels. At the bottom level, the 
1l}>~iorjty.gf !h~, .. ~4it~Ilg.f~,nC:!~Q~~ .~re ~~Ppqtt.c:9. 9~[2~~ 
identical IMLAC PDS-4 processors; each processor sup-
ports four terminals. Above them is a PDP 11105 which 
supports complex editing functions, file handling and pe
ripherals. 

FUNCTIONAL CAPABILITIES 

The edit system is logically organized such that one of 
the terminals is designated as the system operator. While so 
designated, the user at this terminal can have access to 
system level commands such as assigning individuals to 
terminals, for instance. This function, like all others, is 
completely terminal oriented; that is, all commands and 
edits, all actions and interactions take place through the 
terminal. 

End-user requests and commands at a terminal fall into 



790 National Computer Conference, 1977 

three modes: command string, edit and review modes. 
Command string mode deals with start-up and utility func
tions. Its syntax has a traditional form, i.e., a Command 
Word and a parameter(s). 

The Edit mode is the most interesting and powerful of the 
three. It is provided for the creation and modification of 
textual files. The CRT display is a 1000 character "win
dow" on a scroll of text. The text is displayed on 80 
character lines in "free-form," characteristic of technical 
documents. All changes are made directly and immediately 
on the text displayed in the window using the keyboard for 
cursor positioning (pointing at the text), function selection 
and literal input. 

In Review mode a specified document will be displayed 
at the requesting terminal but no editing will be permitted. 
More than one terminai may be reviewing the same docu
ment, and each terminal may be reviewing a different 
portion of the document. 

EDIT MODE 

As originally envisioned, the edit system was to be used 
primarily to edit and correct text material produced by the 
machine translation process. Its use here by the human 
operator or translator would be necessarily restricted to 
scanning and correcting functions. However, the projected 
use of the system evolved and grew to include human 
translation and cyrillic input; both applications stressing 
text input or creation. The combined functional require
ment grew thereby to cover a gamut of editorial and 
composition functions. 

When in Edit Mode, the user will normally find his 
terminal in an "insert" status. That is, any literal key that 
is struck will put a character on the display at the position 
indicated by the cursor. The cursor is positioned by way of 
cursor control keys on the keyboard. If the cursor is in the 
midst of existing text, the file will be opened up and the 
characters to right of the cursor will be pushed to the right. 
Full word wraparound (preservation of word integrity) will 
occur at the right margin; the word pushed off will be 
inserted at the beginning of the next line, and so on. 

Characters and words can be deleted by pointing at the 
character or any part of the word, respectively, followed by 
pushing the appropriate function key. Another character 
deletion function, called rubout, will remove the character 
to the left of the cursor. This is extremely useful for the 
occasional slip of the finger while creating text. Any 
material deleted by any method is replaced by a special null 
character, displayed as a "bullet." Upon execution of the 
close-up function, the nulls will be removed and the text file 
closed-up from the bottom. This approach is much more 
satisfying than a text file which is changed for every 
occurrence of a delete. 

A special capability to restore a line of text following the 
execution of an editing function is available. The line will 
be restored to what it was just prior to the last edit. This 

capability is intended for recovery from an inadvertent edit 
or for that user who suddenly changes his mind. 

SPECIAL FUNCTIONS 

Two powerful functions have been included that are 
particularly useful for editing machine translations. They 
are the Select and Alternate Word List functions. 

By positioning the cursor under one word of a series of 
embedded alternate words supplied by the machine transla
tion algorithm, and striking the select key, the user can 
select one word to remain and cause all the others to be 
deleted. This capability puts the human translator back into 
the loop to make difficult choices which may be beyond the 
capability of an automatic translation algorithm to PCITOiffi. 

The alternate word list allows each individual to set up a 
special dictionary consisting of word pairs, one of which is 
the string to be replaced and the other is the replacing 
string. During an editing session, a user need only point to 
an occurrence of a string to be replaced, strike the alternate 
word function key and a swap will be made. 

HARDWARE/SOFTW ARE IMPLEMENTATION 

The programs which support all of the highly interactive 
tasks are running on four identical IMLAC PDS-4 proces
sors. On anyone IMLAC the program is shared by four 
keyboard/display units. Each unit has one-fourth of the 
display refresh capacity as well; display refresh in the 
IMLAC is handled by a separate processor. One significant 
reason the IMLAC was selected is the fact that characters 
are generated in software. This made possible the definition 
of 28 or 256 separate symbols. They are divided into four 
groups: roman, cyrillic, Greek and math/technical. A mode 
key on the keyboard switches the way in which a key strike 
is interpreted. Combinations of the four alphabets may be 
mixed on the display. 

Each IMLAC is connected by a DMA interface to the 
PDP II/05. The PDP is called upon to load and unload files, 
for execution of complex functions such as move and copy, 
and for mass memory storage. A scroll at the IMLAC 
beyond its buffer limit will cause a request to be sent to the 
PDP for data. 

This configuration is a true example of division of labor. 
Considering the tasks to be supported, the processors are 
very small and are being used to their maximum. However, 
under no circumstances to date has there been anything less 
than immediate response, that is, no delay apparent to the 
user. 

REFERENCES 

I. Conti, E. and N. Demuth, "Study of Machine-Aided Editing," RADC
TR-67-390, February 1968. 

2. Evans, E. A., "Machine-Aided Post Editing," RADC-TR-72-227, Sep
tember 1972. 



Computer generation of conference presentations 

by CHARLES A. BELOV 
Aetna Life and Casualty 
Hartford, Connecticut 

ABSTRACT 

There are various subjective factors which interlere with 
the usefulness of the typical conference presentation to the 
individual listener . This satire does not qttempt to name and 
categorize these factors; this would in itself interlere with 
understanding. Instead, a hypothetical processing system 
for creating conference presentations is described, suppos
edly by the system itself. The system has a number of 
interlering factors as well as positive factors built into it. 
Areas of study are the use of acronyms; methods of 
developing the introduction, main topic, and conclusion; 
graphs and tables; and small details which tend to distract. 
Contributing to the satirical purpose, the system is an 
example of computer overkill-an entire system is devel
oped to create one conference presentation. A gentle plea is 
made to future writers to view the listener as the most 
important consideration when editing their product. 

INTRODUCTION 

Computers and speed have been allies since the tum of the 
century. Ever since Herman Hollerith devised a tabulation 
system for the United States census of 1890, it has been 
recognized that, while computers may not always be the 
cheapest way of doing things, they are certainly the fastest. 
Tht'bugb U",e years, t1'Ie speed uf the ('omputel lias il'n:;reii:,ea 
to the point where millions of calculations can be perlormed 
every second. Even the common hand-held calculator can 
give answers to problems essentially the instant that the 
equals key is pressed. This great speed advantage, com
bined with a potential savings in labor costs, has permitted 
the computer to be utilized as a jack-of-all-trades, in 
manufacturing, finance, education, communications, and 
just about any other application imaginable. Therefore, it 
should come as no surprise that this author should tum to 
the computer not merely as a subject, but indeed as a 
source for a live conference presentation. 

A DEADLINE TO BE MET 

On November first, 1976, this author was informed that 
the American Federation of Information Processing Socie-

791 

ties was seeking papers for presentation at its 1977 National 
Computer Conference. At the same time, we found that 
Aetna Life and Casualty, the company at which this author 
is employed, was encouraging its data processing employ
ees to submit papers. We were interested in presenting a 
paper in the primary area, "The Individual and Comput
ing," but were awed by the deadline date of December 
first. 

We have become acutely aware that we as individual 
programmers must view the computer from both ends, as 
one who both causes actions and feels the effects of one's 
programming. Our programming experience thus could be 
used to devise a system which would generate a presenta
tion. Our consumer selves would then be able to take 
advantage of a system which would supply us with a paper 
prior to the December first deadline. 

This seemed to be the only reasonable step. The alterna
tive would be to rely on creative juices to come up with a 
presentable paper in the short span of one month's time. 
The choice was clear. Time was of the essence, and that 
very factor pointed to the computer as the only feasible 
means to meet the deadline which had been set. 

BASIS FOR A SYSTEM 

Before designing the system, it was necessary to deter
mine the charac~eristks e.f a typka! (,ui1ferdl(,iC ~resenrd
tion. Reference for this study was the AFIPS Conference 
Proceedings, 1975 National Computer Conference. The 
typical paper had certain readily identifiable characteristics. 
We shall study the abilities of the system with regard tQ 
each of these characteristics as we identify each one. 

ACRONAMING THE SYSTEM 

Characteristic one: When a system is involved in the 
presentation, it has an acronym for a name 

When a new system is presented, it is customary that the 
system be named with an acronym. As most of us know, an 
acronym is a word made up of the first Jetter or letters of 
other words which actually describe the system or other 
entity which is assigned the acronym. Our presentation 



792 National Computer Conference, 1977 

generator had to be capable of making key words entered 
by the author into acronyms. The author would have to 
specify the amount of contrivedness used in creating the 
acronym. With Low Acronym Contrivedness Keying 
(LACK), the acronym is sought to fit the description. A 
good example of LACK specification is COBOL, or COm
mon Business Oriented Language. This author, however, 
chose High Acronym Contrivedness Keying (HACK) in 
which a description is sought to fit the acronym. Entering 
the key words Presentation, NCC, and Computerized, we 
were supplied with the acronym PROCEEDINGS, for 
Presentation Rigmarole Optimized Computerized Elabora
tion Editor (Developed and Intended for the NCC) Generat
ing System. This acronym is displayed in Table I. Thus, our 
S}isteffi for presentation geneiation \\las given the name 
PROCEEDINGS. 

BEGINNING WITH AN INTRODUCTION 

Characteristic two: The presentation begins with an 
introduction 

An introduction usually serves two purposes. One is to 
summarize what has gone on in the past. The other is to 
lead into the topic to be presented. 

The presentation author can specify as to how much past 
information he wishes to present. He can limit it to a 
sentence or two, this being known as giving history the 
short shrift. Conversely, he can spend the first half of his 
talk in this area, and this is called dwelling in the past. 
PROCEEDINGS permits the author to choose either of 
these extremes or anywhere in between. 

Leading from the .. ast into the topic to be presented is a 
rather simple process for PROCEEDINGS. In the typical 
human-composed introduction, sentences are ordered logi-

TABLE I-Words Represented by the PROCEEDINGS Acronym 

Let ter in the 

PROCEEDINGS acronym 

P 

R 

o 
C 

D 

N 

G 

Word (s) represented by 

the initial letter 

Presentation 

Rigmarole 

Optimized 

Computerized 

Elaboration 

Editor 

(Developed and 

Intended for the 

NCC) 

Generating 

System 

cally to lead into the main topic. Since computers and logic 
go together like bread and peanut butter, this portion of the 
presentation is a piece of cake for the PROCEEDINGS 
system. 

However, the introduction is sometimes used to summa
rize the entire presentation. This is not recommended in the 
PROCEEDINGS system, because this involves the use of a 
pre-post-processor. This method of processing the data 
before it is available has not yet been proven accurate in 
our generator. 

PRESENTING THE PERTINENT FACTS 

Characteristic three: The presentation involves the 
presenting of pertinent facts 

A number of options are available in the PROCEED
INGS system by which the author can present his main 
body of material. He or she can specify to PROCEEDINGS 
that the length of sentences, that is, the basic group of 
words which are strung together, at least in our English 
language, word after word until a basic thought or thoughts 
is or are completed and possibly reiterated until the listener 
is totally unsure of the overall meaning despite understand
ing perfectly the meaning of individual phrases within such 
a sentence, shall be long. PROCEEDINGS sentences can 
also be short. Sentences will be understandable if a low fog 
index is requested. Conversely, and in fashion detrimental 
to the cognizance of the conferees, it can be specified that 
the fog index shall be high. Buzz words, idioms, and both 
formal and informal language can be mixed in proportions 
to suit the author. 

The facts themselves are another matter. The author 
may, if so desired, enter the facts concerning the subject to 
be reported upon. The computer will rearrange and aug
ment these facts so that they comprise a presentation. 
However, recall that at the start of this talk it was said that 
the major advantage of computers is their great speed. It is 
much faster to let the computer write its own presentation 
using the facts it already has. The author would simply 
make his specifications of sentence length, buzz word 
content, and other criteria which would alter the computer 
output to his style of writing. Such an approach was used 
for the writing of this presentation. The facts which the 
PROCEEDINGS system had, and could therefore use, 
were facts concerning the PROCEEDINGS system itself. 
The result, logically, was this presentation on the PRO
CEEDINGS system. Admittedly, such a technique limits 
the scope of future presentations. On the other hand, we 
must expect to make such minor sacrifices for the sake of 
speed and accuracy. 

To permit some variety in the presentation, yet observe a 
logical progression of ideas, a new method of file organiza
tion had to be developed. Using random access storage 
devices, we created the Random Sequential method of file 
organization. We won't go into the technical aspects of 
Random Sequential access; but it is rather like dropping the 
tone arm of your phonograph onto a long-playing record 



and letting the record continue to play. Diversity, yet 
continuity. 

HEADING THE SUBTOPICS 

Characteristic four: The publication copy of the 
presentation has headings for each subtopic covered 

When a presentation is published it is customary to 
provide subject headings throughout the work. This is to 
enable a reader to skip sections which the reader thinks will 
not be interesting, and to aid in locating items of special 
interest. The PROCEEDINGS system can produce short 
headings, long headings, descriptive headings, humorous 
headings, and more. In this paper, for instance, the head
ings of all sections relating to the abilities of the PRO
CEEDINGS system have the letters "ing" completing the 
first word of the heading. This can be seen better by 
studying the printed version of this report. 

LISTING WITH TABLES 

Characteristic five: The presentation utilizes one or more 
tables for listing data 

Few presentations are complete without a table of facts 
which would be boring or confusing if read aloud during the 
presentation. PROCEEDINGS can compile lots of facts for 
any length desired, complete with footnotes. This can be 
seen in Table II. The tables can even be informative, as can 
be seen by referring once again to Table I. 

SHOWING WITH DIAGRAMS 

Characteristic six: The presentation has one or more 
impressive looking graphs and/or drawings 

Just as tables are an essential part of the well-dressed 

TABLE II-Abilities of PROCEEDINGS to Produce Tables of Desired 
Lengths 

Desired length of table I Withi n abi 1 i ty of PROCEED! NGS 

entry Yes@ 

10 entries Yes 

100 Yes 

1,000 Yes 

10,000 Yes 

439,376,421,121 Yes* 

@ Rather silly, but easy to produce. 

* Not recoll1T1ended, as printing takes a while. 

Computer Generation of Conference Presentations 793 

-CJ 
::l 
'0 
0 ... 
Q. 

(ij 
c 
.Q 
16 
Z 
en en e 
" 

VI 

V 

IV 

III 

II 

0 10 100 1000 439376421121 

Number of program bugs 

Figure I-A meaningless yet impressive graph 

CEEDINGS diagrams can be simple or complex, well 
documented with explanatory captions or cryptic and am
biguous. They are all impressive, however, which is the 
reason for using a diagram in the first place. In this 
particular presentation, the author specified that he wanted 
two graphs. This was an unwise choice at the time, simply 
because we don't have all the bugs worked out of the 
graphing subsystem; the graph output is egotistical and 
certain of its creative abilities. This can be seen by referring 
to Figures 1 and 2. 

SUMMING UP* 

Characteristic seven: The presentation has a summary or 
conclusion 

Almost as important as the introduction is the summary 
or conclusion. While the introduction sets the stage, so to 
speak, the summary reviews that which was too compli
cated to understand the first time around. This is also true 
of a conclusion, but a conclusion usually also encourages a 
course of action or serves to say"} told you so." The 
PRot'-E E=ffi-N{J'S= !j"ste~' c~:rr prcch:r~e on ~cremzn'd' a :-0:1 

1J 
-::l 
_C'II 
o CI) 

c:5 Outasite 
.~ 5 (Infinite) 
en Nifty 
K.~ Decent 
E1U ; j So-So 
j CI) Forget it 
::ic.. 

o 1 2 3 4ormore 
Number of graphs in presentation 

Figure 2-Impressiveness of presentations 

* Note: The presentation is not over. We are merely describing the conclu
sion. 



794 National Computer Conference, 1977 

clusion or summary that is a brilliant review of the points 
which were covered in the equally brilliant presentation. 
Conversely, it can cut a report short with a "Let's get the 
heck out of here" attitude. The choice of degree is up to the 
individual author, just as it is with almost every other 
aspect of a PROCEEDINGS-produced conference presen
tation. 

PROVIDING REFERENCES 

Characteristic eight: The presentation has a list of 
references 

It is common, following the conclusion of an article, to 
provide a list of references used in the production of a 
presentation. If the entire report was fabricated by the 
PROCEEDINGS system, as this one was, this could con
ceivably pose a problem. But, PROCEEDINGS makes it 
surprisingly easy. Depending upon user specifications, 
PROCEEDINGS can provide legitimate references which 
were actually used to supply PROCEEDINGS with data; it 
can provide real references which have nothing to do with 
the presentation; and it can provide fictitious references, 
which are useful because they are difficult to check on. For 
illustrative purposes, we have included all three types in the 
list of references for this presentation. 

EXHIBITING IDIOSYNCRACIES 

Characteristic nine: Except during acknowledgments, use 
of personal pronouns in the first person singular is 
avoided 

The PROCEEDINGS presentation can be extremely per
sonalized. While most prefer to do their own "uh" 's, 
"ah" 's, hand wavings, nervous tics, and "ahem" 's, 
these are not beyond the capabilities of PROCEEDINGS. 
However, speech conventions such as avoidance of per
sonal pronouns in the first person singular can easily be 
worked in by our system. This very presentation utilized 
"this author," "we," and circumlocutions such as "it was 
necessary to determine." PROCEEDINGS can be invalua
ble by providing variety in this awkward situation. 

CONCLUSION** 

There are many "ingredients" which go into a talk on 
computers, or, indeed, a talk on any subject. All of these 
so-called ingredients have a potential of being useful to the 
listener. The PROCEEDINGS system can provide all of the 
ingredients, but it is still up to the individual author to set 
the generator specifications so that an understandable re
port is presented. This system was designed to run only 
once, to produce a presentation for the 1977 National 
Computer Conference. However, I hope that I have pro
grammed it well enough that the principles behind it are 
clear, and that these principles will be used in the future by 
more people than use them today. A poorly programmed 
machine can make a talk such as this totally useless, 
regardless of whatever vital facts the talk may contain. 

If we may leave this fantasy which I have presented to 
you and return to reality, I could not have had the time or 
resources to plan and implement an actual PROCEEDINGS 
system in one month. Therefore, I was totally unprepared 
to write on it. The only thing I could do was to resort to the 
use of a computer to prepare my entire presentation instead 
of writing it myself as I probably should have done. My 
apologies to you all. 

REFERENCES 

I. AFIPS Conference Proceedings, 1975 National Computer Conference, 
AFIPS Press, Montvale, New Jersey. 

2. Belov, Charles A., "Computer Generation of Conference Presentations," 
AFIPS Conference Proceedings, 1977 National Computer Conference, 
AFIPS Press, Montvale, New Jersey. 

3. Goldstine, Herman H., "Billings, Hollerith, and the Census," The 
Computer from Pascal to von Neumann, 1972, Princeton University 
Press, Princeton, N. J. 

4. Raskin, Jef, "Errata," Journal of Irreproducible Results, 20, 2, Decem
ber 1973, pg. 30. 

5. Wrentchler, Polly and Nicholas Teck, "A General Reference for Confer
ence Presentations," Journal of Reference Citations, May 1975, pp. 376-
427. 

ERRATUM 

(Added by the author-not computer generated) 
As mentioned before by the PROCEEDINGS, there are 

still a few bugs in the system. In the original computer
produced manuscript, page five follows page three. It is not 
known whether there was any loss in text because our 
control counters all contained a value of pi. Apparently, the 
computer was hungry and had stepped out for a byte to eat. 

** Note: The real ending, this time. 



Design of a diagnosable and fault-tolerant 
input/output controller 

by A. K. BOSE and S. A. SZYGENDA 
The University of Texas-Austin 
Austin, Texas 

ABSTRACT 

The paper describes the design of a diagnosable and fault 
tolerant input/output controller. The approach used is to 
follow an initial design effort by a detailed analysis of the 
organization of the system and its environment. Based on 
this analysis, modifications are made on the system and its 
environment to get the desired performance. 

For the interface controller under consideration, it is seen 
that its diagnosability and fault-tolerance can be improved 
significantly by introducing a minor amount of redundancy 
into the system. The environment which in this case is 
predominantly a CPU or a channel is modified only to the 
extent that a nominal amount of software is added and the 
existing software modified. 

The overall effect of these modifications results in a 
system which achieves the reliability comparable to that of 
duplication but for a redundancy of approximately 30 
percent. 

INTRODUCTION 

MaiS.sive redurulan.::y. techniques. >applic.able.in geneIal to 
most systems or subsystems, can be applied to inpuUoutput 
controllers. Reliability can always be purchased by paying 
for it in terms of redundancy. But, in most instances, the 
application of a general technique does not lead to the most 
cost-effective solution. 

The answer to the problem of efficient acquisition of 
reliability invariably lies in the internal organization of the 
system and its environment. A detailed analysis of the 
system and its environment, following an initial design 
effort, may provide an economic way for making the 
system reliable. 

This paper discusses the design of a diagnosable and 
fault-tolerant input/output controller. A preliminary design 
is followed by a detailed failure analysis based on which a 
final system is synthesized. Using only a nominal amount of 
additional hardware and a minor increase in software, the 
final system achieves a level of fault tolerance which is 
comparable to that of a massively redundant system. 

795 

PRELIMINARY DESIGN 

In the first phase of the design effort, an asynchronous 
communications interface controller is designed. These 
controllers are commonly used for interfacing the CPU or 
the channel with peripheral devices requiring a serial data 
format such as CRT terminals and teletype printer/readers. 
The controller is very similar to the commercially available 
Universal Asynchronous Receiver Transmitter (U ART) and 
thus only a brief description of its operation is provided. 

A block diagram of the controller is shown in Figure 1.1,2 

The system is capable of full duplex operation and can 
handle mUltiple baud rates (receiving-transmitting) simulta
neously. It can receive 8 bits of data in parallel from the 
CPU and communicate it in serial to the peripheral, or it 
can receive 8 bits of data in serial from the peripheral and 
format it for parallel read for the CPU. The transmitter part 
adds start, parity and stop bits to the serial output data 
while the receiver part checks the serial input data for the 
same. Error registers in the receiver indicate parity error, 
overrun error (when a new character wipes out the previous 
character before it has been read) and framing error (when 
valid stop bits are not received). Several control and flag 
lines which are used by the CPU to control the operation of 
the controller are also availabl~ and are listed below. 

The timing diagrams for the transmitter and receiver for 
the data, control and status lines are shown in Figures 2 and 
3. 

ANAL YSIS OF THE INITIAL DESIGN 

A study of Figure 1 shows that a certain amount of 
symmetry exists between the input and the output paths for 
the data flow between the CPU and the peripheral. The 
format changes that are required for data flow in one 
direction are exactly opposite to the format change required 
for data flow in the other direction. If the peripheral were to 
be treated as a reflector, that is, whatever appears at its 
input is reflected back to the output, a closed loop is 
established for the data flow. The data that is put out by the 
CPU should be received back by the CPU after having 



796 National Computer Conference, 1977 

Ds-,-----------.-------------------------.-I 

TBMT-U ~ 

so ~~/ ~~3_2_-r2]_=_4=_I~=[~J~=[~-l"~~Jsw I mp2~~~_=1 
, I 

[Oe ~~ _________ I ___ ' ___ BI_T_T_'M_E __________________ ~ __ __ 

TransmiCter Data Bus Figure 2-Transmitter timing 

Clock 

Reset Serial Output 

propagated in both directions through the interface control
ler. Thus, if enough hardware is added such that the 
peripheral may be made to appear as a reflector when 
desired, it should be possible for the CPU to check the data 
paths of the controller by matching the incident data put out 

Clock 
Received Data 

Enable 
Status Enable 

End elf 
Character 

Serial Input 

Figure I-Block diagram of an asynchronous communications interface 
controller 

Symbol Name 
DS Data Strobe 

TBMT Transmitter Buffer Empty 

SO Serial Output 

EOC End of Character 

TCP Transmitter Clock 

RDE Received Data Enable 

PE Parity Error 

FE Framing Error 

OR Overrun Error 

DAV Data Available 

RDAV Reset Data Available 

SI Serial Input 

RCP Receiver Clock Pulse 

SE Status Enable 

gated in both directions through the controller. 
The method discussed could be used for both off-line and 

on-line testing of interface controllers. On-line testing, 
which is the primary objective, would require an indication 
to the CPU of a suspected malfunctioning of the controller. 
Periodic testing would disrupt normal operation and be very 
inefficient in terms of CPU time. Only on suspicion should 
the ~PU stop its normal operation and execute the control
ler test routine. 

To provide the CPU with an indication of the malfunc
tioning of the controller, a certain amount of concurrent 
checking of the data propagating through the controller is 
required. Sufficient checking capability could be built into 
the controller at a nominal additional cost, whereby an 
interrupt signal to interrupt the CPU could be generated by 
the checkers, if it is detected that bad data is being put out 

TABLE I 

Function 
A strobe on this line will enter the data bits into the transmitter buffer register. 
The line is low active. 
This flag goes to a logic one when the transmitter buffer is empty and a new 
character can be loaded. 
This line will provide, serially by bit, the entire transmitted character. It will 
remain at logic" I" when no data is being transmitted. 
This line goes to a logic "I" each time a full character is transmitted. It remains 
at this level until the start of transmission of the next character. 
This line requires a clock whose frequency is 16 times the desired transmitter 
baud rate. 
This line is the tri-state controller. A logic "0" places the received data onto the 
receiver shift register output lines while a logic" I" leaves the output lines in a 
high impedance state. 
This line goes to a logic" 1" if a parity error is detected in the received data. Tri
state output. 
This lines goes to a logic" I" if two valid stop bits (logic" 1 ") are not received. 
Tri-state output. 
This line goes to a logic "I" if the previously received character is not read 
(DA V line not reset) before the present character is transferred to the Receiver 
Buffer Register. Tri-state output. 
This line goes to a logic" I" when an entire character has been received and 
transferred to the receiver buffer register. Tri-state output. 
A logic "0" on this line will reset the DA V flip-flop and return the DA V line to a 
logic "0". 
This line accepts the serial bit stream ofreceived data. A "I" to "0" transition 
is required for initializing data reception. 
The receiver clock whose frequency is 16 times the desired baud rate has to be 
provided on this line. 
Tri-state controller for the lines DA V, OR, PE and FE. 



Design of Diagnosable and Fault-Tolerant Input/Output Controller 797 

Data Strobes I 
Parity Error ______________ --11 

Framing Error ______________ .--ll 
Data _______________ -.J! 

Available 
Over run r---

Figure 3-Receiver timing 

by the controller. This interrupt signal could start the 
CPU'S diagnosis of the controller. 

Since the CPU check could be used to achieve some 
degree of fault isolation, it should be possible, that in 
certain situations, a degraded but tolerable functioning of 
the controller could be permitted. Most controllers have 
some error detecting capability. If the CPU check isolates 
the fault to this part of the controller and at the same time 
verifies that no faults exist in the data paths, the CPU could 
then continue to use the controller while ignoring error 
messages put out by it. 

In the situation where it becomes impossible to use the 
controller anymore because of the presence of fatal faults 
it should be possible for the CPU to perform spare switch~ 
ing, whereby it would switch out the faulty controller from 
the system and switch in a good one. The CPU could check 
the new controller and establish that it is fault free. Normal 
operation could then be resumed. Since several similar 
controllers are normally used in a system, one spare could 
be used to cover all of them. 

The techniques discussed in this section have been ar
rived at from considerations of the internal organization of 
interface controllers, their function and their environment. 
Interface controllers always operate under the control of a 
CPU or a channel which have the capability of performing 
the operations mentioned above. As long as the involve
ment of the CPU or the channel is kept low, the cost 
incurred is very nominal. 

ADDITIONAL HARDWARE FOR IMPROVING 
TEST ABILITY 

Based on the discussion of the preceding section, addi
tional hardware in the form of three switches is added to 
the controller to improve its testability (Figure 4). The three 
switches, operated under CPU control, would provide a 
connection between the serial output line of the transmitter 
and the serial input line of the receiver and would enable 
the use of a common clock for the transmitter and receiver. 

FAILURE ANALYSIS 

The entire controller circuit was simulated to determine 
the tests required to detect all single "stuck at one" and 
"stuck at zero" faults. The simulated circuit has 111 
elements. Considering every individual input and output 

line of each element as a possible site for a stuck-at-one (S
A-I) or stuck-at-zero (S-A-O) fault led to a possibility of 894 
possible stuck-at faults in the circuit. The simulator reduced 
this to 721 faults after considering that several faults could 
have identical effects (ex., a S-A-I fault at the input of an 
inverter is identical to a S-A-O fault at its output). 

As shown in Figure 4, the 8 "Data Input Lines," the 
transmitter "Data Strobe" line and the receiver "Reset 
Data Available" line were defined as the inputs while the 8 
"Data Output Lines," the 4 "Status Lines" and the 
"Transmitter Buffer Empty" lines were defined as the 
detection points. This representation is consistent with the 
normal CPU-controller interconnection. 

With the intention of detecting S-A-O and S-A-l faults in 
the data paths, two obvious input patterns, "11111111" 
and "00000000." were tried. Signals required for proper 
operation were provided on the Data Strobe line while one 
of. the "Reset Data Available" signals was deliberately 
skIpped to test the overrun error detection hardware. The 
input data pattern was also changed back to "11 111111" 
after the second strobe to detect faults in the strobe inputs. 
The detection points were strobed after the Data Available 
line in the receiver went high signifying the end of data 
propagation in the controller. 

This test resulted in the detection of 485 faults of 67.2 
percent of the total faults. An analysis of the remaining 236 
faults showed that 96 of them were "don't care" faults. 
These did not affect proper functioning of the controller and 
thus could not be detected. Most of them were S-A-l faults 
on inputs that were connected to the power (logical 1) lines. 
Since the effect of both are the same, these faults could 
neither be detected, nor could they introduce any error in 
the operation of the circuit. 

Of the remaining 140 faults, 89 could not be detected by 
the simulator but would be detected in the physical system. 
These faults were mainly the stuck-at faults on the reset 
strobe and initializing lines in the controller. If an elemen~ 
is not properly initialized, the simulator treats its output as 

TBMT 

Tr. Buffer Reg. 

TCP Tr. Shift Reg. 

::~~o~ --- -~,--- ----------- -- -- ---~:' 1 
Bus / '\ 
RCP 7 Receiver Shift Reg. 1&.-..-'_....1...-

Receiver Buffer Reg. 

RDAV 

From CPU To CPU 

Figure 4-Hardware to improve testability 

S,,~ial 

Output 

Senal 
Input 



798 National Computer Conference, 1977 

indeterminate "X." This makes the outputs of all the 
elements through which this signal propagates also an "X." 
The simulator does not consider "X" for fault detection 
since their value could be either "I" or "0." In the 
physical system, however, an improperly initialized ele
ment would have an output of either a "0" or "I." 
Normally following power up, the distribution of I 's and O's 
is random and would be detected by a pattern of all I's or 
all O's. Even in the situation where, following power up, the 
outputs of the faulty elements are such that they are not 
detected by one pattern, they would definitely be detected 
by the other. 

The two test patterns "II I I II I I" and "00000000" 
thus cover 670 of the 721 possible faults. Of the remaining 
faults, 4 are detected through the use of the input pattern 
"I I I I 1000." This is required to detect S-A-O faults in the 
parity generating and checking hardware since the first two 
patterns are such that the parity bit is zero in both cases. 

Detection of the remaining 47 faults require complicated 
test sequences rather than different input patterns. Seven 
faults are detected by providing an idle period for the 
controller when no data is being propagated. These faults 
are such that they make the controller operate even during 
this idling period. Of the remaining 40 faults 24 more are 
detected by using a different strobe period for looking at the 
detection points. These faults result in improper timing in 
the controller thus making them operate faster or slower 
than normal. 

The remaining 16 faults cannot be detected in the existing 
setup. They are located in the stop bit generation circuit of 
the transmitter or the framing error detection circuit of the 
receiver, and their existence is suspected by the repeated 
detection of framing errors by the receiver or the periph
eral. The reason why these faults cannot be detected is that 
the CPU cannot affect their operation in any way. The 
detection of S-A-O faults in the framing error detection 
hardware of the receiver requires a deliberately introduced 
error in the stop bits put out by the transmitter. Since this is 
not possible for the CPU to realize, these faults cannot be 
detected. If, however, the serial input and output lines of 
the controller are placed directly under CPU control, detec
tion of these errors would be possible. This is unnecessary 
because these faults are not fatal faults and a degraded 
operation of the controller (as discussed in a following 
section) is possible in their presence. 

Since a large number of the possible faults (93 percent) 
are detected by just two input patterns while the remaining 
few faults require several complicated tests, greater testing 
efficiency is achieved by properly sequencing the tests. A 
flow diagram which shows an optimum testing scheme is 
shown in Figure 5. 

HARDW ARE FOR CONCURRENT C~ECKING 

Concurrent checking hardware is introduced with the 
primary objective of detecting the propagations of erro
neous data due to faults in the controller. Situations where 
erroneous data arises out of faults external to the controller 

ERROR SUSPECTED ___ -, ,... ___ REPEATED ERROR 

BY CONCURRENT ,,--_-L........JIL-..__ DIAGNOSTICS FROM 

CHECKING CIRCUITS START TESTING RECEIVER 

YES 

YES 

YES 

Figure 5-Flow diagram of optimum testing scheme 

will not be considered. These are normally checked by the 
existing error detecting hardware inside the controller 
which puts out error messages for the CPU. No attempt 
will be made to correct detected errors or to detect a fault 
that does not produce erroneous data. 

A general technique to realize concurrent checking is 
duplication, which can be done at the system level or at any 
lower level. The two outputs are matched and any error in 
one unit produces a mismatch resulting in detection. As 
mentioned earlier, this approach is expensive and a cheaper 
solution is found by closely examining the internal hard
ware. 

For convenience, the internal organization of the control
ler can be considered as three separate functional units: the 
data circuit, which consists of the data paths and the data 
storage facilities; the control circuit, which provides the 
timing signals; and the auxiliary circuit which includes the 
flag and error flip-flops. Each of these circuits will be 
considered separately to determine their role in the propa
gation of bad data. 

Flow of data in both the transmitter and the receiver 
involves a parallel path and a serial path. Faults in the 
parallel paths of the transmitter can be checked by intro
ducing a parity bit at the input and verifying it at the output. 



Design of Diagnosable and Fault-Tolerant Input/Output Controller 799 

Since the normal operation of the transmitter requires a 
parity encoder, the additional hardware involved would 
only be that of the checker which has to be located at the 
output. Similarly, the receiver has a parity checker at the 
output. To check for faults in the parallel path of data flow, 
an additional parity checker can be introduced at the input 
and the outputs of the two checkers compared. A mismatch 
would indicate a fault in the parallel paths of the receiver. 
Thus the addition of two parity checkers over the simplex 
system provides detection of all errors introduced in the 
data due to a single fault in the parallel paths of the data. 
This is shown schematically in Figure 6a and b. 

The paths through which data flows serially pose a bigger 
problem for concurrent checking. No convenient tech
niques exist for checking the parallel to serial or serial to 
parallel conversions required. A single fault could introduce 
mUltiple errors in the data. For eight bits of data, an error 
detecting code would be required to detect up to eight 
errors. The extent of additional hardware makes duplication 
attractive. This part of the system is thus duplicated. 

The control circuitry in the transmitter provides timing 
pulses for shifting the data. The start of the control opera
tion follows a high to low transition on the EOC line while 
the end brings about a low to high transition. Since the 
period between the two transitions is predetermined by the 
clock rate, a check of this period would detect a fault in the 
control hardware. This is easily realized using a monosta
ble. The control circuit in the receiver can be similarly 
checked. 

The auxiliary part of the controller cannot introduce any 
error in the data and is thus ignored for the purpose of 
concurrent checking. 

Concurrent checking can be achieved by the techniques 
discussed. The different error signals generated would have 
to be ORed and used to set an error flip-flop. Some of the 
error signals generated would require gating with strobe 
pulses generated by the existing control circuits to insure 
that they are sampled only at specified times. The output of 
this flip-flop would provide an interrupt signal to the 
processor if an error is detected and this would start a CPU 
1':.Jle(;k sequence. Repeated crrGf indications from the re 
ceiver flags can also be used to initiate the CPU check. 

Concurrent checking techniques discussed are not ex-

(Parallel) 
Parity 
Checker 

Input Buffer Reg. 

Figure 6a-Transmitter 

Parity 
Checker 
(Serial) 

Serial 
Output 

Serial Input 

Serial 
Parity 
Checker 

Parallel 
Parity 
Checker 

Figure 6b---Receiver 

haustive but provide significant protection for the nominal 
amount of additional hardware required. 

DEGRADED OPERATION AND SPARE SWITCHING 

When the CPU test detects a fault in the controller, two 
possible corrective actions can be taken. These are dis
cussed individually in the following paragraphs. 

Degraded operation 

The failure of the CPU to detect any faults after proper 
symptoms had initiated the check, indicates a fault in the 
stop bit generation circuit of the transmitter or the framing 
error detection circuit of the receiver. The fault could also 
be external to the controller residing in the peripheral. Step 
4 of the test sequence isolates the fault to the parity 
hardware of the controller. For all these situations, the 
remaining controller circuit is established as fault free and a 
degraded operation is possible. 

To realize this degraded operation, slight modifications in 
Lht.:: software dlt: rt.::4uired. TIle CPt; normally rcadsth~ 
status register of the receiver and checks the error flag 
positions for errors in the data. Once the CPU test estab
lishes the possibilities of degraded operation of the control
ler, this step of the program has to be disabled. A flow 
diagram which shows one possible way of doing this is 
shown in Figure 7. 

Spare switching 

Faults occurring in the control circuit or in the data paths 
make further use of the controller impossible. In this 
situation the defective controller can be switched out of the 
system and a new one switched in. A specific situation 
where this is realized mainly through software modifica
tions is shown in Figure 8. 

When several interface controllers are used in a system, a 
memory mapped 110 mode is frequently used. The CPU or 



800 National Computer Conference, 1977 

CPU Test 

degraded 
operation 

r--- --
I 
I 
I 
I ____ ...J 

Return to regular operation 

Main Program 

Check status bits 
for error and take 
appropriate action 

Figure 7-F1ow chart for degraded operation 

the channel hardware thus recognizes the controllers as 
particular address locations and spare switching can be 
performed in the following manner. 

(1) Use of a routine to change the address of the defec
tive controller to that of a spare. 

(2) Switching of the peripherals connected to the defec
tive controller to the spare. 

The switching hardware required in step 2 is quite 
nominal since the serial communication between the con
troller and the peripheral require very few lines. 

CONCLUSION 

The use of hardware and software techniques in the pro
posed approach makes it, in several ways, more advanta
geous than some of the existing approaches. 

Most existing systems use software diagnostics to detect 
faults. This has the disadvantage that detection is not 
achieved until the diagnostic tests are run. Failures are thus 
allowed to propagate if they occur between tests. Since 
peripheral devices are often electro-mechanical, these fail
ures may cause severe damage to the equipment. 3 

The proposed approach incorporates concurrent checking 
to detect the propagation of erroneous data. Since the 
detection is accomplished prior to the end of transmission 
of a complete character, effective steps may be taken, if an 
error is detected, to make the peripheral abort the data. 
This can be done by transmitting invalid marker bits which 
follow the data or by inhibiting the flag which indicates the 
end of transmission to the peripheral. In either case, the 
peripheral will not act on the data and any damage that may 
have been caused by the erroneous data is prevented. 

The use of concurrent checking also results in saving of 
CPU time. Diagnostic tests are no longer required to be run 
at regular intervals. The tests need only be run when a fault 
is suspected. This is indicated to the CPU through the use 
of interrupts, and the processor is thus completely freed to 

I L ______________ ..J 

System or Channel Bus 

- Peripheral 
IFC - Interface 

Controller 

One interface controller 
is a spare. 

Figure 8-Hardware for spare switching 

execute its normal functions. The concurrent checking 
hardware, however, adds to the cost of the simplex system, 
but this increase is very nominal. 

Another commonly used approach to improving reliabil
ity is that of duplication. A duplicated system costs at least 
1 ()() percent more than the simplex system and often even 
higher due to the cost of the matching circuits. This 
approach guarantees the detection of all single faults, as 
soon as they occur. Isolation of the fault, however, requires 
software diagnostic tests or additional hardware. 

An analysis of the final system showed that the increase 
in hardware due to the concurrent checking circuits is 
approximately 30.8 percent over the simplex system. Addi
tional hardware required to facilitate testing is equivalent to 
0.9 percent. The total redundancy proposed in the system is 
thus· approximately 31.7 percent. For a redundancy of 
about 30 percent, the proposed approach provides detection 
of all failures in the data and most of the control hardware 
which could affect the propagation of the data. The auxil
iary hardware is not checked since it cannot result in any 
serious failure. 

Since the detection of all data failures is achieved and 
since corrective steps may be taken to prevent the periph
eral from acting on the data, the advantages to this ap
proach are comparable to that of duplication. The amount 
of redundancy in the proposed approach is much less. 

The proposed approach becomes even more attractive 
than duplication when fault correction is considered. As 
pointed out earlier, several controllers are normally used in 
a computer system. The duplication procedure requires 
each individual controller to be duplicated, while this 
approach requires about 30 percent redundancy in each 
controller and one spare controller to cover all the working 
controllers. 

REFERENCES 

1. Signetics, Integrated Circuits Data Book, Signetics Corporation, 1972. 
2. Motorola, M6800 Microprocessor Applications Manual, Motorola Inc., 

1975. 
3. Usas, A. M., Error Management in Digital Computer Input/Output 

Systems, Ph.D. Dissertation, Stanford University, Stanford, California, 
1976. 



Modular redundancy without voters 
decreases complexity of restoring organ 

by P. T. DESOUSA 
Rockwell International 
Richardson, Texas 

and 

F. P. MATHUR 
Wayne State University 
Detroit, Michigan 

ABSTRACT 

Fault-tolerant modules have usually been implemented 
through the use of static fault-masking or dynamic spare
switching. But a new class of MR (Modular Redundancy), 
the Responsive schemes, promises higher reliability levels 
and more efficient implementations for medium to high 
degrees of redundancy. In particular, Siftout Modular Re
dundancy (SMR) does not use voters and provides a 2-out
of-N redundancy with a very simple restoring organ. The 
complexity of implementation is analyzed for several MR's 
and reliability figures are compared for three 2-out-of-N 
schemes. SMR is shown to have the best performance. 

INTRODUCTION 

Fault-tolerant digital systems are usually achieved by the 
use of Modular Redundancy (MR) techniques. The module 
tv b~ rrlaolS ritun-r01~iailt ;~ ic;pT;~dLt;'J d lluftibei vi lilllt:~. 
Each one of the replicas wi11 be called a channel. The 
number of channels is the degree of redundancy. These 
identical channels constitute the "executive organ." The 
"restoring organ" is made up of the additional circuits 
necessary to perform the functions of fault-masking and/or 
recovery over the executive channels. 

Fault-masking and spare-switching are the two best 
known fault tolerance techniques. 

• Static MR provides fault-masking. All channels are on
line throughout the mission time. The failing of a 
channel is "masked" by the good channels, keeping 
the overall structure output correct. 

• Selective MR provides spare-switching. There is a 
functional core of on-line channels and a standby bank 
of spare channels. Whenever an on-line channel fails, 
one of the spare channcls replaces it. 

801 

Responsive MR schemes do not quite fit in any of the 
two mentioned categories. There are no spare channels and 
all channels start the mission on-line. But upon the occur
rence of a failure, the structure reconfigures itself. The 
contribution of the failed channel is reduced or eliminated. 
Pierce l was the first to propose a scheme of this type, using 
an adaptive restoring organ. The system output is a 
weighted vote of the channel outputs. The weight depends 
on the error probability of the correspondent channel. A 
weighted-input vote-taker is implemented with linear 
threshold elements, that perform "linearly separable Boo
lean functions."2 Adaption circuits estimate the error prob
ability of each of the channels and use the estimate to set 
the vote-weight. The threshold vote-taker and the adaption 
circuitry make up the restoring organ, called "decision 
element" by Pierce. Three questions arise: 

(1) What vote-weight to use? 

4a) Ceft.tiRUQtJf; .• R-proportien to the error !)'"ohahih
ties; 

(b) Quantized. The vote-weight is either 0 (the chan
nel is disconnected) or 1 (the channel is con
nected). 

(2) How to estimate the error probability? 

(a) Using reliability information generated in the 
same source that generates the digital informa
tion; 

(b) Counting the errors occurred in a time cycle and 
setting the weight accordingly; 

(c) Counting the errors periodically and incrementing 
the previous cycle data; 

(d) (for quantized vote-weights) Disconnect a channel 
whenever the error count exceeds a given thresh
old. 



802 National Computer Conference, 1977 

(3) How to detect errors? 

(a) From conditions in the channel itself. Correctly 
functioning circuits can be arranged to display 
properties different from properties of circuits 
with faults; 

(b) By comparison with an externally supplied cor
rect answer; 

(c) By comparison with the output of the restoring 
organ (feedback of information). The output of 
the restoring organ is assumed to be correct. 

Pierce analyzed all these alternatives. Answers l(b), 2(d) 
and 3(c) have been the most appealing. Goldberg, et al.,3 
and Losq4 designed implementations for schemes with 
those answers. Alternative 3(b) is used, for example in the 
model-assisted BMR of Devaney. 5 

Siftout MR6 answers question 3 with a new alternative: 

(d) By comparing the outputs of the channels with 
one another. 

Adaptive redundancy uses threshold-rule in the restoring 
organ. Other Responsive configurations (Monitored Major
ity structures) use majority-rule. NMRlSimplex schemes7 

are examples of Monitored Majority Redundancy. 
Siftout MR does not use a vote-taker. The restoring 

organ merely discards any channel that does not agree with 
the majority. The module output is thus equal to the output 
of any of the channels that remain on-line. 

SIFTOUT MODULAR REDUNDANCY (SMR) 

When using a Siftout configuration the system is organ
ized into N identical channels, where N is any integer. The 
channels are synchronized with one another and perform 
simultaneous operations. Each channel is active as long as 
it is fault-free. Whenever one of the channels fails, its 
contribution to the system output stops. The system be
comes an (N -I) redundancy scheme. Upon the occurrence 
of a new failure, the process repeats itself. 

SMR has a fault tolerance F=N-2. (N-2) channels can 
fail and the module will still operate correctly. When the 
module is reduced to two channels and one of them fails, 
the system is unable to detect which one failed. SMR is a 2-
out-of-N structure, or more emphatically, an N-down-to
two redundancy. 

SMR IMPLEMENTION 

To implement a Siftout redundant structure, a Checking 
Unit is placed at the outputs of the N channels. The 
Checking Unit compares the output signals. If one of the 
signals disagrees with the others, the correspondent chan
nel is "sifted out." The signal of the "good" channels is 
selected without need for voting. The diagram of Figure I 

--1 CHANNEL 1 ~ ° 1 ----4>-------.. 

--1 CHANNEL 2 ~ °2 ---t-.----__ 

--1 CHANNEL N ~ ON ---+-t---.----" 

Figure l-Siftout redundancy 

shows the main parts of the Checking Unit: the Compara
tor, the Detector and the Collector. 

The Comparator is a set of (~) EXCLUSIVE OR gates, 

that checks the N channels against each other. It is de
picted in Figure 2 for the case of N =4. 

The Detector (Figure 3) is a sequential circuit with (~) 
OR gates and N AND gates. The signal Fi is equal to 0 
when channel i is fault-free. Fi is equal to 1 when channel i 
has failed. For example let channell be the first channel to 
fail. It will disagree with the other channels, causing lines 
E12 , E13 and E14 to hold a logical value 1. Line F 1 will then 
be set to 1 and the feedback loop will force it to stay that 

03 ---+--..... -4---+4 

Figure 2-Comparator for a 4-channel siftout redundancy 



I c=; 
E12 

F1 

E13 

F2 

E14 

E23 

F3 

E24 

E34 
F4 

Figure 3-Detector for a 4-channel siftout redundancy 

way. A flip-flop can be added in the feedback loop, if a 
reset-retry procedure is desired. Such a flip-flop would make 
the structure tolerant to transient failures and would facili
tate initial checkout. 

The final step is the Collector, with N OR gates and one 
AND gate. Each good channel feeds one input to the AND 
gate. Each bad channel provides a logical value 1 as input 
to the AND gate. The output of the AND gate is the correct 
output of the system, provided that at least two channels 
are good. Figure 4 shows the Collector when N =4. 

OTHER MR TECHNIQUES 

SMR is now compared with other redundancy techniques 
that have been used to provide ultra-reliable digital sys
tems. 

Static MR 

TMR (Triple Modular Redundancy) 

In the basic TMR configuration, the system is organized 
into three identical channels that feed a voting element. The 
voting element compares the output signals of the three 
channels and selects the signal on which the majority of the 
channels agree. 

The TMR organization is one of the oldest forms of 
redundancy and has been considered the most promising 
for universal application. 8 However, the process that makes 
TMR fault-tolerant also makes it difficult to maintain. To 
analyze the performance of a malfunctioned system, error 
detection and fault isolation are necessary. The TMR 
majority voting mechanism masks a bad channel but at the 
same time complicates the detection of the error. To 

Modular Redundancy 803 

F1 

0, 

F2 

°2 
OUT 

F3 

°3 

F4 

°4 
Figure 4-Collector for a 4-channel siftout redundancy 

overcome this difficulty, extra hardware has been incorpo
rated into TMR organized computer systems.8,g 

A Siftout configuration with three channels (Figure 5) has 
the same fault tolerance as a TMR configuration. It already 
has the built-in capability of automatic error detection and 
fault isolation. The value of the variables F j provides 
immediate information about the state of channel i ("good" 
if Fj=O, "bad" if F j= 1). This is an important advantage 
when redundancy is considered for easing maintenance 
operations and improving availability. 

NMR (N-tuple modular redundancy) 

In an NMR system each nonredundant module is repli
cated an odd number (N) of times. The N identical channels 
feed a majority voting element. The structure works as long 
as a majority of the channels is fault-free. 

The fault tolerance of an NMR configuration is only 
F=(N -1)/2. The fault tolerance of a Siftout configuration 
with the same number of channels is F=N-2. Comparing 
the. NMR v:ot.iDg .uwt with the. ,Siftoutchecking unit. the 
voter is found to be less complex than the checker for small 
values of N, but the situation inverts as N increases. (See 
Table 1). In addition, NMR has the same disadvantages of 
TMR, of which NMR is a generalization. However, NMR 

Figure 5-Siftout redundancy with three channels 



804 National Computer Conference, 1977 

TABLE I-Equivalent Number of Gates for Restoring Organs 

HMR 

Majority Voter Threshold Voter 

Self-
Purging Siftout 

N NMR TMR Core 5MR Core TMR Core MR MR 

3 4 34 13 
4 71 57 47 21 
5 13 91 80 63 31 
6 III 144 102 78 43 
7 41 131 172 126 95 57 
8 151 200 151 113 73 
9 145 171 228 177 132 93 

can mask some mUltiple failures, while SMR requires that 
no more than one channel fails at a time. If the channels 
have been dormant, sufficient for several failures to have 
developed, then several of the signals may be erroneous 
when the system becomes active. Under this circumstance, 
voting becomes valuable, for systems with fivefold or 
higher redundancy. 

Selective MR 

HMR (hybrid modular redundancy) 

Hybrid redundancy has been developed as a means to 
achieve greater reliability and longer times of failure-free 
operation than those achieved by TMR or NMR systems. 10 

It consists of an NMR core and S standby spare channels. 
The restoring organ includes besides the NMR vote-taker, a 
disagreement detector and a switching network. If the 
disagreement detector finds that the output of a channel in 
the NMR core does not match the output of the vote taker, 
the switching network replaces it by one of the standby 
channels. 

Hybrid redundant systems have the advantages of NMR 
systems (instant internal fault-masking) and Standby sys
tems (increased reliability for long time missions). They 
yield a more efficient hardware utilization than the NMR 
systems, due to a greater fault tolerance. The implementa
tion of the restoring organ of a Hybrid system is not 
straightforward and requires a fairly complicated switch. 11 

Siftout Redundancy appears as a real challenger. It has a 
fault tolerance as high or higher than Hybrid Redundancy. 
And it has a simpler implementation. HMR is able to use 
dormant spare channels, but that capability does not pro
vide a significant increase in reliability. 

Responsive MR 

Self-purging redundancy 

In the Self-Purging MR,4 there are N on-line channels 
feeding a threshold vote-taker with threshold equal to 2. 

The vote-taker output is compared with the channels out
puts for disagreement detection. If a disagreement is de
tected, the faulty channel output is forced to a logical zero. 

Like Siftout MR, this is a 2-out-of-N strategy. The Self
Purging restoring organ requires N flip-flops, that increase 
substantially its complexity. However, these flip-flops can 
also be used to handle transient errors and for restart 
procedures. 

COMPLEXITY OF RESTORING ORGANS 

The complexity of the restoring organs for the MR's 
discussed in the paper are display~d in Table 1. The 
following assumptions were used: 

(a) A gate is considered to be anyone of the following 
logic functions: AND, OR, NAND, NOR, Exclusive 
OR, and Inverter. 12 

(b) A J-K or R-S flip-flop is equivalent to 8 gatesY 
(c) NAND/NOR gates are available with up to 8 inputs. 

The equivalent number of gates were calculated using the 
following expressions: 

(i) NMR (all-NAND implementation): 

(~) +1 (1) 

where M=(N + 1)/2. 

(ii) HMR (iterative cell array implementation11
): 

TMR core (S=N-3): 
Majority voter: 

[G) +IJ +(3S+8)+(9S+27)+(8S+12)=51+20S (2) 

Threshold voter: 

[e1S) + 1 J +(3+S)+(9S+27) (3) 

+(7S+3)=34+ 17S+ e1S) 

5MR core (S=N-5): 
Majority voter: 

[G) + 1 J +(5S+ 17)+(9S+45)+(14S+43)= 116+28S (4) 

(iii) Self-Purging [4]: 

(8+2)N+ (~) +1=(N2 +19N+2)/2 (5) 

(iv) Sijtouf MR: 

2* (~) +2N+ 1=N2+ N+ 1 (6) 



TABLE II-Applicability Bounds for 2-out-of-N MR's 

N Minimal Ro Minimal RR 

0.5 0.8889 
4 0.2324 0.7248 
5 0.1311 0.6028 
6 0.0836 0.5137 

RELIABILITY ANAL YSIS 

Reliability of 2-out-of-N systems 

Out of the schemes shown in Table I, Siftout MR, Self
Purging MR, and Hybrid MR with TMR core are all 2-out
of-N strategies. Regarding the restoring organ as a series 
element in the reliability block diagram, the reliability of a 
2-out-of-N MR is: 

R=RE'RR 

R={I-[(I-Ro)N+N(l-Ro)N-1Ro]}RR 

={l-(l-RO)N-l[1 +(N -1)Ro]}RR (7) 

where RE is the reliability of the executive organ, Ro is the 
reliability of a single channel and RR is the reliability of the 
restoring organ. 

Applicability bounds 

The crossover point is the minimum value of the reliabil
ity of a nonredundant unit for which there is improvement 
in the reliability using a redundant system. It is geometri
cally interpreted as the point where the curves for the 
redundant and the nonredundant system cross each other. 

The reliability of a nonredundant unit (simplex system) is 
equal to the reliability of a channel Ro. The crossover point 
(Rep) of a 2-out-of-N system is the nontrivial root of the 
equation: 

(8) 

Rcp gives the lower bound of applicability of a 2-out-of-N 
system. The reliability cannot be improved by using redun
dancy when Ro<Rcp, whatever the value of RR. 

Similarly, there is a value of RR below which the reliabil
ity cannot be improved over the simplex design, whatever 
the value of Ro. This lower bound for RR is the minimum of 

TABLE III-Reliability of 2-out-of-4 Systems with 1000 Gates/Channel 

R 

Ro RE Siftout Hybrid Self-Purging 

0.5 0.6875 0.6776 0.6590 0.6655 
0.7 0.9163 0.9095 0.8966 0.9011 
0.9 0.9963 0.9941 0.9899 0.9914 
0.95 0.9995 0.9984 0.9964 0.9971 
0.99 0.999 996 0.9998 0.9994 0.9995 
0.999 0.999 999 996 0.999 98 0.999 94 0.999 95 

Modular Redundancy 805 

TABLE IV-Reliability of 2-out-of-5 Systems with 1000 Gates/Channel 

R 

Ro RE Siftout Hybrid Self-Purging 

0.5 0.8125 0.7952 0.7676 0.7778 
0.7 0.9692 0.9586 0.9413 0.9477 
0.9 0.9995 0.9963 0.9909 0.9929 
0.95 0.999 97 0.9984 0.9958 0.9967 

the function Ro/RE • Table II shows this minimal RR and the 
minimal Ro(Rcp) for several values of N. 

Reliability comparison 

In order to compare the performance of the three 2-out
of-N MR's, an analysis was made based on the values from 
Table I. 

If r is the reliability of a single gate and each channel has 
G gates, 

Ro=rG (9) 

If g is the number of gates in the restoring organ, 

(10) 

Tables III to V present values of the reliability R for the 
three MR's discussed, with selected values of Ro. It was 
assumed G= 1000, that is generally considered as a typical 
value. 13 The HMR implementation considered was the 
TMR core, threshold voting. The numbers show that, given 
a fixed Ro and a fixed G, there is for any MR a maximum 
number of channels N max to consider. Increasing the degree 
of redundancy above Nmax will not increase the system 
reliability. This result has long been known for the HMR.13 
Although there are no drastic differences among the three 
MR's discussed, Siftout presents the best reliability per
formance. 

CONCLUSIONS 

Responsive schemes, and in particular SMR, have been 
shown to have significantly better performances than Static 
or Selective schemes. They provide higher fault tolerance 
than Static schemes, and have the added value of fault 
detection capability. Their implementation is much simpler 
than the Selective schemes, enabling higher limits of relia
bility. 

SMR does not use voters, and has a very straightforward 

TABLE V-Reliability of 2-out-of-6 Systems with 1000 Gates/Channel 

0.5 
0.7 
0.9 

0.8906 
0.9891 
0.999 95 

Siftout 

0.8645 
0.9740 
0.9954 

R 

Hybrid 

0.8287 
0.9530 
0.9890 

Self-Purging 

0.8438 
0.9619 
0.9918 



806 National Computer Conference, 1977 

implementation. It was favorably confronted with the older 
TMR, NMR, HMR, and Self-Purging. SMR is particularly 
suitable for systems with high availability requirements and 
systems with high reliability requirements over a long 
period of time. 

The SMR reliability was compared with two other 2-out
of-N schemes, Self-Purging and the iterative cell array, 
threshold voter implementation of TMR + spares. Lower 
bounds were presented for the channel and the restoring 
organ reliabilities. There is a maximal number of channels 
for each instant of time, above which the reliability of any 
scheme starts to degrade. This means that there is an upper 
limit for the reliability that can be achieved with an MR 
over each mission time, irrespective of the degree of 
redundancy. 

REFERENCES 

I. Pierce, W. H., "Adaptive Vote-Takers Improve the Use of Redun
dancy," In Redundancy Techniques for Computing Systems, pp. 229-50. 
Edited by R. H. Wilcox, and W. C. Mann. Washington: Spartan Books, 
1962. 

2. Pierce, W. H., Failure-Tolerant Computer Design. New York: Aca
demic Press, 1965. 

3. Goldberg, J., K. N. Levitt, and R. A. Short, "Techniques for the 
Realization of Ultrareliable Spacebome Computers," Final Report-

Phase I, Stanford Research Institute Project 5580, Menlo Park, Califor
nia, September, 1966. 

4. Losq, J., "A Highly Efficient Redundancy Scheme: Self-Purging Redun
dancy," IEEE Transactions on Computers, Vol. C-25, June 1976, pp. 
569-578. 

5. Devaney, M. J., "Fault Diagnosis and Self-Repair in Operational Syn
chronous Digital Systems," Ph.D. Dissertation, University of Missouri
Columbia, June, 1971. 

6. deSousa, P. T. and F. P. Mathur, "Sift-out Modular Redundancy," 
submitted for publication. 

7. Mathur, F. P. and P. T. deSousa, "Reliability Models of NMR Sys
tems," IEEE Transactions on Reliability, Vol. R-24, June 1975, pp. 108-
113. 

8. Ball, M. and F. Hardie, "Self-Repair in a TMR Computer," Computer 
Design, Vol. 8, February 1969, pp. 54-57. 

9. Hight, S. L. and D. P. Petersen, "Dissent in a Majority Voting System," 
IEEE Transactions on Computprs, Vol, C-22, Februa..ry 1973, pp. 168-
171. 

10. Mathur, F. P. and A. Avizienis, "Reliability Analysis and Architecture 
of a Hybrid-Redundant Digital System: Generalized Triple Modular 
Redundancy with Self-Repair," AFlPS Conference Proceedings (Spring 
Joint Computer Conference), Vol. 36, May 1970, pp. 375-383. 

II. Siewiorek, D. P. and E. J. McCluskey, "An Iterative Cell Switch Design 
for Hybrid Redundancy," IEEE Transactions on Computers, Vol. C-22, 
March 1973, pp. 290-297. 

12. "Reliability Prediction of Electronic Equipment," Military Standardiza
tion Handbook MIL-HDBK-217B, Department of Defense, U.S.A., 
September 1974. 

13. Ogus, R. C., "Fault-tolerance of the Iterative Cell Array Switch for 
Hybrid Redundancy," IEEE Transactions on Computers, Vol. C-23, 
July 1974, pp. 667-681. 



A study of intermittent faults in 
digital computers 

by OMUR T ASAR and VEHBI T ASAR 
University of Detroit 
Detroit, Michigan 

ABSTRACT 

Definition of intermittent faults in digital computer systems 
and their possible causes are given. The effects of intermit
tent faults on the performance of systems and alternatives 
to overcome these effects have been examined. Present 
attempts to cope with the intermittent failures and future 
research areas have been explored. 

INTRODUCTION 

The advanced system architecture of the current computers 
has had an impact on reliability and maintainability con
cepts. Although there have been evolutionary inventions in 
hardware and software built into computers, the complexity 
of the whole system makes the problem of fault isolation 
difficult. It is of vital importance to keep a system running 
as well as producing the system with the utilization of the 
best engineering knowledge. Hence one should be con
cerned with providing high availability and easy maintaina
bility at the design stage. Due to insufficient attention 
devoted to this aspect, many of the machines in the field 
~ ha.\I,e>heeil.~~ ,frowe.poor <Ieliability.awi main
tainability. 

In the so-called space age, it is hard to believe that 
systems can go down unexpectedly or cause interrupts for 
no apparent reason and groups of people wander around for 
many hours, even days to find the problem. All the mainte
nance procedures embodied in the machine do not give any 
hint. The field engineer does his best and the machine does 
not respond. At some point in time, the machine chooses to 
run due to an unknown action and there is almost no 
information on why, how, where and when this happened. 
This dramatized description is quite realistic for a number 
of current installations. 

The problem causing the above situation is called the 
intermittent fault. In most systems 80 to 90 percent of 
faults are estimated to be intermittent. These faults account 
for more than 90 percent of total maintenance expense 
because they are difficult to detect and isolate. 

807 

INTERMITTENT PROBLEM DEFINITION 

Intermittents were first defined as faults over which the 
user had little or no control. This definition still holds true. 
Today some people define intermittents as failures that are 
not reproducible since the conditions causing or surround
ing an intermittent are often not known. The inherent 
inconsistency in the occurrence of such faults is a major 
hindrance to a detailed analysis of these conditions. Inter
mittents can be defined as random failures that prevent the 
proper operation of a unit for a short period implying that 
the duration of failures is not long enough for the applica
tion of a test procedure designed for permanent faults. 

Some intermittents are known to occur due to external 
effects such as temperature, humidity, vibration, power 
fluctuation, pollution, pressure, and electromagnetic fields. 
Assuming that the system runs under specified external 
conditions, this class of faults constitutes a small portion of 
intermittents. 

The nonenvironmental intermittents, namely the faults 
that are within the system, seem to be the basic source of 
irritation to the user. There is a difference of opinion as to 
the behavior of this class of intermittents. Some believe 
there actually exists a permanent failure which is stimulated 
onlyWJ.der. a ~er1ain sequenc.eof eY~nts.~~~(l~eqQeIltly.J it 
appears as intermittent. The other opinion is that portions 
or components of the system malfunction intermittently. 
For example, loose connections, resistance variations and 
partially defective components may cause such faults. Ex
amples of both opinions have been observed in practice. 
There are also intermittents that eventually become perma
nent failures. Such intermittents are caused by deteriorating 
or aging components. Once they become permanent, they 
can be detected by existing procedures. However this 
transition can take from a few minutes to several months 
during which the frequency of intermittents increases intol
erably. To speed up this transition, environmental condi
tions can be drastically changed to unfavorable levels. 
Sometimes this technique, known as the stress technique, 
works but it may inflict new damage in other parts of the 
system. 

The source of nonenvironmental intermittents can be 



808 National Computer Conference, 1977 

software as well as hardware. It has not yet been estab
lished which causes the major part of such intermittents. 
However, the general trend is to treat them as hardware 
oriented. 

REVIEW OF LITERATURE ON INTERMITTENT 
FAULTS 

The first experiments on the effects of intermittent faults 
were conducted by Ball, Hardie and Suhocki in 1966. 1

,2 A 
highly sophisticated logic simulator was developed for the 
purpose of normal and/or fault simulation of the Saturn V 
Launch Vehicle aerospace computer which was being de
signed by IBMo The computer is a binary; fixed point, serial 
machine employing triple modular redundancy to provide 
very high reliability. The simulator was capable of analyz
ing single and mUltiple, permanent and intermittent faults. 
Nearly 800,000 intermittents were simu!ated to obtain a 
reliable statistical sample. The duration of these intermit
tents varied between 500 nanoseconds (one clock time) to 
five milliseconds. They were injected at randomly selected 
points of combinational and sequential logic circuits in the 
arithmetic-instruction and mUltiply and divide units, at the 
execution time of the simulator. 

The analysis of the intermittents included a record of the 
time of occurrence, time and number of detections and the 
number of intermittents that caused a difference from the 
correct output. The probability of detection was calculated 
based upon this information. 

The authors revealed interesting as well as important 
conclusions from the stimulation output. These can be 
summarized as follows. Only 8.3 percent of the total 
intermittents injected caused the computer to perform in
correctly. The combinational logic was less sensitive to 
intermittents. In other words, the probability of detection in 
combinational logic was smaller compared to sequential 
logic. A single intermittent fault of one clock period was 
almost undetectable. Single intermittents of longer duration 
had very low probabilities of preventing the correct opera
tion. The probability of detection was directly proportional 
to the duration of intermittents and highly dependent on 
computer modules. 

The authors experienced that field failures in aerospace 
computers tend to be intermittent. In commercial com
puters, intermittents have been estimated to constitute 90 
percent of all field failures. Hence, maintenance cost is 
mainly due to intermittents. The authors believed that most 
intermittents were due to insufficient testing at the factory. 
They proposed to develop better detection procedures as a 
partial solution to the intermittent problem. The other 
approach was to design equipment insensitive to intermit
tents introducing retry and/or redundancy. 

IBM has also tried to deal with intermittents in systems 
360 and 370.3,4 Here the objective was to reduce the number 
and length of unscheduled maintenances and to minimize 
the impact of intermittents on system availability. Auto
matic error recording at the instant of discovery followed 
by error recovery was proposed as a feasible solution. The 

so called Recovery Management of IBM follows several 
steps to achieve the above objectives. 

Instruction retry can be affected in the 110 area, central 
processor and main storage areas. Selective termination 
enables the system to examine the failing environment 
while all other jobs are running. These functions are incor
porated in Recovery Management in four steps. First, a 
functional recovery is attempted. If the retry of the inter
rupted operation is successful, the fault becomes transpar
ent to the user. If not, the next function is System Recov
ery where a selective termination is effected to analyze the 
failure. Then the system-supported restart is tried without 
stopping for repair. If a stop is required, system repair 
utilizes all the detailed error analysis records. To perform 
a!! these steps, Recover}' I'.,1anagement has 1'0 De\"icc/Unit 
Recovery, Channel Recovery, I/O Recovery Management, 
CPU/Processor Storage Recovery, System Associated Re
covery and Error Record Retrieval facilities. 

Honeywell's proposal to overcome the intermittent prob
lem was also retry. The Honeywell 6000 was implemented 
as a retryable processor. Maestri discusses the problems 
encountered and the design proposal to avoid such prob
lems. 5 Some instructions cause a destructive read of a 
memory location. Therefore, it is necessary to restore that 
memory location before retry can be attempted. For this 
purpose, a buffer register has to be added. Data can be held 
in this register until error detection and correction codes 
report correct data recovery. Instruction retry for a MOVE 
may cause problems if a data block overlays another block, 
partly destroying the latter. To avoid this, snapshot regis
ters are added where at the occurrence of a fault the state 
of the cycle control flags and address register could be 
saved. Snapshot registers can also be used as a diagnostic 
aid. To retry instructions with indirect addressing, several 
methods are proposed. One way is to obtain a pointer to the 
first indirect word. Restoring should take precautions 
against parity errors in the updated word and double 
updating. The second approach requires a scratchpad mem
ory where the state of sequence control flags and memory 
addresses are saved for every cycle of an instruction. 
Software can then handle restoration of indirect words 
assuring no error. Multicycle instructions change the con
tents of registers with the speed of the adder cycle. In order 
to retry such instructions, intermediate registers are needed 
to protect the contents of primary registers and to keep up 
processor speed. These can be placed at the inputs of the 
adder on lines from memory and primary registers. Data 
can be held here until error checking is completed. 

To solve problems due to instruction overlap, four in
struction counters are added for simultaneously executed 
instructions. If an error occurs, the instruction counter of 
the failing cycle can be identified either selectively or by a 
program utilizing a failure flag included in the scratchpad 
memory. 

The addition of the above mentioned registers increases 
the cost of implementation. However, the new processor is 
almost 100 percent effective in doing instruction retry. The 
cost advantage can be justified bearing in mind that instruc
tion retry is 80 to 90 percent successful. Honeywell now 



even states, in sales literature, that the 6000 system is 
capable of handling 95 to 97 percent of all intermittent 
failures. 

The other approach to coping with faults in digital 
computers has been the introduction of redundancy. Re
search has shown that Triple Modular Redundancy (TMR) 
can mask solid as well as intermittent faults. If TMR is 
applied at the module level, then the effect of a single 
intermittent can be permanent in a sequential circuit. 6 In 
case an intermittent induces a faulty state, it must be 
corrected with a resynchronization sequence before a sec
ond failure occurs. TMR has been used in some space 
projects; however, there has been no commercial applica
tion. 

Totally self-checking check circuits have been designed. 
Such circuits are capable of detecting failures in themselves 
during normal operation. 7 If intermittents last long enough, 
they affect the output in such a way that they can be 
detected. 

Theoretical modeling of intermittent faults has been at
tempted in recent years. Breuer presented a two-state first 
order Markov model to represent the intermittents. 8 Figure 
1 shows the two states: the faulty state (N 1) and the normal 
state (N2). 

Since the Markov model is probabilistic, each state and 
every transition is associated with probabilities. With re
spect to intermittents, a circuit either operates normally or 
it possesses an intermittent. Let p be the probability of 
having an intermittent, then the normal state will have a 
probability of (l-p). To apply this model to any circuit, first 
of all the parameters, namely p, r, s, have to be estimated. 

A time interval (T,T') is considered for fault analysis. 
Fault patterns are defined over this interval as follows: 
d=( dQ, dQ - l , ••• , d 2, d l ). The subscripts refer to the 
number of clocks in this interval. d=(O, 0, ... , 0, 0) 
implies a normal circuit. d=(1, 1, ... , 1, 1) represents a 
solid fault. d=(O, 0, ... , 1, 0, 0) is the fault pattern of an 
intermittent occurring in the third clock period. The prob
ability of each fault pattern can be calculated using the 
Markov model. A complete test set will be obtained if test 
sets are generated for all possible fault patterns. A modified 
f'#.f;l:~~bi," !l~ -for- f@SI ~aeratiQQ that makes. us.e 
of two types of gates called d-OR and d-AND. d-OR has the 
property that its output is ad, if and only if at least one of 
its inputs is a d or d; otherwise its output is O. In other 
words, if any input of d-OR receives a fault, it can 
propagate it. The output of d-AND is ad, if and only if all 
of its inputs have a d; otherwise, it is a O. Test generation 

5 

reG : ~s = (1-5) 

r = (l-r) 

Figure I-Markov model 

A Study of Intermittent Faults in Digital Computers 809 

requires that the combinational logic be evaluated the same 
number of times as the number of fault patterns present. In 
sequential logic analysis, -the circuit evaluation should be 
repeated for every fault pattern in every clock period within 
the time interval (T,T'). Hence, even for a small circuit the 
test generatio~ is a very lengthy procedure. 

Every test generated has a certain probability of detec
tion. If a confidence level can be specified, then a lower 
bound for the number of tests that are required to detect an 
intermittent can be calculated. 

Kamal's model is also probabilistic. 9 It is based on 
pattern recognition techniques. The analysis covers well 
behaved signal independent single intermittents in non
redundant circuits. A state space includes the state of being 
faultfree-the states possessing an intermittent that do not 
affect the output and the states possessing an intermittent 
that affect the output. The test set is the set of tests that are 
generated to detect permanent faults. The proposed solu
tion is the repeated application of these tests. It is proven in 
the paper that an intermittent can be detected by infinite 
number of repetitions of a test. The probabilistic model is 
utilized to find the finite number of repetitions satisfying a 
confidence level. The model requires estimation of the 
probability that an intermittent occurs and the conditional 
probability of the output being affected given an intermit
tent has already occurred. The probability of detection 
given an intermittent is calculated according to Bayes' rule. 
After each application of a test, this figure is updated. This 
probability approaches 1 with an infinite number of applica
tions. However, the procedure can be stopped once the 
confidence level is reached or the number of repetitions can 
be calculated in terms of the confidence level and the other 
probabilistic parameters. In most cases this number is very 
large. Kamal provides an optimization procedure by the use 
of integer programming. 

Diagnosis procedure follows the same approach.lo Here it 
is assumed that an intermittent has been detected. Using 
the test sets and the set of permanent faults, a coverage 
table is generated. From this table a test set is chosen that 
covers the permanent faults. These tests are repeatedly 
applied until one fails. This reduces the fault table and the 
po~§iQle f<;lult§ .. The aboye cycle is repeated until the fault 
set consists of a single fault. -If th~re- ~~ists no test set'to 
cover all possible faults, the diagnosis experiment is again 
terminated. The length of the experiment is calculated 
making use of the model and is shown to be finite. The fault 
table is also analyzed to obtain minimum diagnostic resolu
tion. Optimization of the diagnosis procedure is not offered. 

There are two major difficulties in the application of 
Breuer's and Kamal's proposals. First, it is very hard to 
obtain realistic estimates of the model parameters using the 
current available data. Even if an extensive experiment is 
conducted on a certain system, the parameters would apply 
to this particular system. The unpredictable behavior of 
intermittents may also impose an update on the parameters. 
The second problem is the huge number of tests required to 
detect and diagnose intermittents. In this respect, the 
proposed procedures may not be economically feasible. 
Even the detection of solid faults are far more expensive 
then desired. 



810 National Computer Conference, 1977 

Intermittent faults have been analyzed at the circuit level. 
Yen discusses intermittents due to noise in four phase MOS 
gates ll which are widely used in LSI circuits. The problem 
is a charge redistribution problem. It is possible that the 
charge at some output node will decrease to critical levels 
causing intermittents. The situation does not fit the stuck-at 
model and testing will not be successful in detecting this 
type of failure. Yen proposes the addition of prechargers to 
avoid the problem. The number of the prechargers can be 
optimized by the use of computer-aided circuit simulation 
in order to decrease the additional hardware cost. 

ALTERNATIVES FOR SOLUTION 

No ideal method has been established to diagnose inter
mittent faults so far. Academic work offers solutions on 
restricted models that do not realistically represent the 
intermittent space. Industrial efforts concentrate on in
creasing the availability, hence they are mainly concerned 
with the minimization of the effects of intermittents. Up to 
now, the former has found no application. On the other 
hand, commercial manufacturers introduced retryable sys
tems that recover from intermittents in a very short period. 
Although retryability is not a method to diagnose or to 
avoid the intermittents, it seems to be the only feasible way 
of recovering from such faults with minimum impact. 
Indeed, it is difficult to detect and diagnose something that 
goes on and off unpredictably, and retry ability seems to be 
the only solution at the systems level currently and in the 
near future. Intermittents at the circuit or card level should 
be viewed as a completely different problem. At factory 
testing, intermittents account for only 30 percent of all 
faults, whereas in the field they are estimated to constitute 
90 percent of all faults. Furthermore, the consequences of 
intermittents occurring at the system level are far more 
serious and costly compared to their effects at the testing 
level. Therefore, our efforts should concentrate on methods 
dealing with system intermittents. Here we discuss retry 
and other possible alternatives and where and how they can 
be effective in fighting intermittents. 

Instruction retry is not a new concept. It has been a 
regular procedure that is carried out whenever an error 
occurs in the 110 area in reading or writing a tape. The new 
attempt is to extend this feature to central processor and 
memory units. IBM has been working on this since 1967; 
Honeywell since the early 70's. Burroughs has recently 
expended efforts on making its large scale processors 
retryable. The outcome indicates that these systems can 
survive 95 percent of intermittents. 100 percent effective
ness is also possible. Since the chance of success in 
retrying is .8 to .9, the system will have 75 to 85 percent 
less faults that are apparent to the outside world. In other 
words, instead of giving an interrupt, the system continues 
to operate successfully with a few microseconds or millisec
onds of delay, caused by the execution of retry. Recovery 
alone does not help to isolate the intermittent, but an 
immediate remedy is achieved with respect to the operation 
of the system. Adequate error recording serves as a diag-

nostic aid during scheduled maintenance. Utilization of 
these records toward a test program will be discussed later. 

Retry requires both hardware and software support. 
Intermediate and snapshot registers and scratchpad memo
ries have to be added in order to be able to save the status 
of the system prior to an intermittent. Only then can the 
system go back and retry the failing state. Even with the 
addition of the sophisticated retry software, the implemen
tation is not costly compared to the maintenance cost due 
to intermittents. 

Today it is common practice to use stress testing to 
change an intermittent to a solid failure. Marginal voltage 
and timing conditions can be set or thermal stress can be 
applied such that slow rise times, low switching thresholds 
and race c.onditions are amplified. If test and diagnostic 
programs are run during the application of mechanical 
stress, faults due to loose connections, defective connec
tors or printed circuits can be caught. The disadvantage of 
this method is the dedication of the processor to mainte
nance procedures as well as the possible infliction of new 
damage due to thermal and mechanical stress. By all 
means retry is a better approach than this technique. 

Retry is aimed at continuing the operation of the system. 
Whether it is successful or not, a detailed error recording is 
a major part of this scheme. If retry is not successful, the 
analysis of the error recording prior and at the instant of 
error occurrence would assist the personnel to determine 
the cause of the error in an easier and faster way. If retry is 
successful, then the error recording dump would be ana
lyzed during scheduled maintenance to determine the cause 
of the intermittent. It may be advantageous to replace or 
repair the part causing the intermittent to avoid future 
possible intermittents. Although retry requires a short 
amount of time, it is more desirable not to have any 
interruptions. If this policy is continued persistently, the 
rate of interruptions due to intermittents may gradually 
decrease. 

Another important outcome of detailed error recording is 
the possible generation of a test program that diagnoses 
intermittent faults. The accumulated error recording of a 
certain period may well include information about the most 
frequent intermittents such as the rate of occurrence, the 
effect of the intermittent, the symptoms and the fastest 
correction procedure. Similar to the detection procedure, 
given an intermittent and its symptom(s), we can run the 
above mentioned program and come out with an intermit
tent or a set of possible intermittents that can be examined. 
Isolation of the intermittent will be an easy matter if it 
actually belongs to th~ group of the intermittents under 
consideration. If not, the intermittent can be located by 
existing means and the test program can be expanded to 
include the new situation. As time progresses, one may 
come up with a complete intermittent diagnostic routine. 

Realization of a diagnostic routine for intermittents re
quires extensive error recording on a retry able processor. 
Diagnosis can be achieved by another practical method 
called dynamic monitoring. As the name implies, dynamic 
monitoring involves a continuous scan of the machine to be 
able to detect a fault at the instant of occurrence. Other-



wise, there is practically no way of reproducing the same 
event for purposes of detection and diagnosis. This scheme 
can be realized by placing test points and interrogating the 
values of these test points at every clock period. If the 
machine has retry capability, dynamic monitoring can be 
very successful in isolating intermittents. The values of test 
points can be continuously stored in a monitor memory, the 
size of which depends on the number of test points and the 
number of clock periods that have to be considered. In case 
of an interrupt, one of the test points will have a faulty 
value. These values can be stored in a memory for further 
reference. If the retry is successful, the particular test point 
will have the correct value. Comparing the two maps of test 
points before and after retry, the faulty test point can be 
isolated. To locate the fault causing component, it would 
suffice to examine the components feeding that test point. 

Although dynamic monitoring requires test points and a 
memory of considerabie size, the advantages are apparent. 
The fault is actually isolated during the operation of the 
system. All intermittents are detected regardless of their 
cause. If statistics are maintained, deteriorating compo
nents can be isolated and future faults predicted. 

The feasibility, development and application of this tech
nique has to be considered in conjunction with retry capa
bility. If retry is not available, the technique can be 
implemented by straight dumping of the recorded memory. 
The basic problem in realizing this scheme is the optimal 
location of the test points. 

The above discussion refers to the solution of intermit
tents at the systems level. Dynamic monitoring can also be 
employed in testers that are used to screen circuits and 
cards. At the circuit level, the models presented by Kamal 
and Breuer may also be applicable. Current automatic 
testers operate at a very high speed. Hence, a very large 
number of tests can be applied in a short period. If careful 
factory screening is desired, these techniques can be incor
porated with the testers. Although the cost of testing will 
increase, less faults will escape the factory screening. 
Economic feasibility of these two models can be studied by 
the use of computer-aided simulation. 

A Study of Intermittent Faults in Digital Computers 811 

ACKNOWLEDGMENT 

The authors wish to thank Mr. R. E. Stackhouse for his 
guidance and comments during the preparation of this 
paper. This work was supported by the Burroughs Co. 
through an internship program. 

REFERENCES 

1. Ball, M. and F. Hardie, "Effects and Detection oflntennittent Failures 
in Digital Systems," 1969 Fall Joint Computer Conference, AFIPS 
Conference Proceedings, Vol. 35, Montvale, N. J., AFIPS Press, 1969, 
pp. 329-335. 

2. Hardie, F. H. and R, J. Suchocki, "Design and Use of Fault Simulation 
for Saturn Computer Design," IEEE Trans. Computers, Vol. EC-16, 
August 1967, pp. 412-429. 

3. Carter, W. C., H. C. Montgomery, R. J. Preiss and H. J. Reinheimer, 
"Design of Serviceability Features for the IBM SystemJ360," IBM 
Journal, April 1964, pp. 115-126. 

4. Droulette, D. L., "Recovery through Programming SystemJ360-SystemJ 
370," 1971 Spring Joint Computer Conference, AFIPS Conference 
Proceedings, Vol. 38, Montvale, N.J., AFIPS Press, 1971, pp. 467-476. 

5. Maestri, G. H., "The Retryable Processor," 1972 Fall Joint Computer 
Conference, AFIPS Conference Proceedings, Vol. 41, Montvale, N.J., 
AFIPS Press, 1972, pp. 273-277. 

6. Wakerly, J. F., "Transient Failures in Triple Modular Redundancy 
Systems with Sequential Modules," IEEE Trans. Computers, Vol. C-24. 
May 1975, pp. 570-573. 

7. Anderson, D. A., and G. Metze, "Design of Totally Self-Checking 
Check Circuits for m-out-of-n Codes," IEEE Trans. Computers, Vol. C-
22, March 1973, pp. 263-269. 

8. Breuer, M. A., "Testing for Intennittent Faults in Digital Circuits," 
IEEE Trans. Computers, Vol. C-22, March 1973, pp. 241-246. 

9. Kamal, S., and C. V. Page, "Intermittent Faults: A Model and Detec
tion Procedure," IEEE Trans. Computers, Vol. C-23, July 1974, pp. 
713-719. 

10. Kamal, S., "An Approach to the Diagnosis of Intermittent Faults." 
IEEE Trans. Computers, Vol. C-24, May 1975, pp. 461-467. 

II. Yen, Y. T., "Intermittent Failure Problems of Four-phase MOS Cir
cuits," IEEE Journal of Solid-State Circuits, Vol. SC-4, June 1969, pp. 
107-110. 





A "calibration-prediction" technique for 
estimating computer performance 

by C. A. ROSE 
Naval Ocean Systems Center 
San Diego, California 

ABSTRACT 

One possible use of an analytical model of a computer 
system is to predict the increase in performance that results 
from a proposed modification of the existing system. With 
this aspect in mind, experiments were conducted that 
hypothesized situations in which a manager was consider
ing upgrading his system and was interested in estimating 
the performance improvements to weigh against the antici
pated costs. The basic concept was to run a benchmark 
program on the baseline system and to validate the model 
parameters. After validation, the model was used to predict 
CPU and I/O channel utilizations for the upgraded or 
reconfigured system. Lastly, the benchmark was rerun on 
the reconfigured system and measured utilizations were 
compared with predicted values from the model. There was 
good agreement between predicted and measured utiliza
tions when adding a channel to an IBM 370/155, when 
reallocating files and adding two channels to an IBM 
370/155-2, and when adding a channel to an IBM 370/168-1. 

INTRODUCTION 

There have been many queueing models of computer sys
tems pubiisheo 'in [he lil.erulurt:: bUlldativt:Iyre~ ~tudk~ 
have been validated on actual systems. Studies which have 
provided validations include Moore,9 Baskett and Gomez,! 
Sekino,12 and Bhandiwad and Williams. 3 Hughes and Moe8 

used a model to predict new CPU and channel utilizations, 
and then performed the reconfiguration to compare meas
ured utilizations with predicted values. Their experiments 
consisted of reallocating files and increasing main memory 
on a UNIVAC 1108. Bhandiwad and Williams changed 
memory size on an IBM 3701145. 

The concept of using an analytical model to predict 
performance after a reconfiguration, then actually perform
ing the reconfiguration and comparing model and measured 
utilizations was the basic theme of the project reported in 
this paper. Results will be presented which show the 
applicability of the model for predicting computer perform
ance in situations of reallocating files and increasing the 
number of channels. The experiment for increasing the 

813 

number of channels has not been previously reported, and 
may be of interest to managers of systems which are 
currently I/O bound. 

MATHEMATICAL SOLUTION OF CLOSED 
QUEUEING NETWORKS 

The solution shown in this section is due to Chandy, 
Herzog and WOO.6 Assume a class of closed queueing 
networks with exponential servers, with fixed N customers 
and with M queues indexed 1, 2, ... , M. The service rate 
for the lth queue when there are k customers in the lth 
queue is Uj(k) , i=l, ... , M and k=l, ... , N. The service 
discipline for all servers is first come-first served (FCFS). 
When a customer finishes service in queue i, he joins queue 
j with probability Pu independent of the current state of the 
system, i, j= 1, ... , M. The states of the system are m
tuples (n 1 , ••• , nM), where nj is the number of customers in 
queue i including any in service, ;=1, ... , M. Note that 

n1+n2+···nM =N. There will be (M+:-l) different system 

states. Let P(n1 , ••• , nM) be the probability that the system 
is in state (n1 , ••• , nM ). Gordon and NewelF showed that 

where 
.11 

g(nt, ... , nM )= n xj(n j) 
i=1 

(1) 

(2) 

and G is a normalizing constant. Buzen4 derived an ex
tremely efficient algorithm for the solution of G. 

The quantities xj(ni) are defined recursively as follows: 

(3) 

where Yi is the relative frequency of arrivals at queue; and 
i=l, ... , M; k=l, ... , N. The eigenvector equations 
which must be satisfied are: 

M 

:L Yi"PU=Yi j=I, ... ,M (4) 
i=1 

The set of y/s is unique to a normalizing constant, and 
may be regarded as a set of stochastic balance equations. 

Let pu(r) be the probability that a customer of class r 



814 National Computer Conference, 1977 

Joms queue j after finishing service in queue i. Let Yi(r), 
i=l, ... , M and r=l, ... , R be a set of numbers such that 

M 

Yj(r) = L Yi(r)'pij(r) for alIj, r (5) 
i=l 

Let the event that there are ni(r) customers of class r in 
queue i, r= 1, ... , Rand i= 1, ... M be represented by the 
matrix [nir], whose i, rth element is ni(r). The matrix [nir] is fea
sible if ni(r) is non-negative and if ~~1 ni(r)=N(r), where 
N(r) is the total number of customers of class r in the 
network. Of course, ~~=1 N(r)=N. 

Baskett, Chandy, Muntz and Palacios2 extended Equa
tions (I) and (2) to the multiclass case and accommodated 
Processor Shared (PS) CPU service disciplines as well as 
FCFS. Thus: 

1 M 
P([n jr])= G(R) jU xj(ni(1), ... , ni(r)) (6) 

M 

g([nir]) = fI xi(nM), ... , ni(R)) (7) 
i=l 

Chandy, Herzog and Wo06 derived an extremely efficient 
algorithm for the solution of G(R). 

Figure I depicts the model, assuming that a fixe~ integer 
number N of customers (processes) traverse a closed net
work consisting of the central processor (CPU) and the 110 
channels (lOC). A customer alternately receives service 
from the CPU and one of the channels. After completing 
service at the CPU, a customer branches to a channel 
according to a probability P;(r) associated with that channel 
and which may be class dependent. CPU scheduling disci-

N CUSTOMERS 

FIRST COME-FIRST SERVED: MST 0 
(FCFS) 

PROCESSOR SHARED: MST O( r) 
(PS) 

• 
• 
• 

/015, 1 

MST 2 

MST m 

CPU MST :; (TOTAL CPU SERVICE TIME)/(NO. OF CPU PROCESSING PERIODS) 

MST m :; (TOTAL IOC m SERVICE TIME)/(NO. OF IOC m PROCESSING PERIODS) 

Pm (r) :; PROBABILITY THAT A JOB OF CLASS r WILL BRANCH TO CHANNEL m 

AFTER A CPU PROCESSING PERIOD 

Figure I-Queueing network model 

pline is either FCFS or PS. Channel scheduling discipline 
must be FCFS. It turns out to be more convenient when 
automating the solution of equations (6) and (7) to use Mean 
Service Time (MST), the reciprocal of the mean service 
rate. 

Previous papers which reported model validations often 
provided few details as to how the parameters for the 
analytical model were measured, so a significant amount of 
time during the project was devoted to this phase. It was 
considered highly desirable as a part of this project to 
develop a measurement methodology which would be 
within the capabilities of computer staff personnel. Using 
this methodology and the model of (6), computer staff 
personnel could validate the model for their system, then 
carry out studies for tuning the system. The measurement 
methodology is described in detail in References 10 and 11. 
A FORTRAN listing for solving the equations of the local 
balance model in Reference 6 is included in Reference 10. 

It is very difficult with current analytical techniques and 
measurement devices to model and measure the 110 chan
nel behavior of modern computer systems. From the analyti
cal aspect, it is extremely difficult to model the channel 
operation when the devices are in various modes of opera
tion, such as seek, latency, data transfer, waiting for a 
control unit and waiting for a channel. Analytical tech
niques for modeling overlap are not currently available, and 
this problem will probably require much research and effort 
in the future. 

Modern 110 channel architecture can also cause problems 
from the measurement point of view. The service time of a 
disk or drum operation is equal to the seek time (if the 
device is a disk) plus the time of rotational latency plus the 
time of data transfer. The channel mean service time (MST) 
for the model should include all of these components. 
Although the channel will always be required for the 
transmittal of data, with modern computer architecture the 
channel may not be required for latency or seek. It would 
be extremely desirable to have a measurement probe point 
which would indicate channel busy time when any device 
on that channel is busy. Unfortunately, it appears that such 
a probe point has not been researched and documented for 
many computers. 

It is thus important to realize that current analytical 
models of computer systems do not explicitly include all of 
the complexities of the system. Furthermore, existing 
measurement devices do not permit measurement of the 
exact parameters of a queueing network analytical model, 
particularly with regard to 110 channel behavior. The objec
tive of the project reported in this paper was to determine, 
with the above limitations in mind, whether a procedure 
could be developed which would enable one to predict with 
reasonable accuracy the change in computer performance 
when modifications are made to a particular system. If such 
a technique were developed and validated, then a manager 
could use this approach to estimate performance improve
ments and compare them with the costs for upgrading the 
system. 

To alleviate the current analytical and measurement 
problems, a "calibration-prediction" technique is proposed 



as an interim technique to provide useful engineering re
sults until more powerful analytical techniques and meas
urement tools are available. A review of the equations of 
the model in Reference 6 shows that proper calculation of 
CPU throughput is crucial, since all utilizations depend on 
this quantity. Therefore, as part of the validation procedure 
a calibration parameter is computed which forces model 
CPU utilization to agree with the measured CPU utilization. 
I/O channel utilizations are recomputed using this parame
ter. Using this calibration procedure, good results were 
obtained for estimating new computer system utilizations 
for reallocating files and adding two channels to a 370/155-
2, for adding a channel to a 370/155, and for adding a 
channel to a 370/168. 

A possible interpretation of the calibration procedure is 
that certain simplifying assumptions must be made for 
mathematical tractability in order to derive the modeL 
Furthermore, it is not feasible with existing monitors to 
obtain measurements which exactly correspond to model 
parameters. To reduce the effect of these inaccuracies, it is 
necessary to first calibrate the model for a given baseline 
configuration. After the model has been calibrated, it is 
then feasible to use the model to predict performance of the 
reconfigured computer system. This approach is similar to 
the small-signal analysis of electronic circuits. For small 
values of input signals, the behavior of the circuit is 
assumed to be linear in the vicinity of an established 
operating point. 

VALIDATION OF THE MODEL ON AN IBM 370/155-2 

The IBM 370/155-2 included virtual storage operating 
system VS2, HASP and the Time Sharing Option (TSO). 
This particular system configuration consisted of one CPU, 
1.5M bytes of main storage and six channels. 

With reference to the block diagram of Figure 1, channel 
1 was a byte multiplexor channel and provided a data path 
through a control unit to one IBM 1403 printer and an IBM 
2504 card punch. Channel 2 was a block multiplexor 
channel and provided a path to four IBM 3330 disks via a 
3333 D!sk Control Unit (OCU)" The remmftmg f~tlf £ilaft

nels were selector channels which connected to independ
ent banks of IBM 2314 disks via DCU's. There were eight 
2314's connected to channel 3. Channel 4 had eight 2314's, 
plus an IBM 2848 Display Control and eight 2260 timeshar
ing terminals. Channel 5 was connected to sixteen 2304's. 
Channel 6 provided a path to five 2420 Magnetic Tape Units 
(MTU) via a 2803 Tape Control Unit, and to eight 2314's. 
There was no mUltiple path switching option in this system. 

As shown in Figure 1, the model parameters which must 
be measured are channel branching probabilities, channel 
mean service times (MST's), CPU MST and the degree of 
multiprogramming (N). An IBM hardware monitor was 
used to record utilizations and as a check on certain 
quantities provided by an IBM software monitor. The IBM 
accounting system (SMF) was not suitable for use as the 
primary software monitor, but did provide useful supple
mentary information. The software monitor provid"ed by 

Estimating Computer Performance 815 

IBM was proprietary, but this situation should not be 
considered as a serious limitation since the desired meas
urement capability is included in the supplied software for 
VS2 Release 2.0. The procedure for deriving the model 
parameters using the monitors is discussed in detail in 
References 10 and 11, so only the results will be presented 
in this paper. 

It might be noted at this point that the objective of these 
experiments was to study system behavior rather than a 
detailed examination of the operation of a particular sub
system. In particular, these experiments did not require 
either a separate or an embedded paging model. Hence the 
paging statistics were included as an integral part of system 
statistics, e.g., the number of page-in/page-outs were in
cluded in the computation of the branching probability for 
the channel with the paging pack. Of course, this simplifica
tion may not be valid in all cases, but good results using 
this assumption were achieved for these experiments. 

In order to establish a known baseline and to insure 
repeatability of experiments, a benchmark program similar 
to that described in Buchholz5 was obtained from the 
Federal Computer Performance Evaluation and Simulation 
Center (FEDSIM). This particular benchmark is capable of 
exercising computers with batch, TSO and virtual storage 
capabilities. It executes sixty job steps for batch processing 
during a running time of approximately twenty-five min
utes, and provides a mix of CPU bound, 1/0 bound and 
balanced workloads. For TSO operation it executes a 
circular list of commands for such typical timesharing tasks 
as editing, allocating and linking. All of the experiments 
described in this paper were conducted during dedicated 
time with no other users on the system. 

For the first experiment the system was configured 
without the IBM 3330 disks, i.e., channel 2 was not used. 
To simplify generation of the operating system no timeshar
ing terminals were used, and only the batch portion of the 
benchmark was needed. (For this workload channels 5 and 
6 were not required.) 

The objective of this first experiment was to validate the 
model and the measurement methodology. Since the time
averaged degree of multiprogramming was measured at 3.7 
'_'~tng IBM'~ 8yst-ems Me~uf'emem Facii.ity4SMF), •. model 
utilizations were solved for N =3 and N =4. The results are 
shown in Table 1. 

IBM 2314 disks are used with selector channels and 
remain connected to the channel for the data transfer and 
the full rotational latency of the search. The channel is not 

TABLE I-Model vs. Measured Utilizations for the Case of IBM 2314 Disks 

MODEL MEASURED MODEL 
UTILIZATIONS UTILIZATIONS UTILIZATIONS 

SERVER N=3 N=3.7 N=4 

CPU 0.648 0.696 0.733 
CH 1 0.544 0.576 0.615 
CH 2 0.000 0.000 0.000 
CH 3 0.372 0.400 0.421 
CH4 0.394 0.422 0.445 



816 National Computer Conference, 1977 

connected to the 2314 during a seek. An interesting point of 
this experiment is that good results were obtained without 
including any mean channel seek time in the value of model 
channel MST's. The channel MST's were computed from 
channel busy utilizations which took into account data 
transfer operation and rotational delay only. Calibration of 
the model was not required. 

Since good results were obtained in the first experiment 
using the 2314 disks, it was decided that a policy would be 
established for the experiments on the 370/155-2 by adding 
the 3330 mean rotational delay of 8.35 ms. to the values of 
channel 2 MST obtained from channel busy times to 

. account for latency. (IBM 3330 disks are not connected to 
the channel during a search.) For some experiments slightly 
more delay would have worked better; for other experi
ments iess deiay wouid have improved accuracy. Overaii, it 
did appear to work reasonably well for a uniform policy and 
calibration was not required for any of the experiments on 
the IBM 370/155-2. 

The model in References 2 and 6 is the first queueing 
network model which will permit classes of customers. 
Partitioning a computer system environment into classes of 
timesharing and batch jobs appears useful, and the results 
of the validation on the 370/155-2 for this case are shown in 
Table II. Both IBM 3330 and 2314 disks were used in this 
experiment and the TSO and batch benchmarks were 
executed concurrently. Based on the SMF data the meas
ured degree of mUltiprogramming for TSO was 0.8 and for 
batch was 3.8. 

The model will permit CPU service disciplines of first
come-first-served (FCFS) and processor-shared (PS). Based 
on the characteristics of IBM machines, one would expect 
that FCFS would more accurately model system behavior. 
CDC 6600 machines are more accurately modeled by the PS 
discipline, as shown in (I). It is interesting to note in Table 
II that FCFS does yield better results. 

For this configuration the system packs were on channel 
2 and the temporary data sets were on channels 3 and 4. 
The allocation routine in VS2 will seek to balance the 
application programs' (benchmark) 110 accesses between 
channels 3 and 4. The allocation routine does not take into 
account the 1/0 accesses to the timesharing terminals, and 
the TSO terminals on channel 4 result in it being more 
heavily utilized. 

TABLE II-Model vs. Measured Utilizations for Concurrent TSO and Batch 
Operation Using Two Classes of Customers 

MODEL MEASURED MODEL 
UTILIZATIONS UTILIZATIONS UTiLIZA nONS 

N(TSO) = 1 N(TSO)=0.8 N(TSO) = 1 
SERVER N(BATCH)=4 N(BATCH)=3.8 N(BATCH)=4 

CPU: FCFS CPU:PS 

CPU 0.890 0.893 0.865 
CH 1 0.433 0.449 0.517 
CH2 0.371 0.370 0.380 
CH 3 0.318 0.320 0.355 
CH4 0.476 0.478 0.518 

REALLOCATION OF FILES ON AN IBM 370/155-2 

The next experiment used the model to estimate CPU 
and channel utilizations after a reallocation of files. The 
purpose of the reallocation was to achieve better balance of 
channel utilizations, and was similar to that conducted by 
Hughes and Moe. 8 Assuming a baseline system configura
tion with utilizations as shown in Table II, new model 
parameters must now be estimated in order to predict 
utilizations after a reallocation of files. The procedure for 
estimating model parameters is reasonably straightforward, 
and is described in detail in Reference 10. The basic 
concept is to use one's knowledge of the baseline system's 
operation, in conjunction with what one would expect for 
the reconfigured system behavior, and then estimate new 
branching probabilities and MST's. 

The time that an IBM 3330 disk must be connected to a 
channel during rotational latency (search) can be as short as 
250 microseconds. The channel is not required during a 
seek. Therefore, even though channel 2 had more 110 
traffic, its utilization was much less than that of channels 3 
and 4 which used 2314's. One method of overriding the VS2 
allocation routine was to change the JCL of the benchmark 
and direct a certain number of the jobs to the 3330' s on 
channel 2. It was decided to direct 9 of the 20 jobs (45%) in 
the batch benchmark to channel 2, and to use the model to 
estimate the new channel utilizations. If one was not 
satisfied with the resulting balance, then the selected value 
of 45% could be modified. 

Table III presents the results of the experiment showing 
predicted utilizations in column two. Utilizations which 
were actually measured using the new allocation strategy 
for the benchmark are shown in columns three and four. 
The two runs were made using identical system initializa
tion, system configuration, and benchmarks. Thus columns 
three and four indicate the degree of variation between 
runs, and show reasonable consistency from one run to the 
next. 

ADDING TWO CHANNELS TO AN IBM 3701155-2 

The previous experiment balanced the channel utiliza
tions (within the limits of TSO operation) for channels 2, 3 
and 4, and this balanced system was used as the baseline 

TABLE III-Predicted vs. Measured Utilizations with Two Classes of 
Customers Concurrent Timesharing and Batch Operations for Reallocation 

of Files 

MODEL MEASURED 
UTILIZATIONS UTILIZATIONS 

N(TSO) = 1 N(TSO)=0.8 
SERVER N(BATCH)=4 N(BATCH)=3.8 

CPU 0.903 0.919 0.916 
CH 1 0.443 0.476 0.482 
CH 2 0.498 0.497 0.502 
CH 3 0.212 0.218 0.221 
CH 4 0.371 0.391 0.359 



for the next experiment. The plan was to first estimate 
model parameters for the six channel configuration assum
ing the benchmark workload. Using information provided 
by hardware and software monitors, channel branching 
probabilities and MST's can be estimated as described in 
Reference 10 and predicted utilizations computed using the 
model. 

The IBM 370/155-2 was then reconfigured to include six 
channels (two additional selector channels with 2314 disks). 
The benchmark was executed on this system and the actual 
utilizations measured, with the results shown in Table IV. 
Such an experiment has not been previously reported, and 
indicates that the model can yield useful results for estimat
ing performance resulting from an increase in the number of 
I/O channels. 

EXPERIMENTS ON AN IBM 370/155 

The IBM 3701155 with OS/MVT and HASP consisted of 
one CPU, 2.0M bytes of main storage, one byte multiplexor 
channel and two selector/block multiplexor channels. TSO 
capability was not included. 

Referring to the block diagram of Figure 1, channel 1 was 
a byte mUltiplexor and provided a data path through a 
control unit to two IBM 1403 printers and one 2504 card 
reader/punch. Channel 2 provided a path to five IBM 3420 
Magnetic Tape Units (MTU) via a 3803 Tape Control Unit 
(TCU), and to two IBM 3330 disks through a 3333 Disk 
Control Unit (DCU). When connected to the TCU the 
channel operated as a selector channel; when connected to 
the DCU it functioned as a block multiplexor channel. 
Channel 3 was connected to a second DCU with two 3330 
disks, and operated as a block multiplexor channel. 

The model assumes that a job experiences alternating 
CPU and I/O processing. During the I/O processing cycle 
the model assumes that a job is either in a queue or 
receiving service. This channel service corresponds to data 
transfer by the channel, rotational latency, and seek time if 
the device is a disk. However, the analytical model does 
not explicitly include the overlap behavior when several 
'dev!ce~ .~ ~n ?("m~, 'n~~<fu!'fBM<~" 

with IBM 3330 disks the measurement probe point for 
"channel busy," which is needed to compute channel 

TABLE IV-Predicted VS. Measured Utilizations with Two Classes of 
Customers During Concurrent Timesharing and Batch Operation for Adding 

Two Channels 

MODEL MEASURED 
UTILIZATIONS UTILIZATIONS 

N(TSO) = 1 N(TSO)=0.8 
SERVER N(BATCH)=4 N(BATCH)=3.8 

CPU 0.929 0.914 
CH 1 0.482 0.484 
CH2 0.522 0.510 
CH3 0.140 0.143 
CH 4 0.311 0.315 
CH5 0.074 0.083 
CH6 0.074 0.071 

T"""_L~. ___ L~ ___ ~ ______ ..... ___ n_...-C~ __ ..... _ ..... _ 01'7 
nSLlIIli:tUUg L-UIIlPUU::l rCllUlllli:111\,;C 01 I 

MST, reflects only the time that data is transferred. There 
is no probe point to determine the channel busy time when 
any device is busy, which is more repesentative of model 
behavior. It was thus extremely difficult to validate the 
model on the system with IBM 3330 disks. Therefore a 
calibration procedure was used which forced model and 
measured CPU utilizations to agree, then recomputed chan
nel utilizations. Table V illustrates the results of the proce
dure and shows that after CPU utilizations were brought 
into agreement, reasonable accuracy existed between 
model and measured channel utilizations. 

Since the above validation could be regarded as some
what irregular, it was even more important than before to 
investigate the utility of the model for estimating a change 
from the baseline. Using the above two channel case as a 
baseline, the model was used to estimate utilizations if 
another block multiplexor channel were added. Predicted 
utilizations for the three channel case using the calibration
projection method are shown in column two of Table VI. 
Columns three and four show utilizations which were 
actually measured. Note that using the calibration-projec
tion technique, extremely accurate estimates were obtained 
for CPU and channel utilizations for the case of adding 
another channel. 

Since there was no TSO capability in this system, only a 
single class of customer was used in the queueing model. 
The reallocation of files experiment is considered less 
challenging than adding a channel, and was not repeated on 
the 370/155. 

EXPERIMENTS ON AN IBM 370/168-1 

The third and final computer system which was available 
for validation and experimentation was an IBM 370 model 
168-1, with virtual storage operating system VS2, HASP 
and TSO. The system configuration consisted of one CPU, 
4.0M bytes of main storage, and eight channels. 

Referring to the block diagram in Figure 1, channel 1 was 
a byte multiplexor channel and provided a path through a 
control unit to two IBM 1403/3211 printers and a 2504 card 
~J"!'tcll tthmmet! 2. ~. -4 ?!!rl~ exh ~t'!mected tC'metepend
ent banks of eight IBM 3330 disks via DCU's. During 
operations with these disks the channels function as block 
mUltiplexors. In addition, there were sixteen TSO terminals 
on channel 3. Channels 6, 7 and 8 were selector channels 
which connected to independent banks of eight IBM 3420 

TABLE V-Model VS. Measured Utilizations Using Calibration Method 

MODEL MEASURED 
UTILIZATIONS UTILIZATIONS 

SERVER N=4 N=3.7 
UNCALIBRATED CALIBRATED 

CPU 0.677 0.458 0.458 
CH 1 0.770 0.520 0.522 
CH 2 0.517 0.349 0.349 
CH 3 0.000 0.000 0.000 



818 National Computer Conference, 1977 

TABLE VI-Predicted vs. Measured Utilizations for Reconfigured System 
for the Case of Adding a Block MUltiplexor Channel 

MODEL MEASURED 
UTILIZATIONS UTILIZATIONS 

SERVER N=4 N=3.7 

CPU 0.472 0.475 0.470 
CH 1 0.537 0.537 0.532 
CH 2 0.214 0.216 0.212 
CH3 0.151 0.151 0.152 

MTU's via 3803 Tape Control Units. There was no multiple 
path switching option in this system. 

The objective and procedures for the tests were identical 

two classes of customers were used to validate the model in 
Reference 6. Due to the presence of 3330 disks the calibra
tion procedure was used again. For the case of increasing 
the number of block multiplexor channels from three to 
four, predicted CPU utilization was 0.363; measured CPU 
utilization was 0.373. Channel utilizations were of compara
ble accuracy. 

SUMMARY 

It is very difficult with current analytical techniques and 
measurement devices to model and measure the 1/0 chan
nel behavior of modern computer systems. To provide a 
method for obtaining useful engineering results, a "calibra
tion-prediction" technique is proposed. This technique cali
brates a performance parameter to properly reflect the 
aggregate behavior of the total 110 subsystem (with respect 
to a given workload). This calibrated performance parame
ter is then used in the model to predict the effect of 
modifications to the system. 

U sing this .. calibration-prediction" technique accurate 
results were obtained for estimating new computer system 
utilizations for adding a channel to a 370/155, reallocating 
files and adding two channels to a 370/155-2, and adding a 
channel to a 370/168. It is believed that this project has 
provided additional insight into the ranges of applicability 
of queueing network models of computer systems. In 
particular, the experiment for adding a channel has not 

been previously reported, and may be of interest to man
agers of systems which are currently 1/0 bound. 

ACKNOWLEDGMENT 

I am deeply grateful to the IBM Corporation for the use of 
their measurement devices and for their very capable 
systems programming support. I also appreciate the many 
helpful discussions with Prof. J. Buzen of Harvard Univer
sity, who reviewed an earlier draft of this paper and 
provided many useful suggestions. 

REFERENCES 

I. Baskett, F. and F. P. Gomez, "Processor Sharing in a Central Server 
Queueing Model of Multiprogramming with Applications," Proc. of the 
Sixth Annual Princeton Conference on Information Sciences and Sys
tems, Princeton Univ., March 1972, pp. 598-603. 

2. Baskett, F., K. M. Chandy, R. R. Muntz, and F. Palacios-Gomez, 
"Open, Closed and Mixed Networks of Queues with Different Classes of 
Customers," JACM, 22, 2, April 1975, pp. 248-260. 

3. Bhandiwad, R. A. and A. C. Williams, "Queueing Network Models of 
Computer Systems," Proc. of the 3rd Texas Conference on Computing 
Systems, Austin, Texas, Nov. 1974. 

4. Buzen, J. P., "Computational Algorithms for Closed Queueing Net
works with Exponential Servers," CACM, 16, 9, Sept. 1973, pp. 527-
531. 

5. Buchholz, W., "A Synthetic Job for Measuring System Performance," 
IBM Syst. J., 8,4, April 1969, pp. 309-318. 

6. Chandy, K. M., U. Herzog, and L. Woo, "Parametric Analysis of 
Queueing Network Models," IBM J. Res. Develop., 19, I, Jan. 1975, pp. 
36-42. 

7. Gordon, W. J. and G. F. Newell, "Closed Queueing Systems with 
Exponential Servers," Oper. Res., 15,2, April 1967, pp. 254-265. 

8. Hughes, P. H. and G. Moe, "A Structural Approach to Computer 
Performance Analysis," Proc. AFIPS 1973 NCC, Vol. 42, Thompson 
Books, Wash., D.C., pp. 109-119. 

9. Moore, C. G., Network Models for Large-Scale Time-Sharing Systems, 
Ph.D. Thesis, Univ. of Mich., Ann Arbor, Mich., April 1971. 

10. Rose, C. A., Measurement and Analysis for Computer Performance 
Evaluation, Sc.D. Dissertation, George Washington Univ., Wash., D.C., 
July 1975. 

II. Rose, C. A., "Validation of a Queueing Model with Classes of Cus
tomers," Proc. of the International Symposium on Computer Perform
ance Modeling, Measurement and Evaluation, Harvard Univ., Cam
bridge, Mass., Mar. 1976. 

12. Sekino, A., Performance Evaluation of Multiprogrammed Time-Shared 
Computer Systems, Ph.D. Thesis, MIT Project MAC Report MAC-TR-
103, Cambridge, Mass., Sept. 1972. 



CPU-utilization and secondary-storage performance-The 
demand for a new secondary-storage technology 

by PETER SCHNEIDER 
Siemens AG 
Munich, Germany 

ABSTRACT 

Previous studies investigated the usability of charge-cou
pled devices (CCDs) in the context of economies to be 
achieved in main memory capacity. In systems with virtual 
memories, such economies result from the use of fast 
paging devices. In spite of the concomitant savings in main 
memory costs, which will probably be eaten up by the costs 
of the new-technology paging device, the price/performance 
ratio must be expected to be less favorable than that of 
conventional systems, since the share of the operating 
system software required for page fault handling will in
crease. 

More recent research has shown, however, that not only 
the degree of multiprogramming, i.e., the number of proc
esses required to cover an 110 time interval, is a factor of 
crucial importance for optimum CPU utilization, but also 
the number of disk devices available in the secondary
storage system: unless the number of storage devices is 
large enough to handle, within an 110 time interval, at least 
as many parallel 110 operations as are needed to ensure that 
a sufficient number of processes are again ready for busying 
the CPU, the aim of full utilization of the CPU cannot be 
achieved-not even through a higher degree of multipro
gramming. With disk devices of ever higher recording 
.d.cosities but ,other.\:vise. Jlt!al~,(J)tlstant~lfQanan~e data 
becoming available, fewer devices than today will be re
quired in the future to store the on-line data file volume. 
Since fast, favorably priced central processing units are 
likewise becoming available, it must be expected that the 
future systems, unlike the systems of today, will for the 
first time be beset with the problem of input/output bottle
necks arising from an insufficient number of storage de
vices. Rather than attempting to achieve the required 110 
data rate through a sufficient number of devices operating 
in parallel, use should therefore be made of such devices as 
CCD storages in secondary-storage hierarchies, which offer 
themselves as the less costly solution to the problem. 

INTRODUCTION 

At the present state of the technology, memory system 
costs remain the dominant factor in the overall costs of a 

819 

computer system, with the costs of the secondary storage, 
in addition to those of the main memory, representing an 
appreciable share of the total storage system costs. Thus, if 
a new technology, such as the charge-coupled device or the 
bubble, is to be implemented in the storage system, it must 
ensure a more favorable price/performance ratio of the 
overall system, i.e., either reduce the costs for an un
changed system performance level or substantially enhance 
the system performance level for a constant or rising cost 
burden. 

In the future the performance aspect will become ever 
more dominant, which may eventually give rise to a situa
tion where it is not only desirable but indispensable to 
adopt new technologies in the secondary-storage environ
ment. 

APPLICATION OF NEW MEMORY TECHNOLOGIES 

Some of the existing computer systems built on the 
virtual-memory concept have their secondary storages split 
up into two functionally separated sections (Figure 1): one 
section, the paging device, is used for storing the programs 
which were started by the users connected at a given time. 
At run time, these programs are loaded from the moving
head disks of the other secondary-storage section, the file 
ihertiorY, into tl'l,rptging (1cvkc,-'!1'rc ternary :;tcrnge,;,,:ttt:h 
is also shown, serves as a long-term archival storage 
medium and will not be further considered in this paper. 

The main memory contains the current pages of the 
currently active processes. This set of pages belonging to a 
process is called the "working set of pages."l The main 
memory can thus be said to function more or less as a 
buffer for the paging device: the individual programs will 
run without interruption only for such a time as their active 
environment does not change. If a page is missing in main 
memory (page fault), it has to be fetched from the paging 
device. As this transfer takes several milliseconds, the 
requesting process is put in suspense and the CPU turns to 
another program that can keep it busy. As prior analyses of 
buffer systems2,3 have already shown, the page fault rate 
diminishes with increasing buffer (in this case main mem
ory) capacity, the optimum being reached when the main 
memory capacity is equal to the paging device capacity: all 



820 National Computer Conference, 1977 

PERIPHERY 

MAIN MEMORY 

PAGING DEVICE 
IFIXED HEAD DISKS, DRUMS} 

FILE MEMORY 
(MOVABLE HEAD DISKS) 

A RCHIVAL OR TERTIARY MEMORY 
[TAPES} 

PRIMARY 
MEMORY 

SECONDARY 
MEMORY 

Figure I-Memory hierarchy of a data processing machine 

programs will then be main-memory-resident so that the 
paging rate after the initial phase becomes zero. 

In such systems* there will occur, in addition to the 
mentioned paging 1I0s, file I/Os whenever a running pro
gram requests file references. In these cases too, the 
requesting program will be put in suspense and another one 
ready to busy the CPU processed instead. Moreover, the 
main memory is not to the same degree used as a buffer for 
file 1I0s as it is for paging 1I0s, since the question of a file 
locality corresponding to the working set of pages for 
programs has not been studied thoroughly enough so far. 

Many of the earlier studies5,6 on the use of CCD and 
bubble devices were focused on the possibilities of increas
ing the speed of page transfer in paging, it being assumed 
that there would be no bottleneck for file I/Os or that all I/O 
activities could be handled by paging I/Os. Taking this as a 
starting point it was demonstrated that, granting an equally 
high utilization rate of the CPU, the use of a fast paging 
device, e.g., one in CCD technology, would clearly stand a 
comparison with a paging device in conventional technol
ogy (magnetic drum or fixed-head disk). A shorter access 
time (sum of latency time and actual transfer time) would 
enable the hit rate required in the main memory for 
achieving the same CPU load to be smaller, which means 
that the main memory capacity could be kept smaller than 
for systems using conventional paging devices. Thus, the 
costs of a paging device implemented in the new technology 

* There are also virtual systems where all 110 are handled by paging,4 

could be allowed to exceed those of a conventional paging 
device by exactly the amount that corresponds to the costs 
of the main memory portion saved. 

A weakness of this avenue of thinking lies in the fact that 
it neglects two aspects of existing systems: 

1. Such a deliberate increase in the page fault rate will be 
accompanied by increased operating system overhead 
for storage management. This implies that with the CPU 
loaded to capacity (and this is indeed ensured by the fast 
page transfer) there will be less time available for 
processing user programs. From the user's point of view 
the price/performance ratio might therefore appear de
graded in comparison with that offered by the known 
and tried technologies. 

2. The limited channel data rates will not at all accommo
date page transfer times as short as those realized by, 
say, a CCD paging device. 

Bearing these two limitations in mind and considering 
further that the existing systems exhibit a more or less well
balanced performance level of all system constituents, 
which makes for a good CPU utilization (over 90%) it is 
unlikely for new-technology memories to be integrated in 
existing systems until the cost picture becomes more fa
vorable. 

It is therefore a stringent conclusion that an improved 
price/performance ratio for existing systems can only be 
attained if the costs of the new paging device technology 
are absolutely lower than those of the conventional technol
ogy. 

The aim of this paper should be seen in an attempt to 
demonstrate that development trends already recognizable 
in the CPU and the moving-head disk fields indicate that in 
future the secondary storage-but now for reasons of 
performance-will present a sure area of application for the 
CCD memory concept. For this reason, the first question 
discussed will be that of the variables exerting an influence 
on CPU utilization. 

CPU UTILIZATION AND INFLUENCING 
VARIABLES 

This investigation was performed with the aid of a 
simulation model (cf. Figure 2) of the system whose sche
matic is shown in Figure 1. 

Waiting in front of the CPU is a queue of processes 
which are successively served by the CPU. The maximum 
length of this queue is a function of the degree of multipro
gramming realized. In the model, too, the secondary stor
age is split up into a paging device and a file memory. When 
a paging 110 or file 110 request initiates a process change at 
the CPU, the relevant request is queued at the device 
addressed. Upon completion of the 110 operation, the 
associated process is again lined up in the CPU queue. The 
number of processes in the systems is constant; it corre
sponds to the degree of mUltiprogramming realized. 

The model is subject to the following constraints, which 



Figure 2-Simulation model used for the performance evaluation of data 
processing systems 

represent better conditions than are encountered in actual 
systems: 

(a) Each of the connected devices has its own independent 
interface to the main memory. Collisions will therefore 
occur only in cases where two or more requests com
pete for the same device. 

(b) File I/O requests and paging I/O requests are evenly 
distributed among all file memory devices and paging 
devices respectively. In reality, it may happen that, 
de.pen.dicg Oll .the file allocat.i.ou, certain.. devices afe 
accessed much more frequently than others. 

(c) File I/O and paging I/O requests have an equal share of 
50% in all causes of process change. Other causes, such 
as time slice runout or terminal I/O, are neglected. Real 
systems are more likely to exhibit a predominance of 
file I/O operations. 

In order to establish realistic paging I/O and file I/O rates 
within the simulation system, the distribution of the process 
run times between process changes was determined at a 
time-sharing service computer center during open-sessions 
on different days and at different times. The measurement 
revealed a mean distribution of process run time lying at 
about 3000 instructions; Figure 3. This distribution was 
adopted for the simulation model. 

The model itself was built with the aid of the SIAS 
(SIEMENS ABLAUF VERFOLGER) simulation language, 
which is equivalent to IBM's GPSS language. 

Demand for New Secondary-Storage Technology 821 

0/0 

100

j 

r 

80 

70 

50 
z: 
:: 50 
~ 

~ 40 
LL.. 

Z 30 
o 

~ 20 
= 
~ 10 

~ 3000 INSTRUCTIONS 

a O~-r-'-'~'-'--'-'--.-'--r~--~~-r----
5 12 18 24 30 35 42 48 54 60 6'5 72 78 84 x 100 

INSTRUCTIONS -

Figure 3-Distribution function of program processing time between 1/0-
operations (paging I/O and file 1'0) 

The investigation was carried out on systems with differ
ing numbers of disks, with and without an explicit paging 
device, and with differing CPU performance levels. The 
following sections summarize some results obtained for 
systems with unlimited numbers of devices, with 4 and 10 
devices, and with varied degrees of mUltiprogramming. 

Except for the results shown in Figure 7, where the 
duration of I/O operations DI/o (made up of the latency time 
and the transfer time) was varied, all results given here are 
based on an assumed 34 ms for the duration of I/O 
operations. 

SYSTEMS WITHOUT EXPLICIT PAGING DEVICE 

For the sake of a clear and straightforward discussion, 
we shall first deal with the results of the simulation of 
models without an explicit paging device. 

Systems with unlimited numbers of devices 

If the numbe~ of deyic,e~ is,l1o! limit~~, ~n input!<mtpu! 
bottleneck cannot arise in a computer system. The utiliza
tion level of the CPU is, in this case, determined solely by 
the degree of multiprogramming; Figure 4. The necessary 
degree of multiprogramming M should be equal to the 
quotient 

oc= DIlo+L 
L 

with DI/o representing the duration of an I/O operation and 
L the mean run time of processes between I/O operations. 
At the degree of mUltiprogramming (M = oc) denoted by this 
quotient, the CPU reaches a utilization level of 100%: any 
further increase of M is harmful and will lead to the well
known "thrashing" effect. Looking at the CPU utilization 
level from this angle, a secondary-storage configuration can 
be regarded as being sufficiently large the instant the 
number of devices becomes greater than the theoretical 
degree of multiprogramming; this is so because at this 



822 National Computer Conference, 1977 

Ucpu 

100 

% 01/0 =34 ms 

80 

r 70 

:z: 60 
0 

~ 50 « 
1"--.1 
::J 40 i= = 

I 30 = a... 
~ ?n 

~~1jI 
1 • 

10 20 30 40 50 MPO 

DE GREE OF MULTIPROGRAM M I NG • 

Figure 4-CPU utilization as a function of the degree of mUltiprogramming 
without limitation of the number of devices 

instant there exists a balanced ratio between 110 request 
and 110 terminations, which prevents the CPU from idling. 

It can further be seen from Figure 4 that a constant 
distribution of process run time but differing CPU perform
ance levels will produce pronounced differences in the 
necessary degree of multiprogramming-a fact that is im
mediately evident from the above analysis. 

The study of this simulation model also revealed that 
systems with a high CPU performance level and a CPU
bound load are equivalent to systems with a correspond
ingly lower CPU performance level but IIO-bound load. 
This, too, is immediately evident: as far as the CPU 
utilization level is concerned, it does not make any differ
ence whether the program run time between 110 operation 
is taken up by a great number of fast-executing instructions 
(fast CPU, CPU-bound programs) or by only a few slow
executing instructions (slow CPU, IIO-bound programs). 
This holds true also for all further cases considered. 

Systems with a limited number of devices 

To show the strong influence exerted by the number of 
devices on the CPU utilization level, the graph in Figure 5 
plots secondary-storage configurations with 4 and 10 disks 
and a mean block transfer time of 34 ms. Again, a distin
guishing criterion is the different CPU performance level, 
which, as mentioned above, can also be interpreted as more 
or less pronouncedly CPU-bound load. 

What becomes apparent here is an effect similar to that 
observed when the degree of multiprogramming is too low: 
if the number of devices is too small, a full-capacity 
utilization of the CPU is impossible. Even very high degrees 
of mUltiprogramming are of no avail then, since, after the 

Ucpu 

100 01/0= 34 ms 

t 

0/0 

80 

70 
:z: 
= 60 
i= 
<l: 
I'-J 50 :::; 
i= 
::::> 40 
::::> 
a... 30 t...) 

20 

10 2.4 MiPS 4 DEVICES 

I iii i ., 

10 20 30 40 50 MPO 

DEGREE OF MULTIPROGRAMMING ~ 

Figure 5-CPU utilization as a function of the degree of mUltiprogramming 
with a limited number of devices 

initial phase, 110 request from all processes will be compet
itively bidding for access to the secondary storage and be 
queuing up to be served. During an 110 time interval, it is 
possible to handle, at best, as many I/O request as there are 
devices. To ensure a high CPU load, the minimum number 
of devices to be provided** must be equal to 

G=~=CX:-l. 

It can here be stated as a general rule that the crucial 
determinant for the CPU utilization level is the minimum of 
the degree of mUltiprogramming and the number of devices. 
The following greatly simplified model was established: 

• The process run time L was considered constant. 
• Every 110 request bids for access to the next device 

capable of servicing the request. 
• These prerequisites granted, the idle time of a proces

sor is given by: 

TIDL=DIO-min(M-I, G)'L for M::;cx: and G::;CX:-I, 

and the CPU utilization deduced therefrom, by: 

Ucpu=min(l, M/cx:, (G/a-l). 

A utilization curve calculated from these formulas is plotted 
in Figure 5 for the case of 10 devices being connected to a 1 
MIPS processor. 

The curve obtained through simulation approaches this 
theoretical curve, reaching the theoretical limit value only 
at a degree of mUltiprogramming of 60. This discrepancy 

** If use is made of an additional paging device, paging va time (Dl/oP!) and 
file va time (Dl/o FlO

) will differ. The number of devices is then given by 

where hpF and hl/o represent, respectively, the paging and the file va rates. 



can be accounted for as follows: 

(a) The assumption that an 110 request will invariably bid 
for access to the device next capable of servicing a 
request is a far cry from reality. On the contrary: even 
when assuming evenly distributed bids for access to all 
secondary-storage devices, there will be short-term 
rushes for individual devices. This exactly is the reason 
why it takes a higher than the theoretically calculated 
degree of multiprogramming to achieve full CPU utiliza
tion: a high degree of multiprogramming makes it easier 
to busy all existing devices. 

(b) The distribution of run time may lead to a premature 
depletion of the processor queue, namely before a 
CPU-busying process is made available again by the 
termination of an I/O operation. 

Up to this point, the discussion has been restricted to 
systems in which no separate paging device whatsoever 
was used. All 110 requests, both paging and file, were 
handled by the same type of device (e.g., disks). In the 
following, the influence of a separate paging device on 
system performance will therefore be briefly analyzed. 

SYSTEMS WITH SEPARATE PAGING DEVICES 

The table given hereunder indicates the improvement in 
CPU utilization which, for a given limitation of the number 
of devices, is attainable if a separate paging device is used. 
It has been assumed that with an explicit paging device 
employed the transfer of one page will take 1 ms, including 
the latency time. Assuming a mean running length of 3000 
instructions and 2.4 MIPS, this is approximately equal to 
one processing interval of a process between two I/O 
operations. Viewed from the angle of the processor, page 
faults are not time-critical, since the mean program run time 
and the duration of the page fault are of the same order of 
magnitude. 

As the simulation model assumes that 50 percent of all 
L'Q requests are paging 110 requests. which for the processor 
are no longer time-critical, the use of an explicit paging 
device can be expected to improve the CPU utilization level 
by a factor of 2. This is borne out by the results. 

An interesting result is that as long as there is no explicit 
paging device available both paging and file I/O requests 

T ABLE I-CPU utilization for different numbers of disk devices 
with and without explicit paging device. 

Number of devices 
CPU CPU Degrees of 
perform- utilization in thereof for Paging multipro-
ance MIPS % Disks paging device gramming 

2.4 15.1 4 4 30 
2.4 30.6 4 30 
2.4 22.8 10 4 30 
2.4 34.2 10 10 30 
2.4 69.6 10 30 

Demand for New Secondary-Storage Technology 823 

should be honored from all disks. Reserving disk areas on 
some few devices will lead to an overload on these and an 
underload on all others, with immediate consequences for 
the CPU utilization level. 

With 10 disk devices connected and all of them used for 
paging and file 110, a 2.4 MIPS processor will be utilized to 
a level of 34.2 percent. If, in contrast to this disk areas for 
paging are reserved on only 4 disks, the processor utiliza
tion level will be only 22.8 percent. 

SUMMARY OF SIMULATION RESULTS 

The investigations have revealed that the degree of 
mUltiprogramming and the number of devices are factors of 
similar weight as regards the CPU utilization level, but that 
the number of devices represents the more crucial bottle
neck-in other words: if the secondary-storage system is 
underrated in terms of the number of devices employed in 
the secondary-storage system rather than in terms of the 
storage capacity, not even a high degree of mUltiprogram
ming will be able to raise the CPU utilization to a satisfac
tory level. It has further been demonstrated that, on the 
basis of the measured program run-time distribution values, 
powerful systems of, say, 2.4 MIPS without any device 
bottlenecks would require a degree of multiprogramming 
whose attainability appears doubtful. 

This brings into view the first one of the set of causes 
which in the future will make it necessary to use faster 
secondary-storage technologies than today: 

Always assuming a run-time distribution as shown in 
Figure 3, the ratio between mean program run time and 110 
processing time will continuously deteriorate, because ever 
faster processors are becoming available at ever more 
attractive prices, while the performance data of the second
ary-storage devices will remain comparatively constant. 

The only factor in the domain of secondary storages that 
undergoes pronounced changes is the storage density of 
moving-head disk storages. 

The ever-increasing storage density of the moving-head 
dl~~*~ .~~ ~he' ~~t~ f!~ of C,--i!!!PL~!' ':e!!te!'"! ,~,!th 
fast systems to be accommodated on ever- fewer disk 
drives. Thus, with the costs of the mechanical section of 
the disk storage remaining virtually constant, the increased 
recording density will bring substantial economies in sec
ondary-storage costs. Let us assume that a given set of data 
files comprises a data volume of 10.000 MB: if use is made 
of 100-MB disk devices, this data volume requires 100 
devices for storing. Using a 500-MB disk storage, however, 
a mere 20 devices wiJI be needed. It goes without saying 
that from the point of view of the computer center the latter 
configuration is the more cost-effective one. 

This gives rise to a situation where even the use of a 
paging device with short page transfer times may no longer 
be sufficient to ensure full CPU utilization. Specifically, 
this applies to cases where the number of secondary
storage devices is no longer sufficient to accommodate all file 
1I0s. Full utilization of the CPU can then only be achieved 
through an apparent increase in the speed of the secondary 



824 National Computer Conference, 1977 

storage. This means, however, that provision has to be 
made for a separate buffer (in CCD technology for instance) 
for the secondary-storage devices. 

SECONDARY-STORAGE HIERARCHY 

Figure 6 shows the schematic diagram of a data processing 
system with a secondary-storage hierarchy. In contradis
tinction to many existing systems, the secondary storage 
should be connected to the main memory through a special 
storage processor SCU rather than through an 1/0 proces
sor and the central processor (cf. Figure 1).7 In the case of 
high-performance processors, this will clearly relieve the 
load on the CPU/main memory interface. As a conse
quence, CPU references to the cache will no longer be 
obstructed by 110 activities. 

The function of the CCD storage within the secondary
storage hierarchy is analogous to that of the cache within 
the main memory hierarchy. Granting sufficient hit rates, 
the mean duration of 110 operations will be reduced to 
nearly that of page transfers. The task falling to the 
secondary-storage processor is to manage the secondary
storage hierarchy. As soon as the secondary-storage pro
cessor finds an 1/0 request directed to it, it ascertains 
whether the requested page is located in the CCD page 
buffer, in which case it initiates page transfer between main 
memory and paging buffer. 

In the case of a miss, the storage processor assumes 
responsibility for the transfer of the requested page not only 
between the disk devices and the CCD buffer but also to 
the main memory. If the organization of the paging buffer 
permits, the data units (blocks) transferred between disk 
and CCD buffer may be larger. Owing to the fact that the 
CCD buffer capacity is larger than that of the main mem
ory, there is, in the case of an 110 request, some probability 

PRIMARY 
STORAGE 

PERIPHERY 

eeD 
PAGING BUFFER 

DISKS 

Figure 6--Schematic of a data processing system using a secondary-storage 
hierarchy 

UCPU heeD 

100 

80 

t 70 

I 60 

~ 50 
i= 
~ 40 
::::i 

~ 30 
I 

90 

80 

70 

60 

50 

40 

30 

MPD=30 

~ ~~t~-~~~'~~~~i--~~~--~~~~I----~. 
1 2 3 4 5 TIIO 

PAGE TRANSFER TIME IN MS -----
Figure 7-(a) CPU utilization as a function ofthe mean page transfer time 

and (b) corresponding hit ratio necessary for full CPU utilization 

for pages already used previously to be found again in the 
CCD buffer (backward hit). Depending on the block size 
within the CCD buffer, it is also possible for hits in the 
forward environment of a page request (forward hits) to 
occur. 

Figure 7a plots the utilization of a 2.4 MIPS and 1 MIPS 
processor vs. the page transfer time. It should be men
tioned here that, with a sufficiently high degree of multipro
gramming provided, the transfer times plotted can, on an 
average, be exactly attained by parallel operation of slow 
devices or the use of a fast device of adequate capacity. 

We shall now deduce an algorithm for calculating the hit 
rates in the CCD paging buffer required for full utilization 
of the central processor. 

The effective access time of storage hierarchies is given 
by the well-known formula7 

Teff=hl·tl+(1-hl)·t2 

where hI represents the hit rates in the buffer stage, tl the 
access time of the buffer stage, and t2 the access time to the 
second stage. 

For purposes of this analysis, these quantities are inter
preted as follows: 

Teff = Tllo corresponds to the mean period of time required 
for handling an 1/0 request. t 

tl = teeD is the access time of the buffer stage, 

D 
~ corresponds to the mean serving time 

attained through the parallel utilization of G devices 
with access time DI/o, 

hI = heeD represents the buffer stage hit rate to be found. 

t Two means are calculated for this purpose: the first one for the number of 
devices, the second one for the hierarchical stages of the memory system. 



Full utilization of the CPU is ensured if one 110 is served 
per run time L. It follows that tl/O i.e., the average time 
required for handling an 110 request, must be equal to the 
mean program run time between 110 interrupts. 

Thus, the hit rate required for full utilization is given by: 

G'L-DIIo ~~ ~ . b hccD = G. -D (1) or, dlter translormatIon, y 
tCCD 110 

- L-TIIo 2 
hccD - t -T (). 

CCD 110 

It can be recognized from this formula that if the number 
of devices G is sufficiently large the required hit rate 
becomes zero and a buffer storage is not necessary. 

Plotted on the abscissa in Figure 7 are the TI/o values. 
Assuming, for example, that tCCD= 1 ms, the various TI/o 
values are associated with corresponding hit rates required 
for full CPU utilization. These are plotted in Figure 7b for a 
1 MIPS and a 2.4 MIPS system. As can be seen here quite 
clearly, it is necessary, as a function of time TI/o and, 
hence, as a function of the number of devices G, to have 
relatively high hit rates in the buffer. If use were made of 
paging devices with transfer times shorter than those as
sumed here, there would be no need to make such high 
demands on the hit rate in the buffer. 

CONCLUSION 

In view of the ever increasing recording density in disks 
and the enhanced CPU performance levels, the emergence 
of a bottleneck in the secondary-storage environment must 
be anticipated. It would appear that the adoption of a 
secondary-storage hierarchy, managed by a storage proces
sor, represents a more cost-effective approach than the 
provision of the devices required for parallel operation. For 

Demand for New Secondary-Storage Technology 

a constant on-line data file volume, an increase in the 
number of devices, i.e., a distribution of the files among 
such a number of devices as are necessary to attain the 
required 110 handling time, would considerably boost the 
costs and yet fail to lead to a full utilization of the devices. 

Even in systems with a large on-line data file volume, the 
cost situation will give such a storage hierarchy, comple
mented by a cassette storage, a competitive edge on a 
system with a large number of disks. 

The performance data of the CCD technology, to be 
gathered from the report by Bhandaker", will in any case 
accommodate the page transfer times which may possibly 
be required in the system. For this reason, the design goal 
for CCD modules should be to achieve maximum storage 
density with its attendant cost advantages, because even in 
the case of relatively long access times sufficiently high 
data rates are attainable through a favorable storage 
organization. 

REFERENCES 

l. Denning, P., "The Working Set Model for Program Behaviour," Com
mun. of the ACM, II, 1968, pp. 323-333. 

2. Mattson, R. L., "Evaluation of multilevel Memories," IEEE Trans. 
Magn., Vol. MAG-7, Dec. 1971, pp. 814-819. 

3. Meade, R. M., "On memory system design," in AFIPS Conf. Proc. 
(FJCC), Vol. 37, Nov. 1970, p. 33. 

4. Boyse, I. W. and D. R. Warn, "A Straightforward Model for Computer 
Performance Prediction," Comput. Surveys, Vol. 7, No.2, June 1975. 

5. Bhandaker, D. P., "Cost Performance Aspects of CCD Fast Auxiliary 
Memory," Proc. CCD '75', Charge-Coupled Devices Appl. Conf., 1975, 
San Diego, pp. 435-442. 

6. Pohm, A. V., "CostiPerformance Perspectives of Paging with Electronic 
and Electromechanical Backing Stores," Proc. of the IEEE, Vol. 63, No. 
8, Aug. 1975. 

7. Schneider, P., "Working Set Restoration-A method to increase the 
performance of multilevel storage hierarchies," in AFIPS Conf. Proc., 
NCC '76', pp. 373-380. 





Nonlinear parameter estimation for 
probabilistic finite-state automata* 

by FRED J. MARYANSKI and KUANG CHAN WU** 
Kansas State University 
Manhattan, Kansas 

ABSTRACT 

In this report, a nonlinear parameter estimation technique is 
employed to compute state transition probabilities of proba
bilistic finite-state automata. The technique is applied to the 
modelling of the DNA meiosis process. Using the nonlinear 
estimation method, transition probabilities are estimated 
which project an external behavior for the model that is 
very dose to experimental data. The estimation method 
depends strongly upon the initial values supplied. Since it is 
not possible to iterate to an optimal set of initial values, the 
selection of initial values must be an intuitive process. 
However, a very close fit can be obtained in a small 
number of executions. The nonlinear estimation method is 
applicable to the estimation of transition probabilities of 
probabilistic finite-state automaton models for any stochas
tic system. 

INTRODUCTION 

In many situations it is possible to observe the external 
behavior of physical systems and then use these observa
tions to hypothesize the internal structure of the system. 
Th~ pa.rticular §y§tem con.~ider~d here is PN4~ (D.e.Q{(Y
NucleIC Acid) meiosis. The internal structure of the meiosis 
process is modelled by a probabilistic finite-state automa
tion. 

Definition J 

A probabilistic finite-state automaton is a 5-tuple. 

M=(S, X, P, I, F) where 
S is a finite state set; 
X is a finite input alphabet; 
P is a mapping from SxXxS~[O, 1] such that P(Sh x, 

Sj) is the probability of M undergoing a transition 
from state Si to state Sj upon receiving input x; 

* The work reported herein was partially supported by the Bureau of 
General Research, Kansas State University. 
** Author's current address is Bendix Corporation, Columbia, Md. 

827 

I is the initial state stochastic row vector such that ik 
is the probability of state Sk being the initial state; 

and F is a binary column vector such that fk is 1 if 
state Sk is a final state. 

The mapping P can be represented by a set of I S I x I S I 
stochastic matrices, P(x) = Ilpiix) II where piix)=P(Si' x, 
Sj). 

The details of the internal structure of the meiosis proc
ess are described by the transition probabilities of the finite 
automaton model. The transition probabilities are obtained 
from estimates made based upon the external observations. 
In the particular study described here nonlinear program
ming methods I were applied to compute a set of estimators. 

In this paper, the Aviemore model of DNA meiosis2 is 
used as a basis for developing a probabilistic finite-state 
automaton which describes that process. Transition proba
bilities of the automaton model are estimated from data 
provided in Reference 2. The effects of normalization in 
estimation process and simplification of the model are 
investigated in terms of their effects on goodness of fit and 
the number of calculations required to determine an accept
able estimate. 

The A viemore model is shown in Figure 1. A probabilis
tic finite-state automaton, M, can be defined which repre
sents that A viemore model. 

M=(S, X, P, I, F) 

where S={I, II, III, ... , IX}, 

X=0, 

Zl PI PI PI PI P2 P2 0 0 
C3 Z2 0 0 0 0 0 C4 0 
C2 0 Z3 0 0 0 0 0 C1 

C1 0 0 Z4 0 0 0 C2 0 
P= C4 0 0 0 Zs 0 0 0 C3 

0 C2 C3 0 0 Zs 0 0 0 
0 0 0 C4 C1 0 Z7 0 0 
0 0 0 0 0 0 0 Zs 0 
0 0 0 0 0 0 0 0 Z9 



828 National Computer Conference, 1977 

Figure I-Aviemore model 

represents the next state mapping (since X=0 we only have 
one matrix for P), 

1=[1 0 0 0 0 0 0 0 0], 

and F= 1. 

Since M is a probabilistic finite-state automaton, P must 
be a stochastic matrix, that is, all the rows must sum to 1. 
Another property of M is that all entries in P be non
negative. Based upon these facts, the following equations 
can be derived. 

Zl+4P1+2P2= 1 or Zl=I-4Pl-2P2 (1) 

Z2+C3+C4=1 or Z2= l-C3-C4 (2) 

Z3+Cl+C2=1 or Z3= l-C1-C2-. (3) 

Z4+Cl+C2=1 or Z4=I-C1-C2 (4) 

Z5+C4+C3=1 or Z5= l-C3-C4 (5) 

Z6+C2+C3=i or Z6= i -C2-C3 (6) 

Z7+Cl+ C4=1 or Z7= I-C1-C4 (7) 

Z8=1 (8) 

Z9=1 (9) 

and 

0:5Pl,P2,Cl,C2,C3,C4,Zl,Z2, ... ,Z9:51. (10) 

In order to derive a set of equations indicating the 
probabilities of reaching each final state, we must allow for 
a potentially infinite number of traversals of the loops in the 
model. For example, in order to reach state II from state I, 
there may be some large number of transitions between 
states I and III, and a large number between I and V (or 
any other states), before finally terminating at state II. The 
transition looping phenomenon is described by a variable T 
which represents the probability of starting at state I and 
returning to I after having traversed all possible loops from 
zero to an infinite number of times. 

x 

L (P1Cdm* L (PIC2)i* L (P1c3)n* L (P1C4)d. 
m=O i=O n=O d=O 

Since for O:5X < I , 

XO+XI+X2+ ... +X"'= _I_ 
I-X' 

1 1 1 
T= (1-P2C2C3)2 * (I-P2CIC4)2 * (I-PICI) * 

1 1 I 
* *---(1-P1C2) (I-PIC3) 1-(PIC4)· 

(II) 

The termination of a derivation at state K is indicated by 
the transition from K to K with probability Zk. In our 
model of the meiosis process, a Zk transition is assumed to 
occur exactly once for each derivation. 

A derivation in M starts at state I, makes some number of 
traversals about the loops in the model (as indicated by T), 
proceeds from state I to its final state by a direct path, and 
then terminates with a Zk transition. This behavior is 
described by the following equations for terminating in each 
of the 9 states. 

P(I) =ZI*T (12) 

P(II) =Z2*T*(PI+ P2*C2) (13) 

P(III) =Z3*T*(PI+ P2*C3) (14) 

P(IV) =Z4*T*(PI+P2*C4) (I 5) 

P(V) =Z5*T*<PI+P2~1) (16) 

P(VI) =Z6*T*P2 (17) 

P(VII) =Z7*T*P2 (18) 

P(VIII)=Z8*T*(PIC2+ PIC4+2P2C2C4) (19) 

P(lX) =Z9*T*(PICI+PIC3+2P2CIC3) (20) 

EXPERIMENT AL DATA 

Although there are 9 final states in the model, only four 
classes can be distinguished experimentally. The classes 



and the states contained within them are 

A={I} 

B={lI, III, IV, V} 

C={VI, VII} 

D={VIII, IX}. 

Reference 2 provides one set of observed probabilities for 
each class. The observed probabilities are: 

P(A)=P(I) =0.9466 (21) 

P(B)=P(II)+ P(lII) + P(IV)+P(V)=0.0079 (22) 

P( C) = P(VI) + P(VII) =0.0001 

P(D)= P(VIII)+ P(IX)=0.0454 

(23) 

(24) 

In order to express the class probabilities, the final state 
equations (eq. (12-20» are substituted into eq. (21-24) 
yielding 

P(A)=T*Zl =0.9466 

P(B)=T*(Z2*(Pl + P2C2) + ZiP 1 + P2C3) 

+ZiPl + P2C4)+Z5(Pl + P2Cl»=0.0079 

P(C) =T*P2(Z6+Z7) =0.0001 

P(D)=T*(PtC2+PtC4+2P2C2C4+ PtCl 

+ PtC3+2P2CtC3)=O.0454 

ESTIMATION OF TRANSITION PROBABILITIES 

(25) 

(26) 

(27) 

(28) 

There are six unknown variables, Pt, P2, Cl , C2, C3 , C4 
but only four nonlinear equations, eq. (25-28). Therefore an 
infinity of solutions may exist. Since the equations cannot 
be solved directly, the values of the transition probabilities 
must be estimated as closely as possible from the given 
~ 

Due to the small amount of experimental data neither the 
maximum likelihood nor least squares methods could be 
applied in this situation. However, it was determined that 
nonlinear programming methods could be applied. The 
particular method employed is the nonlinear parameter 
estimation program of Bard. 1 In order to use the nonlinear 
programming method, eq. (25-28) must be stated in the form 
of objective functions as: 

Y1=P(A)-0.9466 

Y2=P(B)-0.OO79 

Y3=P(C)-0.OOOl 

Y 4=P(D)-0.0454. 

(29) 

(30) 

(31) 

(32) 

The program will attempt to minimize the difference 
between the observed and estimated transition probabilities 

Probabilistic Finite-State Automata 829 

by maximizing the following function: 

G=(Y/+ y 2
2+ Y32+ y 4

2)*( -1). (33) 

Eq. (1-10) serve as the constraint functions fur the 
estimation procedure which requires a set of initial guesses 
of the six transition probabilities. The initial guesses are 
iteratively modified until G (eq. (33» is as close as possible 
to O. 

A large number of runs were made with varying sets of 
initial guesses. The results of these runs are tabulated in 
Reference 3. The best results, that is, maximum G value, 
were obtained with an initial guess of 

Pt=O.l, P2=0.025, C1=0.05, C2=0.05, C3=O.05, C4=0.05. 

The parameter estimates obtained from the estimation pro
gram were 

P/=0.02342 

P2'=0.1506E( -6) 

C1 '=0.4389 

C2'=0.4810 

C3'=0.481O 

C4 '=0.4389 

The value of G is - . 1939E( -6). The execution time for 
this run was 2.17 seconds on an IBM 370/158. When the 
estimated parameters are inserted into eq. (25-28), the 
probabilities for the four observed classes shown below, 
result: 

P'(A) =0.9464 

P'(B)=0.OO7837 

P'(C)=0.02519E( -7) 

P'(D)=0.04501 

The closeness of our estimated class probabilities to the 
experimentally provided values can be measured by the 
sum of weighted squared error. 

ERR'= (P'(A)-P(A»2 + (P'(B)-P(B»2 
peA) PCB) 

(34) 

+ (P'(C)_P(C»2 + (P'(D)-P(D» 
P(C) P(D) 

For these estimates ERR=0.1411E( -4). 

NORMALIZATION 

The results presented in the previous section show that 
the class probabilities can be estimated with a close error 
tolerance. However, the estimated value of P'(C) differs 
very significantly from the observed value of P(C) in eq. 
(23). Since the magnitude of P(C) is so small it has little 
effect upon the computation of the objective function. The 



830 National Computer Conference, 1977 

estimation program maximized the objective function based 
upon the larger terms in eq. (33). 

This problem can be alleviated by normalizing the objec
tive functions in eq. (29-32). Normalization entails dividing 
Y l' Y 2, Y 3' and Y 4 by the proportionality coefficients, 
peA), PCB), P(C) and P(D), respectively. This yields a set of 
normalized functions: 

Y 1'=Y 1/0.9466= I 

Y 2' = Y 2/0.0079= I 

Y 3'=Y3/0.0OO1=1 

Y 4'=Y4 /0.0454= l. 

The resulting objective function is 

(35) 

(36) 

(37) 

(38) 

G' =(Y I' -1)2+(y 2' _l)2+(y 3' _1)2+(y 4' _1)2*( -1) (39) 

When the estimation program was executed using eq. (39) 
as the objective function, the best estimators were obtained 
with an initial guess of 

P1=0.01, P2=0.001, C1=0.1, C2=0.1, C3=0.1, C4=0.1. 

The estimated transition probabilities were: 

P1'=0.02334 

P2'=0.5980E( - 3) 

Ct '=0.4736 

C2'=0.4463 

C3'=0.4462 

C/=0.4736. 

The value of the objective function was -0.6106E( -6). 
Execution time for this run was 3.20 seconds. 

Substituting the estimated transition probabilities into eq. 
(25-28) produces the following class probability estimates: 

P'(A)=0.9459 

P'(B) =0.007900 

P'(C)=O.Oool 

P'(D)=0.04540. 

The sum of weighted square error for the estimated class 
probabilities obtained from eq. (34) is 

ERR=0.5754E( -6). 

The best estimates obtained using the normalization 
technique were two orders of magnitude closer to the 
experimental results than the best estimates obtained with
out normalization. 

SIMPLIFICATION 

The equations for the class probabilities eq. (25-28) were 
developed by assuming that there might be some large 
number of transition paths originating and returning to the 

start state before a transillon path to a final state is 
traversed. This assumption is theoretically correct but it 
greatly complicates the model. From the transition proba
bilities estimated thus far, it can be seen that the loops are 
not expected to be traversed a large number of times. 
Therefore, an attempt was made to simplify the model by 
hypothesizing that only direct paths to the final state would 
be followed. 

Under this simplification hypothesis, the following class 
equations can be derived for the model: 

P(A)=ZI*(2P2*CC2C3+CtC4) 

+ PI *(C1 +C2+C3+C4)+ I) 

+Z4*(P1 + P2C4)+Z5*(P1 +P2C1 ) 

P(C)=(Z6+Z7)*P2 

P(D)= P1C2+ PtC4+ 2P2C2C4 

+ PtC1+ PIC3+2P2CIC3 

(40) 

(41) 

(42) 

(43) 

The best estimates for the simplified model were obtained 
using normalization with initial guesses of 

P1=0.001, P2=0.001, C1=0.005, 

C2=0.005, C3 =0.005, C4=0.005. 

The estimated transition probabilities were: 

Pt=0.02438 

P2=0.6247E( - 3) 

Ct=0.4954 

C2=0.4173 

C3=0.431O 

C4=0.4962. 

The value of the objective function was -0.2242E( -4). 
Execution time for the run was 8.73 seconds. 

The following class probability estimates are obtained for 
the simplified model: 

P'(A)=0.9421 

P'(B) =0.007899 

P'(C)=O.Oool 

P'(D)=0.04539 

The sum of the weighted square error for the simplified 
model was 

ERR=0.2116E( -4). 

The error coefficient for the simplified model is two 
orders of magnitude greater than the coefficient for the full 
model with normalization. Since the best fit of the simpli
fied model was not as close as the full model, the simplifi
cation hypothesis cannot be accepted. 



SENSITIVITY TO INITIAL GUESSES 

The nonlinear parameter estimation program produced 
very close estimates when compared with the observed 
meiosis data. However, the process is heavily dependent 
upon the initial guesses. Considerable variations in execu
tion time and closeness of fit were obtained for different 
initial guesses using all three modelling approaches. The 
extreme cases for each set of equations used are presented 
in Table I. Reference 3 contains complete details of all 
estimation runs made and their objective function values 
and execution times. 

Since there are an infinite number of solutions to the 
model equations there does not exist a procedure to iterate 
from an arbitrary starting point to the best possible solu
tion. The process of selecting the initial guesses is intuitive. 
Therefore, the user must perform several runs of the 
estimation program. The exact number of executions is 
dependent upon the nature of the experiment and the cost 
of the runs. 

TABLE I 

Maximum 
Objective CPU Time 

Function Value (sees) 

Best Estimate-Initial Model -0.2464E( -6) 2.17 
Worst Estimate-Initial Model -0.2443E( - 2) 17.63 
Best Estimate-Normalized Model -0.6106E( -6) 3.20 
Worst Estimate-Normalized Model -0.9604 2.58 
Best Estimate-Simplified Model -0.2242E( -4) 8.73 
Worst Estimate-Simplified Model -0.9588 1.90 

Probabilistic Finite-State Automata 831 

CONCLUSION 

Nonlinear parameter estimation is used to produce a very 
close fit to experimental data for the A viemore model of 
DNA meiosis. The Aviemore model is represented by a 
probabilistic finite-state automaton whose estimated param
eters are the state transition probabilities. Excellent results 
in terms of weighted squared error were obtained for the 
model. However, the estimation procedure is highly de
pendent upon the initial guesses provided to the program. 
In this case satisfactory results were obtained in a relatively 
small number of program executions. 

The methods used to estimate the state transition proba
bilities of the DNA meiosis model are applicable to any 
probabilistic finite-state automaton model. The transition 
probability estimation technique could be incorporated into 
an inference procedure for probabilistic finite-state auto
mata (or grammars).4 This would provide the capability of 
automatically synthesizing and parameterizing probabilistic 
models of systems. 

REFERENCES 

1. Bard, Y., Nonlinear Parameter Estimation and Programming, IBM 
Scientific Center, 1967. 

2. Mortimer, R., private communication, 1975. 
3. Wu, K. C., Parameter Estimation of a Probabilistic Automaton Model of 

DNA Meiosis, M.S. Report, Dept. of Computer Science, Kansas State 
University, Manhattan, Kansas, 66506, 1976. 

4. Fu, K. S. and T. L. Booth, "Grammatical Inference: Introduction and 
Survey-Part II," IEEE Trans. on SMC, Vol. 5, No.4, July, 1975, pp. 
409-423. 





A comparison between two paradigms of 
intelligent systems-An example 

by ABRAHAM W AKSMAN 
Temple University 
Philadelphia, Pennsylvania 

ABSTRACT 

Almost all intelligent computer systems of the past decade 
could be characterized by the General Problem Solver 
(GPS) paradigm. This paradigm states that the intelligent 
system activity consists of two distinct elements considered 
as separate modules. The first module is the generalist, the 
general problem solver while the second module could be 
considered as its data base, consisting of facts about the 
universe of discourse. 

Current research indicates that to bridge the gap between 
simple display of inference making ability and an actual 
complex world situation requires a shift in philosophical 
approach. A new approach which promises to overcome 
the major drawbacks of the old paradigm could be charac
terized as the Plan-Debug paradigm. Similar to the old 
paradigm it could also be characterized as consisting of two 
modules, the plan making module and the debugging mod
ule. Conceptually this paradigm states that in order to 
execute any task or solve a problem we need to start with a 
plan of action regardless how imperfect. Once we get stuck, 
we consult a specialist with a lot of knowledge about the 
particular situation. 

INTRODUCTION 

Almost all intelligent computer systems of the past decade 
could be characterized by the General Problem solver 
paradigm. This paradigm states that the intelligent system 
activity consists of two distinct elements considered as 
separate modules. The first module is the generalist, the 
general problem solver while the second module could be 
considered as its data base, consisting of facts about the 
universe of discourse. 

It has become more and more apparent that a fundamen
tal difficulty exists in the building of systems along the 
General Problem Solver paradigm which are capable of 
handling more than toy problems. 

Current research indicates that to bridge the gap between 
simple display of inference making ability and an actual 
complex world situation requires a shift in philosophical 
approach. 

833 

A new approach which promises to overcome the major 
drawbacks of the old paradigm could be characterized as 
the Plan-Debug paradigm. Similar to the old paradigm it 
could also be characterized as consisting of two modules, 
the plan making module and the debugging module. Con
ceptually this paradigm states that in order to execute any 
task or solve a problem we need to start with a plan of 
action regardless how imperfect. Once we get stuck, we 
consult a specialist with a lot of knowledge about the 
particular situation. In this Plan-Debug paradigm the em
phasis has shifted from a large and powerful generalist 
module to a simple plan making module, from a small and 
simple data base to a large and dynamically structured data 
base. This shift facilitates the optimization of search pro
cesses in a semantically relevant way. It also facilitates the 
updating without requiring system modifications. 

EXAMPLE 

Design problems are very often problems in constraint 
satisfaction. Given a final design as a goal, the problem is to 
accomplish the goal without violating a set of pre specified 
conditions concerning the inter-relationships between pa
fafOOlerR-, ~ ~, ~··l"~r~ .vtWable.,:rIle.fiAal 
design is as a rule, a compromise between these factors in a 
way which optimizes some predefined criteria. 

What follows is an example of the constraint satisfaction 
problem. We relate it to the two approaches to the design of 
intelligent systems as discussed above. 

Consider a design problem, one which allows no compro
mises, but rather total constraint satisfaction with no dupli
cations. We feel however, that it is not a toy problem in the 
sense that the solution will carry over to problems solved 
on more complex systems, while still employing the under
lying concepts. 

Our example displays the suitability of the new approach 
to solving problems encountered in computer aided design. 
We bring forth the difference in the processing load exhib
ited by the two systems. We show that the ability to 
perform more direct searches result in a more effective 
system. 

Computer-aided design problems of the constraint-satis-



834 National Computer Conference, 1977 

faction form can be characterized by a query and a set of 
partial information elements relating to the query. The 
problem solution corresponds to interrelating the partial 
information in a nonconflicting way. The response to the 
query is then directly derivable. 

Constraint-satisfaction problems could also be compared 
to problems of tiling the finite plane with a set of non
regular tiles. The completely tiled plane constitutes the 
solution. The size of the plane, shape and number of each 
type of tile used constitute the set of constraints imposed 
on the solution. 

Consider five modules that have to be arranged in a row 
from left to right, one next to the other. Each module is 
supposed to perform a specific task different from the tasks 
of the other modules. To each such task (function), We 
assign four specific attributes. The problem is to assign one, 
yet unassigned, attribute to one of the functions, in such a 
way that a prespecified set of constraints, relating to the 
modules, functions, and attributes and to the relations 
between them, will not be violated. 

Let us state this problem in terms of the so-called Zebra
problem: 

There are five gentlemen who live in a row of five 
houses. 

I. The gentleman that smokes Old-Gold has a snail for a 
pet. 

2. The gentleman that smokes Kool lives in a green 
house and has a neighbor with a horse for a pet. 

3. The gentleman that smokes Chesterfield lives next to 
the gentleman that has a fox for a pet. 

4. The gentleman that smokes Lucky-Strike drinks Or-
ange. 

5. The gentleman that smokes Parliament is Japanese. 
6. The Spanish gentleman has a dog for a pet. 
7. The English gentleman lives in the red house. 
8. The gentleman who lives in the green house drinks 

coffee and is to the right of the ivory house. 
9. The Norwegian gentleman who lives in the first 

house lives next to the blue house. 
10. The gentleman in the third house drinks milk. 
II. The Ukranian gentleman drinks tea. 

The problem is to find out which of the above five 
gentleman owns the zebra, given that a zebra is one of the 
five pets belonging to the five gentlemen. 

Theorem proving systems based on the general problem 
solving paradigm, when given a problem such as the zebra 
problem, will proceed in converting the given constraints 
into a set of axioms. Using the axioms, they will then 
proceed to state all possible solutions as theorems. These 
theorems are to be proven by the system true or to be 
refuted by it. 

The eleven statements of the zebra problem will become 
then the set of axioms. The theorems to be proven true will 
become: 

Thl. The zebra belongs to the Japanese. 
Th2. The zebra belongs to the Englishman. 

Th3. The Ukranian owns the zebra. 
Th4. The Norwegian owns the zebra. 

In order to gain some insight into the processing load 
imposed by the theorem proving system, we proceed to 
develop a search path for the proof of Th3. 

Theorem: Uk.-zebra 
Then: Uk.-not (O.G., Par., L.S.) Fm. (1,4,5) 
Then: Uk.-or(Kool, Ch.) 

Lemmal: Uk.-Kool. 
Then: Uk.-not(lst, 2nd, 3rd, 4th) Fm. (9,2,7,8) 
Then: Uk.-5th. 
Then: Ivory-4th. 

Green-3rd. Fm. (2,8,12) 
Then: Green-Milk Fm. (10) 

But: Green-Coffee Fm. (8) 
Contradiction. (Lemmal) 

Then: Uk.-not (Kool, O.G., Par., 
L.S.) 

Then: Uk.-Chesterfield. 
Then: Uk.-not (I st., 4th) 
Then: Uk.-or(2nd., 3rd., 5th.) 

Lemma2: Uk.-2nd. 
Then: Uk.-Blue Fm. (12) 

Red-or(3rd., 5th.) 
Green-or(3rd., 4th.) 
Ivory-or(4th.,5th.) 
Yellow-1st. 

Then: Uk.-Horse Fm. (2) 
But: Uk.-Zebra Fm. (Th3) 

Contradiction. (Lemma2) 
Then: Uk.-not(lst., 2nd., 4th.) 
Then: Uk.-or(3rd., 5th.) 

Lemma3: Uk.-3rd. 
Then: Uk.-Milk Fm. (10) 

But: Uk.-Tea Fm. (II) 
Contradiction. (Lemma~ 

Then: Uk.-not(lst., 2nd., 3rd., 
4th.) 

Then: Uk.-5th. 
4th.-Ivory Fm. (8) 
3rd.-Green Fm. (8) 
2nd.-Blue Fm. (12) 
I st.-Yellow Fm. (2) 

Then: Uk.-Red. 
But: Eng.-Red. 

Contradiction. (Th3) 

We have thus disproved that the Ukranian gentleman is 
the owner of the zebra. We still have to tackle the other 
three theorems. Even when we discover a proof for the 
validity of one of the theorems, we cannot stop since there 
might be more then one solution. The constraints might be 
satisfied in more than one way. 

Inherent in a solution as the above is the inability to 
make use of prior deductions to aid in the solution process. 
It is, however, possible to derive and save axioms which 
are needed more then once. In our case, the fact that the 



second house is blue (Axiom 12) is such as axiom, deduced 
from the fact that the 1 st house has a blue house for a 
neighbor (Ax. 9). 

A somewhat longer chain of deduction is needed to 
conclude that the Norwegian lives in the yellow house (9, 8, 
12, 7). An automatic system such as a theorem prover 
cannot have, however, prior knowledge as to the utility of a 
given deduction that results in a new axioms derived from 
old axioms. 

The danger in giving a theorem prover freedom to derive 
new axioms is that proliferation of axioms can very easily 
get out of hand causing the solution process to bog down 
for any moderate size problem. 

In contrast to the theorem prover, the plan-debug system 
approach to the solution of constraint -satisfaction problems 
consists of relegating the pre-processing activity to a set of 
specialized procedures which have the responsibility to do 
the domain-specific processing before the main algorithm is 
getting activated and when it is confronted with a conflict. 
We can divide the plan-debug system structure into three 
main modules as follows: 

1. A data base that consists, initially, of the problem
constraints as its data entities. 

2. A set of "trigger-functions" or demons. These de
mons could be considered axiom-activated update func
tions. Each demon is associated with an axiom or a set of 
axioms which activate (envoke) it whenever they enter into 
new relation with other axioms. The demons' task is to 
insure that no side effect of any newly formed association is 
left uninspected, unrecorded or reported if need be. The 
demons might add new axioms to the data base; they might 
introduce data base elements into new relations; and will 
declare conflicts as a consequence of improper or illegal 
update. 

A color-demon, for example, might have the responsibil
ity to see to it that: 

A. No color is used in more than one house. 
B. No house can have two colors. 
C' ::rhe 'Re~(-ro' Gala type ,Aas thef~lowi.IijL properties; 

a. IF Loc.-5th. Then Next-t0--4th. 
b. IF Loc.-1st. Then Next-to-2nd. 
c. IF Loc.-x. Then Next-to-or«x-I), (x+ ». 

Also, IF Loc.-x. Then To-The-Right-of--(x-1). 

3. A general purpose search algorithm, the planner, 
which follows simple guidelines for the initial search. As 
the search progresses, the data base upon which the plan
ner acts gets modified by the demons. Demons that remain 
active for any length of time become temporarily part of 
the planner and remain active under its control. This is, in 
effect, a form of parallel processing in the sense that when 
update occurs, the planner is considering the total data base 
in terms of a solution rather then one part of it at a time. 
Each update will, in effect, generate a modified version of 
the data base together with a list of modifications that 
occurred since the start of the solution process. 

We can characterize the activity of the planner as fol-

Two Paradigms of Intelligent Systems 835 

lows: 

I. Consider every constraint as an incomplete tuple rang
ing over all the domains in the data base. Thus the 
constraint includes, besides the original set of domain-value 
pairs, domain-value pairs with unspecified value. 

2. The logical deduction process has the effect of intro
ducing the appropriate values to fields with unspecified 
values. 

3. Whenever a value is entered in an incomplete tuple's 
field, the planner checks to see if some other incomplete 
tuple has such a value under a similar domain. In that case 
a join is performed, that is, the two incomplete tuples are 
combined into one reSUlting in less unspecified fields. 

4. A solution exists whenever there are no more incom
plete tuples in the data base. That is, when all the tuples 
ranging over all the available domains consist of domain 
value pairs and all the values are uniquely specified. This 
will also result in the smallest number of tuples in this final 
version of the data base. 

Let us consider the solution process in a plan-debug 
system as described above: 

The color-demon establishes at the start of the computa
tions the following fact: 

(Blue-2nd.) and (Green-to-the-right-of Ivory) 
Ivory-or(4th., 5th.) 

Lemma]: Ivory-4th. 
Then: Yellow-1st. 

Then: 
But: 

Then: 
Then: 

Lemma2:: 
Then: 

Cig. Pet 

Kool Fox 
Che. Horse 
O.G. Snail 
Par. Zebra 
L.S. Dog 

Blue-2nd. 
Green-3rd. 
Red-5th. 
Coffee-3rd. 
Milk-3rd. 
Contradiction. (Lemma!) 
Ivory-5th. 
Uk.-or(2nd., 5th.) 
Uk.-2nd. 
( since there are no contradictions to 
lemm&Z,) we prucel2:G to i"epresent the flv~ 
complete tuples in a table form. In actual
ity, such a table will result from the collaps
ing of the data base with the incomplete 
tuples as tuples continue to be joined. 

Next (Color) 
Color Loc. Nat. Drink (Pet) To-R-of 

Yellow 1st. Nor. Horse 
Blue 2nd. Uk. Tea 
Red 3rd. Eng. Milk 
Green 4th. Jp. Coffee Ivory 
Ivory 5th. Sp. Orange 

In the process of generating a duplicate data base for the 
case of (Uk.- - - - 5th.) we discover a contradiction as fol-



836 National Computer Conference, 1977 

lows: 

Lemma3: 
Then: 

But: 

Uk.- - - - 5th. 
2nd-Japanese- Orange-Parliament. 

Orange-Lucky Strikes 
Contradiction. (Lemma3) 

Thus, the above table represents the only possible solu
tion to the zebra problem. The zebra belongs to the 
Japanese and the data base consists of five tuples ranging 
over nine domains each. This is the only combination of 
parameters which wiIl allow for a solution without a con
flict. 

CONCLUSION 

The dramatic improvement in the way that the plan
debug system handles the zebra problem as against the 

theorem prover is due fundamentally to the ability of the set 
of demons to capture in a procedural way the semantics of 
the data base (the set of constraints). This knowledge, which 
is specific to the problem at hand, need not be encapsulated 
in a more general way in the main algorithm. 

The main algorithm, the planner, uses general deduction 
to add values to fields in incomplete tuples. It also performs 
the joins. 

The debug facility introduces special deduction initially 
as well as when the general deduction is not adequate. 

REFERENCES 

I. Newell, Allen, "Artificial Intelligence and the Concept of Mind," in R. C. 
Shank (ed), Computer Models of Thought and Language, W. H. Freeman 
and Co., San Francisco, 1973. 

2. Minsky, Marvin, "New Directions in Artificial Intelligence," a talk 
presented at IBM, San Jose, California, Summer 1976. 



Concatenated group theoretic codes 
for binary asymmetric channels* 

by SERBAN D. CONSTANTIN and T. R. N. RAO 
Southern Methodist University 
Dallas, Texas 

ABSTRACT 

A brief description of group theoretic codes is given and 
their suitability for binary asymmetric channels is exempli
fied. 

Previous research has shown the superiority in the infor
mation rate of the group theoretic codes over the existing 
codes for binary asymmetric channels and has left open the 
problems posed by the encoding/decoding procedures. 

The present paper introduces more sophisticated codes 
constructed from the already existing single I-error correct
ing group theoretic codes. 

The new class of codes, which we will refer to as 
concatenated group theoretic codes, will have improved 
encoding/decoding features while maintaining a high infor
mation rate comparable with that of equivalent length group 
theoretic codes. 

As their name indicates, a code of length 2n will be 
obtained by concatenating two sets of group theoretic codes 
of length n. 

INTRODUCTION 

Given an abelian group G of order n + 1, one can put in 1-1 
correspondence the binarv vectors of length D with the 
linear combinations (with coefficients 0 or 1) of non-zero 
elements of G. 

The correspondence is rather intuitive and is given by: 

n 

2 lXi·ai~ IXl' 1X2' ••• , IXn) 
i=l 

ai =l=ao are the non-zero elements of the group and 

( 1.1) 

Without loss of generality, assume the group operation to 
be addition. Moreover, the above correspondence will 

* The authors' research was supported in part by a grant from National 
Science Foundation Eng76-11237. 

837 

partition the set of 211 binary vectors V of length n into n + 1 
disjoint classes of vectors Vo, VI' ... , V n • 

The linear combinations corresponding to vectors of a 
class Vi' will sum up to ai, and vectors of each class will 
form a group theoretic code. Since one tries to optimize the 
number of codewords in the code, we shall look for the set 
Vi> having the most number of vectors (codewords) in it. 

If the best possible code obtainable by this method is 
desired, one must consider all abelian groups or order n+ I 
and look at the classes generated by each group and then 
select the largest such class. 

For an n as small as 10, one must use a computer in order 
to generate all classes of vectors generated by a group of 
order 11 or higher. 

The error correcting properties and a more detailed 
description of group theoretic codes can be found in Refer
ence 1. 

For a comparison of Hamming code4 and Kim and 
Freiman code3 with the group theoretic codes of the same 
length the reader is referred to Table I. 

In this paper Zn will have the standard meaning of the 
addition modulo n group. 

MATHEMATICAL CONSIDERATIONS 

Consider two vectors: 

where 

ai' b i i = 1, . . . , n are real numbers. 

Without loss of generality let's assume: 

{ 

at ~a2 ~a3:5 ... :5an 

bt :5b2:5b3:5· .. :5bn 

(2.1) 

(2.2) 

If 1T is a permutation, 1T=(il' i2 , ... , in), then by 1T(B) 
we will denote 



838 National Computer Conference, 1977 

TABLE I-Number of Codewords for Single-Error Correcting Codes 

Group Group 
Code Theoretic Theoretic 
Length Kim-Freiman Codes Codes 
n Hamming Code Code G=Zn+lt ** 

2 2 2 2 2 
2 2 2 2 

4 2 2+2=4 4* 4 
5 22=4 22+2=6 6 
6 23=8 23+22= 12 10* 10 
7 24=16 23+22= 12 16 16 
8 24=16 24+23=24 30 32 
9 25=32 25+23=40 52 

10 26=64 26+24=80 94* 94 
II 27=128 27+24= 144 172 
12 28=256 28+25=288 316 316 
13 29=512 29 +25=544 586 
14 21°= 1024 21°+26= 1088 1096 
15 211=2048 21°+26= 1088 2048 2048 
16 211=2048 211+27=2176 3856 3856 
17 212=4096 212+27=4224 7286 
18 213=8192 213+ 28=8448 13798 13798 
19 214= 16384 213 + 28=8448 26216 
20 215=32768 214+29= 16896 49940 

* Figures in these entries are best possible using this method, due to the 
fact that there is only one group of order n+ I. See Reference 5 for the 
number of groups of various order. 
** The groups considered were the additive groups of the Galois fields 
GF(pq). 
Note: The number of codewords in the group theoretic codes in the above 

table was generated by computer. 
t These codes were also obtained by Varshamor. 6 

i.e., the vector whose elements are the elements of B 
permuted according to 7T. 

We are interested in finding 7T* such that A·B 7T:s;A·B 7T* 
holds for any other permutation 7T, where by A· B is meant 
the scalar product of the two vectors i.e., 

II 

A'B= " a··b· ,,(.. I I (2.3) 
j=1 

This maximum scalar product i.e., A'B 7T* will be referred to 
M(A, B), where M acts like an operator on the two vectors 
A and B into the real numbers. 

Lemma I 

For any two vectors A and B satisfying (2.2): 

M(A'B)=A'B=B'A (2.4) 

Proof 

Let's consider first the trivial case, i.e., 

such that 

What we have to show then to prove the lemma in this case 

is: 

This follows immediately from: 

(a2-a1)(b2-b1 );===0 

by expanding the product. 

(2.5) 

(2.6) 

Having proved this, to get the general result we are only 
one step away. Consider any two permutations 7Tl and 7T2 
and assume: 

M(A, B)=7Tl(A)'7T2(B) 

and let p be the largest integer such that the scalar product 
7Tl(A)'7T2(B) does not contain ap·bp as a term. Then 
'7Tt(.ii1 )-u2(B), must certainly contain ap;bi+afbp 

where 

But then using- the trivial case considered above, i.e., 

substituting ap'bj+aj"bp in the scalar product 7T1(A)'7T2(B) 
with aj"bj+ap'bp we contradict that M(A, B)=7Tl(A)·7T2(B). 
Repeating the procedure described until p= 1 we obtain the 
desired result. Q.E.D. 

Corollary I: 

For any arbitrary vector A=(a1 , a2, ... ,an) 

II 

M(A, A)=A'A= L aj2 (2.7) 
1=1 

Similarly, if we define the operator meA, B) to be: 

for any permutation 7T, then the following similar result is 
obtained: 

Lemma 2 

For any two vectors A and B satisfying (2.2): 

Proof' 

II 

meA, B)= L aj'bn- i +1 
i=1 

Similar to the one for Lemma 1. 

(2.9) 

If the elements of a vector A are non-positive and the 
elements of a vector B are non-negative the following 
relations hold: 

where 

{ M(A, B)=-m(IAI' B) 
meA, B)=-M( A ,B) (2.10) 



Finally, one more result is needed. We want to construct 
a single error correcting code of length two, over the 
alphabet {O, 1, 2, ... , n}, where the only possible single 
errors occurring in a codeword (i, j) are: 

{ (i,j)~(i-1,j) i*O (2.11) 
(i, j)~(i, j -1) j *0 

Maximizing the number of codewords in such a code is also 
one of the objectives. Consider the following picture: 

Figure 1 

Let (i, j) be the name of the square in the ith row and jth 
column. The collection of the (i, j) 2-tuples corresponding 
to the shadowed squares in Figure 1, can easily be checked 
to form a single error correcting code under the conditions 
of error occurrence as described by (2.11). Note that no 
additional square could be shadowed such that the aug
mented code be still single error correcting. However, this 
does not pr()ve that no other code could have more code-
w~rds than' this code. . . 

Lemma 4 

Consider the following length 2 code over the alphabet {O, 
1,2, ... , n}: 

(a) (i, i) is a codeword for i=O, 1, 2, ... , n 
(b) if (i, j) is a codeword, so is (i+ 3, j) and (i, j+ 3) for 

i+3:5n andj+3:5n 

Then, such a code is cyclic, is single error correcting and 
contains the maximum number of codewords. 

Proof. 

The first two assertions can be easily disposed of using 
the definition of the code and (2.11). We shall prove only 

Binary Asymmetric Channels 839 

the third property, i. e., no other code can have more 
codewords than the code described above. 

Obviously, the number of possible 2-tuples over the 
alphabet {O, 1, 2, ... , n} is (n+1)2. Let n+1=3m+k, 
k=(n+ 1) mod 3. Then, the number of codewords in our 
code is: 

m 

(n+ 1)+ L 2'[(n+ 1)-3'i]=3'm2+2'm'k+k (2.12) 
i=l 

In general, for every codeword (i, j) that we include in 
our code, we eliminate from the list of potential codewords 
two other tuples, (i -1, j) and (i, j -1); i.e., the contaminated 
tuples corresponding to the codeword (i, j). With this 
observation, one can actually convert the original problem 
into a tile covering problem, namely we will be concerned 
with covering an (n+1)x(n+1) rectangle of squares with 
tiles of the shape and orientation of the one in Figure 2, 
such that no two tiles overlap and as much as possible of 
the surface of the (n + 1) x (n + 1) rectangle is covered with 
tiles. 

Figure 2 

The simplest upper bound for the number of tiles cover
ing the rectangle is 

b f t 'l -< [area of the SUrfaceJ _ [(n+ 1)2J 
max num er 0 I es- f' 1 t'l - 3 area 0 a smg e I e 

[
(3m+k)2J [k2J = --3 - =3m2+2mk+ "3 =3m2+2mk+k 

because 

But, the upper bound coincides with the number of code
words in our code. Q.E.D. 

The method of finding such codes can be generalized in 
different directions. For example, one can build a single 
error correcting length 2 code where the first component 
can take on values from {O, 1, ... , n} and the second 
component can take on values from {O, 1, ... , m}. The 
code could be constructed using a similar picture as the one 
on Figure 1 except that the surface will be an (n+1)x(m+l) 
rectangle. 

Lemma 5 

Given N=m+n, N fixed, the length 2 code with the most 
number of codewords, is obtained for n=N/2, m=N/2. 



840 National Computer Conference, 1977 

Proof. Area of the (n + 1) x (m + 1) rectangle is maximum 
when n=m. Q.E.D. 

U sing extensions of the rules given in Lemma 4, one can 
build a single error correcting length k code over the 
alphabet {O, 1, ... , n}. Proving the maximality of the 
number of codewords of the length k code constructed by 
the rules similar to the ones in Lemma 4 requires more 
involved calculations. 

At last, the length 2 code over the alphabet {O, 1, ... , n} 
will be called a weight-code and will be used for construct
ing the concatenated group theoretic codes. 

CONSTRUCTION OF CONCATENATED GROVP 
THEORETIC CODES 

Let GI and G2 be two abelian groups of the same order 
n+ 1 (as it will be seen GI and G2 need not necessarily be 
distinct) and let {Yo, VI' ... , Vn} and {Uo, UI , ... , Un} 
be the partitions of the set of 2n binary vectors of length n 
into n + I disjoint classes of codes as induced by the two 
groups G I and G2 respectively. 

Each class (code) Vi' Vi i=O, 1, 2, ... , n is a group 
theoretic code in itself. Distinguishing the codewords in 
each class by their weight (i.e., # of ] 's in the codewords) 
we obtain the following classification 

TABLE II 

2 n 

Vo aoo aOI ' . aon 
VI 

Vn a no anI, . ann 

TABLE III 

2 ......... n 

Vo boo bol , ........... bon 
VI 

V n bno bnl , ..:........ bnn 

where 

ajj = # of vectors (codewords) of weight j in the class Vi 
bij = # of vectors (code words) of weight j in the class Vi 

The length 2n code we will construct, as its name 
suggests, will be the result of concatenating codewords 
from some class Vi with codewords from some class V j in a 
manner that will result in a maximum number of codewords 
of length 2n. 

For ease of reference, let's adopt the following notations: 

• C the concatenated group theoretic code to be con
structed 

• W the weight-code. This is a length 2 code, over the 
alphabet {O, 1, ... , n} as described earlier. 

• C I the set of codes generated by G I i.e.: V 0, 

VI"'" Vn 
• C2 the set of codes generated by G2 i.e.: Vo, 

VI, ... , Un 
• lower case letters will be used to denote codewords 
• I w I weight of codeword w. 

Then, a condensed description of C could be given in the 
following form: 

C={(WIW2) IIwII =i, IW21 (3.1) 

=j, (i,j)EW, WIEVk, W2EUI) 

aki and bij are both the rth largest elements, for some r, 
in the ith column of Table II and jth column of Table 
III, respectively} 

For the case where GI and G2 have been selected to be 
one and the same group, in the above definition (3.1) pick 
k=l. (See Corollary 1). Given the two groups GI and G2 of 
order n+ 1, one selects a length 2 weight-code, as described 
in Lemma 4, determining what weights the codewords to be 
paired together should have. 

Let Ci' denote the ith column of Table II and ct denote 
the jth column of Table III, i, j=O, I, 2, ... , n. 

Then, for every codeword (i, j) of the weight-code W, we 
will generate codewords (WIW2) of C, where WI is a 
codeword in CI of weight i corresponding to some code V k 
and W 2 is a codeword in C2 of weight j corresponding to 
some code V I where k and I are selected as dictated by 
Lemma 1 applied to the vectors C/ and C/,. 

Error detection and correction in C: 
Let (rlr2) be a received message and let's assume that at 

most one I-error has occurred to the transmitted message 
(WIW2) of C. From the construction of C we know (Iwll, 
IW21)EW. 

Let i= Irll and j= Ir21. If (i, j) is a valid codeword of W 
then (rlr2)=(wIW2) and hence no error has occurred. How
ever, if (i, j)f/=W then a single I-error has occurred to the 
transmitted message (WIW2) and more precisely a single 1-
error has occurred to either WI or W2 decreasing the weight 
of one of the two codewords by 1. Therefore, either i= IWII 
and j= IW21-I; i.e. the error has occurred in W2 or 
i = I WI 1- 1 and j = I w 21; i. e. the error has occurred in WI' 
Since W is a single error correcting code we can deter
mine(lwll, IW21> and hence know where the single I-error 
has occurred. Let's suppose the error has occurred in W2 
and as a result we have received (rlr2)=(wlr2). By the 
correspondence (1.1) and the structure of GI we establish 
the membership of WI in some class (code) V k' Let r be the 
rank of aki in Ci'. Find then the rth largest element (the 
element of rank r) in CHI" and let this be blO +l)' Now we 
know that r2 must have come from a codeword of VI and 
since V I is a single ] -error correcting code we can correct r 2 
and obtain w2. Thus, we will correct (r1r2) and obtain the 
transmitted message (WIW2) of C. 

The following example goes through each step of the 



detecting and correcting procedure described in the pre
vious paragraph for a length 16 concatenated group theo
retic code generated by the additive group of the Galois 
field GF(32). 

+ 0 1 2 X 

0 0 1 2 X 
1 1 2 0 I+X 
2 2 0 1 2+X 
X X I+X 2+X 2X 

2X 2X I+2X 2+2X 0 
I+X I+X 2+X X 1+2X 
2+X 2+X X I+X 2+2X 
1+2X i+2X 2+2X 2X . 

1 

2+2X 2+2X 2X 1+2X 2 

Binary Asymmetric Channeis 841 

Example 

Consider the additive group G9 of the Galois field GF(32) 
whose addition table is given below: 

2X I+X 2+X 1+2X 2+2X 

2X l+X 2+X 1+2X 2+2X 
I+2X 2+X X 2+2X 2X 
2+2X X I+X 2X 1+2X 

0 1+2X 2+2X 1 2 
X 1 2 I+X 2+X 
1 2+2X 2X 2 0 
2 2X 1+2X 0 1 

l+X 2 0 2+X X 
2+X 0 1 X I+X 

For each i, i=O, I, ... ,8 the codewords in Vi form a group theoretic code, and for purposes of clarity, the codewords of 
such a code, namely of Vo, will be listed out. They are: 

co=(O,O,O,O,O,O,O,O); 
c3=(0,0,0,0, 1 ,0,0, 1); 
c6=( 1,1,0,0,1,0,0,1); 
c9=(0,0, 1,1,0,1,1,0); 

CI2 =(1, 1, 1, 1,0, 1, 1,0); 
C 15 =( 1,1,1,1 , 1 , 1 , 1 , 1); 
c I8=(0,1,1 ,0,0,0,1,0); 
C21 =(0,1,0,0,0,1,0, I); 
C24=(1 ,1,1,0,1,1,0,0); 
C27=(0, 1,1,1,0,1,0,1); 
c 30=( 1 ,0,1,0,0,1,1,1); 

c1 =( 1,1,0,0,0,0,0,0); 
c4=(0,0,0,0,0, 1,1,0); 
c7=(1, 1 ,0,0,0, 1,1,0); 

ClO=(O,O,O,O, 1,1,1,1); 
C 13 =( 1 , 1 ,0,0, 1 , 1 , 1 , 1); 
c I6=(1 ,0, 1 ,0,0,0,0, 1); 
CI9 =( 1 ,0,0, 1 ,0, 1 ,0,0); 
C22=(0'0, 1 ,0, 1,1,0,0); 
c 25=(I, 1 ,0, 1 ,0,0,1,1); 
C28=(0, 1,1,0,1,0,1,1); 
C31 =(0,1,0,1,1,1,1,0) 

c2=(0,0, 1,1,0,0,0,0) 
c5=(1, 1,1,1,0,0,0,0) 
c8=(0,0, 1,1,1,0,0,1) 

Cll =(1,1,1,1,1,0,0,1) 
c 14=(O,O, 1,1,1,1,1, I) 
CI7=(0' 1 ,0, 1,1,0,0,0) 
c 20=( 1,0,0,0,1,0,1,0) 
C23=(0,0,0, 1 ,0,0, 1,1) 
C26 =(1,0, I, 1, 1,0, 1,0) 
C29=( 1 ,0,0, 1,1,1,0,1) 

The distribution by weight of the codewords in the nine 
classes V 0' VI' . . . , V 8 induced by G9 into the set of 28 

binary vectors of length 8 is given by the following table: 

equal to the set of codes V 0, VI' . . . , V n. The weight
code W will be the one determined by the names of the 
shadowed squares of the picture in Figure 1. 

TABLE IV 
~Weight 

class ~ ° 1 2 3 4 5 6 7 8 
df 

1 U 4 8 6 4 u I ! 

° 1 3 6 8 6 3 1 ° 
° 1 3 6 8 6 3 1 ° 
0 1 3 6 8 6 3 1 ° 
° 1 3 6 8 6 3 1 ° 
° 1 3 6 8 6 3 1 ° 
° 1 3 6 8 6 3 1 ° 
° 1 3 6 8 6 3 1 ° 
° 1 3 6 8 6 3 1 ° 

The length 16 concatenated group theoretic code C will be 
constructed from C1, the set of codes generated by G1=G9; 
and C2, the set of codes generated by G2=G9. In this case 
G1 and G2 will be identical and equal to the addition group 
of GF(32). This implies that C1 and C2 will be identical and 

To each codeword (W1W2) of C it will correspond a 
codeword (\w1\, \w2\) of Wand conversely to each code
word (i, j) of W there will correspond a set of codewords in 
C. The number of codewords in C corresponding to a 
codewoui 'i. .il ill .W is giveniu the. fQUo,w.ing t,abl~: 

TABLE V 

\w2\ 
\w1\ ° 1 2 3 4 5 6 7 8 

° 1 8 4 

1 8 64 8 

2 88 176 4 

3 8 288 176 

4 64 512 64 

5 176 288 8 

6 4 176 88 

7 8 64 8 i 

8 4 8 1 I 



842 National Computer Conference, 1977 

Let 

and (3.3) 

(Vji'Vkl)={(VIV2) IvlEVji, V2EVkl} 

Then, using the notation (3.3), the set of codewords (WIW2) 
of C corresponding to the codeword (2, 5) of W is: 

{(V0
2·V0

5
), (V/'VI5

), (V22·V25), ••. , (Vl'V8
5
)} 

which comprises a total of 176 codewords. 
To see how detection and correction is done when a 

single I-error has occurred, let: 

r=(r Ir2)=( 10 1010100 100 100 l) 

be the received message and assume (WIW2) of C was the 
actually transmitted message. 

For the above received message we have: 

i= Irll= 1(10101010) 1=4,j= Ir21= 1(01001001)1=3 

and since (4, 3) is not a codeword of Wand assuming a 
single I-error has occurred, the codeword of W correspond
ing to the transmitted message should have been (4, 4). 
Thus, r2 is in error. 

Since 

it must be that 

rl =( 10 101010) EV 3 

1 V 3 41 = 8 and 8 is the largest element in the 4th column of 
Table IV. Since there are seven other entries equal to 8, 
suppose the following pairing of codewords of C1 and C2 
corresponding to the codeword (4, 4) of W, has been done: 

(except for (Vo 4. Vo 4) all the other pairings are done arbitrar
ily; yet one must know before trying to correct transmitted 
messages what the pairings are). 

Therefore, rl must have been paired with a codeword of 
weight 4 from V 6' However 

and the error has occurred in the third position as given by 

Thus the transmitted message was (WIW2)= 
(lO 10 10 1001 101001). 

The number of code words in C as given in Table V is 
2470 and comparing it with the Kim & Freiman code of 

length 16 or the Hamming code of the same length (see 
Table I) we see a definite improvement in the information 
rate. Although the number of codewords in C is slightly less 
than the number of code words in the group theoretic code 
of length 16, efficiency could be gained in the encoding/ 
decoding process. 

If ROM was to be used for encoding and decoding 
purposes, smaller size ROM could be utilized if a message 
m=(m1m2 ) was encoded as: 

(mlm2)~{~~:~} ~WIW2)EC 
and decoded as: 

Longer weight-codes could be used in generating conca
tenated group theoretic codes, but it appears as though this 
would have a negative impact on the encoding/decoding 
procedures and maybe in the correction process while 
accomplishing a high information rate. An optimal conca
tenation (pairing) of three or more smaller codewords into a 
longer code is also not apparent, and could be regarded as a 
natural generalization of the method presented in this 
paper. 

CONCLUSIONS 

The future research to be pursued by the authors of this 
paper will be focused in the direction of finding efficient 
encoding/decoding procedures for both group theoretic 
codes as well as concatenated group theoretic codes. 

Finding an efficient encoding/decoding procedure for the 
two types of codes is believed to be possible due to the 
structure of the two codes inherited from the groups that 
have generated them. 

REFERENCES 

I. Constantin, Serban D. and T. R. N. Rao, "Group Theoretic Codes for 
Binary Asymmetric Channels," Technical Report CS 76014, Department 
of Computer Science, Southern Methodist University, Dallas, TX. 

2. Rao, T. R. N. and A. S. Chawla, "Asymmetric Error Codes for Some 
LSI Semiconductor Memories," 7th Annual Southeastern Symposium on 
System Theory, March 1975. pp. 170-171. 

3. Kim, Wan H. and Charles V. Freiman, "Single Error Correcting Codes 
for Asymmetric Channels," I.R.E. Transactions on Information Theory, 
June 1959. 

4. Peterson, W. W. and E. J. Weldon, Jr., Error Correcting Codes, M.I.T. 
Press, Cambridge, Massachusetts, 1970. 

5. Hall, Marshall Jr., The Theory of Groups, Macmillan, 1959. 
6. Varshamor, R. R., "A Class of Codes for Asymmetric Channels and a 

Problem from the Additive Theory of Numbers," Trans. on Information 
Theory, January 1973, pp. 92-95. 



The TICOM model-A network data base approach to 
review and evaluation of internal control systems 

by JAMES I. CASH, JR 
Harvard University 
Boston, Massachusetts 

and 

ANDREW D. BAILEY, JR. and ANDREW B. WHINSTON 
Purdue University 
West Lafayette, Indiana 

ABSTRACT 

EDP based accounting information systems have grown in 
complexity and size. This growth has partially been the 
result of new and advanced software techniques introduced 
by computer scientists. This paper is one in a series of 
papers which provide a new perspective for auditors of 
EDP based AIS's facilitated by new software development 
methodologies which address development of "reliable" 
software systems. In another paper we asserted reliable 
software would eliminate the need to verify computer 
programs except for an authenticity check; thus, facilitating 
a more thorough examination of the total internal control 
system. We describe a model which facilitates review and 
evaluation of internal control systems from a "total" sys
tems perspective. 

INTRODUCTION 

In earlier papers, we surveyed the extant literature on 
verification techniques for EDP based accounting informa
tion systems (AIS), and presented a methodology that 
facilitates the development of reliable AIS software sys
tems. I •16 In the second paper, we asserted that reliable 
software would eliminate the need to verify computer 
programs except for an authenticity check; thus, facilitating 
a more thorough examination of the total internal control 
system. This paper describes a model which facilitates 
review and evaluation of internal control systems from a 
"total" systems perspective. The model can be applied to 
any existing AIS and will contribute significantly to the 
auditor's comprehension and testing of the AIS. However, 
its greatest potential impact is in its application to reliable 
AIS. The fourth paper in this series presents the detailed 
development of the TICOM model presented in this paper. 

843 

INTERNAL CONTROL OVERVIEW 

Auditing objectives have changed over time. R. Gene 
Brown2 traced this evolution as shown in Figure 1. 

Period 
1500-1850 Detection of fraud 
1850-1905 Detection of fraud and clerical errors 
1905-1940 Detection of fraud and clerical errors; 

determination of fairness in reporting 
1940 Present determination of fairness in reporting 

Figure I-Evolution of auditing objectives 

Implicit in each of these objectives was the method and 
extent of system evaluation and verification. Fitzpatrick3 

states that during the sixteenth century, when auditing 
existed specifically to verify the honesty of persons charged 
with fiscal responsibilities, the extent of verification was 
very detailed. while evaluation of internal control was not 
~uilsiJered d rdevanlfliilcU5n iii. performIng audi~ cbj.:~
tives. Currently, substantial emphasis is placed on evalua
tion of internal control as a means of determining the scope 
and extent of verification. This emphasis is reflected in the 
second standard of field work included in the ten generally 
accepted aUditing standards: 

There is to be a proper study and evaluation of the 
existing internal control as a basis for reliance thereon 
and for the determination of the resultant extent of the 
tests to which auditing procedures are to be restricted.4 

As explicit as this statement is on a general level, very 
few aids exist to help the auditor make objective statements 
and judgments about a specific internal control system at 
the overall level. Numerous articles exist using statistical 
techniques to make statistically objective statements con
cerning the internal control system. However, the state-



844 National Computer Conference, 1977 

ments made are related to very specific and limited issues 
within the system and nothing is said about the system at a 
mo~e general level. 

Numerous professional statements can be found which 
suggest that this is an area requiring the highest degree of 
judgment and professional experience. Though we believe 
no audit tool will or should completely remove professional 
judgment from this function, most researchers continue to 
fail in the development of a general model with which the 
auditor can ask for and receive objective evidence about his 
client's internal control system. Bodnar,5 Ishikawa,6 Yu 
and N eter, 7 and Cushing8 are researchers who provided 
models which addressed this objective, formal evaluation 
problem, but did not provide a facile means of interface 
with the models. Other writers have suggested effective 
SUbjective means of exploring a system for strengths and 
weaknesses, but do not provide straightforward criteria for 
decisions about the system. The work contained herein 
addresses several important issues: 

(a) provides an encoding mechanism for internal control 
systems that views automated and manual procedures 
equally which provides a total systems perspective 
for review and evaluation. 

(b) uses recent EDP technological advances to facilitate 
review and evaluation of the system which provides 
for more thorough investigation. 

(c) facilitates positional analysis. 
(d) eliminates "slanted" questions on a questionnaire. 
(e) allows simulation of accounting subsystems to check 

for "lagged" (also termed "compensatory") control 
procedures, and subsystem overlap that might con
done fraudulent activity. 

(f) facilitates viewing internal control systems at differ
ent levels of detail which allows the auditor to specify 
the level of detail needed to perform the review and 
evaluation. 

CHARACTERISTICS OF INTERNAL CONTROL 

Internal controls are organizational arrangements and the 
actions instituted under such arrangements taken within an 
organization to direct and regulate activities of that organi
zation. Both management and auditors have recognized the 
potential benefits of effective internal control. More specifi
cally, auditors have realized that improved internal control 
" ... permits reductions in audit work made possible by 
the concomitant increase in the credibility of accounting 
records. (In fact, it may be argued that without a minimum 
level of internal control an audit on the fairness of financial 
statements would not be possible.) The effect on auditing 
has thus been to reduce the need for routine, mechanical 
verification of bookkeeping accuracy, permitting substitu
tion of a less time consuming approach that involves 
reasoning and judgment and stresses such activities as 
review, analysis, evaluation, and statistical sampling."9 

Obviously, if the auditor limits the scope of his examina
tion based on the reliability of his client's internal control 

system, he must have sufficient basis for formulating an 
opinion on the effectiveness of the system. This implies he 
should be aware of some basic characteristics of good 
internal control. 

Numerous methods and techniques exist for achieving 
good internal control. SAS 1 indicates that the methods 
should minimally include the following characteristics: 

(a) a plan of organization which provides appropriate 
segregation of functional responsibilities; 

(b) a system of authorization and record procedures 
adequate to provide reasonable accounting control 
over assets, liabilities, revenues, and expenses; 

(c) sound practices to be followed in performance of 
duties and functions of each of the organizational 
departments; 

(d) personnel of a quality commensurate with responsi
bilities. 

The first characteristic addresses the concept of division 
of duties. That is, no one department (or person) should be 
responsible for handling all phases of a transaction. An
other way of looking at this characteristic is that no 
department (or person) should control the accounting rec
ords relating to its own operation. 

The second characteristic concerns checks and proofs of 
accuracy and authorization. Although not explicitly stated, 
this characteristic also involves procedures for error check
ing and correction. That is, "reasonable accounting con
trol" must involve procedures for investigating and correct
ing errors when they occur. 

Characteristics three and four are requirements of any 
efficient organization and are redundant when applied to 
internal control within an organization. However, the "reli
ability" of a specific internal control system cannot be 
assessed without contextual evaluation of these characteris
tics. 

More specifically, one must adopt a perspective for 
examining an internal control system which highlights the 
basic characteristics mentioned. Such a perspective is pre
sented in the next section. 

INTERNAL CONTROL PERSPECTIVE 

The most prudent classificatory technique for identifying 
internal control is to distinguish between characteristics 
that constitute controls and activities subject to control. 10 

This classification scheme facilitates use of the traditional 
control matrix for logical analysis of these systems. Figure 
2 illustrates this perspective. The internal control primitives 
to be presented later can be thought of as activities subject 
to control. Control characteristics are subdivided into three 
types: preventive, detective, and corrective. Within each of 
these types, detail features may be encoded. Every public 
accounting firm has a list of features it considers prudent 
for their objectives. Therefore, we do not provide an 
exhaustive list. The fact that TICOM addresses this issue is 



Characteristics That 
Constitute Controls 

Preventive Detective Corrective 

INITIALIZE 

CREATE OBJECT 

RECORD 

PROOF 

CONTROL 

COMPARE 

TRANSFER 

AUTHORIZE 

STORE 

MERGE 

EJECT 

I HALT I SORT 

UPDATE 

INTERVAL 

Figure 2-Intemal control perspective 

the point we want to emphasize. Example detail features 
are shown in Figure 3. 

This perspective can be further expanded by considering 
different contextual areas within an internal control system. 
For example, computerized phases of the system have been 
characterized in terms of three areas: 11 

(a) Application controLs-unique to individual subpro
cesses of this system 

(b) Information Processing Facility (IPF)-which affect 
the computer installation and environment, and how 
most applications are processed in a facility 

(c) Systems Management controls-which assure design, 
implementation and maintenance are performed in a 
prudent, secure, and systematic manner. 

The'~· fJf ~·m~ ~-~4le~~ .. ~ b¥ the 
model to allow different public accounting firms to view the 
system within their own perspective. 

PROBLEM STATEMENT 

According to Stettler,9 there are three basic, closely 
related questions, that provide a basis for the auditor's 
conclusion on internal control: 

(a) What are the purported internal control procedures? 
(b) Are those procedures being followed? 
(c) How satisfactory are those procedures? 

Currently, these questions are addressed by the auditor 
in obtaining and storing information about the organization, 
in such a way that provides a comprehensive picture of the 
organization. Questionnaires and system flow-charts are 

The TICOM Model 845 

currently used, and are stored in a "permanent audit file" 
for the given client. Although such methods are flexible, 
and widely accepted, we argue that many key issues of 
internal control are not properly addressed by these tech
niques because of the sequential and segmented nature of 
elicitation, storage, and retrieval of the relevant data. 

For example, because each of the accounting subsystems 
(e.g., accounts payables, cash receipts, accounts receiva
bles) is explored individually and often in some sequence, 
the common points of two subsystems that might condone 
fraudulent activity could easily be overlooked. Likewise, 
employees who perform logically different functions, but 
whose physical work areas permit access to logically unau
thorized functions may not be discovered. The classic 
example of the need for positional analysis is illustrated by 
Mautz and Mini12 and summarized below: 

Suppose we have a questionnaire with the following 
questions: 

(1) Is the handling of customer remittances separated 
from the recording of such remittances in the cash 
receipts journal and accounts receivable subsidiary 
ledger? 

(2) Is a pre-listing of mail receipts prepared? 
(3) Is this list compared with cash book entries? 

Assuming these questions were answered "no," "yes," 
and "yes" respectively, it is impossible to determine if the 
described conditions constitute a vulnerable point in the 
system. If, for example, the person handling and recording 
customer remittances was the same person working with 
the pre-list of mail receipts or had access to the pre-list, 
vulnerability is high. 

It is obvious that the questionnaire could be recon-

I. PREVENTIVE 

A. Authorization 
B. Sequenced Fonns 
C. Dual Access and Control 
D. Rotation of Duties 
~. ~~mr'nf'-!)m'!e~ 

F. Physical Security (Protection Rings, etc.) 
G. Tum-around Documents 

II. DETECTIVE 

A. Edits and Checks (Sequence, Over-flow, Fonnat, etc.) 
B. Control Totals (Hush, Batch, etc.) 
C. Dating 
D. Read-back (Echo) 
E. Redundant Processing 
F. Suspense and Tickler Files 

III. CORRECTIVE 

A. Discrepancy Reports 
B. Resubmission (Upstream and Reinitialization) 
C. Backup and Recovery 
D. Automated Error Correction 
E. Error Source Statistics 

Figure 3-Characteristic control-type examples 



846 National Computer Conference, 1977 

structed to expose this weakness; however, as will be 
illustrated later, the network approach presented herein for 
describing a system forces the inclusion of positional analy
sis inquiries on a questionnaire. 

Another issue worthy of comment centers on "lagged" 
or compensatory control procedures. These terms refer to 
control procedures that offset or counteract an action 
elsewhere in the system; which if evaluated singly would be 
construed as a weakness in the internal control system. An 
example would be a cash receipts system in which a cashier 
received cash payments from customers and was charged 
with making the accounting entry that reflected receipt of 
the cash, and the customer was not given a receipt slip of 
any kind. In such a system the cashier could "pocket" the 
cash and omit making the accounting entry with no mecha
nism to provide a signal indicating improper action. Now, if 
we added to the above description that the customer leaves 
the cashier and goes to another window to record the cash 
payment (the customer cannot leave the system without 
doing this), we have added a control feature which appears 
after an action that possesses undesirable control character
istics. This type of analysis is facilitated by simulation of 
the control system. Thus, simulation would seem to be an 
essential part of a mechanism to evaluate an internal 
control system. 

It is easily deduced that this discussion of issues could 
continue over numerous pages. The key point is that a 
model is needed which ameliorates the auditor's review 
function with respect to internal control systems. This can 
only be accomplished by adoption of the aforementioned 
total system approach made possible by recent advances in 
data management systems and interfaces. Decreasing costs 
for computer hardware, increased capability of software to 
handle complex data structures, and increased complexity 
of constituent parts of control systems (for example pro
gram logic) have all contributed to motivate expanded use 
of computerized information systems. This effort is another 
which views that continued expansion as imminent. 

Stated formally, the objective of this work is to define a 
facile means for formally describing and objectively evalu
ating an internal control system. The proposed mechanism 
should have the capacity to organize and retrieve data 
about the system in a manner that permits the auditor to 
objectively address the issues listed earlier. Such a mecha
nism will facilitate more thorough examination of these 
systems. 

TICOM OVERVIEW 

Figure 4 depicts schematically an overview of the pro
posed system. After initialization, the auditor elicits infor
mation about the organization and records this information 
in the "Internal Control Description Language." The ICDL 
is submitted to the "Internal Control Description Language 
Analyzer" (lCDLA) which checks for inconsistencies and 
other errors in the ICDL. If no problems or errors are 
discovered by the ICDLA then the data is loaded onto the 
"Internal Control Description Data Base" ICDDB. Figure 

Elicitation 
of System 
Description 

<- - - - - - -- -----, 

Query 
Processor 

A. 
I 

Figure 4-TICOM schematic 

Auditor 
Queries 
Data Base 

5 depicts a simplified version of ICDDB. At this point the 
auditor is able to make queries of the data base. Each of 
these steps in the TICOM cycle is described in the follow
ing sections. 

While examining the material that follows, remember that 
our main purpose in developing this model was to provide 
the auditor with aids for more objective evaluation of 
internal control than currently available to him. 

Initialization 

The first step in the TICOM cycle is setting up the static 
and literal information in the internal control system. We 

Subsystems 

"III~ ~~ 

Employees Department 

- Functions ... ... .... 

Figure 5-Simplified schematic of data base organization 



The TIC OM Model 847 

B, C, W & Co. 
Public Accountants 

w. Lafayette, Gary, Indianapolis and Kokomo 

Organization Description Worksheet - I 

Name of Client: 

Date: 

TITLE EMPLOYEE EMPLOYEE'S EMPLOYEE'S 

Descrip tion ID Description ID Functional Loc. ID Physical Loc. ID 

I 

l'''-A/\/\.-'vVVVv vVvv,,,"~ Ay'V /'.../\"Vy'Y'V''-'''/'v''v''VVV" '\I'IV'VV"~'" ""-"'''''' '\, '-I ..... ,..."" 

B, C, W & Co. 
Public Accountants 

W. Lafayette, Gary, Indianapolis and Kokomo 

Organization Description Worksheet - II 

Name of Client: 

Date: 

FUNCTIONAL LOCATION PHYSICAL LOCATIONS 

Description ID Description ID 

...... 

Figure 6-Forms for recording static and literal data 

via mail carrier before the elicitation step): will explain the use of this information later. For now we 
provide an outline of the order of events in this step, list the 
information required at this point, give a short description 
of its use, and illustrate in Figures 6 and 7 forms for 
recording the data. (It should be noted that the information 
requested in this step does not require the physical pres
ence of an auditor. This data can be gathered and submitted 

I. Request Allocation of EDP Equipment (Client's or 
Firm's) 

A. Auxiliary storage allocation 
B. CPU time allocation 



848 National Computer Conference, 1977 

........ 
'v T 

B, C, W & Co. 
Public Accountants 

W. Lafayette, Gary, Indianapolis and Kokomo 

Organization Description Worksheet - I 

Name of Client: gube Drugs 111 

Date: Jul;y 5, 1976 

TITLE EMPLOYEE EMPLOYEE'S EMPLOYEE'S 

Description ID Description ID Functional Loc. ID Physical Loc. ID 

Store Mgr. 1 Bob Stern 1 1 1 

Cashier 2 Linda Itt 2 2 2.43 

Cashier 2 Jus Cunn 3 6 2.01 
T _ ,,"'.A_ .. "_""_-_",_-_"-" -.., '" V ..,A...;'\/'v ~~J'\.....,..../'\, .~_ .... ___ "V· __ A_A_A_~ _"'" AA ... J'\ ... A"r .. ..,~ ...... 

B, C, W & Co. 
Public Accountants 

W. Lafayette, Gary, Indianapolis and Kokomo 

Organization Description Worksheet - II 

Name of Client: gube Drugs #1 

Date: Jul;y 5, 1976 

FUNCTIONAL LOCATION PHYSICAL LOCATIONS 

Description ID Description ID 

Store Office 1 Pharmacy Counter 1 

Cashier's Window 2 Bus. Off. Rm 43 2.43 

Sales Window 3 Bus. Off. Rm 1 2.01 

Figure 7-Sample completed forms for recording static and literal data 

C. Programs for TICOM 
1. ICDLA 

B. Data can be loaded as a part of hardware initiali
zation for this client. 

2. Query Processor 
3. etc. 

C. Required Information (Example) 
I. TITLE-names of positions similar to those 

found on company organization charts. 
II. Obtain Static and Literal Data 2. EMPLOYEE-names of persons who the rele

vant position. Note that if two employees have 
the same job title but different authorization 
responsibilities we should have no problem 

A. Use forms similar to those in Figures 6 and 7 to 
collect this data. 



differentiating between the two via the em
ployee identification code. 

3. FUNCTIONAL LOCATION-to facilitate the 
previously mentioned positional analysis. 

4. PHYSICAL LOCATION-for those firms that 
segregate employees by logical accounting 
functions. 

5. IDENTIFICATION-from the standpoint of 
implementation, it may be desirable to index or 
tag this information rather than use literal 
descriptions. 

Elicitation procedure 

There are two approaches one could take for evoking a 
description of the internal control system: questionnaire 
and free-form. 

Free-form is equivalent to the process a programmer 
follows in writing code. The first step is to outline the logic 
for the algorithm to be coded; and next to specify instruc
tions in the given language which corresponds to that logic. 
The analogue of that procedure is an auditor developing a 
mental image of the internal control system and transposing 
that image into the descriptive language presented later. 
Proponents of this-approach argue that a descriptive lan
guage such as the one we propose which uses terms familiar 
to the auditor will require no more technical proficiency 
than the use of flow-charts when they were first introduced. 

Proponents of the questionnaire approach argue if the 
proposed model is to possess attributes which imply current 
applicability and practicality, the elicitation procedure 
should be kept as close as possible to current practice while 
capturing the information required for the data base. We 
have chosen to use the questionnaire approach for illustra
tion of primitives. This decision was not meant to infer that 
the questionnaire approach is superior, but rather more 
illustrative of basic concepts for this model. Figure 8 
illustrates a sample elicitation form and serves as an intro
duction to primitives of ICDL. 

The first thing to note about the questionnaire is the 
e~-~~!:~+amoo"'tOOs'~.TIlat is.. ~ ,radit~i 
wording of a questionnaire such that "NO" answers sug
gest undesirable practice relative to achieving good internal 
control. Behavioral implications of such questionnaires are 
not in the scope of this work but are definitely noteworthy. 
Our questionnaire elicits description without involved eval
uation thus separating the two activities. 

The function listed below each question is the ICDL 
primitive that corresponds to the question being asked. 
Note that the auditor should not have to reproduce these 
primitives since they are preprinted on the form and imply 
the initial level of detail required by the aUditing firm. The 
auditor is required to fill in the arguments of the primitives 
based on the response made and a list of coded alternatives. 
Figures 9 and 10 list ICDL primitives and sample argument 
alternatives. We do not propose that the given primitives 
are an exclusive or totally comprehensive set, but that they 
serve to iI1ustrate the desirable level of detail and flexibility 

The TICOM Model 849 

B, C, W & Co. 

Public Accountants 

W. Lafayette, Gary, 'Indianapolis and Kokomo 

INTERNAL CONTROL QUESTIONNAIRE 

Subsystem: CASH RECEIPTS 

Name of Client: 

Elicitation Date: 

No. _____ ----"B""od"'-y~&~P~rimi~ti~ve'__ ____ _ 

1. To Whom does a customer give cash when cash sales are made? 

IN (1, 1, 1,_, 3, _, _) 

2. Is a sales slip generated? If so, how many parts does it have? 

3. To Whom are the sales slips distributed, and how? 

TR (2.1, 2,_, _, _, _,_) 

TR (2.2, 2,_, _, _, _,_) 

TR (2.n, 2,_, _, _, _,_) 

Figure 8-Example questionnaire 

of this model. Clearly, each public accounting firm may 
view the organization as based on different sets of primi
tives, and that should not cause any problem with the 
application of this model. The key issue is storage of a 
machine readable version of the system, at arbitrary levels 
of detail, for more thorough investigation of its possible 
strengths and weaknesses. 

The column labeled "STEP" is used to form an index for 
the sequence of execution and level of detail of the relevant 
primitives. 

Once the questionnaire has been completed, the auditor 
would submit it to the firm's (or the client's) EDP personnel 
for conversion into machine readable form and input to the 
ICDLA. Example execution of this next step in the TICOM 
cycle is given in the next section. 

Generation of internal control description language 

The primitives that appear on the questionnaire (or free
form, if that approach is chosen) next serve as input to the 
ICDLA. This step is performed by keying responses into 
machine readable form. A special header record would 
probably be used to delimit subsystems. An example of the 
information that might be submitted, which corresponds to 
each ICDL statement, is: 

(a) Primitive name 
(b) Primitive arguments 
(c) Step 
(d) Related employee or title id's 



850 National Computer Conference, 1977 

Example: IN (I, 1.1, 1,2.1,3,0,0) 14,351,41 
-..-
(a) (b) (c) (d) 

The input format of this data would be straightforward 
depending only on the conventions of the coder. Note that 
functional information is not included, which is a result of 
the questionnaire approach that uses preconceived data. 

INITIALIZE (STIMULI-TYPE, CONTENT, SOURCE, DESTINATION, 
CARRIER CONTROL-ATTRIBUTE, ATTRIBUTE-DETAIL) 

An action or event that causes 
execution of a subsystem (e.g., 
receipt of a payment on account via 
the mail invokes the cash receipts 
subsystem) 

CREATE OBJECT (LITERAL-DESCRIPTION, CONTROL-ATTRIBUTE, 
ATTRIBUTE-DETAIL) 

The generation of paper as a result of, 
or to record asset flow (e.g., the 
generation of a receipt to record 
acceptance of cash) 

RECORD (LITERAL-DESCRIPTION, SOURCE, DESTINATION, 
CONTROL-ATTRIBUTE, ATTRIBUTE-DETAIL) 

The documentation of an asset (e.g., 
recording cash and checks in a cash 
receipts book or accounts receivable 
(control) account) 

PROOF (LITERAL-DESCRIPTION, MECHANICAL-DEVICE, 
CONTENT, CONTROL-DOCUMENT, NEXT-STEP, CONTROL
ATTRIBUTE, ATTRIBUTE-DETAIL) 

A control or check point at which a 
mechanical device generates a control 
item (e.g., a cash register's receipts 
total) 

CONTROL (LITERAL-DESCRIPTION, CONTROL-DOCUMENT, 
CONTROL-DOCUMENT, NEXT-STEP, CONTROL-ATTRIBUTE, 
ATTRIBUTE-DETAIL) 

A check for offsetting paperwork 
entries 

COMPARE (LITERAL-DESCRIPTION, MECHANICAL-DEVICE, 
MECHANICAL-DEVICE, NEXT-STEP, CONTROL-ATTRIBUTE, 
ATTRIBUTE-DETAIL) 

A completely mechanical control 
point or check (e.g., the hardwired 
checks between two cash registers) 

TRANSFER (LITERAL-DESCRIPTION, CONTENT, SOURCE, 
DESTINATION, CARRIER, CONTROL-ATTRIBUTE, ATTRIBUTE
DETAIL) 

Physical movement of an asset or 
paperwork (e.g., movement of checks 
from the mailroom to the cashier's 
office) 

Figure 9-ICDL primitives 

AUTHORIZE (LITERAL-DESCRIPTION, CONTENT, 
AUTHORIZATION-METHOD, AUTHORIZER, CONTROL
ATTRIBUTE, ATTRIBUTE-DETAIL) 

This primitive encodes the points of 
authorization in the internal control 
system 

STORE (LITERAL-DESCRIPTION, CONTENT, SOURCE, 
DESTINATION, CARRIER, CONTROL-ATTRIBUTE, ATTRIBUTE
DETAIL) 

The transfer of an item to a quasi-final 
or normal place of residence (e.g., 
cash deposited in a bank) 

MERGE (LITERAL-DESCRIPTION, LITERAL-DESCRIPTION, 
LITERAL-DESCRIPTION, CONTENT, CONTROL-ATTRIBUTE, 
ATTRIBUTE-DETAIL) 

A description of the merger of two 
items into one. This combination will 
continue through the system as one 
item (e.g., the combination of day's 
receipts of cash and checks into cash 
receipts) 

EJECT (LITERAL-DESCRIPTION, CONTENT, SOURCE, 
DESTINATION, CARRIER, CONTROL-ATTRIBUTE, ATTRIBUTE
DETAIL) 

The emission of items out of the 
internal control system (e.g., finished 
goods that were sold and carried away 
by a customer) 

SORT (LITERAL-DESCRIPTION, CONTENT, CONTROL-ATTRIBUTE, 
ATTRIBUTE-DETAIL) 

A description of item rearrangement 

UPDATE (LITERAL-DESCRIPTION, LITERAL-DESCRIPTION, 
OPERATOR, RESULT, CONTROL-ATTRIBUTE, ATTRIBUTE
DETAIL) 

Item modification, such as 
accumulation of data values or 
information 

INTERVAL (PERIOD, CONTROL-ATTRIBUTE, ATTRIBUTE-DETAIL) 

HALT (SUBSYSTEM) 

Primitive to facilitate time intervals 
between adjoining primitives 

The end of primitives related to this 
subsystem 

Figure 9 (continued) 

Free-form would require encoding of this data. In the 
example above, the INITIALIZE primitive is encoded. 
Referring to Figures 9 and 10 we are able to decode the 
primitive (b) as follows: 

1. The first parameter, 1, corresponds to a l , of the IN 
specification given in 9. As shown, it specifies the 
STIMULI-TYPE. Examination of 10 reveals that 1 



aO == EMPLOYEE: = (l - TITLE) 1(2 = NAMES) 
a l == STIMULI-TYPE: = (1 = EXTERNAL) 1(2 = INTERNAL) 
a2 == CONTENT: = (l = ASSET {I = CASH, 2 = INVENTORY, ... , 

n = EQUIPME1'.'T}) 1(2 = PAPERWORK REPRESENTATIVE OF 
AN ASSET) I 

(n = DOCUMENTATION) 
a3 == SOURCE: = (l = CUSTOMER) 1(2 = FUNCTIONAL AREA {I = FINISHED 

GOODS AND SERVICE, 2 = MAIL ROOM, 3 ;, BILLING 
4 = GENERAL LEDGER, ...• n = }) I 
(3 = TITLE {I = PRESIDENT, 2 = CASHIER, ... ,n = })I 

The TICOM Model 851 

(4 = CASH REGISTER RECEIPT) 1(5 = EXTERNAL TO SYSTEM) I 
(6 = SALES SLIP) 1(7 = SALES JOURNAL) I 
(8 = CASH SALES CLEARING ACCOUNT) I ... I(n = BANK) 

a4 == DESTINATION: = (SOURCE) 
as == LITERAL-DESCRIPTION: = (1 = CASH) 1(2 = SALES SLIP {I = COPY 1 

2 = COPY 2, ... n = COpy nDI(3 = CASH RECEIPT I 
(4 = RELEASE OF INVENTORy) 1(5 = FINISHED GOODS) I 
(6 = PRICES) 1(7 = # SEQUENCE) 1(8 = RECEIPTS) 

a6 == CARRIER: = (1 = MAIL) 1(2 = MECHANICAL DEVICE) 1(3 = CUSTOMER) 
(4 = EMPLOYEE)I ... I(n == UPS) 

a7 == CONTROL-DOCUMENT: = (1 = CASH REGISTER RECEIPT) 1(2 = DEPOSIT 
SLIP) 1(3 = SALES SLIP) 1(4 = PRICE SHEET) I 
(5 = NUMERICAL SEQUENCE) 1(6 = SALES JOURNAL) I ... 
(n = ) 

as == MECHANICAL-DEVICE: = (l = CASH REGISTER) I ... I(n = ) 

a9 == AUTHORIZATION-METHOD: = (l = SIGNATURE) 1(2 = RUBBER STAMP) I ... 1 
(n = REPROCESSING) 

a lO == AUTHORIZER: = (l = EMPLOYEE) 1(2 = MECHANICAL DEVICE) 
au == CHECK: = (I = PROOF) 1(2 = CONTROL) 1(3 = COMPARES) I ... 1 

(n = AUTHORIZATION) 
a l2 == NEXT STEP: = (NUMBER) 
a l3 == SUBSYSTEM: = (l = NP) 1(2 = NR) 1(3 = C/R) I ... I(n = CID) 
a14 == CONTROL-ATTRIBUTE: = (0 = NOT APPLICABLE) 10 = PREVENTIVE) I 

(2 = DETECTIVE) I ... I(n = CORRECTIVE) 
a l5 == ATTRIBUTE DETAIL: = (0 = NOT APPLICABLE) 1(1 = SEGREGATION 

OF DUTIES) 1(2 = ROTATION OF DUTIES) I ... 1 
(n = DESCREPANCY REPORTS) 

a l6 == OPERATOR: = (1 = ARITHMETIC SYMBOL {I = *,2 = +, ... ,n = **})I 
... I(n = SYSTEM PROCESS) 

a17 == PERIOD: = (1 = MONTH) 1(2 = DAY) 1(3 = YEAR) I ... I(n = MINUTES) 

Figure 100Arguments for ICDL primitives 

denotes EXTERNAL stimuli were responsible for 
initialization of this subsystem. An example of this 
type of stimulus is a customer making a payment on 
account and invoking the accounts receivable system. 
This is contrasted with an employee submitting a time 
card and initiating the payroll system; which we term 
INTERNAL stimulus. 

2. The second parameter indicates the CONTENT pa
rameter denotes ASSET, with CASH being the particu
lar type of asset. 

3. The SOURCE parameter denotes CUSTOMER. 
4. DESTINATION is the FUNCTIONAL AREA de

scribed as FINISHED GOODS AND SERVICE. 
5. The CARRIER in this example is CUSTOMER. 
6. The CONTROL-ATTRIBUTE is not applicable in this 

instance. 
7. As a result of 6, ATTRIBUTE-DETAIL is not appli

cable. 

Components (c) and (d) of the example specify sequence 
and related employees. The "step" parameter defines this 
ICDL statement to be the first for the given subsystem. The 
employee numbers (id) identify employees related to the 
statement that are not explicitly included via the EM
PLOYEE-FUNCTION-FUNCTION LOCATION relation
ship. 

This example facilitated the introduction of several issues 
concerning the language. First, we are able to differentiate 
between asset and paperflow movement through the sys
tem. Second, the high degree of parameterization in this 
system facilitates the extreme flexibility and adaptability we 
eluded to in earlier sections. Next, the encoding of control 
objectives via parameters a14 and a15 , allows the auditor to 
explicitly identify and label these features (this point will be 
discussed further below). The indexing illustrated, such as 
1.1 and 2.1 for a2 and a4 respectively, facilitates the 
aforementioned "levels of detail" when applied to STEP. 



852 National Computer Conference, 1977 

Internal control description language analyzer 

This process is the main link between the auditor and a 
description of the given internal control system stored in a 
network data base structure. The inherent tasks of any 
analyzer are also in evidence here. That is, the logical 
analysis of a model of any information system includes 
determination of consistency and completeness of the 
model. Consistency implies the system follows a design 
determined by propositional statements of definitions and 
relations. When these statements are applied to the model, 
inconsistencies are detected. Completeness is a consistency 
concern which involves the unique resolution of given 
relations. We will omit detailed explanation of this process 
since there exists a substantial body of literature on this 
topic. More pertinent are its tasks related to generating the 
target data base (Figure 11). Omitting the obvious tasks of 
any analyzer, we assume it sufficient to say appropriate 
diagnostics would be printed. 

The major task of the analyzer is the generalized load 
function it must perform. Figure 12 schematically outlines 
this procedure. Each subsystem will be denoted by the 
aforementioned header record. When a new subsystem is 
encountered the analyzer first checks that the subsystem 
just finished ended with the proper primitives (HALT). It 
then creates (or allocates) a record occurrence correspond
ing to the record type that denotes "SUBSYSTEM." The 
next ICDL statement is read and its type is determined. If it 
is a primitive, the associated record type is created, linked 
to the other primitives, relevant data items stored, and 
finally, the next statement is read. If it was a HALT 
statement, subsystem "housekeeping" is performed, or the 
next statement is read. 

Internal control description data base 

Figure 13 schematically depicts a schema which would 
support query access to such a system. In this organization 
the primitive-type would be encoded in the record occur
rence with the other static information given as shown. 
Details of this structure are the topic of another paper. 

Figure Il-General target data base for ICDDB 

Figure 12-ICLDA schematic 

However, we will provide a few comments to make the 
structure comprehensible. 

The LINK records that are shown in the figure are 
included to facilitate many-to-many relationships between 
the adjoined entities. This is a restriction imposed by the 
network data base structure we are using. For example, 
since a given function such as dating incoming mail may be 
encoded as a step in numerous subsystems by several 
employees at different locations, it is impossible to estab
lish a one-to-many relationship between FUNCTION and 
LOCATION as dictated by the network data base imple
mentation requirements. Therefore an intermediate record 
is introduced to facilitate this relationship. 

The HUB record denotes the occurrence of primitives in 
this structure which highlight information and data flow 
through the internal control system. The relationship be
tween this record-type and LEVEL facilitates the different 
levels of detail that can be stored via this structure. 

LINK-3 is included specifically to provide quick retrieval 
of employee names and their functional and physical loca
tions. 



Figure 13-General schema for ICDDS 

Query processor 

The proposed system could be implemented by the 
GPLAN [Bonczek, et aI., 1975] data management facility. 
In this case the associated query processor would be used 
by the auditor to access the internal control description 
stored in the data base. The GPLAN query language 13,14 

and automatic path determinator15 would extricate the audi
tor from developing interfacing programs with the data 
base. That is, the auditor is not required to be a program
mer to access this data base. Sample queries that the 
auditor miglu submil are: 

(a) SIMULATE SUBSYSTEM = 'CASH SALES,' 
LISTING ALL EMPLOYEES FOR PRIMITIVE = 
'AUTHORIZE' 

(b) LIST THE NEXT PRIMITIVE FOLLOWING 
PRIMITIVE = 'TRANSFER' FOR CONTENT = 
'ASSET' 

(c) LIST COMMON EMPLOYEES FOR SUBSYSTEM 
= 'CASH SALES' AND SUBSYSTEM = 'CASH 
DISBURSEMENTS' 

(d) LIST ALL SUBSYSTEMS FOR EMPLOYEE = 
'JOHN GREEN' 

(e) FOR PRIMITIVE = 'AUTHORIZE' LIST ALL OC
CURRENCES 

Upon receipt of a command the query system analyzes the 

The TICOM Model 853 

request, sets up the necessary DML commands, executes 
those commands, and provides the user with the requested 
information. 

EXAMPLE FREE-FORM ENCODING 

Before providing detail development of the ICDDB struc
ture, an example of primitive encoding is presented. In this 
instance we will take a well-known description of an 
accounting subsystem and present that system as it may 
have been encoded using the free-form approach. 

Stettler9,PP.274-275 and the AICPA depict accounting sub-
systems in procedural flowchart form. One of the subsys
tems they depict is CASH-RECEIPTS. We first provide a 
literal description of the initial phase of that system and list 
the corresponding primitive description in Figure 14. Note 
that only primitives and STEP have been listed; other static 
information would not aid in this presentation and have 
been omitted. 

Customer initializes the CASH RECEIPTS system by 
making a cash purchase. A sales slip (2-partJ is prepared 
by a customer service employee in the Finished Goods 
and Service Department. One part of the sales slip is 
transferred to the Billing Department of the Controller's 
office. The other part is carried by the customer to the 
cashier's window. The cashier accepts the customer's 
cash and keys relevant information into a cash register. 
The cash register generates a receipt that is given to the 
customer. The customer returns to the customer service 
area and presents the receipt. The relevant goods are 
given to the customer and they both exit the system. 

SUMMARY 

This paper was designed to provide a general overview and 
justification for the use of a network data base to facilitate 
the auditor's review and evaluation of internal control 
systems. It is the third in a series of four papers which 
r~~t :!! ~, metm,rlciogy fu!" amnt!ng crf ~~2nced EDP 
based accounting information systems. A facile means for 

STEP PRIMITIVES & ARGUMENTS 

IN (1, l.l, 1,3.2,3,0,0) 
2 CO (2.2,2, 10) 
3 TR (2.1,2,2.1,2.3,4,2,1) 
3 TR (2.2, 2, 2.1, 3.2, 3, 1, 1) 
3 TR (1, l.l, 1,3.2,3,0,0) 
4 RD (1, 1,4,2,9) 
5 CO (3, 1,9) 
6 TR (3,2,3.2, 1,4, 1, 1) 
7 TR (3,2, 1,2.1,3) 
8 AR (4,1.2,3, 1, 1, 1) 
9 EJ (5, 1.2, 2.1, 3, 0, 0) 

10 HT (3) 

Figure 14-Free form encoding of literal description 



854 National Computer Conference, 1977 

formally describing and objectively evaluating an internal 
control system was presented. The mechanism was as
sented to have the capacity to organize and retrieve data 
about the system in a manner that permits auditors to 
objectively address issues listed in the INTERNAL CON
TROL OVERVIEW section of this paper. 

The next and last paper of this series will provide 
technical details of the TICOM model. 

REFERENCES 

I. Cash, J. I., A. D. Bailey, and A. B. Whinston, "A Survey of Techniques 
for Auditing EDP Based Accounting Information Systems," The Ac
counting Review, October 1977. 

2. Brov/n, R. G., HChar..ging ~A..udit Objectives," The ~4.ccounting Review, 
October, 1962. 

3. Fitzpatrick, L., "The Story of Bookkeeping Accounting and Auditing," 
Accountants Digest IV, March, 1959. 

4. AICPA, "Codification of Auditing Standards and Procedures," Commit
tee on Auditing Procedure, November, 1973. 

5. Bodnar, G., "Reliability Modeling of Internal Control Systems," The 
Accounting Review, October, 1975. 

6. Ishikawa, A., "Feedforward Control in the Planning and Control Sys
tern," Cost and Management, November/December, 1972. 

7. Yu, S. and J. Neter, "A Stochastic Model ofInternal Control System," 
Journal of Accounting Research, Autumn, 1973. 

8. Cushing, B. E., "A Mathematical Approach to Analysis and Design of 
Internal Control Systems," Accounting Review, January, 1974. 

9. Settler, H. F., Systems Based Independent Audits, Prentice Hall, 1974. 
10. Touche Ross & Co., Computer Controls and Audit, National Accounting 

and Auditing Staff, September, 1974. 
II. Touche Ross & Co., Computer Fundamentals, Professional Continuing 

Education Series, June 1975. 
12. Mautz, R. K. and D. L. Mini, "Internal Control Evaluation and Audit 

Program Modification," The Accounting Review, April, 1966. 
13. Bonczek, R. H., J. I. Cash, W. D. Haseman, C. Holsapple, and A. B. 

Winston, "Generalized Planning SystemlData Management System 
(GPLAN/DMS), Users Manual," Krannert Graduate School of Manage
ment, August, 1975. 

14. --, "Structure of a Query Language for a Network Data Base," 
Technical Report, Krannert Graduate School of Management, August, 
1975. 

15. Bonczek, R. H., W. D. Haseman, and A. B. Whinston, "Automatic 
Path Determination in a Network Data Base," Technical Report, Kran
nert Graduate School of Management, April, 1976. 

16. Cash, J. I., A. D. Bailey and A. B. Whinston, "System Design 
Methodology For Formal System Assertions," Krannert Graduate 
School of Management, July, 1976. 



Design and implementation of an information base for 
decision makers* 

by R. H. BONCZEK, C. W. HOLSAPPLE and A. B. WHINSTON 
Purdue University 
West Lafayette, Indiana 

ABSTRACT 

When considering the design and implementation of sys
tems for decision support, a crucial point is the power and 
flexibility of available tools for representing data contexts. 
The value of such systems is constrained by the "richness" 
of patterning allowed by their data structure mechanisms. 
We introduce the notion of an information base as a natural 
step forward in the continuing evolution of data structures. 
The outstanding features of the information base are (1) its 
accommodation of the horizontal and vertical integration of 
information parcels into a single semantic mechanism, and 
(2) the integration of operators into this semantic structure. 

INTRODUCTION 

A topical and decidedly significant area of research in
volves the identification of those criteria which a computer
ized information system must satisfy if it is to be of value to 
non-programming decision makers. The ensuing discussion 
focuses upon such criteria and their implications for system 
design and implementation. In particular, we introduce the 
notion of an information base and demonstrate how it may 
be developed and implemented as an extension to the 
CODASYLDBTG·· dppioadifu uulu fllcinagillH!nL ,\Ve 
commence with the characterization of an information base 
as a semantic network. It is then shown that this semantic 
network may be realized as an extension to an approach 
that has been used in commercial environments. Moreover, 
we illustrate how the information base serves as the corner
stone for a generalized decision support system. 

Within the scope of this paper a distinction is drawn 
between the terms information and data. Observe, first of 
all, that information is an abstraction; it is not something 
which can be pointed to or seen. However it may be 
conveyed by patterns of "matter-energy," 2 i.e., by config
urations of symbols, by data. Data and information invaria
bly accompany one another. The words on this piece of 
paper are not information, but rather a pattern of matter
energy which as a consequence of certain activities (e.g., 

* Research supported by Office of Water Research and Technology Grant 
No. 6538-62-1310. 

855 

inputing, transmitting, decoding, associating, storing, <le
ciding, etc.) conveys information.3 The important point is 
the patterning of data; the "richness" of a notation in terms 
of the kinds of data relationships which it can represent has 
obvious implications for its power in conveying informa
tion. With this in mind, we can note a pronounced trend in 
the history of information systems from the relatively 
impoverished linear data structure to the tree and network 
data structures, capable of a greater variety of data configu
ration; correspondingly the ease with which comparatively 
complex information can be conveyed has also grown. 
Summarizing, ". . . we can say that data is an objective 
notation which has no significance in itself, versus informa
tion as a SUbjective concept which relates a datum to a 
context. " 4 

In order to understand the varieties of contexts or 
configurations in which data must appear if there is to be a 
comprehensive conveyance of information, we examine the 
field of semantics. Of special interest is the notion of fl 
semantic net. The results of this examination constitute a 
basis for the specification of information base features 
which permit the unambiguous representation of all types of 
information pertinent to decision support applications. This 
representation must configure data such that all significant 
rei.a.~ionR~R ~ .. fWtffffl· 'f:"f ~t!'t'n ~:g.. anmng 
facts, procedures, empirical information, etc.) are accom· 
modated. Furthermore, these objectives for information 
base features must be met in a manner that is amenable to 
processing for the purposes of inference and deduction. 

Since semantics deals with the relationships between 
symbols and what they denote or mean, 5 what we call the 
information base may be viewed as a semantic mechanism 
capable of representing meanings in terms of data configu
rations. Its storage technique must be general enough to 
handle the basic kinds of information involved in decision 
making regardless of the specific decision application. 
These types of information are: directive information, con· 
ceptual information, empirical information, stimulatory in
formation, information about expectations, information 
concerning valuations, and procedural information. In addi
tion the information base must be flexible enough to repre
sent the often intricate interrelationships among information 
parcels, relating them so as to capture their full meaning 



856 National Computer Conference, 1977 

and impact with respect to other parcels of information. 
This latter point is particularly significant in that it furnishes 
a basis for the synthesis of separate parcels of information 
that are all related to the same object, concept, observa
tions, etc. 

Woods5 defines a semantic network to be an attempt to 
combine into a single mechanism both the ability to store 
factual knowledge and the ability to model associative 
connections which render certain parcels of information 
accessible from certain others. Moreover he indicates three 
criteria which must be satisfied by a notation used for 
semantic representation: 

1. Logical adequacy. The notation must provide an ex-
- -~ ,C ____ I ...... _..l "'"_ ...... _L: .................... '1,, ...... _ ...... __ ................. _+r.+; __ _ ~ rIo_'II1 

i:1~L, lUI I lli:1 I i:111U Ull<1111Ul!:;UUU;' II;;Pll;;;'l;;llLauVll VI. allY 

particular interpretation that may be given to a sen
tence. 

2. There must be an algorithm for translating an initial 
sentence into this notation. 

3. There must be algorithms capable of using the seman
tic representation in order to perform needed infer
ences and deductions. 

The information base detailed in the subsequent discus
sion will be shown to satisfy the definition of a semantic 
network. A query language will be described which, in 
conjunction with the information base, will be shown to 
satisfy the three requirements of notations for semantic 
representation. 

FEATURES OF THE INFORMATION BASE 

A specific design and implementation of the information 
base is described in ( later section; this design and imple
mentation is based in part upon the idea of a network data 
base advanced in the CODASYL DBTG Report of 197Il 
and subject to extensions and modifications outlined in 
Reference 6. The term information base, rather than data 
base, is used to emphasize its incorporation of two funda
mental features which do not appear in the general data 
base management literature. Both features concern ways of 
patterning data that can convey information not commonly 
treated in the guise of data base management, but of value 
to decision makers; they furnish methods for introducing 
two novel kinds of context into data structures. 

In observing the progression from linear structures to 
trees, to networks, we note increased facility for relating a 
datum with other data; there is an increased capacity for 
specifying the context of a datum in terms of data struc
tures. Though there is little context inherent in linear data 
structures, the data content of groups of such structures 
may be used to represent trees. This becomes complex and 
cumbersome as the tree to be represented grows in size. 
Similarly, though it is possible to twist tree structures to the 
task of representing large or complex networks by using 
collections of tree-like structures, this cannot be accom
plished in a facile, straightforward manner. This analogy 
may be continued with respect to the two features being 

introduced in this section. That is, they can, in some sense, 
be represented within network data structures, but such an 
approach leads to certain asymmetries (with respect to 
processing) and difficulties akin to those encountered when 
representing trees in linear structures. Since the two fea
tures are not inherent in the common notion of a network 
data base, we introduce the information base as a mecha
nism which encompasses both while allowing full network 
capabilities. 

The first feature involves the introduction of the concept 
of resolution levels within the mechanism for information 
organization. A simple example of this is described by 
Winograd. 7 Consider data about cars in which specific 
weights and colors are related (linked) to each car; on a 

information about what the properties of cars are. So on 
one level of resolution we are interested in specific attri
butes of specific cars and on another level we are con
cerned with properties of cars. Thus two distinctive charac
teristics of the information base are links which integrate 
individual information parcels on a given level of resolution 
into a single network structure and secondly, the integra
tion of information of varying levels of resolution into a 
single structure. We term the former characteristic "hori
zontal integration" and the latter "vertical integration." So 
horizontal refers to linkage of entities on the same level; 
whereas vertical denotes linkage among different levels via 
information parcels that participate in both levels (though 
the nature of participation is different on each level). A 
subsequent section of this paper describes both an imple
mentation and the implications of this feature. 

The second outstanding feature of the information base 
involves its ability to handle the integration of programs 
into its logical structure. Not only does this permit the 
linkage of a datum with a program that uses it; it allows the 
construction of networks (in both the horizontal and verti
cal sense) of programs. This capacity has two primary 
effects. First, it provides the basis for model formulation. 
Second, it furnishes a more comprehensive mechanism for 
semantic representation. 

The aspect of model formulation involves the action of 
relating certain modules into a desired configuration. This 
necessitates a knowledge of which configurations are mean
ingful and which are not. Such knowledge is stored in the 
information base's semantic network. This approach has 
much in common with the notion of structured program
ming. Programs devised according to the tenets of struc
tured programming8 are readily amenable to storage within 
the information base; indeed there is also the ability to store 
alternative modules (e.g., alternative functional forms) for 
performing a particular role within the context of either 
other modules or a higher resolution level. The advantages 
of structured programming in terms of maintainability and 
extensibility9 are also apparent in the strategy of integrating 
program modules into the logical structure of an informa
tion base. That is, it is possible to add, replace or delete a 
module in the same manner that one would add, replace or 
delete an occurrence of data. 

It is useful at this juncture to point out a distinction 



Design and Implementation of an Information Base for Decision Makers 857 

between program modularity and program resolution. The 
idea of resolution level also goes under the name of level of 
abstraction. Dijkstra8 indicates that each level of a system's 
software hierarchy constitutes an abstract resource which 
participates in the next higher level and which has available 
to it the resources of lower levels. So " ... at one level the 
programming amounts to manipulation of the abstract re
sources supported by the next lower level of the hierarchy. 
The programs at that level manipUlate abstractions-the 
abstractions of the resource, whatever it may be-and at 
the same time participate in generating a higher level of 
abstraction for the next level of the hierarchy to manipu
late." 10 Furthermore, Miller and Lindamood suggest that a 
". . . highly modular implementation is one in which spe
cific functions are performed by specific modules (and 
nowhere else); on the other hand, a system which preserves 
a hierarchy of abstract resources would appear to require 
modularity as a minimum, and perhaps a great deal more 
'structure'." 10 Such a structure is effectively treated by the 
information base feature of resolution levels which allows 
the arrangement of program resources into levels of ab
straction. 

The second effect of allowing the integration of pro
grams into the structure of the information base is the more 
comprehensive semantic representation that is permitted. 
Much literature about semantic networks is concerned with 
the network representation of English sentences (e.g., see 
References 5 and 11). These sentences consist of patterns 
of verbs and arguments. The typical decision maker who 
queries the information base requests the execution of some 
model (i.e., operators, verbs) using certain data (i.e., oper
ands, arguments) as inputs. The usual data base structures 
handle information about arguments only; the meaningful 
operator contexts in which such arguments may appear is 
not represented in standard types of data base structures. A 
more detailed discussion and practical application of this 
feature of representing programs in an information base is 
presented in Reference 12. The remainder of this paper 
focuses on details and examples of the resolution level 
feature and on the utility of the information base as a device 
for~.~Ati~~~tatjOll. 

REQUIREMENTS FOR A DECISION SUPPORT 
SYSTEM 

Recall that, in this paper, we are principally concerned 
with the information base from the standpoint of its contri
bution to the realization of a general decision support 
system. Although there are several facets involved in 
reaching decisions, we investigate three in particular: infor
mation access, model formulation, and analysis. The effi
cacy of a decision support system may be evaluated in 
terms of its flexibility, facility, scope, timeliness and cost in 
supporting these three facets. 

With respect to information access there must be a 
mechanism for the systematic, integrated storage of all 
pertinent information. The information base outlined above 
provides just such a mechanism, through both horizontal 

and vertical integration and through its capacity to relate 
operators with each other and with arguments. Given such 
a storage mechanism there must be a technique for interro
gating (and modifying) it that can be used by decision 
makers who are not computer experts or programmers. The 
query language for accomplishing this is presented later. 

The second facet which must be supported is the activity 
of model formulation. This facet refers both to models that 
are subsequently used for purposes of analysis and to 
models in the sense of plans to be implemented. This is a 
crucial aspect for resolving unstructured problems and for 
supporting the exploratory aspects of decision making. In 
short, the decision support system must have a component 
for the generation and evaluation of alternatives for achiev
ing a stated goal. As already indicated, the information base 
contributes to such an end. 

The decision support system must also provide for the 
activity of analysis; i.e., the fitting of data with models and 
models with data, thereby resulting in some expectation, 
beliefs or knowledge. Implicit in the very nature of the 
planning activity is the dynamic quality of the interface 
between model and data; for even though a collection of 
data may be comparatively stable over some time period, 
both the problems and the models used for problem solving 
may be subject to frequent alteration. Notice that a model 
operates on a particular subset of the entire collection of 
operands available, and it requires a certain configuration 
of this data as input. We contend that the tedious, cumber
some task of interfacing data and models for purposes of 
analysis should be, automatically handled by the decision 
support system in response to the commands of a non
programming user. The method for accomplishing this is 
discussed in subsequent sections. 

FORMALIZATION OF THE INFORMATION BASE 

We now present a formal description of what is meant by 
the term "information base." We define a record occur
rence to be a uniquely labeled aggregate of data (i.e., string 
of symbols). Where /+ is the ~et of positive iI1t.egerh.let,~Q 
be the set of labels associated with a finite set of record 
occurrences, such that XocI+. A record type, uniquely 
denoted by the label P j, may be described by a function r i as 
follows. Define Rk as the set of all ri:Xk~{O, I} such that: 

(1) 

(2) 

(3) 

'VxEX r.(x)={1 Ifx is ~fthe type labeled Pi 
k , ~ 0 otherwIse 

'VXEXk, ~ ri(x):51 
i 

'VriERk, ~ ri(xj»O 
j 

Property (1) states that ri defines the collection of XEXk of 
the type labeled Pi' Property (2) indicates that each xEXk 

can belong to at most one Pi' Property (3) states that each ri 
is non-trivial. 

Before defining Xk for k>O, we note that Pk={Pi} is the 
set of all labels associated with the elements of R k • Since Xo 



858 National Computer Conference, 1977 

is finite, we can define these labels such that PkC/+, 
Pknxo=0; furthermore we can define each of these sets of 
labels such that it has no elements in common with any 
other Pk • Define: 

Xl ={PiEPO 13xEXo: rlx)j:O}uXo 

X2 ={PiEPl 13xEX1: ri(x)j:O}UXl 

XN={PiEPN-1 13xEXN- 1: ri(x)j:O}UXN- 1 

It follows from the definition of Xo and R that there must 
exist a K such that Xk=Xk+1= . .. ; then let X=Xk. Ob
serve that X is the set of labels of all record occurrences 
within an information base; these labels are unique identi
fiers, thereby serving as information base keys. All occur
rences of a record type denoted by the label P can be 
determined by successive applications of the function r to 
the set X. The magnitude of K indicates the levels of 
resolution inherent in the information base. The reader will 
notice that P is always a subset of X; if it were not desired 
to treat all record types as record occurrences, one could 
define X=Xk- l . There are advantages to defining X=Xk , 

especially for purposes of altering the logical structure of an 
information base after it has been loaded. This will be 
elaborated in a subsequent section. 

Continuing, we now formally define the information-set 
(in-set). This construct, as implemented in the information 
base, is drawn in part6 from the "set" idea of the CODA
SYL DSTG Report,l hence the term "in-set." It is impor
tant to differentiate this from the familiar notion of a 
mathematical set. Let Qi={xEX I rj(x)=#:O}. If a function 
associates each element of its domain with no more than 
one element of its range it is said to be a functional relation. 
Then each functional relation f: Qr~Q i uniquely defines an 
in-set of which the record type rj is said to be the owner and 
the record type rj is called the member. It is important to 
make several observations about the in-sets of an informa
tion base. It is permissible, and sometimes useful,6 to aHow 
i=j. Second, an in-set may be used to associate record 
types of different levels of resolution. Third, the set F of in
sets of an information base must be carefully defined so 
that its elements are consistent; e.g., one should exercise 
caution in defining both f1: Qr-~Qj and f2: Qr~Qj as 
elements of F. Finally iff1:Qr-~Qj andf2:Qc~Qk' then we 
can form the composite in-setf1of2: Qr~Qk defined by 

(ft0J;) (x) =ft (J;(x)) 'Ix EQj. 

This is sometimes desirable from the standpoint of access 
efficiency; it also allows us to attach special significance or 
meaning to certain groups of sets. 

The foregoing is a formal description of the major fea
tures of the information base. It accounts for both the 
horizontal integration (via in-sets) and vertical integration 
(via resolution levels) of information into a single mecha
nism. In order to illustrate the use of resolution levels, we 
apply the above formalisms to the problem (see Winograd7

) 

of representing information about cars. In this problem cars 
are to be described in terms of color and weight; in addition 

we would like to denote that color and weight are proper
ties. Suppose we have record occurrences as shown in 
Figure la; these are identified by the respective labels in 
Xo. The set Ro is also shown; by inspection we see that Ro 
satisfies the needed conditions as given at the beginning of 
this section. The function r1 determines whether or not an 
element of Xo is of the type color. Similarly r2 is associated 
with the type weight and r3 is associated with the type car. 
In our implementation each ri defines (and is defined by) a 
linked list of occurrences of its type. Given X o, R o, and Po 
we apply the rule for defining Xl to obtain the result shown 
in Figure lb. R1 is also given and clearly satisfies the 
necessary conditions for its definition. Application of r 4 to 
elements of Xl can be used to determine which elements are 
vehicle properties. Figure 1c gives the X 2 that follows from 
the definition. If we take R2=0, then X=X2. 

The occurrences and their "vertical" relations with each 
other are diagrammed in Figure 2. Also depicted are two in
sets: f1 andf2. Using the definitions of Qv Q2, and Q3 given 
in Figure 2, f1:Q3~Q1 and f2:Q3~Q2. The arrows in the 
diagram point from the owner of the in-set to the member; 
i.e., each arrow points in the direction opposite to that in 
the notation of its corresponding functional relation. Using 
the formalisms introduced here it is a simple matter to 
represent an extended problem including other kinds of 
vehicles,13 more properties, subclassifications of properties 
(e.g., structural, functional, etc.) and even properties of 
properties. 

An information base for water quality management 

More detailed discussions of the water quality manage
ment problem may be found in References 14 and 15. The 
objective of the example presented in this section is to 
demonstrate the applicability of the information base as a 

e 8 8 
Xo ={ 1 , 2 , 4 

8 
5 

Ro '" {r1 ,r2,r3} with labels Po = { 8,9,U} 

where r 1 (x) = {; ~t~~ise 

a. 

Sl 4~x~7 
r 2 (x) = 1.0 otherwise 

r 3 (x) = {~ ~t:e~ise 

X. '" { 1,2,4,5,15,16,8,9,111 
.L J 

Rl .. { r 4 } with label P1 = {14} 

{
1 8 i: x i: 10 

where r4 = 0 otherwise 

b. 

x2 = { l,2,4,5,15,16,8,9,U,14 } 

c. 

8 
15 

Figure I-Resolution levels for representing information about cars 



Design and Implementation of an Information Base for Decision Makers 859 

I 
I 

vmnCLE PROPERTY 

Let: 

COLOR 

G Ell 
tl 

CAR Ir 

B I C&r-2 I 

~ • { % E I I r1 (x) i- 0 } 

~ • { % E I I r 2(x) I 0 } 

~ • { x E x I r 3(x) 10 } 

WEIGHT 

I 
i Il-TOn I 1

2
-
TOn 

I 

t2 I 

Figure 2-0ccurrences in car information base 

I 

device for capturing the semantics used to support practical 
decision problems. At this point, we presume that the 
reader has a sufficient concept of what an information base 
entails to obviate the need for complete formalistic descrip
tion. So for the sake of economy, the following example is 
presented in a less formal manner than the previous one. It 
will be used to depict certain implementational details (e.g., 
languages in which the information base is specified and 
with which it is utilized). 

Consider the record type POLLUTER, displayed in 
Figure 3a. This aggregate of data item types represents 

REACH PROPERTY 

NAME POLLUTER 

~ 
NEOD 

CBOD 

AMMN 

.lliL-

POLLUTER 

DATE 

NOOD 

CBOD 

AMMN 

DO 

a. 

RF.ACH PROPERTY 

b. 

PARAMETERS 

EJ 
c, 

HEADWATER 

0 
Figure 3--Attributes of a logical structure 

measures of types of polluter activity for a given date. So 
occurrences of this record type correspond to measure
ments taken on various dates. In order to build a semantic 
network, we must indicate how this concept of POLLUT
ER fits into the pattern of knowledge concerning water 
quality management. A polluter is properly characterized as 
being a property of a river reach. Other properties of a 
reach include reach parameters, headwater, incremental 
flow, and treatment plan. So a reach is characterized in 
terms of these properties as follows: a reach is a portion of 
a river in which certain water quality parameters are 
relatively invariant; which has no more than one (point
source) polluter, one incremental flow or one headwater; 
and which must possess treatment plans. This could be 
represented in the information base by occurrences of the 
REACH PROPERTY record type displayed in Figure 3b. 
However, observe that each occurrence of the data item 
NAME (e.g., "POLLUTER," "HEADWATER," "PA
RAMETER," etc.) is also the label of a record type which is 
itself an aggregate of item types and which may have 
numerous occurrences. So, for instance, "POLLUTER" 
denotes an occurrence of REACH PROPERTY; but it also 
denotes a record type (shown in Figure 3a). The same 
circumstance holds for the other reach properties, though 
their record types are not depicted here. The resultant 
logical structure is illustrated in Figure 3c; a record type 
enclosed by another record type indicates that the enclosed 
record type is also an occurrence of the enclosing record 
type. 

We continue the example by examining general water 
quality modeling characteristics. In order to simulate water 
quality we need information about the following: the rivers 
involved, the reaches which are in each river, each reach's 
properties, junctions, piping plans, and model parameters. 
This is shown in the structure of Figure 4. Note that the 
record type GMC has two item types: CHAR (characteris~ 
tic) and IMPT (a measure ofthe relative importance of eacb 
characteristic). Five occurrences of GMC are shown: 
RIVER, REACH,JUNCTION, MODELandPIPEPLAN. 
General Modeling Characteristic is not the only property of 

GENERAl MODEll. CHNIACTERISTIC (1iMC)' 

RIVER 

IUWI 

REACH 

RCID [JOD 
PARAME':mlS 

Figure 4--Example of logical structure (GMC) 



860 National Computer Conference, 1977 

a segment that needs to be represented; Local Modeling 
Characteristics (LMC) are also needed. (The term segment 
is used to indicate a particular area of a river basin.) The 
details of the high level record type LMC are not shown 
here, but they describe information about non-point sources 
of pollution, permits for point-source pollution, treatment 
plant construction status, permit violation data, etc. As 
shown in Figure 5, GMC and LMC are occurrences of 
SEGMENT PROPERTY which is itself an occurrence of 
the record type WQMA; BASIN and SEGMENT are also 
occurrences of this record type. The information base could 
be further extended to incorporate aspects of land use 
planning since they influence and are influenced by water 
quality management. 

The foregoing logical structures are initially defined in 
terms of an Information Description Language (IDL). Use 
of the IDL to define the logical structure of Figure 4 is 
presented in Figure 6. The specification shown is largely 
self-explanatory. Each record type is followed by the item 
types which compose it. If the record type is of a high level, 
then its item types are followed by a specification of those 
record types which are its occurrences. Definition of an in
set must be preceded by specifications of its owner and 
member record types. For simplicity, details of the type 
and size of items are not shown; also the ordering criterion 
of each in-set is not shown. 

A LANGUAGE FOR DECISION SUPPORT 

The reader will observe from the preceding discussion 
that the decision support system has two basic components: 
an information base and a query language. Clearly the 
usability of a semantic network depends upon implementa
tion of a language with which one can extract (insert) 
meanings that are held in the semantic net. Not only are 
semantics conveyed by a particular language, they are 
limited by it as well. The language is used to express 
meanings, but it also delineates the kinds of meanings 
which are expressed. We can devise arbitrarily complex 
semantic networks, but their usability is (from the practical 
standpoint) constrained by the languages (and language 
processors) which can be interfaced with them. Observe 
then that there is a fundamental duality of (1) the language 
in which ideas are expressed, and (2) the structural repre
sentation of ideas in an information base. On the other hand 
the semantic mechanism must be capable of taking full 
advantage of the language's power. In the case of the 

WATER QUALITY MANAGEMENT ASPEC'l'S (~) 

Figure 5-Example of logical structure (WQMA) 

RECORD 

ITEM 

ITEM · · · IN 

SET 

OWNER 

MEMBER 

RECORD 

ITEM · • • 
IN 

SET 

OWNER 

MEMBER 

SET 

OWNER 

MEMBER 
• • • 

GHC 

CHAR 

IMPT 

GMC 

RECORD 

ITEM · • .. 
RECORD 

ITEM 

ITEM 
• · • RECORD 

ITEM · • .. 
RECORD 

ITEM 
• · · RECORD 

ITEM 
• • • 

Sl 

RIVR 

RECH 

RCPR 

NAME 

RCPR 

RECORD 

ITEM 
• · .. 

RECORD 
• · • 

RECORD 
• • • 

S2 

RECH 

PLTR 

S3 
RECH 

PARA 

Figure 6--Example of IDL for Figure 4 

RIVR 

RNAM 

RECH 

ReID 

LEN 

JUNC 

JID 

MODL 

MID 

PIPE 

PPID 

PLTR 

DATE 

PARA 

HDW 



Design and Implementation of an Information Base for Decision Makers 861 

implementation described in this paper, the query language 
is the constraining factor since it is intended primarily for 
the practical support of decision activities of managers in 
both the public and private sectors. 

Implementation of a natural language (e.g., English) 
processor is certainly a noble objective. It is our experience 
that the typical decision maker neither uses, nor needs, a 
complete facility for conversing in a natural language. It 
often happens that phrases or clauses are sufficient to 
convey an idea; there are grammatical constructs (e.g., 
reflexive, passive) which are not particularly germane to 
the decision activities of information access, model formu
lation, and analysis. In addition the decision maker is more 
prone to desire information conveyed in a tabular or 
graphical fashion than in a narrative mode. It has also been 
found that the user sitting at a computer terminal has a 
tendency to use abbreviations and concise mathematical 
notation. 

With these factors in mind, the query language to be 
outlined here has been designed to meet the needs of 
decision makers for flexibility and brevity of expression, 
while at the same time being easy to learn and utilize. The 
query language is effectively a subset of English that has 
been extended to include standard mathematical operators 
(i.e., relational, arithmetic, and univariate and multivariate 
functions). The focus here is upon use of this language for 
interrogation, though it may be used for data creation and 
modification as well. 6 

(COMMAND)(FIND clause)(CONDITIONAL clause) 

or alternatively, 

The standard framework of the language consists of a 
collection of operators (used in the capacity of verbs, 
adverbs and adjectives) relating to operations typically 
performed by most decision makers; these operators are of 
two kinds: commands (e.g., LIST, PLOT, STAT, RE
GRESS, etc.) and mathematical operators (e.g., MAXI
MUM, AVERAGE, =, +, <, etc.). In addition to this 
standard framework the user may define arguments (used in 
the capacity of nouns), synonyms for arguments and opera
tors, and any further operators (i.e., programs to be inte
grated into the information base) that are mundane to the 
particular decision making application to be supported. This 
definition is effected in terms of an Information Description 
Language (lDL) which establishes the context(s) of all data, 
arguments and operators. That is, it defines the semantic 
net. 

Details of the query processor are not discussed in this 
paper but may be found in References 16-18. Briefly, the 
query language has a context-sensitive grammar; inverse 
transformations are used to take a surface structure query 
into a deep structure expression in a language having a 
context-free grammar. This deep structure expression is 
compiled using well-known methods of syntax-directed 
analysis. Parts of the compiled expression are used as input 
to network traversal routines which make extractions from 
the information base for use in analysis indicated by the 
query's command (verb). 

The query's syntax appears as follows: 

(CONDITIONAL CLAUSE)(COMMAND)(FIND CLAUSE). 

So some sample queries are: 

LIST REACH.NAME,REAERATION.PARAMETER AND REAERATION.EXPONENT. FOR DATE=110175 AND 
REACH.LENGTH<.9 

WHEN DATE=1l0175, PLOT REACH. NUMBER VERSUS AMMONIA.CONCENTRATION AND 
DO.CONCENTRATION/LOG(TEMPERATURE) 

LIST GENERAL.MODELING.CHARACTERISTIC IF IMPORTANCE>3 

The language allows any meaningful configuration of argu
ments and mathematical operators to appear in the FIND 
and CONDITIONAL clauses. 

PROCESSING, HIGHER LEVEL RECORD TYPES 

Upon receipt of a query, the query processor generates 
appropriate commands for traversal of a multi-level net
work. These commands are operators in an Information 
ManipUlation Language (lML). We use the term IML to 
distinguish from the Data ManipUlation Language (DML) 

proposed in the CODASYL DBTG Report.1 The DML is 
intended to permit access, modification and retrieval for a 
single level network data base. The IML has the more 
extensive function of furnishing tools for manipUlation of 
the information base. Thus the IML contains operators for 
handling traditional DML functions 16 and operators for 
processing higher level record types. The latter are dis
cussed here. 



862 National Computer Conference, 1977 

In the DML, routines exist for creating a record occur
rence at a unique location denoted by its key. The IML 
includes analogous routines for specifying that an existing 
record occurrence be treated as a record type as well. 
There are four such commands: 

CRTK-Create Record Type based on a given Key 

CRTR-Create Record Type based on the current 
occurrence of another Record type 

CRTO-Create Record Type based on the current 
Owner of a given set 

CRTM-Create Record Type based on the current 
Member of a given set 

Another traditional DML operator (AMS) adds a speci
fied record occurrence as a Member of a given Set. A 
similar IML operator is used for adding an existing occur
rence of one record type as an occurrence of another record 
type. Note that utilization of this operator must be pre
ceded by a generalization of the definition of a record type 
which was introduced above (i.e., the definition is general
ized by removing the restriction that 2j 'j(x):S: I, VxEXk , 

where 'jERk)' This operator is AORT, Add Occurrence to 
Record Type, and it uses the key of the occurrence to be 
added. In conjunction with commands for the logical re
structuring of a network data base,6 AORT provides the 
ability' to add and delete higher level record types and add 
existing occurrences to higher level record types; and this is 
accomplished without dumping and reloading data. 

Finally operators are needed for determining the key of a 
record type, given an occurrence of the record type. These 
commands are: 

GKRR-Get Key of the Record type for the current 
Record occurrence of that type 

GKRO-Get Key of the Record type whose occur
rence is the current Owner of some set 

GKRM-Get Key of the Record type whose occur
rence is the current Member of some set 

These operators provide the capacity to proceed from a 
lower level occurrence to a higher level occurrence, when 
used in conjunction with traditional DML operators. 

It must be emphasized that the typical user of the query 
system needs to have no knowledge of the IML operators, 
for they are automatically set up and executed by the query 
processor in response to a user query. 

ADVANTAGES OF THE RESOLUTION LEVEL 
FACILITY 

We contend that the concept of resolution levels effec
tively adds a new dimension to the field of information 

storage. The preceding discussion has suggested a means 
for operationalizing this concept as an extension to the 
traditional single-level network approach. One advantage is 
that multi-level semantic networks may be stored without 
introducing asymmetry in the interpretation and processing 
of in-sets and record types. Since a record type may also be 
defined to be an occurrence of a higher level record type, 
the addition of a record type is treated by creating a new 
record occurrence at the next higher level. That is, we 
remove the distinction between data values and the struc
tural pattern according to which data is organized. In other 
words, the terms "attribute" and "value" are recognized 
as being relative, so that what is a value on one level is an 
attribute on another and vice versa. 

From one vie\~vpoint this abolishes the special status of an 
IDL specification by permitting record type definition to be 
a dynamic process. That is, the creation of a new record 
type is synonymous with the creation of a new record 
occurrence of a higher level record type. Thus the IDL 
specification of the highest level of resolution is effectively 
reduced to the definition of three record types (one describ
ing information about record types, another relating to 
information about sets, and one with various system infor
mation6) and some in-sets between them. This definition is 
always the same regardless of the content and structure of 
lower resolution levels. 

A second advantage, already mentioned in connection 
with integration of programs into the information base, 
concerns a mechanism for handling levels of abstraction in 
software. A third advantage is that higher level record types 
may be used to characterize areas of an information base by 
assigning record types of a particular area to be occur
rences of a higher level record type; these areas may be 
defined for a variety of reasons (e.g., for information 
security, to denote scenarios, to delimit functional areas
which may overlap, etc.). As the information base becomes 
large and varied in content, this technique may also be used 
to realize efficiencies in path determination processing by 
limiting the scope of network traversal to a particular 
information base area. 

THE INFORMATION BASE AS A DEVICE FOR 
SEMANTIC REPRESENTATION 

With the foregoing background, we can now address the 
three criteria proposed by Woods,5 which must be satisfied 
by a notation used for semantic representation. First ob
serve that the information base is a tool for the representa
tion of a semantic network (i.e., a single mechanism with 
both the ability to store factual knowledge and the ability to 
model associative connections which render certain parcels 
of information accessible from certain others). 

The first criterion of a notation for semantic representa
tion is logical adequacy. The notation must provide an 
exact, formal and unambiguous representation of any par
ticular interpretation that may be given to a sentence. 
Recail that the sentences with which we are concerned are 
those allowed in the query language for decision makers. 



Design and Implementation of an Information Base for Decision Makers 863 

The information base allows a given query to have a 
multitude of interpretations. The query specifies a group of 
data items which may be related to each other in many 
ways via vertical and horizontal linkages in the information 
base. Each path of linkages on which these items lie 
corresponds to a particular interpretation of the query. 
Upon receiving a query which is subject to mUltiple inter
pretations the query processor prompts the system's user in 
order to ascertain which interpretation (i.e., path) is in
tended. Details of the manner in which this has been 
implemented may be found in References 16 and 18. 

The second criterion is that there must be an algorithm 
for translating an initial query into the notation of the 
information base. This is the central function of the query 
processor whose operation has already been described; 
impiementationai details appear in Reference 13. The third 
criterion, concerning algorithms capable of using the se
mantic representation, has also been addressed in the 
discussion of the query language. Observe that the IML 
provides the means for interfacing algorithms with the 
semantic representation. 16 Algorithms which have been 
used range from relatively commonplace report generators 
to large scale water quality simulation models. 15 

CONCLUSION 

In the beginning we observed that it is the patterning of 
symbols which can convey information; a datum's meaning 
derives from its context, from its relationships with other 
data. Thus when considering the design and implementation 
of systems for decision support, a crucial point is the power 
of available tools for representing contexts. The value of 
such systems is constrained by the "richness" of patterning 
allowed by their data structure mechanisms. Observing the 
progression from relatively impoverished linear structures 
to trees and networks, we note that each stage has provided 
a more powerful and flexible tool for semantic representa
tion. In this paper we have introduced the notion of an 
information base as a natural step forward in the continuing 
evolution of data strlld.U.tes~ An ouhitaAdiA@.wai;UJ:e.Q{ too· 
information base is its accommodation of both the horizon
tal and vertical integration of information parcels into a 
single mechanism. An information base implementation 
which builds upon network concepts was discussed. A 
topic for future research is the investigation of an informa
tion base implementation which builds upon the relational 
data base notions. 19 A second distinctive feature of the 
information base, namely the integration of operators into 
its structure, was briefly described. The information base is 
utilized by a non-procedural, English-like query language, 
that has been designed for decision support applications. 
This language, in conjunction with the information base, 

satisfies the requirements for a notation for semantic repre
sentation. 

ACKNOWLEDGMENTS 

The authors are indebted to Professor Walter Reitman of 
the University of Michigan, Professor Tibor Vamos of the 
Hungarian Academy of Sciences and Dr. Bertram Raphael 
of SRI for useful discussion on semantic network and data 
base management. 

REFERENCES 

I. CODASYL, Data Base Task Group Report, ACM, April 1971. 
2. Miller, J., "Living Systems: The Organization," Behavioral Science, 

Vol. 17, January 1972. 
3. Kneitel, A. M'., "Hard vs. Soft Information," Management Datamatics, 

June 1976. 
4. Albarda, J. D., Structures and Relations in Information, Growningen, 

Druk: V.R.B. Offsetdrukkeriji, Rotterdam, 1974. 
5. Woods, W. A., "What's in a Link: Foundations for Semantic Net

work," in Representation and Understanding (ed. Bobrow, D. G. and 
A. Collins), Academic Press, New York, 1975. 

6. Bonczek, R. H., C. W. Holsapple, and A. B. Whinston, "Extensions 
and Corrections for the CODASYL Approach to Data Base Manage
ment," International Journal of Information Systems, Vol. 2, 1976. 

7. Winograd, T., Understanding Natural Language, Academic Press, New 
York, 1972, pp. 23-27. 

S. Dijkstra, E. W., "Notes on Structured Programming," T.H.E. Report 
No. EWD-24S, 70-WSK-03, 2nd Edition, April 1970. 

9. Donaldson, J. R., "StlUctured Programming," Datamation, December, 
1973. 

10. Miller, E. F. and G. E. Lindamood, "Structured Programming: Top
down Approach," Datamation, December 1973. 

11. Heidorn, G. E., "Automatic Programming Through Natural Language 
Dialogue: A Survey," 1MB Journal of Research and Development, July 
1976. 

12. Bonczek, R. H., C. W. Holsapple and A. B. Whinston, "Implementa
tion of a Decision Support System for Regional Water Quality Plan
ning," Krannert Institute Paper No. 570, Purdue University, West 
Lafayette, Ind., September, 1976. 

13. Bonczek, R. H., "Theoretical Description of Access Language for a 
General Decision Support System," Doctoral Dissertation, Purdue Uni
versity, 1976. 

14. Ha!iMl8". w., f)"C \\I. ~~!!"tt "-: f+Wh",:!tO'!( .. f'm1:'tt'm~a
tion of a Large Scale Water Quality Data Management System," Socio
Economic Planning Sciences, Vol. 10, March 1976. 

15. Holsapple, C. W. and A. B. Whinston, "Decision Support System for 
Area-wide Water Quality Planning," Socio-Economic Planning Sci
ences, Vol. 10, 1976. 

16. Haseman, W. D. and A. B. Whinston, An Introduction to Data 
Management, Richard D. Irwin Co., Homewood, Illinois, 1977. 

17. Bonczek, R. H., W. D. Haseman and A. B. Whinston, "Structure of a 
Query Language for a Network Data Base," Technical Report, Krannert 
Graduate School of Management, Purdue University, April 1976. 

IS. Bonczek, R. H., W. D. Haseman and A. B. Whinston, "Automatic Path 
Determination in a Network Data Base," Technical Report, Krannert 
Graduate School of Management, Purdue University, April 1976. 

19. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Bases," Communications ACM 13 (6), June 1970. 





Laboratory automation via a VM!370 
teleprocessing virtual machine 

by A. A. GUIDO and J. CONSIDINE 
IBM Thomas 1. Watson Research Center 
Yorktown Heights, New York 

ABSTRACT 

A mechanism called the Teleprocessing Virtual Machine 
(TPVM) has been designed to provide remote intelligent 
sub-systems with the ability to access and utilize the power 
of the IBM VM/370 environment. This paper describes the 
TPVM implementation and operation in a laboratory envi
ronment at the Yorktown Research Center. However, the 
TPVM mechanism is applicable to a much broader spec
trum of usage. 

INTRODUCTION 

Previous publicationsl
-

4 by members of the Thomas J. 
Watson Research Center's Laboratory Automation group 
have described an implementation of a hierarchical system 
capable of providing a high degree of performance and 
availability for laboratory applications. These publications 
have stressed the considerations and requirements applica
ble to a distributed system. 

Briefly stated, laboratory automation is considerably 
more than the acquisition of data. Laboratory automation 
encompasses major requirements for extensive data pro
cessing,. dllta. 11l(1,l;1i:lgemep.t, graphical display, and ducument 
preparation. It is a development tool wherein flexibility is 
of major importance, while at the same time the reliability 
of the data gathering apparatus is critical to the success of 
the experiment. The problem is to reconcile the require
ment of constant availability for experiments of durations 
varying between minutes and days, with the need for large 
amounts of space to store the data accumulated over 
extended periods of observation, and for high-speed pro
cessing power to analyze and display the data most effec
tively. 

Dedicated computer systems abound5 wherein most, if 
not all, laboratory automation requirements are met. How
ever, proliferation of such systems may be extremely 
costly. The approach taken in the referenced papers is to 
assign the tasks of data collection and experimental control 
to a small very reliable self-contained processor (e.g., IBM 
Systeml7), and the tasks of data storage, analysis, and 
formatting to a powerful central facility capable of serving a 

865 

number of experiments. The work of these authors indi
cates that this arrangement meets all the laboratory auto
mation requirements at a substantial reduction in cost to the 
end user. 

This paper describes the VMl3706 implementation of this 
computer hierarchy and in particular focuses upon the 
Teleprocessing Virtual Machine (TPVM) which is the heart 
of the hierarchy. 

TPVM 

Figure I illustrates the first two levels in the computer 
hierarchy or distributed system. Level 1 concerns itself 
with the real-time event driven operations and is comprised 
of an intelligent controller, such as the System /7, coupled 
to one or more experiments and user consoles. Level 2 is 
the time-sharing level operating in a VM/370 environment, 
and provides the data processing and data base require
ments for the distributed system. The link between the two 
levels is made via a VM/CMS1 machine called TPVM. 

TPVM acts as the interface between the remote intelli
gent controllers and the VMl370 environment. It is trans-

IBM SYSTEM/370 MODEL iSS 

VM 1370 
eMS PLII 
APLCMS SVAPL 

FORTRAN 

SYSTEMI7 t=§ 
LABSI7 

LEVEL 2 

LEVEL I 

Figure l-Complete hardware used in the hierarchy 



866 National Computer Conference, 1977 

parent to the remote controller user and acts as a slave to 
the controller. User-requested tasks, other than the move
ment of data or programs between levels, are assigned to 
ancillary VMlCMS machines by TPVM. VMlCMS file
spaces are linked to users, thus extending any local control
ler data base. Additionally, TPVM makes the interactive 
facilities of VM/370 directly available to the remote control
ler consoles. 

Because of TPVM's modular construction, the communi
cations link between levels may be start/stop at speeds from 
134.5 to 50K baud, bisync at speeds from 2400 to 9600 bps, 
or coaxial connections at 277K bytes/sec. via a Sensor 
Based Control Unit. 8 

TPVM DEVELOPMENT 

The concept of distributed intelligence, while not new, 
gained tremendous impetus in laboratories with the advent 
of comparatively inexpensive intelligent controllers. Selec
tion of the VM/370 environment came about naturally for 
the following reasons: 

1. Thomas J. Watson Research Center is VMl370 ori
ented, 

2. previous successes with laboratory automation in a 
CP/67 environment1, 

3. flexibility and language facilities such as APL, PLlt, 
FORTRAN, etc., 

4. abil'ity to create a tailored machine with testing and 
debugging facilities such that other users would not be 
affected, 

5. VMlCMS command structures directly applicable to 
our implementation, 

6. interactive facilities directly extendable to remote con
troller consoles. 

TPVM IMPLEMENTATION 

TPVM implementation was carried on in a step-wise 
fashion. Our initial implementation consisted solely of pro
viding a data base extension for the remote controller. 
TPVM is given the privilege of writing or reading data or 
programs stored in VM/370 filespaces only for that group of 
users tied to each controller. (A password file is maintained 
which prevents unauthorized access.) For this purpose, the 
remote controller user may issue an OPENIN/OPENOUT 
request to gain access to his VM/370 filespace. Subsequent 
READ/WRITE requests permit the user either read or write 
access to his filespace. VM filespaces are closed upon user 
request or when any error is detected. 

Those familiar with VM/CMS will quickly realize the 
similarity to the FSOPEN, FSREAD, FSWRITE and 
FSCLOSE commands. In fact, the File Control Block 
(FCB) used in the execution of the CMS commands is filled 
with the necessary parameters as passed to TPVM from the 
remote controller. 

The second step in TPVM implementation was to permit 

the remote controller users access to their VM/CMS ma
chines for batch mode execution. This step required the 
addition of a DIAGNOSE command which permitted 
TPVM to logon a user VM/CMS machine and request 
execution of a user specified program with desired parame
ter set. (Since the implementation of VM/370 Version 3.3, 
this DIAGNOSE command has been discontinued. The 
function is now provided by the 'CP AUTOLOG' com
mand.) Notice that task execution is performed in a user 
machine independent of TPVM. 

Synchronization of VM/CMS and remote controller tasks 
is achieved via VM files paces or extended external inter
rupts. When the user VMlCMS machine operating in batch 
mode completes its task, it writes a special STATUS file 

which can be retrieved via the OPENIN/READ/CLOSE 
mechanism. 

The third and final step, bringing the complete VM/CMS 
interactive facilities directly to the remote controller, re
quired changes to both the CP and CMS environments. 
Some of these changes are now part of Release 3 of VMI 
370. A group led by Alex Chandra designed a mechanism9 

whereby privileged machines could logon copies of user 
VM/CMS machines, and trap the console messages sent or 
received by the VM/CMS machine via extended external 
interrupts. TPVM fields these interrupts and passes the 
messages between the controller and user VMlCMS ma
chine. 

The following sections will further describe in greater 
detail the inner workings of TPVM. An example of this 
implementation using IBM SystemlTs10 as intelligent re
mote controllers will also be described. Note however, that 
any intelligent controller conforming with the TP line proto
color interface can be used. 

TPVM ORGANIZATION 

The programs operating in TPVM are organized in a 
hierarchical fashion, and are modular in design. The basic 
functional components are an overseer or driver, an 110 
communications package, and the operating portion which 
actually processes the requests from the controllers (see 
Figure 2). 

In essence, the driver program activates the 110 commu
nications package to receive requests from the controller(s). 
When such a request is received, the driver identifies the 
type of service requested and passes the request with 
whatever additional data are required to the appropriate 
functional routine. On completion of processing by the 
functional routine, the driver passes the results to the 
communications package for transmission to the controller. 

With LABS,11-13 now known as the Event-Driven Execu
tive (EDX), as the operating system in a System/7, there 
are two basic types of requests that are created. The first of 
these is the isolated request. In this case, a task acquires 
control of the System/7 teleprocessing facility, sends one 
request, and then releases control. The other type is what 
we call the "stream of requests," as, for instance, in 



Laboratory Automation Via a VMi370 Teieprocessing Virtual Machine 867 

MESSAG 
A -" GETMEM 

(HANDLE WRITING 10 DRIVER I ----.. r--oI (GET WORKAREAS) 
CONTROLLER OF ACK 
CODES AND DATA) 

SBCUIN J ~, 

-y (INITIALIZATION) r=- (SYSTEM SHUTDOWN) 

I CPUCALL I fTI. 
SBUTRM 

L-...I\ FINDIS 
~ (INTERFACE 10 FINDID/IMAGID) 

WRTCTLI r,-~ POLL Fy ~ GETREQUE 
FIND ID/IMAGID IA .A-

SENSSBCui 
A 

j (Wt\lT FOR SBCU INTERRUPT) \r---' '--,I (ASCII 10 EBCDIC TRANSLATION) 

I 
I I" (RETURN CONTROLLER 

j( IDENTITY AND FUNCTION IL READREQ J" 
J 

CODE PARMS TO DRIVER I) 
Lif 

TPLAB 7 [ L READCTL,,, I r 
(DO HOST WORK) 

fA I WORK I [ ..A 

'UNTABLE' WRrIPL I" 
j 

~ 

(WORK-IO-DO) (COMM BYTE) I .... r--J:. BIT 
INVALREQJ" , 

~ SPYINI 
F (INITIALIZE SPY MACHIt£) ~SBCUIN SETS 

X '991 
AT SBCUINTH 

INITIALIZATION IIOOpl 
(INTERRUPT HANDLER FOR 

~ 
FREMEM 

ALL SBCU INTERRUPTS) 
y (FREE MEMORY AT SYSTEM 

SHUT-DOWN) 

Figure 2-TPVM organization 

sending a file to the host machine. In this case a task takes 
control of the teleprocessing facility in a controller and 
maintains that control for a sequence of requests, starting, 
in this case, with specifying the identity of the file to be 
created, continuing through sending all the data to be 
written, and concluding with a request to close the file. The 
d~tai1.s HQfJ.b~LQ12e~tIQJ},c!~J2~!!~,_Qn~~~! !Xl?<: of co.ml11~ni~ 
cation connection has been established. For dedicated 
connections to controllers via devices of the 270x 14,15 or 
370X16 type, each controller communicates with its own 
270xJ370x port, and has a TPVM for its individual use. This 
was the initial form of the implementation (see Figure 3). In 
this case, the TPVM processes requests from the controller 
essentially one at a time. The request comes in from the 
controller, the driver determines the function, and directs 
the request to the appropriate processing routine. After the 
request is processed, the results are passed back to the 
communication routine and then to the controller. The 
telecommunication facility of the controller is dedicated to 
a single task in the controller for the duration of the request 
(isolated or stream). Since there is only one controller 
communicating with each TPVM, the processing routines 
operate on one request for one controller at a time and 
process essentially sequentially from the beginning of a 
request to the end. 

When the Model 5098-N5 Sensor-Based Control Unit 
(SBCU) is introduced as the communication mechanism 
with the controllers, the situation becomes rather more 
complex. Up to 64 different controllers can be attached to 
the SBCU, which occupies only one address on a selector 
channel of the host, and is therefore served by a single 
TPVM (see Figure 4). Requests can arrive from a number 
of dirrei~enr ~oll'GolIers 'diii1 rhe TP"~f tntrst proces'!"em:-h of 
them in timely fashion. This fact has implications for all of 
the components of the TPVM code. 

In the course of converting to the SBCU environment, 
with more than one controller to be serviced by the same 
TPVM, the original single-strand implementation was ana
lyzed carefully to identify those portions of the code which 
would be sensitive to the possibility of having more than 
one thing to do concurrently. At the same time, the original 
functions were made much more modular so that the 
underlying structure would be as clear as possible. As a 
result of this analysis it was possible to divide the original 
processing routines into one portion which could be made 
shareable among more than one request and another por
tion which was inherently sequential, and therefore would 
have to be executed for each request in turn. 

One of the valuable tools of this analysis was a process 
called Basic Testing. This was applied to the key processing 



868 National Computer Conference, 1977 

EXPERIMENTS 

PROGRAM LIBRARY 
.--'--- DATA LIBRARY 

EX PER. 

PROGRAM LIBRARY 
DATA LIBRARY 

jj--~---- i34.5 - 50K BAUD ------j~ 

TP-LINK 

VM /370 
AUTO
LOGON 

LABS/7 SOURCE 
FORTRAN SOURCE 
DATA FILES 
STATUS FILES 
EXEC FILES 
LOAD MODULES, BINARY PROGRAMS 

MVS - MACHINE 

ASSEMBLING, COMPIUNG ~ .... 
LINK - EDITING 
FORMATTING 

MVS DATA SETS (LABS/7) 
NUCLEUS, UTILITIES, LIBRARIES 
S/7-CONFIGURATIONS 

(ONE FOR EACH S/7) 
1/0- DEFINITIONS 

(ONE FOR EACH EXP.) 

Figure 3-TPVM in an asynchronous communications environment 

module. It consists of an exhaustive and detailed analysis of 
the logic of a program, beginning by identifying each block 
of code which has one entry and one exit point. These 
blocks of code are often as small as one or two lines of 
code. Next the flow between these blocks is examined 
carefully. This enables the identification of two different 
significant types of blocks. The first of these is so-called 
"dead code," which is code which can never be referenced 

either because there is no flow at all to it, or because the 
logic of the tests and branches is such that the code could 
never be entered. Removal of such blocks immediately 
contributes to the clarification of the remaining code. The 
other major type of block is the very frequently used code 
which is branched to from several different places in the 
module, and is a prime candidate for subroutinization. The 
main purpose of the Basic Testing approach is to clarify the 



Laboratory Automation Via a VMl370 Teleprocessing Virtual Machine 869 

structure of the program by linearizing the flow of execu
tion for a particular function within the program. Having 
identified the blocks which are used to perform the func
tion, it is often possible by rearranging blocks and creating 
subroutines to insure that the execution of the function 
takes place in a compact linear way, rather than by a series 
of branches all over the module. As a result of our analysis, 

the program was rearranged for greatly increased clarity, 
while at the same time, a number of errors were detected 
without having had to actually execute the code. 

The three basic components of the TPVM were men
tioned above; i.e., the driver, the communications package, 
and the processing routines. We will now examine the 
effect on these components of the introduction of the 

EXPT5. 
SYSTEM I 7 

VM-LABS/7 

VM 
USER 

IAI 

• • • 

SBCU 

SYSTEM 17 
VM-LABS/7 EXPTS . 

(UP TO 64 S/7IS CAN BE 
ATTACHED) 

VM/370 

LABS/7 SOURCE 
FOftTftAH .~56t:1ACE 
DATA ALES 
STATUS FILES 
EXEC FILES 

NETWORK LOAD MODULES, BINARY PROGRAMS 

MVS - MACHINE 

ASSEMBUNG, COMPILING 14----'" 

UNK - EDITING 
FORMATTING 

MVS DATA SETS (LABS/7) 
NUCLEUS, UTILITIES, LIBRARIES 
S/7-CONFIGURATIONS 

(ONE PER S/7) 
1/0- DEFINITIONS 

(ONE PER EXPT.) 

Figure 4-TPVM in an SBeu environment 



870 National Computer Conference, 1977 

SBCU as the communication between host and controllers. 
For the driver program, aside from having to call a different 
set of routines for communication, the main difference was 
that it now became necessary for the driver to be aware of 
the identity of the controller making the request and to be 
prepared to communicate that identity to the processing 
routines if required and to the communication routines for 
sending messages to the controller. The communications 
package of course was completely new. The SBCU is 
supported by IBM standard software under OS but not 
under VM. Thus it was necessary to write the basic device 
handling routines from scratch to work with the device 
under CMS. In addition, because of the possibility of 
requests coming from different controllers, interface rou
tines were written to stand between the actual I/O com~ 
mands and the driver program, to isolate the latter from the 
SBCU-dependent portions of the package. 

The main modification to the processing routines was to 
make them capable of processing concurrent streams of 
requests from different controllers. They still process indi
vidual requests in the same way, with the code being 
executable on behalf of more than one controller without 
conflict. Since the processing of requests is what the TPVM 
is all about, let us begin by looking at these routines in 
greater detail. 

Requests from the controller are identified by a halfword 
function code that is transmitted to the host. In TPVM for 
each distinct function code, there is a distinct processing 
routine. These routines are clearly delineated although 
some 0"[ them share common subroutines. Upon receipt of a 
request from the controller, the driver uses the function 
code to determine the routine to be called and passes the 
code and the controller identifier to the processing routine. 
As originally implemented for the single controller TPVM, 
these routines, in particular those which process stream 
requests, e.g., write a record in an already opened file, 
keep historical information (filename, filetype, record num
ber, etc.) stored in the TPVM between calls. As long as 
only one stream of requests was in operation at a time this 
was quite appropriate. 

However, in the SBCU operation, a request to write a 
record from one controller could easily be followed by a 
request to read a record for another controller. Thus some 
way had to be found to keep the information relevant to 
each controller separate. We wanted to do this with a 
minimum of modifications to the previous routines. We 
decided therefore to establish a workarea for each control
ler. This workarea would be an exact replica of the data 
area used by the single controller code, including all the 
constants and data areas referred to by the processing 
functions. The original data definitions were then used as a 
template by the processing programs to locate information 
in the workareas. The basic modification was to pass to the 
processing routines, in addition to the function being re
quested, the location of the workarea for the particular 
controller requesting service. The result was that each of 
the processing routines was able to operate on distinct data 
areas without having any change to the code itself. This 
enabled a simple extension of the single thread (uni-pro-

gramming) code to the multi-thread (mUltiprogramming) 
situation. 

We will here briefly summarize these processing rou
tines. In the original implementation there were nine: 
OPENOUT, OPENIN, SUBMIT, READ, WRITE, 
CLOSE, FETCH STATUS, SET STATUS, and RE
LEASE STATUS. Functionally, OPENOUT, WRITE, and 
CLOSE form one stream request, to create a file and write 
data into it. Similarly, OPENIN, READ, and CLOSE form 
the analogous stream request for reading a file from the 
host. SUBMIT requests initiating of batch processing on 
the host machine. The three STATUS commands are 
related to determining the progress of the batch job and 
controlling some facets of its execution. 

Subsequently four more function codes were defined: 
$LOGON, $FTCHCON, $WRTCON, and $ATTCON. 
These were in support of the CMS console functions being 
provided to the System!7 user at his SystemJ7 console. 
$LOGON begins the CMS session, $FTCHCON reads a 
line from the user's CMS machine console output and sends 
it to the System!7, $WRTCON sends a line of input to the 
CMS machine from the System!7, and $ATTCON enables 
the System!7 user to provide his CMS machine with an 
attention interrupt from its console. These four basic func
tions enable the System!7 user to interact with a CMS 
machine exactly as if he were logged onto the system 
directly. 

It should be pointed out here that these functions have 
been created without direct reference to the properties of 
the System!7, or indeed, of the SBCU. The input to the 
routines consist of a standard message block, which will be 
described in more detail later. This message block could be 
produced by any kind of communication mechanism, and, 
as part of the testing procedure, was read in from the 
virtual card reader of the TPVM. 

The processing routines are all combined into a module 
called TPLAB7. This facilitates the sharing of subroutines 
with a minimum of overhead, but in no way constrains their 
independence or modularity. 

By looking at Figure 2, one can see that the driver 
program is the central control and dispatcher for the 
TPVM. When the TPVM is initiated, the DRIVER program 
reads input parameters (number and identities of control
lers) and calls routines to allocate (GETMEM) and initialize 
the workspaces (SBCUIN), initialize the SBCU device and 
interrupt handler (SBCUIN), activate the extended message 
facility (SPYINI), and wait for a request from one of the 
controllers (GETREQUE). 

If the request originates in an IBM System!7, the data 
will be recorded in ASCII code. When the request comes in 
and is passed to the DRIVER program, it determines 
whether translation is required by examining the function 
code being requested. If translation is required, the FINDIS 
routine is called to carry it out. Then the function code is 
used to identify the appropriate processing routine, and the 
appropriate entry point to TPLAB7 is called. On return 
from the processing routine, the DRIVER program calls the 
MESSAG routine to send back to the controller the results 
of the request. The results can be either a simple return 



Laboratory Automation Via a VM/370 Teieprocessing Virtual Machine 0"71 
U/l 

code indicating the outcome or a buffer full of information if 
that was what was requested. Upon completion of the call to 
MESSAG, the DRIVER program calls the GETREQUE 
routine again to retrieve the next request for service. And 
so it goes, round the loop, round the clock. 

SBCU INTERRUPTION HANDLER 

As' mentioned above, the SBCU required a complete set 
of 110 routines to be written in the CMS environment. By 
having the SBCU attached to the TPVM as a dedicated 
device, we were able to have our own channel programs 
executed with a minimum of CP control program interven
tion. The SBCU is a hardware modification of the 2841 17 

control unit, which was used to control 2311 18 disk drives. 
By specifying the SBCU as a 2311 in the VM system 
generation, we were able to get the appropriate control 
blocks created. 

It would be appropriate at this point to describe the 
operation of the SBCU briefly. Up to 64 controllers can be 
attached to this device. The control unit polls the control
lers looking for requests for service. If it finds one, it 
signals the host CPU with an attention interruption. At the 
same time, stored in the control unit is a request block, 
which identifies the issuing controller and contains a 16-
byte message from the controller. Upon detection of the 
interruption, which suspends the polling of the control unit, 
the host CPU issues a Read Request Block command, to 
bring the contents of the request block into storage. After 
that is done, different commands may be issued. The 
hardware polling may be resumed; specific controllers may 
be added to or deleted from the polling list; a message may 
be sent to a controller which is waiting for one; a special 
alert code may be sent to a controller which is not expect
ing a message; a message may be read from a controller 
which is prepared to send one to the host. These are the 
basic functions available to the software in processing the 
requests for service from the controllers. One special kind 
of message that may be sent to a System/7 is an executable 
System/7 core image. This is in response to the "IPL Host" 

• ""'1-". Mo .. _."" ..... ~"~,"", ... ' ... ".ro~"'!t"""'''"-'''""'_.¥=-.• .., .•. ~_*'¥ .......... ,. ._ .... ~,,.._ .... ~"",_~_,,~ ___ -+""" H, _ 
request trom the comWiler. 

The operation of the interruption handler is to respond to 
interrupts from the SBCU and attempt to classify them as 
to type, and identify for the GETREQUE routine the type 
of 110 operation which is required next. Because of the 
design of VM/CMS, it is not advisable to initiate further 110 
operations from within an interruption handling routine. 
Therefore, a signal byte is set by SBCUIN and interrogated 
by GETREQUE to select the next operation. 

The action to be taken is based on the contents of the 
function byte in the Request Block received from the 
controller, or from the type of interruption as determined 
from examining the status bytes. In addition to the interrup
tion handling routines, there are a set of 110 initiating 
routines which are called by GETREQUE and MESSAG to 
i~sue whatever channel commands are needed. These in
clude Read Request Block (READREQ), Read From Con
trolJer (READCTL), Write To Controller (WRTCTL), Send 

Special Alert (CPUCALL), Write Initial Program Load To 
Controller (WRTIPL), Resume Polling (POLL), Issue 
Sense Command After Error (SENSSBCU), and Signal 
Invalid Request To Controller (lNVALREQ). 

In following a typical transaction from request to fulfill
ment, one would observe a sequence like this. First the 
SBCU is polling the controllers. One controller, number 2 
perhaps, signals a message to be sent to the host. The 
SBCU signals the host via an attention interruption. The 
interruption handler identifies the interruption and interprets 
it correctly as indicating there is a request block in the control 
unit waiting to be read. The communication byte is marked 
to indicate this. The GETREQUE routine gets control 
because it was waiting for the interruption, and issues the 
call to READREQ. The request block is then read. The 
interruption handler examines the request block function 
code to determine whether more I/O operations are re
quired immediately. For instance, if the request is to open a 
file, there will be a message already waiting in the control
ler containing the identity of the file to be opened. If there 
is another operation required, the communication byte is 
modified to indicate 'Read from Controller Needed'. Once 
again the GETREQUE receives control and examines the 
communication byte. In this case a call is made to 
READCTL. The successful completion of this operation is 
signalled as an interruption with 'Channel End and Device 
End' status indicated. This information is used to indicate 
that the I/O operations are finished for the moment and 
processing of the request can commence. At this point the 
hardware polling is resumed with the controller waiting for 
service having been removed from the polling list. 

When the processing has been completed, control passes 
to the MESSAG routine to request communication of the 
results to the originating controller. In our example of 
opening a file, the only information returned is a two-byte 
result code which indicates either successful completion or 
the reason for failure. This is transmitted via the Send 
Special Alert function, CPUCALL. This routine is called 
by MESSAG with the controller ID, and the two-byte code 
as parameters. Upon receipt of the interruption which 
indicates the completion of this operation. the requesting 
co't1troITer' is re(ui:neO" to "lneporTili"gli;rctl1U poITifig 'iii 
resumed. 

TPLAB7 PROCESSING MODULE 

The module TPLAB7 provides 13 different functions in 
response to requests from the controllers. These have been 
enumerated above and will be discussed here in some 
detail. 

OPEN OUT is a function which opens a file on a user's 
CMS minidisk. The user supplies from his System/7 a 
userid, a filename, and a filetype; the file is presumed to 
reside on his 191 disk, the standard address for user files. 
The OPENOUT routine first determines if the file being 
requested is for the same use rid as the TPVM itself. If not 
then LINK must be made via CP to the disk of the user 
owning the file, with WRITE access. The password re-



872 National Computer Conference, 1977 

quired is kept in a file in the TPVM's own CMS filespace. 
After a successful LINK the disk is accessed, and made 
available for subsequent processing. Next the user's file is 
OPENed for output using standard CMS access mecha
nisms. When this is completed, the function is complete 
and the message code is set to reflect the result. The 
OPENOUT routine then returns to the DRIVER program. 
Note that it is possible for a user to create a new file or to 
add to an existing one using the OPENOUT request. 

The processing for OPENIN is similar except that READ 
access only is required to the user's filespace, and of course 
the file in question must already exist. 

The READ request simply results in a buffer being filled 
with the requested information by an ordinary CMS 
FSREAD command. Then the READ routine returns to the 
DRIVER with its completion code set. Because the READ 
request is part of a stream request, the information as to 
user, filename, and filetype is preserved in the TPVM 
dataspace from the OPENIN through all successive 
READ's to the final CLOSE. 

The WRITE request is again similar to the READ, except 
that the information is obtained from the buffer received 
from the controller and written to the user's CMS file via 
the FSWRITE instruction. 

The CLOSE request simply closes whatever file is cur
rently open, if any. 

The SUBMIT function prepares to have a user's virtual 
machine logged on to carry out some processing requested 
by the user. This function presupposes that the desired 
processing will have been previously expressed as a com
mand procedure, or EXEC file, in CMS parlance, and that 
this file resides either on the user's own filespace or on a 
system library files pace to which all users of this package 
are linked at Logon time. The contents of the request from 
the Systeml7 in this case are the USERID, the name of the 
requested EXEC procedure, and any parameters to be 
input to it. First, the existence of the requested procedure 
either on the user's own filespace or on the system library 
disk is verified. Next a special file on the user's filespace is 
created. This file which is itself an EXEC procedure 
consists of one line, namely a command to execute the 
procedure requested by the user with the parameters sup
plied from the System/7. This special file is executed 
whenever the user's virtual machine is logged on by the 
TPVM. When the preparations are complete, the user's 
virtual machine is logged on by CP in response to the 
command 'CP AUTOLOGON'. Thereafter the processing 
of the user's request proceeds in his own virtual machine 
and is charged to his account. Upon successful AUTO LOG
ON the SUBMIT processor exits to the DRIVER pro
gram with an appropriate return code. 

Communication between the user's System/7 program 
and his task executing in his own CMS virtual machine 
takes place through special files called STATUS files. The 
task running in the virtual machine, by convention, has as 
its last step the creation of a file of filetype STATUS and 
filename the same as the procedure name being executed. 
Into this file is written a record reflecting the result of the 
execution of the procedure. The Systeml7 program interro-

gates the TPVM for the existence and contents of the 
STATUS file via the FETCH STATUS and RELEASE 
ST ATUS service requests. The RELEASE STATUS re
quest additionally erases the STATUS file after it has been 
read. In addition the System/7 program can communicate 
information to the host programs by creating such a STA
TUS file via the SET STATUS request. 

The operation of the FETCH STATUS and RELEASE 
ST A TUS requests is similar, except that since RELEASE 
erases the file it requires WRITE access to the user's 
filespace. The routines receive the USERID and the 
procedure name (PROCNAME) as input parameters. First 
the user's filespace is linked to and accessed with the 
appropriate access (READ or WRITE). Next the file 
"PROCNAME STATUS" is OPENed for input. If this is 
successful, a READ is done to retrieve the contents, and 
the file is CLOSEd. Then if it is a RELEASE request, the 
file is erased. Return is then made to the DRIVER program 
with a return code and the contents of the file in place for 
transmission to the Systeml7. If the STATUS file does not 
exist, then this is an indication that the requested procedure 
has not as yet completed execution. This is signalled by a 
different return code, and exit is again taken. 

The SET STATUS request is the equivalent of an OPEN
OUT, a WRITE, and a CLOSE. The parameters are 
USERID and procedure name (PROCNAME), and the file 
created is "PROCNAME STATUS" on the user's files
pace. 

The preceding nine requests constitute the basic comple
ment of the initial implementation of the TPVM-Systeml7 
controller package. We will now proceed to the last, and 
probably most complex development, the provision of full 
CMS console function at the Systeml7 console. 

REMOTE CONSOLE INTERACTIVE FUNCTION 

As mentioned above, this development makes use of 
work done in VM by Alex Chandra and his group in the 
Computer Sciences Department at the Research Center. 
This work gives certain authorized virtual machines the 
ability to create (activate) other virtual machines as images 
of users already in the directory, but using different, unique 
USERID's. These other virtual machines operate as if they 
were interacting with an ordinary CMS console, but instead 
receive their console input from, and direct their console 
output to, the creating machine via a new CP extended 
external interruption facility. 

Briefly, external interruptions are a class of Systeml370 
interruptions which are not specifically related to events 
going on within the processor at the time the interruption 
occurs. They ordinarily include such events as timer sig
nals, the depression of the "Interrupt" and "System Re
start" keys of the system console, and direct CPU-CPU 
signals in a mUltiprocessor environment. Chandra and his 
colleagues extended the VMl370 simulation of such inter
ruptions to include a new type created and reserved for 
generalized communication between virtual machines; in a 
sense it is a logical extension of the Write Direct feature of 
the multiprocessor hardware environment. 



Laboratory Automation Via a VM/370 Teieprocessing Virtuai Machine 873 

The mechanism was originally conceived as a tool for 
measurement and observation of virtual machines carrying 
out prescribed tasks. The CMS console of the creating 
machine provided console input not only to the creating 
machine but to the image machines as well. Similarly 
output from the image machines went directly to the 
creating machine. 

It seemed to us that, with this facility already available, if 
we authorized TPVM to create such image machines for 
users at remote controllers, it would take relatively little 
additional work to transfer the console messages from the 
image machines to the remote controller rather than display 
them at the TPVM console. We decided to proceed in this 
direction. We were able after some investigation to reduce 
the process of creation of an image machine, and interac
tion with it to four primitives, which together would pro
vide the full range of communication between remote 
controller console and image machine running on VM. 
These were: 

1. start an image machine ($LOGON), 
2. retrieve a message from the image machine 

($FETCH), 
3. send a message to the image machine ($WRITE), and 
4. send a console attention interruption to the image 

machine ($ATT). 

The standard process would consist therefore of a 
$LOGON request, followed by a number of $FETCH 
requests until all messages written to the console at LOG
ON time were retrieved, then an open keyboard pre
sented to the remote controller keyboard, and a $WRITE 
request sent to the host with whatever the remote user had 
entered, followed by another series of $FETCH's until all 
the messages generated had been retrieved. In addition, the 
remote controller program would be interruptible to send a 
$ATT request so that the user could interrupt processing in 
the image machine via a simulated console attention inter
ruption. Such a $ATT would be followed in general by a 
series of $FETCH' s again until no more messages remained 
w .. be r.ead. The. remote u~eL\VQuld~Q!lcJJld.~o.hj§ ~~§§!QJ] ~n 
the usual way by typing LOGOFF and the image machine 
would terminate in the usual way. This is the scenario we 
envisioned for the interactive process. 

Programs were of course prepared for the remote con
troller to handle the interaction with the user at that end. 
We will concentrate here on the additions to the TPVM to 
carry out the image machine functions. First the number of 
valid function codes, which had previously ranged from 1 to 
10 was extended to 15 to include the four new functions, 
plus one to grow on. This merely required modification of 
the error checking to accept codes as high as 15, modifica
tion of the driver program to select the appropriate routines 
for processing these new requests, and the creation of the 
new processing routines. Because of the hierarchical struc
ture and modularity of the original design, previously 
existing processing routines required no modifications 
whatever to handle these new functions. The new routines 
were simply inserted into the TPLAB7 processing module 

as independent components. The new functions were coded 
as general purpose subroutines, not dependent in any way 
on the TPVM environment for their operation. The idea 
was that they should be available to anyone wishing to 
design a package accepting input from any source and using 
it to create and communicate with image machines. 

There were several considerations kept in mind as we 
designed this package. For one thing to avoid a prolifera
tion of image machines for a given user, we decided to 
allow no more than one image per user per controller. This 
was achieved by forming the image machine USERID from 
a unique combination of the user's normal CMS USERID 
and the controller identifier. Also we wanted to maintain 
the communication as continuously as possible across fail
ures of both SystemJ7 and the TPVM in the host. To this 
end, the identities of active image machines are maintained 
in the TPVM in a threaded list, each entry containing 
information necessary to identify the image machine, its 
corresponding controller (controller ID), and any outstand
ing message still to be processed. 

If there is a TPVM failure and this table is lost, at the 
next request from the remote controller for communication 
with a particular image machine, after the TPVM has been 
reinitialized, a query is issued by TPVM to see if that 
machine is still logged on. If so, the table entry is re-created 
and communication resumes. 

The structure of the Chandra modifications to CP and 
CMS allows the special external interruptions to be queued 
in the CMS External Interruption Handler, for retrieval on 
request by the CMS processing program. In fact they can 
be retrieved by specific image machine ID, as well as simply 
in the order in which they arrived. A number of image 
machine oriented subroutines have been written for the use 
of the $LOGON, $FETCH, $WRITE, and $ATT processing 
programs. 

The ADDUSER routine, called by $LOGON, carries out 
the setting up of entries in the linked list and calls a 
CREATE routine, which issues the CP commands neces
sary to have an image machine created with a specific 
image ID, and establish the communication link between 
this machine and Its creator, the TPVM. 

iheREADUSER routIne "is caJied by $FET(H to deter
mine whether there are any messages already queued for 
the particular image machine requested (either output from 
the image machine or a request for input to it). If there is a 
message, the entry includes a message identifier which is 
used by the CP facility to retrieve the specific message from 
its message queue, and place the contents in a specified 
buffer in the TPVM. If there are no messages queued, 
READUSER queries the system to see if the image ma
chine is still logged on. If it is, a code is returned to indicate 
that there is nothing pending. This would happen if the 
image machine was compiling a program and had no output 
for some period of time. If the image machine is not logged 
on, a different code signals this fact. The corresponding 
entry in the linked list is deleted and the interaction is 
terminated. Finally, the last thing that READUSER can 
determine is that there is a request for input from the image 
machine pending. This is communicated by still another 



874 National Computer Conference, 1977 

return code. This code when communicated to the remote 
controller normally results in a $WRITE request followed 
by a call to WRITUSER, an entry point in the READUSER 
routine. WRITUSER does the same list search to find the 
message identifier which is then used together with the 
message supplied to the routine as a parameter to reply to 
the image machine's request for input. 

As mentioned earlier, the one additional function re
quired to effectively simulate the virtual machine console at 
the remote controller console is the ability to generate 
ATTENTION interruptions at the image machine. The 
$ATT routine is called with a parameter of either I or 2 
depending on whether one wants the attention to take one 
into CMS or CP on the image machine. The appropriate CP 
command developed by Chandra is issued and the atten
tions are sent. 

We will conclude the discussion of the TPVM internals 
by a look at the communications interface routines, GET
REQUE and MESSAG. These routines form the link be
tween the driver program and the specific 110 routines for 
handling the communications link to the remote controllers. 
We have spoken briefly about GETREQUE earlier, and 
will do so at slightly greater length here. 

GETREQUE is called by DRIVER after all initialization 
is complete, and is intended to return with a request, 
designated as a controller ID and a function code. It comes 
by these in the following way. Upon entry it immediately 
issues a WAIT on the communications device, in our case 
the SBCU. When an interruption is received by the Inter
ruption Handler and is processed, this WAIT is satisfied. 
The GETREQUE routine is activated and proceeds to 
determine what action is required of it. First it examines the 
signal set by the interruption handler to see if there is more 
input/output to be done. The interruption handler does the 
analysis and leaves an explicit setting in a communication 
byte which GETREQUE interprets. GETREQUE then 
calls the particular 110 routine needed (READREQ, 
READCTL, etc.) and returns to the WAIT. When all the 
information needed to process a request has been obtained, 
as signalled by the interruption handler, it remains for 
GETREQUE to identify the controller and the request. A 
table is maintained by the interruption handler containing 
an entry for each active controller. This entry contains 
some flags, the function code of the last request received 
from this controller, and the address of the workarea for 
this controller. GETREQUE examines the flags for each 
entry till it finds one which indicates that 110 is complete, 
and the request is ready for processing. Having found one 
such, the controller ID of the requesting controller, and the 
function code are returned to the DRIVER program. 

At the other end of the processing cycle is the MESSAG 
routine which controls the transmission of results to the 
remote controller. The DRIVER program, after completion 
of the processing of the request, calls the MESSAG routine 
with the controller ID and the function code. The MESSAG 
routine takes appropriate action depending on the function 
code to call 110 routines to transmit the results to the 
controller. For all requests the special alert (CPUCALL) 
function is used to transmit the two-byte completion code 

which results from all requests. If in addition information is 
to be sent, as for instance in response to a READ request 
from the controller, the CPUCALL is followed by a call to 
the Write to Controller function to send the data back to the 
waiting controller. 

This concludes the discussion of the TPVM internals. 
The point of the design has been from the beginning to 
create a highly structured modular package with intelligible 
and independent code. The modularity of the design affords 
a great degree of flexibility in that a change in the imple
mentation of one function, such as the communications 
routines, has no effect on the processing routines, and vice 
versa. For instance, the halfword allowed by the hardware 
for function codes provides up to 32,768 different possible 
codes. The implementation of the DRIVER program and 
others means that the processing routines for some addi
tional codes (perhaps not 30,000 of them) could be added in 
a very simple straightforward way. The interfaces between 
the various levels for the most part are data content 
oriented rather than a very involved structural construct. 

TPVM RESPONSE TIME 

Measurements made, using the one millisecond resolu
tion timer in the S/7, indicate that a complete trivial 
operation, that is, a blank line followed by a carriage return 
on the terminal, from time of request to end of response can 
be performed in as little as seven (7) milliseconds. These 
measurements were made by modifying the $LOGON util
ity within the S/7 to extract the time of day when a 
keyboard entry was completed and ready for transmission 
to the user VM system. When the response to the keyboard 
request was received by $LOGON the time of day clock 
was again read and the difference between clock times 
recorded. These measurements were made for many trans
actions. Typically for interactive operations, such as listing 
or typing a file an average of 40 milliseconds per transaction 
was recorded. Note that the TPVM mechanism was in no 
way operating as a privileged machine. Its dispatching and 
presence in the queues was that of any ordinary VM/CMS 
user machine. 

USAGE DESCRIPTIONS 

Thus far in this paper we have described the TPVM 
implementation and its facilities. We now turn our attention 
to some of the user experiments for which TPVM was 
originally created. A partial listing includes: 

• superlattice fabrication of thin film devices, 
• x-ray scattering measurements, 
• ellipsometry, 
• surface interface measurements of MOS capacitors, 
• conductivity measurements of sodium ions, and 
• Auger spectrometry. 

Rather than describing each of these experiments, we will 



Laboratory Automation Via a VMl370 Teleprocessing Virtual Machine 875 

illustrate, with an experiment designed to control an Auger 
spectrometer,19 the interplay between the user SystemJ7 
(S/7) and the TPVM mechanism. 

COMPUTE~CONTROLLEDAUGER 

SPECTROMETER 

For those unfamiliar with the technique, an Auger spec
trometer is a device which permits the scientist to analyze 
thin films and surfaces using electron beams. The Auger 
spectra are generally measured in a derivative form and 
then doubly integrated to obtain the electron energy distri
bution curve. 

Historically, the experiment was manually operated with 
a technician setting up the various spectrometer controls, 
Spectra data were then recorded onto an X-Y plotter; only 
a single sweep could be made per measurement. The data 
were then examined visually to discern the peak heights of 
the various constituents. Manual calculations were then 
performed to permit re-plotting of the reduced data. As a 
result of this traditional method quantitative rather than 
qualitative analysis is achieved. 

While the 'automation' of this experiment, control and 
observation, could be achieved by coupling to a stand-alone 
mini-computer, the laboratory automation functions are far 
greater than mere device control and data capture; data 
analysis is of prime concern. Program preparation and 
execution, generation of reports, and data storage for 
historical purposes are of major importance. This is best 
illustrated by Figure 5. Attempting to perform all these 
tasks within a single dedicated computer becomes difficult 
to achieve and may be quite costly in manpower and 
capital. 

DATA 
ACQUISITION 

INSTRUMENTS 
DEVICE 

CONTROL 

--"--

USER 

DISPLAY 

t 

An hierarchical system as described in References 2, 3, 
and 4 provides for interface standardization via a dedicated 
mini-computer, the IBM SystemJ7, and a large VM host. 
The mini-computer is a bare bones unit with a minimum of 
peripherals-in our case solely a terminal and disk-dedi
cated to serving several experiments simultaneously for 
data acquisition and device control. It performs the real
time tasks-those not possible with batch or time-sharing 
systems. Our users tend to view the S/7 in this hierarchy as 
an intelligent controller with a transparent link to a higher 
much more powerful computing system, VM/370. TPVM 
provides the link and brings to the user the full data 
processing facilities of a large host such as editors, compil
ers, assemblers, and the full range of peripherals. The 
Auger experiment is but one of many experiments sharing 
the System/7, TPVM, and the facilities of the host. 

As shown in Figure 6, the Auger spectrometer is con
trolled by an IBM Systeml7 sensor based computer, which 
is coupled to the TPVM mechanism, residing in a VMl370 
Model 168, via a 277K byte teleprocessing link. 

The S/7 controls the real-time requirements of the Auger 
spectrometer, i.e., the control, measurements, calibration, 
and real-time decision making (e.g., process interruption or 
variation in operational sequence based upon externally 
measured parameters). 

The spectra data are then transferred via the teleprocess
ing link to user filespace in the 3701168 VM system by 
TPVM. In the event that the host VM system is not 
operational, the SystemJ7 with its disk storage can be 
operated independently. The SystemJ7 can control experi
ments and accumulate substantial amounts of data in its 
own storage. It thus provides the experimenter with the 
security that he can leave his experiment in operation 
without concern for the interruptions in service, scheduled 

DATA 

CAPTURE 
j 

PROGRAMS 
DATA 

PROCESSING 
SlORAGE 

Figure 5-Functions required for laboratory automation 



876 National Computer Conference, 1977 

L 
E 

PARALLE 
INTERFAC 
~ I""'" 

TEKTRONIX 
4013 

DISPLAY 
TERMINAL 

VM/370 

I TPVMl 

.. 

SBCU 

I T 

• 

SBCA 

S/7 

I 

rl" 
AUGER 

ELECTRON 

CHANNEL 

OTHER REMOTE CONTROLLERS 

277 K BYTEIS EC COAX LINK 

-- SENSOR BASE COMMUNICATIONS 
APTER NJ 

r OTHER I 1 EXPERIMENTS 

INTERFACING 
HARDWARE 

SPECTROMETER 

Figure 6-Auger spectrometer experiment configuration 

or otherwise, on the host system. When the TPVM is 
reactivated after an interruption, it signals the controllers of 
its presence. This signal is interpreted by the controllers as 
a request for them to reissue any requests for teleprocess
ing that are outstanding. 

Thus while it is generally necessary to have the host 
available for program preparation, once an experiment is 
set up according to the experimenter's specifications, and 
the control programs written and in place on the Systeml7, 
the experiment itself can proceed independently of the host 
machine. It is also possible to prepare programs to do some 
preliminary analysis on the System/7, while reserving the 
bulk of the analysis for the host machine. 

Having transferred the data, the user may select back
ground batch mode or foreground interactive mode for data 
reduction, e.g., time averaging, background subtraction, 
double integration, etc. on the VM facility. 

For background batch mode, the user issues a SUBMIT 
request from the S/7 to TPVM. The SUBMIT request is 
comprised of an operation code and a message. Messages 
consist of a USERID, an EXEC procedure name and 
parameters. 

The EXEC procedure specified contains the commands 
to carry out the desired processing. TPVM logs on the user 
VM/CMS machine via a CP AUTO LOGON , and causes the 
requested EXEC procedure to be executed. While the 

user's CMS machine is executing on his behalf, the control
ler can continue to carry out his interactions (other than 
submit requests) with the TPVM. 

The execution of the EXEC procedure proceeds as 
follows. Each directory entry contains a request for auto
matic IPL of CMS. The user PROFILE procedure contains 
a test which determines whether the logon was performed 
with or without the user terminal. For AUTOLOGON a 
branch is taken which requests CMS to execute $SBMTL 7 
which in turn invokes the user specified procedure issued 
with the SUBMIT command. The user program will then 
execute with the desired parameters. 

When the user machine has completed its assigned task, 
it returns to the user EXEC procedure with a return code. 
The EXEC procedure creates a STATUS file with the name 
of the EXEC procedure and then logs off the user machine. 
Periodic interrogation by the user S/7 program via the 
FETCH/RELEASE requests will retrieve the STATUS file 
after it has been created. The results of the computation 
and reduction are brought back to the S/7 by TPVM for 
display via the graphics terminal coupled to the S/7. 

For interactive operation mode, the user issues a 
$LOGON request from the S/7 console and all succeeding 
steps are those for a user logging on directly to the VM 
host. Now the data reduction, which can be accomplished 
in any language available within the VM host, is performed 



Laboratory Automation Via a VMl370 Teieprocessing Virtual Machine 877 

interactively and the results immediately displayed at the 
console. 

To summarize, the entire system, i.e., the Auger spec
trometer, the S/7, the interactive graphic terminal, TPVM 
and the VM host, is used as a unique, integrated, and 
powerful instrument for Auger spectroscopy. 

CONCLUSIONS 

The TPVM mechanism was designed as an integral part of a 
hierarchical approach to the support of laboratory automa
tion, or computer augmented experimentation. The thrust 
of the approach has been to allocate the functions required 
for this process to different computers, based on matching 
the characteristics of the computer to the function required. 
Thus the intelligent controller is assigned the tasks requir
ing dedicated resources, rapid response, and high reliabil
ity. The larger host system supplies the large data storage 
and processing resources, the facilities for program prepa
ration, and other user-oriented features of large general
purpose interactive computing systems (for example, high 
quality text editing facilities). The TPVM is the basic means 
of coupling these controllers in an efficient way to the 
particular host system we have chosen, VMl370. 

The applications mentioned herein have been on System! 
Ts communicating with VM/370 and TPVM at the York
town Research Center. However, any controller which 
conforms to the TPVM hardware and software interface 
requirements may be used. 

ACKNOWLEDGMENTS 

The authors wish to thank their many colleagues at the 
Research Center for their help and support. We are particu
larly grateful to P. Greier for his documentation efforts, to 
Drs. H. Cole, H. Freitag, and R. P. Kelisky for their 
encouragement and guidance, and to N. J. Chou, T. Hick
m()tt? C. S. Cargill, L. Alexander. E. Irene, S. La Placa, 

K. D. Hardman, and R. Pollak, the experimenters, for their 
application descriptions. 

REFERENCES 

1. Guido, A. A., "Laboratory Automation In A Virtual Machine Environ
ment," IBM Research Report RC3917, 1972. 

2. Hultzsch, H., A. A. Guido, and H. Cole, "Laboratory Automation In A 
Novel Computer Hierarchy," IBM Research Report RC4714, 1974. 

3. Cole, H., "SystemJ7 in a hierarchical laboratory automation system," 
IBM Systems Journal Vol. 13, No.4, 1974, pp. 307-324. 

4. Cole, H., A. Guido, and A. Bednowitz, "Laboratory Automation
Current Status and Future Trend," Japanese Journal for the Society of 
Instrument and Control Engineering, Vol. 14, No. 10, 1975, pp. 714-724. 

5. Perone, S. P., "Computer applications in the chemistry laboratory-a 
survey," Analytical Chemistry Vol. 43, No. 10, August 1971, pp. 1288-
1299. 

6. IBM Virtual Machine FacilityI370-Introduction, IBM Systems Library, 
Order Number GC20-1800. 

7. IBM Virtual Machine Facilityl370-CMS User's Guide, IBM Systems 
Library, Order Number GC20-1819. 

8. IBM Systeml7 Sensor-Based Control Unit (SBCU)-Planning Guide, 
IBM Systems Library, Order Number GC34-1522. 

9. Hsih, Shirley C., "Inter-Virtual Machine Communication Under VMI 
370," IBM Research Report RC5147, 1974. 

10. IBM Systeml7-System Summary, IBM Systems Library, Order Num
ber GA34-0002. 

11. Raimondi, D. L., et aI, "LABS/7-a distributed reaJ-time operating 
system," IBM Systems Journal Vol. 15, No. I, 1976, pp. 81-100. 

12. Raimondi, D. L., "Multiprogramming Monitor for Laboratory Automa
tion," IBM Resarch Report RJl075, 1972. 

13. Laboratory Applications Based System-Program Description/ 
Operations Manual, IBM Systems Library, Order Number SH20-1363; 
also, Event Driven Executive-Program Description/Operations Man
ual, Order Number SH20-1819. 

14. IBM 2701 Data Adapter Unit-Component Description, IBM Systems 
Library, Order Number A22-6864. 

15. IBM 270212703 Transmission Controls-4Jriginal Equipment Manufac
turers' Information, IBM Systems Library, Order Number A27-3012. 

16. IBM 3704 and 3705 Communications Controllers-Principles of Opera
tion, IBM Systems Library, Order Number GC30-3004. 

17. IBM System/360-Component Description-2841 and Associated DASD, 
IBM Systems Library, Order Number GA26-5988. 

18. IBM 2311 Disk Storage Drive-4Jriginal Equipment Manufacturers' 
Information, IBM Systems Library, Order Number A26-3567. 

19. Chou, N. J .. R. Hammer. and A. Bednowitz, "Computer-controlIed 
Auger spectrometer," Review of Scientific Instruments, Vol. 47, No.5, 
1976, pp. 559-564. 





Computer typesetting of technical journals on UNIX 

by M. E. LESK and B. W. KERNIGHAN 
Bell Laboratories 
Murray Hill, New Jersey 

ABSTRACT 

A UNIX-based system for typesetting technical papers for 
high-quality output was evaluated by measuring use of 
computer and economic resources. Five manuscripts sub
mitted to Physical Review Letters were typeset at Bell 
Laboratories, after preparation of programs to handle the 
equations, tables, and layout problems of this journal. 

Computerized typesetting is substantially cheaper than 
typewriter composition. The primary cost of page composi
tion is keyboarding and the aids provided by UNIX to 
facilitate input of complex mathematical and tabular text 
reduce input time significantly. Typing and correcting arti
cles on UNIX, with a single experienced typist, is between 
1.5 and 3.3 times as fast as typewriter composition. Input 
on UNIX averaged 2.4 times as fast as conventional meth
ods. The composition cost per camera-ready page using a 
full-scale UNIX-based system producing 200 finished pages 
per day would be about $10 per page as compared with 
typewriter composition costs of $30 per page. 

INTRODUCTION 

UNIX l is a general purpose time-sharing operating system 
for the PDP-II family of minicomputers. It is used exten
sively for the preparation of technical documents, ranging 
trcm mtcrnat tec-hnicai m~morn!'!~ if! di~/~~ ftt"td*;l· tfl 
patent applications and books. The basic tools that UNIX 
provides for this are: 

(1) A file system for long-term storage of information on 
the computer. 

(2) A text editor for input and modification of text. 
(3) Formatting programs for producing output on stand

ard ASCII terminals, line printers, or on a phototype
setter. 

(4) Specialized programs for formatting mathematics and 
tables. 

(5) Mechanical aids for proofreading and format check
ing. 

(6) An especially convenient mechanism for connecting 
programs together to perform complex tasks. 

The document preparation facilities of UNIX are used 

879 

heavily on a daily basis by scientists, secretaries and 
typists, preparing material of all sorts, but with the empha
sis on typesetting mathematics. 

This paper describes an experiment performed to evalu
ate the cost and performance of UNIX as a production 
system for computerized typesetting of technical papers for 
a primary technical journal, Physical Review Letters. This 
project was done in cooperation with the American Physi
cal Society (APS), which supplied the test materials. 

TEXT FORMATTING LANGUAGE 

The basic tool for document formatting is a general
purpose text formatting program called troff 2 troff provides 
standard facilities for formatting text into lines, with justifi
cation, hyphenation, size and font control, and the like. In 
addition, it has a macro capability, text and arithmetic 
variables, numerical computation and testing, and condi
tional branching. In effect, troff is a programming language, 
albeit of an unconventional sort. 

However, these programming operations are generally 
not used directly by typists. Instead, a higher level descrip
tive language is used in which the typist indicates the 
content of each section of the input, by typing commands 
such as ".TL" before the title, or ".AU" before the author 
"~ffle{~! .1<1'01" Pf~am.s. are wriu&ntoi~.these. cde
scriptive commands and generate appropriate low-level 
typesetter requests for each particular journal style (e.g., 
that of Physical Review Letters). The macro instructions in 
the layout program for each journal enforce the local style 
rules; for example, the title of an article in Physical Review 
Letters is centered and set in bold-face. Different journals 
may have different styles for this, but the article need not 
be retyped or even edited to print it in a different style; only 
the program used to interpret the commands is changed. 

MATHEMATICS LANGUAGE 

Within a document, mathematical expressions are written 
in a speciallanguage3 which has been designed to be easy to 
learn and use by non-technical people like secretaries and 



880 National Computer Conference, 1977 

typists. For example, in this language the display equation 

~xc~'!!.. 
i=O 2 

is written as 

.EQ 
sum from i =0 to infinity x sub i -> pi over 2 
.EN 

The "formatting commands" .EQ and .EN signal the 
beginning and end of a displayed mathematical expression. 
In-line expressions like x are written as %x vec%, where 
the "%" is a user-chosen character. 

Essentially all details of sizes, fonts, etc., are handled 
automatically by this system; handfiddling is hardly ever 
needed. 

The mathematical parts of a document are interpreted by 
a separate program called eqn. eqn operates as a preproces
sor which converts the mathematical parts into the rather 
complicated troff commands necessary to actually position 
and print the expressions properly. The non-mathematical 
parts of the document are passed through eqn untouched. 

TABLE LANGUAGE 

Tables within a document are handled in a fashion quite 
analogous to mathematics: a special language,4 again de
signed to be easy to learn and use, permits quite compli
cated tables to be entered by typists. The program does all 
the computations necessary for lining up columns, leaving 
space for the widest elements, drawing lines, etc. For 
example, in this language, the input 

.TS 
center, box; 
c s 
c c 
In. 
Weight: English to Metric 
Name (tab) Grams 
pound (tab) 453 
ounce ( tab) 28.349 
grain (tab) 0.0648 
.TE 

will produce the output 

Weight: English to Metric 
Name Grams 
pound 
ounce 
grain 

453 
28.349 
0.0648 

As with eqn, a program tbl interprets table specifications, 
generating appropriate troff commands. tbl is also a prepro
cessor. Tables may contain mathematics; in this case, tbl is 

run into eqn, and the output of eqn is passed in tum to 
troff. 

PAGE LAYOUT 

APS/ AlP journals normally set all pages in double col
umn, except for very wide equations and the text surround
ing them, which are set full width, i.e., a single wide 
column. Figures and tables are placed only at the top or 
bottom of columns, and may be either narrow or wide 
depending on their content. Lines are not justified (ragged 
right margin) but all columns are the same length. Figure 1 
shows one of the sample pages, as produced by our system. 
Figure 2 shows the same page taken from the published 
.: .......... _~1 'lIli.T_.L~ __ .L1 _ ___ , • .. • 'I." .• ... • ... 
JUUllldl. l"lUU~e;; LIle uruer III wmcn Ine marenaJ IS read. 

All material is typed in with the UNIX text editor, using 
ordinary ASCII terminals with no special characters. The 
typist inserts commands in the text as needed to specify 
different formatting actions. The major commands are those 
which delimit equations, tables and figures; the identifica
tion of the title, authors, authors' institutions, and abstract; 
the beginning of each paragraph; and the commands "begin 
double column" or "begin wide single column." Figures 
may be marked as either wide or narrow; captions and 
figure size are placed in the text at the point where the 
figure is referenced. Of course within tables and equations 
there are commands appropriate for those processes. Fig
ure 3 shows the beginning of the input used to prepare the 
output of Figure 1. 

There are four stages in the procedure that formats a 
document, although the user only types one command. The 
UNIX system permits different programs to be linked at 
command level by connecting the output of one program to 
the input of the next program; the program network con
structed is called a "pipeline." This pipeline facility is used 
very heavily by the typesetting system, since we could not 
run as one program all of the pieces of our typesetting 
software. Running them separately not only avoids the 
space limitations of our system but minimizes the interac
tion between the authors of the different programs. 

(1) The file is preprocessed to measure the length of the 
various one- and two-column sections of the paper. 
This information is needed by the layout programs to 
avoid extremely short double column sections. There 
are two ways of performing this step: we can use a 
procedure that goes through the internal steps of 
producing galley.s for the entire paper, but instead of 
printing the galley proofs merely records the length of 
each section. Usually, however, we simply count the 
number of characters in each section and assume a 
standard number of input characters per column inch. 
This can be done much faster by the computer and is 
accurate enough for papers of the style of Physical 
Review Letters. 

(2) The table processing program tbl comes next, if the 
paper contains any tables. It ignores most of the 
manuscript, but extracts tables and arranges their 



Compuier Typesetting of Technical Journa]s on UNIX 881 

VOLUME 35, NUMBER 20 PHYSICAL REVIEW LETTERS 17 NOVEMBER 1975 

is 

( I l ' '-( I I') I ~{(f3.bIHhtlla.a)((~.alllcJ/lIf3·.b) (f3. bl ll/ltlln.a)(tt,llIJI(//lIf3',b)} 
13.b H f3 .bl - 13.b H diag 13.b + {2~ E

u
(a)-E

b
(13) + Eo (a)-E

b
(f3 , .(10) 

where the labels 13 and a index the bonding (I,a,b) and antibonding (Ia.a) eigenfunctions of Hdiag• The 
valence and conduction bands are now decoupled to order (Vt! V2)2. In lowest approximation, 
[Ea(a)-Eb (/3)] = 2\ V2\ and the sum over intermediate states can immediately be evaluated. The total 
valence-electron energy (including magnetic-field-dependent terms) is the trace of Eq. (10) in the bonding 
representation. This expression contains both paramagnetic and diamagnetic terms. The former arise from 
the matrix elements of Hob + Hba~ hence they depend upon bond angles and crystal coordination. The latter 
emerge from the Hdiag term. 

To extend this procedure to next order in (Vd V2), we keep higher powers of Tin Eq. (8), and expand the 
energy denominator of Eq. (10) about the "average" gap Eg iE 2\ V21. The result is a series of commutators 
of the form HbalHdiag. [Hdiag .•• , [Hdiag,Hoblll which again can be evaluated with trace methods. To order 
( Val V2)2, 

-Ne
2 ~ {I 2 ., / 2 ., 1 3 I VI 121} IhN(el~ me )21 1 I VI 12] 

X = 4me2 j~ ,'.J.. (j) ; local + ,'1 (j) /overlap 1- '4 v;- + Eg 1 + '4 V;-. (11) 

Since (Vtl V2) < 0.5,5 the second-order terms in Eq. (11) are small and may be ignored. Equation (11) was 
derived on the assumption of zero overlap between orbitals that form a bond. With overlap, the expression 
is modified as follows lO

: 

)( = ~::[ I!S I It [(r1 (j)~oc,' + (r1 (;»)O""'P] + ~ I :; r 11~s21 t, (12) 

where Ex is the energy gap modified for overlap. 
Equation (12) is our final result, which we compare 
with the HKF model. Their diamagnetic and 
paramagnetic terms can now be identified with well
defined, gauge-invariant quantities: the orbital area 
(rl {j»)'ocah the overlap area (,l {j»)overlae.' the over
lap integral S, and the energy gap Ex' IMI2, 
which depends only on the geometrical arrangement 
orlhe bonds, is givell by 

(13) 

Here No is Avogadro's number. This result implies 
that IMI2 is constant for all covalent tetrahedrally 
bonded materials, as observed by HKF. With the 
value S = 0.5, II Eq. (13) gives 
IMI2 = 1.7 X 10-4 eV cm3/mole, in good agreement 
with the experimental values l 1.8 ± 0.6 (diamond), 
1.8 ± 0.3 (Si}, and 2.2 ± 0.2 (Ge) in units of 
10-4 eV cm3/mole. 

To evaluate the diamagnetic terms in Eq. (12), we 
have used Herman-Skillman wave functions l2 to cal
culate (rl U»)local' It can be shown lO that 
(rl (j»)overlap ~ (O.l5)(rf (j»)local' Our results13 for 
rJ.. agree with experimental values) (indicated in 
parentheses): diamond 0.84 A (1.04 ± 0.15 A), Si 

o ? 0 

1.23 A (I.32 ± 0.1 A), Ge 1.25 A 
0.48 ± 0.06 A). 

In conclusion, we have derived a particularly sim
ple expression for the susceptibility of tetrahedral 
semiconductors in terms of gauge-invariant quanti
ties characterizing the chemical bonding and the spa
tial structure of the solid. Work is presently under 
way to extend our formalism to differently coordi
nated solids and to amorphous materials. 

It is a pleasure to thank Professor M. Kastner and 
Dr. ~.~~j~e!ls- f~ ·~t-tJl=tl~~3f;.ng 9ur mt«est 'R lhis 
problem, and for many helpful suggestions and dis
cussions. 

* Research supported in part by the U. S. Air Force 
Office of Scientific Research, Air Force Systems Com
mand, under Contract/Grant No. AFOSR-71-201O. 

t IBM Predoctoral Fellow. Present address: Vanderbilt 
Hall, Harvard Medical School, Boston, Mass. 02115 

1 S. Hudgens, M. Kastner, and H. Fritzsche, Phys. 
Rev. Lett. 33, 1552 (I974). 

2 1. C. Phillips, Rev. Mod. Phys. 42, 317 (1970). 
3 W. A. Harrison, Phys. Rev. B 8,4487 (1973). 
4 L. M. Roth, 1. Phys. Chern. Solids 23, 433 (I962)~ J. 

E. Hebborn, J. M. Luttinger, E. H. Sondheimer, and P. J. 
Stiles, J. Phys. Chern. Solids 25, 741 (I 964)~ E. I. Blount, 
Phys. Rev. 126, 1636 (I 962):-R. M. White, Phys. Rev. B 
8, 3426 (1974). 
- 5 D. Weaire and M. F. Thorpe, Phys. Rev. B 4, 2508 
(1971). -

6 G. G. Hall, Philos. Mag. 43, 338 (952); and J., 429 
(1958). 

Hiollrp 1 



882 National Computer Conference, 1977 

VOl.l!'tF. .H. Nl'MBfR 10 PH Y SIC A L REV I E \\' LET T E R S 

order in T, is 

( {$ , h III ' I 0', h) = (I j , h III tJ I ;I)~ Ill' , h) 

+.! 2:; f ( {.j , b 111 ba I a, a) (a, {l j /I a bl {.j', b) + (13. bill ba 10 , (J) (lY, a Ilia bl (3', b)} ( 10) 
2 a t Ea(a) -E b(/3) Ea(a) -E b({3') . ' 

where the labels p and a index the bonding (It1, b» and antibonding (10'. a» eigenfunctions of H d i a • The 
valence and conduction bands are now decoupled to order (V1 /v2 f. In lowest approximation, IE a10) 
- E b(f3}] = 21 V21 and the sum over intermediate states can immediately be evaluated. The total valence
electron energy (including magnetic-field-dependent terms) is the trace of Eq. (10) in the bonding 
representation. This expression contains both paramagnetic and diamagnetic terms. The former 
arise from the matrix elements of Hub + H"fIo; hence they depend upon bond angles and crystal coordina
tion. The latter emerge from the H d i a g term. 

To extend this procedure to next order in (V 1/V2 ), we keep higher powers of T in Eq. (8), and expand 
the energy denominator of Eq. (10) about the Haverage" gap E 1== 21 V21. The result is a series of com
mutators of the form Hba[lIdiag, [Hdiag ••• , [Hdiag,Hab]]] which again can be evaluated with trace meth
ods. To order (Vl/l'2)2, 

_ - Ne
2 4 { 2' . 2 . [ _~(~)2J} ~N(elilmc)2 [ .!(~)2J x- 4mc2 J~ (rJ (J)locaI+ (rl. (j»overlap 1 4 V

2 
+ E, 1+ 4 V

2 
• ( 11) 

Since (V1 /V 2 ) <0.5,s the second-order terms in Eq. (11) are small and may be ignored. Equation (11) 
was derived on the assumption of zero overlap between orbitals that form a bond. With overl~p, the 
expression is modified as follows1o

: 

where E, is the energy gap modified for overlap. 
Equation (12) is our final result. which we com
pare with the HKF model. Their diamagnetic and 
paramagnetic terms can now be identified with 
well-defined, gauge-invariant quantities: the 
orbital area (r /(j)1 0 cal, the over lap area 
(r./(j»overlap, the overlap integralS, and the 
energy gap E,. 11\112, which depends only on the 
geometrical arrangement of the bonds, is given 
by 

( 13) 

Here No is Avogadro's number. This result im
plies that IMI2 is constant for all covalent tetra
hedrally bonded materials, as observed by HKF. 
With the value S = O. 5,11 Eq. (l3) gives liHI2 = 1. 7 
X 10-4 eV cm3 /mole. in good agreement with the 
experimental valueH1 1.8 ±0.6 (diamond), 1.8 
± O. 3 (SO, and 2.2 ± 0.2 (Ge) in units of 10 -4 eV 
cm~/mole. 

To evaluate the diamagnetic terms in Eq. (12), 
we have used Herman-Skillman wave functions 12 

to calculate < r }( j»1 0 cal' It can be shown1o that 
(r }(j»o verI a p $ (0.15)( r /(j)lo cal' Our results13 

for r.L agree with experimental values l (indicated 
in parentheses): diamond 0.84 'A (1.04±0.15 .A), 
Si 1.23 A (1.32±0.1 A), Ge 1.25 A (1.48±0.06 A). 

( 12) 

In conclusion, we have derived a particularly 
simple expression for the susceptibility of tetra
hedral semiconductors in terms of gauge-invari
ant quantities characterizing the chemical bond
ing and the spatial structure of the solid. Work 
is presently under way to extend our formalism 
to differently coordinated solids and to amor
phous materials. 

It is a pleasure to thank Professor M. Kastner 
and Dr. S. Hudgens for stimulating our interest 
in this problem, and for many helpful suggestions 
and discussions. 

*Research supported in part by the U. S. Air Force 
Office of Scientific Research, Air Force Systems Com
mand, under Contract/Grant No. AFOSR-71-2010. 

tIBM Predoctoral Fellow. Present address: Vander
bilt Hall, Harvard Medical School, Boston, Mass. 
02115. 

1S. Hudgens, M. Kastner, and H. Fritzsche, Phys, 
Rev. Lett. 33, 1552 (1974), 

2J. C. Phillips, Rev. Mod. Phys. 42,317 (1970). 
3W. A. Harrison, Phys. Rev. B 8:4487 (1973). 
.fL. M Roth. J. Phys. Chern. SoUds. 23, 433 (1962); . -

J. E. Hebborn, J, M. Luttinger, E. H. Sondheimer. and 
P. J Stiles, J. Phys. Chern. Solids 25, 741 (1964); E. 1. 
Blount, Phys. Rev.~, 1636 (1962); R. M. White, Phys, 

Figure 2 



.ds VN 35 

.ds NU 20 

.nrdy 17 

.nr mo II 

.nr yr 75 

.sp 3.6i 

.TL 

Computer Typesetting of Technical Journals on UNIX 883 

Chemical-Bond Approach to the Magnetic Susceptibility of Tetrahedral Semiconductors· 
.AU 
V. P. Sukhatmetand P. A. Wolff 
.AI 
Center for Materials Science and Engineering and Department of Physics 
Massachusetts Institute of Technology, Cambridge, Massachus.!tts 02139 
.ps 9 
,[t 1 
(Received 22 May 1975) 
.AB 
A chemical-bond theory of the magnetic susceptibility of 
tetrahedral semiconductors is presented. Starting from a 
Hall- \Veaire-type Hamiltonian. we derive an expression for 
the susceptibility. whose diamagnetic and paramag.netic contributions 
are written in terms of gauge-invariant physical quantities. Our 
analysis confirms a recently postulated model for the susceptibility. 
Theory and experiment are in good agreement. 
.AE 
.2e 
.PP 
In a recent Letter,$"" sup 1$ Hudgens. Kastner, and 
Fritzsche (HKF) proposed a model susceptibility function for 
tetrahedral semiconductors of the form 
.EQ (1) 
chi =- {-N sub 0 e sup 21 over {6mc sup 2} - left [sum from 
roman core A langle r sup 2 Tangle -+ - sum from roman val A langle 
r sup 2 rangle right] -+ - {IMI sup 2} over {E sub g} . 
. EN 
They ascribed the first two diamagnetic terms in this 
formula, denoted by $ch~ sub c$ and $chi sub v$, to core 
and valence electrons, respectively; the last term 
$( chi sub p )$ is a Van Vleck paramagnetic susceptibility 
arising from virtual interband transitions. HKF al~o 
me&SUfeE.. the5~~~t,Y..~~Q~"LempetaUil:e delleodeoce~ 
for diamond, Si. Ge, GaAs, and GaP. From these data, they could 
then 
.ul 
separately 
determine $chi sub v$ and $chi sub p$. They find nearly complete 
cancelation between $chi sub v$ and $chi sub p$, a constant 
interband matrix element $(IMI sup 2 )$ despite wide variations in 
$E sub g$, and values of $ langle r sup 2 rangle sub roman val sup haIrs 
that scale with lattice spacing. These results support their 
model, but leave several questions unanswered. In particular, 
the meaning of the various terms $( langle r sup 2 rangle sub roman valS, 
$IMI sup 2$, etc.) appearing in Eq. (t) remains unclear. It is 
not obvious, moreover, that such quantities are gauge invariant. 
The purpose of this Letter is to sketch a derivation of the HKF 
model which resolves these difficulties. We will show that Eq. (t) 
follows from a simple tight-binding picture, and we will present 

Figure 3-Beginning of input for Figure I 



884 National Computer Conference, 1977 

columns to be left-adjusted, right-adjusted, centered, 
or aligned by decimal points, as required. Headings 
as requested by the typist are placed over the col
umns. The typist need only specify the form of each 
column and type the data separated by tabs; other 
processing is automatic. 

(3) The next procedure is eqn, which identifies equations 
and processes the input language into the typesetting 
(or line printer) language. Equations within tables are 
handled properly. 

(4) The actual typesetting and layout by troff now follow. 
In the process of this stage the input material is 
handled three times. 
(a) First, sections of double and single column text 
are collected. Material specified as too wide for 
double-column must of course be set full width, but 
the program will change narrow material to wide if 
setting as requested would cause an unattractive 
section of very short columns. Up to an entire page of 
text is gathered and processed at once. There is no 
backup: a limitation of our typesetting software pre
vents us from ever changing the initial decisions 
about line length, etc., used with a particular piece of 
text. Instead, the estimates of the lengths of each 
section of text produced by the first program in the 
sequence permit the layout routine to decide the 
proper format for each section. For example, there 
are two cases in which the program will change 
narrow text to wide: if it is too close to the bottom of 
a page, or if the next change to wide text follows very 
closely. As the text is gathered, figures and out-of
text tables are collected but temporarily set aside. 
The expected location of each figure is identified. By 
preference, figures are first placed at the top of the 
current page. If that space is no longer available, 
figures are placed at the bottom of the current page. 
If there is no space on this page, figures are placed at 
the top of the next page. The figures are not actually 
written out until the text for the page is processed, 
however, since (for example) it is not possible to 
place a half-width figure in full width text and on 
occasion the program is forced to widen a figure to 
full width in order to place it on the current page. It is 
possible, but rarely necessary, for the user to indicate 
where a particular figure is to be placed. 
(b) Second, columns are formed by taking the double 
column pieces of text and dividing them into two 
columns. This may be difficult (for example, the 
expected breakpoint may be in the middle of a half
inch high equation) and thus the program tends to be 
conservative. It tries to put slightly less on each page 
than will actually fit; for Physical Review Letters the 
typography is sufficiently simple that one line of 
leeway is usually adequate, whereas for a very math
ematical paper from Physical Review D three lines 
per page were left. The user can override this default 
for any paper and for any page, if it matters. While 
forming the columns the program counts the number 
of breaks between paragraphs and around equations 

in each column, and also measures the lengths of the 
columns. 
(c) Third, the actual page is written out. The figures, 
and appropriate margin, and the columns of text are 
placed. To even up the columns, extra space is placed 
between paragraphs and equations. This is generally 
not noticeable, although it does mean that the lines in 
the two columns are not aligned. This conforms to 
APS/AIP practice. We do not have the capability of 
adjusting column lengths by changing the spacing 
between each line. 

(5) The output medium is now chosen: the page may be 
written either on the typesetter, on a scope (for 
checking layout) or on a terminal for proofreading. In 
any case, the input typed by a typist is completely 
independent of the output device ultimately used. 

If the pages produced are not acceptable, the user can make 
adjustments in the document in several ways. Material may 
be changed from narrow to wide format; in fact, the 
program will diagnose any equation which is too big for its 
intended appearance. Figures may be moved around in the 
text or enlarged, and more white space can be added to 
pages. For Physical Review Letters such methods are not 
usually necessary; they were only resorted to for trivial 
changes in the five papers of the experiment. Specifically, 
in two papers one line of white space was dropped from a 
page; and in one paper a figure was moved. 

Finally, multiple papers may be run back to back and any 
individual paper may be placed at any vertical position on a 
page. These facilities are necessary to produce an entire 
issue of a journal, although irrelevant to the cost measure
ments in this experiment. 

THE MAIN EXPERIMENT 

Five copy-edited manuscripts (i.e., papers as given to 
typists at APS) were obtained from the editorial offices of 
Physical Review Letters through the courtesy of APS. 
Before looking at these manuscripts, eleven papers from 
the published journal were typed and typeset for practice 
and program debugging. Then the manuscripts were typed 
and typeset. 

The experiment was done working entirely from manu
script; the published versions of the papers were not looked 
at until afterwards, and then only to supply one table 
omitted from one of the manuscripts and the date and initial 
page positions and volume numbers. 

The sequence of operations performed by the typist for a 
paper is essentially this: 

(a) original input of the paper (including a limited amount 
of "on-the-fly" correction of errors); 

(b) rudimentary check of spelling, legality of equations 
and formatting commands (done by machine); 

(c) fix any errors found; 
(d) print a draft version on the typesetter; 
(e) proofread draft; 



Computer Typesetting of Technical Journals on UNIX 885 

(f) cycle through (c), (d) and (e) until the paper is in a 
satisfactory state. 

Obviously some of these operations, particularly printing a 
draft, are normally overlapped with other activities, so the 
human time involved will not include (d) if there is enough 
typesetter capacity to keep typists busy. 

The table below shows the data collected for the five 
papers, and the corresponding totals for each category. 
Each paper is characterized by its size in characters of raw 

input (including all mathematics, formatting information, 
etc.), the number and size of display equations like 

and the number and size of in-line mathematical expres
sions like 7Ti. The data on equations and in-line expressions 
give a rough measure of the complexity of the paper. 
Figure captions and tables are entered as normal input; 
their content is included in the size information. All times 
are in minutes. 

Statistics on Five Sample Papers ~ 

Browman Lee 

raw input 11236 15160 
(characters) 

in-line expressions 154 130 
(characters) 1256 1291 

display equations 5 ° (characters) 318 ° 
figures, tables 4, 1 3, ° 
raw input time 56 63 

subsequent 14 21 
editing time 

total typing time 70 84 

output pages 3 3.5 

time per page 23 24 

The average typing time per final page is thus 29 minutes. 
The statistics with regard to typing time do not take into 
account the un quantifiable fact that the typist, Ms. Carmela 
Scrocca, is extraordinarily fast and competent. For com
parison, however, the total times recorded by APS for their 
typing and correction of the same papers are presented 
below. 

Comparison of Typing Times 

Browman Lee Keiser Wolff Tidman Total 

APS 230 240 135 300 170 1075 

UNIX 70 84 88 97 105 444 

APS/UNIX 3.3 2.9 1.5 3.1 1.6 2.4 

Keiser Wolff Tidman Total 
I 

13366 15197 14004 68963 

118 113 134 649 
2913 1872 2083 9415 

3 20 17 45 
385 3314 3058 7075 

1, 1 0, ° 3,0 11, 2 

66 77 84 346 

22 20 21 98 

88 97 105 444 

3 3 3 15.5 

29 32 35 29 

Although the total UNIX performance is 2.4 times faster, 
this does represent a spectrum of typists. The fairest 
comparison is probably with the papers by Keiser and 
Tidman, which were typed by the best typists at APS. If we 
assume that Ms. Scrocca and these typists are of compara
ble skill, then the UNIX system is 1.5 times as fast as 
typewriter composition. (A further experiment with a 
longer and more mathematical paper again showed a ratio 
of 2.4 to 1.) 

There are two other significant costs for which we have 
some data-proofreading and page composition. According 
to APS, page composition takes approximately 15 minutes 
per paper on the average. Much of this effort can be 
eliminated by the automatic layout operations described 
above; it seems reasonable to believe that the computer 



886 National Computer Conference, 1977 

system could reduce this to five minutes per paper of 
human time. 

Proofreading times are of course much less objective. A 
careful proofreading by a technical reader took 94 minutes 
for the entire set of five papers, or about six minutes per 
page; this appears to be a fairly stable estimate, and is in 
reasonable agreement with values supplied by APS. 

HARDWARE 

The computer system used for these experiments is a 
PDP-Il/45 running the UNIX operating system. The hard
ware for typesetting is a Graphic Systems C/ NT typesetter 
(not the current model) with four fonts and a range of point 
sizcs selected by lens turret rHotion. The time required to 
set a page (8.5 x II inches) with this device ranges from 
about three minutes for pages with no point size changes to 
15 minutes for the most complex material observed in 
Physical Review Letters. The articles from this experiment 
required on the average from eight to fifteen minutes per 
page depending on the amount of mathematics. 

The actual computer time used for production of the 
papers is broken down as follows. First, initial input using 
the UNIX text editor proceeds at about 500 characters per 
CPU second; this accounts for about 140 seconds for the 
entire experiment. A similar amount would more than cover 
the subsequent editing and checking operations. Editing is 
certainly not the limiting cost. 

CPU time required for typesetting is much larger, as 
shown in the next table. 

Browman Lee Keiser Wolff Tidman Total 

CPU time (seconds) 143 157 206 287 331 1124 

pages 3.5 15.5 

The cost per page then is about 74 seconds of CPU time. 
This is not the time per finished page. In this experiment, 
there were two complete drafts done before final copy, so 
in effect each page was done three times. It is our belief 
that with more careful proofreading of the first draft, this 
could probably be reduced to something much closer to two 
printings per page on the average. 

The effort described above brought the papers into agree
ment with the APS copyediting instructions. Since we did 
not have access to an APS style guide a small amount of 
extra effort was expended to bring the manuscripts into 
exact conformance with APS rules by hunting around the 
library to find articles with similar features. The extra time 
involved in these changes is not included in the measure
ments. 

COSTS 

Although our typesetter averages about 12 minutes per 
page, it is an old model. The currently available Graphic 
Systems C/ A/T (as timed at another Bell Labs computer 
installation) is twice as fast, using about six minutes per 

page. In a two shift day it could produce 160 pages of 
drafts. An extra 25 pages per day could be produced during 
an unattended third shift. At 2.5 to 3 tries per page, the 
finished page output rate would be 60-70 per day. Since a 
typist can comfortably sustain ten finished pages per day, 
six typists could keep one typesetter busy. The figure of 
five hours per day is deliberately conservative to allow for 
the Hawthorne effect, different typing skill levels, uneven 
workload, and non-typing time. 

The cost of the basic computer hardware, exclusive of 
typesetting equipment, is about $150,000; this configuration 
could support (if there were no other demands on it) three 
or four typesetters at $15,000 each plus the twenty typists 
needed to keep the typesetters running. Realistically, two 
operators and a programmer would also be required. Amor
tizing the hardware (including three typesetters) over four 
years and 21 days per month makes a cost per day of $200 
for equipment. The maintenance contract for the computer 
equipment costs about'$60 per day. The Western Electric 
Company charges a one-time software license fee of $22,-
000 for the UNIX software, including typesetting programs; 
amortized over four years, this amounts to about $20 per 
day. Personnel costs are of course highly variable. The 
following table shows estimated monthly salaries per per
son, mUltiplied by a factor of 1.5 to allow for overhead and 
divided on the basis of 21 working days per month. 

Item Cost/day 
Compu ter hardware $200 
Computer maintenance 60 
Computer software 20 
20 typists (S850/mo) 1200 
2 operators (S800/mo) 110 
1 programmer (S2000/mo) 140 
4 proofreaders (S11 OO/mo) 300 
Supplies, etc. 50 
Total per day $2080 

Since this arrangement produces about 200 finished pages 
per day, the cost per camera-ready page is about $10. This 
does not include copy-editing or the handling of figures. If 
overhead costs were taken as equal to basic salary, so that 
a factor of 2.0 replaced 1.5 in the calculations for the table, 
the cost per page would come out at $14 instead of $10. 

Quoted costs of conventional operations vary widely. In 
all the figures below the date is given after the price; the 
UNIX costs, of course, are 1976 prices. APS itself quotes 
$40 per page for monotype (1970) and $29 per page for 
typewriter composition (1972) including iIlustrations. 5 Other 
quotes are $32 per WOO-word page for AlP (1973) and $28 
per WOO-word page for ASCE (1973) for similar typewriter 
composition methods; some of the differences in costs are 
explained by the fact that AlP expects text to cost $25 per 
1000 words while mathematics costs $65 per 1000 words, 
and the various journals differ in mathematical content. 6 

The IEEE also reports a difference of $18 per page between 
mathematical and nonmathematical journals (1973).7 A large 



Computer Typesetting of Technical Journals on UNIX 887 

survey reported "editorial" costs of $29 and $26 per page 
(1975) for two groups of 20 journals publishing about 40,000 
pages per year, but exactly what is covered by this is 
unclear, especially as one group reported 20 percent of its 
costs as "remainder" while the other reported 5 percent. 8 

A very low cost quote was given by SAE at $10.50 per page 
composed (1973) although this is not for a complete journal 
but rather for individual article publication. They itemize 
editing and proofreading separately at another $1.50 per 
page. 9 

Perhaps the most useful summary is to note that many 
sources agree that a typist can be expected to produce 
about 1000 pages per year or four pages per day with 
conventional typewriter composition. 1

0,11 Our typist, at half 
an hour per page, could easily do 2500 pages per year, 
which exceeds even the best typists working with conven
tional equipment. 

The small scale of the UNIX system makes it very 
adaptable. An operation with fewer typists and pages than 
the one we have sketched, for example, would not have 
proportionally higher costs, since the majority of the costs 
are manual and not tied to the computer installation. A half
size (or ten-typist) shop would still operate at about $12 per 
page or so. Furthermore, the UNIX system is general
purpose, and a use might well be found for the surplus 
computer capacity. (The American Physical Society is 
currently installing a UNIX system which will be used for 
both typesetting and editorial management functions.) In 
this case even a two or three typist operation would be 
reasonable, as only the typesetter costs would have to be 
covered in full by the printing operation. 

On the other hand, costs cannot be significantly reduced 
by enlarging the computer system. Most of the cost is in 
typists' salaries, and even a 50 percent reduction in the 
hardware costs would provide at most a 5 percent saving 
per page. In addition, a larger typesetter would involve 
substantial (perhaps a person-year) software costs to revise 
the formatter. Further development, instead, should em
phasize additional aids to the input typists. In particular, we 
have no way on our hardware of handling drawings or 
fi~Uf'e ~tem". 

CONCLUSIONS 

Computerized typesetting of technical material is faster 
than typewriter composition, because it mechanizes those 
parts of the typing job which most slow down the typist. In 
particular, the effort to layout complicated equations and 
tables is essentially eliminated, as is the need for inserting 
and removing keys for special characters. 

If the experiment were to be continued, some of our 
operations could be improved. In particular, inadequate 
communication with APS before the experiment caused 
some confusion on our part about their copy-editing con
ventions and format rules; this in tum led to extra editing 
time. Additional training of our typist in the use of our text 
editor would have been desirable; the process of making 
changes was not as efficient as that of initial typing. 

Similarly, we are not equipped or staffed for large scale 
proofreading operations, and a production shop would 
undoubtedly have proofread more accurately with fewer 
delays than we did. Finally, the layout of figures still 
requires occasional manual intervention; these programs 
could be further improved. In particular, the program 
works well on text with relatively few figures or very wide 
equations. More than four figures per page, in fact, cannot 
be done with APS style rules obeyed, and the program is 
likely to produce unattractive results in this case. 

The present system, however, has many advantages. In 
addition to the basic demonstration of feasibility and eco
nomic attractiveness, there are obvious side benefits of 
computerized composition. The text is available in ma
chine-readable form for secondary services like indexing, 
information banks, or later publication via computer-gener
ated microfilm. Additional uses of a machine-readable file 
will certainly appear. 

The UNIX system also contains several examples of 
computer aids not found in ordinary printing operations. 
Two different spelling error checking programs are avail
able; one operates by letter patterns and one by reference 
to a dictionary. The syntax of the commands to layout 
equations and pages can be checked automatically. To 
determine the number of column inches required for each 
article we had a special layout program which went through 
the steps required for setting galleys, although no printing 
was actually done. Many other programs for text handling 
are also available: for example, it is easy to scan mUltiple 
files for occurrences of particular words. 

The quality of the output is higher than with typewriter 
composition. The copy is camera-ready, except for figures. 
Pages rather than galleys are produced, including complete 
header and footer lines. The output is attractive, with more 
fonts than are economic with a typewriter. Right-justified 
margins are available if desired. Recently many scientific 
journals have lowered their typographical standards to 
reduce costs; computers may make this unnecessary. 

Copy-editing costs should also be reduced by a com
puter-based system. Changes are easier to make; presently 
C'~ ... erl!~ tend t~ mane reprti~.re change!; :::t ~e~::h point 
in a manuscript whereas computer editors can easily change 
all instances at once. It is also easy to number footnotes 
and equations automatically if desired. Finally, as computer 
editing systems spread, and more and more authors are able 
to provide the original manuscript in machine-readable form 
if desired, copy-editing can be done entirely by the use of a 
computer editor. 

We conclude, finally, that a UNIX-based system would 
be an appropriate way now for a small scientific journal, 
using a reasonably simple typographic style, to compose its 
papers. It would also leave a publishing company in an 
excellent position to take advantage of future improvements 
in computing systems. 

ACKNOWLEDGMENTS 

We must thank Ms. Scrocca, whose typing is the basis of 
this research; J. F. Ossanna, who wrote the typesetting 



888 National Computer Conference, 1977 

program troff and modified it at our request; and the 
editorial staff of the American Physical Society, which 
supplied the material. Without them none of this work 
could have been accomplished. 

REFERENCES 

I. Thompson, K. and D.M. Ritchie, "The UNIX Time-Sharing System," 
Comm. ACM Vol. 17, pp. 365-375, 1974. 

2. Ossanna, J. F. Troff User's Manual, Bell Laboratories internal memo
randum. 

3. Kernighan, B. W. and L. L. Cherry, "A System for Typesetting 
Mathematics," Comm. ACM, Vol. 18, pp. 151-157, 1975. 

4. Lesk, M. E. Tbl-A Program for Formatting Tables, Bell Laboratories 
internai memorandum., i 976. 

5. Marks, R. H. and A. W. K. Metzner, "Typewriter Composition Cuts 
Journal Costs, Speeds Publication," IEEE Transactions on Professional 
Communication, PC-16, pp. 73-79, 174, 1973. 

6. Herschmann, A. and P. Parisi in a discussion session, IEEE Transac
tions on Professional Communication, PC-16, p. 165, 1973. 

7. Gannett, W., ibid. 
8. Sanders, J. W., C. M. B. Anderson, and C. D. Hecht, Scientific 

Publication Systems: An analysis of past, present and future methods of 
scientific communication, Toronto University report to the National 
Science Foundation, NTIS number PB 242 259, June 1975. 

9. Staiger, D. L. "Separate Article Distribution as an Alternate to Journal 
Publication," IEEE Transactions on Professional Communication, PC·16, 
pp. 107-108, 177, 1973. 

10. Marks and Metzner, loco cit. Also confirmed by conversations with the 
American Physical Society. 

11. Staiger, D. L. In-House Photo Composition of Technical Manuscripts 
for Mid-Range (2000-5000) Society Publications, presented at the 
CESSE Annuai Meeiing, Washingion, D. c., i975. 



The computer in manufacturing-Reduction 
of scrap by computer monitoring 

by P. E. GOBER 
Westinghouse Semiconductor Division 
Youngwood, Pennsylvania 

ABSTRACT 

A computer furnace monitoring system was implemented as 
the first stage of a computer process monitoring system 
designed to provide better control of the process used to 
manufacture high power semiconductor devices. The pur
pose of the furnace monitoring system is to reduce scrap 
resulting from furnace malfunctions that are otherwise not 
detected in time to salvage the product. The system also 
improves reproducibility by maintaining a tight control of 
the elevated furnace temperatures (±2°C at 1250°C). Addi
tional results of the system are greatly improved operation 
visibility during the run, increased furnace utilization as a 
result of computer assisted scheduling, and improved corre
lation of results among different furnaces. 

The@ 2500 computer provides the process 110 necessary 
to monitor furnace temperatures as measured by thermo
couples, sound alarms when deviations from the spec 
occur, store information for later analysis, plot furnace 
behavior, and assist in scheduling by calculating cycle 
times. It also provides the furnace operators with the ability 
to quickly and accurately determine furnace temperature at 
any time during the cycle. The real time foregroundl 
background operating system of computer, based on a strict 
priority system, allows data analysis. p'ro~r~ms ~o ~n with
lJut msturbingIlle re~ll tIme monitoring of physicai parame
ters such as temperature. 

The furnace operator's interface with the computer, a set 
of related programs accessed from a teletype by a single 
command, is also described. The system is user-oriented, 
and employs a conversational question and answer format 
that guides the operator through the various procedures. 
The system also incorporates error detection and correction 
methods to prevent mistakes from improperly entered data. 

The computer is an effective tool for the reduction of cost 
resulting from scrap. It also provides the basis for an 
integrated monitoring system encompassing the entire man
ufacturing process. 

INTRODUCTION 

The computer has long been used by industry to handle 
payrolls, accounting, and various records, and by scientists 

889 

for mathematical analysis, modeling, and simulation. A less 
expiored area, however, is that of the computer as a 
manufacturing tool: the computer can play an important 
role in day-to-day operations in a manufacturing environ
ment, where features such as memory technology, innova
tive architecture, and language syntax must pale in signifi
cance when compared to the manufacturing user's concern 
with the computer's effect on his product quality, amount 
and cost of defective material produced, and consequences 
of missing a production schedule. 

The Westinghouse Semiconductor Division in Y oung
wood, Pennsylvania, is such a manufacturing facility. The 
production of high power semiconductor devices involves 
processing raw silicon in rod form through several diffu
sion, alloy, metallization, and passivation operations before 
the fabrication is complete, and the device is tested, pack
aged, and ready for use in its final form. The most ad
vanced technology, however, cannot make a good product 
unless the many parameters which define the process recipe 
are accurately measured and controlled. Parameters such as 
furnace temperatures, gas flows, belt speeds, and humidity 
are critical to the manufacturing process, and even the most 
sophisticated gauges are useless unless someone can con
tinuously observe them. 

.t\Uero.o w.v.es'i~atiA~,.ie¥.e&:.al·-u~~e6. .. ~·we ·~49 
purchase a minicomputer to help reduce D.A. (defective 
apparatus) by monitoring some of these vital parameters. 
The monitoring of diffusion furnace temperatures was se
lected as the initial application because of relative ease of 
implementation (reading voltages generated by thermocou
ples) and the large potential return on investment. The 
furnace monitoring system would be the first step in estab
lishing a real-time and historical data base of product 
characteristics and performance. Other important parame
ters, such as gas flows, could be added to the system, and 
the multi-tasking capability of the computer chosen would 
permit the execution of data analysis and design programs 
in a background model while real-time monitoring contin
ued in the foreground. 

The computer selected was a Westinghouse @ 2500. 
Important features include well-developed process-oriented 
hardware that can be fully controlled under a high level 
language (FORTRAN IV), and a multitasking operating 



890 National Computer Conference, 1977 

system which provides the foreground/background capabil
ity mentioned above. The computer was installed in Octo
ber, 1974, and has been expanded to its present configura
tion of 64K core, 3.75 million (l6-bit) words disk storage, 
incremental plotter, line printer, card reader, CRT com
puter console, TTY furnace system console, and process 
hardware consisting of a 40-point-per-second analog input 
system, external interrupt system, contact closure input 
system, and contact closure output system. Approximately 
16K of core is reserved for the furnace monitoring soft
ware, and the computer operating system occupies another 
12K. The rest of core is available for other real time and 
batch programs. The computer is capable of running 1,024 
tasks on a priority basis. 

The name chosen for the computer, "DARIN," siands 
for "Defective Apparatus Reduction and Information," and 
reflects the computer's purpose: D.A. reduction and im
proved product by providing information that was other
wise either unavailable or difficult to obtain. 

THE DIFFUSION PROCESS 

The first step of the manufacturing process is the diffu
sion of dopants into the sliced silicon to impart the desired 
electrical characteristics. From three to six separate diffu
sion operations are required for each device, and errors in 
this step of the process are usually irreversible. 

Diffusion operations are carried out in large furnaces at 
elevated. temperatures (1100 to I 250°C). The temperature 
must be maintained within a tolerance of ±2.5°C for ex
tended periods (two to 40 hours). This soak cycle is 
followed by a six hour slow cool to quench the diffusion. 
Each furnace is equipped with a timer set to maintain the 
peak temperature for the prescribed time and then switch 
over to a programmed slow cool. If the timer or furnace 
controller malfunctions, the junction may be driven too 
deep. A run that is damaged in this manner cannot be 
salvaged. Since a run contains from 200 to 1000 slices, such 
furnace malfunctions are very costly, not only in terms of 
scrap generated, but also in production time lost when a 
replacement run must be started from the beginning of the 
four to six week process. 

A closely related problem is that of scheduling the 
furnaces. It is very difficult for the foreman to keep track of 
the conditions of 51 furnaces, used for 11 processes, each 
with different behavior characteristics, and very few set for 
the same time cycles. 

COMPUTER IMPLEMENTATION 

Computer monitoring was instituted for half the furnaces 
in June, 1975. It has since been expanded to include all the 
furnaces. The system was designed not only to flag furnace 
malfunctions, but also to be a useful tool for the furnace 
operators. 

As an example, one of the simplest features of the 
system, that of temperature reading, has proven extremely 

valuable. Before the computer was installed, furnace tem
peratures were checked by a slow and often inaccurate 
procedure: a thermocouple, attached to a chart recorder, 
was inserted into the center zone of the furnace, and 
allowed to stabilize for approximately 15 minutes, before 
the temperature was read as a voltage, which was then 
converted to degrees by a table. This method could only be 
used with empty furnaces; there was no way to read the 
furnace temperature while a run was loaded in the furnace. 

In addition, the chart recorders, although calibrated 
weekly, were prone to drift, and could drift as much as 
15°C without detection. Such errors were unknowingly 
passed on to the furnaces profiled with those recorders, and 
were an additional source of D.A. 

SYSTEM DESCRIPTION 

The furnace monitoring system is centered around a set 
of tables occupying approximately one-fifth of the core 
reserved for the system. The tables describe the real time 
state of each furnace, as well as define temperature specifi
cations and furnace characteristics. Each time a furnace is 
loaded, the tables are updated to reflect cycle information 
such as the times the run should enter cool down, be 
unloaded, and a projection of the time the furnace will be 
reheated and ready for a new run. 

The system is controlled by a master scheduling routine, 
MAST, which references the computer's internal 60 Hz 
clock and issues calls to tasks performing the following 
functions: 

I. Calibrate analog-to-digital conversion system every 15 
seconds. 

2. Read and store furnace temperatures every 15 sec-
onds. 

3. Compare temperatures to specs every 60 seconds. 
4. Record out-of-spec data on disk every 60 seconds. 
5. Sound alarms as they occur. 

TEMPERATURE MEASUREMENT 

Furnace temperatures are measured with a type S (Plati
numlPlatinum-lO% Rhodium) thermocouple located on the 
outside of the liner of each furnace. This configuration 
provides accurate detection of temperature behavior 
(±0.5°C), minimizes thermocouple exposure to corrosive 
elements in the furnace, and does not interfere with furnace 
loading or unloading. 

The thermocouples are connected to the computer by 
screw terminals in a thermally insulated compartment used 
as a cold junction box (CJB). A resistance temperature 
detector (RTD) mounted within the CJB measures room 
temperature. This temperature is converted to millivolts 
and is added to the millivolt measurement of the type S 
thermocouple before the thermocouple measurement is 
converted to degrees centigrade. 

The relationship between temperature and voltage for a 



type S thermocouple is linear in the ranges 0°_30°C and 
lOOO°C to 1300°C. The diffusion furnaces have soak temper
atures between 1135°C and 1250°C. Therefore, an equation 
of the form Y=mX+b can be used to convert room 
temperature, as measured by the RTD, to millivolts on a 
type S thermocouple scale. A second equation of the same 
form is used to convert millivolts, as measured by the 
thermocouple with reference to the 0° established by the 
RTD, to degrees centigrade. The equations are detailed 
below. 

RTdC=(RTDmV/O.7114)+25 (1) 

RTm V =(RTdC*O.OO6l) -0.01 (2) 

FTdC=(FTmV+RTmV)*83.25 +205.2 (3) 

RTdC = Room temperature in °C 
RTDmV =(milli-) Voltage detected by RTD 
RTm V = Room temperature in millivolts (for type S 

thermocouple) 
FTdC =Furnace temperature in °C 
FTm V = Furnace temperature measured in millivolts 

(type S thermocouple) 

The constants in equation (1) are specific to the Model S4 
RTD used. The constants in equations (2) and (3) are 
derived from a least squares fit of temperature versus 
voltage, using tables from the National Bureau of Standards 
(1971). 

Although temperature readings are constantly updated, 
they are only compared to spec temperatures while the 
furnace is loaded. A set of flags informs the comparison 
program, CHEK, of the status of each furnace and, there
fore, of the action to be taken. The possible furnace states 
are: 

1. Empty 
2. Shut down (for maintenance or cleaning) 
3. Loaded, in soak cycle, and in spec 
4. Loaded, in cool down cycle, and in spec 
5. Ready to be unloaded 
6: ixmdedanct 'ont of spec 

CHEK examines the status flag of each furnace and then 
performs the appropriate check. No check is made for 
conditions 1 and 2. Furnaces in soak (3) are checked for 
temperature within ±2.5°C of spec, for time to tum off gas 
flows, and for the beginning of cool down. Furnaces in cool 
(4) are monitored to maintain a cooling rate of at least one 
degree C per minute until 800° is reached. 

When a furnace goes out of spec (6), a timer is started. If 
it returns to spec within five minutes, normal monitoring 
continues; if it remains out of spec for five minutes, an 
alarm is sounded and a message is printed on the TTY, 
notifying the furnace operators of the furnace, its tempera
ture, and the spec. If corrective action does not bring the 
furnace back in spec within ten minutes, the alarm is rung 
again. The alarm is also sounded if a furnace does not enter 
the cool down cycle within ten minutes of the prescribed 
time. 

The Computer in Manufacturing 891 

While a furnace is out of spec, the data is logged on a 
disk file once a minute. This provides a record of furnace 
behavior that can be used to determine corrective action, 
interpret results, or study furnace characteristics. Any 
furnace, regardless of condition, can be flagged to log data 
in this manner, providing a means of studying reheat cycles 
and recovery times. This data is summarized once a day in 
a table showing furnace number, the time it went out of 
spec, how long it remained out, the spec temperature, and 
the minimum, maximum, and average temperature during 
that period. If more detail is needed, the data can be printed 
as a simple chronological list or displayed on the x-y plotter 
as a graph of temperature versus time. 

FURNACE OPERATOR'S INTERFACE 

The furnace operators interact with the computer through 
a conversational task, CONI, which runs on the TTY at the 
operator's loading station. The operator specifies the de
sired action, such as loading a run, and the task calls in the 
appropriate program or subroutine. All interaction is in the 
form of questions from the computer and answers from the 
operator. Error detection and correction methods are in
cluded in the programs. The programs were designed to be 
user-oriented, and to make the computer a useful tool for 
the furnace operators, requiring a minimum of operator 
response. 

The operators use the computer to load and unload runs, 
to read furnace temperatures, and to check furnace availa
bility. The alarms and printed messages alert them to 
problems and help them determine the necessary corrective 
action. Sample interactions are shown in Figures 1 and 2. 

TYPE OPTION NO. 
03 

PROCESS? 
PHOS 

FURNACE? 
04 
"''f~ l'f1MP-~ RPEf'M.l .... 

o 
PHOS-DEP TIME? 

2.0 
DRIVE TIME? 

5.9 

VERIFY DATA 

FURNACE = 4 
8 41 

SOAK TIME = 7 53 PROCESS = PHOS 
STARTED AT 22 
COOLOOWN AT 
RUN ENDS 
FCE A V AILABLE 

(DATE-HR-MIN) 22.-16.-35. 
(DATE-HR-MIN) 22-22-35 
(DATE-HR-MIN) 22-23--35 

PHOS OFF AT (DATE-HR-MIN) 22-10---41 

IF DATA IS CORRECT, TYPE 0 TO START RUN. 
IF NOT, TYPE 1 TO RE-ENTER DATA. 

o 
BYE 

Figure 1 



892 National Computer Conference, 1977 

TIME TO TURN OFF WATER IN FURNACE 34 CLOCK = 8:44 

RUN IN FURNACE 34 IS DONE-CLOCK = 9: 05 

TYPE OPTION NO. 
04 

FURNACE? 
34 

RUN ENDED IN FURNACE 34 AT 9:5 
FURNACE? 

00 
BYE 

TYPE OPTION NO. 
06 

26 
FURNACE 26 READS 1249.5 

FURNACE? 
27 

FURNACE 27 READS 1251.0 

FURNACE? 
24 

FURNACE 24 READS 1135.5 

FURNACE? 
34 

FURNACE 34 READS 1150.1 

FURNACE? 
47 

FURNACE 47 READS 1100.0 

FURNACE? 
48 

FURNACE 48 READS 1104.6 

FURNACE? 
00 

BYE 

Figure 2 

RESULTS 

The results of the furnace monitoring system have ex
ceeded the initial goal of reducing D.A. by catching fur
naces that fail to go into cool. It was projected that, to be 
cost-effective, the computer should catch at least one 
furnace malfunction of this type a month. The actual 
savings have been 3 to 4 furnace loads a month, a consider
able amount of product. The computer also provides instan
taneous and accurate temperature readings, which not only 
saves time over the previous manual method, but also 
enables the operators to determine temperatures at any 
stage in the furnace cycle instead of only while the furnace 
is empty. The operators and foreman are able to obtain up
to-date information on furnace status, including projections 
of next available furnace for a given process. Sample 
displays of this information are shown in Figures 3 and 4. 

TYPE OPTION NO. 
05 

BY FURNACES = 0 BY OPERATIONS = I 

PROCESS? 
PHOS 

PROC. = PHOS 
FURNACE NO. NOW 

5 x 
6 
7 
8 
9 

10 
4 

...... 
J~ 

25 
28 
31 
33 
41 
50 
35 

BYE 

Figure 3 

. SPEC = 1205.00 
LATER OUT OF SPEC. 

23- 5:50 
22-21 :54 
22-21 :52 
22-22:42 

22-23:35 

22-16:42 
22-14: 28 
19- 8:36 

22-15: 10 
22-12:35 
0- 0: 0 

x 

x 

The computer's ability to track furnace behavior has 
been used to study the reheat time of furnaces, which 
resulted in increasing throughput by 3-5 hours in some 
cases, and also provides data used to determine which 
furnaces should be replaced. 

Potential benefits are even greater. The computer pro
vides more extensive and current information on the fur
nace system than was available before. We are currently 
expanding the system to include formation of a data base 
that will be used to correlate furnace behavior, device 
characteristics determined by the diffusion operations, and 
performance at final test. Data is also being collected on the 
frequency and type of maintenance required by each fur
nace, with the goal of scheduling regular preventive mainte
nance. Work-in-process inventory in the diffusion area is 
also being tracked by the computer, and provides the 
foreman with more current information than was obtainable 
with the previous cumbersome handcount method. 

CONCLUSIONS 

The small computer has become a valuable production tool 
in the manufacturing environment of Youngwood. The 
improved process control, combined with the computer's 
versatility in the areas of data gathering and analysis, offer 
almost unlimited potential. In order to be effective, how
ever, such a system must be designed to fit the manufactur
ing process. It must be specific enough to meet the peculiar 
needs of each application, yet the programs must be struc
tured to allow for changes in the environment; in our 
system, a furnace may be converted from one process to 
another, experimental runs may require a non-standard 
temperature, etc. 



FURN 

1 
2 

4 
5 
6 
7 
8 
9 

10 
II 
12 
l3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
~ 

49 
50 
51 
52 
53 
54 
55 

FLAG 

4 
4 

-1 
o 
4 
o 
7 
7 
7 
7 
7 
7 
o 
o 
o 
o 
o 
o 
7 
o 

4 
4 
o 

1 
o 
o 

7 
o 
7 
4 
1 
7 

7 
o 
o 
u 

o 
o 
4 
o 
7 
7 

LODTYP 

DRIVE 
STMDRI 
ALGABN 
PROS 
PROS 
PROS 
PROS 

PROS 

ALSEAL 

PROS 
DRIVE 
DRIVE 

DRIVE 
DRIVE 
PROS 

OXIDAT 

PDPDRI 
PDPDRI 

PROS 
PDPDRI 
OXIDAT 
OXIDAT 

DRIVE 

PROS 

TEMP 

1150.32 
1150.05 
1250.59 
944.29 
693.01 

1203.51 
777.09 

1205.54 
1093.82 
924.51 
682.64 

-192.04 
221.04 
824.68 
800.63 

-541.31 
1249.14 
1249.26 
1249.90 
1250.04 
1253.91 
1002.97 
329.20 

1136.97 
1205.05 
1193.42 
1203.64 
830.34 

1250.05 
1249.72 
1204.59 
1249.91 
1253.61 
1149.30 
1126.65 
950.94 

1218.97 
1245.37 
1250.18 
226.l3 

1204.72 
1253.84 
1150.29 
1149.86 
255,03 

1251.06 
1076.47 
lUQ..82 
1250.41 
933.63 

1250.06 
811.90 

1251.06 
839.22 
825.80 

SPEC 

1150.00 
1150.00 
1250.00 
1121.00 
954.00 

1205.00 
917.00 

0.00 
1162.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1250.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1205.00 
1227.00 
1228.00 

0.00 
1250.00 
1250.00 
1205.00 

0.00 
0.00 

1150.00 
0.00 
0.00 
0.00 

1251.00 
1252.00 

0.00 
1205.00 
1252.00 
1150.00 
1150.00 

0.00 
0.00 
0.00 
0.00 

1250.00 
0.00 
0.00 

1063.00 
0.00 
0.00 
0.00 

Most important, the system must be oriented toward the 
user-in this case, hourly employees, supervisors, and 
engineers who are not computer operators or programmers. 
The conversational question-and-answer method has been 
very successful at Youngwood, allowing the user to "con
verse" with the computer in familiar terms. The user's 
feedback should also be used to improve the system. For 
example, initially the computer only alerted operators to 

COOL ROUR 

Figure 4 

23 18 
23 16 
24 1 
23 13 
23 10 
23 15 
23 7 
o 0 

23 14 
o 0 
o 0 
o 0 
o 0 
o 
o 
o 

22 
o 
o 
o 
o 
o 
o 
o 

23 
23 
23 
o 

23 
23 
23 
o 
o 

23 
o 
o 
o 

23 
23 
o 

23 
24 
23 
23 
o 
o 
o 
o 

23 
o 
o 

23 
o 
o 
o 

o 
o 
o 

14 
o 
o 
o 
o 
o 
o 
o 

18 
14 
14 
o 

17 
17 
21 
o 
o 

19 
o 
o 
o 

15 
15 
o 

19 
6 

19 
19 
o 
o 
o 
o 

15 
o 
o 

12 
o 
o 
o 

The Computer in Manufacturing 893 

MIN 

o 
15 
50 
23 
3 
9 

59 
o 

11 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

35 
34 
35 
o 

44 
46 
35 
o 
o 

15 
o 
o 
o 
8 

23 
o 

23 
19 
30 
31 
o 
o 
o 
o 
5 
o 
o 

14 
o 
o 
o 

DONE ROUR 

24 0 
23 22 
24 7 
23 19 
23 16 
23 21 
23 13 
o 0 

23 20 
o 0 
o 0 
o 0 
o 0 
o 
o 
o 

22 
o 
o 
o 
o 
o 
o 
o 

24 
23 
23 
o 

23 
23 
24 
o 
o 

23 
o 
o 
o 

23 
23 
o 

24 
24 
23 
23 
o 
o 
o 
o 

23 
o 
o 

23 
o 
o 
o 

o 
o 
o 

20 
o 
o 
o 
o 
o 
o 
o 
o 

20 
20 
o 

23 
23 

3 
o 
o 

19 
o 
o 
o 

21 
21 
o 

12 
19 
19 
o 
o 
() 

o 
21 

o 
o 

18 
o 
o 
o 

MIN 

o 
15 
50 
23 

3 
9 

59 
o 

11 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

35 
34 
35 
o 

44 
46 
35 
o 
o 

15 
o 
o 
o 
8 

23 
o 

23 
19 
30 
31 
o 
o 
o 
o 
:5 
o 
o 

14 
o 
o 
o 

ALRM 

F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 

problems, such as a temperature out of spec. After becom
ing familiar with the computer and with entering data on the 
TTY, the operators asked if the computer would be able to 
somehow print a message when it was time for them to tum 
off gas flows. Such a modification of the original system 
was well worth the program changes because it contributed 
not only to the objective of reducing D.A. in an area that 
had not been originally considered, but also made the 



894 National Computer Conference, 1977 

computer a more useful tool, not just a "glorified thermom
eter" or an expensive new gadget that is more trouble than 
it is worth. To be truly effective, as a manufacturing tool, 
the computer system must be carefully designed, and 
simplicity of interface with the end user, regardless of his 
background, must not be dismissed as an unnecessary frill. 

The furnace monitoring system was a test case for the 
computer at the Semiconductor Division. It has been suc
cessful, and the experience gained in solving the problems 

of implementation is being applied to the expansion of the 
system to include monitoring of other processes. The 
computer is becoming even more important as a manufac
turing tool in areas not originally considered, such as work
in-process inventory and device design, and we are looking 
forward to continued expansion into other areas that affect 
the daily dollars and cents concerns of the manufacturing 
plant. 



A methodology for multi-criteria 
information system design* 

by JOHN S. CHANDLER and THOMAS G. DELUTIS 
The Ohio State University 
Columbus, Ohio 

ABSTRACT 

The design dilemma faced by the designer is to satisfy a set 
of conflicting user demands and resolve a set of conflicting 
resource requirements concurrently. In light of the com
plexity of modern systems, it is assumed that good system 
design need only produce satisfactory performance for both 
criteria. Current evaluative techniques, however, concen
trate on either the user criterion or the system criterion 
aspect of the total design problem, but not both. A method
ology has been developed that establishes a formal liaison 
between the evaluation of user goals as a function of system 
activity and the evaluation of resource utilization as a 
function of user demand, thereby creating a design/evalua
tion process that encompasses both criteria. The methodol
ogy employs three stages in an iterative manner to produce 
a "satisfactory" design. The IPSS simulator models and 
measures system activity, mUltiple goal programming eval
uates both user and system goals, and heuristic procedures 
determine design modifications to improve performance. A 
functional description of the methodology and an example 
of its use will be presented. 

INTRODUCTION 

In March of 1973, ACM and NBS sponsored a Workshop** 
on computer performance evaluation. One of the major 
results of that Workshop was a consensus that there have 
been two separate approaches to the evaluation of informa
tion systems performance-one which focuses on the com
puter system domain and the other whose attention is 
directed at the application system (user) domain. Each have 
their own goals and measures: the computer system domain 
measures are based on resource queueing and utilization 
statistics and the user domain is evaluated through the 
performance of requested services. Measures such as 

* This research is being conducted with the support of The National Science 
Foundation, Grant No. SIS75-2164S. 
** This was one in a series of Workshops sponsored jointly by ACM and 
NBS to examine the major issues involving computers. Performance evalua
tion was chosen as the topic of this Workshop because of its significant 
impact on computer usage. A summary of the conclusions appears in 
Reference I. 

895 

throughput and response time are common for the latter. 
The \Vorkshop also concluded that any performance analy
ses "should recognize both the costs of a computer installa
tion and the needs of users for service." 

The complexity of the design problem for modern com
puter based information systems has increased significantly 
over its predecessors due to: 

a. the servicing of an expanding range of user or uses 
with corresponding diverse performance goals and 
resource requirements, and 

b. the dynamic and unpredictable behavior of the system 
as a function of design decisions and load mix. 

Thus, it is quite possible to improve the performance of the 
system with respect to one or more users at the expense of 
others. Likewise, because system resources are used by 
different users, improving the performance characteristics 
of one or more resources for the benefit of specific users 
may have an overall detrimental effect on performance. The 
problem presented to the designer is to configure a system 
which satisfies the user criterion while achieving system 
resource related performance criteria. 

A computer based information processing system can be 
vre~~::'!s~ !YT!'!b!otic rebtionsirip benJteen the sys!'ei!1's' 
users and its hardware, software and data resources. Ide
ally, the system will perform "optimally" when it achieves 
its user oriented objectives within a minimum cost system. 
However, optimal solutions are seldom achieved when 
systems are complex, ill defined or constrained for reasons 
outside the control of the designer, and thus, the designer 
usually settles for a satisfactorily behaving system. Hope
fully, systematic procedures are employed to achieve sys
tem configurations which concurrently meet the user objec
tives while obtaining efficient utilization of its resources. 
Current evaluative technologies focus on only one criterion 
in the system design equation, either the user or the 
system's resource performance. The ability to simultane
ously ascertain the impact of resource performance on user 
goals or vice versa is not readily achievable through these 
methodologies. The purpose of this paper is to describe a 
methodology which establishes a formal liaison between the 
evaluation of user goals as a function of system behavior 



896 National Computer Conference, 1977 

and the analysis of resource performance as a function of 
user activity. 

User oriented analyses with objective functions based on 
response time, throughput, and cost have been (and are 
continuing to be) reported in the literature. Most fre
quently, analytic approaches use queueing models as their 
basis (References 2-4 are representative of this type of 
analysis). Due to the necessity to maintain tractable 
models, many simplifications are required for a model's 
analytical solution. SimulatiQn models have also been ap
plied to user oriented analysis. 5,6 Unfortunately, these 
models yield only average and/or aggregate measures of 
system response. As a result of these simplifications, the 
analyses produced by both of the approaches fail in many 
cases to identify the relationship between users and re
sources. Therefore, they are suspect when used to predict 
the impact on system performances of modifying the cur
rent environment. 

Alternatively, performance analyses can be made from 
the system's standpoint, treating the user and his goals in 
the aggregate. The most common approach is a subsystem 
study, where a particular part of the information system 
complex is isolated, with the subsystem user(s) represented 
by a stochastic generator, both analytic and simulative. The 
most emphasized areas of research has been the 110 sub
system7

-
HI and CPU utilization. 11

-
13 The problem with this 

level of evaluation is that, although providing valuable local 
intuitive insight, these models rarely relate to the ultimate 
information system user, and, therefore, do not provide 
realistic insight into global performance. 

Examinations of complete systems have also been made. 
Exhaustive hardware/software measurements have been 
analyzed by Gonzales and Cantrell 14,15 while simulation 
models, including an aggregate user component, have been 
built by Reeves and Pooch, Norland, and Lum. 16 - IS Al
though results of the evaluations include resource utiliza
tion statistics and user oriented measures such as response 
time, there is little attempt in these models to relate 
particular resource usage to the effort on user goal attain
ment. (Two exceptions are Lindsay's study of the 
KRONOS systeml9 and Hall's data base investigations.2~ 
But from practical experience it is evident that there is 
indeed a relationship between user goals and resource 
usage. In fact, Buzen21 has recently proposed some funda
mental laws for computer performance which relate re
source activity to global system/user measures such as 
response time and throughput. 

It is assumed that the objective of good system design is 
to satisfy both performance related criteria. However, in 
light of the complexity of modern systems, many design 
decisions tend to be made without proper supportive evi
dence on performance. The crux of the problem is to 
establish a causal relationship between user goal attainment 
and system resource expenditures. The methodology to be 
discussed has been designed to establish such a liaison and 
will be shown to allow for the collection of heretofore hard 
to obtain evaluative information. The methodology meas
ures the impact of individual user classes on internal system 
performance and identifies system bottlenecks which inhibit 

Stage 1 

Stage 2 

Stage 3 

Ide,1tify 
Performance 
Obj ec ti-"es 

Formulate 
First System 

Evaluate 

-- ~ 
:~ ~oa~J 

r-
I 

Forrr.ulate 
Alternative 

System 

Figure I-Stages in system design process 

-, 

--' 

the attainment of user goals. This is achieved by maintain
ing resource utilization statistics on a user class basis. This 
methodology presents an evaluative framework which is 
capable of eliminating many of the numerous nonsatisfac
tory designs by directing the designer to the most advanta
geous ones. This methodology is an iterative one with each 
iteration involving three separate but integrated stages. 
Figure 1 illustrates the activities for an iteration. Briefly the 
responsibilities for each stage shown in this figure are: 

Stage I: System Evaluation 

This stage is responsible for evaluating the behavior of a 
specific information system model. It does this by associat
ing the hardware, software and data activities belonging to 
a specific design with the system's user activities. The 
outputs of Stage 1 are performance statistics for the re
sources in the aggregate and for their behavior with respect 
to identified users (or uses). To perform this function, the 
IPSS Simulator is employed. t 

t IPSS is a special purpose discrete event simulator whose development was 
conducted with the support of the National Science Foundation, Grant No. 
GN-36622. 



Methodology for Multi-Criteria Information System Design 897 

Stage 2: User Goal Evaluation 

Stage 2 has two purposes. The first is to ascertain whether 
the user goals are being either over or under achieved. The 
second purpose is to determine the "best" set of guidelines 
for altering the current system configuration in order to 
obtain the user goals with minimum penalty for either under 
or over achievement. Multiple goal programming is used for 
this purpose. As will be seen, "best" is a function of the 
assigned penalty coefficients in the goal programming ob
jective function. 

Stage 3: Design Evaluation 

Stage 3 has two functions. The first is to ascertain 
whether or not the current design's performance is satisfac
tory with respect to both the user criteria and the system 
criteria. If the design is not satisfactory, then this stage's 
second goal is to define a new system based upon the 
current design, prior alterations, and the results of the 
Stage 1 and Stage 2 analyses. Heuristic procedures are 
currently employed for Stage 3. 

The focus of this paper is on the Stage 2 formulation and 
its formal liaison to Stage 1. The paper also identifies the 
unique features of IPSS which permit this multi-stage multi-

Users 

" " "" " " r__-----., ". 

"" 

criteria methodology to be achieved. The paper concludes 
with a discussion of the use of the Stage 1 and Stage 2 
results in the Stage 3 heuristics. 

EVALUATIVE REQUIREMENTS 

For the purposes of this methodology, an information 
system is viewed as the sum of its users and their goals, and 
the system's services and their subordinate activities. This 
is illustrated in Figure 2. It is assumed that the system's 
analyst can identify and classify the system's users accord
ing to their service request characteristics and according to 
the performance constraints imposed upon the system (i.e., 
goals) when honoring their requests. It is also assumed that 
the analyst can identify those information system activities 
which are critical to system performance. Obviously, the 
complexity of the problem is increased substantially when a 
system supports diverse users or provides a wide spectrum 
of services. Whether or not the system is complex or 
simple, the criteria for identifying system activities should 
be based upon the sensitivity of the system's performance 
with regard to changes in their behavior. 

Information system services are viewed as being a series 
of distinct yet interconnected activities which are invoked 
during the processing of a stream of user requests for the 

" 
"" " 

Request for 
Service #1 

Measures of the 
System's Attainment 
of User Oriented 

Performance Goals 

S 

y 

S 

T 

E 

M 

L-.....,....-.,.......,.._..I_ 
"" 

Service 03 

Service III 

Services 

Request for 
ServIce Tn 

-""'-.. 

"" " -

I 
I 

I 

""L-__________ ~------~----------------~ 

Service 
Type #1 

Service 
Type 112 

Figure 2-The methodology's view of an information system 



898 National Computer Conference, 1977 

service. Again, Figure 2 illustrates this view of a system. 
Most likely, system activities are aggregations of one or 
more traditional computer system functions that perform 
the following tasks: 

I. request (job) scheduling, 
2. task management, 
3. resource allocation, 
4. secondary storage 110 processing, and 
5. application processing. 

The choice of what constitutes an activity is part of the art 
of performance evaluation, however, a necessary condition 
for their selection is that they be measurable and that these 
measurements distinguish the service rates for separate 
classes of system services. It is also assumed that the role 
of performance measurement is to determine the current 
processing rate for the jth activity with respect to the ith 
service. 

Figure 3 is a schematic of the functional composition of 

Arrival of a 
Request at the Activity 

for Service Type 1 

system activities. Each is viewed as an individual queueing 
system containing one or more priority queues and one or 
more identical servers. Additionally, the performance 
measure for the activity in processing a request type is the 
sum of both the queue performance and service functions of 
the activity. Throughout this paper, the variable Rj(i) is 
employed to identify this performance of activity Aj, with 
respect to Service Sj. It is assumed to be the average of 
performance for all the executions of Aj for Sj. Also 
associated with each activity Aj is the performance factor (3j 
which is interpreted as the scaling factor to be applied to 
the Rj(i) to obtain the level of performance for the jth 
activity which minimizes the goal programming objective 
function. It should be noted that the problem of identifying 
a "good" level of performance for activities, i.e., determin
ing the appropriate values of the Rii)' s is compounded by 
the multiple use of the activity by different and possibly 
conflicting services. Therefore, the modification of an ac
tivity'S processing rate to achieve one goal may be counter
productive to the attainment of another goal. It is on this 

Queue Transit 
Time 

Queue 111 

Quene tl2 I _____________ __ .J 

I~ SYstem/Actirv_i_t_y __ I_n_t_e_r_fa_c_e ______________________________ ~ 
Time to 

Servif!e Request 
R

j 
(1) 

1 

I 
I 
I 

Server 

111 

! 

I-J-, 
: Server I 

I 
I tl2 I 
I I --r--

~ 
~ Completion of the Activity's 

Servicing of the Request 

Figure 3-A conceptual view of an activity 

r--L~ T : Server 
I 
I Service 

I 11M I Time 

I I t 
--J-~ --



Methodology for Multi-Criteria Information System Design 899 

possibility of mUltiple conflicting interactions and goals that 
this methodology is focused. 

FORMULATION OF THE STAOE 2 EVALUATIVE 
PROCEDURE 

Stage 2 is based on an evaluative procedure commonly 
called multiple goal programming (MOP). The procedure 
was first formulated by Charnes and Cooperu in 1961 to 
solve linear programming problems that had conflicting 
constraints. Ijiri23 developed the details of the procedure 
within the framework of mathematical programming. This 
technique has been used to solve problems in the areas of 
strategic management planning such as accounting con
trol,23 advertising-media planning (Charnes and Cooper24), 
and resource allocation. 25 The employment of goa] pro
gramming in conjunction with information system perform
ance evaluation is a new use of the procedure. 

There are three reasons for choosing multiple goal pro
gramming for use in this stage of the methodology. First, 
this approach can evaluate linear and ordinal multiple goal 
situations, both of which are inherent to information sys
tems evaluation. For example, one user class may pay 
twice as much for its service, and, therefore, satisfaction of 
its goals may be worth twice as much as others; a linear 
relation. On the other hand, certain users, such as a critical 
patient monitoring application, may have incomparable 
importance relative to other classes; an ordinal relation. 
Second, mUltiple goal programming produces a solution 
that not only evaluates the total goal situation, but also 
evaluates each goal, individually. One of the purposes of 
this methodology is to determine the critical user classes 
and associated activities. Third, MOP derives the "best" 
design under the given goal constraints. Other design ap
proaches such as weighting, sequential elimination, and 
spatial proximity,26 are based on selecting the "best" 
design from a finite set of alternatives. The purpose of the 
overall methodology, however, is to design an appropriate 
system to satisfy the user and resource constraints. The 
~tandard fQrroul~tiQn"Qf .~ P11.!Jtjpl.e gO,alprogr(l.rnTP-!!1g pr9b-
lem is: 

[A] Minimize 
Subject to 
where 

P'D 
A'X+D=O 

A =a matrix of technological coefficients 
which can be thought of as the rates at 
which the ith service uses the jth re
source 

X=the array of resulting system resource 
allocation levels 

O=the array of service goals 
D=the array of discrepancies from these 

goals 
P=the array of penalties associated with 

the discrepancies in D 

and where the objective function is to minimize the product 

of the discrepancies and their associated penalties. The 
solution to a multiple goal programming problem represents 
the best set of levels for the resource allocation vector X 
such that the objective function is minimized. The remain
der of this section discusses the specific formulation for the 
Stage 2 component of the methodology. 

Figure 4 illustrates the relationship between MOP, the 
information system activities, and its servicing of user 
requests. The servicing of a request type i is a sequence of 
activities, At, A2, ... , An, each assumed to be measura
ble by Rj(i). In general, the measure can be a function 
M(Rii)) of the service time, however, just Rj(i) will be 
employed in the following discussion. 

The performance of the information system for service 
type i is given by the relation 

n 

Ts(i)= L (Rj(i» (1) 
j=l 

where T sCi) is the average system response time to service 
requests of type i. Assuming that the performance goal for 
the service is T G(i) , then the discrepancy between perform
ance and goal is given by 

D(i)=T Ji)-T sCi). (2) 

The objective of MOP is to determine new performance 
levels for each activity in such a manner that the weighted 
discrepancy, P'D, is minimized (hopefully to zero). Letting 
{3j be a scaling factor to be applied to the jth activity, then 
the new performance level for the activity is Rj(i){3j. Incor
porating the (3/s into equation (1) results in the following 
expression for the discrepancies: 

n 

D(i)=TG(i)- L (Rli)·{3j). (3) 
j=t 

Observe that both positive and negative discrepancies are 
possible, and, therefore, the formulation of the user goal 
evaluation as a MOP problem becomes: t 

[B] Minimize Po+·D++Po-·D-
:l.t. R'/ltD---D-+-=O 
where 

R is a matrix of service rates 
{3 is the array of scaling factors 

0+ is the array of user goals 
D+ and D- are the arrays of, respectively, the posi

tive and negative discrepancies from the 
user goals 

P+ and P- are the arrays of penalties associated with 
the corresponding positive and negative 
discrepancies. 

The formulation serves two purposes: it evaluates goal 
achievement and produces the /3/s. By setting the values of 
the {3's to reflect only the current configuration (i.e., (3j= 1), 

t The complete derivation appears in a previous paper by the authors 
presented at the Annual Conference of the Computer Measurement Group, 
November, 1976.~7 



900 National Computer Conference, 1977 

InformatIon System 

. . - , --' 
, , , 

~--
Re quest 

Request 

for Service'I .. -- ..... ---
Service i 

~----------~--~~ Complete 

~~------~~------------~, 
~ , 

/ , 
/ " / , 

( ~ 
, ! 

System Service Time for I: TS(i) ~ E Rj(i) 

Goal for Service i TG(i) ~ .. 

J 
. I 

\ 
\ 

Activity J 

Queue I 
I 
\ 
\ 

\ \ 
\ \ I 

I 
\ 
\ Queue \, 
1--

Time , I-
I_ Activity Time: 

Server 

I 

Server 
Time 

Rj (i) 

, , , , 
-I 
.. I 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

Service 
Complete 

, Discrepancy D(i) I 
I-t-

* "'Estimated.... Estimated for I 
Estimated Service Time Ts(i) ~ E Rj(i) 8j Discrepancy n(I)* I Activity Time: I 

t-----------------------------------~.~ ~ ~. 
(Based on values for B) Rj (i)8j 

*Values of 8
j

's and D(i)'s are the outputs of Goal Program Optimization Problem 

Figure 4-Relationship between goal programming and information systems characterization 

the evaluation of the system's attainment of the user goals 
is accomplished. 

Experiments with formulation [B] produced valid, but 
impractical sets of {3's. The MGP problem as stated allowed 
for the possibility of solutions where a {3j could equal 0, 
clearly an unacceptable situation. In order to inhibit this 
type of solution, limits were placed on the range of possible 
{3j values. This was accomplished with the following set of 
additional constraints: 

where 

0<L j :51 

I:5H j 

(4) 

(5) 

L j is used to restrict the alternative possibilities for the case 
that {3j< 1 while Hj is used for those cases that {3j> I. In 
general, the set of all positive discrepancies for L/s, (IJ.I +, 
IJ.2+' ... ,IJ./)=M+ and likewise for Hj(vI+' v2+, .. ·, 
v/)=N+. (M- and N- have similar definitions). 

These constraints are reflected in the objective function 
in a manner different than previous constraints. Instead of 
minimizing both discrepancies, only one is minimized. In 
the case of Lj only IJ.j - is included, since, if IJ.j - is driven to 
zero, then Rii){3j-IJ.j+=Lj> implying that Rii){3j>Lj , the 
desired condition. Similarly, for Hj only Vj + is in the 
objective function because minimizing Vj + results in 
Rii),Bj<Hj. 

These added constraints also have a physical interpreta
tion relative to the evaluation of the system. No activity 
can be eliminated from a system (i.e., (3j=O) since Lj must 
be greater than O. In general, however, L j represents the 
lower bound on the degree of reduction feasible for the 
current rate of usage for an activity. For example, L j =.25 
implies that the usage rate for activity j can be made, at 
most, four times faster, being reduced to 25% of its current 
rate. Similarily, H j represents the upper bound on the 
degree to which an activity's rate can be increased (slowed 
down). It must be emphasized that these limits are only 
rough estimates, not exact values. 

In order to reduce the number of alternatives one should 
minimize the number of modifications indicated per evalua-



Methodology for Multi-Criteria Information System Design 901 

tion iteration. Since modifications are characterized by the 
production of f3/ s not equal to 1, a secondary objective of 
Stage 2 is to produce as few f3j=/= 1 solutions as possible. 
This is accomplished by including the constraint equation 

(6) 

while minimizing both Ej + and Ej-

Constraints of this type provide a default vaiue of 1 for the 
multiple goal programming procedures in the case where an 
activity is neither critically inefficient or excessive. (Note: 
(E/, E2+, ... , Ej+)=E+.) 

As a result of these added constraints, the actual formu
lation of the MGP problem used in Stage 2 is given in 
formulation [C] below: 

[C] Minimize PD +·D++PD -·D-+PM -·M-+PN +. 

s.t. 
N++PE +·E++PE -·E-

R·,8+D--D+ =G 
,8+M--M+=L 
,8+N--N+=H 
,8+E--E+=1 

where 
R is the matrix of service rates 
,8 is the array of scaling factors 

G, L, H, and i are the arrays of goals for the 
user criteria and the respective ,8 
constraints 

D±, M±, N± and E± are the arrays of positive and 
negative discrepancies from the 
respective goals 

PD ±, PM ±, PN ±, and PE ± are the arrays of penalties for 
the associated discrepancies. 

The solution variables for the MGP problem are the ,8's. 
They identify those activities that must be altered in order 
to improve user based or system based performance. If the 
value for a ,8j= 1 then the service characteristics of activity j 
were adequate to satisfy all the user's criteria. If a ,8j< 1, 
this implies that the current service rate of activity j is 
m~f~At~.,JBeet 1be . .i¥S1em'Se lleeas. The. new .:seryjee 
rate for the activity should be R;(-)=(,8j)*(Rk». If a f3j> 1 
then the current service rate of activity j is faster than 
necessary and there exists the possibility of excess capac
ity. The new unit rate should be Rk)=(,8j)*(Rk». 

Assuming that an activity follows the characterization in 
Figure 3, then the analyst has three avenues of action when 
a ,8/F 1. First, he can analyze the queue dispatching disci
pline in order to increase queue throughput (or possibly 
replace it with a simpler one if ,8j> 1). Second, he can alter 
the service rate characteristics of the servers, e.g., slower 
hardware devices. And third, he can increase (decrease) the 
degree of parallelism among servers, for example, by add
ing (removing) a second channel, controller, etc. 

LIAISON WITH STAGE 1 

The critical factors in the Stage 2 evaluation are the 
values for the Rj(i)' s needed by the MGP formulation. 

These values are calculated in Stage 1 and are the statistical 
measure produced vis-a-vis the simulation. The specific 
model to be evaluated is the result of the heuristic proce
dures constituting Stage 3. The liaison is based upon the 
assumption that an information system can be viewed as a 
collection of resource allocation and task management 
activities and user oriented services. This view is supported 
by the literature, e.g., Madnick28 and Zurcher and Ran
dall. 29 IPSS also views the modeling of an information 
system in a similar manner, and thus, facilitates the devel
opment of the formal liaison with the MGP user evaluation. 

The view of the system taken in Stage 2 (as illustrated in 
Figure 2) has an analog in IPSS. Its basic modeling concept 
is that of a service as shown in Figure 5. The service is 
classified in IPSS as a procedural facility and is capable of 
representing any information system activity including re
quest (job) scheduling, task management, resource alloca
tion, secondary storage I/O processing and application 
software. Since services are allocatable facilities in IPSS 
they have associated with them both queueing and utiliza
tion statistics. Furthermore, service behavior can be predi
cated on the quantity and characteristics of other IPSS 
hardware and software facilities. Therefore, the statistics 
associated with service facilities have the appropriate struc
ture to service as the R/s needed in Stage 2. 

To complete the formal liaison between the two stages a 
second feature is employed. This is the Task facility. 
Through its use, the service facility statistics can be auto
matically segregated into service statistics by user. In this 
manner, the statistic Rj(i), required by Stage 2, is collected. 
Thus, the Stage 2 users (indexed by i) and the activities 
(indexed by j) are, respectively, an IPSS model's Task and 
Service facilities. An Rj(i) is the sum of queueing and 
utilization statistics gathered for Service i when executing 
Task j. 

Stage I must also be adaptive to model changes dictated 
via Stage 3. Again, the IPSS model synthesis philosophy 
and language constructs permit the desired adaptiveness. 
This is possible for reasons too detailed to discuss in this 
paper. A complete description of IPSS is available in the 
document titled "Ihe.lnfu.twatiun PrQC~ssing System S~m:
ulator OPSS): Language Syntax and Semantics.' ':111 Briefly, 
however, possible modifications to an existing and execut
ing model without requiring complete reformulation include 

Scrvic.eRequest 

Queue of Requ'!sts 

Service COUlplete_---------l 

Issuinp; Request for needed 
Resources cr Services 

. ~(' ,HId rHo' 1 e,Ic.t' o~ 

"'-'i-.dtt:'d R"""'un (>~ 

Figure 5-Functions of IPSS service entities 



902 National Computer Conference, 1977 

changes to: 

I. timing and space characteristics associated with sec-
ondary storage hardware and storage media, 

2. the secondary storage 110 configuration, 
3. user usage patterns and service requirements, 
4. file organization methods and space management poli

cies, 
5. the queueing disciplines associated with job schedul

ing, resource allocation and task management, and 
6. memory management policies. 

IPSS supplies the Stage I processing with a capability of 
being self-adaptive with respect to Stage 3 outputs. Cur
rently, the methodology employs modeler assistance in 
Stage 3. Future research will be directed at providing more 
sophisticated heuristics for Stage 3 in order to provide a 
truly self-contained iterative methodology for the multiple 
criteria evaluation of information systems. 

STAGE 3 ANALYSIS 

The functions of Stage 3 of the methodology are to 
determine whether the current configuration is satisfactory 
and to formulate a new model in light of the data provided 
from Stage I and Stage 2. Figure 6 shows the information 
flow to Stage 3. New models reflect the performance goals 

Res,~urce 

Activity 
Measures 

Current Hodel 
Spec if ica tions 

Figure 6-Information flow to stage 3 

of both the user and the system. Heuristics using Suther
land's* definition of a heuristic are employed in Stage 3. 

The problems encountered are complex and unstruc
tured. Determining if the current design is acceptable 
requires a mixture of objective and subjective reasoning. It 
would be a rare situation if all the user goals and system 
constraints were satisfied simultaneously. Generally, an 
extremely wide spectrum of acceptable performance levels 
and alternative designs are possible, at each iteration, to 
satisfy both user and system criteria. Trade-offs will domi
nate the decision processes. Many factors effecting suitable 
designs may not be included in the formulations and proce
dures of the first two stages. For example, there may be 
external political, organizational or economic considera
tions that are not directly related to the peifonnance of the 
system, but may be a major factor in the final decision. The 
methodology does assume, however, that the heuristic 
procedures have access to this external criteria. 

When it has been determined that another iteration is 
desirable, it is assumed that the heuristics will examine 
current and past designs. Whatever the heuristic employed, 
ideally its objective is to produce a sequence of models 
whose {3j characteristics (for all (3's) behave as follows. 

~j 

1.O~-+--~-+--~-+--~-7~~~~~---D Iterations 

The emphasis of the current research is to provide insight 
into the decision process for improving the performance of 
information systems. Stage 3 is this decision process. It is 
aided by input from four sources within the methodology. 
These sources are: (a) the Stage 2 outputs, specifically the 
{3/s identified to improve user and system goal perform
ance, (b) system behavior statistics from Stage I, (c) the 
current model, and (d) historical data from prior iterations. 
It should be emphasized that at this juncture in the develop
ment of the methodology no formal heuristic procedures 
have been implemented. It is one of the purposes of this 
research, however, to investigate the appropriateness and 
success of various heuristic decision rules. Rules of thumb 
such as those proposed by Buzen21 are possible avenues to 
be investigated. 

AN EXAMPLE 

In order to validate the procedures developed in this 
methodology and the liaison between Stage I and Stage 2, a 
test case was developed. This example was modeled and 
executed in IPSS to satisfy the Stage I requirements. 

* A heuristic is "a disciplined trial-and-error process, ... , an exercise in 
successive ill)provement, where we may learn from both success and failure 
and where the criteria for success and failure may vary with what we have 
previously learned" (p. 183, Reference 31). 



Methodology for Multi-Criteria Information System Design 903 

Goal 

USERt 

USER2 

USERa 

TABLE I-User Goal Evaluation 

Over-Achievement 

26.6 
0.0 
0.0 

U nder-Achievement 

0.0 
51.5 

258.5 

Several iterations were applied, demonstrating the evalua
tive capabilities of the methodology. The following is a 
description of the problem, the corresponding model and 
the results of the first two iterations. 

The example is a model of an on-line document retrieval 
system. There are three files associated with the system; an 
author/title index (A/T) , a system document identification 
file (ID), and the document file itself (DOC). They are 
structurally related such that an entry in the A/T file points 
to one or more entries in the ID file and each ID file entry 
in tum is associated with only one DOC entry. 

The model is designed so that a unique activity is 
associated with the accessing of each file; Activity 1 with 
the NT file, Activity 2 with the ID file and Activity 3 with 
the DOC file. Each activity performs similar functions: 
obtaining and releasing devices, reading records, perform
ing I/O techniques, but to different files. 

It is assumed that the system supports three user classes, 
each with a different demand on the retrieval system and 
each characterized by a different combination of activities. 
The purpose of the first user class, USER l , is to retrieve a 
document for a particular author, thus utilizing all three 
activities. Those in the second user class, USER2, want to 
determine the existence/non-existence of an entry in the 
system for a given author, and therefore, need to use only 
Activity I. The final user class, USER3, already has the 
address of the ID entry and wants to retrieve the associated 
DOC entry requiring only Activity 2 and Activity 3. 

In order to complete the formulation of the performance 
evaluation problem for this methodology, assumptions con
cerning the performance of the system were made. A 
summary of these assumptions for the user goals and (3 
constraints and the penalties associated with the corre
sponding discrepancies in accordance to the requirements 
't1i'formulaiion rCns shownl;eio~." ,. 

G=( 150.0, 100.0, 400.0) 

L=( .2, .2, .2) 

H=( 5.0, 5.0, 5.0) 

1=( 1.0, 1.0, 1.0) 

PD +=( 1000.0, 10.0, 1000.0) 

PD -=( 1.0, 0.0, 0.0) 

Pr.t=PN -=PE +=PE -=( 1.0, 1.0, 1.0) 

The model constructed in IPSS assumed a simple config
uration of one processor and one bank of IBM 2314 type 
direct access devices. Under a given loading (which is not a 
controllable variable in this methodology) the resulting 
performance statistics, the values of matrix R, are shown 
below. 

Ql(1)= 0.0 Q2(1)= 0.0 Q3(1)= 11.4 
Sl(1)=37.2 S2(1)=37.1 SaCl)= 90.9 
Rl(1)=37.2 R2(1)=37.1 RaC 1) = 102.3 

Ql(2)=12.2 Q2(3)= 0.0 QaC3)= 8.9 
Sl(2)=36.3 S2(3)=39.1 SaC3)= 93.5 
Rl(2)=48.5 R2(3)=39.1 R3(3)= 102.4 

This performance information, coupled with the goal 
assumptions, was input to. Stage 2. The evaluation of the 
current configuration's performance with respect to the set 
of user's goals is shown in Table I. It indicates that the 
goals of user classes 2 and 3 were satisfied with a good 
margin of slack, (which is not penalized in this example) 
while the goal of the first user class was not satisfied (over
achievement implying non-satisfaction). 

In the second phase of Stage 2, the [3's are allowed to be 
manipulated until they satisfy the user goal constraints and 
best suffice the system guideline constraints. The result is 
the identification of these activities whose performance can 
be, and need to be, improved with respect to one or both of 
the criteria. The values for the (3's as calculated were 

These are interpreted as indicating that both Activity 1 and 
Activity 2 were adequate to meet the user demands put to 
them. Activity 3, however, was found to be insufficient to 
satisfy the requirements of user classes 1 and 3. The 
modification indicated is to reduce the present rate of usage 
for Activity 3 by at least 1/4 in order to satisfy the user 
goals, in particular, the first user class goal. 

The determination of whether to cease the design loop by 
accepting this performance or to continue by modifying the 
existing model is made in Stage 3. Given the stated goal/ 
penalty structure, it was assumed that the over-achieve
ment of USERl goal was at an unacceptable level and the 
design process must continue if possible. By examining the 
queueing and service time statistics for the first iteration, 
'Cir~ C~~ efmi~rrte' s-cm1e 'cf- 'the rrrodificnticn poS'!i~itrt!e~. 

The result of Stage 3 analysis was a decision to replace the 
IBM 2314 type device with a faster one, i.e., an IBM 3330 
type device. 

The original model of this example system was dynami
cally altered to reflect this modification. Under the same 
loading as before, the following performance statistics were 
accumulated. 

Ql(1)= 0.0 Q2(l)= 0.4 QaCl)= 3.8 
Sl(1)= 11.9 S2(l) = 11.3 S3(l)=27.6 
R1(l)= 11.9 R2(l)= 11.7 RaCl)=31.4 

Ql(2)= 3.8 Qi3)= 0.0 Q:l3)= 0.0 
Sl(2)= 11.1 S2(3)= 12.0 SaC3)=29.1 
R1(2)= 14.9 R2(3)= 12.0 RaC3)=29.1 



904 National Computer Conference, 1977 

Stage 2 analysis showed that now all three user class 
goals were satisfied (i.e., not over-achieved). The calcula
tion of tl).e {3's, however, indicated that while Activities 1 
and 2 were still adequate ({31={32= 1.0), Activity 3 now had 
the possibility of excess capacity ({33=4.0). Although a 
slower and probably less expensive device for Activity 3 
would be more appropriate, we had found in the first 
iteration that such a device was not able to satisfy all the 
user goals. Therefore, in future iterations, Stage 3 proce
dures had to examine more subtle methods of improving 
performance. 

CONCLUSION 

Modern information systems do not exist as entities unto 
themselves, but must interact with their environment, i.e., 
their users. The loading and mix of the users effect the 
performance of the system resources and likewise, the 
service characteristics of the system resources effect the 
satisfaction of user goals. In order to design such systems, 
one must satisfy a large set of users demanding a conflicting 
set of performance goals while operating within efficiency 
and minimum cost constraints. Thus, performance evalua
tion of information systems is a multiple criteria problem. 
Concurrently satisfying both of these sets of criteria is the 
goal of this methodology. Current available techniques, 
however, only address one side of the problem, either the 
user or the system. The methodology described in this 
paper establishes a formal liaison between the evaluation of 
user goals as a function of system behavior and the analysis 
of system resource performance as a function, of user 
demand, thereby, facilitating multi-criteria evaluation. 

The methodology is iterative, comprising three separate 
but integrated stages. The first stage models and evaluates 
system behavior. The particular technique employed in the 
first stage is IPSS and it is able to collect the necessary 
statistic, Rii). The second stage evaluates the user based 
criteria and provides evaluative insight into performance 
improvement. Solution of the MOP formulation in [C] 
produces a set of {3's, the variables of Stage 2 which 
indicate inefficiencies and/or excesses in the current model. 
And finally, the third stage heuristically determines the 
current model's acceptability and need for modifications. 

The evaluative procedures developed for this methodol
ogy have been shown to be valid in practice. Furthermore, 
this methodology provides an excellent basis for continued 
research into areas such as: 

a. investigation into the causal relationships between 
user demand and system activity, 

b. sensitivity analysis of these relationships, 
c. investigation into suitable heuristics for Stage 3, either 

testing existing heuristics or development of new 
ones, and 

d. development of heuristic/modification rules to close 
the design loop into an automatic self-modifying proc
ess. 

REFERENCES 

I. Boehm, B., and T. E. Bell, "Issues in Computer Performance Evalua
tion: Some Consensus, Some Divergence," PER, Vol. 4, No.3, 1975, 
pp.4-39. 

2. Gaver, D. P., and G. Hunfeld, "Multitype Multiprogramming: Probabil
ity Models and Numerical Procedures," Proc. ofCPMME, 1976, pp. 38-
43. 

3. Buzen, J. P., "Computer Algorithms for Closed Queueing Networks 
with Exponential Servers," CACM, Vol. 16, No.9, 1973, pp. 527-531. 

4. Neilson, J. E., "An Analytic Performance Model ofa Multiprogrammed 
Batch Time-Shared Computer," Proc. ofCPMME, 1976, pp. 59-70. 

5. Conger, C. R., "The Simulation and Evaluation ofInformation Retrieval 
Systems," Report 352-R-17, April 1965. 

6. Roehrkasse, R. c., and D. Smith, "Simulation of Operating Systems," 
Tech. Repon GiTIS-70-i i, i970, Georgia lnst. of Tech. 

7. Abate, J., H. Dubner and S. B. Weinberg, "Queueing Analysis of the 
IBM 2314 Disk Storage Facility," JACM, Vol. 15, No.4, 1968, pp. 577-
589. 

8. Nahourii, E., "Direct Access Device Simulation," IBM Systems Jour
nal, Vol. 13, No. I, 1973, pp. 19-31. 

9. Sherman, S. W., and R. C. Bric, "110 Buffer Performance in a Virtual 
Memory System," Symposium on the Simulation of Computer Systems, 
1976, pp. 24-35. 

10. Hellerman, H. R., and H. J. Smith, "Throughput Analysis of Some 
Idealized Input, Output and Computer Overlap Configurations," Com
puting Surveys, Vol. 2, No.2, 1970, pp. 111-118. 

II. Kleinrock, L., and R. R. Muntz, "Processor-Sharing Queueihg Models 
of Mixed Scheduling Disciplines for Time-Shared Systems," JACM, 
Vol. 19, No.3, 1972, pp. 464-482. 

12. Agrawala, A. K., and R. L. Larsen, "Experience with the Central 
Server Model on a Lightly Loaded System," Symposium on the Simula
tion of Computer Systems IV, 1976, pp. 102-109. 

13. Lewis, P. A. W., and G. C. Shedler, "A Cyclic-Queue Model of System 
Overhead in Multiprogrammed Computer Systems," JACM, Vol. 18, 
No.2, 1971, pp. 199-220. 

14. Gonzalez, G., "Using Covariance Analysis as an Aid to Interpret the 
Results of a Performance Measurement," Proc. of CPMME, 1976, pp. 
179-186. 

15. Cantrell, H. N., and A. L. Ellison, "Multiprogramming System Perform
ance Measurement and Analysis," AFIPS Conf. Proc., Vol. 22, 1968, 
pp. 213-221. 

16. Reeves, T. E., and U. W. Pooch, "A Multiple Subsystem Simulation of 
Processor Scheduling," Symposium on the Simulation of Computer 
Systems III, 1975, pp. 129-135. 

17. Norland, K. E., and W. C. Bulgren, "A Simulation Model of GECOS 
III," Proc. of ACM, 1971, pp. 596-612. 

18. Lum, V. Y., Ling, H., and Senko, M. E., "Analysis ofa Complex Data 
Management Access Method by Simulation Modeling," FJCC, 1970, pp. 
211-222. 

19. Lindsay, D. S., "A Hardware Monitor Study of a CDC KRONOS 
System," Proc. of CPMME, 1976, pp. 179-186. 

20. Hall, W. A., "A Simulation Model to Aid in the Design and Tuning of 
Hierarchical Databases," Winter Simulation Conference, 1974, pp. 277-
284. 

21. Buzen, J. P., "Fundamental Laws of Computer Performance," in Proc. 
of Int'l. Symp. on Computer Performance Modeling, Measurement and 
Evaluation (CPMME), 1976, pp. 200-210. 

22. Chames, A., and W. W. Cooper, Management Models and Industrial 
Applications of Linear Programming, New York, John Wiley & Sons, 
Inc., 1961. 

23. Ijiri, Y., Management Goals and Accounting for Control, Chicago, Rand 
McNally, 1965. 

24. Charnes, A., et aI., "A Goal Programming Model for Media Planning," 
Management Science, Vol. 14, No.8, April 1968, pp. 423-430. 

25. Lee, S. H., Goal Programming for Decision Analysis, Philadelphia, 
Auerbach, 1972. 

26. MacCrimmon, K. R., "An Overview of MUltiple Objective Decision 



Methodology for Multi-Criteria Information System Design 905 

Making," Multiple Criteria Decision Making, eds., J. L. Cochrane and 
M. Zeleny, Columbia, S. c., 1973, pp. 18-44. 

27. Chandler, J. S., and T. G. DeLutis, "A Methodology for the Perform
ance Evaluation ofInformation Systems Under Multiple Criteria," Proc. 
o/Computer Measurement Group, 1976, pp. 221-230. 

28. Madnick, S., and J. Donovan, Operating Systems, N. Y., McGraw-Hill, 
1974. 

29. Zurcher, F. W., and B. Randall, "Iterative Multi-Level Modelling: A 
Methodology for Computer System Design," IFIP 68, pp. 867-871. 

30. DeLutis, T. G., "The Information Processing System Simulator (IPSS): 
Language Syntax and Semantics," unpublished research report (Grant 
No. G-36622). 

31. Sutherland, J. W., Systems: Analysis, Administration, and Architecture, 
Van Nostrand Reinhold, New York, 1975. 





Automated control of concurrency in multi-user 
hierarchical information systems 

by ALAN F. SWEET and ARTHUR E. OLDEHOEFT 
Iowa State University 
Ames, Iowa 

ABSTRACT 

This paper presents a systematic approach to providing a 
high degree of concurrent access to information in hierar
chically structured systems. An algorithm is presented 
which is designed to operate on the procedures and tree
structured information of two adjacent levels. The algo
rithm analyzes the procedure and structure refinements and 
generates the appropriate monitor calls to increase the 
degree of concurrent access. Assuming the initial level is 
correct, the refined system remains deadlock free, the 
integrity of the information is preserved, and individual 
procedures are checked for determinacy. Graph structured 
models are used to illustrate examples and definitions. 

INTRODUCTION 

In this paper, we present a systematic approach to provid
ing a high degree of concurrent access to information 
structures in a hierarchical information system. The tech
nique may be applied to existing systems which operate on 
tree-structured information and which appears as levels of 
functionally decomposed procedures. It may also be ap
illiedlQJhe,£lcces.siy~,leyels.,ofprQc.eQlJ..t:~s ,and infQr.m~tjQn 
tree refinements during the top-down design process of 
information systems. 

The basic approach is to analyze concurrent processes, at 
a given level, for interference and to automatically place 
requests for access capabilities to structures at those points 
where the structures are first referenced. Releases are 
automatically placed after those points where the structures 
are last referenced. As a new level of procedures are 
specified and the information trees are refined, the analysis 
is repeated resulting in the introduction of new controls and 
possible movement of old ones. Since the information is 
tree-structured, the access to a substructure may, in certain 
cases, result in the release of the access capabilities to the 
predecessor node in the tree, thereby clearing the way for 
concurrent access to substructures at the same level in 
different branches of the tree. 

Numerous systems have been proposed and implemented 
using the concept of a hierarchical structure.1.5,8,9 Our 

907 

work, however, is restricted to subsystems (file systems, 
data base systems, etc.) dedicated to a single language 
which might typically run as a module in a host operating 
system. These systems manage their own resources and 
control the flow of information to the users. 

The complicating factor, and the major focus of this 
paper, is the assumption of a multi-user environment in 
which each user interacts with the system sharing, and 
possibly modifying, information. It is now critically impor
tant that our design process satisfy two additional con
straints; 

(1) the introduction of potential concurrency wherever 
possible, and 

(2) the guarantee that the system will be correct with 
respect to three problems of concurrency 
(a) preservation of information integrity among inter

fering independent processes 
(b) deadlock avoidance, and 
(c) determinacy within a single process 

These two requirements place significant analytic bur
dens on the designer of such a system. Later, we will 
present an algorithm which can relieve the designer of these 
burdens. We first, however, more rigorously define the 
'pfoperfi'es 6f'rbe information system. 

Process decomposition is based on a "uses" concept 
similar to that of Pamas.9 We, however, define the level of 
a procedure in a top-down manner as follows: 

(1) Level 0 is the outer-most level of the system, 
(2) Level i is the set of all procedures which, if they do 

use any procedures, use only procedures at level i + 1 , 
and 

(3) Level k, the inner-most level, is a set of procedures 
which use no other procedures. 

Structures organized by this definition have three desira
ble properties. They are easy to test, since the interfaces 
between adjacent levels are the only procedure interactions 
that need be tested. All communication paths to system 
resources must use common procedures and, as a conse
quence, scheduling criteria can be more easily enforced 



908 National Computer Conference, 1977 

resource 

Figure I-Originallevel structure and communication paths 

with respect to the resources. Finally, we can guarantee a 
property (in the overall system) by ensuring that the prop
erty is maintained in each ne\v!y defined level. 

Since this definition restricts the communication paths 
and does not allow intralevel communication between pro
cedures, the structure may contain identity procedures 
(procedures which only perform a reference to a single 
procedure at the next level). This definition, for example, 
would require that a system whose communication and 
access path are as shown in Figure 1 be restructured to 
appear like that in Figure 2 with I t and 12 as identity 
procedures. Identity procedures can increase the amount of 
overhead time spent as a result of procedure communica
tion. Bernstein and SiegeJ2 have recently proposed a solu
tion to this problem with some simple hardware mecha
nisms which can decrease this overhead. 

The algorithm we will present for placing access controls 
is applied to hierarchical systems like those we have just 
described. The algorithm assumes the existence of a moni
tor which can be used to control access capabilities to the 
structures. The algorithm will analyze and modify the 
procedures of two adjacent levels, placing monitor uses in 
the procedures to introduce additional concurrency and still 
guarantee the stated properties of correctness. In order to 
perform the modifications, the algorithm will require a 
parser of the procedural language and additional informa
tion about the operands of the language constructs. The 
monitor will have the unique property in that a process 
which has access capabilities to a structure will be allowed 

resource 

Figure 2-Restructuring of system with identity programs 

1 

I t 
B 

~ 

Figure 3-An example information structure 

to request access capabilities to any substructures. This will 
allow the procedures to release the major structure while 
maintaining access to substructures. The result is an addi-

. tional increase in potential concurrency. 

CORRECTNESS CONSIDERATIONS 

Figure 3 shows an example of an information structure. 
Nodes of these structures are accessed by path names. For 
example, the node n t in Figure 3 is referenced by the path 
name A.B, and the substructure containing nodes n2 and n3 
is referenced by the pathname A.C. 

Let P=ut ••• Un and P'=vt ••• Vrn be path names. Then 
P is said to contain P', if n:5m and Uj=Vj for all i= 1, ... , 
n. In Figure 3, the path name A.G contains A.G.H. For two 
sets of path names X and Y, we define: 

X I Y ={Xj I XjEX and Xi contains some yjEY} 

The path intersection of X and Y is represented by X - Y 
and defined by the set union of X I Y and Y I X, i.e. 
(X I Y)U(Y I X). For example, if X={A.B,A.C.D,A.G} 
and Y={A.C,A.C.H,A.G.K}, then X-Y={A.C,A.G}. 

j + 2 

Figure 4--A example process graph 



start 

request (A,B) 

release (A,B) 

Figure 5-Example of request and release nodes 

We use the concept of path intersection to extend Bern
stein's3 definition of noninterference. Let HI and H2 be 
procedures with the domains of pathnames, DI and D2, and 
the ranges of pathnames, RI and R2, respectively. The HI 
and H2 are defined to be mutually noninterfering, if either 

(1) HI is a successor or predecessor of H2, or 
(2) RI~R2=DI~R2=RI~D2=0 

This generalized definition, as it applies to tree-structures, 
forms the basis for analyzing interference and maintaining 
the integrity of the information in our system as well as 
checking for determinacy within a single process. For a 
procedure H, we use a notational convenience Y = «R) ,(D)) 
to represent the domain D and range of H. For HI and H2 
we define YI~Y2=0 if RI~R2=RI~D2=DI~R2=0 

The procedures in the system will be represented by flow 
graphs in which nodes represent operations and the arcs 
between nodes represents the sequential flow of control. 
Figure 4 illustrates a procedure graph and Figure 5 illus
trates the special nodes which represent the monitor calls to 
request and to release access capabilities. Figure 6 illus
trates the operations cobegin and co end for parallel execu
tion within a procedure. 

----------------~L-----~ __ --------Cobegin 

------~L-------~~----~~---------Coend 

Figure 6--Example of two parallel paths 

Automated Control of Concurrency 909 

When independent procedures operate concurrently on 
shared structures and free access is allowed to the struc
tures, the result may be unpredictable. The term critical 
region4

,6 has been used to describe that portion of a 
procedure which operates on a shared item. If a procedure 
H operates on the shared item A, then H'(A) is used to 
denote the critical region of H with respect to A. In terms 
of the procedure graph, H'(A) is the subgraph of H which 
may access A. This idea is illustrated in Figure 7. 

Any execution sequence of the critical region H'(A) is 
represented by C(A). For the example in Figure 7, C(A) 
represents either of two sequences of operations, n2n3 or 
n2n4• 

Let HI and H2 be two procedures at the same level with 
critical regions H1'(A) and H2'(A), respectively. The proce
dures Hl and H2 are defined to be mutually exclusive with 
respect to A, if for all concurrent realizations of HI and H2 
either 1) Ht'(A) or H2'(A) is empty, or 2) C 1(A) executes 
prior to C2(A) or 3) C2(A) executes prior to C1(A). In Figure 
8, the monitor is used to ensure mutual exclusion between 
two procedures HI and H2. 

Let a procedure H operate on a set of shared structures 
A={A1, ... , AJ with H'(A)={H'(A1), ... , H'(An)} as 
corresponding critical regions for A. Let C(A)={C(A1), 
... , C(AJ} represent the execution of the critical regions 
in H. For example in Figure 9, A={A1,AJ and 
C(A)={C(A1),C(Az)} where C(A1) = {n2n4,nJ and 
C(A2)={n3,nJ. Suppose we have two procedures HI and H2 
at the same level which share such a set A of structures and 
let So(A) denote the initial state of A. Let SI(A) denote the 
final state of A, if HI executes prior to H2 and let S2(A) 
denote the final state of A if H2 executes prior HI. The 
procedures HI and H2 are said to preserve the information 
integrity of A, if every concurrent execution of HI and H2 
either produces SI(A) or S2(S) as the final state. In Figure 
10, for example, procedures HI and H2 may not preserve 

Figure 7-The process H and critical region H'(A) 



910 National Computer Conference, 1977 

Figure 8---Monitor uses to ensure mutual exclusion 

information integrity of A={At,AJ. In Figure 11, the moni
tor is used to ensure that HI and H2 preserve information 
integrity in that the final state of A will always be {I ,2} or 
{2,3}. In some cases, the requests can be rearranged to 
increase concurrency while maintaining integrity. Incorrect 
requests and releases, of course, introduces the potential of 
deadlock. These ideas are illustrated in Figures 12 and 13. 

DESCRIPTION OF UNDERLYING MONITOR 

The algorithm presented will assume the existence of a 
monitor similar to the type described by Hoare7 and Hrinch 
Hansen. 4 The monitor will have two usages, request (X) 
and release (X) where X={x I, ... , xJ is a list of path 
names. The request will be allowed only if logical access 
can be granted for all path names in the list. Otherwise, the 
procedure will wait until the entire request can be granted. 
Release returns the logical access capabilities to the path 
names in the list. The monitor operates on the following 

Figure 9-A process with two critical regions 

data structures: 

A 

-the procedure with access capability to Xi 
-the set of procedures waiting for access capa-

bility to Xj, and 
-the set of path names to which access has 

been granted. 

The monitor operations, as invoked by a procedure H, can 
be described as follows. 

request (X): 

release (X): 

if for every Xi in X, xj-A=0 or 
(xj-A=zj implies P(zJ=H) 

then 
P(xJ=H for all Xi in X 
A=AUX 

else 
W(Xi)=W(Xi)UH for all Xi in X 
place H in wait state 

P(xi)=0 for every Xi in X 
A=A-{AnX} 
If there exists some procedure H' and 

some Xi in X such that H' is in W(xJ 
and H' is waiting for the request (Y) 

then 
if for every Yi in Y, Yi-A=0 or 
(Yi-A=Zi implies P(zJ=H) 

Figure 100Processes operating on shared structures Al and A2 



Figure II-Monitor uses to ensure information integrity 

then 
remove H' from wait state 
P(Yi)=H' for all Yi in Y 
W(YJ=W(Yi)-H' for all Yi in Y 
A=AUY 

DESCRIPTION OF THE ALGORITHM 

The algorithm is designed to operate on the procedures 
and the information structures of two adjacent levels. We 
illustrate the result of applying the algorithm in Figures 14 
through 19. The critical region for the procedure in Figure 
14 is shown prior to the refinement of the structure A and 
the specification of the lower level procedures. Let 
F(A)=(A.A1,A.A2) be the refinement of A and suppose the 
lower level procedure L1 operates an A.A t while L2 and L3 
operate on A.A2' 0 1 is assumed to be an operation on the 
major structure A. 

The critical regions for A and F(A) are expressed as in 
Figure 15. The information integrity of A is preserved by 
the high level monitor uses in Figure 16. The potential 
concurrency may be increased, deadlock avoided, and 
information integrity preserved for A, if the procedures are 
modified with monitor uses to appropriately request sub
structures and release the major structure. Figure 17 shows 
how our algorithm will perform such placements and rear
rangements of request and releases. 

Suppose Ll and La of the previous example have the 
reffne~ments asshowri'~lnFigure'Tg-'with the criilcal regions 
L1'(A.A1) and L3'(A.A2) respectively. The potential concur
rency is increased still further, if the releases for A.A1 and 
A.A2 are removed from the high level procedure Hand 
placed in the low level procedures L1 and L3. Figure 19 

~,eque" (A

"

A
2

) 
request (AI ,A

2
) 

Al <- I 

release(A
I

) 
release(A

2
) 

A2 <- 2 
Al +- 2 

b release (AI) 
release (A

2
) 

6 6 
Figure I2-Monitor uses which may increase potential concurrency 

Automated Control of Concurrency 91 1 

leque" (A,) 

i
A1 -<- I 

request (A
2

) 

A2 <- Al 

release(A
I

,A
2

) 

Figure I3-Monitor uses with potential deadlock 

shows how our algorithm will relocate these releases into 
the lower level procedures. 

If every use of L is followed by a release of the structure 
Ai of A, and there exists no operations on A, other than 
releases, between the terminations of L and the corre
sponding releases, of Ai> then these releases of Ai are said 
to be movable with respect to L. This concept is exploited 
by our algorithm. 

The algorithm operates over procedures and requires 
information about the domain and range operands of the 
language constructs. This information may be determined 
through a combination of precompilation of the procedures 
and direct specification by the designer in the case of 
procedure and function statements. The operands of each 
language construct are determined by the union of the 
operands of its parts. This is demonstrated in Figure 20 
which shows a procedure and the operand sets Y, Y 1, Y 2, 
and Y3. 

The algorithm also uses a set of transformations defined 
over the procedural language which perform the actual 
placement of the requests and releases. For purposes of 
discussion, the algorithm is applied to an example language. 
There are four sets of transformations needed by the 
algorithm to place the controls in the procedures. These 
transformations along with the formal definition of the 
example language are given in the Appendix. These exam
ple transformations are for illustrative purposes and may be 
non-optimal. The algorithm initiates the transformations 
~nrt..'tt~'~ fuHO'Wi!'!g fum" '~hrting 'l'f'Ott&..n"e!'7 

(1) Bl(H,X) places the initial requests for the set X of 
structures in the outer-most procedure H. 

(2) Cl(H,X) places the releases for the structure X in H. 

1 
(HI (A) 

A 

~ 
Figure 14-Critical region prior to structure refmement 



912 National Computer Conference, 1977 

l 
A 

t 
I I 

~ J 
Figure I5-Critical regions after structure refinement 

~eqUest(A) 
v 

release(A) 

release (A) 

Figure I6--Procedure H with monitor uses for A 

request (A) 

release(A) release(A) 

2 

release(A. Al ) 

release(A.A2) 

Figure I7-Procedure H with monitor uses for A, A.A.! and A.A'2 

Figure IS-Low level procedures L! and L3 with critical regions L/ (A.A.!) 
and La' (A.A'2) 

o 
equest (A) 

request(A. Ai) 

release(A) 

T releaseC\'''l) 

request(A'''2) ,~ 
, release (A) 6 

Figure I9---Procedures H, L!, and L3 with monitor uses for A, A.A'I> and 
A.A·2 

(3) DI(H,X,F(X)) determines which of the refinements 
F(X) of X have critical regions outside 
the critical region H'(X) for the path
name X (see Figure 15 for example). 

(4) EI(H,X' ,X) places the requests for the refinement X' 
of X in H. 

As an example, suppose we wish to execute Cl(H,X). 
This leads to an application of C4. Figure 21 shows the 
transformation C4 which operates over the "statement" 
construct to place a release for X. If the "statement" will 
parse as an "assignment statement" or "procedure state
ment," the release for X is placed immediately following 
the "statement." Otherwise, the transformation C5 is ap
plied to the "statement," since it must parse as a "struc
tured statement." 

The algorithm uses one other set of functions to analyze 
the procedures for the sufficient conditions for determi
nacy. This set is initiated by Al(H) and returns the value 
true, if the procedure H satisfies these conditions. Other
wise, the value false is returned. 

The entire algorithm is presented in Figure 22. Several 
procedures are assumed to support the algorithm. 

(1) input-outer-Ievel-procedures (H,Xf)) 
This is an initialization procedure which accepts as 
input the source code for the outer-level procedures 
H and the set of path names X0 of their operand 
structures. In Figure 14, X0={A}. 

(2) input-next-Ievel-procedure (L,X2) 
This is the first step in the iterative process. The 
source code of the next level procedures L and their 
operand structures X2 are input. In Figure 15, we 

procedure LI(A, AI); 
begin 

g has2(A ,AI) 
then begin 

erase2 (A.A
I

) 
end 

else begin 
create2(A,A

I
) 

end 

Y=«A,A.Al), (A»=YIll'l2LN3 

YI=(O, (A» 

Y
2
=«A.A

I
),(» 

Figure 2~Procedure L, with operand sets Y, Y1, Y2 and Y3. 



C4«statement>Y) 

1
- < assignment statement > release(x) 

= < procedure statement > release (x) 

l C5( < structured statemen~ 
Figure 21-The transformation C4 for placement of releases 

have X2={A.At} for Ll, X2={A.AJ for L2, and 
X2={A.AJ for L3. 

(3) restate-high-level-operands-with-rejinements (H,Xl, 
XfJ,L,X2) 
The operands for the constructs of the procedure H 
(as defined by the grammar) are restated in terms of 
the original structures X0 and the refined structure 
operands X2 accessed by the low level L. These are 

begin 

Automated Control of Concurrency 913 

represented by Xl. For example, in Figure 15, we 
have Xl ={A,A.At,A.AJ. 

(4) remove-all-releases (H) 
All the releases are removed from the high level 
procedure H. 

The algorithm will relocate and generate requests and 
releases as new levels are defined. An example of a high 
level procedure with requests and releases is given in 
Figure 23. This is prior to the input of the next level 
procedures. Figure 24 gives the next level procedures 
which operate on the refined structures. Figures 25 and 26 
give the placement of the requests and releases after both 
levels have been processed by the Algorithm in Figure 22. 

input-outer-Ievel-procedures (H,X0) 
if for any H' in H,AI(H')=false then stop 
for every H' in H with operands x0' do BI(H',x0') 
--for every X in x0' do ~1(H' ,X) end 
end 
while another level exists do 

end 
end 

begin 
input-next-Ievel-procedures(L,X2) 
if for any L' in L, AI(L')=false then stop 
restate-high-Ievel-operands-with-refinements(H,XI,X0,L,X2) 
for every H' in H with operands Xl' and x0' do 
--remove-alI-releases (H' ) 

for every X in x0' do 
-U=DI (H,X, F (X)) 

CI(H,X) 

end 

for every Y in U do 
-EI(H,Y,X) 

~E:~ 

CI(H,Y) 
end 

for every L' in L with operands X2' do 
for every X in X2' do 
--if releases for X are movable with respect to L' 

then do 
---"remove release(X) with respect to L' from every 

high level process" 

end 
end 
H-+-L 
x0 -+- X2 

CI(L,X) 
end 

Figure 22-The algorithm for analyzing levels and placing monitor uses 



914 National Computer Conference, 1977 

procedure update (Employee,input) 
begin 

request (Employee-records) 
if hasl (Employee-records, Employee) 

begin 
modifyl(Employee-records.Employee, input) 
release (Employee-records) 

end 
else 

end 

begin 
release (Employee-records) 
write ('Employee not in files') 

end 

Figure 23-The high level procedure 'update' with monitor uses 

procedure hasl(records, selector): returns boolean; 
begin 

if selector in records 
then 

begin 
hasl:=true 

end 
else 

begin 
hasl:=false 

end 
end 

procedure modifyl(record, input) 
begin 

end 

if input. selector in record 
then 

begin 
erase2(record.'input.selector') 
assign2(record. 'input.selector',input.val) 

end 
else 

begin 
create2(record,'input.selector') 
assign2(record.'input.selector',input.val) 

end 

Figure 24--The low level procedures 'modify!' and 'has I' 

procedure update(Employee,input) 
begin 

request (Employee-records) 
if hasl(Employee-records,Employee) 
then 

begin 
reguest(Employee-records.Employee) 
release (Employee-records) 
modifyl(Employee-records.Employee,input) 

end 
else 

begin 

end 

release (Employee-records) 
write('Employee not in files') 

end 

Figure 25-The high level procedure 'update' with refined monitor uses 

procedure hasl(records,selector): returns boolean; 
begin 

if selector 1£ records 
then 

begin 
hasl:=true 

end 
else 

begin 
hasl:=false 

end 
end 

procedure modifyl(record,input) 
begin 

if input. selector in record 
then 

begin 
erase2(record. 'input. selector') 
assign2(record. 'input.selector',input.val) 
release(record) 

end 
else 

end 

begin 
create2(record, 'input. selector') 
assign2(record. 'input. selector' ,input.val) 
release(record) 

end 

Figure 26-The low level procedure with refined monitor uses 

Note that in its refinement, the input type has two compo
nents, selector and val. 

CONCLUSION 

The method described in this paper has been extended to 
apply to systems whose procedures are expressed in a 
Pascal-like language, allowing for complex control struc
tures. It has been applied to successive levels in the design 
of a personnel records information system. 10 The algorithm 
and its associated transformations, when used in the con
text described in this paper, illustrate a technique for 
automating the analysis needed to increase concurrency 
and still maintain correctness in hierarchically structured 
information system. This means that each level maintains 
the originally implied information integrity, deadlock will 
not be introduced, and any indeterminacy introduced by the 
designer into any individual procedures will be detected. 
This paper assumed only mutually exclusive access to 
structures. It is possible, however, to extend this technique 
by allowing concurrent readers and exclusive writers. This 
requires somewhat more sophisticated transformations and 
monitor support, but it will further increase the degree of 
potential concurrency. 

REFERENCES 

I. Burner, H. B., "An Application of Automata Theory to the Multiple 
Level Top-Down Design of Digital Computer Operating Systems," 
Ph.D. thesis. Washington State University, 1973. 



Automated Control of Concurrency 915 

2. Bernstein, A. J. and P. Siegel, "A Computer Architecture for Level 
Structured Systems," IEEE Transactions on Computers, C-24, No.8, 
August 1975, pp. 785-793. 

7. Hoare, C. A. R., "Monitors: An Operating System Structuring Con
cept," CACM 17, No. 10, October 1974, pp. 549-557. 

3. Bernstein, A. J., "Analysis of Programs for Parallel Processing," IEEE 
Transactions on Computers, EC-I5, No.5, October 1966, pp. 757-763. 

8. Liskov, B. H., "The Design of the Venus Operating System," CACM 
15, No.3, March 1972, pp. 144-149. 

4. Brinch Hansen, P., Operating Systems PrincipLes, Englewood Cliffs, 
New Jersey, Prentice-Hall, 1973. 

9. Parnas, D. L., "Some Hypotheses about the 'Uses' Hierarchy for 
Operating Systems," Technical report B2-2-76/1. Darmstadt, West Ger
many, Fachbereich Informatick, March 1976. 

5. Dijkstra, E. W., "The Structure of the T.H.E.-Multiprogramming Sys
tem," CACM 11, No.5, May 1968, pp. 34\-346. 

6. Dijkstra, E. W., "Cooperating Sequential Processes," in Programming 
Languages, (F. Genuys, ed.), Academic Press, 1968, pp. 43-112. 

10. Sweet, A. F., "Correctness in Multi-User Hierarchically Structured 
Information Systems," Ph.D. Thesis, Computer Science Department, 
Iowa State University, Ames, Iowa, \977. 

Appendix 

The BNF form of the Example Procedural Language 

Rule No. 

< procedure 
< block> =. 

< statement 
< statement 

> = < procedure heading > < block > 
begin < statement list > end 

list > = < statement > 
list > = < statement > < statement list> 

< statement > < assignment > 
< statement > = < procedure statement > 
< statement > < structured statement > 
< statement > < access control statement > 
<" structured statement > < block > 
< structured statement > < conditional> 
< structured statement > < parallel block> 

Gl 
G2 
G3 
G4 
G5 
G6 
G7 
GB 
G9 
GIO 
GIl 
Gl2 
Gl3 
Gl4 
GIS 
Gl6 
Gl7 

< conditional > = if < expression > then < block > else < block > 
< parallel block> ~obegin < parallel statement list > coend 
< parallel statement list> = < block> 
< parallel statement list > = < block> < parallel statement list > 
< access control statement> reguest« id list> ) 
< access control statement> = release« id list> ) 

In the fallowing par:agraphs, Y, y' ,Y", awl Y '" specify the 

domain-range pair associated with the syntactix unit that immed-

iately precedes their use. 

Functions which Analyze a Procedure for Noninterference 

The returned result is true or false. 

AI( < procedure > y) A2( < block> Y) if rule Gl 
A2( < block> Y) A3« statement list> Y) if G2 
A3( < statement list > Y) 

{ A4( < statement> Y) if G3 
= 

A4 ( <-statement> Y') " A3 ( < statement list> yII) if G4 



916 National Computer Conference, 1977 

{true 
A4( < statement> Y) =,--

lA5« structured statement> Y) 

{

A2 ( < block> Y) 
A5( < structured statement> Y) = A6( < conditional> Y) 

A7 « parallel block > Y ) 
A6 « conditional > Y) 

if G5 
if G7 
if G9 
if GIO 
if GIl 

or G6 or G8 

-= A6 (if < expression > then < block > I else < block > 2 Y) 
= A2 (::block > Y") /\ A2 « block > y" , ) , 

A7 « parallel block> Y) I 2 
== A7 (cobegin < parallel statement list > coend Y) 
= A8« parallel statement list> Y) 

A8« parallel statement list> Y) 

= [~~ ~ : ~~~~~ : J~ < n~~~ 110 1 ~~ .... ~ ~ ... p-m ... pn .... ~ ... 1 ' ..... C! ..... ~ ... > v") if Gl4 ll.. ... -' \. - LI..L.""""-I..'- -.... y""" .... '-I...L-L'-..L. - - - - - ~ / 

if Gl5 
statement list > Y") A9 « block > y' < parallel 

= { A2 « block > y' ) A8 « parallel sta temen t list> Y") 

false 
if Y'rvY"=0 
if Y'rvY":/:0 

Transformations for Placing the Initial Requests for the Set X of Path 

Names. 

The result is a procedure with request(s) for X. 

BI ( < procedure >Y,X) 
= < procedure heading> B2( <" block> Y,X) 

B2 ( < block > Y,X) = < block > Y 
B2 ( < block > Y,X) 

= begin B3 ( < statement list > Y,X) end 
B3 ( < statement list > Y,X) 

r B4 ( < statement > Y,X) 
= ) B4 ( < statement > y' ,X) < statement list > y" 

< statement > y' B3( < statement list > y" ,X) 
B4 ( < statement> Y,X) 

r request(X) < assignment > Y 
=) request(X) < procedure statement> Y 

B5 ( < structured statement > Y,X) 
B5 ( < str~'ctured statement > Y,X) 

! B2 ( < block > Y,X) 
= / B6 ( < conditional > Y,X) 

l. request (X) < parallel block > Y 
B6 ( < conditional > Y,X) 

if rule Gl 
if X n Y=0 

if X nY#(J and G2 

if G3 
if X nY':/:0 and G4 
if X nY'=(J and G4 

if G5 
if G6 
if G7 

if G9 
if GIO 
if GIl 

== B6 (if < exoression > y' then < block > 1 y" else < block > 2 y" 'X) 
I req~st (X) ~ if < expression> y' then < block> IY" 

else < block >2 y'" ) if X ny':/:0 
<, if < expression> y' then B7 ( < block > I y" ,X) 
l else B7 ( < block > 2 y'" ,X) 

B7 ( < block >Y,X) 
i B2 ( < block> Y,X) 

- begin < statement list> request eX) end 

if X nY'=(J 

if X nY:/:0 
if X nY~0 



Automated Control of Concurrency 917 

Transformations for Placing the Release(s) of a Path Name X. 

The result is a procedure with release(s) for X. 

CI « procedure > Y,X) 
= < procedure heading> C2( < block> Y,X) 

C2( < block> Y,X) - {< block> Y 
begin C3« statement list> Y,X) end 

C3« statement list> Y,X) 

{ 

C4 « statement > Y,X) 
= C4 « statement > y' ,X) < statement list> y" 

< statement > y' C3 « statement list > y" ,X) 
C4« s~atement > Y,X) 

{

< assignment> Y release(X) 
= < procedure statement> Y release(X) 

C5« structured statement> Y,X) 
C5« structured statement> Y,X) 

{ 

C2( < block> Y,X) 
= C6( < conditional>Y,X) 

< parallel block> Y release(X) 
C6 « conditional > Y,X) 

=- C6 (if < expression > then < block > else < block > 
= if < expressi.on > y,-- --

then C7( < block> y' ,X) else C7( < block> y'" ,X) 
C7 « -block> Y,X) --

{ 
C2 ( < block > Y,X) 
begin release(X) < statement list> Y end 

if GI 

if X t Y 
if G2 and X E Y 

if G3 
if X i y" and G4 
if X E y" and G4 

if G5 
if G6 
if G7 

if G9 
if GIO 
if GIl 

Y,X) 

if G 9 and X e: Y 
if G9 and X t Y 

Functions for Determin~ng Refinements of X not Accessed in Critical 

Region H' (X) . 

The retw:ned result is a subset of the total refinement F(X) of X. 

DI « procedure > Y ,X, F (X» 
= D2« block> Y,X,F(X» 

D2( < block> Y,X,F(X» 

{
F(X)ny 

= D3« statement list> Y,X,F(X» 
D3« statement list> Y,X,F(X» 

_ {D4« statement> Y,X,F(X» 
- D5( < statement> y' < statement list> y" ,X,F(X» 

D4« statement> Y,X,F(X» 

= {~6« structured statement> Y,X,F(X» 
D5 « statement> y' < statement list > y" ,X,F (X» 

= {(F(X)n yII) U D4( < statement> y' ,X,F(X» 
D3 « statement list > Y", X,F (X» 

if XiY 
if XEY and G2 

if G3 
if G4 

if G5 or G6 or G8 
if G7 

if XiY" 
if XEY" 



918 National Computer Conference, 1977 

D6« structured statement> Y,X,F(X» 
fD2 « block> Y ,X,F (X» 

= l r ( < conditional > Y. X. F (X) ) 

D7« conditional> Y,X,F(X» 
- D7 (if < expression> y' then < block > y" 

else < block> lY''',X,F(X» 
= D8( < block> tY" ,X,F(X» UD8( < block > ~Y'" ,X,F(X» 

D8 « block> Y ,X,F (X) 
= [D2« block> Y,X,F(X» 

l F(X) n Y 

if G9 
if GIO 
if GIl 

if XEY 
if XiY 

Transformations for Placing Request(s) for the Refinement X' of X. 

The result is a procedure for request(s) X'. 

El « procedure > Y,X' ,X) 
= < procedure heading> E2( < block> Y ,X' ,X) 

E 2 « b 10 c k > Y, X' ,X) 

{
< block> 

= begin E3« statement list> Y,X' ,X ) end 
E3« statement list> Y,X',X) 

(

E4( < statement > Y ,X' ,X) 
E4 « statement > y' ,X' ,X) < statement list > y" 

= < statement > y' E3 « statement list > y" ,X' ,X) 

E4 « statement> Y ,X' ,X) 

{ 

request(X') < assignment> Y 
_ request (X') < procedure statement > Y 
- request(X') < access control statement> Y 

E5« structured statement> Y,X',X) 
E5« structured statement> Y,X',X) 

{ 

E2( < block> Y ,X' ,X) 
= E6« conditional> Y,X',X) 

request (X') < parallel block > Y 
E6 « conditional > Y ,X' ,X) 

~ E6(if < expression> y' then < block> y" else 

{ 

requ~t (X') if < expression> Y , 
= then <block > y" else < block > y'" 

if < expressIOrl> y' then E2 « block > y" ,X' ,X) 
else E2 « block > y" , ,X' ,X) 

if Gl 

if X ¢ Y 
if X E Y and G 2 

if G3 
if (x'i y" or X i Y") 

and G4 
if X' E y" and X E y" 

and G4 

if G5 
if G6 
if G7 
if G8 

if G9 
if GIO 
if GIl 

< block > y" , ) 

if X i y" ny'" 

if X E y" n y" , 



Techniques for requirements-oriented design 

by KENNETH J. THURBER 
Sperry Univac Defense Systems Division 
St. Paul, Minnesota 

and 

University of Minnesota 
Minneapolis, Minnesota 

ABSTRACT 

The purpose of this paper is to discuss how requirement 
studies can be performed for computer systems. There are 
many different types of requirement studies that can be 
used to define a system and a number of these are de
scribed. 

INTRODUCTION 

The architectural process and its relationship to 
requirement studies 

This paper is about the determination of requirements for 
the architecture of computing systems. Webster defines 
architecture as follows: 

architecture: the art or science of building; 
specif: the art or practice of designing and building 
structures. 

A" W~ ~.Q{;~i we wUl l+RQ Hl@ G~a'~ of a+~t@G~ 
ture as art to be particularly appropriate in the context of 
computing systems and their requirements. While there 
certainly is a large and rapidly growing body of knowledge 
concerning the engineering aspects of computing system 
design, there has been little real emphasis on techniques for 
determining the requirements to be used as the basis for the 
design of computing systems. 

In the current context, architecture includes additional 
activities to those delineated in the Webster definition. In 
particular, the design activity must include requirements 
analysis and specification as an integral part. In fact, in 
many computing system applications, initial marketing ac
tivity involves creation of customer demand as a first and 
often overlooked step of the complete architectural proc
ess. Of course no one of the integral activities of architec
ture stands alone. The requirements analysis is closely tied 
to the design which is iteratively associated with logic 
design, and software design and implementation. All these 

919 

activities are associated with evaluation which must take 
place within each activity and between activities. Consider, 
for example, the restricted architectural problem of exactly 
duplicating a competitor's computing system. Presumably a 
marketing analysis entered into the decision to duplicate 
and the requirements specification is largely provided by 
the complete specification of the extant system. Other 
requirements include projected costs and additional fea
tures. The design activity here could concentrate on effi
cient implementation, and some evaluation activity could 
be required to determine how accurately implementation 
costs matched those specified as the target during the 
requirements analysis. Implementation of the copy system 
(which could proceed from the design and detailed evalua
tion) could be required to determine that the implemented 
system met the specified requirements (both technical and 
financial). Typical architectural activities include: require
ments synthesis and analysis, requirements specification, 
configuration and subsystem design, detailed design, imple
mentation, and evaluation. Trade-offs cross hardware, soft
ware, and firmware boundaries at each level and the design 
process will proceed iteratively. Some decisions that are 
mad~ ar~ ~imI?Jy a matter ?f ~tyle: If the, d:~i~~~E.~at:~ no~ 
have a total teel tor the complete architectural problem 
there may be no way to show that a given proposed feature 
is worth the cost of implementation. Based upon the 
designer's experience the resultant system style will be 
developed. 

Systems 

In a paper about systems it is important to discuss what 
constitutes a system and how the view of a system can be 
different depending upon whether we are the user or 
designer of the system. There are no real, precise defini
tions of what constitutes a system. Companies that sell 
memories speak of memory systems; mainframe manufac
turers speak of computer systems; software manufacturers 
speak of software systems; etc. Notably, the word "sys-



920 National Computer Conference, 1977 

tem" seems to mean the end product produced by the 
manufacturer. 

We will define a system to be a hierarchical, dynamic 
collection of hardware and software entities. A system is 
composed of an application-defined environment together 
with a set of software and hardware that hosts the applica
tion. The application environment delimits and specifies the 
system. 

The software and hardware which supports the system 
has hierarchical, dynamic relationships, which together 
form the basis to support the application. The hardware and 
software are hierarchical because of the identifiable levels; 
i.e., microcode, register level, CPU level, etc. They are 
dynamic in that in processing the application, the various 
ieveis interact to support the appiication. 

There are many different views that can be taken of a 
system. We will briefly discuss several major views of a 
system. First, there is the view we have of a multi-end user 
system. An example of such a system is a computer utility. 
In this case, we see general-purpose hardware and general
purpose software. Another system type is the single-end 
user system. Examples of such systems are integrated 
command and control systems, and single-owner computers 
centers. Such systems have general-purpose hardware and 
specific software tailored to the system's function. A third 
view of a system is that of a single-owner system. In such 
systems, we see specific hardware and software. The last 
view of a system is that of the designer. In the past, since 
designers were primarily hardware designers only, the 
designer saw specific hardware and either specific, general, 
or no software. The usual case was no software. In the 
future, it is important that computer architects not be solely 
hardware designers, but computing system architects capa
ble of making realistic, relevant and user-responsive global 
system design trade-offs. Only then will systems be more 
responsive to the user and customer. 

SYSTEM REQUIREMENTS 

The system design process 

In designing a system, we must satisfy a need. This need 
must reflect the environment as well as the objectives for 
the system. For example, a system designed for a deep 
space environment would include consideration of very 
stringent environmental and reliability constraints on the 
entire system. The design process starts with determination 
of requirements; that is, the user's needs. From these 
needs, the design is specified. It is the extension of this 
need that makes a market for a product. The user's needs 
may be broken into two categories. These categories are 
discussed further under the headings of Requirements and 
Attributes. 

Requirements* are the constraints which the system must 
satisfy. The requirements specify what the system must do. 

'r. Bell' calls requirements "wants." 

That is, any system concept which meets the requirement is 
a candidate solution to the customer's problem. 

Attributes, ** on the other hand, specify either options or 
evaluation criteria for qualitative comparisons of competing 
systems that meet the system requirements. There may be 
many concepts which satisfy the architectural require
ments. Attributes may be used to evaluate the competing 
architectures to obtain a feel for the "goodness" of the 
architecture in solving the customer's problem or as a set of 
factors used to optimize system designs. Attributes may 
also specify options which the user desires but does not 
necessarily demand. 

In designing a system, the customer's needs must first be 
determined. This involves a problem statement. Usually we 
will not be given a specific set of requirements. Rather, we 
will be given a statement of the user's problem in general 
terms. This problem statement describes the user's need. It 
is from this basic need and the concurrent design con
straints based upon industrial affiliation that the specified 
system will be derived. 

Requirements 

Requirements are constraints placed upon a system con
cept. Requirements are the "musts" that any candidate 
system shall satisfy in order to be a viable, potential 
solution to the user's problem. However, depending on the 
level of definition of the requirements, there may be many 
systems which meet the requirements but are not accepta
ble. For example, if the sole requirement were to meet a 
certain throughput rate, there would be many architectures 
which could meet the required throughput. However, due 
to connectivity of processing elements, basic structure, or 
machine repertoire, a large number of proposed concepts 
may not actually be applicable. It is extremely important 
that the requirements be very carefully defined. 

The source of requirements is a problem definition. It is 
from the translation of the customer's functional problem 
definition that the requirements are derived. There are 
typically two types of requirement studies that are per
formed. These are requirements analysis and requirements 
synthesis. Requirements analysis typically is involved with 
special purpose systems or market analysis after the fact. 
The requirements of a system or an application are typically 
analyzed in terms of what is known about the problem a 
priori from previous solutions to describe the problem 
environment and obtain a feel for how new technology 
could better be applied to the problem. Requirement syn
thesis, on the other hand, is involved with trying to project 
what types of systems will be useful in new application 
environments; i.e., to synthesize or create problems that 

** BelJl calls attributes "objectives" and describes their evaluation as a 
relative maximization or minimization process. 



could be solved with new technologies, or define areas in 
which new technologies will allow a more cost-effective 
solution to the created problems. As an example of the 
requirements analysis, the AMNCS (Advanced Multiplat
form Naval Computer Study)2 is a classic example of a 
functional requirements analysis of current Navy problems. 
The AMNCS analysis tried to determine what Navy tactical 
requirements were established in the past and how new 
technology may be applied to those functions. The Hewlett
Packard hand-held calculators. are a classic example of 
requirement synthesis. In the Hewlett-Packard example the 
designers asked, "If we were able to build such a device, 
would a market develop?" Obviously, the market did 
develop since large numbers of people now own pocket 
calculators. 

There are numerous varieties of requirements. Some of 
these may be generally categorized as marketing require
ments, economic requirements, technical requirements, and 
political requirements. 

Examples of marketing requirements may be that the 
system being designed must be capable of solving a certain 
list of designated problems. Other marketing requirements 
may include price goals, goals specifying the production 
cycle, product life goals, and logistics goals. 

Typical economic requirements deal with the financial 
constraints imposed on the system developer. Examples of 
economic requirements may be that the non-recurring de
velopment costs do not exceed a certain dollar figure; that 
the spares cost for repair does not exceed a certain figure; 
and that the manufacturer has been in business a specified 
number of years. 

Political requirements are viewed mainly by the designer 
of systems that require the use of off-the-shelf equipment 
and who may be trying to use piece parts that are available 
through his own company's manufacture versus piece parts 
that are available from other vendors. In this case, a typical 
requirement may be that we use our own microprocessor if 
we're a semiconductor vendor. 

At best, the political, economic, and marketing require
ments may be extremely vague. In a real sense, however, 
,te~hnical reQ)Jb:elJl~uls, m~yl;?~ .rna,de yef,Y., 1'-~e.si~t:. The 
types of items that may be considered for technical require
ments include system organization, word/byte/bit organiza
tion, hardware and software expansion capability, data path 
widths, word size, memory hierarchy and memory sizes, 
availability of software, availability and capability of the 
operating system, assembly and compilation speeds, 
throughput speeds on specified benchmarks, type and avail
ability of peripherals, interrupt structure and support fea
tures, instruction repertoires, and utility packages. Further 
technical requirements may include alternative throughput 
capabilities, 110 capabilities, percentage utilization of re
sources, and cost performance ratio. One real requirement 
that is typically not considered but is very important is the 
type of performance evaluation and monitoring features 
available. This equipment must be available to allow the 
user to judge how well the system not only initially meets 
his procurement requirement, but continues to meet his job 
requirements in the future. 

Techniques for Requirements-Oriented Design 921 

Attributes 

Since system requirements cannot be totally comprehen
sive and precise unless they spell out a unique system 
architecture concept, attributes are introduced. Generally, 
it is not in the customer's best interest to define a precise 
system for if he does, he runs the risk of purchasing a 
system which is not cost-effective. If you buy a system in a 
non-competitive environment, you run the risk of paying 
more for that system than if there are two systems which 
can satisfy the requirements and, consequently, two manu
facturers bid on the requirements. It is therefore to the 
user's advantage to make the requirements as definitive as 
possible, but allow for the introduction of various manufac
turers' equipment to obtain the best price possible. 

There are times when the architecture of the system will 
not be totally precise and there are features which are not 
specifically required, but are desired depending on their 
cost. Attributes are the wants (options) and evaluation 
criteria used to determine which characteristics make one 
system more desirable than another system even though 
they may both meet the requirements. Attributes usually 
deal only with the detailed technical aspects of a system. 
Attributes in the form of desired options deal with specific 
system features. For example, as an option to a processor 
which requires an interrupt structure, you may ask that the 
structure not only include enable/disable by class, but that 
the interrupt structure is desired to have, but not require, 
the ability to arm, disarm, enable and disable interrupts by 
level, and that a number of levels (such as 32) should be 
furnished. However, the requirement for such features may 
have actually been stated in the following manner: That the 
computer at least furnish four classes of interrupt with 
enable/disable characteristics. There are many more ma
chines which satisfy the requirement than would satisfy the 
attribute. Depending on how systems rank on the option list 
and on other general attributes, the final selection of the 
design will proceed. Attributes are the intangibles of design. 

The following list of criteria can be used to evaluate 
candidate architectures~ These, then, are the alternatives 
th~t m~~t b~ o;d~~~d 't~ pro~id'e a' 11~t ot the attnbut'es' and 
their relative importance in system design. These ranked 
attributes may then be used to trade off alternative machine 
architectures: flexibility, expandability, bus complexity, 
executive complexity, availability, adaptability, partitioning, 
modularity, reliability, maintainability, manufacturability, 
production cost, development cost, technical risk, logistics, 
programmability, support software cost, software adaptabil
ity and transferability, compatibility, and service. Having 
the ability to precisely quantify these attributes so that they 
may be measured against each other is difficult but neces
sary to insure a good system selection. 

Options which are detailed technical desires may also be 
rank ordered and included in the attribute evaluation analy
sis. Typical options may be inclusion of a maintenance 
processor, ability to upgrade to a virtual memory system. 
or disk operating system availability. Obviously, detailed 
technical options are easier to measure than general attri-



922 National Computer Conference, 1977 

butes, but they are also more restrictive measures of 
desired but not required capabilities. 

Requirements-oriented design 

There are a number of steps involved in designing a 
system to a set of requirements. However, there are a 
specific set of steps involving the use of the requirements 
and attributes. These steps wiII be summarized and dis
cussed herein. The actual design step will be simply de
scribed as "system design" such that at this point we will 
be able to see how the requirements and attributes actually 
lead to the detailed system design step. 

The first step in requirements-oriented design is the 
problem analysis step. This step consists of determining, 
from the customer, what are the user's functional require
ments. This may involve studying the applications as they 
are currently implemented, trying to project what the 
application is, or will be in the future, or trying to deter
mine, based on technology issues, what needs could be 
generated in the marketplace for certain types of products. 
After the problem analysis step, we will have a detailed 
statement of the exact problem and its functional character
istics. 

The second step is the determination of the requirements 
and attributes. This step involves taking the problem analy
sis functional description and translating it into a detailed 
set of requirements and a detailed set of attributes; the 
requirements specifying what the product system must do, 
the attributes specifying what detailed technical options are 
desired for the system, and a set of attribute priorities 
ranked for use as architectural trade-off parameters. In the 
case that more than one system satisfied the requirements, 
then, the attributes will be used in optimizing system 
selection. The attributes should be ranked in priority order 
at this point to insure objective trade-off and comparison of 
competing architectures. 

The third design step is the determination and description 
of the requirements and attributes in a specification. Two 
documents should be generated, one which describes the 
detailed translation of the problem statement into the re
quirements and how the requirements were derived from 
the problem statement. This document then ends with a 
detailed specification of all machine requirements. Analo
gously, an attributes specification is generated. The attri
butes document should rank general attributes for trade-off 
usage and enumerate all detailed technical options. 

The system design process (step) consists of designing 
delimited architectural choices. It is very difficult to trans
late a set of requirements onto a set of architectures, or to 
use a set of requirements to select a set of architectures. To 
achieve an accurate evaluation of the concepts under con
sideration they all may have to be designed to a level of 
detail that enables comparison to the requirements specifi
cation. Therefore, the design process really consists of 
using the requirements document and attributes document 
to narrow the scope of allowable choices and to narrow the 
number of concepts that satisfy the requirements. After all 

systems have been screened and those that do not satisfy 
the requirements eliminated, architectural descriptions are 
generated and furnished to the attribute evaluation step for 
all remaining architectures. 

U sing the attribute ranking, an attribute evaluation step is 
further used to list the architectures in descending order of 
their satisfaction of the attributes. Then, a number of 
systems which all satisfy the requirements and which are 
ranked in order of priority of satisfaction of the attributes 
may be selected and bids solicited from manufacturers. 
Alternatively, if we are designing a system from scratch, a 
composite concept which satisfies all the requirements and 
is one of the systems which rank high on the attributes 
should be selected for detail design. This process is proba
bly iterative and best performed in a tria! and error fashion. 
The main difficulty is that attributes cannot be precisely 
measured and thus the "optimal" design is always illusion
ary. 

Requirements and attributes make the design process 
manageable. They cut down the number of choices we must 
make by clearly delimiting our choices. Obviously, the 
process must be iterative. Changes in technology, cost 
considerations, etc., may cause changes in the requirements 
or attributes specifications. Further, the use of require
ments and attributes splits the design goals clearly into 
"musts" and "options". The effect of the process is to 
continually narrow the choice so that the designers can 
quickly focus on the problem. Thus, the requirement and 
attribute, and problem analysis continues to refine the 
general spectrum of architectures down to a single architec
ture best suited for the application. This is the architecture 
which is then designed. 

Goals, policies, and product specifications 

To help with project management, after the requirements 
and attributes are determined, a set of system goals which 
describe objectives and policies which point the direction 
for the achievement of the goals (how the goals can be 
achieved) can be determined. This ·information is useful 
from the management viewpoint, but does not get into the 
detailed system requirements as described in the product 
specification document which is a result of either system 
synthesis or system selection. 

TYPES OF REQUIREMENT STUDIES-ANALYSIS 
VERSUS SYNTHESIS 

Requirements seem to emanate from two important con
texts: .< 1) Analysis of existing system concepts or (2) 
synthesis of new system concepts. The basic premises 
behind analysis efforts are the ideas of either (l) building a 
better copy of a competitor's product, (2) upgrading a 
current product, or (3) integrating the best of many con
cepts into one new design. In these cases, extensive analy
sis of both the market and technology can be performed 
with the resulting analysis used to drive the design effort. 



Analysis is also quite useful for the selection of a system 
( end-user perspective). 

On the other hand, requirements synthesis involves the 
conception of a new product or new market. This environ
ment may be intuitive and thus the issues may not be as 
clear as in applications in which only analysis is performed. 
In some circumstances, synthesis may only involve the 
projection of current analysis results to account for technol
ogy improvements or enhancements. 

Requirements can fall along a spectrum. The design of a 
system from a requirement thus also can fall on a spectrum. 
At one end of the spectrum we have market-only require
ments. In this case, the issue is to build the cheapest 
possible product. At the other end of the spectrum is the 
technology-driven requirements. In this case, the problem 
is to build the highest performing product given a particular 
technology. In between there are many variations of the 
two extremes, most of which can be generically categorized 
as an attempt to design a product which optimizes the cost! 
performance ratio. Figure 1 summarizes the spectrum of 
possible requirement studies. 

USE OF ANALYSIS 

As previously indicated, analysis can be projected and 
used either by designers of products or by buyers of 
products. In this fashion, analysis can become a form of 
product concept synthesis. 

IMPORT ANT EXAMPLES 

Requirement studies for a number of important systems 
or application groups have been documented in the litera
ture and are briefly listed below. Some of these studies are 
important due to their actual resulting product; whereas, 
others are important not because they resulted in products, 
but because they illustrate specific design techniques. The 
studies listed below are illustrative of the types of efforts 

TYPE 
OF 
STUDY 

DRIVING 
FACTOR 

EXAMPLE 

REQUIREMENTS 

I 
ANAYLIS 

(UPGRADE OR 
COPY) 

Iii M"'" I ",",oeoo, 

COST 
PERFORMANCE 

I 

I 

SYNTHESIS 
(NEW PRODUCT 

DR MARKET 
DEVELOPMENTI 

MARKET I ",,,to, 

COST ~ I 
PERFORMANCE 

2ND DEC HAND IBM 
GENERATION PDP-ll SIGNAL HELD 360 

MINICOMPUTERS SERIES PROCESSORS CALCULATORS SERIES 
CRAYl 

Figure I-Requirement study genealogy 

Techniques for Requirements-Oriented Design 923 

that have been performed and documented. This list of 
references does not attempt to be a complete bibliography. 

Bell 

C. Gorden BelP provides some interesting insight into the 
design process in this book. 

IBM Series 360 

Amdahl et al. 3,4 in these papers presents the design 
strategy and requirements behind the 360 as well as insight 
as to how the system was impacted by the requirements. 

DEC PDP-II 

Bell5 provides the PDP-II requirements and their design 
impact in this paper. 

Military systems 

The AMNCS (Advanced Multiplatform Naval Computer 
System) study2 provides significant insight into the require
ments analysis of a large user group. In a related study,6 
Punj provides a survey of the requirements and capabilities 
of a large number of Naval tactical operating systems. 
Further, related work includes: the E-2B requirements 
study7 of a specific aircraft, the MCF (Military Computer 
Family) design goals,S and analysis of specific Army system 
requirements for a large number of systems. 9 The Air Force 
has also performed significant requirements work and tech
nology projections, as noted in References 10, 11, and 12. 
Further, interesting military studies include References 13 
and 14. 

Distributed processing 

Kilpatrick 1:; presents a unique approach to the analysis of 
specific application for use with a distributed processor. 16 

Software systems 

A detailed analysis of many operating systems can be 
found in Reference 17. Analysis to support specific operat
ing systems with hardware primitives is available in Refer
ence 18. 

DISCUSSION 

In the following, four examples will be considered. Ex
amples one and two will discuss general purpose computer 
systems. Example three will discuss the functional compu
tation requirements for a large user application base. The 



924 National Computer Conference, 1977 

last example will discuss the detailed I/O, computation and 
memory requirements for a specific system. 

Comments on general-purpose computers 

For general-purpose, data-processing systems, the func
tional requirements usually cannot be well defined. The 
competitive business nature has kept the analyses that have 
been done in a proprietary vein. Currently, the most 
important commercial requir:ement seems to be software 
compatibility. 

Although few general-purpose computing system require
ment studies have been discussed in the literature, there are 
two ciassic exampies of such requirernent studies-studies 
were conducted on the IBM 360 Series,3 and the DEC PDP-
11 Computer. 5 Both articles contain a general description of 
the design objectives, the major architectural decisions, and 
some of the reasons for those architectural decisions. Since 
the machine to be designed is general purpose, the data 
from the detailed requirement studies has been filtered and 
the results indicate a series of design goals for the new 
computer system. 

IBM system 360 requirement study 

There were four major innovations in the IBM System! 
360: (I) a flexible storage concept which provided variable 
capacity; a hierarchy of different speed memories; storage 
protection and program relocation, (2) an I/O system which 
provided concurrent operation; large amounts of channel 
capacity; an integrated design between the hardware and 
software and CPU interaction; and a standard channel 
interface, (3) a general-purpose machine organization with 
very powerful operating system; logical processing opera
tions; and many different instruction and data formats, and 
(4) machine-level language compatibility over a series of 
models with a performance range of over 50. 

In performing the architecture development of the 360 
System, several important systems concepts and trends 
were noted by Amdahl, et a1. 3

: (I) the adaption of business 
data processing to scientific data processing equipment, (2) 
the total system concept including I/O, (3) the use of 
program translators, (4) the development of large, second
ary storage mechanisms such as tapes, drums and discs 
with many order-of-magnitude larger storage capabilities 
than seen in previous media, and (5) real-time and time
sharing system development. 

Based on these general technical trends, a number of 
different concepts were provided for in the 360 System. The 
major requirements for the system could be grouped into 
five major areas: (I) provide for advanced system concepts, 
(2) provide an open-ended design, (3) ensure a general
purpose functional capability, (4) provide a cost-effective 
performance range, and (5) produce complete intermodule 
software compatibility. In each of these five requirements 
there was a number of subrequirements. 

In the advanced concept area it was recognized that a 

major break would have to be made with existing products 
even though this would result in some software incompati
bility. The break would establish the new family of ma
chines. Therefore, the following subrequirements of the 
advanced concept requirement were considered: (1) that the 
computer provide for a family capability to provide growth, 
and to allow for a succession of product lines, (2) that a 
high-performance, general 110 technique be developed 
which would allow I/O devices tailored for applications to 
be used with any machine even though the I/O devices 
differed in rate, access times, or functionality (also, that the 
input/output channel and input/output control program had 
to be designed to be compatible with each other), (3) to 
utilize the throughput of a machine not to obtain high-speed 
processing, but to obtain high-speed probiem solution by 
making a complex machine and programming system that 
are easy for the user to manipUlate, (4) to increase CPU 
utilization for computing by providing for addition of compila
tion, I/O management, etc., (5) to provide a comprehensive 
operating system which includes extensive interrupt facili
ties, and good storage protection, (6) to provide a failsafe/ 
failsoft capability in systems with more than one CPU, (7) 
to provide a large storage capability rather than the 32,000 
words normal1y required and furnished at that time, (8) to 
provide for large word lengths to accommodate large fixed
and floating-point words, and (9) to provide detailed hard
ware maintenance and diagnostic aids to reduce system 
downtimes and make identification of individual malfunc
tions easier. 

The open-ended design requirement was an attempt to 
ensure customers that when they made the break with the 
previous software concepts, they would have a long-term, 
viable computer system which would continue to use the 
same architecture but be upgraded for speed and perform
ance over a long time. This then enabled IBM to satisfy 
their customers so that when they made the switch to the 
new machine, they would not immediately, in three or four 
years, be required to make another switch. In this area, a 
number of subrequirements were identified: (1) that the new 
design must provide customer programming capability for 
over a decade; thus, the machines would have to remain 
with the same architecture for at least a decade, (2) that the 
design permit asynchronous operation of major subsystems 
so that subsystems may be updated technologically without 
impacting the total system configuration, (3) that many 
decisions be made to ensure that the functions of the 
machine are general; that is, that spare bits, etc., be 
carefully placed in the words to ensure that new techniques 
or new functions that came along did not obsolete the new 
product line, (4) that hardware and software control be 
embodied in the machine such that it could directly sense 
control and respond to other equipment modules via tech
niques which are outside the "normal techniques." This 
would provide for the construction of "super systems" that 
could be dynamically managed from the basic system. It 
would also provide for the construction of special systems 
designed for specific applications and would allow for the 
construction of systems where some shortsightedness of the 
original design had been encountered. 



In order to meet varying requirements such as those 
encountered in commercial, scientific, time-sharing, data 
reduction, communications, and other types of processing, 
the 360 CPU would have to be capable of hosting these 
different applications. Thus, different types of facilities may 
have to be offered as options, but must appear as integral 
features from the viewpoint of the system's logical struc
ture. In particular, the general-purpose objective dictated: 
(1) that manipulation of words or bits be such that the 
operation depends upon the general representation rather 
than on any specific selection of bits, (2) that operations be 
code independent, i.e., all bit combinations are acceptable 
as data and no data can exert any control function on the 
machine, (3) that bits be addressable, (4) that the addressing 
structure be able to address directly the unit used for 
character representation, i.e., addressability to the byte. 

In the performance area, the main consideration is that 
the various products in the product line have a consistent 
cost-performance ratio that decreases or remains stable as 
the system performance increases. However, due to the 
compatibility constraint, there is a large problem in this 
area. 

The last 360 requirement was for intermodel compatibil
ity. At least six models were anticipated with a perform
ance range of 50. Intermodel-compatible really meant pro
gram-compatible. Program-compatible meant that any valid 
program whose logic did not depend implicitly upon time of 
execution, or other side effect programming which would 
run on Configuration A, would also run on Configuration B 
if B contained at least the required storage, 110 devices, 
and optional features. A hedge clause was placed in this 
description such that any invalid program which violated 
the programmer's manual was not constrained by the 
manufacturer to yield the same results and thus was not 
strictly program-compatible. Therefore, if the user adhered 
to the programmer's manual, since the architecture of all 
the machines was identical, he could run on any 360 
structure regardless of the speed differences between 
models. However, the program can run at different rates. 

The article by Amdahl, et al. 3 continues to describe how 
§qtp&"Qf t..tt~. cief~§tqtl.L':Y.~I~ J):.1'!st~. (9X t.h~_ Il).9:9.hiJ).e,qe.§lgg 
which resulted in the 360, based on the previously summa
rized requirements. However, this paper is really only 
interested in the requirements and thus will not delve into 
the 360 architecture. But, we will make one point; that is, in 
doing a requirement study, regardless of the type, whether 
a general purpose study such as that for the IBM 360 or a 
detailed special-purpose requirement study, the design step 
must begin somewhere. It is difficult to break out of the 
mode of determining the requirements and starting the 
design. Therefore, it is irrelevant as to where we begin the 
design, except that we must break the requirements open 
from some position and say, "If we make this selection, 
how does this impact the other requirements?" In the 360, 
for example, this was accomplished by considering the 
basic addressing structure and first determining what the 
data format should be. The first decision was to go with an 
8-bit byte. Once this decision is made, the design could 
proceed and the architect could layout the formats, work 

Techniques for Requirements-Oriented Design 925 

on the field specifications, the instruction decisions, and the 
system architects could go to work synthesizing the various 
configurations. The architects will thus know how large the 
machine will tend to be; what kind of addressing modes are 
envisioned; how the memories have to be addressed, etc.; 
the point being, that we can get into a circuitous mode 
during the requirement study. A decision must be made! 
After making that first decision, we can then assess the 
impact upon the requirements and then change the deci
sion, if necessary. But most importantly, we can begin the 
design process and cut down the amount of information we 
are required to deal with in general terms. The specifics we 
decide upon can be traded off against each other so that the 
system design may progress. 

The DEC PDP- J J requirement study 

The PDP-II requirement study is slightly different than 
the IBM 360 requirement study. Whereas IBM decided to 
make a major break from their architectures, the PDP-II 
was designed without regard as to whether or not it would 
be a major break. Rather, it was designed in order to solve 
certain technical problems that had been encountered by 
the customers of the DEC Corporation. Their customers 
were using four different machines at the point that the 
PDP-II was conceived, a PDP-5, LINC, a PDP-4, and a 
PDP-8. Furthermore, these models were being used in 
communication control environments, instrumentation en
vironments, preprocessors and communication processors 
for large systems, data acquisitions, etc. The PDP-II was 
designed to overcome weaknesses that had been encoun
tered in the current DEC mini-computers based on the 
customer's application experience. The weaknesses that the 
PDP-II was to overcome include: (1) limited addressing 
space, (2) too few registers, (3) lack of hardware stack 
capability, (4) slow context switching among multiple proc
es ses, (5) lack of byte string manipulation capability, (6) 
lack of read-only memory storage facilities, (7) elementary 
110 concepts, (8) lack of ability to upgrade users to a higher 
l?~.rfQLm:JnC_~mQ.9~L~.:J1].g .enbJgltl?rQ&t:?..IDJ1)ing .~Q§.l~ .4!l~ . .tQ 
lack of high-level languages and their associated software 
support. 

The new machine family was to take advantage of new 
integrated circuit technologies that were becoming avail
able, contain enough machine models to span a range of 
functions and performance, update the DEC product lines 
into what is considered classical, third-generation ma
chines, work equally well in the addressing mode mechani
zations 0, I or 2 address machine, and present the user with 
a very sophisticated connection system which later became 
known as the Unibus. 

Notably, the PDP-II requirements tended to be much 
simpler than the 360 requirements. There are a number of 
reasons for this including the size of machine, the size of 
the corporation and its market base, and the context in 
which the machines were used. However, one will note that 
the requirements which were used to define the PDP-II are 
very distinct and direct to the points that describe what 



926 National Computer Conference, 1977 

changes must be made to be successful in the minicomputer 
business. 

Functional requirements analysis for a large user group 

In this discussion we will first consider the problem 
definition taken from the Advanced Multiplatform Navy 
Computer Systems Project (AMNCS).2 The problem state
ment or objective of the AMNCS Project was to provide 
information and guidance on requirements for the Ad
vanced Multiplatform Naval Computer System. The spe
cific project objectives were: (I) to identify a set of com
mon functions for tactical data systems, (2) identify major, 
common subfunctions for the functions identified, and (3) 
identify computational functions for the subfunctions. Ad
ditional objectives of the AMNCS study dealt with com
puter architecture and technology projection, however, 
they are not pertinent to the objectives of this paper. 

In identifying a set of common functions, two specific 
groups of functions were identified. These were functions 
which all tactical data systems tended to perform, and 
specific mission capabilities required of tactical data sys
tems. Typical functions performed by all tactical data 
systems are: (I) data collection, (2) data measurement, (3) 
data processing, (4) data correlation, (5) data display, and 
(6) system executive control. Typical mission application 
functions that are contained in most tactical data systems 
are: (I) track management, (2) air interception computa
tions, (3) air traffic control computations, (4) strike control 
computations, (5) electronic warfare, and (6) weapons allo
cation and fire control. Therefore, when analyzing a partic
ular tactical data system, we may examine or specify a 
particular system in terms of its general common functions 
which exist in all tactical data' systems and its specific 
mission-oriented functions. The main difference, then, be
tween tactical data systems in this limited kind of environ
ment will be in the functions included in the concept, rates 
of computation of the various kinds of functions, complex
ity associated with the computations; namely, decision 
requirements, number of variable requirements, etc., along 
with the distribution of the functions in the computing 
system. The system concepts of the tactical data system 
can cause these changes in requirements on a specific 
function basis due to factors such as degree of computation 
accuracy, amount of input data, type of computers to be 
employed in the system, volume and type of communica
tions, physical dynamics of the physical systems, and the 
types of display information that must be generated. Look
ing at the list of common and mission type functions, Shen 
next generated a list of major functions for tactical data 
systems. Shen provides a list of representative United 
States Navy tactical data systems and a list of major 
functions that appear in these tactical data systems. Figure 
2 indicates which major functions appear for each tactical 
data system. This figure is representative of the type of 
tabulation performed in a requirements analysis study. 
From Figure 2 we can also determine all the functions that 
must be computed for any given system. However, each of 

J~ 
I i 

en lei I 
I n ~. I 

en ~i UI 
I >- ~ ~ .~~ !.L enU 

en~ wu <{en ~~~ --, en~ <{<{ 00 ~~~~ -~ ~~ ~~ 99 en ~ll- ~I- u..1- g~~ 2 ;;;:~I <{II-Io 1-:2 :::;:2 c.. en<{ :2_ 
I IX x· X x'x x x x x X XI Trackino 

xix x ')( ,,)( X XX Sensor Data Process. 
Ix XXX X XXX XX Multisensor Corr. 

X X X X XX Sensor Equ. Control 
I XX X X X XX Navioation 

I X X X Guidance 
Ix I X XX Air Traffic Control 
X X X XX Air Intercept Control 
X X X I 'X! Terminal Control 
X X I X X I XX AAW 
X X 1 xx X xx Strike Operations 

! X X X AEW 
X'X ,X X XX XX XX XX XX XXX XX Data Link Comm. 
XXX X XX XXX XXX XX Message Process. 
XXX XX XXX XX XX Message Dist. 
XX XX XX XX X X XX XX XX Multicomm Control 
XX XX XX XX XX X X XX X XX Secure Comm. 
XX XX XX XXX XX XX XX XX Secure Processing 

XiX X X X X X XX Weapons Assignment 
X xix X XX XX XX XX Threat Evaluation 

xl X X I Weapons/Sys/Veh. Sim 
X X XX XXX XX EW 

X X X X XI ECM/ECCM 
X X X XI X X I ELiNT 

,x X X XXX ,Xi ASW 
X X X Auto Preflight Sys. 

XX XXX XX XXX XXX XX X ISR 
XX XXX XXX XX XX XX XX XX XX XX Console/CRT Display 

'X X X X X X XX XXX lieo uisplay 
XX XX X'X X XXX 'X X XIX XX Monitoring 
XX XX XXX XX X XIX XX XX XX Alert Generation 
XX X XI ,XX XI ,X X ,X X,X XX X.X IXIX,X, 'Hardware fault Det. 
X ~)\. I)\. ,)\. IX SoTtware r-ault uet. 
X XIX IX IX XX IX X IX X )\. uegraded uperatlons 
)\.)\. )\.!)\. I)\. )\.!)\. ,)\. 1)1.)1. )I. 1)\.1)1. )1.)1. )1.)1. tlecovery 
XX X XX IX IX X,X IXIX X XX Diagnostics 
XX X IX X IX IX X Built·1n Test 

IX )\. IX 'X IX ... ogIStICS 
IX X IX IX IX X !X X IX X X Hesource Management 
IX IXI)\. )\. Amphibious Wartare 
XX XIX X xX I)\. )\. XIXX IXIXIX I)\. X luata !:lase Management 

Figure 2-System vs. major functions 

the systems have potentially different throughput require
ments, input data rates, etc. Based on these data rates and 
the break out in terms of major functions, we are able to 
obtain an estimate of the computational complexity of any 
given system. That is, with rate information we now have 
the global description of any given system in terms of its 
system functions. Using the system functions, we can 
continue to refine each of the functions until we are able to 
determine the exact computation rates to be used in the 
design of the computer system. Therefore, the next step 
would be to take each of the functions, such as tracking, 
and break it down in terms of subfunctions. In doing this 
for the AMNCS Study, Shen broke the major functions 
down into a set of 72 specific computational requirements 
and tabulated these 72 computational requirements against 
the 27 major functions. Typical computational modules 
(requirements) used by Shen included: (l) matrix opera
tions, (2) sensor calibration, (3) triangulation and trilatera
tion, (4) R,O xy conversion-range and bearing to rectangu
lar conversion (and inverse), (5) data encrypting, (6) track 
correlation, (7) vector operations, and (8) trigonometric 
functions. 

With the list of subfunctions, Shen was able to generate a 
chart that compared the subfunctions to the major func
tions. This allowed a more detailed definition of typical 
rates for the functions, interaction between functions, pa
rameters that must be passed between each other, difficult 



computations, etc. This level of detail provides a basis for 
the type of computation rates that must be performed in 
developing a particular architecture. At this point, we have 
not received any information, other than rate information, 
that would tend to give us a feel for the type of detailed 
computations to be performed. The subfunctions, we have 
determined, tend to be very small, such as coordinate 
conversion type functions. At this level of complexity we 
are able to break down these functions even further in 
terms of the system model. Having the subfunctions, we 
are able to break out and construct a model of any given 
particular system. We could start in a tactical data system 
and construct a figure which consisted of, on the left side, a 
set of all the sensors available, a set of all the functions 
included in the system, and a set of the outputs in the 
system. Using such diagrams, we can determine the param
eters to be passed between subsystems. Each function or 
subfunction may now be described in terms of its given 
inputs into the function, computations to be performed, 
outputs to be returned, and special comments. For exam
ple, coordinate conversion, as a function, is given a range 
and a bearing. It computes the x,y coordinates based on the 
equations x=rCOSO, y=rSINO and returns as outputs x and 
y. We can now develop a good description of all functions 
that must be actually computed in the system. A phase 
diagram indicating all the parameters and I/O data that has 
to be passed between functions of a particular system and 
the timing of all computations could be generated for 
estimation purposes. 

A specific application requirement analysis 

Kilpatrick15 considered detailed requirements for a num
ber of limited systems. Most of the systems considered 
would compare to one of the smallest systems considered 
by Shen. In particular, we will consider Kilpatrick's air-to
ground attack system concept. A summary of this concept 
is shown in Figure 3. It consists of electr%ptical functions 
for target acquisition, threat warning function, fire control 
f1.l11ctiQn J tnree. \,<;l,d~tious of u;;tyjgation fuuctiQ.tls. ;;l.uair 
data function, flight control function, digital data link 
function, and display function. These functions are all 
sensor processing functions that connect to a system via 
some types of I/O links. In this case, the system concept 
depicted in Figure 3 was a distributive processor memory 
system and is therefore listed as DPM (Distributed Proces
sor/Memory) Processor. DPM does the appropriate compu
tations on the data and performs the appropriate functions 
associated with the functional concepts. A detailed system 
description is then generated. It breaks out not only the 
detailed subfunctions, but additionally all the signals be
tween the I/O system and the computer system. 

Let us review each of the primary subfunctions provided 
by the system. The primary functions are: 

• Target Acquisition and Electro/Optic-a means for 
target recognition. 

• EW/ECM-the Electronic Warfare, Electronic 

I 

Techniques for Requirements-Oriented Design 927 

DPM 
PROCESSORS 

TARGET 
ACQUISITION • 

SENSORS 
ELECTROL I----

OPTICAL 
FUNCTIONS 

DIGITAL 
I---

LINK 

THREAT -WARNING 

FIRE CONTROL r- I/O 

I 
NAVIGATION 

• LORAN 

• INERTIAL DISPLAYS 

• KALMAN 
I--- • HSD 

FILTER • VSD 

AIR DATA 

FLIGHT CONTROL 
• AFCS 
• SAS 

Figure 3-Air-to-ground attack concept block diagram 

Counter Measures function. It is used for threat warn
ing location and neutralization of enemy vehicles. 

• FLR-a Forward Looking Radar function that is used 
for target acquisition, the navigation function, and 
weapon delivery. 

• WRANIIner.tial.-a.~t of t~Da\L4z.atiol1.fuACtiull~ 
• Flight Control-the Stability Augmentation Function 

(SAF) and the Attitude Flight Control System (AFCS) 
function. 

• Digital Link-provides two-way communication be
tween the aircraft and the ground. 

• Vertical Situation Display-provides a pilot with flight 
direction, sensor imagery, and weapon delivery infor
mation. 

• Horizontal Situation Display-provides navigation in
formation, threat and target location along with sen
sory image functions to the pilot. 

• Control Unit/Data Entry-provides for subsystem 
mode of operation and data insertion into the computer 
from the pilot. 

From the subfunction definitions and detailed equations, 
and the block diagram which shows the interaction of all 
the functions, the requirements analysis is begun. Kilpat-



928 National Computer Conference, 1977 

MEMORY CYCLES 
FUNCTION (THOUSANDS/SECOND) 

LORAN 150 

INERTIAL (SD/PLAT) 400/50 

AIR DATA 30 

FLIGHT CONTROL/CHANNEL 350 

FIRE CONTROL 350 

KALMAN FILTER 100 

DISPLAY 200 

TARGET ACQUISITION* 300 

TOTAL: 1600/1250 

*TARGET ACQUISITION AND FIRE-CONTROL 
FUNCTIONS ARE ASSUMED NOT TO BE 
PERFORMED AT THE SAME TIME. 

Figure 4-Processor speed requirements summary 

rick first generated the 1/0 data transfer requirements of 
which there are some important points to be noted. The 
system block diagram provided a listing of all primary 
information that must be transferred within the machine 
and processes within the system. Each of the subsystems 
has a number of other associated functions. These are the 
preflight type of functions of on/off power test and various 
kinds of status signals that do not impact the actual 
operational system. 

With assumptions and derived information, the total 110 
now can be specified for the system. Furthermore, taking a 
more detailed look at each of the functions associated with 
each of the subsystems, we can determine the data parame
ters that must be passed between each of the functions. 
These data parameters are tabulated as input data require
ments versus computational functions. 

With the 110 information and now the information detail
ing the interaction of data between the various functions, 
the requirements definition process can proceed by taking. 
each of the separate functions and examining their algo
rithms. Thus, a set of total processing-time, memory and 110 
requirements, by function, can be determined for each 
particular function. 

Figure 4 lists the functions and memory cycles in thou-

MEMORY WORDS 
FUNCTION 

INSTRUCTION DATA 

LORAN 3900 500 

INERTIAL 2200 350 

AIR DATA 1300 70 

FLIGHT CONTROL 3250 400 

KALMAN FILTER 800 2000 

FIRE CONTROL 4800 500 

DISPLAY 2500 500 

TARGET ACQUISITION 1500 2500 

TOTAL SYSTEM 20,250 6800 

Figure 5-Memory requirements summary 

DATA WORDS/SECOND 

SYSTEM 
INPUTS OUTPUTS 

LORAN 50 75 

INERTIAL (SD/PLAT) 600/150 30 

AIR DATA 50 ----
FLIGHT CONTROL 600 200 

FIRE CONTROL ---- ----
KALMAN FILTER ---- -.--

RADAR ALTIMETER 20 ----

RADAR 20 40 
E/O 40 40 

DISPLAY ---- 1000/4000 

LINK 10 10 

TARGET ACQUISITION 1000 --.-

TOTAL 2400/2000 1400/4400 

Figure 6---110 requirements summary 

sands per second for the complete system shown in Figure 
3. Since Kilpatrick made the assumption of a single-address 
machine with two memory cycles required for the execu
tion of simple instructions such as Load or Add, a total 
computer memory cycle or instruction rate can be deter
mined. The memory requirements for this concept are given 
in Figure 5 and the 1/0 requirements are summarized in 
Figure 6. With the 1/0 requirements, the memory require
ments, and the system cycle speeds established, along with 
the detailed block diagrams and the detailed functional 
block diagrams, the requirements analysis is complete for 
this system. We could now proceed with the synthesis of 
the actual computing syste·m. 

SUMMARY 

This paper has presented a description of the use and 
generation of computer system requirements and a descrip
tion of the relationship of the design process to system 
requirements. Two types of criteria (musts-requirements 
and wants-attributes) were introduced. Four important ex
ample requirement studies were discussed and a brief 
bibliography of important requirement studies was given. 

REFERENCES 

I. Bell, C. G., Designing Computers and Digital Systems using PDP-16 
Register Transfer Modules, Digital Press, 1972. 

2. Shen, J. P., "Advanced Multiplatform Navy Computer Systems 
(AMNCS): Initial Architecture Study in Technology Organization Pro
jection for 1980-1990," Naval Electronics Laboratory Center, 26 Sep
tember 1972, NELCITRI847. 

3. Amdahl, G. M. et aI., "Architecture of the IBM Systeml360," IBM 
Journal of Research and Development, April 1964. 

4. IBM, "The Structure of Systeml360," IBM Systems Journal, No.2 and 
No.3, Vol. 3, 1964. 

5. Bell, C. G., et aI., "A New Architecture for Mini Computers-The DEC 
PDP-II," AFlPS Conference Proceedings, Vol. 36, 1970. 



6. Punj, D., et aI., "A Survey of Navy Tactical Computer Applications 
and Executives," October 1975, Contract NOOO39-75-C-0312. 

7. Smith, W. R., "Simulation of AADC System Operation with an E-2B 
Program Workload," NRL Report 7259, April 1971. 

S. Coleman, A., "ArmyfNavy Military Computer Family," COMPCON 76 
Fall, September 1976. 

9. System Development Corporation, "Embedded Computer System Data 
Processing Requirements for U.S. Army Weapon/Data Systems," 
March 1976, Contract DAAB07-76-C-0334. 

10. Rand Corporation, "Information ProcessinglData Automation Implica
tions of Air Force Command and Control Requirements in the 1980's 
(CCIP-S5)," 1973. 

II. Brodnax, C. T., "A Conceptual Study for Digital Avionics Information 
System," 1974, Technical Report AFAL-TR-73-427. 

12. Turn, R., "Computer Systems Technology Forecast," 1975, AD-AOIO 
94417ST. 

Techniques for Requirements-Oriented Design 929 

13. General Dynamics, "Space Tug Avionics Definition Study," 1974, 
Contract No. NASS-3101O. 

14. Honeywell, "Airborne Computer Study," 1968, AD7S7033/0SL. 
15. Kilpatrick, P. S., et aI., "All Semiconductor Distributed Processor/ 

Memory Study, Volume I: Avionics Processing Requirements," August 
1973, Technical Report AFAL-TER-72-226. 

16. Johnson, M. D. et aI., "All Semiconductor Distributed Processor/ 
Memory Study, Volume 2: Data Processing," August 1973, Technical 
Report AFAL-TER-72-226. 

17. Abernathy, D. H. et aI., "Survey of Design Goals for Operating 
Systems," SIGOPS Newsletter, April 1973 (Part I), July 1973 (Part IO 
and October 1973 (Part III). 

IS. Sockut, G. H., "Firmware/Hardware Support for Operating Systems: 
Principles and Selected History," SIGMICRO Newsletter, December 
1975. 





A multi-microprocessor approach to a high-speed 
and low-cost continuous-system simulation 

by RYOICHI YOSHIKAWA, TATSUO KIMURA, YASUHIRO NARA, and HIDEO AlSO 
Keio University 
Yokohama, Japan 

ABSTRACT 

A high-speed continuous-system simulator of the multi
microprocessor configuration will be presented. This sys
tem is composed of simple microprocessor units and carries 
out highly parallel operations on a small task level. The 
processor unit is controlled by the microprogram and only 
performs basic operations such as integration, addition, and 
multiplication. The results of the performance evaluation 
show that the simulator can generate a sine-wave at 3.5 
KHz with an accuracy of 0.1 percent. The simulator has a 
greater processing capability than a large digital computer 
system employing a high-level simulation language. The 
system presented here is also much less expensive than 
conventional digital simulators. 

INTRODUCTION 

The aim of continuous system simulation is to obtain a 
time-series solution of a set of differential equations, which 
describes a model of the continuous system. Analog com
puters and advanced hybrid computers have previously 
been utilized for simulation, and recently, digital computers 
also haye peen utiliz~d for ~imtIl~tign. 

In analog computers, high-speed operation units are 
available and when used with the analog computer's native 
parallel operation feature, response times become fast 
enough to be used for most real time simulations. On the 
other hand, analog computers have problems of scaling, 
accuracy of solution, realization of non-linear components, 
and preservation of programs. In order to use a hybrid 
computer, ND and DI A conversion techniques, as well as 
analog and digital techniques must be mastered. On the 
other hand, a digital computer not only greatly alleviates 
these undesirable problems, but also permits the user to 
communicate with the computer using a high-level lan
guage. These features have made digital simulation popular, 
but digital simulations are very expensive and too slow to 
be used for most real-time applications. 

Recently, however, a high-speed and Jess expensive 
digital simulation system has been suggested by Kom. 2 It is 
the multi-processor system composed of standard mass-

931 

produced minicomputers. In this system, paralieiism, con
tained in a continuous system simulation, is utilized to 
guarantee fast and low-cost simulations. From the consider
ation of parallel processing, it seems that a very low-cost 
yet high-speed digital simulation system could be realized 
by using recently developed microprocessors and by mak
ing full use of the parallelism contained in simulation 
processing. With this in mind, the authors have designed a 
continuous system simulator (KCSS: Keio Continuous Sys
tem Simulator) which carries out highly parallel executions 
on a small task level, and have now implemented a proto
type system called KCSS-I. 

SIMULATION PROCEDURE AND 
MICROPROCESSORS 

The digital simulation of a continuous system is an 
iterative operation of an integration step, i.e., derivative 
evaluation and integral calculations to obtain a time-series 
solution of the system variables. For numerical integration, 
methods such as the Euler method and the Runge-Kutta 
method are generally used. The following are noticeable 
features of simulation processing: 

(1) Simulation processing generally contams a hIgh de
gree of parallelism. 

(2) Processing consists of recursive operations of prede
fined and fixed calculations, that are never altered 
within the simulation run. 

(3) The continuous system of most engineering models is 
often partitioned into blocks (subsystems) requiring 
relatively little intercommunication. 

The first feature means that in a continuous system simula
tion, a well tailored parallel processing system has the great 
advantage of being fast as well as low in cost. The second 
and the last features imply that a sophisticated task sched
uling mechanism and a shared memory are not necessary, 
and even a simple bus configuration of the multi-processor 
system will produce few conflicts in data transfer. It should 
be emphasized that even a multi-processor system of simple 
structure can offer a great deal of processing capability, and 



932 National Computer Conference, 1977 

that when the above three features are incorporated with 
good design one can be ensured of an effective continuous
system simulator. 

A microprocessor, made possible by the advancement of 
the LSI technology, is appropriate for simple applications 
and has the features of being low in cost and yet good in 
performance. This implies that a low-cost microprocessor 
will give the possibility of bulk use in realizing a continuous 
system simulator of good performance using highly parallel 
solutions. In order to realize cost-effective parallel process
ing systems, it is very important to fully utilize the parallel
ism in the procedure and also to take advantage of the low
cost characteristic of the microprocessors. Therefore, a 
processor unit, which is the operational element of the 
system, should be designed to execute one of the basic 
operations in the simulation, and its hardware should con
sist of an LSI microprocessor and additional ICs without 
sophisticated external circuits in order not to sacrifice the 
low-cost characteristics. 

The above discussions are reflected in the design policies 
of the KCSS as follows: 

(1) The Processor Unit (PU) of the KCSS only executes 
one of the basic operations required for simulation at 
a time, such as integration, multiplication, or addi
tion. 

(2) The PUs are interconnected to each other physically 
or logically before the simulation run to build up data 
transfer paths, which are determined by the process
ing procedure to be executed. In the basic KCSS, 
described later, the PUs are physically intercon
nected using dedicated data buses and a logical inter
connection mechanism is also discussed. 

(3) A simple mechanism, instead of the interruption, is 
employed for the transfer of data between PUs, i.e., 
each PU decides, by itself, whether or not it can 
transfer data using 110 test instructions. A control 
processor for the management of data transfer be
tween PUs is not necessary in KCSS. 

THEORETICAL ASPECT OF PARALLEL 
PROCESSING 

The details of parallel processing employed by KCSS 
were given in a previous paper. a The unique parallel pro
cessing on a small task level is outlined again in this chapter. 
The simple Euler method is adopted in the following 
discussion. 

An example of the PU connection diagram is shown in 
Figure 1. This is very similar to a set-up diagram for analog 
computers, in that the operation task corresponding to an 
analog unit is assigned to a PU of the KCSS. Each PU, 
which is supposed to have a large input data buffer, starts 
its operation when it gets the operands, and then sends the 
result to its successor PUs connected to the output port. 
The simulation processing proceeds in a manner such that 
data travel along the loops organized by connecting PUs. 
At the beginning of the operation, these data are originally 

x 
Int. Int. 

PU-o PU-l 

~OOPI 

Loop 2 

AX 
Mult. 

A 

Add. 
PU-2 

BX 
Mult. 

B 

PU-4 

PU-3 

Figure I-Example of the PU connection diagram: X=AX+BX 

sent out from each integrator PU with their initial values. In 
Figure 1, one datum travels along LOOP 1, and two data 
along LOOP 2. The integrator PU gets its derivative value 
as the operand, and calculates the value for the next 
integration step. 

The processing time of one integration step for each loop 
is obtained as follows: 

TlOOP1 =T(InL)+T(MuIL)+T(Add.) 

1 
TlooP2 =T(lnL)+ 2" (T(MuIL)+T(Add.» 

In general, 

The time required to circulate 
T . = a datum around the loop 

looPl The number of integrators in the loop 

1 m 
=T(lnL)+ - 2: T(~) 

nj=l 

where, n is the number of integrators in the loop and T(~) is 
the processing time of task ~. In the case, however, that 
100Pi contains a time-consuming task requiring more pro
cessing time than T loopi' it causes injury to a smooth data 
flow and the integration-step time is restricted by its 
processing time. Therefore, 

1 m • 
Tloopi=Max{T(InL)+ - 2: T(fj ), Max(T(fj) IJ= 1, ... , m)} 

n j=l 

Since all loops of a simulation model are interrelated with 
each other, the processing speed of the simulation is 
determined by the most time consuming loop. Conse
quently, the effective processing time of one integration 
step is, 

Te=Max(TlooJli for all loops) 

The procedure for one integration step using a 4th-order 
Runge-Kutta method is divided into four sub-procedures, 
each of which is almost like the procedure for one integra
tion step using the Euler method. Therefore, the effective 
processing time of one integration step using a 4th-order 
Runge-Kutta method is almost four times the processing 
time using the Euler method. 



STRUCTURE OF CONTINUOUS SYSTEM 
SIMULATOR 

The architecture of the basic KCSS mentioned here is 
based on the prototype system already developed by the 
authors with a few modifications having been made. This 
architecture still leaves some room for further improve
ments. 

System configuration of the basic Kess 

The basic KCSS illustrated in Figure 2 is a continuous 
system simulator with a multi-microprocessor configura
tion, which carries out parallel processing on a small task 
level. The PU is a data-driven processor controlled by a 
microprogram which starts its operation when the input 
operands have arrived, and transfers the result to the 
successor PUs when they have used the former results. The 
PU s are interconnected with each other using Dedicated 
Data Buses according to the simulation model or the 
simulation procedure. The Control Unit (CU) is an interface 
between the Host Minicomputer and the PUs. The Host 
Minicomputer executes the simulation support programs 
and 110 management programs. Before the simulation run, 
the minicomputer sends a Function Code and some param
eters to each PU through the Control Data Bus. Each PU 
starts its operation when a command "RUN" is sent from 
the minicomputer, and then desired simulation results are 
transferred through the CU. When the required integration 
steps are completed, a command "HOLD" is sent to the 
PUs. 

Structure of the processor unit 

The PU of the basic KCSS, as shown in Figure 3, is 
composed of 4 bit-slice microprocessor chips (MMI 
6701 x4), several data registers, a ROM as the micropro
gram storage, and simple logic circuits to synchronize the 

HOST CONTROL 

PU 0 

10 out 

CONTROL DATA BUS 

PU - 1 

in out 

PU - 2 

tn out 

To and From 
Other PUs 

<: 
DEDICATED DATA BUSes 
for PU communication 

Figure 2-System configuration of the basic KCSS 

from 
HOST 
MINICOMP 

from 
PU. 

from 
PUb 

from 
PU. 

from 

PUb 

Multi-Microprocessor Approach 933 

to 
HOST 
MINICOMP 

to 
PUd 

ContrOl Commands 
from 
HOST ,'l.~IN!CO.I\~P 

'-------+-+-----.- to 

Figure 3-Processor unit of the basic KCSS 

PU, 

to 
PUd 

data transfers among PUS. The information needed for each 
PU to perform its operation is loaded into the Parameter 
Registers before the simulation run. This information in
cludes a Function Code (starting address of the micropro
gram routine to be executed), an integration step size for 
integration, a constant term for coefficient mUltiplication, 
and so forth. A Status Register is provided to inform the 
minicomputer of the execution status of the PU, but it is 
also used as a buffer register to transfer the contents of the 
internal registers when a command "EXAM" is sent. The 
Instruction Register is provided for branching to the speci
fied microroutine, and is also used for micro subroutine 
calls. Input/Output Registers are buffer registers for data 
communication between PUs. The PU recognizes such 
commands as RUN, STOP, and EXAM from the minicom
puter by testing command signals using its test instructions. 

The logic circuits for the task synchronization consist of 
flip-flops (Input Flags), each corresponding to an Input 
Register, and a few logic gates. The Input Flag is kept to 
"1" while the corresponding Input Register holds a new 
operand. The term "Output Ready" is defined as the state 
such that all of the data stored in the Input Registers of its 
successor PUs have been used. Each PU recognizes 
th-e'~~'tp'!!tR '!'~dy -~m-e-~te!t!ngthe '&.rt1"-tt Re!!d,!' ~tgn?!.t, 
and sends out the Data Out signal to transfer the output 
data. The term "Input Ready" is defined as the state such 
that all of the Input Registers hold a new operand. Each PU 
recognizes the Input Ready state and accesses the input 
operands, and then clears the Input Flags to "0." 

Microinstruction format 

The PU is controlled by 40 bit horizontal-type microin
structions. The size and the function of each field are listed 
in Table I. 

Microprogram and the simulation control 

The microprogram stored in the ROM consists of an 
initialization routine, an input routine, an output routine, 



934 National Computer Conference, 1977 

field bit width 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 
M 

N 

TABLE I-Microinstruction Format 

function description 

ALU Instruction Code 
Load and Shift Control 
Source Reg. Number or External Input Reg. Number 
or Upper Emit Data (if E field designates "EMIT") 
Destination Reg. Number 
Field Control: 
if "EMIT". 8-bit literal data is obtained 
if "TEST". 2-way conditional jump is done 
Upper Next Address or Test Condition (if "TEST") 
or Lower Emit Data (if "EMIT") 
Lower Next Address 
Load IR to ROM Address Reg. 
Carry Flag Control 
Input Carry Control (Arithmetic) 
Input Carry Control (Shift) 
External Output Reg. Number 
Clear Input Flags 
Data Out 
Unused 

and some arithmetic routines. Integration, addition, multi
plication, coefficient multiplication, and so forth are pro
vided as arithmetic routines. The Function Code designates 
the starting address of one of the arithmetic routines, and 
also specifies the through/negate operation for each input 
operand. The initialization routine is provided to intialize 
the contents of the registers and the Input Flags before the 
simulation run and also to recover from operation errors. 
When the PU has recognized a RUN command, it executes 
the specified arithmetic operation in the following manner: 

(l) Input Routine-The PU waits until it detects the 
Input Ready state, and then branches to the arith
metic routine designated by the Function Code. 

(2) Arithmetic Routine-The PU gets the operands into 
internal registers and clears the Input Flags to "0" to 
enable the new operands to be loaded. After the 
completion of the arithmetic operation, the PU stores 
the result in the Output Register, and goes to the 
output routine. 

(3) Output Routine-The PU waits until it detects the 
Output Ready state, and then outputs the data, and 
goes to the input routine. 

In the case of the integration operation, the PU outputs the 
initial value before going to the above operation sequence. 
The HOLD command, accepted in the input or the output 
routines, causes the program sequence to branch to the 
initialization routine. 

Current development and discussions of Kess 

(1) Prototype system: KCSS-I-A prototype system, 
named KCSS-I, has been developed as a straightforward 
implementation to prove the effectiveness of the parallel 
processing on a small task level. The PU of the KCSS-I is 
composed of two microprocessor chips as the CPE (Central 
Processing Element) and 59 other ICs, and has a parallel 8 
bit operation capability. A 40 bitx256 word ROM is used to 
store several double-precision arithmetic routines for inte
gration, addition, and mUltiplication. The PU is already in 

operation with a 350 ns clock. As the Host Minicomputer 
for simulation control, a NOVA model/OI is connected to 
the PUs, and some support software programs under the 
control of the NOVA RDOS (Realtime Disk Operating 
System), such as an interactive microprogram assembler, a 
microprogram simulator, a simulation control command 
interpreter, and so forth are provided. The CU, an interface 
between PUs and the minicomputer, has been implemented 
with 88 ICs. One of the PUs has a WCS (Writable Control 
Storage) instead of a ROM. The KCSS-I has been able to 
generate a sine wave at 10 Hz with an accuracy of approxi
mately 1 percent employing the Euler method. 

(2) Automatic interconnection mechanism for the PU s
A flexible interconnection mechanism for the PUs seems to 
be required so that the PU connection can be altered by the 
host minicomputer according to the model to be simulated. 
An interconnection mechanism for the automatic intercon
nection of 8 PUs has been designed. This mechanism is 
composed of 62 ICs and one data-transfer sequence is 
completed in 200 ns. According to the data-transfer simula
tion, this mechanism causes no serious overhead to data 
transfer. The interconnection mechanism and 8 PUs organ
ize a PU block, and such elementary PU blocks are planned 
to be connected to a higher-level interconnection mecha
nism. 

(3) Substitution of queueing register for input register-It 
is assumed in the theoretical study of parallel processing 
that each PU has a large input data buffer. The PU of the 
basic KCSS has only one register at each data input port. 
This may cause interference with the smooth flow of data 
or with effective parallel processing in the case where two 
or more data loops of greatly different processing times 
have common data paths. This interference is eliminated by 
substituting for the input register an input queueing register 
(FIFO register) of, in general, a few words. This requires 
no modifications to the data input/output interface or the 
microroutines. 

(4) Simulation software-The translator for a simulation
oriented language and simulation control software is a 
necessity for a useful simulation system. In KCSS, each PU 
has a one-to-one correspondence with the operational ele
ments of analog computers. Therefore, the model descrip
tion of continuous systems in the form of a block-oriented 
language is very convenient for KCSS because each 
expression simply shows the function of the PU and its 
connection. A translator of an equation-oriented language 
has been developed by the authors where differential equa
tions are given in the form of FORTRAN-like expressions. 
This translator also accepts the model description of the 
block-oriented language. A command interpreter for simu
lation control has also been developed. This allows the user 
to control the simulation interactively with easy operations. 

(5) Compound function of the PU-PU utilization of the 
basic KCSS is low, because in general problems the data 
loop is often organized with a larger number of PUs than 
the number of data in the loop. For example, loop 1 of one 
datum in Figure 1 is organized with 3 PUs, and loop 2 of 
two data is organized of 4 PUs. Therefore, it seems that an 
efficient approach to solving this problem would be to 



define common operation sequences of those operations 
which frequently appear together in simulation processing, 
as compound functions of the PU, for example, addition 
and integration, coefficient mUltiplication and addition, ad
dition and coefficient multiplication, etc. The compound 
functions would increase PU utilization and also decrease 
the data communications among PUs so that the overall 
system performance would become greater. 

PERFORMANCE EVALUATION 

In order to clarify the processing performance of the 
KCSS, the execution speed and accuracy of the basic 
KCSS has been evaluated for some cases. The evaluation 
has been made for each operation method as shown in 
Table II, and the 4th-order Runge-Kutta method has been 
employed. For fixed-point arithmetic, the result of integra
tion has been kept in double precision in order to reduce the 
accumulation of round-off errors. In each case, it has been 
assumed that the PU has a FIFO register at the input port. 
In the particular case where the integration step size is 
given in the form of 3 x 2 In, special microroutines for the 
integration have been written and used in the evaluation. In 
this case, better results, in speed and accuracy, have been 
obtained because a shift operation can be used instead of 
multiplication. 

Execution time of each basic operation 

Microroutines for each basic operation have been coded 
with primary interest in execution time. The actual execu
tion micro steps of these routines including data input! 
output operations have been determined as shown in Table 
III. The floating-point microroutines have been coded with 
the assumption that the PU has a 7-bit shift and a few 
additional bit-test functions, which can be incorporated 
with only a fractional cost. The execution cycle time of the 
microinstruction has been assumed to be 200 ns, which can 
be realized with appropriate hardware design. 

Benchmark problems and simulation results 

(1) Sine-wave generation problem-The first problem 
used in the performance evaluation is the solution of the 
differential equation, X+X=O, with initial values x=o and 
X = 1, from t = 0 to 25. Thus the time, T R, required for the 
real time solution is 25 sec. In this problem, the time 
required for one integration step, Te, is 4xT(lnt.). Then the 

TABLE II-Operation Methods Employed for Performance Evaluation 

Operands 
and Results 

Internal 
Results of the 
Integration 

Fixed Point Fixed Point 
Single Precision Double Precision 

16 bits 32 bits 

32 bits 48 bits 

Floating Point 

Exponent: 16 bi ts 
Mantissa: 3 2 bi ts 

ditto 

Multi-Microprocessor Approach 935 

TABLE III-Execution Microsteps and Times of Each Operation 

Addition 

Mul tipl ication 

Integration** 
with Mult. 

Integration** 
with Shift 

(h=3 x r n ) 

Fixed Point 
Single Precision 

6 (1. 2 \ls) 

25* (5.0 \ls) 

40* (8.0 \ls) 

18+n* 

Fixed Point 
Floating Point 

Double Precision 

9 (1.8 \ls) 46 (9.2 \ls) 

146* (29.2 \ls) 171* (34.2 \ls) 

175* (35.0 \ls) 281* (56.2 \ls) 

25+3n* 63* (12.6 \ls) 

* Theoretically den.ved average of execution steps for random input 
operands. 

** Average steps per stage in the four-stage operation of the 4th
order Runge-Kutta method. 

time, Ts , required to produce a real-time 25 second solution 
is; 

TR T =-·T She 

Therefore, 

TR_~ 
Ts - Te 

This means that KCSS is hlTe times faster than the real
time. And the frequency of the sine-wave generated is; 

h 
Fs= 21TTe 

The simulation results appear in Table IV. 
(2) Van der Pol's equation-The second problem is the 

solution to Van der Pol's equation with initial values, )(=0 
and X = 1 from t =0 to 25. This is a typical nonlinear 
problem. In this problem, TR=25 and Te=4T(Int.) 
+6T(Mult.)+4T(Add.). The representative simulation re
sults are shown in Table V. More accurate solutions have 
been obtained with reduced integration-step sizes; in the 
case of h=3x2-8 , T R /Ts=52 and maximum error=0.021; 
and in the case of h=3x2-9, TRITs=26 and maximum 
error=0.0021. 

The same problem has been solved on the DARE III B 
simulation system,l a CSSL-type simulation language on a 

I 
I 
i 
I 
I 

I 
I 

TABLE IV-Simulation Results of Sine-wave Generation Problem 
(integration step size: h=2-3 , truncation error of RK-4:0.085%/cycIe) 

Te(\lsec) TR/Ts Fs( HZ) Accuracy* (%) 

Fixed Point 

I Single Pricision 32.0 11,700 1,870 0.13 
Int. with Mu1t. 

Fixed Point 
Single Precision 16.8 22,300 3,550 0.085 
Int. with Shift 

Fixed Point 
Double Precision 140 2,680 426 0.085 
Int. with Mult. 

Fixed Point 
Double Precision 27 .2 13,800 2,190 0.085 
Int. with Shift i 

Floating Point I 

I 1 
I 

Int. with Mult. I 225 1.670 265 

I 
0.085 

Floating Point I I I Int. with Shift ! 50.4 I 7,440 1,180 0.085 
I I 

• Maximum ab~olute error per cycle: 
t 

(1 + Max E)2rr ~ 
I (KeSS Result::>1:) - (Exact Value::>1:) I 

Maximum Value of l1: 



936 National Computer Conference, 1977 

TABLE V-Simulation Results of Van der Pol's Equation (integration step 
size: h=2-7, truncation error of RK-4:0.311%) 

Te(j.lsec) hiTs Accuracy* ('O) 

Fixed Point 
Double Precision 225** 104 0.311 
Int. with Shift 

Floating Point 
292 80.2 0.311 

Int. with Shift 

* Maximum absolute error from t=O to 25: 

Maxi (KeSS Result:X) - (Exact Value:X) I 
2 

** This Te containes the execution time of some additional operations 
for appropriate scaling. 

CDC 6400, and it required 1.7 seconds for the simulation 
run. The accuracy of its solution is not explicitly noted, but 
it is estimated to be worse than 2 percent according to high
accuracy numerical analysis. Thus the KCSS can solve this 
equation with floating point arithmetic operations at least 
five times faster than DARE III B. 

Simulation summary 

Each of the simulation results shows that the KCSS has a 
great processing capability. The processing speed of the 
KCSS is not so inferior to most high-accuracy analog 
computers. Furthermore, it is noticeable that low-cost 
microprocessors offer a higher performance than large 
digital computer systems. As a remarkable feature of the 
KCSS, the processing speed does not depend on the 
problem size. From the consideration of the parallel pro
cessing concept, the KCSS clearly offers a great deal of 
processing capability for simulation models represented by 
higher-order simultaneous differential equations such as 
transmission-line problems. The integration with the shift 
operation is faster and more accurate than the one with 
mUltiplication as shown in Table IV. 

CONCLUSION 

The architecture of the basic KCSS, a continuous system 
simulator of the mUlti-microprocessor configuration, was 
proposed. The performance evaluation based on computer 
simulations shows that the basic KCSS generates a sine-

wave at 3.5 kHz with an accuracy of 0.1 percent. The 
processor unit constituting the KCSS can be implemented 
at the IC cost of approximately YlOO,OOO ($330). It has 
become clear that a digital continuous-system simulator, 
with multimicroprocessor architecture like KCSS, offers a 
high-speed simulation capability and better cost-perform
ance when compared with conventional large-scale digital 
computer systems employing high-level simulation lan
guages. The Processor Unit of the KCSS is controlled by 
the microprogram so that many types of operation methods 
convenient for various simulation problems can be opti
mally incorporated into it. This flexibility is very attractive 
in realizing a useful digital simulation system. Also, the 
processing speed of an optimally microprogrammed PU can 
be faster than that of a conventional microprocessor. It is 
believed that in the near future conventional analog com
puter systems can be replaced by fast mUlti-microprocessor 
systems. 

ACKNOWLEDGMENT 

The authors would like to gratefully acknowledge the 
appropriate directions, support, and consultation of Mr. 
Eiichi Yura, the former chief of the KCSS group at Keio 
University, who is now working for SONY Corporation. 
They also wish to thank Dr. Mario Tokoro and their 
colleagues in Keio University for their enthusiastic discus
sions, suggestions, and assistance. Also, their thanks go to 
Ms. Anne M. Marso of the University of Maryland for her 
kind assistance in checking this manuscript. 

REFERENCES 

l. Trevor, Alexander B. and John V. Wait, DARE III B-a CSSL-Type 
Batch-Mode Simulation Language for CDC6000-Series Computers, SIM
ULATION, Vol. 8, No.6, June 1972, pp. 215-226. 

2. Korn, Granino A., "Back to Parallel Computation: Proposal for a 
Completely New On-Line Simulation System using Standard Minicompu
ters for Low-Cost MUltiprocessing," SIMULATION, Vol. 19, No.2, 
August 1972, pp. 37-45. 

3. Yura, Eiichi, et a\., "An Approach to Parallel Processing for Continuous 
Dynamic System Simulation with Microprocessors," Proceedings of 
Second USA-JAPAN Computer Conference, 1975, pp. 172-177. 

4. Yura, Eiichi, et a\., "The KCSS: Keio Continuous System Simulator," 
Internal Report, Department of Electrical Engineering, Keio University, 
December 1975. 



Instrumented architectural level emulation technology 

by HARRISON R. BURRIS 
TRW Defense and Space Systems Group 
Redondo Beach, California 

ABSTRACT 

The advent of general purpose emulators as tools for 
computer architecture research and system development is 
briefly traced. The concepts of an architectural level emula
tion and of instrumenting an emulation are introduced. An 
operational emulation-based computer system development 
facility is described. The results of a 1976 Independent 
Research and Development program aimed at improving 
emulation development time, emulation execution time, and 
instrumentation flexibility are discussed. 

INTRODUCTION 

There are, at present, a number of operational or planned 
computer architecture and system development facilities 
that are based upon general purpose emulation technology 
and have requirements to evaluate many different computer 
architectures and software packages. These emulation ori
ented facilities have found application across all segments 
of the computer industry including: TRW's Computer Sys
tem Development Facility,1 Stanford's Emme/ the Ar
gonne Microprocessor,3 Army's Teleprocessing Design 
Center,4,5 and Air Force's Space Data Systems Facility,6 
and Reconfigurable Computer Facility. 7 In spite of the 
suci:.essfu} imple.ll'lentatiuns,. further development ofeUlula
tion technology is still required if system designers (hard
ware and software) are to be provided a reliable, cost 
effective system design tool. During the past year, TRW 
Defense and Space Systems Group conducted an Independ
ent Research and Development program (for which the 
author was principal investigator) that had the objectives of 
(1) implementing an emulation based architectural research 
capability and (2) exploring the feasibility of several pro
posed extensions to that technology8 that would either 
increase the range of problems to which emulation could be 
applied or would increase the flexibility of emulation tech
nology from a user standpoint. This paper is, in part, a 
report on the result of this IR&D effort. 

Emulation center evolution 

In 1951, Wilkes suggested microprogramming as a more 
efficient means of designing a computer sequence control
ler. 9 Microprogramming also facilitated engineering changes 

937 

to the architecture. By the mid 1960's, another benefit of 
microprogramming had been identified; by emulating earlier 
machines, microprogrammed computers could execute the 
software of the machines they replaced as well as software 
written in their own "native mode" instruction sets.10 This 
software compatibility prevented the loss of significant 
investments in software. The advent of the user micropro
grammable computer (writable control store) in 1970 made 
possible a third application of microprogramming, the emu
lation. of many computer architectures by means of a single 
host machine. The existence of general purpose emulators 
made possible an emulation-based system development 
facility. The next steps in the evolution path probably 
occurred in many locations at about the same time. The 
development of the Army Teleprocessing Design Center 
provides a clear history of the next steps. 

In December 1970, the U.S. Army Computer System 
Command and elements of the Department of the Army 
Staff began exploring the application of emulation to a 
software development facility. The rationale was that a 
software developer supporting many different computers 
could replace separate systems at his development facility 
with a single general purpose emulator. This machine could 
then be microprogrammed to emulate whichever of the 
machines was required for developing a piece of software. 
Further consideration of the potential for emulation within 
t~e Army led K).h6!lr~~R'8 9f: ftd.d.j.tionai OOnefMS: OJ 
Software development tools (e.g., traces, variable range 
checks and activity counters) can be embedded in the 
emulation permitting software testing without destroying 
the integrity of the software under test (e.g., address 
realignment due to breakpoint code), and (2) The hardware 
performance (e.g., signal timing traces) can also be modeled 
by emulation, thereby permitting evaluation of hardware 
and hardware/software design trade-offs. In 1973, the Army 
Teleprocessing Design Center4,5,11,12 was implemented un
der the direction of the Office of the Project Manager for 
Army Tactical Data Systems with the mission of providing 
both hardware and software evaluations. 

INSTRUMENTED ARCHITECTURAL LEVEL 
EMULATION 

Architectural level 

Bell and Newell, in their book on computer architec
ture,13 defined a hierarchy of levels at which computer 



938 National Computer Conference, 1977 

structure may be described, two of which (programming 
level and logic design level) are of daily interest to the 
system designer. For the purposes of this paper, the archi
tectural level model of a computer structure is considered 
to include both the programming level and logic design level 
since it permits hybrid models, portions of which are 
implemented at each of these levels of representation. 

Emulation 

Computer system simulations in which the processing 
functions performed by one machine (the target) are repli
cated on another computer (the host) have been termed 
functional simulations. 14 \l/hilc both interpreters and emula-
tors are functional simulations of a target machine, they 
differ in the method of implementation. The interpreter is a 
software program that is written in a language executable 
by the host computer and which accepts as input data and 
then executes computer programs written for the target 
computer. An emulator is a set of equivilances (micropro
grams) between operation codes of a target machine lan
guage and the processing logic of the host computer. When 
the microprograms for a target language are loaded into the 
sequence controller of the host computer, programs written 
in the target machine language are decoded and executed 
by the hardware of the host machine. Traditionally, the 
suitability of an interpreter or emulator for a particular 
project was determined by the trade-off: interpreters are 
fast (relatively low cost) to implement and modify and are 
more general (more space available for code), but have 
slow execution speeds: Emulators are slow (relatively ex
pensive) to implement and modify, and restricted as to 
complexity modeled (limited control store), but execute 
considerably faster than interpreters for the corresponding 
target and host machines.1.15 In the immediate future, this 
trade-off will probably remain valid even for the high level 
language (Direct Executing Language) machines, since it 
would seem that the execution speed advantage remains 
with directly emulating the target machine instruction set 
instead of emulating a high level language and using an 
interpreter program written in the HLL to simulate the 
processing of the target machine. 

A current paperlti succinctly illustrates that micropro
gramming (emulation) is becoming more user-oriented in a 
manner similar to the evolution experienced with "conven
tional" software. Recent developments in high level micro
programming languages, 17-19 the availability of larger (and 
writable) control stores and other techniques being re
ported in this paper are beginning to eliminate the develop
ment cost and generality advantages of interpreters, and it 
seems entirely consistent to predict that within three to five 
years, emulation will be the implementation method of 
choice whenever the functions of one computer are to be 
replicated by another. However, until some of these newer 
developments have matured and are generally available, the 
above trade-off will remain an important consideration in 
deciding to emulate or interpret a target machine architec
ture. 

Instrumentation 

Computer instrumentation is the control and performance 
of (I) measuring, (2) screening, (3) recording, (4) processing 
and (5) displaying data describing the operation of the target 
computer. This ordering of activities does not necessarily 
reflect the operational relationship in an instrumentation 
system. While measurement is first and display last, the 
intermediate steps vary widely. For example, all measure
ments may be recorded and uninteresting data eliminated 
(screened) as part of the processing. Also, the instrumenta
tion process may be interrupted by recording data and then 
processing and displaying it sometime later (off-line). Con
ventionally, instrumentation is performed by means of 
t...~_--I ... ~_~ _~_: .. ~_~ I __ ~t..._~ __ --I 1 __ :_ ~ __ 1 •• ___ ~'\ _ .... __ t..._--I .. _ 
11(UUWc:111; I11VllllVl~ 1,J.1IVUI;~ dllU IVgl~ dlldlyL.I;I~} dLtd~l1l;U tV 

the physical hardware of the target system, or by software 
monitors (programs executed by the system being meas
ured). A discussion of these techniques including identifica
tion of their difficiencies and proposed solutions is found in 
Reference 20, and a detailed treatment of computer instru
mentation that is perhaps as thorough as is possible for 
such a new and rapidly evolving topic appears in a recent 
book by Svobodova. 21 

The particUlar measurements to be performed during an 
instrumentation exercise will depend upon the question 
being investigated. Typical classes of measurements are: (1) 

interval timing (2) event counting, such as utilization figures 
for hardware resources, and software characteristics such 
as page fault frequencies and branching, (3) discrete values, 
such as those resulting from computations and replace
ments, and (4) extents such as the amount of primary or 
secondary storage consumed by a process. It is often very 
difficult or even impossible to obtain some of these meas
·ures on particular target computers because there is no way 
to attach a probe to the signal of interest since it is deep 
within the physical hardware.:?:?-24 Also, there is nothing to 
instrument if the particular configuration of equipment for 
which the measurements are desired is either not in exis
tence (under development) or not available. If an ALE 
modeling all of the signals and architectural entities of 
interest to the investigator is constructed, the desired 
measurements can be obtained by instrumenting the emula
tion of the target system rather than by instrumenting the 
actual hardware. 

The idea behind instrumenting an emulation of a target 
system instead of instrumenting the target system itself is 
this. General purpose hardware and software instrumenta
tion techniques are available. These methods can be applied 
to the host computer system as well as to the target 
computer system. The emulation "programs" representing 
the target system are microcode and, in some cases, special 
"emulation mode" hardware resources. The instrumenta
tion of the emulated target machine hardware such as the 
program counter then reduces to instrumenting the memory 
location or register of the host machine where the emulated 
target machine program counter resides. 

The concept of instrumenting an emulation of a machine 
is best illustrated with an example. If the contents of a 
buffer register and the timing sequence of signals on two 



Instrumented Architectural Level Emulation Technology 939 

control lines are of interest, an ALE, including register 
transfer entities for these three machine features, must be 
created. Then instead of placing probes on the register and 
two signal lines, the memory locations with which the 
emulator represents the three register transfer level entities 
are examined by the instrumentation. The contents of the 
buffer register and presence of 1 's or O's on the signal lines 
will be the same as though the actual hardware had been 
probed. 

If the ALE has already been implemented, instrumenta
tion of the ALE can also be faster and less costly to 
perform than installing the probes on the physical hardware 
of the target machine since the only task involved is 
identifying addresses of memory locations within the host 
computer corresponding to target machine resources. This 
same flexibility that makes initial instrumentation of the 
emulation easier than instrumenting the hardware also 

NANOSTORE 

(256 Words) 

CONTROL STORE 

(15K Words) 

MAIN STORE 
BASE REG. & 
FIELD SELECT 

~-~ 
2']0.<. I'fords: 

I . 

1f~~:~ 
TAP, CONTRO" 

9-TRACK 
MAGNETIC 

TAPE 

"'-'-,~ 

makes it easier to reconfigure the probe points. With an 
appropriate instrumentation control program, dynamic re
configuration during a measurement experiment is also 
possible. 

COMPUTER SYSTEM DEVELOPMENT FACILITY 

The Computer System Development Facility (CSDF) 
used for the IALE development IR&D is configured from 
mainframe computer systems maintained in TRW's Mini
computer System Facility. A block diagram of the CSDF is 
presented in Figure 1. The host machine for the emulation 
is a Nanodata QM_1. 2

5 The QM-l is an extremely flexible 
two-level (micro and nano) user microprogrammable ma
chine of the type characterized by Flynn as a soft computer 
architecture. 26 The QM-l design supports dynamic modifi-

I 

EJ1 
I 

REMOTE H' ,I. TERMINAL 
MODEM 

" ___ ---.JI I 

~ _. ~-.-- .j 
PR:~;FR/Vl CTTHI.-_ 

~ 

4()1B 
ROOVABlE 
CARTRIDGE 

DISK 

..--._- ......... 

/SUPERBEE\ 
: MESSAGE) 

~ERMIN~/ 

~-I 
-~----J'-------~ I . FLOPPY DISK 

SYSTEM 

,,~, '.H (OPERA~~R. 1 i. 1---~l I SYSTEM ./ 1 

~---1 PDPll-V03 U '--- I 

I

· 1 I j ~oJ-------l . SWiTCH 
1 I CONSOLE 

I.~ ~_--. 
!~ 
I 

j 

--.... I 

i (! 512 x 512\ I 
j COLOR) 
: ' MONITOR / 

~h Planned link 

QI1-1 
CPU 

(fJIMIlation Host) 

r----~.--.-~---~-.

,-------~~--_r--~--~ 

5l2KBms--1 I 
CORE MEMORY I 

AUTODRIVER 
C/iANNEl 

INTERDATA Bi32 

CPU 

SELECTOR 
CHANNEL 

(Instrumentation Processor) 

Figure I--Current CSDF configuration 

32 BIT 
FLOATING POINT 

'--___ f 

1 I WRITABLE 
: ------j CONTROl STORE 

I 



940 National Computer Conference, 1977 

cation of both the micro and nano level programs. The 
microinstruction set is not fixed, but instead depends upon 
the mapping to the nano-Ievel instructions. This is ex
tremely important for the emulation of a large number of 
radically different target architectures. The processing and 
display of instrumentation data is performed by an Inter
data 8/3227 configured with a Genisco Graphic Display 
System. 28 At present, the connection between the measure
ments recorded by the QM-l and the processing and display 
of the Interdata 8/32 is by means of a 9-track tape at 1600 
BPS. An 8-bit parallel 9600 CPS bus between the two 
processors is currently being installed and dynamic interac
tion between the QM-l and the 8/32 should be possible by 
March 1977. As part of the IR&D effort, it was desired to 
validate the instrumentation results obtained by the IALE 
(this is discussed in more detail later). For this purpose, an 
IMSAI 808029 microprocessor system with much of the 
architectural generality of larger computer systems (as 
opposed to the microprocessor system development kits) 
was selected as the target architecture. The target architec
ture is shown in Figure 2. The unit was specially designed 
to support hardware instrumentation and both a minicom
puter (PDPI1l20) and a Hewlett-Packard logic analyzer 
were used to collect measurements. 

Concept of operation 

The following description of the use of the system 
development facility is presented to illustrate the capability 
desired. The system developer constructs the desired target 
system emulation at the level of detail appropriate to his 
experiment (hardware alternative selection, software de
bugging, etc.) by assembling already defined emulation 
building blocks from a library supplemented as necessary 
with newly defined emulations (which could be added to the 
library once they pass the accuracy of emulation test!). 
Next, the desired measurements are specified in terms of 

------ PERIPHERALS 

'I SERIAL i I/O ------ PERIPHERALS 
2 CHANNEL 

~ 

Figure 2-Target hardware system 

the target machine architecture (e.g., busses, registers, 
status indicators, etc.) to be examined and the conditions 
(events) to be reported. The processing to be performed 
(e.g., calculation of channel and CPU active and wait state 
percentages) on the measured data and the method of 
display (e.g., tabular, Kiviat diagram,3o.31 etc.) is specified. 
The emulation and measurement microcode is loaded into 
the QM-l micro and nano control stores under control of a 
"micro operating system", MOS. The target machine soft
ware is loaded into upper mainstore (lower mainstore 
contains the overlay library used by the micro operating 
system). The remaining instrumentation software is loaded 
into the instrumentation processor and the emulation exper
iment is initiated. The results of the instrumentation would 
be displayed to the user and the measurement, processing, 
and display could be interactively redefined during the 
experiment. While emulation microcode could be compiled 
or assembled under control of a more extensive version of 
MOS, the more straightforward method of iterating emula
tions is used. The system user must return to the support 
software provided by NANODATA to redefine the emula
tion. This process can still be initiated from the console, 
however, permitting a fully interactive evaluation session 
with a series of emulation experiments. 

IALE feasibility demonstration 

The concept of the feasibility demonstration was to 
implement an Instrumented Architectural Level Emulation 
of a particular target hardware configuration, build the 
target hardware system, perform instrumented experiments 
on both implementations, and compare the results. Consid
erable effort was expended during the project planning32 to 
design a set of feasibility demonstration experiments which 
would meet the twofold objectives of demonstrating the 
feasibility of IALE and also providing data on a target 
system application of intrinsic interest. The IMSAI 8080 
microprocessor system to be used as the target hardware 
was assembled by the author using a mother board design 
intended to provide maximum access to each card and 2-
level wirewrap sockets were used on the printed circuit 
boards instead of soldertail sockets to provide an easy 
means of connecting instrumentation probes (see Figure 3). 
The 8080 software selected for the demonstration involved 
encryption and fault tolerant communications processing. 
Detailed applications oriented analysis of the results of 
these experiments have been presented elsewhere.33.34 Fig
ure 4 shows the process used to conduct each experiment 
of the feasibility demonstration. Aside from the lower path 
through the instrumented target system hardware, the proc
ess is the same as would be followed in performing any 
emulation-based experiments with the computer system 
development facility. 

IALE TECHNOLOGY ADVANCES 

As part of this project, improvements to the basic IALE 
concept were identified which had potential for improving 



Instrumented Architectural Level Emulation Technology 941 

(1) emulation development time, (2) emulation execution 
time, and (3) modeling and instrumentation flexibility. The 
feasibility of each of these potential improvements and any 
restrictions they imposed upon the emulation process were 
explored. Several of the improvements under consideration 
had been previously employed with interpreter based sys
terns, but had unique ramifications when applied to emula
tion based systems. 

Microprogram operating system 

Figure 3-Target hardware and probe points 

Simulation at the circuit sublevel is used for some types 
of hardware analysis. If these simulations are to be per
formed by means of emulation, it is often necessary to 
somehow modularize the microcode since even the soft 
computer architectures do not provide sufficient control 
store for a program of this size. Even in cases where an 

DEFINE 
MEASUREMENT 
EXPERIMENT 
OBSERVATIONS 

~ 

I 

L 

DEFINE 

MEASUREMENTS 

DEFINE 
ANAL YS I SAND 

DISPLAY 

DESIGN AND 
IMPLEMENT TEST 

PROGRAM FOR 
TARGET SYSTEM 

EXPERIMENT 
DEFINITION 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

2- I 
I 
I 
I 
I 
I 
I .. 
I .. 
I 

3 I 
I 

I I 

4 

.,-

DEFINE ALE OF ... GENERATE .. 
TARGET SYSTEM 

... 
EMULATION 

5 6 
EXECUTE 

INSTRUMENTED 

AlE 

GENERATE .. MEASUREMENT .. .. 
PROGRAM 

I 7 9 

1 
GENERATE 

/ 
.. ANALYZE &. DISPLAY 

ANALYSIS & MEASUREMENT 
DISPLAY DATA 

PROGRAMS 
8~, 10 

'\ 

INSTRlJlENT EXECUT~~ TARGET SYSTEM PROGRAMS ON 
HARDWARE TARGET SYSTEM 

11 12 

(IMSAI 8080 ) (lHSAI 8080) 

Figure 4-Feasibility demonstration process 

INSTRUMENTED ALE 

INSTRUMENTED 
TARGET SYSTEM HARDWARE 

ANAL YZE & 01 SPLAY 
MEASUREMENT 

DATA 
13 

(INTERDATA ) 
8/32 

(I 

(NANODATA QM-~ 

NTERDATA 8/32) 

COMPARE 
MEASUREMENT 

METHODS 
14 



942 National Computer Conference, 1977 

entire architecture at the appropriate level of detail can be 
emulated by wholly resident microcode if many separate 
architecture alternatives are to be evaluated, the capability 
to construct the emulation from a library of predefined 
building blocks that are combined by a linkage editing or 
parameter passing process considerably reduces the emula
tion development time. For these two reasons, a micropro
gram operating system (MaS) was considered critical to the 
IALE effort. 

The MaS is loaded by the QM-I support system, uses a 
directory and library of emulation modules contained in 
lower main store to build the emulation from a predefined 
root module, and this continues to provide microstore 
memory management during execution of the emulation. 
The only interrupt presently recognized is F switch 1 which 
is used as a run/halt control. Eventually, the MaS will also 
service interrupts from the Instrumentation Processor. In
put/output functions including those of the measurement 
processes are supported by the individual emulation and 
measurement modules. 

The particular microcode instruction set defined for the 
feasibility demonstration did not support relocatable micro
coding. This necessitated programming the microprogram 
overlays for fixed overlay points within the micro-storage 
space, and proved to be a serious restriction upon the 
flexibility of which programs could be operated with each 
other. For example, two overlays moving in and out of the 
same overlay space severely slow down the speed of 
execution. An experiment examining the 8080 CPU and a 
circuit level model of a memory control model executed a 
segment of 8080 machine code 5727.46 times slower than 
the target machine when the CPU and control module 
emulation overlays were coded at the same overlay point 
(and had to be overlain whenever execution passed from 
one to the other). When the memory control module was 
recoded so that both emulations could be coresident, time 
to execute the 8080 program was reduced to 91.89 times 
that required by the target machine. This result demon
strates the impact that overlay contention could have on a 
fairly typical computer system experiment, and indirectly 
indicates the value of a relocatable program approach to 
microprogramming. Since relocation was not available on 
the QM-l, a set of fixed overlay spaces were defined with 
sets of building blocks associated with each. This, of 
course, restricted the building blocks that could be assem
bled into emulations. Approaches to implementation of 
relocatable microcode such as suggested in Jones35 are 
considered to be one of the highest potential areas for 
further development. 

The CPU and memory control module were also recoded 
as a single microcode program with a processing flow 
identical to the building block model except that the param
eter passing support of the MaS was not needed and the 
emulation could execute as a stand-alone. This simulation 
was 86.19 times slower than the target machine. Therefore, 
for the particular segment of 8080 machine code being 
executed, a 6.61 percent execution time penalty is incurred 
to obtain the increased flexibility of modular emulations. 

Emulation building blocks 

One of the most significant trends in digital logic design 
has been the willingness of logic designers to forgo the 
speed advantages of discrete component systems for the 
design ease of MSI and LSI packages. The target system 
emulation design process can benefit from the use of 
predefined building blocks of larger functions in much the 
same way as the target processor hardware design process. 
A considerable reduction in emulation development time 
and cost could be achieved if an emulation designer could 
assemble already programmed building blocks into the 
desired emulation instead of having to code each emulation 
from scratch. This is just a further extension of the general 
argument for doing away with hand-crafted software. 

As an example of the process, consider a small special 
applications device consisting of two identical micro-pro
cessor chips, a solid state memory chip, a contention 
resolving chip and a clock circuit. The logic designer can 
assemble the system design by joining together the chips 
without repeating the design of their insides. An emulation 
designer should be able to assemble the emulation of the 
system design, by providing code joining already working 
emulations of each of the chips being used. Furthermore, 
once this five-chip emulation is assembled, it can become a 
building block available for use in still bigger emulations. 

This idea of a library of emulations imposes some addi
tional design requirements on the emulations. The emula
tion code should be reentrant so that several copies may be 
active within a single larger emulation. For instance, the 
two identical micro-processors in the above example should 
require only one copy of the emulation code. Also, this 
library concept is a strong argument for the use of separate 
instrumentation routines since if the instrumentation is 
included in the emulation building block, it would have to 
be sufficient for the most general cases; which would be 
unacceptably slow and probably would make the code too 
big for most target systems of interest. 

Multilevel emulation 

When the host system is of a newer technology than the 
target machine, (e.g., an IBM 360 emulating a 1401) soft
ware often executes significantly faster on the emulation 
than on the target machine. However, when target and host 
are of the same technology or the host is being used to 
evaluate advanced target technologies, speed of execution 
can become a problem. In almost all cases, it seems likely 
that when emulations are used to simulate target machines 
(or subsystems) at the logic level, a speed penalty would be 
incurred. Thus, in the context of system development and 
computer architecture research, one of the problems with 
both interpreters and emulators is that they are slow in 
execution. The degree of slowness for both methods de
pends upon (I) the level of target machine detail being 
simulated and (2) the closeness of the mapping of the target 
hardware resources into the host hardware resources. Im-



Instrumented Architectural Level Emulation Technology 943 

proving execution speed by augmenting the host hardware 
is rejected since once a host has been selected, little can be 
done to improve execution speed for general purpose 
emulation experiments requiring several different target 
machine architectures. If many emulation experiments are 
to be performed on a single target machine architecture 
(e.g., a software development facility), then it may be 
desirable to improve execution speed by replacing complex 
firmware procedures with hardware, such as the transform 
boards often used in CDC 5000 series based emulators. 5

,11 

However, if this approach were adapted when several 
alternative architectures were being considered, it might 
become necessary to construct a different transform board 
for each. This is nearly brassboarding each alternative-one 
of the very things IALE is attempting to avoid. 

The other factor, level of detail being simulated, provides 
a general means of increasing execution speed. An ap
proach to the definition of emulations (also applicable to 
interpretation) which I call multi-level emulation, can con
siderably reduce the time required to execute a particular 
emulation experiment by modeling in detail only those 
operations of the target system that are of interest and 
emulating at a higher level of abstraction the remainder of 
the system necessary to provide the input data for the lower 
level model. 

Different types of system performance analyses (i.e., 
throughput, reliability, utilization, security) require the 
measurement of different system parameters. The hardware 
characteristics which must be observable in order to evalu
ate these parameters also vary. This observation implied 
that an increase in emulation speed due to reduced emula
tion complexity is obtainable by restricting an ALE to 
representations of target system hardware entities that are 
required for a particular measurement experiment instead 
of executing a general purpose (complete in every detail at 
the lowest logic level) ALE of the target system for all 
experiments. For example, during an experiment concern
ing the utilization of a memory contention controller and a 
shared memory, it was possible to model the memory 
contention controller at the circuit level while the CPU, 110 
Jogi~. and<Ol~UlQr.y U~~JJ ,Qub-' b<; emulated at a level of 
detail sufficient to' 'gen~rat~ . the' ~e~~~y . ref~rence 
strings36- 38 needed to drive the memory contention re
solver. 

Figure 5 illustrates a multi-level ALE which could be 
instrumented to perform the evaluation suggested above. 
The CPU's and the remainder of the system, other than the 
memory control hardware of principal interest, are emu
lated at the RT level. This emulation, in terms of such 
constructs as program status words, floating point registers 
and interrupt status words would execute the object code 
equivalent of target system programs. Whenever a refer
ence is made to memory (next instruction or operand store/ 
fetch) the address is loaded into the architectural equivalent 
of a memory address register (MAR). The MAR and the 
equivalent memory buffer register MBR are crossover 
paths between the CPU and the model of the memory 
control hardware. The logic gate (AND, OR, XOR, etc.) 

LEVEL OF 
DETAIL 

REGISTER 
TRANSFER 

CIRCUIT 
LEVEl 

I/O 
1/0 

ARCHITECTURAL ENTITIES 

MEMORY CONTENTION 
SUBSYSTEM 

EMlI.ATOR 
ACTIVITY 

,. 
G2.8 CYCLES/MEMORY REFERENCE) 

.. C 1050 CYCLES/MEMORY REFERENCE) 

Figure 5-Ale using mUltiple levels of emulation detail 

representation of the MAR is loaded with the address 
contained in the RT level MAR and a cycle of emulation 
through the memory control logic is begun. At the conclu
sion of that cycle, control returns to the RT level CPU 
emulation which resumes processing where it was halted 
while the memory access was emulated. 

For one of the alternative contention resolution circuits 
evaluated a driver program of 8080 software executed 3354 
times slower than the target machine when a circuit level 
approximation* of the CPU was used. When the same 8080 
software was executed by an emulation using a register 
transfer model of the CPU, the execution time was reduced 
to 91.89 times that of the target machine, an improvement 
by a factor of 36.5 times. For the above comparison, only 
one CPU was modeled (no contention effects). 

Emulation timing 

When a functional simulation is used to determine how 
much time (or how many machine cycles) a target program 
wi*'~keto-·~~~tf" ii'. t<iil <~~f'1't •• Y' "'~f~ctflf'Y'ffl-"~"'A'ffl 
a simple counter or . 'virtual clock" which is' incremented 
by the number of cycles required for each machine instruc
tion. When the interaction of many signals (events) in a 
piece of hardware is being simulated, obtaining the correct 
timing between the signals is more complex. Approaches 
used include an event queue which synchronizes the mod
eled signals with a virtual clock that is regularly incre
mented,39 or that synchronizes the signals with an external 
clock that is regularly sampled by the host. 4 An additional 
method of time-scaling an emulation is to include the signal 
synchronizing in the code for each step vf an emulation. 14 

This latter method is particularly useful for interfacing an 
emulation with physical hardware (e.g., universal interface 
board) under conditions where the emulation produces 

* Some unaccountable aggregation of logic gates probably occurred sinc~ t'-" 

internal design of the chip had to be assumed. 



944 National Computer Conference, 1977 

signals at precisely the same timing as the equipment being 
emulated (time-synchronous emulation14

). 

An emulation providing at least one level of detail at 
which events (e.g., occurrence of input and output signals) 
in the target system are related to the occurrence of the 
corresponding events in the emulation by a constant ratio 
(the scaling constant) is defined as a time-scaled emulation. 
When the scaling constant (emulated time+target time) is 
equal to one, the emulation is termed time-synchronous. 

The register transfer level 8080 CPU emulation was time
scaled to the 8080 instruction set with a scaling factor of 9. 
This was achieved without an attempt to optimize the 
emulation speed. However, it seems to indicate that the 
QM-l (without hardware augmentation) is not sufficient to 
perform a time-synchronous emulation of the 8080 chip. 
Considerations of target/host architecture mapping and rel
ative technologies are again a factor. 

As a counterexample, an error detection and correction 
process used for 1200 BPS communication links in the 
T ACFIRE and TOSl! Army Tactical Data Systems was 
emulated by the QM-l at a 0.87 scaling factor. The QM-l 
could easily be time synchronized as a driver to examine 
the performance of these tactical computer networks. 

Figure 6 illustrates the process used to develop a time
scaled emulation. The accuracy of emulation test requires 
that all input-output transformations of the target system be 
replicated in the emulation before time-scaling is attempted. 

RECORD PROCESS ING 

TRANSFORMS 

ESTIMATE TARGET 
HAR[X.lARE INTERVALS 

USING SYNTHETIC 
WORKLOAD 

MEASURE TARGET HARDWARE 
INTERVALS USING 

SYNTHETIC WORKLOAD 

Figure 6-Time scaled emulation development process 

Emulation instrumentation 

This section could equally well be titled' 'Instrumentation 
Emulation" because what was developed was a way of 
instrumenting an emulation by means of emulated instru
mentation. Svobodova has suggested augmenting computer 
architectures with hardware to support measurement such 
as interval times and event counters. 20 What we propose is 
to emulate these measurement hardware facilities along 
with the emulation of the computer hardware they are 
intended to measure. This emulated measurement hardware 
can then be used by external measurement equipment and 
internal software in the manner proposed by Svobodova. A 
significant advantage to emulation of the measurement 
hardware is that the amount and composition of the meas
urement hardware can be varied to suit the desired data 
acquisition requirements of a particular experiment. This 
flexibility in part anticipates a new law of computer per
formance analysis: For any computer architecture having N 
general purpose interval counters, there will be at least one 
experiment of critical interest requiring measurement of 
N + 1 intervals. 

The choice of using separate measurement programs 
instead of building the measurement hardware into the 
target architecture emulation was made to preserve the 
maximum generality of the system. This choice, as well as a 
desire to provide for external measurement (i.e., by DMA) 
decided another feature of the emulation architecture. At 
the microcode (microstore) level, each storage device of the 
target architecture is represented by a location in a resource 
vector of words in microstorage (i.e., a COMPOOL of 
emulator data sets). Instrumentation code outside of the 
building block can refer to the target hardware by a 
displacement into this table. Since the displacement is 
relative to an address maintained by the MOS for each 
building block and this address is updated whenever this 
resource vector is overlain at a new point, the instrumenta
tion is unaffected by microstore memory management ac
tions. This organization of the emulation building blocks 
into executable code and separate data storage also permits 
reentrant coding by the creation of a new copy of the 
resource vector for each new use of the building block 
(each building block also accesses the resource vector 
through updatable relative addressing). Storage for all sta
tus and scratch areas used in the building block is appended 
just below each copy of the resource vector. An optimum 
policy for determining when to overlay a building block 
while retaining the resource vector in microstore card and 
when to overlay a building block and copy the resource 
vector to mainstore has not yet been formulated. For some 
of the circuit level blocks, it was possible to retain only the 
active resource vector in microstore because of size limita
tions. At present, all resource vectors are removed to 
mainstore when their building block is overlain and are 
restored when the block is again activated. Some circuit 
level building blocks (i.e., 8080 CPU) require overlays 
within the building block because of the length of the code, 
these overlays do not affect the resource vector. Some 
typical microstore sizings are shown in Table I. 



Instrumented Architectural Level Emulation Technology 945 

TABLE I-Microstorage Utilization for 8080 CPU Building Block 

Register 
transfer Circuit 

level level 

Microcode 2974 words 57695 words 
Resource vector 218 words 1452 words 
% of Total Memory 
Requirement for Resource 
Vectors 

I active copy 6.83% 2.45% 
2 active copies 12.79% 4.79% 

Conditional measurements 

Not all the measurements taken during an experiment 
represent data of interest to the experimenter. For example, 
when determining which instructions cause the heaviest 
loads upon the ALU, any opcodes not associated with 
AL U operations are not of interest and can be deleted from 
opcode occurrence measurements. As the number of sys
tem parameters being measured increases, the difference 
between the amount of data present and the particular 
combinations that are of interest rapidly increases. In order 
to retain efficient host execution speeds, conditional meas
urements are introduced. When implementing the instru
mentation, a choice exists between (I) recording of al1 of 
the measurement data and then screening the unnecessary 
data at the instrumentation processor as part of the analysis 
process or (2) screening the measurement data as part of 
the measurement routine processing. The objective is to 
minimize the amount of instrumentation processing that 
must be performed by the host and the trade-off is between 
the amount of time required to output al1 the measurement 
data as opposed to the time required to screen the data that 
is recorded. Bulk recording of measurement data is the 
most straightforward to implement, but, in general, results 
in unsatisfactorily slow execution of the emulation. The 
incorporation of the screening process into the host was, 
therefo~~:,~:!~:ted for i,mpl~mentatio~ ~uri~~ t~~ fea~i~ili~y 
research. 

The standard instrumentation building block accesses the 
object (host resource representation of a) target machine 
entity to be measured and then controls the 110 process 
responsible for outputting the measured data in a specified 
format on a selected 1/0 device (disk, tape, line printer, 
CRT or host front panel). The conditional processing logic 
is interposed between the measurement and the action 
(e.g., 110) performed as a result of the measured data 
matching the specified conditional phrase. Conditional 
phrases can be formed recursively by concatenations of 
conditional phrases and any logical operators. Classes of 
conditional phrases which were built into instrumentation 
blocks included: (I) signals contained by any target proces
sor resources (memory, registers, busses, status indicators, 
etc.). (2) values of clocks (virtual or actual), and (3) control 
console inputs (and planned instrumentation processor in
puts). The interpretations of the target processor signals 

depend upon the architectural level of interest. Typical 
software oriented representations could include: (1) refer
ences or stores to specified target processor resources, (2) 
values of the target machine program counter, and (3) 
values contained by target resources. When measured, data 
are treated as higher level representations (i.e., signals as 
values or addresses) a conditional phrase with a value 
specification can also contain range specifiers (L T, LE, 
GE, GT). The conditional processing logic was directly 
microcoded into the building blocks during the feasibility 
research; when the interactive instrumentation link be
comes operational and interpretive capability is planned. 

Fault injection 

For development and testing of secure and fault tolerant 
computing applications, it is desirable to be able to inject 
abnormal conditions (faults) into the processing stream and 
then be able to determine the response of the hardware and 
software. Interpreters with fault injection capabilities were 
used during the development of several fault tolerant com
puter systems. 40

,41 The same fault injection capability is 
desired for architectural level emulations of the building 
block type. The fault injection system is very much the 
complement of the measurement portion of an instrumenta
tion system. The measurement system asynchronously re
moves data from the emulation system while the fault 
injection system asynchronously inserts data (faults) into 
the emulation. As part of the fault injection capability, it 
was decided to permit instrumentation results (e.g., instruc
tion counts, and time intervals) to be specified as the 
triggering event for fault injection. No unusual difficulties 
were encountered in the implementation of fault injection 
for emulations. The fault injectors operate as independent 
modules in the same manner as the instrumentation pro
grams. For the dynamic fault injection routines, the injec
tion trigger is a conditional measurement command whose 
response is the injection procedure. 

An 8080 software version of the error detection and 
correction algorithm used in the Army Tactical Data Sys
klllS v\.<1~ (e5'{eU on dou<thi -patti bd\\t:t:nol\\'o-'S08{rs each 
executing a copy of the program and passing a string of 
characters back and forth. One, two and three bit errors 
were introduced and the trace of control through the 
software and variation in hardware resource utilization 
under the different error conditions was measured. Hard
ware faults (stuck on one, stuck on zero, and indetermi
nate42

) were then injected into one of the CPU's and the 
response of the software was fol1owed. 

SUMMARY 

The application of Instrumented Architectural Level Emu
lation to computer architecture and computer system devel
opment facilities was described. Several efficiency-improv
ing methods were described and experimental 
implementations performed as part of an Independent Re-



946 National Computer Conference, 1977 

search and Development study were discussed. The results 
of this study indicate that for a host architecture like that of 
the QM-I, (l) multilevel emulations of different computer 
architectures can be constructed from a library of module 
building blocks and (2) that separate conditional measure
ment and fault injection programs can operate upon these 
architectural level emulations. 

REFERENCES 

I. Burris, H. R., "Computer System Development Facility," submitted to 
Proc. International Symposium on Computer Pelformance Modeling, 
Measurement, and Evaluation, IFIP, August 1977. 

2. Flynn, M. J., C. Neuhauser and R. M. McClure, "EMMY-An Emula
tion System for User Microprogramming," Proc. NCC, 1975, pp. 85-90. 

3. Barr, R. G., J. A. Becker, W. P. Lidinsky, and U. V. Tantillo, "A 
Research Oriented Dynamic Microprocessor," IEEE Trans. Compo 
1973, pp. 976-985. 

4. Mattson, R., and A. Salisbury, "The Microprogrammable Multi-Proces
sor-(MMP) System for Simultaneous Emulation of Interoperating Com
puter Systems," Seventh Annual Workshop on Microprogramming, 
1974. pp. 290-296. 

5. Svobodova, L., and R. Mattson, "The Role of Emulation in Perform
ance Measurement and Evaluation," Proc. International Symposium on 
Computer Peiformance Modeling, Measurement and Evaluation, Hard
vard University, March 1976, pp. 126-135. 

6. McClean, R. K., SPACE DATA SYSTEMS FACILITY, Final Report, 
Contract No. F04701-75-C-0194, USAF, Hq. Space & Missile Systems 
Organization, Los Angeles, Calif., October, 1976. 

7. Klayton, A., "Concept for a Computer Architecture Research Facility," 
Proc. 1976 International Conference on Parallel Processing, August 
1976, pp. 189-190. 

8. Burris, H. R., Trip Report-Microprogramming Applications Within 
D.A., Memorandum for Record, Office of the Project Manager for Army 
Tactical Data Systems, Ft. Monmouth, New Jersey, August 1971. 

9. Wilkes, M. V., "The Best Way to Design an Automatic Calculating 
Maching," Manchester University Computer Inaugral Conference, 16-
18, July 1951. 

10. Tucker, S. G., "Emulation of Large Systems," Comm. ACM, Vol. 8, 
Dec. 1965, pp. 753-761. 

II. Beach, E. J., and J. Mercurio, "Emulation Capabilities of a Micropro
grammable Multi-Processor System," Proc. Seventh Annual Pittsburgh 
Conference on Modeling and Simulation, ISA, April 1976. 

12. Salisbury, A. B., "MCF: A Military Computer Facility for Computer
Based Systems," Computer Architecture News (SIGARCH) Vol. 5:4, 
October 1976, pp. 17-20. 

13. Bell, C. G. and A. Newell, Computer Structures: Readings and Exam
ples, New York, McGraw-Hili, 1971. 

14. Burris, H. R., "Development and Application of Time-Scaled Emula
tions," Proc. Sixth Annual Pittsburgh Conference on Modeling and 
Simulation, ISA, April 1976. 

15. Burris, H. R., "A Simulation Method for Selecting Computer Processors 
for Computer Processor Emulation," Proc. Sixth Annual Pittsburgh 
Conference on Modeling and Simulation, ISA, April 1975, pp. 415-421. 

16. Fuller, S. H., et ai, "The Effects of Emerging Technology and Emula
tion Requirements on Microprogramming," IEEE Trans Comput., Vol. 
C-25 October 1976, pp. 1000-1009. 

17. McClean, R. K. and B. Press, "The Flexible Analysis, Simulation and 
Test Facility: Diagnostic Emulation," TRW Software Series, TRW-SS-
75-03, October 1975. 

18. Ramamoorthy, C. V. and M. Tsuchiya, "A High Level Language for 
Horizontal Microprogramming," IEEE Trans. Comput., Vol. C-23, 
August 1974, pp. 791-801. 

19. Patterson, D. A. "Strum: Structural Microprogram Development Sys
tem for Correct Finnware," IEEE Trans. Comput. Vol. C-25, October 
1976, pp. 974-985. 

20. Svobodova, L., "Computer System Measurability," Computer, Vol. 9, 
No.6, June 1976, pp. 9-17. 

21. Svobodova, L., "Computer Performance Measurement and Evaluation 
Methods: Analysis and Applications, New York, Elsevier North-Hoi
land, 1976. 

22. Browne, J. C., "An Analysis of Measurement Procedures for Computer 
Systems," Performance Evaluation Review (ACM Sigmetrics) , January 
1975, pp. 29-32. 

23. Boehm, B. W. and T. E. Bell, "Issues in Computer Performance 
Evaluation: Some Consensus, Some Divergence," Performance Evalua
tion Review (ACM Sigmetrics), July 1975, pp. 4-39. 

24. Bennetts, R. G. and R. V. Scott, "Recent Developments in the Theory 
and Practice of Testable Logic Design," Computer, Vol. 9, No.6, June 
1976, pp. 47-63. 

25. QM-l, Nanodata Corp., Buffalo, New York. 
26. Flynn, M. J. and M. D. MacLaren, "Microprogramming Revised," 

ACM National Conference Proceedings, Vol. 22, Thompson Books, 
Washington, D.C. 1967, pp. 457-464. 

27. Interdata 8/32, Interdata Corp., Oceanport, New Jersey. 
28. Genisco Graphic Display System, Genisco Technology Corp., Irvine, 

Calif. 
29. 1M SAl 8080, IMS Associates Inc, San Leandro, Calif. 
30. Merrill, H. W. B., "A Technique for Comparative Analysis of Kiviat 

Graphs," Pelformance Evaluation Review (ACM Sigmetrics) , March 
1974. 

31. Merrill, H. W. B., "Further Comments on Comparative Evaluation of 
Kiviat Graphs," Performance Evaluation Revie»' (ACM Sigmetrics) , 
January 1975. 

32. Burris, H. R., Instrumented Architectural Level Emulation: 1976 Project 
Plan, TRW Defense and Space Systems Group, Doc. No. 99994-6323-
TU-OO, March 1976. 

33. Burris, H. R., "Microcomputer Implemented NBS Encryption Algo
rithm," Proc. Microcomputer '77, April 1977. 

34. Burris, H. R., "Time-Scaled Emulations of the 8080 Microprocessor," 
Proc. Seventh Annual Pittsburgh Conference on Modeling and Simula
tion, ISA, April, 1977. 

35. Jones, L. H., "Instrumentation Sequencing In Microprogrammed Com
puters," Proc. NCC, 1975, pp. 91-98. 

36. Belady, L. A., "A Study of Replacement Algorithms for Virtual-Storage 
Computers," IBM Systems Journal, 5(2):, 1966, pp. 78-101. 

37. Coffman, E. G. and L. C. Varian, "Further Experimental Data on the 
Behavior of Programs in a Paging Environment," Communications of 
the ACM, 11(7):, July 1968, pp. 471-474. 

38. Chu. W. W. and H. Opderbeck, "The Page Fault Frequency Replace
ment Algorithm," Proceedings of the AFlPS 1972 Fall Joint Computer 
Conference 41(1):, pp. 597-609. 

39. Kames, R. E. and W. A. Carter, "Computer Design Verification via 
Software Simulation," Proc. NCC, 1975, pp. 847-851. 

40. Anderson, J. E. and Macri, F. J., "Multiple Redundancy Applications in 
a Computer," Proc. 1967 Annual Symposium on Reliability, Washing
ton, D.C., January 1967, pp. 553-562. 

41. Kuehn, R. E., "Computer Redundancy: Design, Performance, and 
Future," IEEE Trans on Reliability, Vol. R-18, No. I, pp. 3-11, 
February 1969. 

42. Avizienis, A., "Fault-Tolerant Computing: An Overview," Computer, 
Vol. 4, No. l. January-February 1971, pp. 5-8. 



ARES-A memory, capable of associating stored 
information through relevancy estimation 

by T ADAO ICHIKAWA 
Kokusai Denshin Denwa Co., Ltd. 
Tokyo, Japan 

and 

KEN SAKAMURA and HIDEO AlSO 
Keio University 
Yokohama, Japan 

ABSTRACT 

In this paper, a novel principle of association in the field of 
pattern recognition is presented along with its mechanism. 
Mutual relevancies of information are estimated in terms of 
the Lee distance, and association is performed without the 
direct calculation of the Lee distances. Furthermore, for 
information composed of several blocks, the relevancy 
checking is extended from blockwise to interblocks. The 
number of associated' information can be adaptively con
trolled according to the application. The memory is called 
ARES. Following the overview of the principle behind 
ARES is a detailed description of the hardware implemen
tation. In the interest of practicality, the design concept 
incorporates standard modular LSI devices. The possibility 
of applying ARES to pattern recognition problems involv
ing on-line character recognition is then considered. ARES 
is a step towards more sophisticated memories specially 
designed for advanced pattern recognition. 

INTRODUCTION 

With the rapid progress of semiconductor technology, a 
processor based on a content addressable memory and a 
related ensemble of some processing elements has proven 
extremely useful in many applications including air traffic 
control, computer graphics, information retrieval, data base 
management as well as pattern recognition problems. 
ST ARAN, 1 which is considered to be the first practical 
associative processor ever produced, has shown that the 
content addressable memory has a place in the solution of 
those problems. 

When we direct our interest to pattern recognition appli
cations, however, there arises the necessity to extend the 
association capability ordinary content addressable memo
ries have. The association observed in human cognitive 
behavior is the ability to bring a small set of patterns 

947 

intuitively to mind from a variety of unconsciously acquired 
information. These patterns are quite similar to the pattern 
to be recognized, and recognition is accomplished very 
effectively using a very limited number of associated pat
terns. 

In this paper, a novel principle of association with its 
mechanism is given in the field of pattern recognition. 
Mutual relevancies of information are estimated in terms of 
the Lee distance, and association is performed without the 
direct calculation of the Lee distances. Furthermore, for 
information composed of several blocks, relevancy check
ing is extended from blockwise to interblocks. This is 
simply realized with the conventional content addressable 
memory technology by adopting the error correction princi
ple of coding theory. 

The memory is called ARES because of its ability to 
associate stored information through relevancy estimation. 
Following the overview of the principle behind ARES is a 
detailed explanation of the hardware implementation of this 
mechanism. The configuration is first generally described in 
terms of modularly specified functions for ease of adapting 
[() a variety of po~~ibrt:: api,yil:a(iu·i;i~. TIlt: dain'l Jf plact;cctT
ity is, however, based on the fact that the design concept 
for ARES allows the use of standard modular LSI devices 
that are now widely used in the computer industry. The size 
and the speed required should be clearly specified at the 
time of designing. The possibility of applying ARES to 
some pattern recognition problems is considered regarding 
the on-line character recognition. 

In conclusion, increased performance can be obtained. 
ARES is a step towards more sophisticated memories for a 
wide variety of information processing problems in general. 

PRINCIPLE OF ASSOCIATION 

We assume that the essential features of information are 
expressed by a symbol sequence of a certain fixed length N 
where each symbol takes either of the q distinct figures; 0, 



948 National Computer Conference, 1977 

I, . . . , q - 1. A slight deviation on features of the informa
tion expressed as above causes the appearance of symbols 
that most probably take adjacent figures to each other, 
where q -1 is assumed to be adjacent to 0. Therefore, the 
mutual relevancies of information can be measured in terms 
of the Lee distance on the sequence of symbols related to 
them. 

The Lee distance dL(X, A) is defined as follows for the 
information X and A. 

X = (x 1 , X 2, • • • ,x i, . . . ,x N), 

XiE{O, 1, ... ,q-I}for 1:5;:5N. (1) 

A = (a 1 , a 2, . . • ,a i, . . . ,a N ), 

aiE{O, 1, ... ,q -l} for 1 :5i:5N. (2) 

N 

dL(X, A)= L Ilxi-ail!, 
i=l 

(3) 

Suppose that A's are the pieces of information stored in a 
memory, and X the information applied to the memory. We 
try to associate a set of A 's which are quite similar to X in 
terms of the Lee distance at a time by X without executing 
direct calculations of the Lee distances. The principle of 
our association which is based on coding theory is ex
plained as follows with the help of the schematic diagram 
given in Figure 1. 

When X is given, we apply the error correction proce
dure, and let the error corrected code vector of X be 
denoted as IX. Suppose the error distance correctable by 
the code is t, then some pieces of information stored in the 
memory as A's are related to X when the circle containing 
these A's coincides with the imaginary circle around X 
having IA which is equal to IX, where IA is the error 
corrected code vectors of A's. Thus, the A's which are 
similar to X in terms of the Lee distance are associatively 
read out by X without calculating the Lee distances be
tween them. IX and IA are called the indices for the 
association, namely, the recalling of A's withX. 

The code which is available for the association is a 
perfect code since, for every piece of possible information 
which might appear, an error corrected code vector should 

Information 
Applied 

Index I 

Information Stored 
in a Memory 

Figure I-Schematic diagram for explaining association principle 

also be placed as its index inside the circle of radius t which 
contains the original information in it. 

Let n, k and t denote the code length, the number of 
information digits, and the correctable error distance, re
spectively. 

As the perfect (n, k, t)-codes over q symbol alphabet, the 
following two are known. 

(i) n =(qn-k_l)/2 for q odd; single error correctable. 
(ii) q=2t2 +2t+l, n=2, k=l; t error correctable. 

Hereafter, we will use the class (i) code, because it covers 
the wide range of nand q which can be properly selected 
depending on the application. 

The error correction of class (i) codes is as follows: 2 A 
codeword V=(v 1 , V2 , • •• ,Vi' ... ,vn ) with k=n-l, and 
q = 2n + 1 satisfies 

n 

L i·vj=O (mod q). (4) 
i=l 

For a received code vector V =(v/, v2', ••• , 

v/, ... , vn'), calculate 

n 

L i·v/ =d (mod q) (5) 
i=l 

where -n:5d:5n. If d=O, then V' is correctly received with 
no error superposed. If d>O, we change Vd' to Vd' -1. If 
d<O, we change Vldl' to Vldl' + 1. 

Received code vectors and error corrected vectors corre
spond to the original information and their indices, respec
tively. 

ASSOCIATION MECHANISM 

As stated before in the preceding section, the length n of 
the code available for the association is limited, and se
lected depending on the application in relation !o the level q 
of each symbol. 

Suppose n:5N. Then, the information X and A of length 
N is decomposed into p( =Nln) blocks as expressed in (6) 
and (7). 

X=(XI , X 2 , ••• ,Xj , ••• ,Xp), 

X j =(Xn0-1l+1, Xn0-1l+2' ... , xnj ) for 1 :5j:5p. (6) 

A=(A I , A2 , ••• ,A;, ... ,Ap), 

Aj =(an0-1l+1, an0-1l+2' •.• , ani) for l:5j:5p. (7) 

The error correction procedure is applied separately for 
each block of Xl" X 2', ••• , Xk', ... , Xs' which are par
ticularly selected from Xl' X 2 , ••• , Xp(S:5p). The index IX 
of X, thus obtained takes the form expressed in (8). 

IX=(IXI ' , IX; , ... , IX/. , ... ,IXs ), (1:5k:5s). (8) 

The lA's related to A's are assumed to be already 
calculated from A's, and stored together with A's in a 
memory. The adequacy of this assumption will become 



Search Key Register 

Write Register 

ARES 949 

====:Z> Data Line 

--~ Control Line ------{J;-----j 
Error Correcting I==~L----D~---.-J 

Array 
Control 

Unit 

e (e') ===:::;> 

access 
control 

~ 
--...... 

Ie (0) 

Ie (1 ) 

• • • 
I C (1023) 

flag 
bits 

Multiple 

Response 

Resolver 

cess 
bits 

Contents Array 

CC (0) 

CC (1 ) 

• • • 
CC (1023) 

I D 
'--__ .... ~--=---=--=---==--=--=-- e control -=~ -~ ... __ R_e_a_d_R_e_g_is_te_r_---, 

Figure 2-Functional block diagram 

clear when we refer to the way of feeding new information 

When X is applied, the number of index blocks which 
coincide with each other is checked for all A's in parallel. 
Let it be denoted as C(fX, fA). The calculation of C(fX, fA) 
follows to (9), where dH(lX, IA) denotes the Hamming 
distance. 

C(lX, IA)=s-dH(IX, IA), 

s 

dy{IX,IA)= L Ck' (9) 
k=l 

The A's whose C(IX, IA) are equal to or greater than 
O(O:58:::;s) are associated by X. The 0 is called the associa
tion parameter. The chance of missing important code 
vectors at each block association which might be caused by 
the limited error correction capability (/= l) of the class (i) 

ij 

3 4 

Figure 3-Coding diagram 



950 National Computer Conference, 1977 

Associated p. ___ 
Pattern V- ~ 

Input 
Pattern -G 

Associated 
Pattern C * 

555 444 110 000 543 665 -+- -+- -+- -t- -.- -.-
545 443 116 000443 605 

655 531 1 00006 544 065 -+ -t- -+--t -t--, 
654531 000000545 165 

444 310 000 066 544 466 
-t -, -+ ,-t -+ 
443 320 000 056 545566 

533 111 000066 655 554 -+ -t--, -t- -+--~-
633 211 000 056654 654 ------------

332 110 000066 655544 -+ -+ -+ ,-+ -t 
232 116 600056 654545 

003221 110000665444 -+ -+ -+ -+ T-+ 
063 211116000605443 

~----

9=0 

Index Pattern 
Figure 4-Association control by (} observed at character recognition 

code is reduced to some extent by taking 8 smaller than s at 
the index identification over s blocks of information. 

The number of the information which are associated with 
the sand 8 selected is specified as N(s, 8) by (10), where p 
and a- characterize a local distribution of block information 
around indices and global distribution of block information 
in the code space, respectively. 

N(s, 8)= (~).N(8, 8) 

- ± (~~l)·N(S'J.I.),(0<8<S) 
Il = 1:1+ 1 

N(s, s)=(p·qn-k)s.(a-.qn'f-s (10) 



The proof is given in Reference 3. The value that N(s, 0) 
actually takes differs greatly with application depending on 
its particular distribution of information in a code space. 

The input of newly applied information X is controlled as 
follows. When A's which satisfy the condition C(IX, 
IA)2:0'(0:50':5s) are found, these A's are replaced by X. 
Otherwise, X is added, unmodified, to the memory. Modifi
cation of A's already stored in the memory is also possible 
by taking the weighted average of X and A, and by feeding 
it again into the memory. This allows the flexibility of 
adapting to the continuous use of a recognition machine by 
particular writers resulting in the increase of recognition 
rate when the memory is applied, for example, to on-line 
character recognition systems. 

HARDWARE IMPLEMENTATION 

In this section, we give an exact description on the 
hardware implementation of the association mechanism 
from the architecture technological point of view. Here, (1) 
each function is modularly structured for ease of adapting 
to a variety of possible applications, (2) parallelism, and 
pipeline control schemes are fully adopted to meet the 
requirement on speed for some possible real-time uses of 
the memory, and (3) control is distributed so as to save the 
overcrowding of control lines. This serves to lower the cost 
of the system. Hereafter, we will refer to this memory as 
ARES. The functional block diagram is shown in Figure 2. 

The control of ARES is explained as follows. For the 
association of stored information, the input X, which is 
composed of p blocks of the class (i) code, is fed into the 
error correcting array through the Search Key Register. 

At the Error Correcting Array, the IX is derived from X 
by applying an error correction procedure to each block of 
X, separately. Consequently, IX is composed of p blocks of 
error corrected code vectors, and is called the index of X 
for the association. 

On the other hand, the information A's are stored in the 
COIJ.t~ijt~ AXr~YL~I}d th~~n.dic.e§ !~'s, of A's wh~~h? it is 
assumed, are previously obtained are kept in the index 
array. 

The Index Array is essentially to check the blockwise 
coincidence of IX with lA's, but, it assumes its most 
important role at our association, and characterizes ARES. 
The number of blocks coincided with each other is counted 
over s ( ::5p) blocks unmasked for all lA's stored in the 
memory, and compared with the 0 properly selected. When 
it is equal to or greater than 0, a flag is set at the output of 
the index cell which contains the corresponding lA, and the 
corresponding information in the contents array is selected 
as a candidate for the information to be associated. But, for 
most practical applications, there will be a limit 0 on the 
number of associated information, and 0 is adaptively 
selected at every step of the association through trial and 
error. This requires ARES to have a very high speed 
processing of index identification with probably a larger 
number of modules than ordinary content addressable 

ARES 95i 

memories have. We will take all bits in parallel comparison 
at index identification. 

The number of flags appearing at the outputs of index 
cells is counted and compared with 0 at the Multiple 
Response Resolver for the control of O. If the number of 
flags is greater than the limit 0 on the information to be 
associated, 0 is increased by one. Otherwise, it is lowered 
by one. Thus, 0 is heuristically selected so that a greater 
number of flags as possible are obtained within the limit 0, 
and then the contents array is accessed by the flag bits. 

The input of newly applied information is controlled by 0' 
as explained in the preceding section, and is transferred to 
the index and contents array through the Write Regiser. 

ARES FOR CHARACTER RECOGNITION 

The configuration, which is generally described in the 
preceding section, strongly depends on the application. The 
size and the speed required should be clearly specified at 
design. Some alternatives are provided by compromising 
cost and speed. We will show, as an example, ARES 
applicable to the on-line character recognition. 

The essential feature of each character is coded into a 
symbol sequence by tracing the directions of the stylus 
movements following the diagram in Figure 3. The length of 
the coded symbol sequence thus obtained is normalized 
into N = 18, and this is divided into p( =N /n)=6 blocks so 
that the perfect (3, 2, I)-code of n=3 and q=7 is used for 
the association. The normalization is governed by local 
rules which are applied to the symbols in a sequence 
simultaneously in parallel. 

When an input pattern is applied, a set of patterns is 
associated through index identification with the 0 properly 
selected. Figure 4 explains how the association is controlled 

.f- 0.1, 0'-0.Q1 

103~In_d_ex_An~Oy~Si=ze~I~1~02~4~1 ______________ ~~~~ 

I 

5 4 3 2 o 
Association Parameter e 

Figure 5-Number of associated patterns N(s, 8), sSp=6 



952 National Computer Conference, 1977 

Mask 
Input 

:If 1 

--

~ 
~2 

• • • 

-~ --r-~--____________ +4+4~ ______________ ~ 

• • • 
~ 

• • • 
--4 

I!I!~ 
a.I' r--~---------------~+~--------------~ 

• • • • • • 

=--

--

-
-

O}Address 
r----~-[)) Input 
r----~~l1 

~ 
r----c_~J 

Search and 
Dota Input 

-

~ 
~6 

~------~------~~~ 
'------------------++++++-o~ Write 

Enable 

I I I 

Block Response Resolver 
Match 1--------0°1 Out put 
(Flao) 

~---l{l-l---O----------' 
e (9') Input Access Control 

Figure 6---Index cell 

by (} in the case of p =s. When (}=O, there occurs no 
association capability. Imaginary visible representations of 
index patterns are given at the right side of the figure. The 
associated patterns are necessarily the patterns which are 
most helpful in identifying the input pattern to be recog-

nized, and detailed checking of the similarity is carried out 
concerning this limited number of associated patterns. The 
preliminary experimental results on handprinted character 
recognition obtained through computer simulation are given 
in Reference 4. 



Figure 5 shows the number of associated patterns N(s, 0) 
estimated by (10) for some possible information sources 
specified by q =7 and N = 18. It is observed that around 30 
patterns are associatively selected with 0=3-5 from the 
100-1000 patterns stored in the memory. Actually, the N(s, 
0) differs greatly for each pattern to be recognized, and 
ARES for character recognition is designed to select 0 

• • • 
Flag 1 st Stage 
Bits ( ROM) 

0 2nd Stage 
1 4 (4 bit Adder) 

7 

8 
9 

• 
15 

• • • • • • • • • 

1008 

•• 

•• • 
1014 
1015 

1016 

1022 
1023 

• • • 

adaptively for each so that the logic array provided for the 
Lee distance calculations of 32 (=8) patterns at most is 
filled up with as many associated patterns as possible. 

The above observation gives the exact design of the 
index cell. The index array is composed of index cells of up 
to 1024. The diagram of an index cell is shown in Figure 6. 
As the comparator, a conventional content addressable 

Access 
Bits 

7 

.8 TI9 
--<)15 

8th Stage 
(10 bit Adder) 

10 

Compa-
rator 

---01008 

: 1 
--01014 

• --01015 

1016 

1022 

1023 

S=32 Output 
for e control 

Figure 7-Multiple Response Resolver 



954 National Computer Conference, 1977 

memory is applicable. The number of index blocks which 
are identified by the index blocks of applied information is 
compared with 0 (or 0') at the Block Response Resolver. 

There are three alternatives in the design of the Multiple 
Response Resolver. These are: (I) serial counting by a shift 
register, (2) table look-up by ROM, and (3) counting by 
adders. As a compromise between the cost and speed, we 
apply a mix of (2) and (3) resulting in 50 percent decrease of 
the required components with a slight increase on speed 
(300 to 350ns) compared with (3). The diagram is given 
in Figure 7. 

The execution time attainable is less than 1 p.sec for the 
association with heuristic searching of 0. 

Some possible ways to economize ARES especially for 
on-line recognition are: (l) adoption of bit serial processing 
at content addressing, (2) simplification of the index cell 
structure and common cell utilization on a time-sharing 
basis, (3) sequential controlling throughout the system, (4) 
use of cheaper devices, and (5) partial or entire simulation 
by microprocessors. 

CONCLUSION 

An association mechanism is presented in the field of 
pattern recognition; characteristic features are as follows: 

• Pieces of information are stored in a memory together 
with their indices obtained by the application of an 
error correction procedure. 

• Mutual relevancies of information defined in terms of 
the Lee distance are estimated simply by checking 
blockwise coincidence between indices without the 
direct calculation of Lee distances. 

• When the number of coinciding index blocks exceeds 
the threshold 8, the information corresponding to the 
index is associated, and the number of associated 
information is well controlled by adapting 0 to the 
externally given condition. 

The hardware implementation of the proposed mecha
nism is described; its main characteristics are as follows: 

• ARES is modularly structured, and its control algo
rithm is realized on microprogrammed logic or PLA 
(programmed logic arrays). This makes the system 
extension easier. 

• Parallelism and pipeline control schemes are fully 
adopted throughout the system to meet the require
ment for speed on some possible real-time uses of 
ARES. 

• By sacrificing speed, depending on its application, the 
structure of ARES can be easily simplified. 

In conclusion, ARES is a step towards more sophisti
cated memories specially designed for advanced pattern 
recognition applications. The effectiveness of the associa
tion will become more obvious when a large scale ARES is 
shared with a number of small sized recognition logic 
arrays. Moreover, it is expected that ARES will offer 
significant advantages as an intelligent and adaptive mem
ory for improving the execution performance of high level 
language machines. Error correction systems can be prop
erly selected depending on the application. 

REFERENCES 

I. Rudolph, J. A., "A Production Implementation of an Associative Array 
Processor-STARAN," Proc. FlCC 1972, pp. 229-241. 

2. Golomb, S. W. and L. R. Welch, "Algebraic Coding and the Lee 
Metric," in Error Correcting Codes, edited by H. B. Mann, John Wiley & 
Sons, 1968. p. 181. 

3. Ichikawa, T., "Studies on the Application of Close-Packed Codes in the 
Lee Metric." KDD Research Report, No. 84, July 1975, pp. 30-31. 

4. Ichikawa, T. and J. Yoshida, "On-Line Recognition of Handprinted 
Characters with Associative Read-Out of Patterns in a Memory," Proc. 
of Second Int'l loint Conference on Pattern Recognition, August 1974. 
pp. 206-207. 



Cache memory systems for 
multiprocessor architecture 

by O. P. AGRAWAL* and A. V. POHM 
Iowa State University 
Ames, Iowa 

ABSTRACT 

The performances of two types of mUltiprocessor systems 
with cache memories dedicated to each processor are 
analyzed. It is demonstrated that by appropriate cache 
system design, adequate memory system speed can be 
achieved to keep the processors busy. A write through 
algorithm is used for each cache to minimize directory 
searching and several main memory modules are used to 
provide interleaved write. In large memories a cost per
formance analysis shows that with an increase in per bit 
costs of 5 to 20 percent, the memory throughput can be 
enhanced by a factor of 10 and by a factor of 3 or more over 
simple interleaving of the modules for random memory 
requests. Experimental evidence indicates smaller cache 
memories are required for dedicated processors than for 
standard processors. All memories and buses can be of 
modest speed. 

INTRODUCTION 

In this paper, buffered or cache memory organizations 
suitable for multiprocessor systems employing a set of 
identical processors or individualized dedicated processors 
!'l~ ~~tmt;~ T~ "'~. f'f 'fle ·I'mft~qi" jq t.,. qhow Of@atlf

zations which have adequate perfor~ance, low increm~ntal 
costs, and simple logical and electrical requirements. Such 
an analysis is particularly pertinent in terms of the rapid 
microprocessor development which is occurring. 

These recent advances in solid state technology coupled 
with the consistent decline in the cost of hardware and 
persistent increase in the cost of software, have provided 
the impetus to reexamine the traditional hardware/software 
boundary. Conventional machines and other early stored 
program computers were constrained to a single instruction 
stream, a single data stream and to sequential organizations 
primarily because of economic considerations. Recently, 
highly hardware oriented computing structures with radical 
departure in architectural organization such as the SYM
BOL-2R computer1,2 designed by Fairchild and now operat
ing at Iowa State University, Ames, have appeared. In 

* Now at Rockwell International, Cedar Rapids, Iowa. 

955 

addition, the arrivai of cheap, flexibie but quite powerfui, 
bipolar microprogrammable bit slice microprocessor chips 
along with low cost, high speed, compact memory chips are 
making the organization of large computers potentially 
more modular. A collection of homogeneous or heteroge
neous microprocessors with either common or localized 
memories can form a cost effective system. 

In regard to changing architecture, Winsley3 states that 
electronic disks will cause radical changes to occur in 
computer architectures. Three major impact areas cited by 
him are: 

• Time-sharing computing systems with mlm-processor 
units attached to a shared large central memory (Figure 
1); 

• Stand alone minicomputers with large memories; 
• Systems in which main memory is treated as a small 

cache with the main data storage being in the elec
tronic disk. 

In the analysis conducted in this paper, the properties of 
the new electronic disks have not been specifically in
cluded. However, the analysis can be easily extended to 
include these memories by choosing appropriate parameters 
for tht,: m~in m~m<?ry. 

One of the baSIC system architectures assumed is simiiar 
to that of SYMBOL-2R computer with dedicated proces
sors working out of a common memory. Figure 2. The other 
organization assumes a collection of general purposes pro
cessors working out of a common memory. Figure 1. 

Building individual processors from basic bit-slice bus 
transceivers, micro sequencers and microprocessor chips 
imparts a highly flexible and modular nature to the basic 
architecture of such systems. Basic building block features 
of the microprocessor chips can allow all processors to 
appear homogeneous as far as their bus interfaces are 
concerned. Particular heterogeneity features can be im
parted by microprogramming. Microprogramming enables 
one to tailor any microprocessor for any particular dedi
cated function without changing any hardware. Provision of 
a small amount of cache memory for each dedicated micro
processor improves tremendously the performance of the 
system22 and reduces the contention for global memory. 



956 National Computer Conference, 1977 

---
LOCAL CACHE 

MEMORY 

PROCESSOR 

TERMINALS 

LOCAL 
CACHE 

P, 

LOCAL 
MEfollRY 

PROCESSOR 

TERMINALS 

SHARED LARGE 
MEfollRY 

Figure I-Multiprocessor system using standard processors 

SHARED 
MAIN 

MEMORY 

MEMORY 
CONTROLLER 

Figure 2-Dedicated processor arrangement 

--

PDEDICATED 
PROCESSORS 

n 
TERMINALS 
HANDLED BY 
ONE PROCESSOR 



A sample basic architectuer for any particular processor 
is shown in Figure 3. 

In most large systems, memory speed is a limiting 
throughput factor so that a collection of processors most 
likely would aggravate the problem unless memory en
hancement techniques are employed. 

For the systems analyzed, a buffer is assigned to each 
processor to enhance effective memory performance. To 
alleviate the need for directory searching in all buffers a 
write through algorithm is assumed to maintain valid infor
mation in the main store. Further, in order to enhance 
performance, the main memory also is assumed to be multi 
module. As noted below, numerous buffer organizations are 
possible. 

BUFFERED MEMORIES 

The use of buffered memories for conventional and 
unconventional computing structures has been the subject 
of numerous investigations over the past decade.4

-
21 As 

early as 1962, Bloom et al. ,4 first proposed the use of a small 
associatively tagged memory to enhance memory perform
ance and termed it a look-aside memory. The memory as 
discussed by Lee5 and Wilkes6 described a "slave memory" 
to store the most recently used instructions in a direct map
ping mode. Gibson7 described a buffered memory system in 
which multi word blocks were transferred and he reported 

COMMON BUS 

t t 

Cache Memory Systems 957 

the effect of various replacement strategies on the percent
age of words not found in the buffer. Kaplan and Wind 
son,14 Meade,l1 Liptay, 8 Bell et al., 13,15 and Mattson, 11,12 

have conducted extensive studies on the effects of buffer 
size and block size on the miss ration for a variety of 
computing environments. They have also reported on the 
relationship between the number of classes and the hit 
ratioY Pohm et al. ,16-19 have also demonstrated the effec
tiveness of a parallel buffered memories for conventional 
machines. Agrawal et al. ,22 have demonstrated the applicabil
ity of cache memories to highly unconventional computing 
structures like SYMBOL-2R. 

Effective cycle computation 

One of the most important figures of merit of a buffered 
memory system is the effective cycle time. Effective cycle 
time, by definition, is the average time required by the 
whole memory system to provide a memory word. Ob
viously the primary goal of the buffered memory system is 
to provide operand to the processors at a rate sufficient to 
keep them continuously busy. 

Various parameters which affect the effective cycle time 
of a buffered memory system are as follows: 17 

• Hit Ratio (HR) 

-
T 1 . 

I OP CODE I I PRIORITY & STATUS I I DATA INTERFACE I ADDRESS INTERFACE I INTERFACE INTERFACE 
I • 

J t 
BUFFER 

CONTROLLER & ----' 
CLOCK LOGIC 

'1\- r ~IUORln , , 
t • ~ UPDATE LIST 

I INSTRUCTION I DATA REGISTER 1 ~ & 
~ BUFFER DIR 

ROM/PROM 
I t t 

+ W ~PER 1 BIT. SLICE ROM/PROM BIPOLAR I BIPOLAR f.... 
'CACHE ' I .At. 

MI CROPROCESSOR 

I rt " I I 
" , -III -CONTROL I ! I CONTROL ~ 

SEQUENCER ! LOGIC MEM. ADD. REG. I 
I I 

. I CONTROL 1 
STqRE I 

I MI CRO WORD F=-
I REG. 

T 

Figure 3-Block diagram of each dedicated processor 



958 National Computer Conference, 1977 

• Fraction of Read/Write ration (FR) 
• Type of control algorithms 
• Number of main memory modules (Block size) and 

how they are started. 
• Effective delay or wait time for a particular module. 
• Effective or average delay for all memory modules. 

The performance of a multi-module buffered memory 
system has been evaluated for two algorithms. Write 
through and flagged, registered swap18 assuming random 
write requests, misses and flagged words. The following 
notations are used. 17 

The Flagged, registered swap algorithm is generally the 
fastest 16,17 and is compared with the write through algorithm 
proposed for the system. 

FR 

HR 
X 

TSRC 
TSRA 
TFRC 
TFRA 
TDFR 
TFWC 
TSRH 
DF 

DS 

Fraction of reads (relative to total number of 
memory accesses) 
Hit ratio 
Fraction of buffer words written after load
ing from main 
Main memory read cycle 
Main memory read access 
Buffer read cycle 
Buffer read access 
Data transfer from main to buffer 
Buffer write cycle 
Directory search time 
Delay waiting for main memory to complete 
previous operation 
Delay waiting for a particular memory mod
ule to complete previous operation. 

Effective cycle time computations for various writing algorithms are computed as follows 

Write through 

tWT=FR.HR.TFRC 
+(1-HR) FR (TSRH+RSRA+DFA+N*TDFR) 
+(1-FR)(TFWC OR DS+START.TIME) 

of main 
mod 

which ever is greater 

DS=DSR+DSW 
=(I-HR)FR(TSRC-TSRA-«N+ 1)/2).TDFR) 
+(1- HR)FR(TSRC-TSRA-NNN+ 1)/2).TDFR+TFRC).(FR.HR) 
+( 1-HR)FR(FR.HR)2(TSRC-TSRA -«N + 1)/2) TDFR - 2.TFRC) 
+ ... 
+ « 1 - FR)/N) (TSRC - TFWC) 
+« 1-FR)/N) (HR.FR)(TSRC-TFWC-TFRC) 
+«(I-FR)/N» (HR.FR)2 (TSRC -TFWC-2.TFRC) 
+ ... 
+«(l-FR)/N) «(l-FR(N-1)/N)(TSRC-TFWC-TFWC) 
+«(1- FR)/N)«(l- FR)(N _1)/N)2(TSRC-TFWC-2.TFWC) 

Flagged Register Swap 

tFRS= FR. HR. TFRC 
+(I-HR) FR (TSRH+TSRA+DFD+lOO+N*TDFR) 
+(I-FR) H. TFWC 
+(I-FR) (l-HR) (TSRH+TSRA+DFD+ln+(N-l).TDFR) 

DFD=DFDR+DFDW 
DFDR=DFCR 

DFDW= 
+(1- FR) (1- HR)x (TSRC-TFWC) 
+(l-fr) (l-HR)x(TSRC-TFWC-TFWC).HR 
+ ... 
+(l-FR) (l-HR). (I-X) (TSRC-TFWC) 
+(l-FR) . (I-X) (TSRC-TFWC-TFWC).HR 
+(I-FR) (I-HR) (I-X) (TSRC-TFWC-2.TFCW) . HR2 
+ ... 

(Assuming TFRC=TFWC) 



Figures 4 to 7 illustrate the effect of the two writing 
algorithms on the effective cycle time for the memory 
systems for the variation of HR with fixed fraction of read/ 
write ratio, for different block sizes and different speed 
discrepancy factors. This speed discrepancy factor is de
fined as the ration of main memory cycle time to buffer 
cycle time. These figures illustrate that, for smaller speed 
discrepancy factor, WT algorithm tends to give a similar 
performance to the FRS algorithm for all block sizes; 
however, as the speed discrepancy increases the FRS 
algorithm tends to give better performance. Because sev
eral buffers would be expected to operate in parallel, the 
effective speed descrepancy factor would be large. 

Figures 8, 9, and 10 illustrate effective cycle time 
variation for the case where the block size is 8 words and 
the main memory is interleaved 8 ways. The effective cycle 
time is plotted in units of TFRC rather than some absolute 
numbers. Without considering the basic processor cycle 
time, if just the effectiveness of buffer memory itself is 
considered, then we see that even for a lower hit-ratio the 

performance improvement is attractive. The effectiveness 
of buffer increases with an increase in the speed discrep
ancy factor. Figure 8 illustrates the case for example of a 
200 ns buffer with a 800 ns backing store and Figure 10 
illustrates the case of a 50 ns buffer with 800 ns buffer. If 
for example eight processors requiring a memory word 
every 0.5 J-tsec are operated in parallel, an effective mem
ory system cycle time of .0625 J-tsec is required to provide 
operands at a rate which keeps all processors busy. 

Figure 10, for example would correspond to the case of 
eight processor, with 0.4 J-tsec buffers operating into a 
common 0.8 J-tsec main memory. Note a hit ratio of .94 
would give an effective cycle time of 90 nanoseconds and a 
hit ratio of .98 would give an effective cycle time of .65 
nanoseconds. In the case of identical processors working 
on different problems of a normal mix, Mattson'sll,12 and 
other experimental data indicate a buffer of about 8192 
bytes for each processor would provide a hit ratio of .98. 

It has been shown20 that for highly dedicated processor 
systems a judicious provision of 2K bytes of buffer only, is 

NUMBER OF MODULES = 4 

3 

TSRC = 4 TFRC 
FR = 0.8 

X = 0.25 

0 WT Algorithm 
X FRS Algorithm 

u 
~ 
~ 
Eo-< 

4-1 
0 

<Il 2 
4..1 
• ..-1 
~ 
::l 

t:: 
• ..-1 

Ql 
S 

• ..-1 
4..1 

-< 
0 
:>-
0 

Ql 
:> 

• ..-1 
4..1 1 
0 
Ql 

4-1 
4-1 
W 

.74 .78.80 .84 .88.90 .94 .981.0 

Hit Ratio 

Figure 4-Speed VS. hit ratio 

u 
~ 
~ 
Eo-< 

4-1 
0 

<Il 
4..1 
• ..-1 
~ 
::l 

~ 
• ..-1 

Ql 
S 

• ..-1 
4..1 

aJ 
~ 

..J 

:>-. 
0 

Ql 
:> 

• ..-1 
4..1 
0 
Ql 

4-1 
4-1 
W 

6 

5 

4 

3 

2 

TSRC = 16 TFRC 
FR = 0.8 
x = 0.25 

o WT Algorithm 
X FRS Algorithm 

.7 .74 .78.8 .84 .88.9 .94 .98 L 0 

Hit Ratio 

Figure 5-Speed VS. hit ratio 



960 National Computer Conference, 1977 

NUMBER OF MODULES 16 

3 
TSRC = 4 TFRC 

FR = 0.8 
X = 0.25 

0 WT Algorithm 
X FRS Algorithm 

u 
~ 
~ 
H 

I.I-! 
0 

(J) 

+J 
·04 

2 t::: 
:=> 
t::: 

·04 

OJ 
!3 

·04 
H 

OJ ..... 
0 
>. 
u 
OJ 
> 

·04 
+J 
C) 

OJ 
I.I-! 1 I.I-! 
W 

.74 .78.8 .84 .88.9 .94 .981.0 

Hit Ratio 

Figure 6-Speed vs. hit ratio 

enough to achieve a hit ratio of 95-97 percent, thus improv
ing the effective speed of the whole system. Thus it appears 
dedicated processors make more effective use of buffer 
space. This appears reasonable because code required to do 
the dedicated task would tend to remain resident. 

ECONOMIC ANALYSIS 

An economic analysis is given in Table I for a variety of 
buffered memory systems to illustrate the economic effec
tiveness. The costs which are assumed for the analysis are 
given in Table I and represent 1976 typical OEM price 
levels. The example computed fits the worst case in which 
identical processors requiring larger buffers are used. 

TSRC = 16 TFRC 
6 FR = 0.8 

X = 0.25 

0 WT Algorithm 
X FRS Algorithm 

5 
u 
~ 
~ 
H 

I.I-! 
0 

(J) 

+J 4 ·04 
t::: 

:=> 
t::: 

·04 

OJ 
!3 

·04 
H 

OJ 3 
..... 
0 
>. u 
OJ 
> 

'04 
+J 
C) 

OJ 2 I.I-! 
I.I-! 
W 

.74 .78 .8 .84 .88.9 .94 .98l.0 

Hit Ratio 

Figure 7-Speed vs. hit ratio 

Cost analysis 

Let 

N 
M 
B 
W 

= number of main memory modules 
= number of pages/module 
= number of blocks/page 
= number of words/block 

n = number of blocks in the buffer 
f = number of flag bits/buffer directory word 
s = number of bits/word 
Bcost = Buffer cost/bit 
Mcos t = Main memory cost/bit 
Pcost = Priority update list cost/bit 
Dcost = Directory cost/bit 



Cache Memory Systems 961 

TABLE I-Memory System Costs 

Main memory 

No. of Modu\es=8 

Total Cap 

512K Bytes 
1,024K Bytes 
2,048K Bytes 
4,096K Bytes 

Cost 

$12,582 
$25,165 
$50,331 

$100,662 

U sing these notations 
Main Memory Cost=Mcost(N. M. B. W. S) 
Buffer Cost = Buffer memory cost 

+ Buffer directory cost 
+ Priority update list cost 

2.175 

Main Memory 
Buffer Cost 

Priority Update List 
Directory 

Buffer Controller 

1024 Blocks 
65,536 Bytes 

Cost % of Main 

9556 38% 
9700 19.2% 
9800 9.7% 

.70 .74 .78 .84 .88 .94 .98 1 

HIT-RATIO (RR) 

0.3¢ (0.8 pe sec) 
1.5¢ (400 ns) 

5¢/Bit 
5¢/Bit 

$400 

Buffer 

512 Blocks 
32,768 Bytes 

Cost % of Main 

4828 19% 
4745 9.5% 
4800 4.8% 

128 Blocks 
=8.192 Bytes 

Cost % of Main 

$1617 12.85 
$1630 6.43% 
$1643 3.22% 
$1656 1.61% 

256 Blocks 
= 16,384 Bytes 

Cost % of Main 

$2829 22.5 
$2855 11.25% 
$2881 5.6% 
$2907 2.8 

All of the sample computations were made assuming 
modules large enough for iarge computer application. The 
basic word lengths is 64 bits and the virtual memory is 
organized to be as big as 16 million pages (with each page 
being 2K bytes). The main store modules are assumed to 

Figure 8 

1 

NUMBER OF MODULES 8 
TSRC = 4 TFRC 
WT Algorithm 

Effective Cycle Time in 
Um.ts or IFRC 

Fraction of Read-Write 
(FR) 



962 National Computer Conference, 1977 

3.76 

.70 .74 .78 .84 .88 

HIT-RATIO (HR) .. 
.94 .98 1 

have .8 p.,sec. cycle time. The total number of blocks in the 
buffer of a particular dedicated processor is highly depend
ent on the particular processor, its behavior and the dura
tion of its use by any particular job. However, the cost 
computation is carried out with 8 main memory modules 
when 8 modules are interleaved, it is assumed that about 3 
modules can be kept busy continuously. 

The cost analysis was carried out for a multiclass cache 
organization as well. Buffer cost is a function of the size of 
the buffer directory and update list and directory cost is a 
function of the type of address translation schemes. The 
major cost of the buffer memory is the memory price itself. 
Directory update list and switching network typically repre
sent less than 50 percent of the cost. As shown in Table I, 
adequately sized buffers can be supplied to each processor 
for modest increases in the cost per bit for a memory 
system. Main memory can be of modest performance and 
each individual buffer can be of modest performance which 
reduces the cost of the memories. 

CONCLUSIONS 

Multiprocessor systems consisting of a collection of stand
ard processors or dedicated processors can employ a cache 

Figure 9 

NUMBER OF MODULES 
WT Algorithm 
TSRC = 8 TFRC 

Effective cycle Time 
in Units of TFRC 

Fraction of Read-Write 
(FR) 

Normal Operating Region 

8 

memory for each processor to achieve the required memory 
system performance. 

By use of a write through algorithm, an updated copy of 
all information is maintained in the main memory and 
mUltiple directory searching is not necessary. Simultaneous 
searching in a group of buffer memories would require 
extreme speed and would require all buffers to be located 
physically together to limit propagation delays. 

In the memory system, discussed both the main memory 
and the cache memories can be of modest performance. In 
the design example shown, the main memory was assumed 
to have a cycle time of 0.8 p.,sec and each of the eight 
caches have a cycle time of .4 p.,sec. In terms of memory 
throughput, the arrangement provides 10 times the memory 
performance assuming worst case cache memories sizes of 
4096 to 8192 bytes each. 

For main memories of one to four million bytes in an 
eight processor system, the memory system cost/bit is 
increased from 20 to 5 percent respectively over that of a 
single 0.8 p.,sec main memory in the worst case. 

Experimental evidence indicates much smaller cache 
memories can be used with systems with dedicated proces
sors than with systems with general purpose processors. 
Overall, the system has the attractive feature of not requir-



6.38 

6 

3.4 

.70 .74.78 .84 .88 .94 .98.1 

HIT-RATIO (HR) 

... 
Figure 10 

ing any memory bus or memory to have a very high 
bandwidth. 

ACKNOWLEDGMENTS 

The authors would like to thank Drs. T. A. Smay and R. J. 
Zingg for helpful discussions. 

REFERENCES 

1. Smith, W. R. et ai, "SYMBOL-A Large Experimental System Explor
ing Major Hardware Replacement of Software," in AFIPS Conference 
Proc. (SJCC) March 1971. 

2. Rice, R. and W. R. Smith, "SYMBOL: A Major Departure from Classic 
Software Dominated Von Neumann Computing Systems," in AFlPS 
Conference Proc. (SJCC), March 1971. 

Cache Memory Sysiems 963 

.60 

NUMBER OF MODULES 8 
WT Algorithm 
TSRC = 16 TFRC 

Effective Cycle Time 
in Units of TFRC 

Fraction of Read-Write 
(FR) 

3. Wensley, J. H., "The Impact of Electronic Disks on System Architec
ture," IEEE Comp., Feb. 1975, pp. 44-48. 

4. Bloom, L., M. Cohen, and S.Porter, "Considerations" in the Design of 
a Computer with High Logic-to-Memory Speed Ratio, Proc. Gigacycle 
Computing Systems, AlEE Special Publ., Vol. 5-136, 1962, pp. 53-63. 

5. Lee, F. F., "Look Aside Memory Implementation," Project MAC 
Memo., MAC-M-99, Aug. 19, 1963. 

6. Wilkes, M. W., "Slave Memories and Dynamic Storage Allocation," 
IEEE Trans. Electron Comput., Vol. EC-14, April 1965, pp. 270-271. 

7. Gibson, D. H., "Considerations in Block-Oriented System Design," in 
AFlPS Conference Proc. (SJCC), March 1967, pp. 75-80. 

8. Liptay, J. S., "Structural Aspects of the Systeml360 Model 85, II The 
Cache," IBM Systems J., Vol. 7, No. I, 1968, p. 15. 

9. Lee, F. F., "Study of 'Look-aside' Memory," IEEE Trans. Comput. 
Vol. c-18, Nov. 1969, pp. 1062-1064. 

10. Conti, C. J., "Concepts for Buffer Storage," IEEE Compo group news, 
Vol. 2, Aug. 1969, p. 9. 

II. Meade, R. M., "One Memory System Design," AFlPS Con! Proc. 
(FJCC) Vol. 37, Nov. 1970, p. 33. 



964 National Computer Conference, 1977 

12. Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger, "Evaluation 
Techniques for Storage Hierarchies," IBM Syst. 1. Vol. 9, 1970, p. 2. 

13. Mattson, R. L., "Evaluation of Multilevel Memories," IEEE Trans. 
Mag., Vol. MAG, 7, Dec. 1971, pp. 814-819. 

14. Bell, C. G. and D. Casasent, "Implementation of a Buffer Memory in 
Mini Computers," Compt. Design, Vol. 10, Nov. 1971, pp. 83-89. 

15. Kaplan, K. R. and R. O. Winder, "Cache Based Computer Systems," 
IEEE Comp Soc. Repository paper. R72-215. 

16. Bell, J., D. Casasent and C. G. Bell, "An Investigation of Alternative 
Cache Organizations," IEEE Trans. Comp., Vol. C-23, April 1974, pp. 
346-351. 

17. Pohm, A. V., O. P. Agrawal, C. W. Cheng and A. C. Shimp, "An 
Efficient Flexible Buffered Memory System," IEEE Trans. Mag., Vol. 
MAG-9, Sept. 1973, pp. 173-179. 

18. Pohm, A. V., O. P. Agrawal and R. N. Monroe, "The Cost and 
Performance Trade-Offs of Buffered Memories," Proceedings of the 
IEEE, Vol. 63, No.8, Aug., 1975, pp. 1129-1135. 

19. PQhm, A. V., "CostJPerformance Perspectives of Paging with Electronic 
and Electromechanical Backing Stores," Proc. of IEEE, Vol. 63, No.8, 
Aug. 1975, pp. 1123-1128. 

20. "Electronic Replacement for Head-per-Track, Drums or Discs," IEEE 
Comp., March 1976, pp. 16-20. 

21. Agrawal, O. P., R. J. Zingg and A. V. Pohm, "Applicability of Cache 
Memories to SYMBOL-2R Like Computing Structures," paper to be 
presented at Comp Con Conference 1977, (Feb. 1977) 

22. Agrawal, O. P., "Applicability of Buffered Main Memories to 
SYMBOL-2R Like Computing Structures," Ph.D. Thesis in Electrical 
Engineering, Iowa State University, Ames, Iowa 1974. 



Choosing a medical billing system 

by JEFFREY ROTHMEIER 
University of Massachusetts Medical Center 
Worcester, Massachusetts 

ABSTRACT 

A billing system is fundamental to the financial survival of 
an institution. Choosing one requires considerable manage
rial skill and mistakes are easy to make. Several factors 
have an impact on the decision-making process. These 
include environmental, managerial, technical and planning 
considerations. 

Among environmental considerations, the organizational 
dynamics and organizational structures are most important. 
The system can be managed in several ways; in-house 
approaches, use of service bureaus and use of facilities 
management firms are among the most common manage
ment methods. Flexibility, on-line versus off-line systems 
and the use of large or small computers are major technical 
considerations. These also have considerable impact on 
costs. As in most important decisions, the relationship of 
the billing system to a long-range computer plan should be 
carefully thought out. 

ENVIRONMENT AL CONSIDERATIONS 

Most medical institutions make a clear distinction be
tween the segment of the organization which deals with 
financial management and that segment of the organization 
which deals with daily administrative operations. This can 
cause conSidera'bie'''>pi=obiems''''ln~-impTe'meniTiig''''>a gene'raI 
computing system because the information necessary to bill 
patients is a subset of the information necessary to deal 
with patients for purposes of medical record registration 
and daily care activities. 

Differences in data collected have to do with the types of 
data that are emphasized. For daily operations in a hospital, 
for instance, the most important thing may be to know 
where the patient is located; for billing purposes, it is 
important to know who the guarantor is and what insurance 
applies. Numbering systems may also be a source of 
differences. Each individual ancillary service frequently 
maintains an accession number and it is not unusual to have 
different numbering systems for medical records and billing 
or different systems for outpatients and inpatients. These 
differences can affect the choice of a billing system. In 
order to effectively choose an overall system, it is essential 
that a person be identified who has some influence on all 

965 

aspects of the medical organization so that differences can 
be reconciled. 

Perhaps the most important environmental consideration 
is the level of patient activity. In most computing systems 
there is a fundamental number that determines the kind of 
system or the power of the system necessary to do the job. 
Probably the most sensitive number here is either the 
number of beds or the number of outpatient visits. 

The scope of activity is another important environmental 
variable. The division between inpatients and outpatients or 
physician and hospital billing can be extremely important. 
The range of services is a very crucial consideration. Not 
all billing systems are complete. Consideration of whether 
or not records from patients who are seen outside of the 
institution in outlying clinics introduce additional adminis
trative problems. In clinics or community hospitals, the 
scope of activity is much less than those of a medical 
center. The computing system requirement is correspond
ingly decreased. 

There may also be operational restraints that greatly 
affect the choice of the billing system for a particular 
envjronment. These are in part, a product of the adminis
trative organization but there may be a valid historical 
precedence which the individuals who are providing the 
services are committed to. Attempting to change these by 
administrative fiat may cause more problems than they 
solve. 
''''FTnaily ,In many environments, change is frequently a 
difficult concept. This means that the consideration of 
installing a new system may be blocked by those people 
who are comfortable in the jobs that they currently have. 
The dynamics of an environment can be an important 
variable in determining whether installation of a new sys
tem is at all feasible. If the level of inertia is high, a 
complex billing system should not be considered. 

MANAGERIAL CONSIDERATIONS 

There are three basic ways that one can install a billing 
system within a medical environment: 

I. One can run the system on one's own facilities within 
the institution. 

2. One can purchase services from a service bureau. This 



966 National Computer Conference, 1977 

can be done in several ways. Terminals can be con
nected to the service bureau or mail receipt of and 
transmission of documents between the service bureau 
and the facility can be used. 

3. A vendor can set up a computer center within your 
facilities and establish a price for their people to do 
the job. 

Each of these approaches has advantages. The particular 
approach that should be taken depends upon the environ
ment one is in. In general, the in house approach is more 
attractive to larger environments, i.e., environments of 
more than 300 beds or more than 5000 outpatient visits per 
month. Whereas, the shared service approach is generally 
desirable for smaller environments. The in-house approach 
has more in common with the facilities management ap
proach than using an outside service. It does remove from 
the management of the institution the responsibility for the 
facility and may make the costs more visible since they are 
a visible part of accounts payable. However, management 
does have less control over the program than with a totally 
in-house system. Many observers also believe that though 
the costs are more visible, they may also be more expen
sive. This consideration would depend upon the efficiencies 
and abilities of a particular institution to manage a com
puter facility. Obviously, if an institution has no in-house 
expertise and does not choose to develop any, a shared 
service or a facilities management team should be consid
ered. In-house approaches are particularly important when 
the system is designed to be very responsive and innovative 
to local users. Shared services can only implement systems 
that many users will also find useful. They will usually 
charge a great deal for changes which appear to them to be 
of value to a single institution. In many situations, a 
combination of these approaches may be appropriate. For 
example, if registration is fundamental to both billing and 
medical record storage and retrieval, this may be a function 
that would appropriately be done in house. This system 
could feed information to a billing system for physicians 
since it may have unique characteristics in which one may 
not want to develop in-house expertise. In some instances, 
technical considerations, like expertise with physician bill
ing, expertise with outpatient billing or familiarity with 
inpatient billing may determine the approach for choosing 
the system in each of these three areas. In other instances, 
pressures from individuals within or without of the institu
tion may be the fundamental considerations. It is very 
likely that most of the choices depend on combinations of 
pressures. This may be a fundamental reason why there are 
so few examples of outstanding billing systems in the 
United States today. 

Finally, it would seem that with the many years that 
billing systems have been in existence that they would be 
refined to the point that it would be immediately obvious as 
to when one system was superior to another. This is 
however, not the case. The inability to agree on payment 
priorities for third party billing have also had a major 
impact on the variety and quality of systems. Billing within 
the health industry differs from that in other industries, 

primarily because the person to whom the bill is sent is not 
usually the one who pays the bill. More often it is a third 
party who will pay all or part of the bill. Someone has to 
decide which third party should pay first. It is often 
possible to separate the quality of one billing system from 
another by carefully exploring the ability to do prorating. 

Reporting requirements from third parties, particularly 
those of state insurance and federal insurance agencies can 
also be important considerations in choosing the billing 
system. 

TECHNICAL CONSIDERATIONS 

There are a variety of technical considerations which can 
go into the decision for choosing a billing and accounting 
system. Perhaps the most fundamental of these is whether 
an online system or a batch system is desired. As in the 
case of the divisions between in-house systems, shared 
systems and facilities management systems, a combination 
of the two can also be considered. The current trend is 
toward online systems, but there are still only a limited 
number of vendors who make them available. In addition, 
the terminology is not very precise and one vendor's online 
system may be another vendor's batch oriented system. For 
instance, simply entering the data online at a terminal does 
not necessarily mean that the system is online. If in fact the 
information is not merged into a file for twenty-four hours, 
then such things as inquiry as to the current status of a 
patients bill or in particular, having a reasonably accurate 
bill for an outpatient before they leave the facility will not 
be possible. It is fair to say that for many aspects of billing, 
it is not necessary to be totally online. However, as the 
costs of the hardware continue to decrease, the gains that 
can be achieved from being online, particularly in the areas 
of file editing, which insure that files are accurate and for 
inquiry purposes by a cashier are not to be underestimated. 

Another technical consideration that has an impact both 
on the style of computing and on the cost of computing has 
to do with whether to choose a minicomputer or a large 
scale computer. Until very recently, for hospitals in excess 
of 300 beds, only large scale computers were available. This 
is no longer the case. Furthermore, the complexity of large 
systems has become such that it is no longer true that if you 
double the size of the computer, you will increase the 
efficiency by a factor of 4. At a certain level, it is even 
questionable as to whether the efficiency increases at all as 
the size of the computer increases because of the large 
overhead costs as the system grows. This applies both to 
people and to the support of a mUltiplicity of systems and 
languages. In addition, if there are too many functions on a 
large scale computer, it can be difficult to establish priori
ties. If billing and accounting is one of many functions and 
payroll is another, there may be sharp disagreements within 
an institution as to which should come first if equipment or 
other problems require a delay in schedule. The back
ground of people who relate to small computers or large 
ones is generally different. There are few computer special
ists today who feel comfortable with both minicomputers 



and large scale machines. The above two fundamental 
technical decisions can greatly influence the options which 
a particular institution has available for a billing system. 

Another technical consideration is related to the exper
tise in the billing office. The extent of the reporting that is 
required is directly related to the sophistication of the 
people using the reports. Also, some people are willing to 
do some things manually rather than require the computer 
to do it. There is a delicate balance between whether the 
energy to implement a function on a computer justifies it 
when a person may be able to accomplish the same function 
with a couple of days of effort each month. Generally, there 
is a way to distinguish one system from the other by 
comparing the number and quality of management reports 
that the system produces. 

The timeliness with which the reports are produced and 
the operational difficulty required to produce them are 
other considerations. Proration is another important consid
eration. Very few systems today do a complete and accu
rate job of prorating the hundreds of different insurance 
plans which many institutions have to deal with. There are 
some managers who feel that they would prefer not to have 
the computer perform this function. This is especially true 
if it is poorly done. As computing systems do this more 
accurately and produce complete and usable claim forms, 
this undoubtedly will be an important part of the decision 
process in choosing billing systems. 

The comparison of systems by the types of reports 
produced can be very difficult. Generally, the best way to 
do this is to spend the time with the vendors to hear their 
point of view and also rely on managerial people within the 
institution who have had exteQsive billing experience. Prob
ably the most important thing is to obtain the opinions of 
other users who have had experience with the billing 
system under consideration. This can be done in several 
ways. The ideal way is to make an in-depth visit to the 
system under discussion. If this is not possible, names of 
people who have had experience can be obtained and they 
can be calJed. Finally, one can try a written survey. Both of 
the latter two methods may not give sufficient information 
in ord(!r to make a r~liab!t: judgmc::~nt. 

Flexibility is another fundamental technical considera
tion. It is probably one of the most difficult to measure. 
Nobody would like to admit that he isn't flexible and 
generally, if one asks specific questions as to whether this 
report can be changed or that can be changed, one will get 

Billing 
Patient and 

information accounting 

FY77 72,500 
FY78 87.100 74,172 
FY79 71,200 74,172 
FY80 56,800 74,172 
FY81 61,400 74,172 

Totals 349,000 296,688 

Choosing a Medicai Biiiing System 967 

from vendors at least a guarded probable yes. It is only 
when one asks for a commitment in writing that one finds 
how flexible the system really is. It is very important to 
write a contract which spells out in as much detail as 
possible those important considerations and how they will 
be accommodated. 

Reliability is fundamental to all operations. If possible, 
one should obtain the up time characteristics for any 
system under consideration. This is very difficult to do and 
only through discussion with other users can one truly tell 
whether a system is or is not reliable. Lack of reliability can 
cause some of the greatest frustrations among the opera
tions people within a computing department and can be a 
fundamental reason for lack of performance within an 
institution. 

Finally, one of the often talked about technical issues and 
this is both a technical and a managerial issue, is security. 
Recent fair information practice legislation has made it 
difficult to interpret how much security is really desirable 
within a medical computing system. Nonetheless, it ought 
to be a conscious decision to make the information avail
able and not something that happens by accident. Security 
is related both to the technical and managerial aspects of 
the system. A batch oriented computer system with tight 
controls on the distribution of the hard copy is the most 
secure. A dial in time sharing system with no security codes 
on any files is the least secure. It should not however, be 
assumed because there are terminals on a system, that it is 
less secure than one without. Each computing environment 
can take steps and provide security even with a large 
number of terminals. 

PLANNING CONSIDERATIONS 

The choice of a billing and accounting system ought to 
take into consideration long range planning. This can be 
done by trying to project total costs over a suitable time 
period in the future. This should include costs for equip
ment, outside contracts, internal people costs and operating 
budg~t for sUI'.plie.s. A typical (!xample of such a projection 
tor a 400 bed hospItal with 100,000 outpatIent visits per year 
who has a desire to interface the billing system with a 
patient information system can be seen in Figure I. Each of 
the items within a plan should have more detail which 
breaks it down into individual functions and individual 

Pharmacy Laboratory Radiology Total 

72,500 
52,200 213,472 
36,300 234,000 415,672 
11,800 24,000 106,000 272,772 
11,800 24,000 21,800 193,172 

112,100 282,000 127,800 1,167,588 

Figure I-Summary of direct costs 



968 National Computer Conference, 1977 

people and equipment. This will make it possible for a 
managerial review team to determine whether the costs are 
in fact being accurately projected and review on a regular 
basis the progress of the plan. 

Finally, the type of billing and accounting system one 
chooses can be affected a great deal by the relationship of 
the billing and accounting system to other systems. I 
mentioned before the importance of registering patients. 
This is a good place to begin computerization. Hospital 
programs which do this are generally referred to as admis
sion, discharge and transfer systems. Use of such a system 
provides the fundamental base for many other activities 
within the institution. 

It would also seem that starting with information systems 
that are helpful to the physicians, the nursing staff and 
other clerical people can obtain support and finally result in 
a successful installation of a billing system. Thus, beginning 
with systems that provide timely lab results, timely x-ray 

reports and smooth pharmacy operations, have considerable 
merit. Frequently, however, it is the case that the individu
als who function in these service areas have little experi
ence with the use of computers. Increasingly, their col
leagues in other institutions may tell them that they could 
function more effectively with this tool. However, it is still 
most common to begin computerization in a medical envi
ronment with billing and accounting. In summary, the 
choice of a billing and accounting system must take into 
consideration several important factors. Perhaps the most 
important one is the individual environmental peculiarities. I 
think we can expect these to be less significant in the future 
as federal regulations increasingly begin to create uniform 
data basis, uniform reporting requirements and control 
many operations previously within the purview of individual 
institutions. The complexity of a billing operation will 
continue to make choosing a system a difficult venture for 
some time in the future. 



Designing software for the minicomputer business 
data processing environment-A case history 

by JOHN M. HEMPHILL and RONALD L. LANCASTER 
Bowling Green State University 
Bowling Green, Ohio 

ABSTRACT 

The design of software for the minicomputer business data 
processing environments poses significant practical design 
problems. This paper deals with the history of the design 
and implementation of a specific system for that environ
ment. Changes in the system design due to problems in the 
operational environment are examined. Conclusions are 
made concerning the design of the system. 

INTRODUCTION 

The problems experienced in designing and implementing 
software for the small business environment provide impor
tant lessons that illustrate the problems involved in apply
ing computer science principles to solve real life demands 
on a computer. In this case, the application of interest 
involves the design of a general-purpose accounting system 
for medium to large scale automotive dealerships. Certain 
aspects of the accounting system design (such as selection 
of hardware, programming language, and operating system) 
were not negotiable. This was due to the fact that the 
accounting system to be developed was to run on an 
existing minicomputer system already being marketed to 
automotive dealeJ:silios. 1 

THE DESIGN GOAL 

We were required to implement a double-entry account
ing system with on-line data collection, validation, and 
posting of accounting transaction data. Current account 
balance information was to be available for demand inquiry 
at terminals. In addition, the system had to produce gener
alized schedules of account activity as well as conventional 
general ledger and journal reports. The system had to be 
able to retain information about 30,000 to 60,000 account 
debits and credits. 

HARDWARE/SOFTWARE ENVIRONMENT 

The system to be developed was to operate within the 
framework of an existing operating system and application 

969 

program. The software runs on a Data General NOVA 3/12 
minicomputer. The software system supports an automo
tive warranty system, a payroll system, and a parts inven
tory system, as well as the accounting system. The lan
guage used in this development is BASBOL (BASic 
Business-Oriented Language). This is an extended version 
of a multiuser BASIC, with extensions appropriate for 
business data processing. BASBOL contains variables and 
constants of extended precision as well as elaborate output 
formatting capabilities. BASBOL is an interpretive system. 

Typical systems in the field have four or five interactive 
user terminals on one NOVA 3/12 CPU. In addition to 
having a terminal in the business office, terminals are often 
available in the parts department, the service department, 
and in the office of the owner or business manager. A 
typical system is illustrated in Figure 1. 

The file system is maintained on a 10 million byte disk 
and provides access to two types of files: (1) random-access 
files that are byte addressable, and (2) limited indexed
sequential files that allow quick access to a specific record 
but require batch updating for addition of new records. 

It is important to note that, at' the time of the initial 
system specification, we were told that a tape drive would 
become available for the real-time journalizing of account
ing transactions entered on-line. 

Because of conslfairns imposed by the availabie memory 
space and due to the size of the operating system, no 
accounting program could be larger than 5000 16-bit words 
in length. An overlay feature was available in BASBOL but 
it was too slow to allow for frequent use. 

INITIAL DESIGN DECISIONS 

As stated, this system is designed primarily for use by 
automotive dealerships. Until the introduction of this sys
tem, the accounting and other functions were either done 
manually or by a "service bureau" which would receive 
information from the dealership and return reports accord
ing to some schedule, usually a brief daily report with more 
detailed weekly, monthly, and/or annual reports. Such 
systems typically utilize large sorts and data selection 
software supported on large computer systems with much 



970 National Computer Conference, 1977 

USED FOR DATA 
TRANSMISSION TO 

MANUFACTIJRER'S AUTOMOTIVE 
WARRANTY SYSTID-! 

PAPER TAPE 
PUNCH 

LINE PRINTER 

300 LPM 

ACCOUNTING 
DEPARTMENT 

NOVA 3/12 CPU 

32,768 16 BIT 
WORDS OF 

MEMORY 

DISK STORAGE 
5 HB FIXED 

5 MB REMOVABLE 

MB - HEGABYTE 

BUSINESS 
OFFICE 

PARTS 
DEPARTMENT 

SERVICE 
DEPARTMENT 

CRT - TELETYPE C(J1PATIBLE CRT TERHINAL 
LPM - LINES PER MINUTE 

Figure \-Typical system configuration 

I/O capability. In our case, we were to use much smaller, 
slower hardware with limited I/O capability. Demands by 
other users for input/output and the limited I/O band width 
of the hardware made heavy I/O demands involving the 
disk prohibitive from a time standpoint. We needed to 
choose a disk structure for our system that would keep the 
number of disk accesses required during execution to a 
minimum. 

Double-entry accounting systems have two major data 
structures. The General Ledger contains one entry for each 
account. A typical automotive dealership will have from 
300 to 500 accounts. For each account, the system must 
have available the current balance figure. In order to 
produce the required reports, the system must actually 
retain much more information than this for each account. 
Other information retained included the account title, the 
balance at the start of the month, the account "password" 
(used for protection of information in the interactive envi
ronment), and information telling which journals have 
caused changes in the account balance. 

The second major data structure contains the journals. 
Journals contain the accounting transaction entries-modi
fications to individual accounts. These entries modify the 
account balances in the general ledger. Journals are usually 
defined to contain only transactions of a specified type 
(e.g., new car sales journal, parts & accessories journal, 
cash disbursement journal). 

In a manual system, information is entered regularly into 
the various journals. Periodically, the general ledger is 
updated to reflect recent journal entries. For our automated 
system, we decided to transmit journal information to the 
general ledger immediately, so that general ledger balances 
were always current and available for inspection from any 
terminal. As a result, journals in our system contain infor-

mation which is historical, in the sense that the entries had 
already been reflected in the general ledger. 

It should also be noted that an individual transaction (e.g., 
an individual car sale or purchase) will result in no net 
change in the general ledger. That is, amounts are trans
ferred from one account to another or the same amount can 
be added to one account and subtracted from another, but 
the sum of all account modifications for an individual 
transaction must be zero. 

It was necessary for our system to provide a data 
structure for retaining transaction information so that 
"schedules" of account activity could be printed. Basi
cally, a schedule is a record of all transactions which affect 
a given account or group of accounts. All transactions 
involving the specified accounts appear on the schedule, 
regardless of which journal was used to enter the transac
tion. An example of a common schedule is the accounts 
receivable schedule. An entry is made to the accounts 
receivable account when a charge purchase is made for 
which the car dealer will later issue a bill. By scheduling 
this account, a listing of all transactions involving that 
account can provide much information about which cus
tomers have paid their bills and which customers have an 
outstanding balance. Typically, the information on the 
schedule is sorted so as to facilitate use of the information. 
Additionally, information gained from processing schedules 
may be used to remove transaction data which is no longer 
of interest (such as removing detailed information about a 
bill which has already been paid). 

To implement the system we used two files. The first is 
an indexed-sequential file that contains the general ledger 
accounts and balances. It is not often that account numbers 
are added to or deleted from the general ledger, so the need 
for a batch run to accomplish this was not a serious 
disadvantage. The primary purpose of the general ledger is 
to be able to access information about individual accounts, 
including account balances. 

The second file is known as the transaction data base. 
This is a random access file which contains all of the 
individual accounting transactions maintained for historical 
purposes. This is a relatively volatile file that must provide 
for quick record deletion and addition. To achieve this goal, 
plus the goal of maintaining journal and schedule structure 
among the entries, we selected a linked list structure. The 
structure used is shown in Figure 2. For easy deletion of 
records, all lists are doubly-linked, except for the free 
record list in which deletions and additions are always done 
at the head of the list. 

The initial choice of the general ledger and transaction 
data base formats proved to be useful. The structures 
remained essentially unchanged from inception of the pro
ject through production use, even though other parts of the 
system changed. 

One unfortunate side effect of using the linked structure 
in the transaction data base was the necessity to develop a 
number of support programs to initialize the file, to dump 
its contents for diagnostic purposes, and to provide list 
manipUlation facilities for other programs in the system. 

The time from system design to the shakedown phase 



Designing Software for Minicomputer Business Data Processing 971 

TRANSACTION DATA BASE FILE FORMAT 

PROLOGUE DATA AREA 

PROLOGUE - CONTAINS INFORMATION THAT DESCRIBES THE FILE. 
IT CONTAINS LISTHEADS FOR THE JOURNAL LISTS, THE 
SCHEDULE LISTS AND THE FREE RECORD LIST. 

DATA AREA - CONTAINS ALL DATA RECORDS, BOTH FREE AND 
ALLOCATED. 

DATA RECORD FORMAT 

I JOURNAL 

I 
LINK 

i FIELD 

4 SCHEDULE II 

LINK FIELDS DATA FIELDS 

i 

'DATA RECORD - CONTAINS BOTH DATA FIELDS AND LINK FIELDS. 
EACH LINK FIELD CONTAINS A FRONT AND BACK POINTER. 
A RECORD CAN BE ON ONE JOURNAL LIST AND FOUR 
SCHEDULE LISTS SIMULTANEOUSLY OR ANY COMBINATION 
THEREOF. 

.JOt:R.'JAL 
LISTHEAD 

TABLE 

LEGEND 

Sn - RECORD IN SCHEDU LE n 
In - RECORD IN JOURNAL n 

F - FREE RECORD 

THE FREE RECORD LIST IS A SINGLY LINKED LIST. BOTH THE JOURNAL 
;'~D ,CHfl)~:LE LISTS ARE )(lUBLY LI~KED. THE HAXIML'M NUMBER OF 
ENTRIES IN EACH LISTHEAD TABLE IS DETERMINED DURING INSTALLATION 
OF THE ACCOUNTING SYSTEM AT A PARTICULAR SITE. 

consumed approximately three months of part-time work. 
When we began serious system testing, we discovered that 
one of our most dread suspicions had indeed been well 
founded. The program which collected accounting entries 
on-line, posted the general ledger and updated the transac
tion data base was much too slow. The program needed to 
run fast enough to allow input of data to the terminal with 
only a delay of a few seconds between account transac
tions. Instead, delays of 40 to 50 seconds were occurring 
between transactions involving only six or seven different 
accounts. This was not acceptable, especially since it was 
not uncommon for transactions to involve that many ac
counts. Thus, we had a problem. The difficulty was in the 
great number of disk arm positionings required to perform 
the list manipulations in the transaction data base. Since all 
additions to lists are done at the start of the lists, the 

solution decided upon was to implement a software sup
ported cache to contain the free listhead and heavily-used 
journal and schedule listheads in core, updating them on 
disk when on-line data entry activities were completed. 

The cache solved the problem of program execution time 
by reducing drastically the number of disk operations 
required to perform the needed list manipUlations. At this 
point in system development, the system was distributed to 
two customer sites for installation. Little did we suspect the 
nature of the problem that would next confront us! 

Even though we had been told that there would be a tape 
drive with which to record on-line data entries for use in 
recovery from system crashes, the drive did not material
ize. At first this did not seem to be a serious problem. Then 
we began having system crashes on our computer, due to 
hardware malfunctions. Since we were knowledgeable com
puter users and understood how to restore the disk, such 
problems were only a minor set-back to us. But in the field 
at the production sites, there were no users knowledgeable 
in the ways of the computer. 

System crashes at production sites when the cache was 
used spelled disaster for the integrity of the transaction data 
base. Since the updated listheads were core resident, a 
crash meant that the new listhead values were lost even 
though the list elements themselves were already modified. 
The net result was that the free listhead on disk (the old 
value) now pointed to a record that was linked onto a 
journal list. The transaction data base was now a trap for 
the unaware user! When the system crashed and destroyed 
the data base's integrity, the file could still be used for a 
short period of time for data entry without signs of its being 
defective. The user had no idea that disaster had befallen 
his file, rendering it useless in producing meaningful re
ports. Since some of these files at the point of failure had 
accumulated 10,000-20,000 transactions, the need for reen
tering the data tended to render the customer somewhat 
less than enthusiastic about the system. 

Our response to this problem was twofold. First, a 
systematic backup procedure was instituted. None of the 
other software systems on the computer was as sensitive to 
mac:lJjJl~ f~hlr:~,g~ the n~\v, accq,up.til1g ~Y~Jem.Bef9t:e the 
accounting system was delivered, users had backed up the 
disk on a rather casual basis. Second, we developed a 
simple data structure testing program known as VERIFY, 
to give the user a way to determine whether or not the 
transaction data base is intact. VERIFY performed the 
rather simple function of checking to see that all of the 
records on the free list were indeed free. This is possible 
since a record not allocated to a journal or schedule has a 
null back pointer value in its link fields. Also, VERIFY 
made sure that the sum of all account balances in the 
general ledger was indeed zero. System failure in the 
middle of updating account balances for a transaction could 
have made the general ledger totals inconsistent. Thus, 
VERIFY could warn a user if the transaction data base or 
the general ledger was damaged, and the user could then 
restore from a backup disk, losing only transactions entered 
since the previous backup. 

A computer being used by knowledgeable people is in 



972 National Computer Conference, 1977 

friendly hands. Our system was being used by people with 
absolutely no computer knowfedge and was in hostile 
territory. First, the users refused to follow backup proce
dures conscientiously. Second, they continued to enter data 
even when VERIFY informed them that something was 
wrong. 

At this point, we were somewhat astounded as to what 
had become of our attempts to assemble a relatively simple 
on-line data entry system. Two things became clear to us. 
First, for economic reasons, the system would not have a 
tape drive for retaining the entered data. Second, we had to 
reduce drastically the amount of time that elapsed while the 
transaction data base list manipulation routines were ac
tually being used in order to reduce the possibility that a 
system crash would damage the integrity of the data base. 

Our answer was to collect the accounting transactions in 
a disk file and defer making the entries in the transaction 
data base until a later "batch" run. In the original on-line 
design, a person might spend three to. four hours at the 
terminal entering accounting transactions. During this en
tire time period, the critical listhead pointers would be 
maintained in core. A hardware problem at any time during 
this period would have the potential of destroying one or 
both of our main files. 

By collecting the entries into a file and adding them to the 
data base in a batch mode, we were able to reduce our 
vulnerable period to only 10-20 minutes each day. One 
interesting result was that the person performing the data 
entry noticed no change in the operation of the system, 
except that the data entry process was much faster. This 
was due to the fact that list processing was not being 
performed at data entry time. Instead, we were simply 
collecting entries in a sequential file after insuring (by 
checking the general ledger) that only valid account num
bers were being used and that the sum of the dollar 
amounts for each transaction totalled to zero. This insured 
that adding the amounts to the general ledger during the 
"batch" update would not make the ledger out of balance. 
By collecting entries in this way, the user could run the 
, 'batch" program to transfer entries to the two main files at 
any time during the day. Additionally, in the case of a 

system disaster that did damage the files, backup was 
usually possible with no loss of data since all of the current 
day's, entries were in a sequential file that was generally not 
affected by a system .,crash due to its simpler structure. At 
the end of the day, users were instructed to run the 
VERIFY function. VERIFY would now insure that all 
entries into the sequential file had been transferred to the 
transaction data base and that the account balances in the 
general ledger had been updated. 

SUMMARY 

The system has been in production use for over one year. It 
has proven to be a reliable system which has been extended 
to meet needs discovered since the original design. With the 
change from on-line file update to deferred batch updating, 
system failures have not been a serious problem. 

The data structures chosen initially proved to be suitable. 
In retrospect, our major design error was failing to plan 
properly for the environment in which our system would be 
running. The problem of developing a reliable software 
product for the business-oriented minicomputer is not one 
to be undertaken lightly. We should have initially spent 
much more time designing the system to be durable in the 
face of hardware and software crashes as well as less than 
perfect behavior by the user. 

Small business oriented computing is an area that is 
growing at an increasing rate. However, success in this area 
seems to be greatly affected by the reliability of the systems 
that can be delivered. In such systems the designer should 
first view the system design from the standpoint of reliabil
ity. Without operational reliability and durability, the sys
tem will be of little value to its users. 

REFERENCE 

1. Fulton, D. L. and R. T. Thomas, "A/Minicomputer-Based Information 
System for a Small Business," Computer, 9,9, September, 1976, pp. 22-
28. 



What to look for in distributed 
(source) data processing 

by W. HARRY VICKERS 
ENTREX, INC. 
Burlington, Massachusetts 

ABSTRACT 

Non-traditional concepts about distributed data processing 
can change your way of thinking and planning for a system. 
In this paper, it is suggested that the term source data 
processing is more descriptive of what this subject is all 
about. It tells everyone immediately where the processing 
is taking place-at the source of the data, not at some 
arbitrary place widely dispersed from the central processor. 
It presents some guidelines for integrating this technique 
into existing systems and strongly recommends the need to 
insist on simplicity of design so that everyone can take full 
advantage of this management tool. Cautioning against 
limiting one's scope to only the COBOL world, it encour
ages readers to take a look at the newer software systems 
and to keep an open mind relative to technology. 

INTRODUCTION 

Some rather important concepts have recently been made 
available on computers designed for source data process
ing. Typically, these concepts are non-traditional, non
standard. But, with source data processing, where there is a 
high degree of personal interaction with a data base on a 
§01(,l,1l$yst~m1 the tr:a\UtiQnalcQuce.pts. are .110t always . the 
best concepts. In fact, distributed processing itself is non
standard! 

In reading this paper, I hope you will keep an open mind 
relative to technology. By this, I mean more than hardware 
technology. Software technology (usually in a lower profile) 
is the subject that today challenges some traditional con
cepts held by the EDP establishment. ANSI, CODASYL 
and similar groups have not really gotten their heads out of 
the trees long enough to look at some of the newer, more 
exciting non-traditional, non-standard concepts available on 
computers designed for distributed (or source) data proc
essing. Don't limit your scope only to the COBOL world or 
you'll miss out on a good bet. Remember, the traditional 
concepts are not always the best. 

As a matter of fact, the traditional words describing what 
we are talking about do not always do the best job. The 
semantics in the field of data processing can often cause 
even the most sophisticated computer professional some 

973 

confusion. Does anyone know, for example, if distributed 
processing, distributive processing, dispersed processing, 
and computer networks mean the same thing or something 
different? Consistent terminology is a key to understanding 
the plan of action to be discussed. In this paper, the term 
"Source Data Processing" is used to portray-quite viv
idly-where the data processing is taking place. It means, at 
the source of the data or in the using department. The 
action is not happening at some arbitrary place, widely 
dispersed or distributed from the central processor through 
a computer network. 

Granted, some data processing may make use of a 
network arrangement, but you actually think differently 
when you do your planning while standing at the central 
processing unit (implied by the term distributed) than you 
do if you put yourself right at the source of the data. When 
you think and plan from the source point of view, some 
interesting developments take place. Before looking at 
these, it might be well to review some reasons for wanting 
to process the data at the source. 

WHY PROCESS AT THE SOURCE OF DATA? 

Some companies firmly established with a centralized 
computing system. may question the need for Pl"oces8i~ 
data anywhere else. The same can be said for other 
companies who may be designing their first system. So, the 
valid question-"Why process at the source of data?" 

One of the factors in the trend toward source data 
processing is pressure by departmental managers for their 
own computing capability. Depending upon how far a 
company has gone toward having P & L oriented depart
ments, the magnitude of the pressure varies. The more an 
organization says, "the manager shall be sensitive to his 
own profit," then the more that manager will respond by 
saying he needs some tools to help run his department 
efficiently. The computer happens to be one of those tools. 

Also significant in allowing the trend toward source data 
processing is the availability of computer knowledge and of 
system software. As few as five years ago, the lack of this 
availability would have made source data processing out of 
the question, whereas today, it is completely realistic to 
plan and implement in this direction. 



974 National Computer Conference, 1977 

Programming knowledge, in particular, is much more 
widespread than it was five to ten years ago. This is a 
standard subject in most high schools and colleges, and the 
computer industry itself has trained a lot of people. A lot of 
managers and clerks in using departments now have at least 
a minimal understanding of computers and are not afraid of 
them. And the maturity of systems software today means 
that you can have many features of a mainframe operating 
system running on a small minicomputer. Features such as 
virtual memory, high level languages, data base technology, 
and simultaneous operation of many functions are available 
in today's minicomputers. 

These are intangible reasons to consider processing at the 
source of data. However, unless the underlying economics 
dictates that this is the best plan, it will never happen. Used 
in this context, the word "economics" means: the econom
ics of running a total business. This is partly the economics 
of collecting and using accurate data. It also includes the 
cost of delay, the cost of stockouts, the cost of customer ill 
will-all due to inaccurate or out of date data. 

I stress the economics of accurate data because there is a 
big distinction between accurate data and any other kind. 

Accurate data is expensive to get, compared to the other 
kind. You have to check it for consistency several ways; 
have it visually approved by someone; and finally checked 
against your master files. You have to catch errors that can 
creep in at any point where human voice, hearing, sight, or 
hand is involved. 

When you consider all the clerical personnel involved in 
these tasks as well as in the typing, filing, and transporting 
of data; when you consider the computer time devoted to 
preprocessing for validity checking; and when you consider 
the costs of correcting misteaks (sic) that sneak through 
anyway, you will agree that the cost of collecting accurate 
data is indeed the largest cost in any data processing 
operation. 

There are several cost trends that affect your decisions 
today. Hardware costs have been in a very steep decline for 
a number of years. The microprocessor has brought about 
dramatic cost improvements, and over the next few years 
we are likely to see considerable speed improvements. 

Even the large computers are using small computers 
internally. Semiconductor memory has pushed down the 
prices of all forms of main memory. Disk storage costs have 
dropped by a factor of 25 since 1970. Data communications 
costs have also dropped, although not nearly so dramati
cally as computing hardware. 

On the other hand, labor has gone up an average of eight 
to ten percent a year; and, in many places, it is hard to find, 
train, and keep quality people. So quite clearly, the eco
nomics are saying, "Use more hardware if it will save labor 
or, if it will make labor more efficient or more effective." 
The fact that profit sensitive managers are pushing for 
source data processing, or their own computer, is good 
evidence that the economics are in favor of it today. 

SOME NON-TRADITIONAL CONCEPTS 

With that in mind, and the feeling that source data 
processing is a viable management tool-one that you may 

end up with whether or not you plan for it-let's explore 
some of the nontraditional concepts available today. 

One important concept is using the computer to guide the 
operator through all his tasks, including tasks that are part 
of the basic system as well as tasks that are part of the 
specific application. Typically, this is done with a question 
and answer approach called menus or help lists. This allows 
a new operator to quickly learn operational techniques in a 
step-by-step approach. 

Another concept is that the data structure and program
ming language should be different for a multi-user transac
tion processing environment than for a batch processing 
environment. Unfortunately, most "standard" languages 
have evolved from a batch processing environment. The 
result is an attempt to add a data base structure on top of a 
batch processing structure rather than starting over. That is 
fine if you want to sell hardware, especially memory. A 
system designed from the ground up can work in 1/1oth of 
the main memory of a traditional system. 

In addition to these concepts, there are several funda
mental guidelines to follow if you intend to decentralize 
your computing operations or go to source data processing. 

First, although it seems axiomatic, you should plan. Plan 
now for source data processing before it sneaks up on you 
and you get it by default. If you wait, you will end up with a 
hodgepodge of equipment and no single source to refer to 
for knowledge about the overall operation. This is not 
necessarily a bad thing, but you lose some of the flexibility 
that you can have by planning in advance. 

A second guideline that will help you "make it happen" 
is one that is easy to overlook. That is~nsist on simplicity. 
At first blush, you might think this unimportant. Some of 
your own people might disagree with attaching much im
portance to this. 

By simplicity, I mean simplicity of vendor-supplied soft
ware that supports your application, rather than your 
application software itself. The reason to insist on simplic
ity is so that everyone can make full use of its potential. 
The line managers must understand it at more than just a 
superficial level. 

Although they don't have to know how to program a 
whole application, they should know how the applications 
work. They should know how the data is structured so that 
they can determine which are the easy questions to ask the 
source data processing system, and which questions may be 
difficult. 

For example, a manager might want to know the top ten 
overdue accounts, or the ten largest orders this week, or 
the ten employees who have the highest absenteeism. This 
type of question will come up many times-after the 
application is programmed. The line managers should not 
have to go to the EDP group and wait for programming time. 
The manager doesn't care if the report has a nice heading, 
or if it is spaced neatly on the page, or even whether he gets 
extra information or more than ten names. 

He wants specific information, and he usually wants it 
fast. He should be able to get it. With today's source data 
processing system, based on correct emphasis from the top 
to "keep it simple," he can write (or have a clerk write) 



and execute any program in a very short time and have the 
report. The clerks do not have to be programmers-they 
need only know a few rules and simple logic. I have seen 
this work in many companies much to the pleasure of the 
management. By the way, the execution speed is not nearly 
as important as the speed with which the program can be 
correctly written. 

From my experience, installation goes much more 
smoothly when non-EDP people are involved with deter
mining what a "simple" system is. The reason for this is 
that data processing people, per se, have a traditional data 
processing education and work experience that makes it 
difficult to step out of the trees they know so well and see 
the forest as a non-EDP person sees it. Now, this is not 
unreasonable and it is certainly not a criticism. It is just that 
we are back to the problem of semantics again. The DP 
person interprets the word simplicity from a different 
perspective than the non-DP manager. Of course, things are 
simple once you understand them. The DP-er may have 
spent many hours of study to simplify, or become comfort
able with terms like owner, member, inverted file, chain 
file, data division, data dictionary, contention, embrace, 
etc. To the typical line manager, however, these terms will 
always be just the data base mystique; some mumbojumbo 
that is designed to keep him out of the computer room. 

But, it really doesn't have to be this way. Today, there 
are source data processing systems that will give you 95 
percent of the functionality of a mumbojumbo system, with 
a structure that the typical non-EDP manager can under
stand. This is a structure that can be explained in terms of a 
manual filing system-. Three terms are really all that is 
needed to explain a data base system: The concept of a file , 
the concept of an index, and the concept of transactions. A 
file is like a filing cabinet. An index is like a card file which 
cross references from one key piece of information to tell 
you where it is filed. A transaction is a sequential log of 
what changes were made to the file so the auditors can 
reconstruct what events took place. Managers and clerical 
people understand these concepts easily. A computer sys
tem can be constructed with these concepts and perform as 
~_'eH !!~ !!!!~ ct'!!!r~red .ffld~~~l~.em 

The concept of security and control is also an important 
one to consider. In most companies, there are certain 
master files and certain programs that should not be 
changed except by a central programming group. On the 
other hand, there is a legitimate need for user departments 
to program certain one-shot reports. A good distributed 
processing system should provide for both needs. It should 
provide security for important things and yet still allow user 
access for report generation. If you select a system without 
both features, you will regret the choice. 

If we keep in mind that source data processing is a tool 
for use by the non-EDP departments, we will automatically 
involve them in deciding whether or not the proposed 
system is simple to use or not. They must be able to use 
this tool for tasks that have not been planned. 

Distributed (Source) Data Processing 

HOW TO MAKE IT WORK 

When you are convinced that source data processing is 
the wave of the future and you now want to convince your 
company that this is the way to go, here are some sugges
tions that may ensure your success. 

The first thing to do is to take it one step at a time. This 
is an evolutionary process. Don't try to get it all done and 
then present it to the company as a completed package. 
However, plan to show some progress fairly quickly so that 
line managers don't get disenchanted. If they do, they are 
likely to embark on their own plan and impede your 
progress. 

You can probably take care of the hardest part of the 
overall problem by solving the most pressing need. As we 
have seen, for most cases that is capturing accurate and 
timely data. If you start here, by capturing data at the 
source, you will find that some very tangible progress 
results in a very short time. It can be done simply and 
quickly. Once you know that your transaction data are 
accurate, you can get your data base accurate. The rest is 
relatively easy. 

THE FUTURE 

The future is clearly going to be interesting. The structure 
of the computer industry may be substantially different 
from what it is today with more vendors having a substan
tial market share than is now the case. Here are some areas 
that I see on the horizon as more companies implement 
source data processing systems. 

• Mainframes will really be several minicomputers. 
• Large mainframes will be used mainly for computa

tional problems and major reservation systems, such as 
airlines, rather than for the customary business appli
cations. 

• The typical EDP department will function as an inter
nal consultant, auditor, and coordinator of efforts 
being done by line departments. 

• The ~ base admin~r.atorwill specify the formatt.ini 
of key data elements in all source data processing 
systems and also will specify the formatting of all 
intercomputer transfers of data, but the data base will 
be decentralized. 

Although the data processing department of the future 
may be different than it is today, I expect it will be more 
influential because the computer will permeate to more 
depths of the business, it will be a more important part of 
the business, and the people who really understand it will 
have much more influence on the business. 

In any event, following my recommendations to plan, 
keep it simple, keep an open mind, and to consider source 
data processing as a tool cannot help but ensure a success
ful system for you. 





RESQ-A package for solution of 
generalized queueing networks 

by C. H. SAUER, M. REISER and E. A. MAcNAIR 
IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

ABSTRACT 

RESQ (RESearch Queueing) is a tool for solution of 
queueing networks. The class of networks treated includes 
general multi-server queues, passive queues and complex 
routing decisions. Multiple solution techniques are pro
vided, including numerical solution of separable balance 
equations and regenerative simulation. User access is pro
vided through both interactive dialogue and a subroutine 
level interface. 

INTRODUCTION 

RESQ allows explicit consideration of many system fea
tures which are often ignored in queueing models. The goal 
of RESQ is to provide facilities for convenient model 
construction and efficient model solution so that the user 
can concentrate on formulating models. The user, e.g., a 
system designer or developer, need not be sophisticated 
with respect to the methods of solution. Since several 
solution methods are provided, the user can use the method 
most appropriate to the model and can use two or more 
methods in a hybrid solution, The constructs of RESQ are 
orten'te'u toward" compufer'and communIcation'sysiem"fea
tures, but the terminology is strictly in terms of queueing 
networks. 

RESQ employs state of the art techniques for solution of 
queueing networks. Depending on the particular model, the 
solution may be obtained by numerical analysis of separa
ble balance equations1 or simulation.2 The separable bal
ance equation solutions are available for a subset of RESQ 
models. The simulation techniques include the regenerative 
method for determination of confidence intervals and a 
sequential sampling method for determination of appropri
ate run lengths. By providing a high level framework for 
model definition and appropriate analysis of simulation 
results, RESQ alleviates two of the common problems with 
simulation: expense of constructing simulation models and 
insufficient statistical analysis of simulation results. Other 
techniques and solution methods are being included in 
RESQ on an experimental basis. 

977 

Ail RESQ capabilities are provided through a set of PLiI 
programs. In addition, the user interface components of 
RESQ are duplicated in APL. Queueing networks can be 
defined, listed, evaluated and revised either interactively or 
by writing programs which call RESQ routines. 

This paper is organized as follows: The second section 
briefly summarizes related previous work on application of 
queueing network models, solution techniques for queueing 
networks and solution packages. The third section de
scribes the generalized class of networks provided for in 
RESQ and the dialogues for network definition. The last 
section considers listing, evaluation and revision of net
works. Additional details are given in Reference 4. 

QUEUEING NETWORKS 

In analyzing the performance of computing and commu
nication systems, one usually finds the dominant factor to 
be contention for resources such as processors, memory, 
secondary storage, communication links, etc. Therefore 
queueing network models can be used to characterize this 
contention and estimate system performance. Some of the 
earlier efforts in this area were those of Kleinrock,5 Smith6 

and Buzen. 7 More recently there has been much work in 
this area, see Re!erences 8, ~, and to for exampj'es and 
further references. 

Corresponding to the activity in application of queueing 
network models, there has been much progress in the 
solution of queueing networks. Very complex queueing 
networks can be represented as Markovian processes and 
most of the solution efforts have done so. The direct 
numerical solution of these processes can be attempted for 
modest size problemsll but this approach is not practical in 
general. Representing the solution of the process as that of 
a collection of separable balance equations has made possi
ble the solution of very large problems with restricting 
assumptions. 1,12,13 There is hope that approximate solutions 
will alleviate the need for such assumptions. 8,14,15 Finally, 
there has been much recent effort to improve statistical 
analysis of simulation, in particular the simulation of regen
erative systems such as Markov processes. 16- 19 

There have been a variety of packages proposed and 



978 National Computer Conference, 1977 

implemented for the solution of queueing networks. 20- 25 

However, all of these provide only a single solution tech
nique and thus are only useful when the solution technique 
is appropriate to the problem. One of the major advantages 
of RESQ is that it provides several solution techniques. 
Thus the user can solve similar models and study the 
effects of different restricting assumptions (it is rare that the 
modeler can explicitly consider all system characteristics) 
and can construct hybrid solutions using more than one 
solution technique. 10 

RESQ CONSTRUCTS AND INTERACTIVE 
DIALOGUES 

This section briefly describes the constructs of RESQ 
and illustrates some of them with a model of a simple 
terminal oriented computing system. This model is an 
extension of the central server model proposed by Buzen,7 
and is similar to models discussed in References 8 and 9. 

The elements of RESQ include: 

I. A population of jobs. Each job has an attached varia
ble which can be used to retain job attributes. 

2. A set of queues. There are two types of queues, active 
and passive. Active queues are queues in the tradi
tional sense. Passive queues are used to represent 
contention for secondary resources and regulate sub
network job populations. 

3. A set of nodes. Some types of nodes are parts of 
queues. Other nodes are used for auxiliary functions 
such as creation of jobs or changing the value of a 
job's variable. 

4. A set of routing rules. These rules allow probabilistic 
and deterministic routing of jobs from among the 
nodes of the network. 

In the example, jobs represent users of the system. A job 
alternates between think times at a terminal and use of the 
computational facilities. When a job is to perform computa
tions, it first acquires memory then alternates between use 
of a central processor and use of the input/output devices. 
The job variable is used to count the number of cycles of 
alternating computation and input/output. A passive queue 
is used to represent memory; active queues are used to 
represent other components. A model such as this can be 
used to estimate response times, device utilizations, queue 
lengths and other performance metrics. 8 

Diagram of extended central server model 

In interactive usage of RESQ the command SETUP is 
used to define a network. As with other RESQ commands, 
SETUP enters the user into a dialogue where RESQ will 
prompt the user for information, e.g., the name of the 
model, queue characteristics, etc. If the user's response 
seems correct to RESQ, more information will be requested 
by RESQ until the command is finished. If RESQ discovers 
an error in the user's response then it will produce an error 
message and repeat the prompt. If the user wishes clarifica
tion of the prompt, then the user replies "how," RESQ 
responds with a detailed description of the information 
needed, and then RESQ repeats the request. If there is a 
default value for a particular prompt, then the user may 
effect the default value by entering a return of a null line. In 
this section, user responses will always be given in lower 
case. 

Active queues 

An active queue consists of a set of servers, a set of 
waiting areas for jobs requesting or receiving service and a 
control mechanism for allocating the servers to the jobs. 

Single server queues 

The waiting areas of the queue are called classes. These 
classes are local to the queue and are to be distinguished 
from the global "classes" often used in queueing literature. 
As described in a later section, a job is routed to one of 
these classes and joins the queue. Upon arrival the work 
demanded by the job is determined as follows: First, a 
sample is taken from the work demand distribution associ
ated with the job's class. Second, the flag for job variable 
scaling is tested. There is such a flag for each class. Job 
variables will be discussed in a later section. If the flag is 
set, then the sample taken in the first step is mUltiplied by 
the job variable. 

Once placed in the waiting area, the job remains there 
until all of the work demanded is completed. When all of 
the job's work is complete, the job instantaneously departs 
from the queue. The server chooses which job to serve 
according to the overhead mechanism, if any, and the 
queueing discipline. 

Multi-server queues 

Queues with more than one server allow all of the 
capabilities described above except for the cyclic priority 
queueing discipline. Each server has associated with it an 
effective rate and a set of classes which it will serve. The 
rate of a server may be a function of the total number of 
jobs at the queue. If all servers at a queue have exactly the 
same characteristics, the queue is considered symmetric. 
Otherwise it is asymmetric. 

Dialogue for active queues 

The first prompt is for the queue type. The subsequent 
prompts are strongly dependent on the queue type. In 



setup 
MODEL NAME: ecsm 
METHOD: aplomb 
NUMBER OF: 

CHAINS: 1 
QUEUES: 5 
CLASSES: 4 
ALLOCATE NODES: 
RELEASE NODES: 
DESTROY NODES: 
CREATE NODES: 
SET NODES: 2 
FISSION NODES: 
FUSION NODES: 
SPLIT NODES: 0 

0 
0 

0 
a 

NUMBERED SOURCES: 
DUMMY NODES: a 

COMMENTS? yes 

a 

COMMENT: extended central server model 

CHAIN: 1 TYPE: closed 
COMMENT: jobs have a think time at a terminal. 

then they request memory. 
after being allocated a partition, they determine 
their number of processing/data transfer cycles. 
after this number of cycles they release their 
partition and go back to the thinking state. 

1 ) : 1 - > 2 - > 3 - >4 - > 5 6 i • 2 . 8 
2): 5 6->7->4 8ijv,=O jv=O 
3): 8->1 
4) : 

CHAIN POPULATION: 20 

TYPE: is QUEUE 
COMMENT: terminals (is -- infinite server) 

CLASS LIST: 1 
STME. DISTR: 5 

QUEUE 2 
COMMENT: 

TYPE: passive 
memory partitions 

TOKENS: 5 
QDSPL: fcfs 
ALLOCATE NODE LIST: 2 

AMOUNT(S): 1 
RELEASE NODE LIST: 8 

QUEUE 3 TYPE: active 
COMMENT: central processing unit 

SERVERS: 
QDSPL: ps 
CLASS LIST: 4 
WORK DMND. DISTR: <.002,1> 
JV SCALED: no 

SETUP for extended central server model 

RESQ 979 

Definition of Network Size 

Definition of Routing 

Definitions of Queues 



980 National Computer Conference, 1977 

addition to the two basic queue types, active and passive, 
there are several special cases for simplified active queues. 
These simplified cases are indicated by responding with a 
queueing discipline to the prompt for queue type. The 
response to the queue type prompt of "active" allows all of 
the options described above. The distributions, e.g., the 
work demand distribution for each class, may be specified 
as either a single value which is interpreted as the mean of 
an exponential distribution, or as a pair of values in angular 
brackets (" <", ")") which are interpreted as a mean and 
coefficient of variation, respectively. If all classes of the 

SERVER 1: 
RATE: . 1 
ACCEPTS: all 

QUEUE 4 TYPE: active 
COMMENT: disk 

SERVERS: 
QDSPL: fcfs 
OVHD: none 
CLASS LIST: 5 
WORK DMND. DISTR: 
JV SCALED: no 
SERVER 1 : 

RATE: 
ACCEPTS: all 

.044 

QUEUE 5 TYPE: fcfs 
COMMENT: drum 

CLASS LIST: 6 
STME. DISTR: .008 

SET NODES: 3 
SET TO: r 

7 
-1 

DISTRIBUTION FOR NODE 3 
VALUES: 10 20 
PROBS:.5 .5 

END OF SETUP. 

queue are to have the same distribution, the list may be 
replaced by a single distribution which will be used for all 
classes. 

Passive queues 

A passive queue consists of a pool of tokens, a non
empty set of waiting areas for jobs requesting or possessing 
tokens, a possibly empty set of other nodes for actions on 
the queue and a control mechanism for the tokens and jobs. 

Definition of Set Nodes 

SETUP for Extended Central Server Model 

CLASS 
~ 

SERVERS 
Active queue with two classes and two servers 



The tokens of the passive queue are analogous to the 
servers of an active queue. The waiting areas are called 
allocate nodes. There are three other types of nodes which 
may be associated with a passive queue: release nodes, 
destroy nodes and create nodes. The usual purpose of 
passive queues is to limit or measure the population of 
subnetworks. 

Allocate nodes 

A job arriving at an allocate node requests possession of 
a number of the queue's tokens. If the tokens requested by 
a job are available at the time of arrival at an allocate node, 
then the request is satisfied instantaneously. Otherwise the 
job must wait until sufficient tokens become available and 
are assigned to the job. (Tokens become available through 
the action of other jobs at other nodes.) As soon as the 
request for tokens is satisfied, the job is allowed to visit 
other nodes of the network. However, as long as the job 
possesses tokens of a given queue, it is considered to be 
part .Qf that queue. Thus a single job may be a member of 
one or more passive queues and one active queue simulta
neously. 

Release nodes 

When a job visits a release node associated with a queue 
which the job is a part of, the job instantaneously returns all 
its tokens belonging to the queue. When a job visits a 
release node associated with a queue which the job is not a 
part of, there is no effect on the job or the queue. In either 
case the job's visit to the release node is instantaneous and 
the job proceeds without delay. 

Destroy nodes 

When a job visits a destroy node associated with a queue 
which the job is a part of, the job instantaneously destroys 
An if<;troke',,~ ~ng to the qt:te+Je' fhe~the joh i~ Of) 

longer part of the queue. When a job visits a destroy node 
associated with a queue which the job is not a part of, there 
is no effect on the job or the queue. In either case the job's 

POOL Of TOKENS 

TOKEN FLOW .... ~ ~""" 
JOB FLOW /' ".~--"'" " ----.. ~ / ~----

ALLOCATE / RELEASE 
I 

I 
I 

--~& 
CREATE 

Passive queue and associated nodes 

RESQ 981 

visit to the destroy node is instantaneous and the job 
proceeds without delay. 

Create nodes 

A job visiting a create node adds new tokens to the pool of 
its associated queue. The number added is determined by 
sampling from a discrete distribution associated with the 
node. There is no effect on the job; its visit is instantaneous 
and it proceeds without delay. 

Sources 

A source emits jobs one at a time. The time between a 
given arrival from a source and the next arrival from a 
source is determined by a sample from a continuous distri
bution associated with the source. The job variable is set to 
zero when the job is emitted. The description of sources is 
included in the dialogue describing the routing. 

Sinks 

Sinks are nodes which allow jobs to exit from the 
network. A job exiting from the network releases all tokens 
held, if any, and returns them to the appropriate pools. The 
exiting process is instantaneous. The description of sinks is 
included in the dialogue describing the routing. 

Set nodes 

A set node is used to affect the value of a job variable. A 
job's variable will be zero unless it has been given some 
other value by a set node. Job variables are useful for 
making work and overhead demands job dependent. They 
are also especially useful for' effecting deterministic job 
dependent routing, e.g., to cause a job to cycle through a 
set of nodes for a predetermined number of cycles. There 
~r~ five kjnqsQLs,~t ~nod~s.anigmnetJt .. set uQde.s.im::re
ment set nodes, decrement set nodes, change sign set 
nodes and previous node set nodes. 

An assignment set node assigns a non-negative value to a 
job's variable, an increment set increments a job's variable 
by a non-negative value and a decrement set node decre
ments a job's variable by a non-negative value. In any of 
these cases, the values used are samples from a distribu
tion. The distribution is associated with the set node and 
may be either continuous or discrete. A change sign set 
node changes the sign of the job variable. A previous node 
set node assigns to the job variable the identity of the node 
the job just left. A job's visit to a set node is instantaneous. 

Fission and fusion nodes 

A job arriving at a fission node generates one or more 
additional jobs. The generating job is referred to as the 



982 National Computer Conference, 1977 

parent and the generated jobs are referred to as offspring. 
A par:ent job and its offspring are considered to be related 
and know the identities of each other. Each of these jobs 
has a separate routing from the fission node. The visit of 
the parent job is instantaneous; the offspring depart from 
the node immediately after generation. The offspring do not 
possess any tokens; their job variables have the value zero. 
Combinations of fission and fusion nodes are useful for 
representing packetizing of messages in a communication 
network. They are also useful in models of computing 
systems to represent overlap of processing and data trans
fer. 

A fusion node provides a waiting area for related jobs. 
Related jobs wait at a fusion node until they have no 
relatives; they then depart instantaneously. If a job arrives 
at a fusion node where it has a related job, one of the jobs is 
eliminated from the network instantaneously. If one of the 
jobs is the parent of the other then the other job is 
eliminated. If both of the jobs are offspring then it is left 
undefined which job will be eliminated. Any tokens pos
sessed by the eliminated job are returned to the appropriate 
pool. (Fusion nodes have no effect on jobs without rela
tives. If a job is waiting at a fusion node and all of its 
relatives leave the network, the job departs from the node 
immediately.) 

The description of fission nodes appears in the routing 
dialogue. Fusion nodes are identified by a single prompt for 
a list of fusion nodes. 

Split nodes 

Split nodes are like fission nodes with the difference that 
the generating job and the generated jobs are independent 
of each other; they are not considered to be related. Split 
nodes are useful in representing bulk arrivals. They are also 
useful in communication network models to represent the 
generation of control messages. The description of split 
nodes appears in the routing dialogue. 

Routing 

All nodes except fission nodes, split nodes and sinks may 
have several alternate routing paths for jobs leaving the 
node. Fission and Split nodes have separate fixed routing 
paths for the creating job and each created job. (Dummy 
nodes may be used with fission or split nodes to provide 
alternate routing paths for jobs leaving those nodes.) A 
node with alternate routing has a list of possible routings. 
Each item on the list consists of the identity of a possible 
destination node and either a predicate or a probability. The 
predicates are statements about values of job variables, 
availability of tokens, etc. A job leaving a node with 
alternate routing selects a destination by scanning the list 
until it finds a predicate which is true or until it succeeds at 
a Bernoulli trial with one of the given probabilities. If the 
list is exhausted without a node being selected, the results 
are undefined. A job travels from one node to the next 
instantaneously. 

The nodes of a network are separated into one or more 
disjoint sets called chains. A chain is defined as the largest 
subset of nodes such that all nodes of the chain are 
connected. Open chains are those that include sources and/ 
or sinks. All other chains are closed. 

The routing is described separately for each chain of 
nodes. Before prompting for the routing description, 
SETUP prompts for the type of the chain, open or closed. 
Then there is prompting for routing transitions. A routing 
transition consists of a list of nodes, a list of alternative 
destinations for those nodes and a list of probabilities and 
predicates. Transitions may be entered individually or the 
concatenation of two or more transitions may be entered 
simultaneously. The prompt for a transition or concatena
tion of transitions is a parenthesized integer. The value of 
the integer has no significance except to number the entries 
the user has made during the input dialogue. The prompting 
for transitions or concatenations of transitions continues 
until a null line is 'entered. 

Consistency checks and error messages 

After the dialogue is complete, SETUP goes through a 
variety of consistency checks to look for errors in the 
model or incompatibilities with the solution technique. If 
errors are found, an error message (presumably a self
explanatory error message) will be given. 

MODEL LISTING, SOLUTION AND EVALUATION 

LIST 

The command LIST produces a tabular listing of a 
model. The listing includes, in order, the solution method, 
the model name, the numbers of elements, the characteris
tics of the chains, the characteristics of the queues and the 
characteristics of the nodes. Headings are suppressed for 
columns which have no entries, e.g., "classes accepted" 
for networks with only symmetric queues. 

EVAL 

The command EVAL is used to apply the solution 
method specified with the model and to examine the results 
produced by the solution method. The most general solu
tion technique is simulation (APLOMB). Numerical 
(QNET4) solutions are available for a subset of the class of 
models simulated. 

APLOMB 

APLOMB is a simulation program specifically designed 
for the class of queueing networks represented in RESQ. A 
major feature of APLOMB is its capability for determining 
confidence intervals for simulation results. (Note that even 
if this capability is used incorrectly and APLOMB is unable 



list 
MODEL NAME: ecsm 
SOLUTION METHOD: APLOMB 
MODEL NAME: ECSM 

1 CLOSED CHAIN(S) 
o OPEN CHAIN(S) 
5 QUEUE(S) 
4 CLASS(ES) 
8 NODE(S) 

COMMENT: EXTENDED CENTRAL SERVER MODEL 

CHAIN I TYPE IPOP ICOMMENT 

RESQ 983 

-----1------1----1--------------------------------------------------
1 iCLOSEDi 20iJOBS HAVE A THINK TIME AT A TERMINAL. 

THEN THEY REQUEST MEMORY. 
AFTER BEING ALLOCATED A PARTITION, THEY DETERMINE 
THEIR NUMBER OF PROCESSING/DATA TRANSFER CYCLES. 
AFTER THIS NUMBER OF CYCLES THEY RELEASE THEIR 
PARTITION AND GO BACK TO THE THINKING STATE. 

QUEUE I TYPE IQ DSP IMSIMQIRATE(S)IC.A.ICOMMENT 
-----1-------1------1--1--1-------1----1------------------------------

1 I ACTIVE I IS I 1 I 1 I 1 .00 I I TERMINALS (IS -- INFINITE SERVER) 
2 IPASSIVEIFCFS I 51 1 I I IMEMORY PARTITIONS 
3 IACTIVE IPS I 1 I 1 I 0.101 41CENTRAL PROCESSING UNIT 
4 IACTIVE IFCFS I 1 I 1 I 1.001 51DISK 
5 I ACTIVE I FCFS I 1 I 1 I 1 .00 I I DRUM 

NODE I Q ICHNITYPE I WD/STICW/SI DDV I DDP 
----1---1---1-----1------1----1--------1--------

1 I 1 I 1 I CLASS I 5.00 I 1 .00 I I 
2 I 2 I 1 I ALLOC I I I 1. 0 I 1. 0 
3 I I 1 I SET I I I 10. 20. I .5 .5 
41 3 I 1 I CLASS I .0021 1 .00 I I 
51 41 1 I CLASS I .04411 .00 I I 
61 51 1 I CLASS I .0081 1 .00 I I 
7 I I 1 I SETDC I 1 .00 I 0 . I I 
8 I 2 I 1 I RELSE I I I 1 

FROM I TOIINDICATORIVALUE 
----1----1---------1-----

1 I 21 1 .00 I 
2 I 31 1 .00 I 
31 41 1.00 I 
41 51 .20 I 
41 61 .80 I 
5 I 7 I 1 .00 I 
61 71 1.00 I 
71 41 JV,= I O. 
71 81 JV= I O. 
81 1 I 1.00 1 

LIST for central server model 



984 National Computer Conference, 1977 

eval 
MODEL NAME: ecsm 
INITIALIZE: 20 0 0 0 0 0 0 0 
REGEN 20 0 0 0 0 0 0 0 

SEQUENTIAL SAMPLING LIMITS: 
CYCLES: 10 
STATE CHANGES: 50000 

CONFIDENCE LEVEL: 95 
CHECK QUEUE: 2 

RELATIVE PCT. INTERVAL WIDTH: 10 
SEED: 314159 

NO ERRORS DETECTED DURING SIMULATION 

SIMULATED TIME: 1217 
NUMBER OF STATE CHANGES: 114020 
NUMBER OF CYCLES: 140 
CORRELATION OF CYCLE LENGTHS: .010 

WHAT: how 
UT=UTILIZATION, QL=MEAN QUEUE LENGTH, SDQL=STD. DEV. OF Q.L., 
QT=QUEUEING TIME, TP=THROUGHPUT, PO=POPULATION, RT=RESPONSE TIME, 
ALL=ALL OF ABOVE. 
TRY AGAIN: 

INTERVALS, 
WHAT: qt 
CONFIDENCE 
QT Q 1 

4.97E+00 
(4.82E+00,5.13E+00) 

Q 4 
6.84E-02 

(6.61E-02,7.08E-02) 

POINT ESTIMATES, OR 
Q 2 

1.67E+00 

BOTH? both 
Q 3 

6.55E-02 
(6.37E-02,6.72E-02) 

WHAT: ut 

( 1.58E+00,1.75E+00) 
Q 5 

1.10E-02 
( 1.09E-02,1.12E-02) 

CONFIDENCE INTERVALS, POINT ESTIMATES, OR BOTH? point 
UT Q 1 

.690 
Q 4 
.396 

WHAT: ql 

Q 2 
.797 
Q 5 
.291 

Q 3 
.901 

CONFIDENCE INTERVALS, POINT ESTIMATES, OR BOTH? con 
QL Q 1 Q 2 Q 3 

( 1 . 46E+0 1 , 1 . 52E+0 1 ) 
Q 4 

(5.85E-Ol ,6.45E-01 ) 

(4.74E+00,5.31E+00) (2.85E+00,3.08E+00) 
Q 5 

(3.92E-01,4.12E-Ol ) 
WHAT: 

EV AL for central server model 

to provide confidence intervals, APLOMB will still provide 
the user with point estimates.} When the solution method 
specified for the model is APLOMB, EVAL prompts the 
user for parameters used in determining confidence inter
vals and in controlling the simulation. 

Initialization and regeneration 

In order to apply the confidence interval techniques, one 
must specify a system state called the "regeneration" state. 

The occurrences of this state divide the simulation into 
independent cycles. Presumably the simulation will enter 
this state frequently. Usually the regeneration state will be 
chosen so that there are no jobs in any nodes belonging to 
open chains. Usually the regeneration state will be chosen 
so that jobs of closed chains are distributed among the 
nodes according to expected populations of these nodes. Of 
course one usually will not know in advance the popUla
tions at the various nodes; reasonable guesses are usually 



sufficient and poor guesses are often workable. Since visits 
to most nodes are instantaneous, non-zero expected popu
lations are only reasonable at classes, allocate nodes and 
fusion nodes. The first prompt from EVAL is for the 
number of jobs to be initialized at each node. The reply 
should be a list of non-negative integers, with as many 
elements in the list as named nodes in the network. The 
second prompt is for the number of jobs at each node in the 
regeneration state. 

Sequential sampling procedure 

The next series of prompts determines when the simula
tion will stop. APLOMB uses a sequential sampling proce
dure to run the simulation until satisfactory confidence 
intervals are obtained. The procedure has two limits, on the 
number of regeneration cycles and on the number of state 
changes, to control the period between samples. The sam
pling period ends when the fir,st of the two limits is reached 
for that period. If after the first sampling period has ended 
too few cycles have been completed to compute confidence 
intervals, the simulation ends and only point estimates are 
provided. Otherwise, the width of the confidence interval 
for the mean queueing time at a given queue, relative to the 
point estimate of the queueing time for that queue, is 
compared to a threshold. If the threshold is exceeded, then 
a new sampling period is begun. Sampling periods continue 
until the relative width does not exceed the threshold. The 
first prompt of the series requests the sampling period limit 
on the number of regeneration cycles. The second prompt 
of the series requests the sampling period limit on the 
number of state changes. The third prompt is for the 
confidence level of the intervals. The fourth prompt is for 
the number of the queue to be used in determining whether 
to continue sampling or not. The final prompt is for the 
threshold for the relative width of the confidence interval 
for the mean waiting time at the queue. The relative width 
is expressed in percent of the point estimate. Notice that 
the sequential sampling procedure can be defeated by 
specifying a very large threshold, e.g. 200 percent. 

Seeds for pseudo-random streams 

The final prompt before simulation begins is for an 
integer to be used as a seed for the pseudo-random number 
streams. Each random variable in the network has its own 
stream. Each of these streams has its own seed. The user 
specified seed is used to start a stream which produces 
seeds for all of the other streams. 

Simulation results 

After the simulation ends, EVAL wil1 either respond 
"NO ERRORS DETECTED DURING SIMULATION" or 
will give an error message if an error was discovered during 
simulation. Then EV AL gives the simulated time, the 

RESQ 985 

number of state changes that occurred, the number of 
regeneration cycles completed and an estimate of the corre
lation between the lengths of successive regeneration cy
cles. (This estimate should be near zero if the state chosen 
is actually a regeneration state.) 

EV AL now prompts the user with "WHAT:" and is 
ready to provide simulation results. The user replies with a 
code indicating the type of results desired. Results of that 
type are given for all appropriate elements (queue, node or 
chain). 

QNET4 

If the solution method is QNET4, then no solution 
dependent information is required. The prompting begins 
immediately with "WHAT:" and the same codes are used 
as with APLOMB. There is no option for confidence 
intervals since the QNET4 values are exact within the 
limits of numerical error. 

CHANGE 

CHANGE allows more or less arbitrary revisions of a 
model. Most of the dialogues are similar to dialogues 
occurring in SETUP. Unless otherwise stated, the same 
responses may be given in CHANGE as may be given for 
the corresponding prompts in SETUP. Often additional 
information is provided for the user's reference. 

SUMMARY 

RESQ makes possible and convenient the solution of a 
great variety of queueing network models. The many con
structs allowed given the modeler the freedom to study a 
variety of system characteristics and to determine the 
degree that various characteristics impact performance. 

In addition, RESQ provides a variety of solution tech
niques. Thus the modeler can make tradeoffs between 
expense of solution and model accuracy. The modeler can 
use acombmation of~ted1Triqne~ to form a hyrbrid solution. 
The solution techniques provided are the best available for 
this class of problems. Proposed solution techniques are 
being included in RESQ on an experimental basis. The 
multi-solution technique capability is also helpful in study
ing these proposed techniques. 

Finally, the user interface is designed for convenience for 
a variety of users. Interactive dialogues are provided. 
Subroutine level interfaces are also available for repeated 
or specialized usage of RESQ. 

REFERENCES 

1. Reiser, M. and H. Kobayashi, "Queueing Networks with Multiple 
Closed Chains: Theory and Computational Algorithms," IBM J. of 
Research and Development, 19,3, May 1975. 

2. Sauer, C. H., "Characterization and Simulation of Generalized 
Queueing Networks," IBM Research Report RC-6057, IBM T. J. 
Watson Research Center, Yorktown Heights, New York (May 1976), 



986 National Computer Conference, 1977 

4. Reiser, M. and C. H. Sauer, "Queueing Network Models: Methods of 
Solution and their Program Implementation," to appear in K. M. 
Chandy and R. T. Yeh, editors, Current Trends in Programming 
Methodology, Volume III: Software Modeling and Its Impact on Per
formance. Prentice Hall, 1977. 

5. Kleinrock, L., Communication Nets, McGraw-Hili Book Company, 
1964. 

6. Smith, J. L., "An Analysis of Time Sharing Computer Systems Using 
Markov Models," Proceedings Spring Joint Computer Conference, 
1966. 

7. Buzen, J., Queueing Network Models of Multiprogramming, Ph.D. 
Dissertation, Division of Engineering and Applied Physics, Harvard 
University, 1971. 

8. Brown, R. M., An Analytic Model of a Large Scale Interactive System 
Including the Effects of Finite Main Memory, M.A. Thesis, University 
of Texas at Austin, 1974. 

9. Boyse, J. W. and D. R. Warn, "A Straightforward Model for Computer 
Performance Prediction," Computing Surveys 7,2, 1975. 

10. Browne, J. c., K. M. Chandy, R. M. Brown, T. W. Keller, D. Towsley 
and C. W. Dissley, "Hierarchical Techniques for Development of' 
Realistic Models of Complex Computer Systems," IEEE Proceedings 
63,6, 1975. 

II. Wallace, V. L. and R. S. Rosenberg, "Markovian Models and Numeri
cal Analysis of Computer System Behavior," Proceedings Spring Joint 
Computer Conference, 1966. 

12. Chandy, K. M., "The Analysis and Solutions for General Queueing 
Networks," Proc. Sixth Annual Princeton Conference on Information 
Sciences and Systems, Princeton University, March 1972. 

13. Baskett, F., K. M. Chandy, R. R. Muntz, and F. Palacios-Gomez, 
"Open, Closed, and Mixed Networks of Queues with Different Classes 
of Customers," JACM 22,2. 

14. Brandwajn, A., "Equivalence and Decomposition Methods with Appli
cation to a Model of a Time-sharing Virtual Memory System," Proceed
ings International Symposium Rocquencourt, April 1974. 

15. Chandy, K. M., U. Herzog, and L. S. Woo, "Approximate Analysis of 
General Queueing Networks, IBM Journal of Research and Develop
ment 19, I, April 1975. 

16. Crane, M. A. and D. L. Iglehart, "Simulating Stable Stochastic Sys
tems, I; General Multiseiver Queues," JACM 21, January 1974. 

17. Crane, M. A. and D. L. Iglehart, "Simulating Stable Stochastic Sys
tems, II; Markov Chains," JACM 21, January 1974. 

18. Lavenberg, S. S. and D. R. Slutz, "Introduction to Regenerative 
Simulation," IBM Journal of Research and Development 19, 5, 1975. 

19. Iglehart, D. L., "The Regenerative Method for Simulation Analysis," to 
appear in K. M. Chandy and R. T. Yeh, editors, Current Trends in 
Programming Methodology, Volume Ill: Software Modeling and Its 
Impact on Performance, Prentice Hall, 1977. 

20. Irani, K. B. and V. L. Wallace, "On Network Linguistics and the 
Conversational Design of Queueing Networks," JACM 18,4, 1971. 

21. Muntz, R. R. and J. Wong, "Efficient Computational Procedures for 
Closed Queueing Networks with the Product Form Solution," Hawaii 
International Conference on Systems Sciences, January 1974. 

22. Foster, D. V., P. F. McGehearty, C. H. Sauer and C. N. Waggoner, "A 
Language for Analysis of Queueing Models," Proceedings Fifth Annual 
Pittsburgh Modeling and Simulation Conference, University of Pitts
burgh, April 1974. 

23. Keller, T. W., ASQ User's Manual, TR-27 , Department of Computer 
Sciences, University of Texas at Austin, 1974. 

24. Reiser, M. "QNET4 User's Guide," IBM Research Report RA-71, 
Yorktown Heights, New York, 1975. 

25. Sauer, C. H., "Simulation Analysis of Generalized Queueing Net
works," Proceedings 1975 Summer Computer Simulation Conference. 



An approach to simulation of 
multilevel production systems 

by J. F. CLARK and D. M. COHEN 
GTE Sylvania 
Needham, Massachusetts 

ABSTRACT 

An approach to modeling interlevel activity in an hierarchical 
man-machine system or organization is developed and 
discussed. This approach involves defining a set of com
mand messages for the higher level control subsystem; a 
complementary set of actions for the lower level production 
subsystem; a set of feedback messages for the production 
subsystem; and a complementary set of actions for the 
control subsystem. This technique tests decision models, 
management policies and the coordinability of subsystems. 
Since this paper deals only with one aspect of a general 
hierarchical model, a brief description of that model is 
provided. Then the technique is demonstrated using a two 
level system which has only one subsystem at each level 
and a small command/feedback repertoire. 

INTRODUCTION 

Among the approaches to systems analysis, hierarchical 
modeling promises to be the most effective in dealing with 
complex multi-level situations. For this reason a compre
hensive total system model consisting of a market and a 
production system has been developed. 1 It was demon
~~ted tMt the modett"ut!fd be tt!ed .. to ~ rotaJ 
resources required in meeting the demand generated by the 
market and that the production system could be designed to 
react to or, to interact with, the market. One of the major 
aspects of the model was a provision for dealing with inter
level effects within the production system-i.e., to study 
the effect of the transfer of control/feedback information on 
other aspects of system operation. This implies a truly bi
level model-one level concerned with production activity; 
the other level concerned with control activity which is 
capable of being affected by and of affecting production 
activity. 

PURPOSE 

There is a need to take into account the effects of 
management processes on the flow of work-or else to 

987 

argue that their effects are negligible. The purpose of this 
paper is to present an approach to modeling a two-level 
production system incorporating decision making. It is 
intended that this approach would be used to explore such 
areas of fixed (determinate) decision making as decision 
models, management policies and subsystem coordinability 
because of the limitations on the flexibility of a computer 
simulation of decision making processes. 

SCOPE 

Such a simulation could incorporate a detailed model of a 
complex production level along with a rich set of choices 
for the control subsystem and even real-time decision 
inputs from the person running the simulation. This paper 
will only deal with a very simple system consisting of a 
control subsystem and a production subsystem. The con
centration here is on the control/feedback process itself and 
how operations will be modified by it. 

MODEL 

Even though a complete discussion of the basic model is 
ou~~i~~~ the ~.~?r~ .<?f this article, the follo~ing .summary 
Should prove helpfUl ~see Figure' 1). At' the hlghest....:.i.e~, 
most general-level, the model consists of a production 
(functional) system driven by a market. Within the system 
under study, work is done in response to inputs from the 
market. Each demand is for a specific product and the 
transformation from demand to product-from input to 
output-follows a predefined path through the system. 
System resources are used as a result of this transforma
tion. The goal of analyzing a system in this manner is to 
optimize the use of resources while satisfactorily meeting 
the expected demand. 

There is no theoretical limit on the complexity of the 
work stations which make up the paths through the system. 
It is considered here that each work station represents a 
subsystem in the model and that it is represented by a 
subroutine in the computer code. A work station subroutine 
is given the information necessary for it to determine how 
many transformations it must perform and therefore what 



988 National Computer Conference, 1977 

PROOOCTIOll 
SYSTEM 

,-- --, 
I I 

i~~}--@i 
I I 
~----

Figure I-General model for market driven total system analysis 

resources it will use. It returns an accounting of the 
resources used and an assessment of its present state. 

From the point of view of the operational subsystem/ 
subroutine, a single level simulation involves executing a 
relatively unchanging set of operations as the user (Le., 
market) inputs are supplied. But in a two-level simulation 
(see Figure 2), the control information must be scanned and 
taken into account before the user inputs can be operated 
on. Additionally, after the transformation has been com
pleted-or sooner, if the situation warrants-a feedback 
report must be passed to the control subsystem/subroutine 
for evaluation prior to the next command output. 

For the control subsystem/subroutine, the shift from 
single level to bilevel simulation involves addition of deci
sion making activities to the bookkeeping. In a single level 
simulation, the Administration subsystem/subroutine only 
needs to model the paper shuffling required to keep the 
system running. A two level simulation, however, is specif
ically aimed at introducing the elements of control and 
decision making. Hence, the communication of command 
and feedback information as well as the use of resources in 

USER 
DlP'CIRMATIDH 

KATERlAL 

=~:Omt!ilCl4 

MATERIALS 
ACQUISITIOM 

MANAGEMENT ------

PRODUCT 
OUTPUT 

Figure 2-Detail of production system showing interlevel activity 

the decision making process must be included in the model. 
The information passed between levels tells the receiver 
what options are presently open and thereby affects the 
flow of the program. 

AN EXAMPLE 

Consider a simple two level production system that 
accepts user inputs Y and outputs product X. As a conve
nience there are only two subroutines representing the con
trol and the production processes respectively. Assume that 
none of the accounting or manufacturing operations are of 
any interest and only the following aspects of the system 
need to be developed: 

(a) each input Yi carries two levels of significance which 
are designated management and production informa
tion respectively. 

(b) within the production subroutine is a scheduling 
function which sets up production of output Xi on a 

TABLE I-Available Control Options 

Designator 

MI 

M2 

M3 

M4 

M5 

M6 

Control Outputs 

Complete Order "i" 
Not Later Than "date" 

Fann out Orders 

Reschedule Order "i" 
at Lower Priority 

Delete Order "i" 

Show Status 

No Change 

Complementary action 

Reorder Job Schedule to Complete Job "i" by Required 
Date. Note Conflicts with Already Scheduled Priority 
Requirements and Provide Feedback Message. 

Delete Jobs il> i2 , ••• in from Job Schedule and Reorder 
Job Schedule. Note any Jobs Already in Progress or 
Completed and Provide Feedback. 

Move Job "i" to a Point in Schedule Where it Does Not 
Conflict with Priority Jobs. 

Remove Job "i" from Schedule. Feedback if Job in 
Progress or Completed. 

Feedback Job Schedule Status 

Continue Schedule 



An Approach to Simuiation of Muitiievei Production Systems 989 

TABLE II-Available Feedback Options 

Designator 

PI 

P2 

P3 

P4 

P5 

Feedback Outputs 

Job "j" Completed as Scheduled Using 
Resources "j,x" 

Job "i" Delayed Because of Event "j" 

All Jobs Delayed Because of Equipment 
Delay"t" 

Current Jobs Scheduled as Follows 

Schedule Conflict Job "i", Job "j" 

first in/first out basis using the production informa
tion contained in Yi • 

(c) the production scheduling function will reorganize the 
job queue upon receipt of a command from the 
control subroutine. 

(d) the management information component of Yi can 
carry priority information or can be a cancellation of 
order Yj • 

(e) within the control subsystem is a decision function 
which determines what command output should be 
passed to the production subroutine based on the 
management information component and the last sta
tus feedback from the production subsystem. 

The available control options are shown in Table I and 
the available feedback options are shown in Table II. Either 
subroutine can initiate an interchange so a protocol must be 
established. For example, whenever a perturbation is de
tected-i.e., management information requiring special 
treatment or occurrence of a problem event in the produc
tion subroutine-an interlevel message is scheduled after an 
evaluation delay; a second delay occurs before the message 
is received; after a third delay for evaluation the next 
message in the cycle is sent. If this last message requires no 
message response. the simulation moves ahead to the next 
perlufoaLiuil. GGlel ",i~.:. LIlt: ~)'d~ i~ l"unUnueJ Ufitii d (lu

op message occurs. 
Possible interchanges following the receipt of a "must 

expedite" order start with command MI-Complete Order 
"I" not later than "TIME" with the variables I and TIME 
filled in. The production schedule attempts to comply and 
sends either P4-Current Jobs Scheduled as follows (order 
schedule) and M6-No Change, or P5-Schedule Conflict 
(conflicting orders listed). The latter response requires that 
the management decision maker resolves the conflict and 
generates message M3. The production scheduler again 
attempts to arrive at a workable schedule. Since this 
interchange of P5 and M3 could potentially propagate itself 
all the way down a lengthy schedule using up excessive 
resources, the simulated decision maker must be given 
mechanisms for resolving such conflicts in a reasonably 
short time in a manner that reflects actual system policy 
and practice. 

Complementary Actions 

Perform Accounting Functions 

Consult Policy Table for Next Action 

Determine Minimum Cost Alternative and Generate 
Appropriate Command 

Update Order Schedule Checking for Violations of 
Priority Requirements 

Determine Minimum Cost Resolution and Generate 
Appropriate Command 

Similarly P3-Equipment Failure all orders delayed-is 
potential disaster in a tightly scheduled operation. The 
simulated decision maker must be prepared to react in the 
same way that the system does (or is supposed to). In this 
case there is a distinction between the estimated service 
time provided by the production scheduler to the manage
ment decision maker and the service time that is used to 
simulate the down time for repairs. The decision maker 
has to act on the estimate provided by the lower level 
subsystem. 

SUMMARY AND CONCLUSIONS 

This paper has developed a general approach to using 
simulation as a tool for studying interlevel effects in organi
zations. The method is applicable to a wide variety of 
situations since no assumptions were made about the levels 
being modeled-other than the existence of interactions 
between them; no assumptions were made about the com
plexity of the system being modeled; and no assumptions 
were made about constraints on the system. The general 
model which was the basis for this analysis is primarily 
concerned with multi-level, constrained systems. Other 
aspects of this approach have been developed elsewhere. It 
hr;t~ ~ftti~CO~f"~tefl ~-e t~t ~~;(mof ~ trt:1t" hf
level system-and therefore of any multi-level system2-only 
requires a well defined communication set for each level, a 
well defined and complementary set of actions for each 
level, and a communication protocol. All of these elements 
can be derived from a systems analysis using an hierarchical 
model such as the Systems Analysis and Integration 
Model. 3 

REFERENCES 

1. Clark, J. F. and D. M. Cohen, "A Production Systems Approach Using a 
Simulated Hierarchical Organization," International J. Systems Science, 
Vol. 5, No.5, pp. 425-433, 1974. 

2 .Mesarovic, M. D., D. Macko, and Y. Takahara, Theory of Hierarchical, 
Multilevel Systems, Academic Press, New York, 1970. 

3. Shapero, A., and C. Bates, Jr., A Method for Peiforming Human 
Engineering Analysis of Weapons Systems, Wright-Patterson AFB, Ohio, 
Wright Air Development Center, Technical Report 59-784, September 
1959. 





Low cost data acquisition and control 
systems for the computer hobbyist 

by RALPH TENNY 
Pavco Electronics, Inc. 
Dallas, Texas 

ABSTRACT 

This paper outlines the basic data acquisition system as it 
might be configured for the home computing system. Al
lowance is made for data acquisition, interactive control 
with display, temporary data buffering, cassette storage of 
data, and computer control of external devices. 

Cost/performance trade-offs are examined in each area 
where a variety of choices are available. For control, a 
simple keyboard and seven-segment display gives adequate 
results. Memory requirements are minimized by appropri
ate choices of data rates, operating system, and design of 
process control parameters. 

The maximum cost savings are possible in the choice of 
AID and D/ A components, by careful decisions on con
verter speed and resolution, and on test design. The hobby
ist has time/cash trade-offs options not available to indus
trial designers, thus hardware/software trade-offs can save 
either time or cash, depending upon which is most available 
to the hobbyist. 

INTRODUCTION 

IeIl. g~D~X!:lI.ltD.~,£9mP'iJt~r pgQQ:x:i§t iI)t~Xt:§t~~d ill il1~tl1Jmefl: 
tation projects has fe~' kits to choose from if he wishes to 
build a general purpose data acquisition and control system. 
Worse, the kits available are not especially flexible in 
application. The purpose of this study is to review the 
problem areas he will encounter in choosing components 
for a home-brew general purpose system, and to give 
guidelines for choosing components of a custom, low cost 
system. The discussion to follow assumes the hobbyist has 
a functioning micro-computer with the following capabili
ties as a minimum requirement: self-start after reset, boot
strap to cassette loader, and random access memory (RAM) 
sufficient to handle data and control as outlined below. 

Figure 1 shows the basic general purpose instrumentation 
system, with all system peripherals interfacing directly to 
the micro-computer (uC) bus. Basic to the system under 
consideration is an interactive control section; without this, 
the system would operate only on stored program and 
would be more properly a data logger. 1 Depending upon the 

991 

experimenter's budget, the interactive control section can 
be as simple as a keyboard and display, up to a teletype or 
video terminal. Careful planning of the system software is 
essential to retain maximum flexibility; at, this level, the 
command structure is far more important than a sophisti
cated terminal. A number of kit and modular uC's have 
broad versatility with six digit or eight digit displays and 
keyboards consisting of no more than 25 keys.2 System 
architecture and software expertise can provide versatility 
with low cost. 

MEMORY CONSIDERATIONS 

The available memory has been divided into Control 
Memory and Data Buffer. It is desirable, but not mandatory 
for all the Control Memory to be RAM. By means of 
cassette loading, it is simple to start up the system, and by 
keeping all programs in RAM it is possible to quickly 
modify the operating system for different tasks. The Data 
Buffer can be RAM, shift register or First-In-First-Out 
(FIFO)3 buffer, depending upon how the data is to be stored 
for later study. The total amount of system memory can be 
greatly minimized if the operating system allows individual 
d,~.t.~, ~Q I9Cl~ ~~~,tQ[ag~_.gt}, .9~a"~§~~1~ ~§ J.h~_, gf1.!~ j§.E~S.~!Y~!!~I!!~ 
choice of RAM, shift register or FIFO will depend entirely 
upon the incoming data rate. For example, if the cassette 
system accepts data at 300 baud (30 characters per second), 
data rates faster than 300 baud require RAM storage. A 
steady data rate of 300 baud would allow direct storage on 
tape, with RAM only for temporary storage while each byte 
of data is formatted for transfer to tape. Perhaps 95 percent 
of all routine data acquisition applications will have a lower 
data rate, so that data can be received, formatted and 
stored in data blocks using a shift register. For example, a 
1024-bit static shift register will store 128 8-bit characters; 
at 300 baud, it takes just over four seconds to dump the 
shift register onto tape. Between the extremes of 300 baud 
and 15 bytes per second, the FIFO can replace RAM as a 
data buffer. This is because the FIFO will accept and 
transfer data asynchronously at both input and output 
ports, so long as the average input rate does not exceed the 
output rate. 



992 National Computer Conference, 1977 

CONTROL 
MEMORY 

DATA AID 1 BUFFER 

~_tl JL ON-OFF 
uC 

II LINES 
r- PROCESS 

SERIAL • PORTS D/A 
I , 9 DISPLAY ~ 

KEYBOARD 

~ :-----~ 
CASSETTE ...... PRINTER I 

I I 
L. _ ) __ ...J 

Figure I-Basic computer-controlled instrumentation system 

One special case also dictates the use of RAM for data 
storage: if the entire block of test data must be manipu
lated, analyzed or normalized in terms of the total test 
result, it is usually far more efficient to store the entire 
block of data in RAM rather than store it incrementally on 
tape. In the latter case, the tape might have to be played 
back a number of times before the calculations have been 
completed. The data storage can be minimized with data 
compression techniques;4 the total amount of RAM needed 
will still have to include workspace area for the data 
manipulation. 

The previous data discussion was simplified by the im
plied assumption that data comes only in single-byte pack
ets. This is rarely so; even if the output is from a single, 8-
bit ND converter, such isolated quantities are essentially 
meaningless. One example of the simplest case might be 
monitoring a single temperature. If temperature variation 
with time is to be recorded, the test can be arranged so that 
a measurement is taken every ten seconds. By recording 
the test starting time, the time of each sample can then be 
computed and need not be recorded. A much more com
mon instrumentation problem requires recording of two or 
more variables from each test condition. One parameter 
will be the independent variable and all the others are 
dapendent variables. (Dependent variables change as a 
result of changing the independent parameter.) One exam
ple: a single-tone test of an amplifier-speaker system. A 
tone is fed to the amplifier at varying levels (independent 
variable) and at each input level measurements are made of 
Total Harmonic Distortion (THD), temperature of the out
put transistors, and sound level from the speaker(s). This is 
a case where all three quantities would need to be measured 
and the computer might monitor THD or transistor temper
ature and vary input level accordingly. Thus, it depends 
upon the test whether the independent variable can be 
calculated (as in the time vs. temperature test above) or 
must be recorded. Careful test design can therefore mini
mize hardware, software and memory requirements. 

It is now reasonably clear that the cassette operating 
system (software and hardware combined) should be such 

that start-stop operation of the tape is possible. The data 
would be output in a standard recording format such as the 
Kansas City Standard. 5 The data in the tape output buffer 
should consist of sync characters (especially important for 
recording short blocks), ID characters, data characters, 
checksum characters (or other error detection scheme) and 
an ending character. As a result, the 128 characters stored 
in a 1024-bit shift register might represent only a few data 
points. If 8-bit ND conversion gives insufficient accuracy, 
or if a BCD converter is chosen (a number of 31;2 digit 
modules are available), data storage requirements will in
crease. In general, the uC will handle output from to-bit, 
12-bit and 31;2 digit converters as two data bytes. Some tape 
routines store each byte as two ASCII characters, which 
could further limit the number of data points stored in the 
tape output buffer. 

DATA CONVERTERS AND THEIR INTERFACES 

Much of the cost of the data acquisition system can be in 
the data converters and their interface circuitry. Fortu
nately, there are a great number of low cost and medium 
cost monolithic and hybrid modules available; these have 
adequate accuracy and interesting combinations of features 
to make the choice difficult. 6

-
8 A number of factors affect 

the decision process; required conversion speed, accuracy 
and resolution, microcomputer architecture, and location 
(remote or local). 

The two potentially most costly A/D parameters are 
conversion speed and accuracy/resolution, and the unit 
prices have fallen rapidly in recent months. Basically, the 
range of conversion speed is determined by the type of 
conversion-integration or successive approximation. Dual 
slope or multiple slope integrators with one to fifteen 
conversions/second and 8 bit resolution are quite inexpen
sive; moving to 500 conversions/second roughly doubles the 
price. Speeds beyond two milliseconds/conversion typically 
require successive approximation, and the speed jumps to 
roughly 20 microseconds/conversion. Faster conversion 
speeds are available but are a needless cost unless the 
microprocessor is much faster than the typical hobby 
machine. Increased accuracy and resolution jumps the price 
quickly, and typically slows the conversion at the same 
time. For example, one manufacturer's price increased 30 
percent and speed decreased by a factor of three in moving 
from 8-bit resolution (.4 percent accuracy) to to-bit resolu
tion (.1 percent accuracy), for the same type of conversion. 
The distinction between accuracy and resolution with re
gard to A/D converters is a topic beyond the scope of this 
paper. Some recent articles6

- s have made detailed explana
tions of ND and D/A specifications. 

The architecture of the microcomputer may exert some 
influence on the choice of ND converter. If the converter 
will be expected to communicate directly with the data bus, 
the converter will need to have tri-state output lines or must 
be connected through tri-state buffers. On the other hand, 
many uC systems have programmable interface devices 
which allow direct communication with the converter. The 



same interface device furnishes the address decode func
tion, and some interfaces allow handshake and interrupt 
capability and can initiate the conversion process with a 
strobe line. 

Figure 2 is a partial block diagram for a system with 
programmable interface circuits. Typically, these interface 
circuits reside in memory space (are addressed with mem
ory instructions) and therefore pre-empt some memory 
addresses. Since virtually all hobby computers address at 
least 32 kilobytes of memory, this poses no problem for 
most data acquisition systems. Note that system compo
nents shown in Figure 1 will supplement the sub-system 
shown in Figure 2; Figure 2 merely illustrates how the 
programmable interface allows a much greater range of ND 
component choices. This versatility usually allows lower 
priced converter components to be used. 

If the data converters are re~otely located, power must 
be furnished, control signals must go out and data must be 
returned. Since remote operation of the data bus is essen
tially impossible due to propagation delays, the send/re
ceive circuitry which services the remote converter be
comes a separate peripheral device. Consequently, the 
converter should be capable of autonomous operation on a 
single, low-power power supply and produce a serial data 
output. Reference 11 details systems which meet many of 
these requirements. 

Because there is a bewildering array of different types of 
ND converters which are normally reported, one type is 
often overlooked. This is the voltage-to-frequency con
verter (V/F) , which has a number of advantages for the 
computer hobbyist. 9,10 In particular, where conversion 
speed can be on the order of one second, 12-bit resolution 
(one part in 40%) is almost routine at very low cost, and 16-
bit (one part in 65k) converters are available for about $50. 
This type of device is ideally suited for remote location in 
that its output is a pulse train whose frequency is directly 
proportional to the instantaneous input voltage or current. 
Its power requirement is relatively low and low power 
versions are available. 9 At least one ultra-low power circuit 
using two standard IC's and a single power supply voltage 
has~.b~ .repor1ed.. l:Fiually~heI;:au:iethe YJ£. is. an in~at-, 
ing device, it tends to reject random noise, and has a wide 
dynamic range of operation. 

To avoid a totally rosy picture, the VIF has two major 
disadvantages: slow speed and the data output stream. 
Because the output frequency is the parameter of interest, 
this signal must be counted. This is accomplished by having 

ADDRESS 
ENABLE 

To PROGAMMABLE 
DATA AID 

uC INTERFACE 

BUSY/READY 
CONTROL 

Figure 2-Programmable interface sub-section 

Data Acquisition and Control Systems 993 

V/F - COUNTER DATA uC 

~ 

GATE I 
Figure 3-Normal V/F-computer interface 

the uP gate the input to a counter (typically one second 
time intervals), and then reading the counter output lines as 
data (see Figure 3). A new problem now exists: resolution 
of even a garden-variety VIP module is 10 bits. To retain 
the full V/F resolution with an 8-bit uC, it is necessary to 
mUltiplex the counter output lines and read in two data 
bytes. However, IC counters which mUltiplex a number of 
digits into a bit-parallel, BCD word serial format are 
available. The BCD format is easily manipulated by most 
uC's with software-decimal arithmetic instructions. If the 
full VIF resolution is not needed, set the time interval to 
avoid overflowing an 8-bit binary counter. Besides simplify
ing the interface, the data conversion time is reduced by the 
same ratio as the counter gate interval. 

The fact that a V IF is a virtually perfect integrator 
simplifies measurements such as average quantity or total 
quantity, (for example, average temperature over a time 
interval or total energy used by a device). In the first case, 
a temperature related voltage13 serves as input to the V/F. 
A suitably scaled total count then represents the average 
temperature for the time interval of the count. In the 
second case, the V/F input must represent the power used 
by a device under test. 

The final components in Figure 1 are the DI A converters 
and discrete control lines. The discrete control lines have 
been dealt with in a number of reports, 15-17 but DI A 
converters have perhaps been slighted in home computing 
literature. Once again, the recent reports6- 8 give a bewilder
~'Qg.~JI·q.y .9f4~yi!;&~.Ab1l1 th~,SDI~a~, of u.s.~fijLfe,atJ.u:~"sjs J.lQ,t 
so great. To be effective, D/A input data must be latched. 
Almost universally, low cost DI A modules do not have 
input latches, regardless of the device resolution. For this 
reason, the programmable interface (Figure 2) should be 
programmed as an output port to serve as data bus interface 
and data latch. Figure 4 shows low-cost alternatives. Figure 
4A uses presettable counters (address decode and load 
strobe needed) to drive the D/A input lines, while 4B shows 
up/down counters serving the same need. Note the different 
output patterns (Figure 4C): the presettable counter (quad 
or hex latches are also suitable) gives a step-function output 
and the up/down counter version ramps to the final output. 
DI A converters have two serious faults-glitches and over
shoot. A detailed treatment of these problems (cause and 
cure) is available,18 but in simplified terms, glitches are the 
result of unbalanced propagation times in the digital logic 
circuits and overshoot results from incomplete compensa
tion of the analog output of the converter. 



994 National Computer Conference, 1977 

uC 

uC 

DATA 

Strobe 

Up clk 

On 

1 

clk 

, , , 

LATCH 

COUNTER 

DATA D/A ~ 

A 

DATA D/A .... 
Eo 

B 

Eo~~ ________________________ _ 

TIME---I~~ 

C 

LOAD 

LOAD 

Figure 4-Comparison of strobed vs. clocked perfonnance of D/A's 

CONCLUSION 

In summary, this paper has dealt with a complete, custom 
instrumention concept for the home computing system, as 
represented in Figure 1. The intent has been to guide the 
designer toward cost-cutting decisions in microcomputer 
architecture, but with emphasis on low cost hardware. 
Obviously, if the desired system is to be less comprehen
sive, the cost drops immediately. It is also possible to trade 
software for hardware to effect cost savings. Reference 14 
gives a number of ideas on hardwarelsoftware tradeoffs, 
but speaks from the standpoint of the cost-effective indus
trial designer. The home computer, when approached from 
the hobby standpoint, will have a different economic justifi
cation (usually to combine fun and accomplishment in a 
technical area, at an affordable cost). In other words, the 
hobbyist may always have to use his personal time instead 
of cash to accomplish particular goals. His computer may 
have a 5 uSec cycle time instead of 250 nSec (he can afford 
to wait), and if he enjoys software, hundreds of hours of 
program coding and de-bug to save $50 cash is an excellent 
investment. For the hardware hacker, adapting a published 
circuit or idea to work with junk-box parts is an exercise in 

V/F SERIAL - uC INPUT -

Figure 5-Hardware/Software trade-off on V/F interface 

frugality which also pays off handsomely in exercise of 
creative talent. 

One example of software replacing hardware: let's update 
Figure 3 to Figure 5. The lO-bit VIF operates at 10 kHz; 
simply monitor the V IF output with a single input line and 
use a software loop to increment a totalizing register and a 
timer. Read the total counts at the end of the time interval, 
and Figure 3 becomes Figure 5. 14 

If the computer has a programmable timer, the input port 
of Figure 5 can be an interrupt line. If the timer can also set 
an interrupt, the computer has considerable time to mind 
other tasks while measuring a digital quantity. The program 
uses the V IF interrupt to increment a counter register until 
the timer times out. In this case, the faster computers will 
give better absolute accuracy because interrupt service is 
faster. 

REFERENCES 

I. "Log data under uP control," Electronic Design, 10, May 10, 1976, p. 
94. 

2. "Low cost design aids keep pace with growing microprocessor field," 
Electronic Design, 25, December 6, 1976, p. 20. 

3. The Memory Data Book, First Edition, Texas Instruments, Inc. p. 147. 
4. "Don't Waste Memory Space," Byte, December 1976, p. 58. 
5. "Byte's Audio Cassette Standards Symposium," Byte, February 1976, 

p.72. 
6. "Specifying ND and D/A Converters," Electronic Products, November 

1976, p. 46. 
7. "Designers are Looking Closely at New Monolithic DACs and ADCs," 

Electronic Design, 13, June 21, 1976, p. 28. 
8. "Focus on Data Converters," Electronic Design, 19, September 13, 

1976, p. 68. 
9. "Voltage-to-Frequency Converters: ND's with advantages," EDN, 

June 5, 1974, p. 49. 
10 .. "Consider V/F Converters," Electronic Design, 24, November 22, 1976, 

p.I60. 
II. "Low Cost Data-Acquisition Systems," Electronic Design, 24, Novem

ber 22, 1976, p. 152. 
12. "Precision Voltage-to-Frequency Converter uses Only Single Supply 

Voltage," Electronic Design, 21, October II, 1976, p. 82. 
13. "Don't Sweat with Thermocouple Thennometers," Electronic Design, 

24, November 22. 1976, p. 146. 
14. "Designers Must Know When to Make Hardware/Software Trade

Offs," EDN, November 20, 1976, p. 289. 
15. "Notes on parallel output interfaces in memory address space," Byte, 

November 1975, p. 52. 
16. "Controlling External Devices with Hobbyist Computers," Byte, April 

1976, p. 42. 
17. "An Octal Front Panel," Byte, May 1976, p. 38. 
18. "When D/A Converter Glitches Rear their Heads, Check the Applica

tion," Electronic Design, 22, October 25, 1973, p. 100. 



Diskomania-A small-system 
floppy disk operating system 

by WAYNE SEWELL 
Dallas, Texas 

ABSTRACT 

This paper describes the fundamental structure of DISKO
MANIA, a floppy-disk operating system designed for the 
small system user. The important properties of the system 
are: 

(1) ability to interface to a wide variety of non-standard 
I/O devices. 

(2) a relatively small amount of memory dedicated to the 
permanently-resident portions of the system. 

(3) a simple yet flexible command structure for data 
transfers and operating system functions. 

One thing that can be noted readily about the similarities 
between computer systems belonging to individuals is that 
there aren't many similarities. While it would be rash to 
state unequivocally that there are not two identical personal 
computer systems on the face of the earth, it would not be 
out of line to say that they are extremely rare. Lacking 
corporate funds, hobbyists are scroungers by nature. Two 
enthusiasts buying systems from the same manufacturer 
will have identical configurations at first, but will quickly 
take divergent paths as different priorities and different 
opportunities to acquire equipment take effect. 
.h~~sa·re·suit elf' thiS" i)henomenoi1:1ds extremely difficult to 

design an operating system which will work with any 
configuration, especially when such non-standard devices 
as Baudot printers, flexowriters, and selectric typewriters 
are involved. 

One solution (?) to the problem is to incorporate into the 
system the capability to interface to any I/O device in 
existence, no matter how obscure. This is an ingenious 
approach, except that the resultant system will take several 
megabytes of memory and an entire wall of disk drives to 
implement. 

Another problem to be resolved in personal computer 
operating systems is how much of the system is perma
nently resident in main memory. The more sophisticated 
the command processor (or parser, or instruction decoder, 
or whatever you wish to call it), the greater the amount of 
memory usurped by it and permanently withheld from the 
user. Even if most of the actual work is done by nonresi-

995 

dent programs called in from disk and afterward deleted, 
the command processor normally has to be able tQ deter
mine the proper routines to cal1, the proper time to call 
them, and the proper parameters to pass them, based on 
commands entered by the operator. 

Please notice that I said "normally. " If a different 
approach is taken in the relationship between the command 
processor and the nonresident portion of the system, a 
powerful, flexible, and memory-economical operating sys
tem can be created. 

Such a system is DISKOMANIA.l The resident portion, 
the command processor, is comparatively small, yet is quite 
powerful when backed up by the nonresident portions. In 
addition, it can easily be modified by the user to accommo
date the most bizarre combination of unorthodox I/O de
vices. 

The basic philosophy behind DISKOMANIA is based on 
UNIX, an operating system for the PDP/II, described by 
Ritchie and Thompson in 1974.2 DISKOMANIA is not the 
full UNIX system, or even a significant portion of it (using 
UNIX on a micro system is like using a bazooka to swat 
flies), but it does embrace the basic concept of UNIX: 
flexibility. 

The memory-resident portion of DISKOMANIA, the 
nucleus, or command processor, is really not very smart. It 
is unaware of what is going on most of the time. It only sets 
dl1ngs up Tor tIie more" cognizant rouHiic~ vi"!" disk: 

The key element in the entire system is the directory. 
Each diskette contains a sector or more containing the 
pertinent data for every file on that particular diskette. 
Each entry in the directory contains the name, type
identifying attribute, and starting address (track/sector) of a 
particular file. 

The command processor actually does very little real 
processing of a command line presented to it. lt does a 
limited scan, just enough to identify the file names in
volved, then it searches the directory and retrieves the disk 
address and attribute of each file. 

lt is the file attribute which indicates to the command 
processor what operation it is to perform on the file. The 
attributes fall into two rough categories: data attributes and 
driver attributes. Data files are just that: files which contain 
some type of data. The command processor doesn't care 
whether the data is pure binary, ASCII, object code, or 



996 National Computer Conference, 1977 

nothing but zeroes. It performs no special processing on 
data files other than reading or writing them from or to 
disk. 

The command processor's reaction toward driver files is 
totally different. A driver file is a relocatable subroutine 
stored on disk, a program written to communicate with a 
certain device (such as a paper tape reader) or perform a 
certain operating system function. When the command 
processor realizes that it is dealing with a driver file, it 
stops treating it simply as data. Instead it loads the driver 
into memory and executes it, although it has no idea what 
the program does. The drivers perform all 110 in the system 
(except the disk itself) and all higher-level functions of the 
operating system. 

A DISKOMANIA command is in the form: 

Parameter 1 (Subparm, Subparm, ... ), Parameter 2 
(Subparm, Subparm, ... ) 

where Parameter 1 and Parameter 2 are file names, each of 
which is stored in the directory of one of the drives 
currently on line. The files are not necessarily on the same 
drive. Sub-parameters mayor may not be present. 

The data flow is always from Parameter 1 to Parameter 2. 
This is true whether either file is a data file or a driver file. 
The sub-parameters are not acted on by the command 
processor; it only notes whether or not any are present and 
records the addresses in the command buffer at which they 
start. 

Parameter 1 is the input parameter. It could be a data file, 
in which case the command processor only reads it. On the 
other hand, it could be a driver file, which means that the 
command processor loads it into memory and permits it to 
handle the generation of the input from an external device. 

Parameter 2 is the output parameter. Similarly, it can also 
be either a regular data file or an output driver file, a 
program to output to an external device. 

U nsurprisingly, the length of a disk block, which is 
equivalent to one sector, is the basis of all data transfers 
throughout the system. There is a block of main memory 
permanently set aside for this purpose. This buffer acts as a 
common interface between Parameter 1 and Parameter 2. 
The 1 st parameter inputs data into the buffer for the 2nd to 
dispose of. 

As the command processor identifies the file name for 
each parameter, it sets pointers to the starting track and 
sector if it is a data file and loads it into memory (making a 
note of the starting address) if it is a driver file. 

After pointers and/or entry points are established, the 
actual data transfer begins. The command processor goes 
into a loop in which it causes data to pass from Parameter 1 
to Parameter 2 until an end-of-file is reached on Parameter 
1. 

On the first pass through the data transfer loop, the 
command processor once again checks the file attribute, 
which was stored in memory during the identification 
phase. If the Parameter I file is a data file, the command 
processor reads the first sector of the file into the data 
buffer previously mentioned. After the read is finished the 

pointers are updated so that they point to the next sector in 
the file. If, however, Parameter 1 is a driver, the command 
processor branches to it, not knowing or caring what type 
of input device it interfaces to. All the main program knows 
is that the driver is a routine that will accept data from a 
device, move it into the common data transfer buffer, and 
return control to the mother program when the buffer is 
full. Note that the final result of Parameter 1, whether the 
file is a data file or a driver file, is the same: a memory 
buffer, exactly the length of a disk sector, containing input 
data. 

At this point, Parameter 1 has completed its portion of 
this cycle of the data transfer. It does not care what 
happens to the data it has acquired. The command proces
sor now turns to Parameter 2 and follows the same proce
dure in reverse. If Parameter 2 is a data file, the data in the 
transfer buffer previously filled by Parameter 1 is written to 
disk. If it is instead a driver, the mother program branches 
to it, confident that it will output the data in the common 
buffer and return when finished. Once again, the main 
program has no idea what the driver actually does. In 
addition, Parameter 2 doesn't care how the data got into the 
interface buffer; it simply takes what is there and writes it. 

After the data in the common buffer has been disposed of 
by Parameter 2, the command processor repeats the proce
dure. The common buffer is filled by Parameter 1 the same 
as before, either by reading from disk the next sector in the 
data file or by re-executing the input driver, and Parameter 
2 writes it to the next sector of the output data file or 
outputs it to an external device via the output driver. 

This loop continues until an end-of-file is reached on 
Parameter 1. A flag is set when this condition is detected, 
either by the input driver, or by the command processor 
itself (in the case of data files). This flag tells the command 
processor that the operation will be completed at the end of 
this pass through Parameter 2, at which time an end-of-file 
will be placed on Parameter 2 and the driver(s) will be 
deleted. 

The most obvious advantage of DISKOMANIA is the 
tremendous flexibility, even with a comparatively simple 
command processor. Parameters 1 and 2 are completely 
independent of each other and are also mutually transparent 
as far as data transfer is concerned. One puts data into the 
common buffer and the other removes it, neither caring 
how the other accomplishes its end of the operation. 

If both parameters are data files, the end result is one file 
copied to another on disk. If Parameter 1 is an input driver 
and Parameter 2 is a regular data file, the input device 
writes straight to the disk, the data automatically formatted 
into sectors. Conversely, if Parm 2 is the driver and Parm 1 
is the data file, the entire file is dumped in its entirety to the 
output device, deblocked and transmitted in a continuous 
stream. If both parameters are driver files, a sort of in-one
ear-and-out-the-other function is accomplished. The input 
driver places data into the common buffer and the output 
driver sends it to the appropriate device without really 
involving the disk at all. 

Each of these four functions is invoked in exactly the 
same way: by entering two alphanumeric labels on the 



command line. The function actually performed is con
trolled by the file attribute assigned to each of these labels 
in the directory. 

Of special interest to the small system owner is this 
important fact: in order to customize the operating system 
for his own configuration, he does not have to change the 
entire system: he only has to change individual device 
drivers. If a driver supplied with the system will not work, 
the user can modify that one driver and store it under the 
same filename and the command processor will never know 
the difference. Conversely, the original driver could be 
retained and the modified driver stored on disk under a 
different name, enabling the user to access either version at 
any time. New devices, standard or unorthodox, can be 
added at any point by writing new drivers and storing them 
on disk to be accessed by name like any other driver. 

When the command processor passes control to a driver, 
it assumes that the driver performs some type of I/O 
operation via the command data buffer. In truth, however, 
the command processor is in total ignorance of what occurs 
inside the driver. Taking advantage of the command pro
cessor's tunnel vision, we store special non-device drivers 
on disk to perform the higher level operating system 
functions and they are executed just like any other driver. 

For example: we wish to delete a file named, unimagina
tively, FILE. We have previously stored on disk a non
device driver containing the file deletion routine under the 
name DELETE. Upon receiving the command line 

FILE, DELETE 

the command processor searches the directory and deter
mines that FILE is a true data file, so it sets the pointers to 
the first sector. Further investigation identifies DELETE as 
a driver file, so it is loaded into memory like any other 
driver. During the Parameter 2 portion of the data transfer 
loop, the command processor branches to DELETE, na
ively thinking that DELETE will dump FILE to an output 
device. Instead FILE is deleted from the system and 
removed from the directory. Before returning control to the 
ccmm:rrrdprocesscr, DttE'f'E sets the" enct~0f-fncfltlg to 
end the operation. The important fact is that the command 
processor never knew the difference. It has no way of 
distinguishing a device driver from a system driver. ALL 
DISKOMANIA system functions are performed in the 
same way, by deceiving the command processor. 

Another valuable feature of DISKOMANIA is that it 
never takes any more memory than is absolutely necessary 
to perform a given function. The command processor 
allocated just enough memory space to contain the tempo
rary drivers and immediately returns it back to the user 
when they are no longer needed. The command processor 
itself, the main resident routine, is comparatively small due 
to its simplemindedness. 

When the operating system is initialized upon power-up 
or reset, the resident portion is read from disk and loaded 
into the maximum available RAM addresses, placing it at 
the very top of read-write memory. It then loads in the 
permanent drivers, SYSIN and SYSOUT, which handle 

Diskomania 997 

input and output respectively, between the operating sys
tem and its command terminal. These resident drivers are 
loaded immediately ahead of the command processor in 
memory, at the next lower series of memory locations. The 
command processor and the two permanent drivers make 
up the resident portion of the system. Much of the time, the 
amount of memory allocated to these routines is the total 
used by the operating system. This is the case when both 
Parameter 1 and Parameter 2 are both data files and no 
temporary drivers are required. Drivers, if required for 
either or both parameters, are loaded into memory just 
ahead of the resident drivers, still allowing the operating 
system to control only as much memory as is actually 
necessary and to reside in one contiguous cluster of mod
ules. After the temporary drivers complete the function for 
which they were loaded, they are immediately deleted, and 
the operating system again shrinks to the resident portion, 
returning the space the drivers occupied to the user. There 
is a control field in the operating system which contains the 
address of the boundary between the operating system and 
user memory. The user can test this field at any time to 
learn how much memory is currently being used by the 
system. 

The I/O drivers are not restricted to being accessed by 
the command processor only; any device driver in the 
system can be loaded and executed by a user program just 
as easily by calling the directory-search and driver-load 
subroutines in the command processor. This makes it 
possible to write applications programs that are virtually 
device independent. 

It is also possible to load and execute the non-device 
drivers, those that perform operating system functions, 
from a user program, but this is not advised without a 
detailed knowledge of how the driver works and how 
linkage to it is accomplished. In fact, it is perfectly permis
sible for any driver, device-type or not, to load any other 
driver with the same restrictions. This can continue for 
multiple levels as long as memory lasts. 

In conclusion, it is very easy to see how DISKOMANIA 
can be implemented on a very small system with only a 
~ingIeniirii:rr()ppy ""antI' a" cOfnpaiaiiveTy'"' small "amu"urifof 
main memory, and yet run with a surprising amount of 
power, flexibility, and capability for customizing. It can 
easily be adapted to non-standard devices, even the operat
ing system control interface (i.e., a totally Baudot system). 
Flexibility, economy of memory, power-for what more 
can a small system ask? 

ACKNOWLEDGMENT 

I wish to thank Dr. Brian Johnson, University of Texas at 
Dallas, for my introduction to the UNIX philosophY· 

REFERENCES 

1. Soon to be available from PerCom Data Co., 4021 Windsor, Garland, 
Texas 75042, (214) 276-1968. 

2. Ritchie, Dennis M., and Ken. Thompson, The UNIX Time-Sharing 
System, Communications a/the ACM, Volume 17, Number 7, July 1974, 
pp. 365-375. 





Neighborhood computer stores-The answer 
to microcomputer marketing 

by PAUL TERRELL 
Byte Incorporated 
Sunnyvale, California 

ABSTRACT 

Fifteen years ago, only an eccentric individual would con
sider assembling a computer at home. The technology 
simply would not permit it. Today, the streams of technol
ogy and retailing have met. Where the tributaries come 
together we have a unique and growing concept, the 
neighborhood computer store. As represented by the Byte 
Shops (now numbering 40 world-wide), this new concept 
brings technology and qualified persons to interpret that 
technology into a convenient and informal format that 
anyone can understand and participate in. The result can 
only be a greater demand for the ever more affordable 
computer technology of today, and a more personal and 
powerful interest in computer operation and applications 
not only in the home, but in small businesses. The neigh
borhood computer store may soon mature to become the 
only reasonable retail outlet for manufacturers of micro
computers and peripheral products. 

INTRODUCTION 

Fifteen years ago, if someone had said he was putting a 
e~·f6!dhe" ~l +te~, we wettki~~f' ~pOWftef' 
of an overactive imagination. We might have thought he'd 
been watching too much Saturday morning TV with his 
kids-that the Jetsons and Star Trek were taking over his 
mind. Even if a person had wanted such a do-it-yourself 
project, he would need to be independently wealthy, be 
able to control his air to a clean and perfect 68 degrees, 
absorb an astronomical power bill, and sacrifice an area the 
size of a large living room to the venture. Even with the 
above, there would be no way to make proper use of all the 
bulky equipment to justify even an eccentric millionaire's 
time and money. In other words, it would have been 
virtually impossible. 

As the years rapidly passed, and compounding techno
logical advances ensued, computer hardware became less 
bulky and began to sweep a complete spectrum of applica
tions. Some systems grew in complexity, becoming ex
tremely sophisticated with storage and manipulative power 
to computerize a nation of tax records. Other developments 

999 

went the opposite direction, becoming smaller and consid
erably less complicated. 

One event, however, seeded the idea of putting computer 
power in the hands of someone other than trained techni
cians. With the advent of computer assisted instruction and 
the concept of timesharing, the mystique was finally bro
ken. Sharing the computer among many users (timeshar
ing) made a large central computer (mainframe) seem to 
slow down and patiently wait for its human user to type in 
or respond to information. The beauty was that the incredi
bly high speed machines could service mUltiple users with
out the human element feeling neglected. Timesharing made 
better and more economical use of large machines, but 
more importantly, it satisfied the psychological need for a 
personal rapport between man and machine. We no longer 
feared the beast and could welcome it as another tool for 
mankind instead of the awesome BIG BROTHER. 

The trend toward miniaturization and simplification was 
greatly accelerated by the space program, which created a 
definable need for smaller computers. So we began to speed 
up technology, miniaturize and simplify. Computer technol
ogy was allocated enough funds to enable speedy develop
ments to meet the space age needs. 

Then, in the early 1970's, the semiconductor industry 
~tet·~·the·~tef"~·!!mre ttmn~~··rntet 

Corporation designed a single chip-the 8ooS-an 8-bit 
microprocessor which unleashed a whole new era by solv
ing the money and size problem that had previously stood 
in everyone's way. That leap forward in 1972 paved the 
way for putting computing power in the hands of anyone 
who wanted to give it a try. Through the development of 
comparatively less expensive minicomputers, microproces
sors and peripheral equipment, the results of that rapid 
progress is what we're involved in today. 

During this same period, another phenomenon was taking 
place. With apparently no organized effort, a great number 
of technical and professional people from within the elec
tronics industry were becoming increasingly interested in 
the new small computers. On the side, at work, they were 
inventing games like space war and computer chess, com
pliments of their employers, justifying such antics as "dem
onstrator programs to demonstrate versatility and design 
capability ... " But, at the same time, they were having fun 



1000 National Computer Conference, 1977 

on a minicomputer and CRT (cathode ray tube). More than 
a few programmers attempted to computerize their personal 
tax records at considerable expense to their resident uni
versities. It wasn't any wonder that a desire for a toy of 
one's own was starting to gel. About this same time, 
electronic kits and so-called "computerized games" were 
sweeping the consumer market, but they lacked room for 
individual creativity and interesting application on the part 
of the user. 

FIRST MICROCOMPUTER KIT 

When the first microcomputer kit, the Altair 8800, was 
introduced in December of 1974, the stage was set for the 
hobbyist and personal computer marketplace. Even then 
we in the computer marketing business were not completely 
aware of the incredibly perfect timing that was about to 
combine with the ideal product and combust. A ripe and 
hungry public answered the microcomputer kit advertise
ments, with COD's and money orders-sight unseen. As is 
too often the case, many manufacturers had stepped into 
this new market, but they weren't ready for the onslaught 
and the filling of mail orders was delayed. That computer
starved public was left with fingers crossed, looking at their 
deflated bank balance, hoping for delivery of their new 
"toys. " 

In 1975, I was a sales representative for MITS, then the 
leading manufacture of computer kits. My partner and I 
were responding to the unusually high number of inquiries 
from the slow leads, and we found that our customer profile 
had dramatically changed. Payment was often by personal 
check or cash-not company P.O. These interested and 
frustrated hobbyists were trying to deal directly instead of 
by mail, to try to ensure prompt delivery of their kits. We 
realized our customers were buying kits for their personal 
use. To ease the guilt feeling of taking money without 
delivering the product, we ordered ahead and stockpiled a 
supply. When word got out that we not only had those 
previous kits in stock, but some software packages along 
with them . . . well, we were never again to knock twice and 
put our foot into the door for a normal sales call. 

SALESMANS' NIGHTMARE 

It would seem like a salesman's dream to have the 
customers flocking to you-but not quite. Our office liter
ally turned into a mob scene as people browsed through the 
literature shelves waiting to use the demo machine. A 
month's coffee supply disappeared in four days. And the 
last straw was the sight of a Modesto mother and her 14-
year-old son at our door at opening time with a broken 
computer. They had been waiting since 7: 30 a.m. 

It was utter chaos and our little office setting was 
becoming absurd. Since we were doing such a great busi
ness in obscurity, we wondered what would happen if we 
opened up a retail shop and hung out a sign. Byte means 
the measure of a unit of information, and since we were 

knee deep in the world of computer buzz words, we settled 
on the name "Byte Shop." We considered it eyecatching 
and rather significant. Except for the few people who think 
we're a sandwich stand, the name has done well for us. For 
those uneducated others, we ought to serve snacks. Our 
first retail store opened on December 8, 1975, in Mountain 
View, California, in the heart of "Silicon Valley" near San 
Jose. (Silicon Valley is the appropriately nicknamed area 
that houses one of the largest concentrations of electronic 
companies in the world. It got the name from silicon, the 
basic substance for producing semiconductors.) 

Aside from creating a stir with the local press, we even 
managed a modest profit in our first month of operation. 
We also discovered we had the equivalent of a trade show 
365 days a year for our principal's products. This seemed 
like a natural way to overcome the increasing cost of selling 
to the end-user, and our customers were intrigued with the 
thought of visiting a computer store. After three months of 
doubling our gross sales, we were "discovered," and on 
March 2, 1976, opened Byte Shop #2. 

TIME FOR GOALS 

As we appeared to be growing and making a profit, it 
became time to set up some kind of basic corporate 
structure and map out our goals. We settled on the name 
Byte Incorporated as the central distributorship, doing all 
the direct wholesale buying from manufacturers and stock
ing the Byte Shops with preferred product lines as retail 
outlets. Our goal was simple and modest-tomorrow, the 
world. 

The structure and tie-in between Byte Incorporated and 
the Byte Shops is simple. Byte Incorporated buys in large 
quantity directly from the manufacturers at an OEM (origi
nal equipment manufacturer) discount. We also manufac
ture some products ourselves, such as the Byt-8 kit. Other 
products are designed to our specifications and carry the 
Byte label, such as the Byte-File. We purchase all the 
inventory necessary to completely stock all Byte Shops at 
wholesale discount prices, buying in volume ... a discount 
for which each individual store could not qualify. Byte 
Incorporated then sells to the stores and charges a seven 
percent handling fee. We can stock a new store with 
$28,000 worth of merchandise, and the cost to the store 
owner is only about $20,000. Average inventory turnover 
for one shop is nine turns per year. The Byte Shop 
dealership agreement limits the loss to the shop owner 
through a merchandise buy-back agreement. I might add 
that this "bail out" provision has never been exercised, but 
we feel it's an excellent safeguard. The formula seems to be 
working, because we went from 0 to 40 stores in the first 
year and should have approximately 100 by July of 1977-
all thriving and many expanding. 

WHO'S RUNNING THE STORE 

As with anything new, exciting and so potentially profita
ble, everyone wants to get in on the act. My desk is piled 
high with requests from all over the U.S. and a dozen 



foreign countries to open stores. As I have indicated, each 
store is owned and operated by the individual business 
man. Byte Incorporated acts as his distributor, offering him 
economical advantages, support assistance, cooperative ad
vertising and a proven successful format. Even though he 
carries our name, he is an independent dealer, much like 
the manner in which some national service station dealer
ships are set up. Since the format is a proven winner, we 
have a definite reputation we wish to maintain, so it is to 
our mutual advantage to screen new shops and their pro
spective owners and management carefully to assure that 
each Byte Shop is successful. 

The preferred owner fits the following simple profile: He 
should show a keen business sense and an appreciation of 
the consumer computer marketplace. It is not necessary 
that the owner possess technical computer knowledge as 
long as he wisely chooses such expertise for his manage
ment. The best manager is someone who has both technical 
skill and an ability to work wen with customers. The ideal 
person to act as guiding force in a Byte Shop is a customer 
engineer (CE) from the computer industry. A customer 
engineer services, advises and often sells to his company's 
customers and is the real backbone of a sound sales and 
service program. Successful customer engineers usually 
understand and enjoy the technical side of computers, but 
not to the exclusion of the personal customer contact. It is 
this combination that makes him valuable as a potential 
store manager. 

The ideal potential manager works as a customer engi
neer for a big conglomerate. He is frustrated having to be 
under the control of the large company and harbors a strong 
desire to be a proprietor. He enjoys working on computers 
and possesses considerable technical skill and creative 
ability. Most important of all, he ,enjoys working with 
people and likes helping them learn and develop their 
creative interests. 

By separating the profiles of owners and managers, I am 
not saying that the two cannot be combined. If someone 
has the unusual combination of abilities-technical skill, 
personality and business sense, and can establish a firm 
ftrran~iat hast, th.;;r;. It ccuM pI'ohttbfy "J;'6tk wen. ~lvj'emc:iri 
likely the customer engineer profile could be met, and with 
bank financing and a good business advisor, could establish 
a workable and successful business setting. Byte Incorpo
rated needs to be assured that an the bases are covered 
before it OK's use of its name on a new door. Our success 
rate is still 100 percent and we intend to keep it that way. 

If all the personnel criteria are met, then we get down to 
the financial details and choice of location. A Byte Shop 
can be opened for approximately $30,000, depending on 
location. This includes the $20,000 worth of initial inven
tory purchased from Byte Incorporated. The remaining 
$10,000 is for prepaid store rent, furniture, leasehold im
provements, sign, salaries, phone, operating capital, and 
the one million little extras necessary to open. Nobody can 
guarantee short or easy hours, but we can tell you that 
every shop owner and manager so far has enjoyed it 
immensely and profited considerably, both in dollar return 
and personal growth. 

Neighborhood Computer Stores 1001 

MARKET STRATEGY 

Each Byte Shop has a common goal-to provide a 
service to the public and to make money for its owners. 
With the opening of each store, we see more and more 
retail professionalism. The physical format that we advo
cate, and the one that is proving especially successful, is 
not like our original start-up stores, which were rather 
bleak. Future Byte Shops will be warm, comfortable, and 
carpeted with attractive comprehensive displays. Each 
store will have three sections: one, a sales display of small 
peripheral products such as boards, cards or interfaces; the 
second, a section for hardware display; and the third 
section for books and periodicals~ Each store has, and 
always should have, both a demonstration area with work
ing sample machines, and a work room. These two features 
serve very important functions. They permit the customer 
and store personnel to interact while having the product in 
hand. If the customer needs to learn the basics, the 
demonstration room can answer many questions. 

The work room is where technical problems are tackled. 
A customer and store technician can lock brain power and 
soldering iron to repair a faulty CPU (central processing 
unit) board or test a new 110 (input/output) device. The 
physical set-up described above enhances the philosophy 
that we feel is at the heart of the Byte Shop movement
service. 

THE IMPACT OF EDUCATION 

Education is probably the most significant service we can 
offer, since the man on the street is basically unaware of 
the microcomputer revolution taking place all around him. 
His curiosity is stimulated when he sees a sign describing 
the Byte Shop as an "affordable computer store." Until 
now computers were for business and institutions and were 
anything but affordable. When he walks into the store, he 
finds a color television, much like his own, with a computer 
attached, playing color graphic programs loaded from an 

like his home entertainment set-up in the family room. An 
audio amplifier and speaker come into view as the sound of 
digital music fills the air. Slowly the idea begins to form 
that computers may be meant for him, too. The education 
process is about to begin. First, he purchases books and 
magazines and possibly enrolls in a Byte Shop-sponsored 
weekly course on the introduction to microcomputers. The 
computer bug has bitten and "computeritis" quickly sets 
in. The victim's old life style is now of short duration. 

The most significant service is the "handholding" that 
begins even before the unit is purchased. "Which computer 
should I buy for my application?" is the most asked 
question, and the answer has to be right for the store 
owner's future peace of mind. A computer that can't be 
expandable to meet the needs of someone with visions of 
grandeur will only create problems at a later date and the 
contlict will be face to face, over the counter, Byte Shop 
manager to customer, and not through the mails. 



1002 National Computer Conference, 1977 

When the purchase is consummated, the hand-holding 
becomes more technical. Purchasing of kits may require 
numerous helpful hints on assembly, whereas buyers of 
assembled units need less attention-providing the unit 
works well. Whichever the case, it is always the responsi
bility of the shopkeeper to make sure the machine works. A 
few statistics at this point may be of interest. Of the 
thousands of kits sold to date by the Byte Shop, no one has 
ever had a bad CPU chip, and not more than 10 percent of 
the purchasers have come back to the store for assistance 
in assembly or troubleshooting. This indicates either quality 
products or that our customers to date have been a tough 
breed of cat. Needless to say, we stock only products 
which our stores can back up with confidence. A solid 
manufacturer's guarantee helps. 

Service after the sale is an extension of that initial 
handholding during the selection and assembly process and 
is every bit as important to both customer and shop. It is 
during this time that the customer concerns himself with his 
personal application, and is more likely to require advice 
and additional equipment. Our credibility is tremendously 
important. If our advice leads to expanded sales, then 
terrific, but we aren't there just to push equipment-we're 
supporting a whole idea and stake our reputation on every 
bit of advice. With this philosophy, we can't afford to lead 
a customer down a rosy buying spree of non-necessities. 
Fortunately, we are becoming noted for our credibility. 

For that new prospect we lured in off the street, what 
started out to be a modest investment in home entertain
ment is taking shape to compete with the computer center 
at work, at a fraction of the cost. The price of a microcom
puter, which I will define as CPU card, power supply and 
chassis, ranges from $350, and is expanded with memory 
cards and liD's from $100. When asked to comment on the 
computers we sell in the Byte Shop Computer Stores, my 
answer is "higher level languages playing on hardware for 
less than $1000." This implies eight thousand words of 
memory and an input/output interface along with the com
puter. The average home computer is a $1 ,500 investment
easily cost comparable to investments in home stereo 
systems and numerous other hobby fields. 

THREE ASPECTS DEFINED 

There are three definite aspects to any computer exer
cise-hardware, software and applications-all of which 
should be addressed. Many enthusiasts concentrate on just 
one-unfortunately neglecting the others. If total three
phase investment is impossible, then one can cover the 
bases by substituting some packaged products. But by 
becoming involved in all three, one learns the secret of how 
to indulge in a full and enjoyable dose of computer mania. 
First comes the hardware aspect, which we have already 
discussed. If a customer's talent doesn't bend in that 
direction and he can afford ready-made products, the 
customer can get right down to phase two-software. The 
electrical genius that makes his machinery almost from 

scratch from IC's, wires and boards can pleasantly forestall 
this step for as long as his tinkering continues. But when 
everything is up and running it comes down to actually 
doing something with the creation. 

Software work turns many beginners into creative fanat
ics. Given this type a book on BASIC, coding sheets, a 
keyboard, and a printer or video display and he's off and 
running. Just throw him a sandwich and some new pencils 
periodically, let him out for airing on Sundays, and you 
have a happy new convert. For those less creatively bent, 
packaged software is now available, on cassette or in 
books. The software aspect has been long underplayed. No 
matter how great the hardware, it is useless without good 
software. 

Fundamentally, the whole discipline of software is the 
problem. There exists a lack of real feel for how to 
write good software correctly. The tremendously fast-paced 
progress in hardware made accompanying software a sorry 
step-child. Good inexpensive software packages will take 
time. Unfortunately our market is hungry for it now. One of 
the solutions is for our customers to self-educate them
selves in BASIC to enable "do-it-yourself programming." 
Byte is involved in providing comprehensive classes in 
microprocessor programming and feels such a step will not 
only help solve the problem, but further provide more 
independent creativity for our customers. 

The fact that packaged software can be easily duplicated 
for distribution dictates that it begins to be offered cheaply 
for mass distribution. If a package is inexpensive, the user 
will pay the price in order to get documentation arid to be 
on mailing lists for updates. At the same time his consci
ence will remain clear. 

The final aspect is application. Everyone wants to build a 
better mousetrap and now the chance has come. The 
applications are as practical or as futuristic as the mind can 
conceive. Man's creativity is the only limitation, and that is 
what is most stimulating about the whole field of personal 
computing. Typical applications run the gamut: for home 
use, menu planning and shopping, household budget and 
income taxes, homework and computer assisted instruc
tion. Anything that can be controlled electrically can be 
run by a computer. So most appliances can become 
programmable and automated if you so desire. For recrea
tional enthusiasts there are a myriad of games in existence 
with an equal number for one to self-invent-music synthe
sizers, computer-run ham radio stations, model airplane 
and electric train control are a few examples. The Star-Trek 
Game is tremendously popular, and that can be just a 
beginning. All those games you play for 25¢ a go can be put 
on a private microprocessor for the whole family to enjoy. 

Most of those unique applications make their way back to 
our Byte Shop counters. Ten percent of the people who 
come into the store are there to sell their creations back to 
us, not to buy. They represent themselves, and what they 
have to offer is a better widget, designed in their back 
bedroom or garage. And, be it hardware or software, until 
the day of the retail computer store, there existed no outlet 
for that creativity. Two hours worth of programming effort 
on our store demonstration computer netted a Northern 



California programmer over 100 sales of his program to 
date, at $15 a copy. 

The other 90 percent of our customers come from all 
walks of life: a housewife buying a Christmas present for 
her husband in real estate; a college student; a programmer 
who always wanted to own his own machine; the guy who 
has everything; and the girl who is giving up boys for toys. 
Our present customers are often associated with the elec
tronics industry in some fashion. With CB radio making 
everyone more familiar with electronics, the trend is toward 
much more wide-spread popularity. 

Computers in the home will unleash talent and creativity 
of the magnitude required to support the intelligence revo
lution, and the neighborhood computer store, acting as 
liaison between the electronic manufacturer and the con
sumer, will be the focal point of activity. Computer clubs 
are forming, with store owners in the center of club 
activity-a vested interest since the growth of such clubs is 
significant to their profit or loss. Introductory courses spon
sored by the stores will supplement community education, 
primarily because there will be more computers in the home 
than in the schools. The day of the home computer is now. 

BYTE INTO THE FUTURE 

The most exciting future for Byte Shop owners is in the 
field of business. Anyone in a small business could use a 
low cost microprocessor-based computer system. Stock 
market simulators, inventory control, updating of mailing 
lists, personalized form letters, bill collecting, information 
retrieval and computer assisted design. Every doctor and 
dentist could use one for patient records, billing, and 
insurance forms. Lawyers, judges and researchers could 
save hundreds of hours by computerizing access to infor
mation. The hobby or personal computing marketplace is 
fun, but from a potential sales viewpoint, the small business 
applications are really exciting. 

This brings us to taking a realistic look at the future of 
the neighborhood computer store. Right now it would 
,apP.e.ar" on. ~b.e.~uda.ce~ '\§ ~thQugh computer ~~()r~~ m!,~ht 
remain the place for hobbyists to gather and kibitz, buy a 
goodie or two, shoot the breeze, or get a problem unrav
eled. That will, of course, continue to be one of their 
important functions. We all love to sit around the old IC 
cracker barrel and swap CPU stories or boast the latest 
application tale. But the Byte Shops will mature to be much 
more than that. 

We can all recall when calculators were bought directly 
from manufacturers, then slowly became available in retail 
outlets at such exorbitant prices that only wizard engi
neers and mathematicians could afford them. Technology 
befriended the consumer and reduced the price such that 
you can now pick one up at the drugstore and give it as a 
stocking stuffer to a little kid. 

No one today would consider buying a basic calculator 
directly from the manufacturer, mainly because there 
comes a time in marketing when it simply isn't worth a 
company's time to deal directly with a consumer. And 

Neighborhood Computer Stores i 003 

therein lies the future marketplace for the neighborhood 
computer store. It will be the only reasonable retail 
oudet for manufacturers of microcomputers and peripheral 
products. The only major competition tomorrow may be 
similar to that which stereo equipment stores experience
department stores carrying computers. But just as there is 
more consumer safety in dealing with specialty stores for 
stereo sound equipment, the consumers will probably prefer 
the expertise they will get only from neighborhood com
puter stores. 

The challenge is that the computer stores like the Byte 
Shops will have to be very good at what they do. A 
hobbyist may be forgiving if his toy doesn't work quite right 
for a few weeks, but the computer that becomes the 
backbone of a small business must stay functioning or the 
small businessman starts to see dollars fly out his window. 
Good service is the key. 

Service has been nearly as big a problem in the computer 
field as good economical software. The problem can be 
solved by competence. That's why we're so particular 
about who runs a Byte Shop. We know that companies are 
full of good competent technicians who can keep a small 
business system whirling and churning out data with one 
hand tied behind their back. Such people have moved 
mainframe mountains-a little microprocessor or terminal 
is a "piece of cake." The 10 years he's been training and 
tinkering will all payoff as he acts as diagnostician, friend 
and A-I repair mechanic to his clientele. And if he runs into 
problems he can't solve, he can hire his old buddy from 
down at the plant. There's always a new batch of brilliant 
engineers around-and, quite honestly, the equipment 
we're handling isn't that complicated. 

If the computer industry gets its proverbial act together 
and standardizes hardware the way will be clear for retail
ers to enter the service world with little trepidation. Good 
applicable guarantees from manufacturers and a healthy 
supply of interchangeable parts will have to be readily 
available to equip the service person with the tools he 
needs to properly service customers. Hopefully we're now 
on our way to such a reality. 

PRESENT SALES AND LONG RANGE PROJECTIONS 

At the Byte Shops our best sellers in microcomputers are 
the 8080 based kits with the standard SIOO bus. There are a 
variety of good selling lines including our own BYT-8 
machine. The important thing to note about existing micro
computers, however, is the standardization problem that 
we have just discussed. Our customers want to use periph
eral and support equipment interchangeably, thereby assur
ing a better dollar buy. We're getting there, hopefully. 
Other big sellers are the TV typewriters that either fit into 
your computer or can be interfaced later as a stand alone 
unit. Books and magazines are moving at a staggering rate, 
for example: Vol. I, Introduction to Microcomputers by 
Osborne ... has sold 10,000 copies through our stores. 

Our volume of sales generally exceeds even optimistic 
projections. Nothing ever sits long enough to collect dust 



1004 National Computer Conference, 1977 

on either warehouse or store shelves. As a result, I hesitate 
to make future sales projections. We can definitely see 
trends though. In memory we've gone from 4K to 8K and 
16K to 64K is around the comer. There appears to be a 
movement toward the fully assembled and tested machines. 
As good software becomes more available, our customer's 
interest will probably lean more toward applications activi
ties. That software will be available primarily in cassettes 
for easy input on home tape recorders. But with hardware 
costs quickly coming down, there should be good afforda
ble floppy disk systems for the hobbyist as well as the small 
business user. In general, the trend is for both hardware 
and software to evolve from the developmental "hobbyist" 
state to the simplified, easy to operate "consumer" stage. 

Right now the profit is available. The Pasadena store 
gross sales in its first three weeks was $26K. Portland: 
$14,500 in the first month. Mountain View, our first store 
and going without pUblicity or advertising whatsoever, was 
$6,400 in virgin territory. This thing has caught hold so fast 

that Jeff McKiever, our dealer in the Phoenix area now has 
three stores in Arizona and is planning others. Dick Moule 
in Lawndale, California, expanded to Westchester, and the 
new Byte Shop in downtown Tokyo is going great. We have 
little doubt that the personal computer market will insure 
our future. 

A CONCEPT THAT BECAME A COMPANY 

The time frame has been short between the technological 
availability of hobbyist computer components and pro
grams, and their commercial availability. The Byte Shop, 
like the food super market, simply was a natural merchan
dizing evolution whose time had come. When technology 
and marketing meet, you will always find great sociological 
interaction at the intersection of the two lines that have 
made mankind thrive-the lines of innovation and com
merce. That's the point where Byte took hold. 



1977 NATIONAL COMPUTER CONFERENCE 
COMMITTEES 

PROGRAM COMMITTEE 

P. Bruce Berra 
Syracuse University 
Syracuse, NY 

Lori Capadonno 
Bell Laboratories 
Whippany, NJ 

Karen Duncan 
Medical University of South Carolina 
Charleston, SC 

Roger M. Firestone 
Sperry Univac 
St. Paul, MN 

Frank Hubans 
General Dynamics 
Forth Worth, TX 

Richard LoU 
BenUe~ College 
Waltham, MA 

FINANCE COMMITTEE 

Earl F. Hale, Jr. 
Carrington, Coleman, Sloman, 
Johnson and Blumenthal 
Dallas, TX 

Chairman 

Robert R. Kortbage 
Southern Methodist University 
Dallas, TX 

Chairman 

Betty Maskewitz 
Oak Ridge National Laboratory 
Oak Ridge, TN 

Roger L. Mills 
TRW Systems 
EI Segundo, CA 

c. V. Ramamoorthy 
University of California 
Berkeley, CA 

Eugene Smith 
U.S. Department of Agriculture 
Beltsville, MD 

Raymond T. Yeh 
University of Texas 
Austin, TX 

Jean Yue 
CYPru~l CA 

Edward V. Resta 
E-Systems 
Dallas, TX 



COMMUNICATIONS COMMITTEE 

Andre P. Beaupre 
Stray ton Corporation 
Wellesley, MA 

Larry V. Beckman 
Tano Corporation 
Metaire, LA 

G. Thomas Catherines 
Mohawk Data Sciences Corp. 
Parsippany, NJ 

John A. Dillon 
General Automation, Inc. 
Anaheim, CA 

Thomas H. Edwards 
Sycor Inc. 
Ann Arbor, MI 

David L. Flack 
International Marketing 

Communications, Inc. 
Denver, CO 

Francey Freeman 
Motorola Data Products 
Carol Stream, IL 

Daniel Fullerton 
Texas Instruments, Inc. 
Houston, TX 

Ann L. Harrell 
University of Texas Health 

Science Center 
Dallas, TX 

George Harrison 
Innovative Electronics Systems 
Miami Lakes, FL 

Chairman 

Norman P. Teich 
Teich Communications Co. 
Dallas, TX 

Rick Johnson 
MRI Systems Corp. 
Austin, TX 

Jerry L. Kalman 
Honeywell Information Systems 
Phoenix, AZ 

Margie Kimbrough 
Management Science America, Inc. 
Atlanta, GA 

Connie Magne 
Intel Corp. 
Sunnyvale, CA 

Ruth M. McQueen 
Amarillo College 
Amarillo, TX 

Kent R. Nichols 
Control Data Corp. 
Minneapolis, MN 

Carol J. Richardson 
Hill and Knowlton Inc. 
Dallas, TX 

Dennis L. Sullivan 
KeyTronic Corp. 
Spokane, WA 

Jean Wilkins 
Atlantic Research Corp. 
Alexandria. V A 

Anita Williams 
The Exonomy Co., Triple I Div. 
Oklahoma City, OK 

Kathy Wilson 
1ST Datasystems 
Memphis, TN 



EXHIBITS COMMITTEE 

Richard Adams 
Modcomp 
Ft. Lauderdale, FL 

Gary Brunner 
Harris Corporation 
Dallas, TX 

Gabe d' Annunzio 
Prime Computer, Inc. 
Framingham, MA 

Paul Eisner 
General Automation, Inc. 
Anaheim, CA 

Alfred Erickson 
Dataproducts Corporation 
Woodland Hills, CA 

Ben Hayes 
Datapoint Corporation 
San Antonio, TX 

Richard Klain 
Memorex Corporation 
Santa Clara, CA 

Paul A. Kraska 
Data 100 Corporation 
Edina, MN 

Ted E. Lorber 
",CalComp 
Anaheim, CA 

Robert E. Maddy 
Tally Corporation 
Kent, WA 

LOCAL PROMOTION COMMITTEE 

Mary Ann Chapman 
Delphi Data Systems 
Houston. TX 

Chairman 

Jerry Johns 
Texas Instruments, Inc. 
Houston, TX 

Chairman 

Connie Magne 
Intel Corporation 
Sunnyvale, CA 

Lynn McDaniel 
Floating Point Systems 
Portland, OR 

Michael J. O'Rourke 
Varian Graphics 
Palo Alto, CA 

Ken Price 
Data General Corporation 
Southboro, MA 

Henry Sacks 
Modern Data Services, Inc. 
Hudson, MA 

Peter Shaw 
Megatek Corporation 
San Diego, CA 

Della Smith 
Pertec Corporation 
Chatsworth, CA 

Matt Stein 
Computer Automation 
Irvine, CA 

Barbara J. Wiggins 
MRI Systems Corporation 
Austin; TX ,. ..., 

Len A. Zaw 
Teletype Corporation 
Skokie, IL 

Alex A. J. Hoffman 
Texas Christian University 
Fort Worth, TX 

Richard Priest 
University of Tulsa 
Tulsa, OK 



Gary Hammon 
Austin, TX 

E. Z. Million 
E. Z. Million Associates 
Oklahoma City, OK 

OPERATIONS COMMITTEE 

Howard Albertson 
Compass Computer Services 
Dallas, TX 

REGISTRATION COMMITTEE 

Johnny Lamb 
City of Dallas 
Dallas, TX 

Libbie Neleigh 
Braniff International 
Dallas, TX 

SPECIAL ACTIVITIES COMMITTEE 

Sub-Committees 

Programming Contest 

C. E. Rodriguez, Chairman 
East Texas State University 
Commerce, TX 

Duane Dean 
Dallas Independent School District 
Dallas, TX 

Chairman 

J. T. Randolph 
Little Rock, AR 

William Roberts 
Fort Worth, TX 

Robert L. Wade 
Continental Trailways 
Dallas, TX 

Joe C. Duncan 
Dallas, TX 

Herb H. Starnes 
Dallas Water Utilities 
Dallas, TX 

Chairman 

Wayne Churchman 
Hewlett-Packard 
Richardson, TX 

Chairman 

William M. Parker 
North Central Texas Council 

of Governments 
Dallas, TX 

Pam Stevenson 
Hewlett-Packard 
Dallas, TX 

C. E. Rodriguez 
East Texas State University 
Commerce, TX 

Science Film Theatre 

Marvin Talbott, Chairman 
Texas Instruments, Inc. 
Dallas, TX 

David Pearce 
Texas Instruments, Inc. 
Dallas, TX 



William M. Lively 
Texas A&M University 
Bryan, TX 

Laurence A. Madeo 
University of Texas at Dallas 
Dallas, TX 

Gabrielle Wiorkowski 
Consultant 
Dallas, TX 

Fred Homeyer 
Angelo State University 
San Angelo, TX 

PUBLICATIONS COMMITTEE 

Chairman 

Technical Tours 

Paul Patak 
TRW Systems 
Dallas, TX 

Sightseeing 

Ann Korfuage 
Dallas, TX 

Karol Frailey 
Dallas, TX 

Gabrielle Wiorkowski 
Consultant 
Dallas, TX 

PROFESSIONAL DEVELOPMENT COMMITTEE 

Dan Smith 
E-Systems 
Greenville, TX 

PERSONAL COMPUTING COMMITTEE 

Ric Martin 
The Micro Store 
Richardson, TX 

Chairman 

Ronnie G. Ward 
University of Texas at Arlington 
Arlington, TX 

Chairman 

Ben Jarboe 
Logic Inc. 
Dallas, TX 

Harold A. Mauch 
PerC om Data Company 
Garland, TX 





AMERICAN FEDERATION OF INFORMATION PROCESSING 
SOCIETIES, INC. (AFIPS) 

OFFICERS AND BOARD OF DIRECTORS 

President 

Theodore J. Williams 
Purdue University 
W. Lafayette, IN 

Secretary 

Sylvia Charp 
The School District of Philadelphia 
Philadelphia, P A 

Executive Director 

Robert W. Rector 
AFIPS 
Montvale, NJ 

ACM Directors 

Herbert Grosch 
Sunnyvale, CA 

Carl Hammer 
Univac Federal Systems 
Washington, DC 

Stuart Lynn 
University of California 
Berkeley, CA 

Data Processing Management Association Directors 

Barry D. Lynch 
Mercantile National Bank 
Dallas, TX 

William J. Moser 
Venture Group, Inc. 
Greensburg,OH 

Ralph J. Leatherman 
Hughes Tool Corporation 
Houston, TX 

Vice President 

Albert S. Hoagland 
IBM Corporation 
San Jose, CA 

Treasurer 

Walter A. Johnson 
Consolidated Papers, Inc. 
Wisconsin Rapids, wI 

IEEE Directors 

Samuel Levine 
Westport, CT 

Stephen S. Yau 
Northwestern University 
Evanston, IL 

Merlin Smith 
T. J. Watson Research Center 
Yorktown Heights, NY 



Institute of Internal Auditors Director 

William E. Perry 
The Institute of Internal Auditors 
Orlando, FL 

Society for Information Display Director 

Carlo P. Crocetti 
Rome Air Development Center 
Griffis Air Force Base, NY 

Association for Educational Data Systems Director 

Thomas McConnell 
Atlanta Public Schools 
Atlanta, GA 

American Institute of Certified Public Accountants Director 

John Mitchell 
American Institute of Certified Public Accountants 
New York, NY 

American Statistical Association Director 

George Minich 
World Bank 
Washington, DC 

Instrument Society of America Director 

Theodore J. Williams 
Purdue University 
W. Lafayette, IN 

Society for Computer Simulation Director 

Paul W. Berthiaume 
N. Y. Times Information Bank 
Parsippany, NJ 

Society for Industrial and Applied Mathematics Director 

Donald L. Thomsen, Jf. 
SIAM Institute of Mathematics 
New Canaan, CT 

Special Libraries Association Director 

Herbert S. White 
Graduate Library, School University 
Bloomington, IN 

American Institute of Aeronautics and Astronautics 
Director 

Ram K. Khatri 
Fairchild Space & Electronics Co. 
Germantown, MD 

American Society for Information Science Director 

Harold Borko 
UCLA School of Library Science 
Los Angeles, CA 

Association for Computational Linguistics Director 

A. Hood Roberts 
Center for Applied· Linguistics 
Arlington, V A 

NATIONAL COMPUTER CONFERENCE BOARD MEMBERS 

Chairman-AFIPS Representative 

Albert S. Hoagland 
IBM Corporation 
San Jose, CA 

Treasurer-AFIPS Representative 

Walter A. Johnson 
Consolidated Papers, Inc. 
Wisconsin Rapids, WI 

Vice Chairman-SCS Representative 

Ralph Wheeler 
Lockheed Missiles and Space Corp. 
Sunnyvale, CA 

AFIPS Representatives 

Theodore J. Williams 
Purdue University 
W. Lafayette, IN 

Harold Borko 
UCLA School of Library Science 
Los Angeles, CA 



DPMA Representative 

James F. Towsen 
The Statesman Group 
Harrisburg, PA 

ACM Representative 

Smith Dorsey 
Rockwell International 
Anaheim, CA 

NATIONAL COMPUTER CONFERENCE COMMITTEE 

Chairman 

Russell K. Brown 
Moore Paper Company, Inc. 
Houston, TX 

Morton M. Astrahan 
IBM Research Laboratory 
San Jose, CA 

Al Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 

Jeffery D. Stein 
On-Line Business Systems, Inc. 
San Francisco, CA 

1977 NATIONAL COMPUTER CONFERENCE 

Chairman 

Portia Isaacson 
University of Texas 
Richardson, TX 

IEEE~S Representative 

Lowell Amdahl 
Northridge, CA 

Harvey L. Garner 
Stanford University 
Stanford, CA 

Jerry Koory 
HW Systems 
Van Nuys, CA 

Irwin J. Sitkin 
Aetna Life & Casualty 
Hartford, CT 

1978 NATIONAL COMPUTER CONFERENCE 

Chairman 

Stephen W. Miller 
Stanford Research Institute 
Menlo Park, CA 



SESSION CHAIRMEN 

Abrams, Marshall D. Harvill, J. B. Rao, T. R. N. 
Altschuler, Gene Henry, J. Shirley Resta, Edward V. 
Amdahl, Lowell D. Home, William J. Rhoten, Ronald P. 
Aronofsky, Julius S. 
Avedon, Don M. Ichikawa, Tadao 

Safford, Herbert B. 

Banerji, Ranan B. Jeffery, Seymour Schantz, Herbert F. 

Betz, Nancy A. Johnson, Marilyn Scheuermann, Peter 

Bonnette, Della T. Johnson, Olin G. Smith, Eugene 

Brocato, Louis J. Statland, Norman 

Brown, James E. Kar, Saroj 
Stone, Jack 

Bums, William Kennedy, John R. 
Stonebraker, Michael 

Butle'r, Margaret K. Korfhage, Robert R. 
Storch, Nancy A. 
Summers, William P. 

Knowles, Ben Suttle, Jimmie R. 
Cantrell, William E. 
Capraro, Gerard T. Lackmann, John 
Chang, Philip Y. Landstein, Julie E. K. Thayer, Richard H. 
Chen, Peter P. S. Lott, Richard Thiess, Helmut E. 
Cochran, Anita Towsen, James F. 
Cotterman, William W. Mathur, Francis P. Tum, Rein 

Matous, James O. Turner, Nat 
Dale, Alfred G. McClain, William J. 
Dubnow, Art McGill, Michael J. Vick, Charles R. Duvall, Lorraine M. Merwin, Richard E. 

Miller, Edward F. 
England, Gordon R. Mills, Roger L. Whinston, Andrew B. 

Morgan, Howard L. White, Robert 
Fenwick, William A. Wiederhold, Gio 
Firestone, Roger M. Newpeck, Frederick F. Wilson, David 
Frailey, Dennis J. Woods, Larry D. 
Fuller, Donald W. Osborne, Adam Wu, Y. S. 
Fuller, Samuel H. 

Parker, Donn B. Yau, Stephen S. 
Gates, William H. Peterson, Lynn L. Y ormark, Beatrice 

Pogue, Richard 
Han, Yih-Wu Poh, Susan S. 
Harris, Fred H. Poppel, Harvey L. Zakin, Noel 



PARTICIPANTS 

Airapetian, A. N. Faber, E. Lazarus, R. 
Airhart, T. E. Felsenstein, L. Leavitt, D. 
Albertson, L. Feng, T. Y. Lee, R. 
Allen, G. R. Flores, A. Lehmann, J. 
Allison, D. Fly, W. W. Little, J. C. 
Amdahl, G. Fossum, B. M. Lum, V. Y. 
Anderson, R. D. Foster, C. C. 
Aronofsky, J. S. Frame, R. J. MacLean, J. D. 
Austing, R. H. Frenzel, L. Manola, F. 
Avedon, D. M. Fry, J. P. Maxmen, J. 

Fu, K. S. McCloud, R. 
Balasubramanian, K. Fuchs, H. McCracken, D. 
Barry, T. Fuller, D. W. McDonald, J. F. 
Barton, G. S. Furr, C. McKemie, G. W. 

Bell, D. H. McLean, J. D. 

Benton, J. R. Galler, B. A. McLeod, J. 
Berkey, J. Garrison, O. McNair, E. A. 

Berra, P. B. Gianola, J. McNulty, J. 
Berson, J. Goddard, A. Meyer, D. 
Bigelow, R. P. Goguen, N. Miller, J. 
Blazie, D. Goldberg, J. Mills, H. 
Bolnick, F. I. Grosch, H. R. J. Mills, R. L. 
Borko, H. Guzeman, O. Moore, G. 
Bowie, J. Gwinner, R. Morelock, T. J. 
Braun, L. Musser, D. R. 
Burns, W. J. Harmon, G. 

Harris, D. K. Neidell, N. S. 
Carlstrom, D. Harris, F. H. Nelson, T. H. 
Carter, W. C. Harrison, H. Norman, S. L. 
Cary, T. Haseman, W. D. Nyborg, P. S. 
Casper, G. G. Heiser, R. Nycum, S. H. 
Castelberg, M. J. Held, G. 
Chamberlin, H. Helmers, C. 

Osborne, A. 
Clarke, L. Henry, S. 
Cole, C. Hoagland, A. 

Osborne, J. 

Colvin, N. Hollow, D. 
Oyer, P. D. 

Cornell, J. A. Hopkins, A. L. 
Cotte'rman, \V. w. Horne. W. J. ~tnter,·J. ,\. 

Couger, J. D. Howden, W. E. Palmer, C. 

Cox, J. A. Howell, T. A. Panko, J. W. 

Cragon, H. Hsiao, D. K. Paul, J. T. 
Peaceman, D. W. 

Dejka, W. J. 
Jamison, S. L. Peck, J. C. 

Jeffrey, S. Peebles, R. 
Dodd, G. Jenson, D. Perkins, C. 
Dratch, J. Joseph, E. C. Poland, S. 
Duncan, K. Poppa, R. 
Dunstan, E. 

Kar, S. K. Posdamer, J. 

Kent, B. Purdy, G. 

Earle, J. Kent, W. 
Edwards, J. Kildall, G. Rakel, R. E. 
Eger, J. M. King, W. F. Rector, C. 
Elfenbein. L. Kohlmeir Reddy, D. R. 
Elspas, B. Ruder, B. 
Elwood, W. F. Lackmann, J. Rule, J. B. 



Sacerdoti, E. Thiess, H. E. Webster, S. 
Salisbury, A. B. Thomas, R. Weissman, N. 
Sandman, M. D. Trimble, J. Whipple, D. 
Schantz, H. F. Tsichritzis, D. Williams, B. 
Schaster, S. A. Wilson, S. 
Shear, R. D. Uiterwyk, R. Worlton, J. 
Short, R. 
Silberschatz, A. 
Sklansky, J. Venetta, B. Yao, S. B. 
Smoot, Oliver R. Vick, C. Yeh, R. T. 
Solomon, L. Voorhees, E. Yormark, B. 
Spadaro, F. G. Young, B. 
Spaniel, R. D. Walker, M. R. 
Steel, T. B. Wallace, R. 
Stevenson, T. Q. Waller, R. Zilles, S. 



Abbey, Duane C. 
Abbey, Mary W. 
Abrahamson, Howard 
Abrams, Marshall D. 
Ackerman, L. V. 
Agrawal, Dharma P. 
Aicher, J. R. 
Aiken, Robert 
Aines, Andrew A. 
Albers, Glen 
Alexiou, John K. 
Allen, John R. 
Allen, Rodney H. 
Amarel, Saul 
Amdahl, Carlton G. 
Andersen, Niels C. 
Anderson, Henry D. 
Anderson, Peter G. 
Anderson, Richard J. 
Anderson, Robert H. 
Anderson, Thomas C. 
Andree, Richard V. 
Antal, J. R. 
Archibald J r., J. A. 
Armer, Paul 
Arterbery, Vivian J. 
Ash, Alvin 
Astrahan, MortoQ M. 
Atwood Jr., Delbert W. 
Augustin, Donald C. 
Aupperle, Eric M. 
Austin, Donald M. 
Austing, Richard H. 
Ayer, Nancy L. 
Ayers Jr., Lawrence F. 

Baer, J. L. 
Baird, George "K, 
Baker, Bob E. 
Baker, F. T. 
Baker, James A. 
Baker, Robert L. 
Baker, Ronald A. 
Balkovich, Edward E. 
Ball, N. A. 
Baltzer, P. K. 
Banerji, Ranan B. 
Barlow, Allen E. 
Barnes, Bruce H. 
Barnes, Robert F. 
Barnett, Octo 
Barr, William J. 
Barrett, William A. 
Bassler, Richard A. 
Bate, Roger R. 

NCC 77 REFEREES 

Bates, Madeleine 
Bauman, Burton L. 
Baxter, Fred 
Beall, W. H. 
Bearden, G. D. 
Beck, Leland 
Beguelin, J. L. 
Belford, Geneva 
Bell, Thomas E. 
Belzer, Jack 
Berner, R. W. 
Bennett, John L. 
Berg, Frank A. 
Berg, John L. 
Berger, Ralph 
Berk, Toby 
Berning, Paul T. 
Bernstein, George B. 
Bernstein, M. I. 
Bernstein, Ralph 
Berra, Bruce 
Betz, Nancy 
Bewley, William L. 
Bezalel, Gavish 
Bigelow, Robert 
Billingsley, Fred C. 
Bilyk, Walter 
Binder, Richard D. 
Binford, Thomas O. 
Bise, Robert G. 
Bitterli, Charles V. 
Black, Donald V. 
Blanc, Robert P. 
Blomgren, George H. 
Bloomfield, James A. 
Blue Sr., Richard B. 
Blum, Jos~p~ 
B'odoln, -'Morns J. 
Bollenbacher, Roger L. 
Bono, Peter R. 
Booth, Grayce M. 
Booth, Taylor 
Bork, Alfred 
Bouknight, Jack 
Brackett, John W. 
Braithwaite, William R. 
Braun, Randal R. 
Brekhus, Harry E. 
Bressler, Robert 
Brociner, Betty B. 
Brown, John R. 
Brown, Russell K. 
Browne, Peter S. 
Bryan, G. E. 
Burlakoff, Mike 

Burns, Joseph L. 
Burns, Lawrence E. 
Burns, William J. 
Burton Jr., William D. 
Buscher, David J. 
Butler, George 
Butler, Robert S. 
Buxbaum, Richard J. 

Cady, George M. 
Campaigne, Howard 
Campbell, John B. 
Campbell, Rosalie A. 
Campise, James A. 
Cannon Jr., George R. 
Cannon Jr., Robert L. 
Caplan, David 
Capodanno-, Lori 
Capraro, Gerard T. 
Carey, Bernard J. 
Carlson, Carl R. 
Carlson, Eric D. 
Carlson, Gary 
Carlson, James C. 
Carlson, Richard R. 
Carter, George 
Case, II, Leon R. 
Case, Richard P. 
Cashman, Thomas J. 
Cashton, Sidney 
Castruccio, Peter A. 
Champine, G. A. 
Chan, Maynard M. W. 
Chandrasekaran, B. 
Chang, Donald Y. 
Chang, Hsu 
C,"Wnst<y ,.Leonard M. 
Charp, Sylvia 
Chauhan, Rohi 
Chen, Peter P. 
Chen, Robert C. 
Chen, Thomas T. 
Chen, Tien C. 
Cheung, Roger 
Cheydleur, Benjamin F. 
Chiaraviglio, Lucio 
Chinitz, M. P. 
Cho, Seon H. 
Chu, W. W. 
Chu, Yaohan 
Clema, Joe K. 
Clough, Marlen S. 
Cohen, Dan 
Cohen, Jack 
Cole, G. D. 



Coleman, Michael Estrin, Thelma Glasser, Robert G. 
Collins, John J. Euler, Ruth S. Glick, Norman 
Connelly, Donald Evans, W. B. Glorioso, Robert M. 
Conner, William M. Evert, Carl F. Goetowski, Charles R. 
Cook, H. G. Goetz, Martin 
Cook, Meyer Farmer, Nick A. Goldberg, Adele 
Cooprider, Lee Fazekas, Diane Goldberg, Jack 
Corduan, Alfred E. Feingold, Robert S. Goldhirsh, Isadore L. 
Corley, Melvin R. Feng, T. Golding, E. I. 
Couperus, J. Ferguson, C. W. Goldman, Neil M. 
Cowan, Robert J. Ferrari, D. Goldstein, Charles M. 
Cresto, John Feurzeig, Wallace Gonzalez Jr., Mario J. 
Culpepper, L. M. Feyock, Stefan Gorgone, John T. 

Fike, John L. Gorman, Donald F. 
Dahm, David M. Firestone, Roger M. Gorsline, G. W. 
Dalphin, John F. Firschein, Oscar Goshe~, Robert J. 
Daniels Jr., Walter E. Fleck Jr., Robert A. Goti, J. C. 
Danner, Lee Fly, William W. Gould, John D. 
Davida, George Fogel, Marc B. Goulk, Clinton R. 
Davidson, Donald A. Fong, Elizabeth Grace Jr., Alonzo G. 
Davis, Al Foster, Caxton C. Graham, G. S. 
Davis, Claud M. Foster, David F. Grampp, F. T. 
Davis, John C. Foulk, Clinton R. Gray, Jim 
Day, Paul Fowler, Bruce R. Greaves, John O. 
Day, William H. E. Fox, Phillip W. Green III, Duff 
De Greene, Kenyon B. Frank, Howard Green, Teresa O. 
Dean, Edwin B. Frank, Werner L. Greenawalt, E. M. 
Deb, Rajat K. Franke, Richard Greene, Lynn 
Defiore, Casper R. Freeman, Martin Griffin, John 
DeLutis, Thomas G. Freiman, C. V. Grobstein, David L. 
Dettmann, C. E. French, Larry J. Groner, Gabriel F. 
Devine, Edward P. Friedman, Daniel P. Grosch, Audrey N. 
Dewdney, A. K. Friedman, Lee A. Gruhn, Ann M. 
Dixon, Louis F. Friedman, Richard B. Guetzkow, Harold 
Dixon, R. D. Fritz, W. B. Guiteras, Joseph J. 
Dobkin, David Froom, Jack Gumb, Raymond D. 
Dorn, Philip H. Fuchs, Henry 
Drattell, Alan Fujiwara, Harry A. Habib, Stan 
Ducasse, Edgar Fuller, Samuel H. Hall, Carlton S. 
Durney, Arnold I. Futrelle, R. P. Hall, Wayne A. 
Duncan, Karen Hallblade, Shirley A. 
Duran, Joe W. Gabrieli, E. R. Hamblen, John W. 
Dutka, Jacques Galler, Bernard A. Hamilton, Dennis E. 
Duvall, Lorraine Gallo, Arpad Hammer, Fred E. 
Dylewski, T. J. Gammon, William H. Hammer, Michael 

Gannon, John Hammer, Preston C. 
Eccles, William J. Gantner, George Hammond, W. E. 
Elfant, Robert F. Gardner, Williard H. Hampel, D. 
Elkins, Bryce L. Garrett, R. E. Hanna J r., William E. 
Elliott, Glenn Gates, G. W. Hansen, Gilbert J. 
Elman, Stanley A. Gates, Roy Hansen, John C. 
Emerson, E. J. Gaudot, Frank J. Hardgrave, W. T. 
Engel, Diana Gerle, Mario Harmon, John B. 
Engel, Gerald L. Gibb, Kenneth R. Harper, Jackson D. 
Enslow Jr., Philip H. Giesa, Charles E. Harris, Floyd O. 
Erickson, Raymond Gilchrist, Bruce Harris, Richard D. 
Ernst, George W. Gilliland, B. E. Harris, Roger L. 
Esch, John Glane, Alois Hartford, Donald L. 
Estock, Richard G. Glaseman, S. Hartley III, Dean S. 



Hartwick, R. D. Kaber, A. B. Linden, Theodore A. 
Hattery, Lowell H. Kagan, Claude A. Liskov, Barbara 
Hays, Bill Kahng, S. W. Liu, C. L. 
Hedrick, G. E. Kain, Richard Y. Liu, Jane W. 
Henne, Randy L. Kampen, Garry Logan, J. J. 
Henschen, L. J. Kandel, A. Logan, John 
Hernon, James A. Karplus, W. J. Logue, Joseph C. 
Hertlein, Grace C. Kasarda, Andrew J. Lomet, David B. 
Hess, George J. Katic, James R. Long, Harvey S. 
Higgins, Alan N. Katzper, Meyer Long, John M. 
Ho, Siu-bun F. Kavach, Ladis D. Lott, Richard 
Eo, Thomas I. Keller, Roy F. Lovegrove, Donald H. 
Hobbs, Jerry R. Kieburtz, R. B. Lowe, Thomas C. 
Hodge, Bartow King, Alan S. Lozier, Daniel W. 
Hodge, Thea D. King, James C. Lucido, A. P. 
Hodges, Ann G. Kirshenbaum, Frank Luck, Dennis R. 
Hoffman, Lance J. Kish, William Ludwig, Herbert R. 
Hoffman, Robert H. Kiviat, Philip J. Luk, Clement 
Holden, Alistair D. Klassen, Daniel L. Lukas, George 
Holme, Dorothea R. Klinger, A. Luke, Richard F. 
Holmes, Harvard Koch, Harvey S. Lutz, Michael J. 
Hook, Harvey O. Korfbage, Robert R. Lycklama, H. 
Hoover, L. R. Kornfield, N. R. Lykos, Peter 
Hopewell, Lynn Koss, Adele M. Lyle, Robert F. 
Hopper, Grace M. Koss, Neal Lynch, John T. 
Hopwood, Gregory L. Kovac, John G. Lyons, W. W. 
Hord, R. M. Kovach, Ladis D. 
Horne, William J. Kozik, Eugene Machover, Carl 
Howell, Jo Ann Kraley, Michael F. MacLeod, Franklin B. 
Hoyt, Patrick M. Krishnarao, T. Madrigal, Orlando S. 
Huang, H. K. Kroeger, Joseph H. Madron, Beverly B. 
Hubans, Frank Krulee, Gilbert K. Maguire, John N. 
Huckell, Gary R. Kuch, T. D. Maniotes, John 
Humphrey, Timothy L. Kurihara, Thomas M. Mann, Richard L. 
Hunt, Hurshell H. Kurtzberg, Jerome M. Manola, Frank 
Huntwork, Paul K. Maple, Claire G. 
Hurst, Len LaFrance, Jacques Marcovitz, Alan B. 
Hutchison, John S. Lai, Kwok-Woon Marks, Serna 
Hwang, F. K. Lamothe, Raymond J. Marmor-Squires, Ann B. 

Ingerman. p, Z, Lane, Malcolm G. Maskewitz, Betty F. 
L~. :A.mt+& Mft~c:m ~H 

Jacobs, Stanley E. Lasser, Daniel J. Matheny, Charles S. 
Jacobus, Gilbert C. Latker, Alex C. Mathews, Max V. 
James, Thomas A. Laurance, Neal Mathews, Walter M. 
Janac, Karel Lawrie, Duncan W. Mathison, Stuart 
Jefferson, David K. Lazar, Leonard M. Matyas, Stephen M. 
Jensen, Alton P. Le Beux, Pierre J. McClain, William J. 
Jensen, Raymond A. Leasure, Bruce R. McCluskey, E. J. 
Jessep, Donald C. Leavitt, M. R. McCready, R. R. 
Johnson, A. I. Ledbetter, Hardy McCuskey, William A. 
Johnson, James H. Ledin, Victor McDonald, Clement J. 
Johnson, O. G. Lee, J. A. N. McDonald, Nancy H. 
Johnson, Walter L. Lee, Marshall McFadden, Ted 
Jones, Anita K. Lennon, James J. McGill, Michael J. 
Jones, John L. Leung, Francis W. McGregor, P. V. 
Jones, Neil D. Levin, Roy McInnis, Bayliss 
Joyce, James Ligler, George McJones, Paul 
Juhlin, Kenton D. Lin, Wen-te K. McKenna, James 
Julke, Robert T. Lincoln, A. J. McKnight, R. S. 



McLeod, Dennis Olah, George T. Reiss, R. A. 
McMahon, J. T. Oliver, S. R. Reitman, Julian 
Meads, Jon A. Olmer, Jane Reynolds, Brian M. 
Mehl, James W. Osher, William J. Rheinboldt, W. 
Meltzer, H. S. Ossanna, Joseph Rhyne, James R. 
Merwin, Richard E. Osterer, Lorraine Rice, John 
Metcalfe, Bob Osterweil, Leon Rich, Robert P. 
Metzner, John R. Owens, John D. Riddle, William E. 
Michael, Mark T. Rieger III, Charles J. 
Mihram, G. A. Painter, Frank R. Riley III, Winston 
Miles, E. P. PaHey, N. Rinewalt, J. R. 
Million, E. Z. Palmer, Richard Risse, Joseph A. 
Mills, David L. Parker, D. S. Ritea, H. B. 
Mills, Harlan D. Parker, Donn B. Rittersbach, George H. 
Mills, Lesley M. Parrish, Harry T. Robbins, Galen P. 
Mills, Roger L. Patrick, Edward A. Roberts, Justine 
Mills, Wayne L. Patt, Yale Robinson, John 
Mink, Thomas A. Patton, S. K. Rogers, David F. 
Minker, Jack Payne, Mary H. Rogh, R. W. 
Mintz, Daniel Pehlert, William K. Rohr, John A. 
Modesitt, Kenneth L. Penderghast, Tom Ronayne, Maurice F. 
Mamrak, Sandra Pendleton, Dave Rose, Lawrence L. 
Moore, Michael Perry, James M. Roseman, Jack 
Moraff, Howard Perry, Raymond S. Rosen, Robert 
Morgan, M. G. Person, Warren Rosenbaum, Susan L. 
Morris, Michael F. Petersen, Tom Rosin, Robert F. 
Morton, A. K. Peterson, Emery G. Roth, Waldo R. 
Moshos, George J. Peterson, James L. Rothstein, Jerome 
Muchnik, Steven S. Peterson, Lynn L. Rotolo, Louis S. 
Mullany, James E. Pfieeger, Charles Rubey, Raymond J. 
Mulroney, William C. Pickholtz, Raymond L. Rubin, Arthur I. 
Murphy, Gretchen Pinson, Elliot N. Ruh, Lawrence A. 
Muzio, J. C. Pizer, Stephen M. Russo, Paul 

Plauger, P. J. Ruth, Stephen R. 
Nagel, Roger N. Plourde, Paul J. 
Nance, Richard E. Pogue, Richard E. Safford, Herbert B. 
Nasem, Charles Poh, Susan S. Salasin, John 
Nash-Webber, Bonnie Pokorney, Joseph L. Salz, Fred R. 
Nee, David S. Pooch, Udo W. Salzman, Roy M. 
Nelson, Eldred Popino, J. P. Sanders, Alton F. 
Nemeth, Alan C. Potter, Marshall R. Sands, J. E. 
Neurath, Peter W. Potts, Jackie Sager, Naomi 
Nevins, James L. Powers, Richard Saupe, Paul H. 
Newenschwander, Charles R. Prescott, Lee R. Savage, John E. 
Newhouse, Albert Press, Barry Schaffner, Mario 
Newton, Carol W. Presser, Leon Scharff, Leon 
Niedermair, F. R. Purdy, J. G. Scher, Julian M. 
Nievergelt, J. Purdy, Melanie S. Schlegel, C. T. 
Noetzer, Andrew Pyke Jr., Thomas N. Schmidt, William P. 
Nolan, Lawrence E. Schneck, Paul B. 
Noonan, R. Quann, John J. Schultz, Gaymond W. 
Norman, Theodore A. Schutzer, Daniel 
Norton, Richard M. Raben, Joseph Scott, James L. 
Nutt, Gary J. Rabinowitz, Irving N. Scott, Philip 
Nuxall, John Radre, Albert N. Scott, Robert H. 

Raj-Kame, D. G. Scrutchin, Thomas W. 
O'Kane, Kevin C. Ramamoorthy, C. V. Seals, Eugene 
O'Neill, Dennis Reden, David D. Sedelow, Sally Y. 
Ode sky , Robert I. Reid, Robert A. Sekino, Warren T. 



Sevcik, K. C. Stuebing, Henry G. Weinberger, Gil 
Shahin, Gordon T. Stumpf, Werner E. Weiss, Edward C. 
Shannon, Roger H. Swan, Richard Weiss, Eric A. 
Shapiro, Stuart C. Swanson, A. K. Weiss, Stephen F. 
Shaw, Alan C. Swearingen, John K. Wells, J. M. 
Shelly, Gary B. Swenson, J. R. Wells, Mark B. 
Sheppard, David A. Swigger, Boyd K. Wen, Kuo Y. 
Sherman, Stephen W. Szygenda, S. A. Werner, William E. 
Shetler, A. C. Wesselkamper, T. C. 
Shoaf, Gerald H. Tam, Wing C. Wexelblat, Richard L. 
Shreckengost, Raymond C. Taulbee, Orrin E. Weyl, Stephen 
Shuey, Richard L. Tausner, Miriam R. Wheeler, T. F. 
Shum, Annie Taylor, Judith E. Whinston, Andrew 
Sibley, Edgar H. Taylor, Robert W. White, John R. 
Sibley, W. L. Teichroew, Daniel Whitman, Kirk 
Sickel, Sharon Thayer, Richard H. Wieselman, Irving L. 
Siegel, Arnold Theilheimer, Feodor Willett, R. M. 
Silberschatz, Abraham Thomas, James C. Williams, Ben T. 
Silberstein, Stephen M. Thomas, John C. Williams, Leland H. 
Silvern, Leonard C. Thompson, Ken Williams, Richard P. 
Simmons, Dick B. Thompson, Martin D. Williams, Thomas A. 
Simmons Jr., Edward J. Thurber, Kenneth J. Williams, Thomas G. 
Skeel, Robert D. Tick, Leo J. Williamson, Gloria A. 
Slaughter, Lawrence H. Tischhauser, J. L. Willman, Herb 
Smith, C. O. Tobagi, Fouad A. Winters, Jack H. 
Smith, Cecil L. Tonik, Albert B. Wofsey, Marvin M. 
Smith, David M. Townsend, Frederick W. Wojcicki, Maria E. 
Smith, Eugene Trivedi, M. C. Wolf, Eric 
Smith Jr., Gerould H. Tucker, Edwin K. Woodbury, Max A. 
Smoot, Oliver R. Tupp, Paul L. Woodgate, H. S. 
Snead, Bill Turn, Rein Woodson, Charles E. 
So, Hon H. Turner, Jon A. Wooton, Leland M. 
Soh, Jin W. Turoff, Murray Worlton, Jack 
Sokol, George M. Wortz, Charles 
Sondheimer, Norman K. Uhr, Leonard Wright Jr., Charles T. 
Sorkowitz, Al Ulery, Dana L. Wright, Kendall R. 
Spaniol, Roland Umpleby, Stuart A. Wright, S. E. 
Spier, Michael J. U zgalis, Robert C. Wulf, William A. 
Spinrad, Robert Wyner, Donald 
Spiro, Bruce E. Vidal, Jacques J. Van. George 
SpI:"F..W. yau;S.B. 
Squires, Stephen L. Wachal, Robert S. 

Yarbrough, L. D. 
Stadel, Patricia A. Wagner, Charles R. 

Yasnoff, William A. 
Stahl, Fred Wagner, Francis V. 

Yeh, Raymond 
Stallings, William Walford, Robert B. 

Yonda, A. W. 
Stead, William W. Walker, Donald E. 

York, Kenneth L. 
Steel Jr., Thomas B. Walker, Rob 

Young, J. W. 
Stefferud, Einar Walsh, Patrick J. 

Yovits, Marshall C. 
Steig, Donald B. Walters, Richard F. 

Yue, Jean 
Stelmack, Frank Walters, T. L. 
Stemple, David W. Wand, Mitchell Zak, Francis X. 
Stevens, D. F. Ward, Wayne D. Zelhowitz, Marvin V. 
Stewart, W. B. Warner, Walter P. Zellweger, Andres 
Stokes, Gordon E. Wasserman, Anthony I. Zieha, Eugene L. 
Stone, Robert L. Wear, Larry L. Zimmerman, Joan 
Story, James R. Weber, Larry L. Zimmerman, Martin B. 
Stranart, J. C. Weber, Robert A. Zinn, Karl L. 
Strassmann, P. A. Wedberg, George H. Zislis, Paul M. 
Stroud, William G. Weihrer, Anna L. Zweben, Stuart H. 





Abe, Masayuki, 615 
Abrams, Marshall D., 723 
Abmayr, David W., 523 
Agrawal, O. P., 955 
Aiso, Hideo, 931, 947 
Arnold, George W., 461 
Arthur, Couley T., 733 
Ashany, Ron, 579 
Aurdal, Eivind, 509 

Bachman, Charles W., 69 
Bailey, Andrew D. Jr., 843 
Baker, D. B., 435 
Ball, Marion J., 327 
Barbacci, Mario 161 
Bardas, R., 331 
Bastyr, David J., 775 
Bayse, William A., 595 
Bechtolsheim, Andy, 645 
Belov, Charles A., 791 
Ben David, Abraham S., 669 
Black, James L., 397 
Boardman, Thomas L. Jr., 201 
Bonato, Roland R., 349 
Bonczek, R. H., 855 
Bose, A. K., 795 
Brantley, W. C., Jr., 379 
Brashear, Joseph R., 59 
Breuer, M. A., 711 
Burr, William E., 131, 139, 147 
Burris, Harrison R., 937 

Carson, John H., 35 
Case, Ronald M., 789 
Cash, James I., Jr., 843 
Caudill. Ra},. 2.69" 
Chandler, John S., 895 
Chansler, Robert J., Jr., 657 
Chen, Peter Pin-Shan, 77 
Chen, Thomas T., 321 
Chiba, Masato, 615 
Clark, J. F., 987 
Cleaveland, J. C., 629 
Cohen, D. M., 987 
Coleman, Aaron H., 131, 185 
Considine, James, 865 
Constantin, Serban D., 837 
Cornyn, John J., 185 
Courtney, Robert H., Jr. 97 

DeBlasis, Jean-Paul, 1 
DeLutis, Thomas G., 895 
Deppe, Mark E., 499 
DeSousa, P. T., 801 

AUTHOR INDEX 

Duran, Joe, 49 
Durham, Ivor, 657 

Ehrensberger, Michael, 9 

Feiler, Peter, 657 
Firestone, Roger M., 469 
Fitzgerald, Michael P., 449 
Fox, Shirley J., 295 
Freedman, Daniel, 255 
Fry, James P., 499 
Fuchs, Henry, 49 
Fuller, Samuel H., 139, 147, 243, 637 

Gaines, R. Stockton, 105 
Gammill, Robert C., 753 
Gause, Donald C., 255 
Giannetti, Ronald A., 55 
Glaseman, S., 105 
Gober, Patricia E., 889 
Gordon, Robert 161 
Grant, Alexander P., 481 
Groner, G. F., 63 
Groves, C. F., 331 
Guido, Anthony A., 865 

Hammer, Michael, 123 
Han, Y. W., 13 
Hartwick, R. Dean, 285 
Hays, Daniel G., 475 
Hebhardt, J. S., 331 
Heid, Joseph P., 207 
Hemphill, John M., 969 
Himmel, David P., 785 
Ho, G. S., 13 
Ho, Thomas I. M., 569 
Hoberman, . ~obert S .. 545 
Hollaar, Lee A., 697 
Hollman, Stephen N., 765 
Holsapple, C. W., 855 
Hopwood, M. D., 63 
Howbrigg, Rosemary, 161 
Hoyt, Patrick M., 529 
Hugo, I. St. J., 741 
Hyman, William, 309 

Ichikawa, Tadao, 947 
Iimura, Jiro, 615 

Johnson, Brian, 49 
Johnson, George Kim, 771 
Johnson, James H., 55 
Johnson, Thomas H., I 
Jones, Anita K., 657 



Josephs, W. H., 63 
Ju, Shy-Ming, 623 

Kawakami, Katsura, 217 
Keen, Peter G. W., 317 
Kernighan, Brian W., 829 
Kerschberg, Larry, 85 
Kimbleton, Stephen R., 455 
Kimura, Tatsuo, 931 
Ko, D. C., 711 
Kopf, John, 609 
Krueger, Myron, W., 423 
Kutsch, James A. Jr., 357 

Lai, Kwok-Woon, 645 
Lamb, David, 147 
Lancaster, Ronald L., 969 
Leive, G. W., 379 
Lesk, Michael E., 879 
Levy, Allan H., 321 
Lieblein, Edward, 175 
Lin, C. S., 691 
Lipovski, Jack G., 227 
Lively, William, 309 
Long, John M., 59 
Lunetta, Lawrence F. Jr., 487 
Luther, David A., 789 
Lycklama, H., 237 

MacNair, E. A., 977 
Mamrak, Sandra A., 455 
Maryanski, Fred J., 827 
Matheny, Charles S., 595 
Mathur, F. P., 801 
Mayfield, Henry L., 443 
McCormick, Bruce H., 301 
McFaul, E. J., 729 
McKinney, M. H., 371 
McWilliams, T. M., 243 
Miller, Lawrence H., 409 
Mishelevich, David J., 295 
Modesitt, Kenneth L., 561 
Montgomery, Christine A., 313, 787 

Nara, Yasuhiro, 931 
Newpeck, Frederick, 113 
Noda, Katsuhiko, 217 

O'Dette, R. E., 435 
Oldehoeft, Arthur E., 907 
Ousterhout, John K., 645 

Palley, N. A., 63 
Pohm, A. V., 955 
Ponty, Howard D., 761 
Power, D. Lee, 449 
Prywes, Noah S., 679 
Pyster, Arthur, 665 

Ramamoorthy, C. V., 13 
Rao, T. R. N., 703, 837 
Reinheimer, H. J., 703 
Reiser, M., 977 
Rinde, Joseph, 603 
Risseeuw, Dean P., 595 
Rodriguez, Jorge, 175 
Roman, Gruia-Catalin, 539 
Rose, C. A., 813 
Rothmeier, Jeffrey, 965 
Rumsey, John R., 523 

Saffer, Shelly I., 295 
Sakamura, Ken, 947 
Satten, C. D., 629 
Sauer, C. H., 977 
Schmidt, L. J., 55 
Schneider, Peter, 819 
Schwans, Karsten, 657 
Scott, Francis J., 449 
Seth, Viresh, 779 
Sewell, Wayne, 995 
Shaman, Paul, 147 
Shannon, Roger H., 327 
Sherwood, W. H., 243 
Shukiar, Herbert J., 753 
Sibley, Edgar H., 85 
Sibley, W. L., 63 
Siewiorek, Daniel P., 161,379,637 
Smith, William R., 131, 185 
Solvberg, Arne, 509 
Spillman, Richard J., 19 
Stellhorn, W. H., 697 
Stocker, P. M., 119 
Stone, Harold S., 139, 175 
Stone, Jack L., 481 
Stucki, Leon G., 267 
Su, Stephen Y. H., 19 
Sugano, Jun, 217 
Summerour, Victor B., 295 
Summers, John K., 35 
Svirsky, William R., 185 
Swan, Richard J., 637, 645 
Swartwout, Donald E., 499 
Sweet, Alan F., 907 
Szygenda, S. A., 795 

Takatsuki, Toshiharu, 615 
Tasar, Omur, 807 
Tasar, Vehbi, 807 
Tenny, Ralph, 991 
Terrell, Paul, 999 
Thurber, Kenneth J., 919 
Tokoro, Mario, 217 
Tracy, Patricia A., 575 
Tum, Rein, 105 

Unger, Stephen H., 461 



Vickers, W. Harry, 973 

Wagner, James, 175 
Waksman, Abraham, 833 
Walser, Randal L., 301 
Warner, James R., 39 
Warren, Jim C., Jr., 493 
Watanabe, Taisuke, 217 
Watkins, Shirley W., 723 
Weinberg, Gerald M., 255 
Wieselman, Irving L., 363 
Welch, James S., Jr., 35 
Wells, Mark B., 389 

Whinston, Andrew B., 843, 855 
Williams, Thomas A., 55 
Wilson, E. A., 341 
Wood, Helen M., 27 
Woodgate, H. S., 277 
Woody, Charlene A., 449 
Wu, Kuang Chan, 827 

Yang, Kenneth C., 349 
Yoshikawa, Ryoichi, 931 
Yourdon, Edward, 261 

Zuckerman, Susan, 161 


	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025

